ERIC Educational Resources Information Center
Bailey, Thomas R.; Matsuzuka, Yukari; Jacobs, James; Morest, Vanessa Smith; Hughes, Katherine L.
This document reports on a study conducted by the National Science Foundation (NSF) that examines the Advanced Technological Education (ATE) program. ATE aims to promote systemic reform of the nation's science, technology, engineering, and mathematics (STEM) education. The study analyzed the influence of the ATE program on the nature of STEM…
Advancing Research in the National Science Foundation's Advanced Technological Education Program
ERIC Educational Resources Information Center
Wingate, Lori A.
2017-01-01
Advanced Technological Education is distinct from typical National Science Foundation programs in that it is essentially a training--not research--program, and most grantees are located at technical and two-year colleges. This article presents empirical data on the status of research in the program, discusses the program's role in supporting NSF's…
ERIC Educational Resources Information Center
McCormack, Sherry L.; Zieman, Stuart
2017-01-01
Hopkinsville Community College's Technological Education for the Rural Community (TERC) project is funded through the National Science Foundation Advanced Technological Education (NSF ATE) division. It is advancing innovative educational pathways for technological education promoted at the community college level serving rural communities to fill…
Advanced Technological Education: An Overview and Profile of 11 National Centers.
ERIC Educational Resources Information Center
Maricopa County Community Coll. District, Phoenix, AZ.
This booklet describes the Advanced Technological Education (ATE) program sponsored by the National Science Foundation (NSF). The ATE encourages improvements in advanced technological education at the national and regional levels using curriculum development and program improvement at the undergraduate and secondary school levels. The ATE not only…
A Relationship with Great Chemistry
ERIC Educational Resources Information Center
Gibbs, Hope J.
2005-01-01
More than a decade ago, the United States Congress passed the Scientific and Advanced Technology Act, which authorized the Advanced Technological Education program (ATE). Through ATE, the National Science Foundation (NSF) was directed to develop models aimed at two-year colleges of advanced technological education in order to expand the nation's…
MentorLinks: Advancing Technological Education, 2008-2010
ERIC Educational Resources Information Center
Hause, Ellen M., Ed.
2010-01-01
MentorLinks, part of the Advancing Technological Education program supported by the National Science Foundation and administered by the American Association of Community Colleges (AACC), provides technical assistance and networking opportunities to improve community college programs that prepare technicians in the science, technology, engineering,…
ERIC Educational Resources Information Center
Scarborough, Jule Dee
2004-01-01
This document (book) reports on the Strategic Alliance to Advance Technological Education through Enhanced Mathematics, Science, Technology, and English Education at the Secondary Level, funded by National Science Foundation. It was a collaborative partnership involving the Rockford Public Schools, Rock Valley College, and Northern Illinois…
MentorLinks: Advancing Technological Education. Project Brief. AACC-PB-04-01
ERIC Educational Resources Information Center
Hause, Ellen
2004-01-01
The American Association of Community Colleges with support from the National Science Foundation created the "MentorLinks" Advancing Technological Education program to help community colleges develop or strengthen technician training programs in the science, technology, engineering, and mathematics fields. The program works with…
NASA Technical Reports Server (NTRS)
2012-01-01
Success in executing future NASA space missions will depend on advanced technology developments that should already be underway. It has been years since NASA has had a vigorous, broad-based program in advanced space technology development, and NASA's technology base is largely depleted. As noted in a recent National Research Council report on the U.S. civil space program: Future U.S. leadership in space requires a foundation of sustained technology advances that can enable the development of more capable, reliable, and lower-cost spacecraft and launch vehicles to achieve space program goals. A strong advanced technology development foundation is needed also to enhance technology readiness of new missions, mitigate their technological risks, improve the quality of cost estimates, and thereby contribute to better overall mission cost management. Yet financial support for this technology base has eroded over the years. The United States is now living on the innovation funded in the past and has an obligation to replenish this foundational element. NASA has developed a draft set of technology roadmaps to guide the development of space technologies under the leadership of the NASA Office of the Chief Technologist. The NRC appointed the Steering Committee for NASA Technology Roadmaps and six panels to evaluate the draft roadmaps, recommend improvements, and prioritize the technologies within each and among all of the technology areas as NASA finalizes the roadmaps. The steering committee is encouraged by the initiative NASA has taken through the Office of the Chief Technologist (OCT) to develop technology roadmaps and to seek input from the aerospace technical community with this study.
Cornell University Center for Advanced Computing
Resource Center Data Management (RDMSG) Computational Agriculture National Science Foundation Other Public agriculture technology acquired Lifka joins National Science Foundation CISE Advisory Committee © Cornell
ERIC Educational Resources Information Center
Patton, Madeline
2014-01-01
With the leadership of community college educators and their industry partners, the National Science Foundation's Advanced Technological Education (ATE) program has achieved an impressive record of incubating innovative science, technology, engineering, and mathematics (STEM) programs. ATE's mission to increase the quality of technicians working…
TECHcitement: Advances in Technological Education.
ERIC Educational Resources Information Center
American Association of Community Colleges, Washington, DC.
This publication includes seven articles. "ATE Grants Generate Life-Changing Experiences" discusses the National Science Foundation's (NSF) Advanced Technological Education (ATE) grants, which provide seed money and other support that community college educators use to enhance technical training and improve math and science instruction. "Phone…
ERIC Educational Resources Information Center
Patton, Madeline
2016-01-01
The National Science Foundation's Advanced Technological Education (ATE) program gives two year college educators leadership roles in developing model technician education programs for advanced technology fields. Since the first ATE grants were awarded in 1993, community college educators across the nation have partnered with industry and other…
MentorLinks: Advancing Technological Education, 2005-2007
ERIC Educational Resources Information Center
Hause, Ellen M., Ed.
2008-01-01
The goals of the MentorLinks: Advancing Technological Education program, supported by the National Science Foundation and administered by the American Association of Community Colleges (AACC), are to provide technical assistance and networking opportunities for the purpose of improving community college programs that prepare technicians in the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, Jerry
2012-01-01
They are the inventors of our generation dedicated to exceptional science, advancing the technologies of tomorrow. CO-LABS honors the outstanding achievements of researchers and their impact on the world.
Advanced Technological Education Survey 2012 Fact Sheet
ERIC Educational Resources Information Center
Wingate, Lori; Smith, Corey; Westine, Carl; Gullickson, Arlen
2012-01-01
This fact sheet summarizes data gathered in the 2012 survey of National Science Foundation (NSF) Advanced Technological Education (ATE) grant recipients. Conducted by EvaluATE, the evaluation resource center for the ATE program located at The Evaluation Center at Western Michigan University, this was the thirteenth annual survey of ATE projects…
Delivering Advanced Technical Education Using Online, Immersive Classroom Technology
ERIC Educational Resources Information Center
Smith, Delmer; Louwagie, Nancy
2017-01-01
Vacuum and thin film technologies are critical to advanced manufacturing industries. With a grant from the National Science Foundation (DUE #14004080), Normandale Community College has developed courses that are delivered online and via telepresence to provide a formal education to vacuum technician students around the country. Telepresence…
Advanced Technological Education Survey 2009 Fact Sheet
ERIC Educational Resources Information Center
Wingate, Lori; Gullickson, Arlen
2009-01-01
This fact sheet summarizes data gathered in the 2009 survey of National Science Foundation (NSF) Advanced Technological Education (ATE) grant recipients. Conducted by The Evaluation Center at Western Michigan University, this was the tenth annual survey of ATE projects and centers. Included here are statistics about the program's grantees and…
Advanced Technological Education Program Fact Sheet, June 2007
ERIC Educational Resources Information Center
Ritchie, Liesel A.; Gullickson, Arlen R.; Wygant, Barbara
2007-01-01
This fact sheet summarizes data gathered in the 2007 annual survey for the National Science Foundation's (NSF) Advanced Technological Education (ATE) program. This was the eighth annual survey of ATE projects and centers conducted by The Evaluation Center at Western Michigan University. Included here are statistics about the program's grantees and…
Advanced Technological Education Program 2008 Survey Fact Sheet
ERIC Educational Resources Information Center
Gullickson, Arlen R.; Wingate, Lori A.
2008-01-01
This fact sheet summarizes data gathered in the 2008 survey of National Science Foundation (NSF) Advanced Technological Education (ATE) grant recipients. Conducted by The Evaluation Center at Western Michigan University, this was the ninth annual survey of ATE projects and centers. Included here are statistics about the program's grantees and…
Advanced Technological Education Survey 2011 Fact Sheet
ERIC Educational Resources Information Center
Wingate, Lori; Westine, Carl; Gullickson, Arlen
2011-01-01
This fact sheet summarizes data gathered in the 2011 survey of National Science Foundation (NSF) Advanced Technological Education (ATE) grant recipients. Conducted by EvaluATE, the evaluation resource center for the ATE program located at The Evaluation Center at Western Michigan University, this was the twelfth annual survey of ATE projects and…
Advanced Technological Education Survey 2010 Fact Sheet
ERIC Educational Resources Information Center
Wingate, Lori; Westine, Carl; Gullickson, Arlen
2010-01-01
This fact sheet summarizes data gathered in the 2010 survey of National Science Foundation (NSF) Advanced Technological Education (ATE) grant recipients. Conducted by EvaluATE, the evaluation resource center for the ATE program located at The Evaluation Center at Western Michigan University, this was the eleventh annual survey of ATE projects and…
Space Transportation Technology Workshop: Propulsion Research and Technology
NASA Technical Reports Server (NTRS)
2000-01-01
This viewgraph presentation gives an overview of the Space Transportation Technology Workshop topics, including Propulsion Research and Technology (PR&T) project level organization, FY 2001 - 2006 project roadmap, points of contact, foundation technologies, auxiliary propulsion technology, PR&T Low Cost Turbo Rocket, and PR&T advanced reusable technologies RBCC test bed.
The John and Mary R. Markle Foundation Annual Report 1973/74.
ERIC Educational Resources Information Center
John and Mary R. Markle Foundation, New York, NY.
The John and Mary R. Markle Foundation, chartered in 1927 to promote the advancement and diffusion of knowledge and the general good of mankind, currently conducts a program to strengthen educational use of the mass media and communications technology. The foundation's annual report begins with the president's essay on the history, philosophy, and…
ERIC Educational Resources Information Center
Zinser, Richard W.; Hanssen, Carl E.
2006-01-01
This article presents an analysis of national data from the Advanced Technological Education (ATE) program regarding articulation agreements for the transfer of 2-year technical degrees to baccalaureate degrees. Quantitative and qualitative data are illustrated to help explain the extent to which ATE projects improve access to universities for…
Advanced Technological Education (ATE) Program: Building a Pipeline of Skilled Workers. Policy Brief
ERIC Educational Resources Information Center
American Youth Policy Forum, 2010
2010-01-01
In the Fall of 2008, the American Youth Policy Forum hosted a series of three Capitol Hill forums showcasing the Advanced Technological Education (ATE) program supported by the National Science Foundation (NSF). The goal of these forums was to educate national policymakers about the importance of: (1) improving the science and math competencies of…
ERIC Educational Resources Information Center
Badway, Norena Norton; Somerville, Jerry
2011-01-01
The purpose of this study was to analyze what leaders of Advanced Technological Education (ATE) programs funded by the National Science Foundation believe are their most important needs for research information. Data was collected through a Delphi process, and results were analyzed through frameworks associated with program improvement initiatives…
CSTI high capacity power. [Civil Space Technology Initiative
NASA Technical Reports Server (NTRS)
Winter, Jerry M.
1989-01-01
In FY-88, the Advanced Technology Program was incorporated into NASA's Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Converrsion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems.
Fabrication of Tl2Ba2CaCu2O8 superconducting films without thallium pellets
NASA Astrophysics Data System (ADS)
Xu, Teng-Da; Xing, Jian; Wang, Li-Tian; Zhang, Jin-Li; Zhao, Sheng-Hui; Xiong, Yang; Zhao, Xin-Jie; Ji, Lu; Zhang, Xu; He, Ming
2018-05-01
Not Available Project supported by the National Natural Science Foundation of China (Grant No. 51002081), the Fundamental Research Funds for the Central Universities, China, and the Research Program of Application Foundation and Advanced Technology of Tianjin, China (Grant No. 15JCQNJC01300).
Science and engineering research opportunities at the National Science Foundation.
Demir, Semahat S
2004-01-01
Research at the interface of the physical sciences and life sciences has produced remarkable advances and understanding in biology and medicine over the past fifty years. These bases for many of these healthcare and research advances have been discoveries in the quantitative sciences and engineering approaches to applying them. The National Science Foundation supports research and development in the physical sciences which underpins multi-disciplinary approaches to addressing problems in biology and medicine. This presentation will cover research opportunities offered by the NSF and collaborative programs with the NIH to transfer the resulting advances and technologies.
ERIC Educational Resources Information Center
Leddy, Mark H.
2010-01-01
Americans with disabilities are underemployed in science, technology, engineering and mathematics (STEM) at higher rates than their nondisabled peers. This article provides an overview of the National science Foundation's Research in Disabilities Education (RDE) program, of technology use by students with disabilities (SWD) in STEM, and of…
ERIC Educational Resources Information Center
Toal, Stacie A.; Gullickson, Arlen R.
2011-01-01
In 1999, the National Science Foundation (NSF) awarded funds to the Evaluation Center at Western Michigan University to conduct an external evaluation of the Advanced Technological Education (ATE) program. ATE, a federally mandated program designed to increase the number and quality of skilled technicians in the U.S. workforce, has funded over 346…
Some Big Questions about Design in Educational Technology
ERIC Educational Resources Information Center
Gibbons, Andrew S.
2016-01-01
This article asks five questions that lead us to the foundations of design practice in educational technology. Design processes structure time, space, place, activity, role, goal, and resource. For educational technology to advance in its understanding of design practice, it must question whether we have clear conceptions of how abstract…
Long-Term Technology Planning: Laying the Foundation To Improve Illinois Schools.
ERIC Educational Resources Information Center
Barker, Bruce O.; Hall, Robert F.
This report provides guidelines for establishing a long-term technology plan for education, applicable to schools in all states. Advanced and emerging telecommunications and computer technologies have resulted in an ever increasing need for teachers and students to develop information processing and lifelong learning skills for gathering and…
Exploring the Intellectual Foundation of Technology Education: From Condorcet to Dewey.
ERIC Educational Resources Information Center
Chafy, Randy
1997-01-01
Contemporary understanding of technology education owes much to Enlightenment-based beliefs in education for citizenship, especially in the work of Condorcet and Dewey. However, another legacy of their work is an uncritical belief in technological advancement as a benchmark for the progress of civilization. (SK)
Transforming Undergraduate Research Opportunities Using Telepresence
ERIC Educational Resources Information Center
Pallant, Amy; McIntyre, Cynthia; Stephens, A. Lynn
2016-01-01
The National Science Foundation funded the "Transforming Remotely Conducted Research through Ethnography, Education, and Rapidly Evolving Technologies" (TREET) project to explore ways to utilize advances in technology and thus to provide opportunities for scientists and undergraduate students to engage in deep sea research. The…
2011-09-28
CAFE Foundation volunteer Oliver Dyer-Bennet, left, CAFE Foundation Hanger Boss Mike Fenn, center, and CAFE Foundation volunteer, Justin Dyer-Bennett scan the sky for aircraft during the speed competition portion of the 2011 Green Flight Challenge, sponsored by Google, being held at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
Winning the Global Skills Race: National Centers Prime Students for Success in Emerging Job Markets
ERIC Educational Resources Information Center
Murray, Corey
2007-01-01
This article talks about a joint effort between the National Science Foundation and the nation's community colleges that helps students secure jobs in technical career fields. It describes Advanced Technological Education Program (ATE), National Science Foundation's (NSF's) premier initiative with two-year colleges that was created in response to…
Exploring the boundaries of quantum mechanics: advances in satellite quantum communications.
Agnesi, Costantino; Vedovato, Francesco; Schiavon, Matteo; Dequal, Daniele; Calderaro, Luca; Tomasin, Marco; Marangon, Davide G; Stanco, Andrea; Luceri, Vincenza; Bianco, Giuseppe; Vallone, Giuseppe; Villoresi, Paolo
2018-07-13
Recent interest in quantum communications has stimulated great technological progress in satellite quantum technologies. These advances have rendered the aforesaid technologies mature enough to support the realization of experiments that test the foundations of quantum theory at unprecedented scales and in the unexplored space environment. Such experiments, in fact, could explore the boundaries of quantum theory and may provide new insights to investigate phenomena where gravity affects quantum objects. Here, we review recent results in satellite quantum communications and discuss possible phenomena that could be observable with current technologies. Furthermore, stressing the fact that space represents an incredible resource to realize new experiments aimed at highlighting some physical effects, we challenge the community to propose new experiments that unveil the interplay between quantum mechanics and gravity that could be realizable in the near future.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).
Improving NASA's technology for space science
NASA Technical Reports Server (NTRS)
1993-01-01
The continued advance of the nation's space program is directly dependent upon the development and use of new technology. Technology is the foundation for every aspect of space missions and ground operations. The improvements in technology that will enable future advances are not only in device and system performance, but also in permitting missions to be carried out more rapidly and at lower cost. Although more can be done with current technology, NASA's recent call for new and innovative approaches should not be answered by employing only today's technologies; new technologies with revolutionary potential should be sought. The study reported here was performed to identify means to enhance the development of technologies for the space sciences and applications.
Source technology as the foundation for modern infra-red counter measures (IRCM)
NASA Astrophysics Data System (ADS)
Grasso, Robert J.
2010-10-01
Protection of military aircraft from IR guided threats is paramount to ensure the survivability of aircrews, platforms, and to ensure mission success. At the foundation of all IRCM systems is the source; that component that provides the in-band radiant energy required for threat defeat. As such, source technology has evolved with IRCM technology to encompass the evolving systems architectures that encompass IRCM: 1) "Hot Brick" omni-directional sources; 2) arc lamps, and; 3) lasers. Lasers, as IRCM sources continue to evolve to meet the challenges of ever-evolving threats, superior techniques, economy of installation, and superior source technology. Lasers represent the single greatest advance in IRCM source technology and continue to evolve to meet ever more sophisticated threats. And have been used with great effect in all modern IRCM systems; evolving from frequency doubled CO2 lasers, to solid state lasers with OPOs, to semiconductor lasers including Quantum Cascade Lasers (QCLs); these last devices represent the latest advance in IRCM source technology offering all-band coverage, architectural simplicity, and economy of scale. While QCLs represent the latest advance in IRCM laser technology, fiber lasers show much promise in addressing multi-band operation as well as the ability to be coherently combined to achieve even greater output capability. Also, ultra-short pulse lasers are evolving to become practical for IRCM applications. Stay tuned ......
ERIC Educational Resources Information Center
McLurkin, J.; Rykowski, J.; John, M.; Kaseman, Q.; Lynch, A. J.
2013-01-01
This paper describes the experiences of using an advanced, low-cost robot in science, technology, engineering, and mathematics (STEM) education. It presents three innovations: It is a powerful, cheap, robust, and small advanced personal robot; it forms the foundation of a problem-based learning curriculum; and it enables a novel multi-robot…
Perspectives on Imaging: Advanced Applications. Introduction and Overview.
ERIC Educational Resources Information Center
Lynch, Clifford A.; Lunin, Lois F.
1991-01-01
Provides an overview of six articles that address relationships between electronic imaging technology and information science. Articles discuss the areas of technology; applications in the fields of visual arts, medicine, and textile history; conceptual foundations; and future visions, including work in virtual reality and cyberspace. (LRW)
Female Participation in ATE-Funded Programs: A Ten-Year Trend
ERIC Educational Resources Information Center
Westine, Carl D.; Gullickson, Arlen R.; Wingate, Lori A.
2010-01-01
It is widely known that women are generally underrepresented in STEM disciplines (science, technology, engineering, and mathematics). The National Science Foundation (NSF) Advanced Technological Education (ATE) program has persistently worked to reduce this disparity. For example, the 2000 solicitation specified "increasing the participation of…
Robust Decision Making for Improved Mission Assurance
2014-06-01
Technology Team (STT) proposed and was approved to receive funding for a set of four research projects advancing foundational decision science and... technology over a three year period of performance. At the time it was approved, the initiative involved 27 collaborating scientists and engineers from five...Appendix E. Sensors Directorate Technologies for Robust Decision Making for Improved Mission Assurance
Torkamani, Ali; Andersen, Kristian G; Steinhubl, Steven R; Topol, Eric J
2017-08-24
The foundation for a new era of data-driven medicine has been set by recent technological advances that enable the assessment and management of human health at an unprecedented level of resolution-what we refer to as high-definition medicine. Our ability to assess human health in high definition is enabled, in part, by advances in DNA sequencing, physiological and environmental monitoring, advanced imaging, and behavioral tracking. Our ability to understand and act upon these observations at equally high precision is driven by advances in genome editing, cellular reprogramming, tissue engineering, and information technologies, especially artificial intelligence. In this review, we will examine the core disciplines that enable high-definition medicine and project how these technologies will alter the future of medicine. Copyright © 2017 Elsevier Inc. All rights reserved.
"ATLAS" Advanced Technology Life-cycle Analysis System
NASA Technical Reports Server (NTRS)
Lollar, Louis F.; Mankins, John C.; ONeil, Daniel A.
2004-01-01
Making good decisions concerning research and development portfolios-and concerning the best systems concepts to pursue - as early as possible in the life cycle of advanced technologies is a key goal of R&D management This goal depends upon the effective integration of information from a wide variety of sources as well as focused, high-level analyses intended to inform such decisions Life-cycle Analysis System (ATLAS) methodology and tool kit. ATLAS encompasses a wide range of methods and tools. A key foundation for ATLAS is the NASA-created Technology Readiness. The toolkit is largely spreadsheet based (as of August 2003). This product is being funded by the Human and Robotics The presentation provides a summary of the Advanced Technology Level (TRL) systems Technology Program Office, Office of Exploration Systems, NASA Headquarters, Washington D.C. and is being integrated by Dan O Neil of the Advanced Projects Office, NASA/MSFC, Huntsville, AL
ERIC Educational Resources Information Center
Smith, Corey; Wingate, Lori
2016-01-01
Expanding and diversifying the STEM (science, technology, engineering, and mathematics) workforce is a national priority. The National Science Foundation is investing efforts at post secondary education institutions to engage individuals who have been historically underrepresented in STEM. This paper investigated the use of strategies to broaden…
ERIC Educational Resources Information Center
EDUCAUSE, Washington, DC.
This proceedings of the 1999 EDUCAUSE Conference contains papers presented in six tracks: Building the New Information Technology Foundation and Infrastructure; Technology-Enhanced Teaching and Learning; Renewing Administrative Services; Outreach, Public Service, and New Communities; Advancing the Leading Edge; and the EDUCAUSE Track. Topics of…
Development of Hybrid Courses Utilizing Modules as an Objective in ATE Projects
ERIC Educational Resources Information Center
Payne, James E.; Murphy, Richard M.; Payne, Linda L.
2017-01-01
Orangeburg-Calhoun Technical College (OCtech) has been awarded two National Science Foundation Advanced Technological Education (NSF-ATE) grants since 2011 that have the development of module-based hybrid courses in Engineering Technology and Mechatronics as objectives. In this article, the advantages and challenges associated with module-based…
ERIC Educational Resources Information Center
Harris, John; And Others
This document focuses on technologies that can be used to improve federal government services. Reference Point, a foundation based in New Jersey, was chosen by the Office of Technology Assessment of the U.S. Congress to study the application of advanced information. The applications selected for the study were: Electronic Information…
Advanced Technologies and Instrumentation at the National Science Foundation
NASA Astrophysics Data System (ADS)
Kurczynski, Peter; Neff, James E.
2018-01-01
Over its more than thirty-year history, the Advanced Technologies and Instrumentation (ATI) program within the Division of Astronomical Sciences has provided grants to support the development and deployment of detectors and instrumentation for ground-based astronomy. This program has enabled scientific advances in diverse fields from solar physics to exoplanets to cosmology. ATI has provided instrumentation for both small and large observatories from radio through visible wavebands. It has played a role in the early development of major initiatives such as the Large Synoptic Survey Telescope. Technology development for astronomy unfolds over a longer period than the lifetime of a single grant. This review will consider ATI from an historical perspective to assess its impact on astronomy.
... Support Groups For more information about area support groups, please click here . NEWSWORTHY Advancing the Understanding for Exfoliation click for info © Copyright 2018 The Glaucoma Foundation. All Rights Reserved. | Site Map Web design by Integra Strategic Technologies
Ultrasonic nondestructive evaluation, microstructure, and mechanical property interrelations
NASA Technical Reports Server (NTRS)
Vary, A.
1984-01-01
Ultrasonic techniques for mechanical property characterizations are reviewed and conceptual models are advanced for explaining and interpreting the empirically based results. At present, the technology is generally empirically based and is emerging from the research laboratory. Advancement of the technology will require establishment of theoretical foundations for the experimentally observed interrelations among ultrasonic measurements, mechanical properties, and microstructure. Conceptual models are applied to ultrasonic assessment of fracture toughness to illustrate an approach for predicting correlations found among ultrasonic measurements, microstructure, and mechanical properties.
Aviation System Technology Advanced Research Program - AvSTAR
NASA Technical Reports Server (NTRS)
Denery, Dallas G.
2001-01-01
The objectives of this presentation is to provide the research and development by 2007 necessary to: complete the development of technology for tomorrow (Free-Flight); provide the foundations for setting the direction for the future (Beyond Free-Flight). The goals are to establish tomorrow's as well as the future's Air transportation system.
Game-Based Learning Aids in Second Life
ERIC Educational Resources Information Center
Young, William, II; Franklin, Teresa; Cooper, Tessa; Carroll, Stephen; Liu, Chang
2012-01-01
In an age of technological advancement, video games have been found to be effective teaching aids in middle school science classrooms. A National Science Foundation (NSF) project at Ohio University, known as STEAM, (Science and Technology Enrichment for Appalachian Middle Schoolers), has examined Second Life as a curriculum aid through the design,…
Robots in space into the 21st century
NASA Technical Reports Server (NTRS)
Weisbin, C. R.; Lavery, D.; Rodriguez, G.
1997-01-01
Describes the technological developments which are establishing the foundation for an exciting era of in situ exploration missions to planets, comets and asteroids with advanced robotic systems. Also outlines important concurrent terrestrial applications and spinoffs of the space robotics technology. These include high-precision robotic manipulators for microsurgical operations and dexterous arm control systems.
ERIC Educational Resources Information Center
Foster, W. Tad; Shahhosseini, A. Mehran; Maughan, George
2016-01-01
Facilitating student growth and development in diagnosing and solving technical problems remains a challenge for technology and engineering educators. With funding from the National Science Foundation, this team of researchers developed a self-guided, computer-based instructional program to experiment with conceptual mapping as a treatment to…
Beyond Moore's Law: Harnessing spatial-digital disruptive technologies for Digital Earth
NASA Astrophysics Data System (ADS)
Foresman, Timothy W.
2016-11-01
Moore's law will reach its plateau by 2020. Big data, however, will continue to increase as the Internet of Things and social media converge into the new era of ‘huge data’. Disruptive technologies, including big data and cloud computing are forces impacting business and government communities. The truth of our collective future is suggested to align with the Digital Earth (DE) vision. Benefits of technological advances will be manifested from business performance improvements based on capitalizing the locational attributes of corporate and government assets - the foundation of big data. Better governance and better business represents a key foundation for sustainability and therefore should be explicit DE guiding principles.
Mary S. Easton Center of Alzheimer's Disease Research at UCLA: advancing the therapeutic imperative.
Cummings, Jeffrey L; Ringman, John; Metz, Karen
2010-01-01
The Mary S. Easton Center for Alzheimer's Disease Research (UCLA-Easton Alzheimer's Center) is committed to the "therapeutic imperative" and is devoted to finding new treatments for Alzheimer's disease (AD) and to developing technologies (biomarkers) to advance that goal. The UCLA-Easton Alzheimer's Center has a continuum of research and research-related activities including basic/foundational studies of peptide interactions; translational studies in transgenic animals and other animal models of AD; clinical research to define the phenotype of AD, characterize familial AD, develop biomarkers, and advance clinical trials; health services and outcomes research; and active education, dissemination, and recruitment activities. The UCLAEaston Alzheimer's Center is supported by the National Institutes on Aging, the State of California, and generous donors who share our commitment to developing new therapies for AD. The naming donor (Jim Easton) provided substantial funds to endow the center and to support projects in AD drug discovery and biomarker development. The Sidell-Kagan Foundation supports the Katherine and Benjamin Kagan Alzheimer's Treatment Development Program, and the Deane F. Johnson Alzheimer's Research Foundation supports the Deane F. Johnson Center for Neurotherapeutics at UCLA. The John Douglas French Alzheimer's Research Foundation provides grants to junior investigators in critical periods of their academic development. The UCLA-Easton Alzheimer's Center partners with community organizations including the Alzheimer's Association California Southland Chapter and the Leeza Gibbons memory Foundation. Collaboration with pharmaceutical companies, biotechnology companies, and device companies is critical to developing new therapeutics for AD and these collaborations are embraced in the mission of the UCLA-Easton Alzheimer's Center. The Center supports excellent senior 3 investigators and serves as an incubator for new scientists, agents, models, technologies and concepts that will significantly influence the future of AD treatment and AD research.
NASA Astrophysics Data System (ADS)
Lou, Yong-Le; Zhang, Yu-Ming; Guo, Hui; Xu, Da-Qing; Zhang, Yi-Men
2016-11-01
Not Available Supported by the National Defense Advance Research Foundation under Grant No 9140A08XXXXXX0DZ106, the Basic Research Program of Ministry of Education of China under Grant No JY10000925005, the Scientific Research Program Funded by Shaanxi Provincial Education Department under Grant No 11JK0912, the Scientific Research Foundation of Xi'an University of Science and Technology under Grant No 2010011, and the Doctoral Research Startup Fund of Xi'an University of Science and Technology under Grant No 2010QDJ029.
2011-09-27
CAFE Foundation Security Chief and Event Manager Bruno Mombrinie, left, talks with CAFE Foundation eCharging Chief Alan Soule as flight crews prepare for the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
Breast Cancer Startup Challenge winners
Ten winners of a world-wide competition to bring emerging breast cancer research technologies to market faster were announced today by the Avon Foundation for Women, in partnership with NCI and the Center for Advancing Innovation (CAI). Avon is providing
Research opportunities to advance solar energy utilization.
Lewis, Nathan S
2016-01-22
Major developments, as well as remaining challenges and the associated research opportunities, are evaluated for three technologically distinct approaches to solar energy utilization: solar electricity, solar thermal, and solar fuels technologies. Much progress has been made, but research opportunities are still present for all approaches. Both evolutionary and revolutionary technology development, involving foundational research, applied research, learning by doing, demonstration projects, and deployment at scale will be needed to continue this technology-innovation ecosystem. Most of the approaches still offer the potential to provide much higher efficiencies, much lower costs, improved scalability, and new functionality, relative to the embodiments of solar energy-conversion systems that have been developed to date. Copyright © 2016, American Association for the Advancement of Science.
ERIC Educational Resources Information Center
Rozek, Christopher S.; Hyde, Janet S.; Svoboda, Ryan C.; Hulleman, Chris S.; Harackiewicz, Judith M.
2015-01-01
A foundation in science, technology, engineering, and mathematics (STEM) education is critical for students' college and career advancement, but many U.S. students fail to take advanced mathematics and science classes in high school. Research has neglected the potential role of parents in enhancing students' motivation for pursuing STEM courses.…
2011-09-28
CAFE Foundation Hanger Boss Mike Fenn waves the speed competition checkered flag for the PhoEnix aircraft during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-28
CAFE Foundation Hanger Boss Mike Fenn waves the speed competition checkered flag for the EcoEagle aircraft during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-28
CAFE Foundation Hanger Boss Mike Fenn waves the speed competition start flag for the EcoEagle aircraft during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-28
CAFE Foundation Hanger Boss Mike Fenn waves the speed competition checkered flag for the e-Genius aircraft during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
An Overview of Low-Emission Combustion Research
NASA Technical Reports Server (NTRS)
DelRosario, Ruben
2014-01-01
An overview of research efforts at NASA Glenn Research Center (GRC) in low-emission combustion technology that have made a significant impact on the Nitrogen Oxides (NOx) emission reduction in aircraft propulsion will be presented. The technology advancements and their impact on aircraft emissions will be discussed in the context of NASAs Aeronautics Research Mission Directorate (ARMD) high-level goals in fuel burn, noise and emission reductions. The highlights of the research presented will show how the past and current efforts have laid the foundation for the engines that are flying today as well as how the continued technology advancements will significantly influence the next generation of aviation propulsion system designs.
OAST Space Theme Workshop 1976
NASA Technical Reports Server (NTRS)
Sadin, S. R.
1977-01-01
Papers that provide a technical foundation including research and technology base candidates for each of six space themes - space power, space industrialization, search for extraterrestrial intelligence, exploration of the solar system, global service, and advanced transportation systems - are presented. The material is mainly intended for further use by workshop participants and NASA elements concerned with space research and technology. While the data presented do not represent official plans or positions, they are part of the process of evolving such plans and positions. The information contained reflects the efforts of workshop participants and should be an aid in the successful implementation and execution of the Agency's near- and far-term advanced technology program.
An Overview of Low-Emission Combustion Research at NASA Glenn
NASA Technical Reports Server (NTRS)
Reddy, Dhanireddy R.; Lee, Chi-Ming
2016-01-01
An overview of research efforts at NASA Glenn Research Center (GRC) in low-emission combustion technology that have made a significant impact on the nitrogen oxides (NOx) emission reduction in aircraft propulsion is presented. The technology advancements and their impact on aircraft emissions are discussed in the context of NASA's Aeronautics Research Mission Directorate (ARMD) high-level goals in fuel burn, noise and emission reductions. The highlights of the research presented here show how the past and current efforts laid the foundation for the engines that are flying today as well as how the continued technology advancements will significantly influence the next generation of aviation propulsion system designs.
Overview of Low Emission Combustion Research At NASA Glenn
NASA Technical Reports Server (NTRS)
Reddy, D. R.
2016-01-01
An overview of research efforts at NASA Glenn Research Center (GRC) in low-emission combustion technology that have made a significant impact on the nitrogen oxides (NOx) emission reduction in aircraft propulsion is presented. The technology advancements and their impact on aircraft emissions are discussed in the context of NASA's Aeronautics Research Mission Directorate (ARMD) high-level goals in fuel burn, noise and emission reductions. The highlights of the research presented here show how the past and current efforts laid the foundation for the engines that are flying today as well as how the continued technology advancements will significantly influence the next generation of aviation propulsion system designs.
NASA Astrophysics Data System (ADS)
Boni, G.
2009-04-01
CIMA is a Research Foundation which aim is to advance science and engineering in environmentally related fields, focusing on public health and safety, civil protection and the preservation of terrestrial and water-related ecosystems. This aim is accomplished through scientific research, technology transfer and high level training services. Here we present the "New Aphrodite school on Disasters Food and Poverty" jointly managed by CIMA Foundation, and the University of Genova. The school is organized to provide to international students, professionals and government officials, mainly from poor or developing countries, formation for the management, prediction and prevention of natural and man made disasters. The expertise of the teachers, mainly CIMA's researchers, comes from a long term support of CIMA Foundation to the Italian Civil Protection in developing the advanced national system for risk prediction, prevention and management. The school is organized in two levels. The first level includes an international master of science degree in "Environmental Engineering: Sustainable Development and Risk Management", which classes are given in English, and a master for professional and government officials in "Disasters, food and poverty". The second level includes an international Ph.D. programme in "Information sciences and technologies for system monitoring and environmental risk management". Short training courses for international government official are periodically organized. At present the school is organizing short courses for officials of Civil Protections of Venezuela, Barbados and Mozambique. The philosophy underlying the teaching activities is to promote a multi-disciplinary approach to disaster mitigation, prevention and prediction. Special focus is on the potential of high-tech low-cost technologies for rapid communication and disaster monitoring, such as satellite based technologies. Such technologies are seen as the best way to support the development of autonomous capacities in developing countries, with affordable investment costs, and to improve globally the understanding of the phenomena leading to disasters.
Sandia National Laboratories: Research: Research Foundations: Engineering
Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for Development Agreement (CRADA) Strategic Partnership Projects, Non-Federal Entity (SPP/NFE) Agreements New engineering transitions in advanced, highly critical systems by integrating theory development, experimental
The Role of Advanced Manufacturing in Our Journey to Mars
NASA Technical Reports Server (NTRS)
Keys, Andrew S.
2017-01-01
The National Additive Manufacturing Innovation Institute was launched in August 2012 as a result of President Obama's proposed need for a whole-of-government advanced manufacturing effort. Mission: To accelerate the adoption of additive manufacturing technologies to increase domestic manufacturing competitiveness. Funding: Five federal agencies - the Departments of Defense, Energy, and Commerce, the National Science Foundation, and NASA - jointly committed to invest $45 million.
2011-09-28
CAFE Foundation Hanger Boss Mike Fenn waves the speed competition checkered flag for the Taurus G4 aircraft during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-25
CAFE Foundation Weights crew member Ron Stout, left, and Weights Chief Wayne Cook, weigh-in the e-Genius aircraft during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-28
CAFE Foundation Hanger Boss Mike Fenn directs the e-Genius aircraft to the start of the speed competition during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-28
CAFE Foundation Hanger Boss Mike Fenn waves the speed competition start flag for the Pipistrel-USA, Taurus G4 aircraft during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-28
CAFE Foundation Hanger Boss Mike Fenn directs the EcoEagle aircraft to the start of the speed competition during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-25
CAFE Foundation Weights Chief Wayne Cook, left, talks with the e-Genius aircraft crew about their weigh-in during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
One-dimensional ZnO nanostructure-based optoelectronics
NASA Astrophysics Data System (ADS)
Zhang, Zheng; Kang, Zhuo; Liao, Qingliang; Zhang, Xiaomei; Zhang, Yue
2017-10-01
Not Available Project supported by the National Major Research Program of China (Grant No. 2013CB932602), the National Key Research and Development Program of China (Grant No. 2016YFA0202701), the Program of Introducing Talents of Discipline to Universities, China (Grant No. B14003), the National Natural Science Foundation of China (Grant Nos. 51527802, 51232001, 51602020, 51672026, and 51372020), China Postdoctoral Science Foundation (Grant Nos. 2015M580981 and 2016T90033) Beijing Municipal Science & Technology Commission, China, the State Key Laboratory for Advanced Metals and Materials, China (Grant No. 2016Z-06), the Fundamental Research Funds for the Central Universities, China, and JST in Japan, Research and Education Consortium for Innovation of Advanced Integrated Science.
NASA Noise Reduction Program for Advanced Subsonic Transports
NASA Technical Reports Server (NTRS)
Stephens, David G.; Cazier, F. W., Jr.
1995-01-01
Aircraft noise is an important byproduct of the world's air transportation system. Because of growing public interest and sensitivity to noise, noise reduction technology is becoming increasingly important to the unconstrained growth and utilization of the air transportation system. Unless noise technology keeps pace with public demands, noise restrictions at the international, national and/or local levels may unduly constrain the growth and capacity of the system to serve the public. In recognition of the importance of noise technology to the future of air transportation as well as the viability and competitiveness of the aircraft that operate within the system, NASA, the FAA and the industry have developed noise reduction technology programs having application to virtually all classes of subsonic and supersonic aircraft envisioned to operate far into the 21st century. The purpose of this paper is to describe the scope and focus of the Advanced Subsonic Technology Noise Reduction program with emphasis on the advanced technologies that form the foundation of the program.
NASA Technical Reports Server (NTRS)
Smith, Paul H.
1988-01-01
The Computer Science Program provides advanced concepts, techniques, system architectures, algorithms, and software for both space and aeronautics information sciences and computer systems. The overall goal is to provide the technical foundation within NASA for the advancement of computing technology in aerospace applications. The research program is improving the state of knowledge of fundamental aerospace computing principles and advancing computing technology in space applications such as software engineering and information extraction from data collected by scientific instruments in space. The program includes the development of special algorithms and techniques to exploit the computing power provided by high performance parallel processors and special purpose architectures. Research is being conducted in the fundamentals of data base logic and improvement techniques for producing reliable computing systems.
Promoting Institutional Change through Bias Literacy
ERIC Educational Resources Information Center
Carnes, Molly; Devine, Patricia G.; Isaac, Carol; Manwell, Linda Baier; Ford, Cecelia E.; Byars-Winston, Angela; Fine, Eve; Sheridan, Jennifer
2012-01-01
The National Science Foundation and others conclude that institutional transformation is required to ensure equal opportunities for the participation and advancement of men and women in academic science, technology, engineering, mathematics, and medicine (STEMM). Such transformation requires changing the habitual attitudes and behaviors of…
Nonlocal Effects of Crack Curving.
1982-07-01
Structures Research Division Marine Corps Development Langley Research Center and Education Comand Langley Station Quantice , Virginia 22134i~l EaptOn, Vtiina...Advanced lomn 3C128 Research and Technology The Pentagon Washington. D.C. 2054 Washington, D.C* 20301 Air Force Dr. G Sans National Science Foundation... Science and Technology Division (FIS) Washingtono DOC* 20540 AM (XIM)Director Chief Applied Mechanics Group Defense Nuclear Agency U.S.. Air Force
Mary S. Easton Center of Alzheimer’s Disease Research at UCLA: Advancing the Therapeutic Imperative
Cummings, Jeffrey L.; Ringman, John; Metz, Karen
2010-01-01
The Mary S. Easton Center for Alzheimer’s Disease Research (UCLA-Easton Alzheimer’s Center) is committed to the “therapeutic imperative” and is devoted to finding new treatments for Alzheimer’s disease (AD) and to developing technologies (biomarkers) to advance that goal. The UCLA-Easton Alzheimer’s Center has a continuum of research and research-related activities including basic/foundational studies of peptide interactions; translational studies in transgenic animals and other animal models of AD; clinical research to define the phenotype of AD, characterize familial AD, develop biomarkers, and advance clinical trials; health services and outcomes research; and active education, dissemination, and recruitment activities. The UCLA-Easton Alzheimer’s Center is supported by the National Institutes on Aging, the State of California, and generous donors who share our commitment to developing new therapies for AD. The naming donor (Jim Easton) provided substantial funds to endow the center and to support projects in AD drug discovery and biomarker development. The Sidell-Kagan Foundation supports the Katherine and Benjamin Kagan Alzheimer’s Treatment Development Program, and the Deane F. Johnson Alzheimer’s Research Foundation supports the Deane F. Johnson Center for Neurotherapeutics at UCLA. The John Douglas French Alzheimer’s Research Foundation provides grants to junior investigators in critical periods of their academic development. The UCLA-Easton Alzheimer’s Center partners with community organizations including the Alzheimer’s Association California Southland Chapter and the Leeza Gibbons memory Foundation. Collaboration with pharmaceutical companies, biotechnology companies, and device companies is critical to developing new therapeutics for AD and these collaborations are embraced in the mission of the UCLA-Easton Alzheimer’s Center. The Center supports excellent senior investigators and serves as an incubator for new scientists, agents, models, technologies and concepts that will significantly influence the future of AD treatment and AD research. PMID:20110588
NASA Astrophysics Data System (ADS)
Xu, Yao; Zhang, Chun-Hui; Niebur, Ernst; Wang, Jun-Song
2018-04-01
Not Available Project supported by the National Natural Science Foundation of China (Grant No. 61473208), the Tianjin Research Program of Application Foundation and Advanced Technology, China (Grant No. 15JCYBJC47700), the National Institutes of Health, USA (Grant Nos. R01DA040990 and R01EY027544), and the Project of Humanities and Social Sciences from the Ministry of Education, China (Grant No. 17YJAZH092).
2011-09-25
Brien A. Seeley M.D., President of Comparative Aircraft Flight Efficiency (CAFE) Foundation briefs pilots and ground crew prior to competition as part of the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-25
Brien A. Seeley M.D., President of Comparative Aircraft Flight Efficiency (CAFE) Foundation, right, briefs pilots and ground crew prior to competition as part of the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-28
CAFE Foundation safety volunteers Meg Hurt, left, and Gail Vann wait on the runway for the arrival of the next aircraft to take part in the speed competition during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-27
CAFE Foundation Hanger Boss Mike Fenn waves the checkered flag as aircraft pass the finish line of the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
NASA Astrophysics Data System (ADS)
Huang, Qi-Zhang; Zhu, Yan-Qing; Shi, Ji-Fu; Wang, Lei-Lei; Zhong, Liu-Wen; Xu, Gang
2017-03-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 21103194, 51506205, and 21673243), the Science and Technology Planning Project of Guangdong Province, China (Grant Nos. 2014A010106018 and 2013A011401011), the Guangdong-Hong Kong Joint Innovation Project of Guangdong Province, China (Grant No. 2014B050505015), the Special Support Program of Guangdong Province, China (Grant No. 2014TQ01N610), the Director Innovation Foundation of Guangzhou Institute of Energy Conversion, China (Grant No. y307p81001), and the Solar Photothermal Advanced Materials Engineering Research Center Construction Project of Guangdong Province, China (Grant No. 2014B090904071).
A Separate Compilation Extension to Standard ML (Revised and Expanded)
2006-09-17
repetition of interfaces. The language is given a formal semantics, and we argue that this semantics is implementable in a variety of compilers. This...material is based on work supported in part by the National Science Foundation under grant 0121633 Language Technology for Trustless Software...Dissemination and by the Defense Advanced Research Projects Agency under contracts F196268-95-C-0050 The Fox Project: Advanced Languages for Systems Software
State of the practice and art for structural health monitoring of bridge substructures.
DOT National Transportation Integrated Search
2014-05-01
In an age of technological advances, the ability to monitor the performance of bridge foundations has evolved such that both short- and long-term data acquisition of embedded gauges is not only available but also cost effective. Case studies were doc...
The Fight against Terrorism: Bio-Threats and Community Colleges.
ERIC Educational Resources Information Center
Lensch, Ellen Kabat
2002-01-01
Describes the 2002 summer institute of the Advanced Technology Environmental Education Center (ATEEC), a National Science Foundation ATE Center located at the Iowa Community College District. Discusses the institute's focus on Bioterrorism and Emerging Infectious Diseases, stressing that community colleges must update their curricula to ensure…
Productive Nanosystems: The Physics of Molecular Fabrication
ERIC Educational Resources Information Center
Drexler, K. Eric
2005-01-01
Fabrication techniques are the foundation of physical technology, and are thus of fundamental interest. Physical principles indicate that nanoscale systems will be able to fabricate a wide range of structures, operating with high productivity and precise molecular control. Advanced systems of this kind will require intermediate generations of…
'i'Babies: Infants' and Toddlers' Emergent Language and Literacy in a Digital Culture of idevices
ERIC Educational Resources Information Center
Harrison, Eugene; McTavish, Marianne
2018-01-01
Children today are growing up in a digital world that is changing and advancing at an unprecedented rate. While some adults may struggle to keep up with new technological gadgets, we find our very young may be quite at ease with the use of digital technologies, even before learning to speak. This study builds on a foundation of family literacy…
Scientific and Technological Foundations for Scaling Production of Nanostructured Metals
NASA Astrophysics Data System (ADS)
Lowe, Terry C.; Davis, Casey F.; Rovira, Peter M.; Hayne, Mathew L.; Campbell, Gordon S.; Grzenia, Joel E.; Stock, Paige J.; Meagher, Rilee C.; Rack, Henry J.
2017-05-01
Severe Plastic Deformation (SPD) has been explored in a wide range of metals and alloys. However, there are only a few industrial scale implementations of SPD for commercial alloys. To demonstrate and evolve technology for producing ultrafine grain metals by SPD, a Nanostructured Metals Manufacturing Testbed (NMMT) has been established in Golden, Colorado. Machines for research scale and pilot scale Equal Channel Angular Pressing-Conform (ECAP-C) technology have been configured in the NMMT to systematically evaluate and evolve SPD processing and advance the foundational science and technology for manufacturing. We highlight the scientific and technological areas that are critical for scale up of continuous SPD of aluminum, copper, magnesium, titanium, and iron-based alloys. Key areas that we will address in this presentation include the need for comprehensive analysis of starting microstructures, data on operating deformation mechanisms, high pressure thermodynamics and phase transformation kinetics, tribological behaviors, temperature dependence of lubricant properties, adaptation of tolerances and shear intensity to match viscoplastic behaviors, real-time process monitoring, and mechanics of billet/tooling interactions.
From "fixing women" to "institutional transformation": An ADVANCE case study
NASA Astrophysics Data System (ADS)
Yennello, Sherry; Kaunas, Christine
2015-12-01
The United States' position in the global economy requires an influx of women into science, technology, engineering, and mathematics (STEM) fields in order to remain competitive. Despite this, the representation of women in STEM continues to be low. The National Science Foundation's ADVANCE Program addresses this issue by funding projects that aim to increase the representation of women in academic STEM fields through transformation of institutional structures that impede women's progress in academic STEM fields. This paper includes a case study of the Texas A&M University ADVANCE Program.
ERIC Educational Resources Information Center
Cohen, Miriam
2012-01-01
The outcome of American students' performances during international comparisons consistently scoring inadequately in mathematics exposes the crisis of deficient mathematics achievement thus causing deep concerns. Learners who acquire a strong theoretical foundation in mathematics at the primary level thrived later in more advanced level…
ERIC Educational Resources Information Center
Herricks, Susan
2007-01-01
A local middle school requested that the Water Center of Advanced Materials for Purification of Water With Systems (WaterCAMPWS), a National Science Foundation Science and Technology Center, provide an introduction to pH for their seventh-grade water-based service learning class. After sorting through a multitude of information about pH, a…
The Online Crit: The Community of Inquiry Meets Design Education
ERIC Educational Resources Information Center
Barber, Tene C.
2011-01-01
Asynchronous discussion technologies offer the advantage of providing time for reflection essential for higher order cognitive thinking. In the context of a ten-week graphic design foundations course in the Digital Graphic Design program at Vancouver Community College, this advantage provides an avenue for advancing critical discussion of design…
NASA's computer science research program
NASA Technical Reports Server (NTRS)
Larsen, R. L.
1983-01-01
Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.
2011-09-25
Pipistrel-USA Pilot David Morss, left, CAFE Foundation Weights Chief Wayne Cook, 2nd from left, and Weight crew member Ron Stout look on as Pipistrel-USA Pilot Robin Reid is weighed-in during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
NASA Astrophysics Data System (ADS)
Bai, Jiyuan; Li, Li; He, Zelong; Ye, Shujiang; Zhao, Shujun; Dang, Suihu; Sun, Weimin
2017-10-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11447132 and 11504042), the Natural Science Foundation of Heilongjiang, China (Grant No. A201405), 111 Project to Harbin Engineering University, China (Grant No. B13015), Chongqing Science and Technology Commission Project, China (Grant Nos. cstc2014jcyjA00032 and cstc2016jcyjA1158), and Scientific Research Project for Advanced Talents of Yangtze Normal University, China (Grant No. 2017KYQD09).
2010-03-01
and charac- terize the actions taken by the soldier (e.g., running, walking, climbing stairs ). Real-time image capture and exchange N The ability of...multimedia information sharing among soldiers in the field, two-way speech translation systems, and autonomous robotic platforms. Key words: Emerging...soldiers in the field, two-way speech translation systems, and autonomous robotic platforms. It has been the foundation for 10 technology evaluations
NASA's In-Space Propulsion Technology Program: A Step Toward Interstellar Exploration
NASA Technical Reports Server (NTRS)
Johnson, Les; James, Bonnie; Baggett, Randy; Montgomery, Sandy
2005-01-01
NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space. The maximum theoretical efficiencies have almost been reached and are insufficient to meet needs for many ambitious science missions currently being considered. By developing the capability to support mid-term robotic mission needs, the program is laying the technological foundation for travel to nearby interstellar space. The In-Space Propulsion Technology Program s technology portfolio includes many advanced propulsion systems. From the next-generation ion propulsion systems operating in the 5-10 kW range, to solar sail propulsion, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called "propellantless" because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations, such as solar sails, electrodynamic and momentum transfer tethers, and aerocapture. This paper will provide an overview of those propellantless and propellant-based advanced propulsion technologies that will most significantly advance our exploration of deep space.
Gilbert, B K; Mitchell, M P; Bengali, A R; Khandheria, B K
1999-08-01
To describe the development of telemedicine capabilities-application of remote consultation and diagnostic techniques-and to evaluate the feasibility and practicality of such clinical outreach to rural and underserved communities with limited telecommunications infrastructures. In 1992, Mayo Foundation (Rochester, Minn, Jacksonville, Fla, and Scottsdale, Ariz), the National Aeronautics and Space Administration, and the Defense Advanced Research Projects Agency collaborated to create a complex network of fiberoptic landlines, video recording systems, satellite terminals, and specially developed data translators linking Mayo sites with other locations in the continental United States on an on-demand basis. The purpose was to transmit data via the asynchronous transfer mode (ATM) digital communications protocol over the Advanced Communications Technology Satellite. The links were intended to provide a conduit for transmission of data for patient-specific consultations between physicians, evaluation of medical imagery, and medical education for clinical staffs at remote sites. Low-data-rate (LDR) experiments went live late in 1993. Mayo Clinic Rochester successfully provided medical consultation and services to 2 small regional medical facilities. High-data-rate (HDR) experiments included studies of remote digital echocardiography, store-and-forward telemedicine, cardiac catheterization, and teleconsultation for congenital heart disease. These studies combined landline data transmission with use of the satellite. The complexity of the routing paths and network components, immaturity of available software, and inexperience with existing telecommunications caused significant study delays. These experiments demonstrated that next-generation satellite technology can provide batch and real-time imagery for telemedicine. The first-generation of the ATM and satellite network technology used in these experiments created several technical problems and inconveniences that should be overcome as the network infrastructure matures.
NASA Astrophysics Data System (ADS)
Meyerstein, Mike; Cha, Inhyok; Shah, Yogendra
The Third Generation Partnership Project (3GPP) standardisation group currently discusses advanced applications of mobile networks such as Machine-to-Machine (M2M) communication. Several security issues arise in these contexts which warrant a fresh look at mobile networks’ security foundations, resting on smart cards. This paper contributes a security/efficiency analysis to this discussion and highlights the role of trusted platform technology to approach these issues.
Advanced BCD technology with vertical DMOS based on a semi-insulation structure
NASA Astrophysics Data System (ADS)
Kui, Ma; Xinghua, Fu; Jiexin, Lin; Fashun, Yang
2016-07-01
A new semi-insulation structure in which one isolated island is connected to the substrate was proposed. Based on this semi-insulation structure, an advanced BCD technology which can integrate a vertical device without extra internal interconnection structure was presented. The manufacturing of the new semi-insulation structure employed multi-epitaxy and selectively multi-doping. Isolated islands are insulated with the substrate by reverse-biased PN junctions. Adjacent isolated islands are insulated by isolation wall or deep dielectric trenches. The proposed semi-insulation structure and devices fixed in it were simulated through two-dimensional numerical computer simulators. Based on the new BCD technology, a smart power integrated circuit was designed and fabricated. The simulated and tested results of Vertical DMOS, MOSFETs, BJTs, resistors and diodes indicated that the proposed semi-insulation structure is reasonable and the advanced BCD technology is validated. Project supported by the National Natural Science Foundation of China (No. 61464002), the Science and Technology Fund of Guizhou Province (No. Qian Ke He J Zi [2014]2066), and the Dr. Fund of Guizhou University (No. Gui Da Ren Ji He Zi (2013)20Hao).
Flight Avionics Hardware Roadmap
NASA Technical Reports Server (NTRS)
Hodson, Robert; McCabe, Mary; Paulick, Paul; Ruffner, Tim; Some, Rafi; Chen, Yuan; Vitalpur, Sharada; Hughes, Mark; Ling, Kuok; Redifer, Matt;
2013-01-01
As part of NASA's Avionics Steering Committee's stated goal to advance the avionics discipline ahead of program and project needs, the committee initiated a multi-Center technology roadmapping activity to create a comprehensive avionics roadmap. The roadmap is intended to strategically guide avionics technology development to effectively meet future NASA missions needs. The scope of the roadmap aligns with the twelve avionics elements defined in the ASC charter, but is subdivided into the following five areas: Foundational Technology (including devices and components), Command and Data Handling, Spaceflight Instrumentation, Communication and Tracking, and Human Interfaces.
Career-Life Balance for Women of Color: Experiences in Science and Engineering Academia
ERIC Educational Resources Information Center
Kachchaf, Rachel; Ko, Lily; Hodari, Apriel; Ong, Maria
2015-01-01
The National Science Foundation recently recognized that career-life balance in science, technology, engineering, and mathematics (STEM) may present some unique challenges for women of color compared with their White and/or male counterparts, thus negatively impacting retention and advancement for a minority demographic that has long been…
Monitoring Progress toward Successful K-12 STEM Education: A Nation Advancing?
ERIC Educational Resources Information Center
National Academies Press, 2013
2013-01-01
Following a 2011 report by the National Research Council (NRC) on successful K-12 education in science, technology, engineering, and mathematics (STEM), Congress asked the National Science Foundation to identify methods for tracking progress toward the report's recommendations. In response, the NRC convened the Committee on an Evaluation Framework…
Creating Start-up Companies around NCI Inventions | Poster
By Karen Surabian, Thomas Stackhouse, and Rose Freel, Contributing Writers, and Rosemarie Truman, Guest Writer The National Cancer Institute (NCI), led by the Technology Transfer Center (TTC), the Avon Foundation, and The Center for Advancing Innovation have partnered to create a “first-of-a-kind” Breast Cancer Start-up Challenge.
Zhang, Litao; Cvijic, Mary Ellen; Lippy, Jonathan; Myslik, James; Brenner, Stephen L; Binnie, Alastair; Houston, John G
2012-07-01
In this paper, we review the key solutions that enabled evolution of the lead optimization screening support process at Bristol-Myers Squibb (BMS) between 2004 and 2009. During this time, technology infrastructure investment and scientific expertise integration laid the foundations to build and tailor lead optimization screening support models across all therapeutic groups at BMS. Together, harnessing advanced screening technology platforms and expanding panel screening strategy led to a paradigm shift at BMS in supporting lead optimization screening capability. Parallel SAR and structure liability relationship (SLR) screening approaches were first and broadly introduced to empower more-rapid and -informed decisions about chemical synthesis strategy and to broaden options for identifying high-quality drug candidates during lead optimization. Copyright © 2012 Elsevier Ltd. All rights reserved.
PREFACE: Nanospintronics design and realization
NASA Astrophysics Data System (ADS)
Akai, Hisazumi; Katayama-Yoshida, Hiroshi; Kasai, Hideaki
2004-12-01
This special issue of Journal of Physics: Condensed Matter contains selected papers from the 1st International Conference on Nanospintronics Design and Realization (ICNDR 2004), which was held in Kyoto, Japan, 24--28 May 2004. This conference was organized by the Nanospintronics Design and Realization project members: Hideaki Kasai, Osaka (Chair of the Conference) Hisazumi Akai, Osaka Hajime Asahi, Osaka Wilson Agerico Diño, Osaka Hiroshi Harima, Kyoto Tomoyuki Kakeshita, Osaka Junjiro Kanamori, Kyoto Hiroshi Katayama-Yoshida, Osaka Koichi Kusakabe, Osaka Hiroshi Nakanishi, Osaka (Secretary) Tamio Oguchi, Hiroshima Teruo Ono, Osaka Naoshi Suzuki, Osaka Hitoshi Tabata, Osaka under the auspices of the Japan Ministry of Education, Culture, Sports, Science and Technology (MEXT) Special Coordination Funds for Promoting Science and Technology, and the sponsorship of Osaka University and the International Institute for Advanced Studies (IIAS). The conference is intended to provide an international forum for experimental and theoretical researchers, in the rapidly developing field of nanospintronics. It aims to: provide an overview of our current understanding of the physics of spin transport in (magnetic) semiconductors and hybrid magnetic/semiconductor structures; provide a venue to present and discuss the latest developments in using spin-dependent phenomena in nano-(opto-) electronics and computing applications; provide a venue for discussion and assessment of other possible means of exploiting the spin-dependent phenomena in future nano-(opto-) electronic and computing applications; address current (and foreseeable future) problems, of fundamental and applied nature, in an effort to bridge the physics and technology gap between semiconducting and magnetic materials. All of these being geared towards bringing about the realization of a functioning nanospintronics. A total of 127 delegates from 15 countries took part in ICNDR 2004, which was comprised of 62 invited oral presentations and 44 contributed posters. The conference also has additional financial support from the Asahi Glass Foundation, the Foundation for Promotion of Material Science and Technology of Japan, the Izumi Science and Technology Foundation, the Kansai Research Foundation for Technology Promotion, the Kao Foundation for Arts and Sciences, the Murata Science Foundation, the Nanotechnology Researchers Network Center of Japan, and the Nippon Sheet Glass Foundation for Materials Science and Engineering. The 2nd International Conference on Nanospintronics Design and Realization will be held in Germany, in 2007, and will be organized by Stefan Blügel, Patrick Bruno, and Dieter Weiss. We hope to see you there.
Flight Avionics Hardware Roadmap
NASA Technical Reports Server (NTRS)
Some, Raphael; Goforth, Monte; Chen, Yuan; Powell, Wes; Paulick, Paul; Vitalpur, Sharada; Buscher, Deborah; Wade, Ray; West, John; Redifer, Matt;
2014-01-01
The Avionics Technology Roadmap takes an 80% approach to technology investment in spacecraft avionics. It delineates a suite of technologies covering foundational, component, and subsystem-levels, which directly support 80% of future NASA space mission needs. The roadmap eschews high cost, limited utility technologies in favor of lower cost, and broadly applicable technologies with high return on investment. The roadmap is also phased to support future NASA mission needs and desires, with a view towards creating an optimized investment portfolio that matures specific, high impact technologies on a schedule that matches optimum insertion points of these technologies into NASA missions. The roadmap looks out over 15+ years and covers some 114 technologies, 58 of which are targeted for TRL6 within 5 years, with 23 additional technologies to be at TRL6 by 2020. Of that number, only a few are recommended for near term investment: 1. Rad Hard High Performance Computing 2. Extreme temperature capable electronics and packaging 3. RFID/SAW-based spacecraft sensors and instruments 4. Lightweight, low power 2D displays suitable for crewed missions 5. Radiation tolerant Graphics Processing Unit to drive crew displays 6. Distributed/reconfigurable, extreme temperature and radiation tolerant, spacecraft sensor controller and sensor modules 7. Spacecraft to spacecraft, long link data communication protocols 8. High performance and extreme temperature capable C&DH subsystem In addition, the roadmap team recommends several other activities that it believes are necessary to advance avionics technology across NASA: center dot Engage the OCT roadmap teams to coordinate avionics technology advances and infusion into these roadmaps and their mission set center dot Charter a team to develop a set of use cases for future avionics capabilities in order to decouple this roadmap from specific missions center dot Partner with the Software Steering Committee to coordinate computing hardware and software technology roadmaps and investment recommendations center dot Continue monitoring foundational technologies upon which future avionics technologies will be dependent, e.g., RHBD and COTS semiconductor technologies
Precision machining of advanced materials with waterjets
NASA Astrophysics Data System (ADS)
Liu, H. T.
2017-01-01
Recent advances in abrasive waterjet technology have elevated to the state that it often competes on equal footing with lasers and EDM for precision machining. Under the support of a National Science Foundation SBIR Phase II grant, OMAX has developed and commercialized micro abrasive water technology that is incorporated into a MicroMAX® JetMa- chining® Center. Waterjet technology, combined both abrasive waterjet and micro abrasive waterjet technology, is capable of machining most materials from macro to micro scales for a wide range of part size and thickness. Waterjet technology has technological and manufacturing merits that cannot be matched by most existing tools. As a cold cutting tool that creates no heat-affected zone, for example, waterjet cuts much faster than wire EDM and laser when measures to minimize a heat-affected zone are taken into account. In addition, waterjet is material independent; it cuts materials that cannot be cut or are difficult to cut otherwise. The versatility of waterjet has also demonstrated machining simulated nanomaterials with large gradients of material properties from metal, nonmetal, to anything in between. This paper presents waterjet-machined samples made of a wide range of advanced materials from macro to micro scales.
Realistic terrain visualization based on 3D virtual world technology
NASA Astrophysics Data System (ADS)
Huang, Fengru; Lin, Hui; Chen, Bin; Xiao, Cai
2009-09-01
The rapid advances in information technologies, e.g., network, graphics processing, and virtual world, have provided challenges and opportunities for new capabilities in information systems, Internet applications, and virtual geographic environments, especially geographic visualization and collaboration. In order to achieve meaningful geographic capabilities, we need to explore and understand how these technologies can be used to construct virtual geographic environments to help to engage geographic research. The generation of three-dimensional (3D) terrain plays an important part in geographical visualization, computer simulation, and virtual geographic environment applications. The paper introduces concepts and technologies of virtual worlds and virtual geographic environments, explores integration of realistic terrain and other geographic objects and phenomena of natural geographic environment based on SL/OpenSim virtual world technologies. Realistic 3D terrain visualization is a foundation of construction of a mirror world or a sand box model of the earth landscape and geographic environment. The capabilities of interaction and collaboration on geographic information are discussed as well. Further virtual geographic applications can be developed based on the foundation work of realistic terrain visualization in virtual environments.
Realistic terrain visualization based on 3D virtual world technology
NASA Astrophysics Data System (ADS)
Huang, Fengru; Lin, Hui; Chen, Bin; Xiao, Cai
2010-11-01
The rapid advances in information technologies, e.g., network, graphics processing, and virtual world, have provided challenges and opportunities for new capabilities in information systems, Internet applications, and virtual geographic environments, especially geographic visualization and collaboration. In order to achieve meaningful geographic capabilities, we need to explore and understand how these technologies can be used to construct virtual geographic environments to help to engage geographic research. The generation of three-dimensional (3D) terrain plays an important part in geographical visualization, computer simulation, and virtual geographic environment applications. The paper introduces concepts and technologies of virtual worlds and virtual geographic environments, explores integration of realistic terrain and other geographic objects and phenomena of natural geographic environment based on SL/OpenSim virtual world technologies. Realistic 3D terrain visualization is a foundation of construction of a mirror world or a sand box model of the earth landscape and geographic environment. The capabilities of interaction and collaboration on geographic information are discussed as well. Further virtual geographic applications can be developed based on the foundation work of realistic terrain visualization in virtual environments.
Advanced electrical power system technology for the all electric aircraft
NASA Technical Reports Server (NTRS)
Finke, R. C.; Sundberg, G. R.
1983-01-01
The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg.
NASA and X PRIZE Announce Winners of Lunar Lander Challenge
2009-11-05
NASA and the X PRIZE Foundation announced the winners of the Northrop Grumman Lunar Lander Challenge at an awards ceremony at the Rayburn House Office Building, Thursday, Nov. 5, 2009 in Washington, DC. From left to right, George Nield, Associate Administrator of Commercial Space Transportation, FAA; Charles Bolden, NASA Administrator; Doug Comstock, Director, Innovative Partnerships Program, NASA; David Masten, CEO, Masten Space Systems; Phil Eaton, VP, Operations, Armadillo Aerospace; U.S. Rep. Ralph Hall (R-TX); Peter Diamandis, Chairman and CEO, X PRIZE Foundation and Mitch Waldman, VP, Advanced Programs & Technology, Northrop Grumman. Photo Credit: (NASA/Carla Cioffi)
Research and technology, fiscal year 1986, Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
1986-01-01
The Marshall Space Flight Center is continuing its vigorous efforts in space-related research and technology. Extensive activities in advanced studies have led to the approval of the Orbital Maneuvering Vehicle as a new start. Significant progress was made in definition studies of liquid rocket engine systems for future space transportation needs and the conceptualization of advanced laucnch vehicles. The space systems definition studies have brought the Advanced X-ray Astrophysics Facility and Gravity Probe-B to a high degree of maturity. Both are ready for project implementation. Also discussed include significant advances in low gravity sciences, solar terrestrial physics, high energy astrophysics, atmospheric sciences, propulsion systems, and on the critical element of the Space Shuttle Main Engine in particular. The goals of improving the productivity of high-cost repetitive operations on reusable transportation systems, and extending the useful life of such systems are examined. The research and technology highlighted provides a foundation for progress on the Hubble Space Telescope, the Space Station, all elements of the Space Transportation System, and the many other projects assigned to this Center.
DOE Office of Scientific and Technical Information (OSTI.GOV)
T. Schirber; Goldberg, L.; Mosiman, G.
A more accurate assessment of SOG foundation insulation energy savings than traditionally possible is now feasible. This has been enabled by advances in whole building energy simulation with 3-dimensional foundation modelling integration at each time step together with an experimental measurement of the site energy savings of SOG foundation insulation. Ten SOG insulation strategies were evaluated on a test building to identify an optimum retrofit insulation strategy in a zone 6 climate (Minneapolis, MN). The optimum insulation strategy in terms of energy savings and cost effectiveness consisted of two components: (a) R-20 XPS insulation above grade, and, (b) R-20 insulationmore » at grade (comprising an outer layer of R-10 insulation and an interior layer of R-12 poured polyurethane insulation) tapering to R-10 XPS insulation at half the below-grade wall height (the lower half of the stem wall was uninsulated).« less
ERIC Educational Resources Information Center
National Science Foundation, 2016
2016-01-01
Graduate education plays a central role in advancing the Nation's science and engineering research enterprise. It is also increasingly the means by which the Nation develops a diverse and highly technical Science Technology Engineering and Mathematics (STEM) professional workforce. The view that graduate education in STEM disciplines is an…
Advancing STEM Education: A 2020 Vision
ERIC Educational Resources Information Center
Bybee, Rodger W.
2010-01-01
STEM (an acronym for science, technology, engineering and mathematics) had its origins in the 1990s at the National Science Foundation (NSF) and has been used as a generic label for any event, policy, program, or practice that involves one or several of the STEM disciplines. However, a recent survey on the "perception of STEM" found that most…
Advancing Evaluation of STEM Efforts through Attention to Diversity and Culture
ERIC Educational Resources Information Center
Mertens, Donna M.; Hopson, Rodney K.
2006-01-01
In 1980, the U.S. Congress charged the National Science Foundation (NSF) with a mission to lead development of science, technology, engineering, and mathematics (STEM) for all of its citizens. Joseph Bordogna, deputy director of NSF, reaffirmed the agency's commitment to the mission when he stated that NSF needs to broaden participation in the…
Diagnostics of Metal Plasma in Radio Frequency Glow Discharge during Electron Beam Evaporation
NASA Astrophysics Data System (ADS)
Yu, Yong-Hao; Wang, Lang-Ping; Wang, Xiao-Feng; Jiang, Wei; Chen, Qiong
2015-08-01
Not Available Supported by the National Natural Science Foundation of China under Grant No 51201051, an Opening Project from the State Key Laboratory of Advanced Welding and Joining at Harbin Institute of Technology under Grant No AWPT-M10, and the Fundamental Research Funds for the Central Universities under Grant No HIT.NSRIF.2012041.
Foundations of Neuromorphic Computing
2013-05-01
make informed decisions quicker than our adversaries. 2.0 INTRODUCTION The increasing resolution and speed of today’s advanced sensor ...limited information about the location, access to global positioning satellite information (GPS) to aid in navigation is impeded, and communications...more autonomous capability. This is where neuromorphic computing and other bio -inspired technologies for SWaP constrained environments can play a
A Tech-Happy Professor Reboots after Hearing His Teaching Advice Isn't Working
ERIC Educational Resources Information Center
Young, Jeffrey R.
2012-01-01
Michael Wesch has been on the lecture circuit for years touting new models of active teaching with technology. The associate professor of cultural anthropology at Kansas State University has given TED talks. "Wired" magazine gave him a Rave Award. The Carnegie Foundation for the Advancement of Teaching once named him a national professor…
FY 1991 RDT&E Descriptive Summaries
1990-01-01
OF PROJECT : The Defense Sciences program element provides the technical foundation for long-term improvements in military equiment...DESCRIPTION OF PROJECT : Develop the fundamental technology in advanced digital structures and network concepts for smaller, more powerful, less expensive...DESCRIPTION OF PROJECT : The 1985 Defense Science Board (DSB) noted that the United States was behind and failing further behind in armor and
ERIC Educational Resources Information Center
Patrick, Susan; Sturgis, Chris
2015-01-01
Students will face enormous challenges in the coming years--from an economy shaped by ever-advancing technologies to the impact of globalization--and need the strongest foundation of academic, technical, and problem-solving skills we can offer. In an effort to improve their educational experiences, schools across the country are exploring and…
ERIC Educational Resources Information Center
Arrieta, Diane; Brunnick, Barbara; Plocharczyk, Leah
2015-01-01
As academic libraries struggle to remain relevant when technological advancements and electronic resources threaten to make them obsolete, libraries are learning to re-invent themselves by molding and adapting staff skills to cultivate innovative outreach programs. The Science Outreach Committee of the John D. MacArthur Campus library at Florida…
NASA Astrophysics Data System (ADS)
Mattmann, Chris
2014-04-01
In this era of exascale instruments for astronomy we must naturally develop next generation capabilities for the unprecedented data volume and velocity that will arrive due to the veracity of these ground-based sensor and observatories. Integrating scientific algorithms stewarded by scientific groups unobtrusively and rapidly; intelligently selecting data movement technologies; making use of cloud computing for storage and processing; and automatically extracting text and metadata and science from any type of file are all needed capabilities in this exciting time. Our group at NASA JPL has promoted the use of open source data management technologies available from the Apache Software Foundation (ASF) in pursuit of constructing next generation data management and processing systems for astronomical instruments including the Expanded Very Large Array (EVLA) in Socorro, NM and the Atacama Large Milimetre/Sub Milimetre Array (ALMA); as well as for the KAT-7 project led by SKA South Africa as a precursor to the full MeerKAT telescope. In addition we are funded currently by the National Science Foundation in the US to work with MIT Haystack Observatory and the University of Cambridge in the UK to construct a Radio Array of Portable Interferometric Devices (RAPID) that will undoubtedly draw from the rich technology advances underway. NASA JPL is investing in a strategic initiative for Big Data that is pulling in these capabilities and technologies for astronomical instruments and also for Earth science remote sensing. In this talk I will describe the above collaborative efforts underway and point to solutions in open source from the Apache Software Foundation that can be deployed and used today and that are already bringing our teams and projects benefits. I will describe how others can take advantage of our experience and point towards future application and contribution of these tools.
Tracing technology in the Association of Academic Health Sciences Libraries.
Guard, J Roger; Peay, Wayne J
2003-04-01
From the beginning of the association, technology and the Association of Academic Health Sciences Libraries (AAHSL) have been intertwined. Technology was the focus of one of the first committees. Innovative applications of technology have been employed in the operations of the association. Early applications of mini-computers were used in preparing the Annual Statistics. The association's use of network communications was among the first in the country and later applications of the Web have enhanced association services. For its members, technology has transformed libraries. The association's support of the early development of Integrated Advanced Information Management Systems (IAIMS) and of its recent reconceptualization has contributed to the intellectual foundation for this revolution.
NASA Technical Reports Server (NTRS)
Bubenheim, David L.; Lewis, Carol E.; Covington, M. Alan (Technical Monitor)
1995-01-01
NASA's advanced life support technologies are being combined with Arctic science and engineering knowledge to address the unique needs of the remote communities of Alaska through the Advanced Life Systems for Extreme Environments (ALSEE) project. ALSEE is a collaborative effort involving NASA, the State of Alaska, the University of Alaska, the North Slope Borough of Alaska, and the National Science Foundation (NSF). The focus is a major issue in the state of Alaska and other areas of the Circumpolar North, the health and welfare of its people, their lives and the subsistence lifestyle in remote communities, economic opportunity, and care for the environment. The project primarily provides treatment and reduction of waste, purification and recycling of water. and production of food. A testbed is being established to demonstrate the technologies which will enable safe, healthy, and autonomous function of remote communities and to establish the base for commercial development of the resulting technology into new industries. The challenge is to implement the technological capabilities in a manner compatible with the social and economic structures of the native communities, the state, and the commercial sector. Additional information is contained in the original extended abstract.
Oak Ridge National Laboratory Core Competencies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberto, J.B.; Anderson, T.D.; Berven, B.A.
1994-12-01
A core competency is a distinguishing integration of capabilities which enables an organization to deliver mission results. Core competencies represent the collective learning of an organization and provide the capacity to perform present and future missions. Core competencies are distinguishing characteristics which offer comparative advantage and are difficult to reproduce. They exhibit customer focus, mission relevance, and vertical integration from research through applications. They are demonstrable by metrics such as level of investment, uniqueness of facilities and expertise, and national impact. The Oak Ridge National Laboratory (ORNL) has identified four core competencies which satisfy the above criteria. Each core competencymore » represents an annual investment of at least $100M and is characterized by an integration of Laboratory technical foundations in physical, chemical, and materials sciences; biological, environmental, and social sciences; engineering sciences; and computational sciences and informatics. The ability to integrate broad technical foundations to develop and sustain core competencies in support of national R&D goals is a distinguishing strength of the national laboratories. The ORNL core competencies are: 9 Energy Production and End-Use Technologies o Biological and Environmental Sciences and Technology o Advanced Materials Synthesis, Processing, and Characterization & Neutron-Based Science and Technology. The distinguishing characteristics of each ORNL core competency are described. In addition, written material is provided for two emerging competencies: Manufacturing Technologies and Computational Science and Advanced Computing. Distinguishing institutional competencies in the Development and Operation of National Research Facilities, R&D Integration and Partnerships, Technology Transfer, and Science Education are also described. Finally, financial data for the ORNL core competencies are summarized in the appendices.« less
Conceptual design of Dipole Research Experiment (DREX)
NASA Astrophysics Data System (ADS)
Xiao, Qingmei; Wang, Zhibin; Wang, Xiaogang; Xiao, Chijie; Yang, Xiaoyi; Zheng, Jinxing
2017-03-01
A new terrella-like device for laboratory simulation of inner magnetosphere plasmas, Dipole Research Experiment, is scheduled to be built at the Harbin Institute of Technology (HIT), China, as a major state scientific research facility for space physics studies. It is designed to provide a ground experimental platform to reproduce the inner magnetosphere to simulate the processes of trapping, acceleration, and transport of energetic charged particles restrained in a dipole magnetic field configuration. The scaling relation of hydromagnetism between the laboratory plasma of the device and the geomagnetosphere plasma is applied to resemble geospace processes in the Dipole Research Experiment plasma. Multiple plasma sources, different kinds of coils with specific functions, and advanced diagnostics are designed to be equipped in the facility for multi-functions. The motivation, design criteria for the Dipole Research Experiment experiments and the means applied to generate the plasma of desired parameters in the laboratory are also described. Supported by National Natural Science Foundation of China (Nos. 11505040, 11261140326 and 11405038), China Postdoctoral Science Foundation (Nos. 2016M591518, 2015M570283) and Project Supported by Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (No. 2017008).
NASA Astrophysics Data System (ADS)
Walton, A. L.
2015-12-01
In 2016, the National Science Foundation (NSF) will support a portfolio of activities and investments focused upon challenges in data access, interoperability, and sustainability. These topics are fundamental to science questions of increasing complexity that require multidisciplinary approaches and expertise. Progress has become tractable because of (and sometimes complicated by) unprecedented growth in data (both simulations and observations) and rapid advances in technology (such as instrumentation in all aspects of the discovery process, together with ubiquitous cyberinfrastructure to connect, compute, visualize, store, and discover). The goal is an evolution of capabilities for the research community based on these investments, scientific priorities, technology advances, and policies. Examples from multiple NSF directorates, including investments by the Advanced Cyberinfrastructure Division, are aimed at these challenges and can provide the geosciences research community with models and opportunities for participation. Implications for the future are highlighted, along with the importance of continued community engagement on key issues.
The Public Health Community Platform, Electronic Case Reporting, and the Digital Bridge.
Cooney, Mary Ann; Iademarco, Michael F; Huang, Monica; MacKenzie, William R; Davidson, Arthur J
At the intersection of new technology advancements, ever-changing health policy, and fiscal constraints, public health agencies seek to leverage modern technical innovations and benefit from a more comprehensive and cooperative approach to transforming public health, health care, and other data into action. State health agencies recognized a way to advance population health was to integrate public health with clinical health data through electronic infectious disease case reporting. The Public Health Community Platform (PHCP) concept of bidirectional data flow and knowledge management became the foundation to build a cloud-based system connecting electronic health records to public health data for a select initial set of notifiable conditions. With challenges faced and lessons learned, significant progress was made and the PHCP grew into the Digital Bridge, a national governance model for systems change, bringing together software vendors, public health, and health care. As the model and technology advance together, opportunities to advance future connectivity solutions for both health care and public health will emerge.
ERIC Educational Resources Information Center
Nelson, Betty
2006-01-01
Linda Darling-Hammond's simplistic, yet profound observation addresses the basis of reform in teacher education today. Our challenge is to develop the knowledge, disposition, and teaching performance or skills of initial and advanced teacher candidates to enable them to deliver the foundations of education necessary to meet the critical…
77 FR 15140 - Notice of Buy American Waiver Under the American Recovery and Reinvestment Act of 2009
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-14
... mirror system that will be used in the Advanced Technology Solar Telescope (ATST). This system is... features in the solar atmosphere. DATED: March 14, 2012. ADDRESSES: National Science Foundation, 4201... system (DMS) that will be used in the ATST. The basis for this exemption is section 1605(b)(2) of the...
Advanced electrical power system technology for the all electric aircraft
NASA Technical Reports Server (NTRS)
Finke, R. C.; Sundberg, G. R.
1983-01-01
The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg. Previously announced in STAR as N83-24764
Integrating emerging areas of nursing science into PhD programs.
Henly, Susan J; McCarthy, Donna O; Wyman, Jean F; Stone, Patricia W; Redeker, Nancy S; McCarthy, Ann Marie; Alt-White, Anna C; Dunbar-Jacob, Jacqueline; Titler, Marita G; Moore, Shirley M; Heitkemper, Margaret M; Conley, Yvette P
2015-01-01
The Council for the Advancement of Nursing Science aims to "facilitate and recognize life-long nursing science career development" as an important part of its mission. In light of fast-paced advances in science and technology that are inspiring new questions and methods of investigation in the health sciences, the Council for the Advancement of Nursing Science convened the Idea Festival for Nursing Science Education and appointed the Idea Festival Advisory Committee to stimulate dialogue about linking PhD education with a renewed vision for preparation of the next generation of nursing scientists. Building on the 2010 American Association of Colleges of Nursing Position Statement "The Research-Focused Doctoral Program in Nursing: Pathways to Excellence," Idea Festival Advisory Committee members focused on emerging areas of science and technology that impact the ability of research-focused doctoral programs to prepare graduates for competitive and sustained programs of nursing research using scientific advances in emerging areas of science and technology. The purpose of this article is to describe the educational and scientific contexts for the Idea Festival, which will serve as the foundation for recommendations for incorporating emerging areas of science and technology into research-focused doctoral programs in nursing. Copyright © 2015 Elsevier Inc. All rights reserved.
Increased Science Instrumentation Funding Strengthens Mars Program
NASA Technical Reports Server (NTRS)
Graham, Lee D.; Graff, T. G.
2012-01-01
As the strategic knowledge gaps mature for the exploration of Mars, Mars sample return (MSR), and Phobos/Deimos missions, one approach that becomes more probable involves smaller science instrumentation and integrated science suites. Recent technological advances provide the foundation for a significant evolution of instrumentation; however, the funding support is currently too small to fully utilize these advances. We propose that an increase in funding for instrumentation development occur in the near-term so that these foundational technologies can be applied. These instruments would directly address the significant knowledge gaps for humans to Mars orbit, humans to the Martian surface, and humans to Phobos/ Deimos. They would also address the topics covered by the Decadal Survey and the Mars scientific goals, objectives, investigations and priorities as stated by the MEPAG. We argue that an increase of science instrumentation funding would be of great benefit to the Mars program as well as the potential for human exploration of the Mars system. If the total non-Earth-related planetary science instrumentation budget were increased 100% it would not add an appreciable amount to the overall NASA budget and would provide the real potential for future breakthroughs. If such an approach were implemented in the near-term, NASA would benefit greatly in terms of science knowledge of the Mars, Phobos/Deimos system, exploration risk mitigation, technology development, and public interest.
Geothermal research and development program of the US Atomic Energy Commission
NASA Technical Reports Server (NTRS)
Werner, L. B.
1974-01-01
Within the overall federal geothermal program, the Atomic Energy Commission has chosen to concentrate on development of resource utilization and advanced research and technology as the areas most suitable to the expertise of its staff and that of the National Laboratories. The Commission's work in geothermal energy is coordinated with that of other agencies by the National Science Foundation, which has been assigned lead agency by the Office of Management and Budget. The objective of the Commission's program, consistent with the goals of the total federal program is to facilitate, through technological advancement and pilot plant operations, achievement of substantial commercial production of electrical power and utilization of geothermal heat by the year 1985. This will hopefully be accomplished by providing, in conjunction with industry, credible information on the economic operation and technological reliability of geothermal power and use of geothermal heat.
Knowledge-based systems in Japan
NASA Technical Reports Server (NTRS)
Feigenbaum, Edward; Engelmore, Robert S.; Friedland, Peter E.; Johnson, Bruce B.; Nii, H. Penny; Schorr, Herbert; Shrobe, Howard
1994-01-01
This report summarizes a study of the state-of-the-art in knowledge-based systems technology in Japan, organized by the Japanese Technology Evaluation Center (JTEC) under the sponsorship of the National Science Foundation and the Advanced Research Projects Agency. The panel visited 19 Japanese sites in March 1992. Based on these site visits plus other interactions with Japanese organizations, both before and after the site visits, the panel prepared a draft final report. JTEC sent the draft to the host organizations for their review. The final report was published in May 1993.
Big behavioral data: psychology, ethology and the foundations of neuroscience.
Gomez-Marin, Alex; Paton, Joseph J; Kampff, Adam R; Costa, Rui M; Mainen, Zachary F
2014-11-01
Behavior is a unifying organismal process where genes, neural function, anatomy and environment converge and interrelate. Here we review the current state and discuss the future effect of accelerating advances in technology for behavioral studies, focusing on rodents as an example. We frame our perspective in three dimensions: the degree of experimental constraint, dimensionality of data and level of description. We argue that 'big behavioral data' presents challenges proportionate to its promise and describe how these challenges might be met through opportunities afforded by the two rival conceptual legacies of twentieth century behavioral science, ethology and psychology. We conclude that, although 'more is not necessarily better', copious, quantitative and open behavioral data has the potential to transform and unify these two disciplines and to solidify the foundations of others, including neuroscience, but only if the development of new theoretical frameworks and improved experimental designs matches the technological progress.
Government and technological innovation - Weather modification as a case in point.
NASA Technical Reports Server (NTRS)
Lambright, W. H.
1972-01-01
The principal technology on which all forms of intentional, local weather modification ultimately rest is that of cloud seeding. There are three primary milestones in the evolution of such a new technology including invention, development, and introduction to society on an operational basis. It is shown that government has been deeply involved in each of the first two phases of weather modification's evolution. The agencies involved include the military agencies, the Weather Bureau, the National Science Foundation, and the Bureau of Reclamation. It is pointed out that weather modification will require some unusually flexible and open administrative devices if it is to advance in the public interest.
Sturzenegger, Susi; Johnsson, Kai; Riezman, Howard
2011-01-01
Funded by the Swiss National Science Foundation to promote cutting edge research as well as the advancement of young researchers and women, technology transfer, outreach and education, the NCCR (Swiss National Centre of Competence in Research) Chemical Biology is co-led by Howard Riezman, University of Geneva and Kai Johnsson, École Polytechnique Fédérale de Lausanne (EPFL).
Assessing Proposals for Interagency Reorganization
2005-05-26
is useful to have a single entity responsible for operations. Though postmodernist theory is based on a diffusion of knowledge there is an... of knowledge …[for] the general good of mankind.”32 Their research tends to focus on technological solutions to complex information management issues...from an institutional perspective different from that of CSIS. The Markle Foundation was created in 1927 “to promote the advancement and diffusion
2011-09-25
The PhoEnix aircraft takes off during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-28
A hot air balloon passes over the campus of the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-27
The campus of the 2011 Green Flight Challenge, sponsored by Google, is seen in this aerial view at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Wednesday, Sept. 28, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-25
The Pipistrel-USA, Taurus G4 aircraft takes off during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-28
A hot air balloons pass over the campus of the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-25
The e-Genius aircraft takes off during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
ERIC Educational Resources Information Center
Lagemann, Ellen Condliffe
This book traces the history of the Carnegie Foundation for the Advancement of Teaching from its founding in 1906 through 1979. A 1999 foreword by the current president of the Foundation notes the influence of the book and briefly updates the foundation's history. The foreword reiterates the book's judgment that the foundation's policies typically…
ERIC Educational Resources Information Center
Coburn, Cynthia E.; Penuel, William R.; Geil, Kimberly E.
2015-01-01
The Carnegie Foundation for the Advancement of Teaching is a nonprofit, operating foundation with a long tradition of developing and studying ways to improve teaching practice. For the past three years, the Carnegie Foundation has initiated three different Networked Improvement Communities (NICs). The first, Quantway, is addressing the high…
Advanced Exploration Systems Atmosphere Resource Recovery and Environmental Monitoring
NASA Technical Reports Server (NTRS)
Perry, J.; Abney, M.; Conrad, R.; Garber, A.; Howard, D.; Kayatin, M.; Knox, J.; Newton, R.; Parrish, K.; Roman, M.;
2016-01-01
In September 2011, the Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project was commissioned by NASA's Advanced Exploration Systems program to advance Atmosphere Revitalization Subsystem (ARS) and Environmental Monitoring Subsystem (EMS) technologies for enabling future crewed space exploration missions beyond low Earth orbit. The ARREM project's period of performance covered U.S. Government fiscal years 2012-2014. The ARREM project critically assessed the International Space Station (ISS) ARS and EMS architectures and process technologies as the foundation for an architecture suitable for deep space exploration vehicles. The project's technical content included technical tasks focused on improving the reliability and life cycle cost of ARS and EMS technologies as well as reducing future flight project developmental risk and design, development, test, and evaluation costs. Targeted technology development and maturation tasks, including key technical trade assessments, were accomplished and integrated ARS architectures were demonstrated. The ARREM project developed, demonstrated, and tested leading process technology candidates and subsystem architectures that met or exceeded key figures of merit, addressed capability gaps, and significantly improved the efficiency, safety, and reliability over the state-of-the-art ISS figures of merit. Promising EMS instruments were developed and functionally demonstrated in a simulated cabin environment. The project's technical approach and results are described and recommendations for continued development are provided.
Education through the prism of computation
NASA Astrophysics Data System (ADS)
Kaurov, Vitaliy
2014-03-01
With the rapid development of technology, computation claims its irrevocable place among research components of modern science. Thus to foster a successful future scientist, engineer or educator we need to add computation to the foundations of scientific education. We will discuss what type of paradigm shifts it brings to these foundations on the example of Wolfram Science Summer School. It is one of the most advanced computational outreach programs run by Wolfram Foundation, welcoming participants of almost all ages and backgrounds. Centered on complexity science and physics, it also covers numerous adjacent and interdisciplinary fields such as finance, biology, medicine and even music. We will talk about educational and research experiences in this program during the 12 years of its existence. We will review statistics and outputs the program has produced. Among these are interactive electronic publications at the Wolfram Demonstrations Project and contributions to the computational knowledge engine Wolfram|Alpa.
ACTS Satellite Telemammography Network Experiments
NASA Technical Reports Server (NTRS)
Kachmar, Brian A.; Kerczewski, Robert J.
2000-01-01
The Satellite Networks and Architectures Branch of NASA's Glenn Research Center has developed and demonstrated several advanced satellite communications technologies through the Advanced Communications Technology Satellite (ACTS) program. One of these technologies is the implementation of a Satellite Telemammography Network (STN) encompassing NASA Glenn, the Cleveland Clinic Foundation. the University of Virginia, and the Ashtabula County Medical Center. This paper will present a look at the STN from its beginnings to the impact it may have on future telemedicine applications. Results obtained using the experimental ACTS satellite demonstrate the feasibility of Satellite Telemammography. These results have improved teleradiology processes and mammography image manipulation, and enabled advances in remote screening methodologies. Future implementation of satellite telemammography using next generation commercial satellite networks will be explored. In addition, the technical aspects of the project will be discussed, in particular how the project has evolved from using NASA developed hardware and software to commercial off the shelf (COTS) products. Development of asymmetrical link technologies was an outcome of this work. Improvements in the display of digital mammographic images, better understanding of end-to-end system requirements, and advances in radiological image compression were achieved as a result of the research. Finally, rigorous clinical medical studies are required for new technologies such as digital satellite telemammography to gain acceptance in the medical establishment. These experiments produced data that were useful in two key medical studies that addressed the diagnostic accuracy of compressed satellite transmitted digital mammography images. The results of these studies will also be discussed.
NASA Technical Reports Server (NTRS)
Harrington, James L., Jr.; Brown, Robin L.; Shukla, Pooja
1998-01-01
Seventh annual conference proceedings of the Minority University-SPace Interdisciplinary Network (MU-SPIN) conference. MU-SPIN is cosponsored by NASA Goddard Space Flight Center and the National Science Foundation, and is a comprehensive educational initiative for Historically Black Colleges and Universities, and minority universities. MU-SPIN focuses on the transfer of advanced computer networking technologies to these institutions and their use for supporting multidisciplinary research.
2011-09-28
The PhoEnix aircraft takes off for the start of the speed competition during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-28
e-Genius Aircraft Pilot Klaus Ohlmann poses for a photograph during the 2011 Green Flight Challenge, sponsored by Google, held at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-25
The e-Genius aircraft crew wait as their aircraft is inspected during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-25
Support personnel prepare noise level measuring equipment along the runway for the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-28
e-Genius Aircraft Pilot Eric Raymond poses for a photograph during the 2011 Green Flight Challenge, sponsored by Google, held at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-28
PhoEnix Aircraft Co-Pilot Jeff Shingleton poses for a photograph during the 2011 Green Flight Challenge, sponsored by Google, held at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-28
PhoEnix Aircraft Pilot Jim Lee poses for a photograph during the 2011 Green Flight Challenge, sponsored by Google, held at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-28
EcoEagle Aircraft Pilot Mikhael Ponso poses for a photograph during the 2011 Green Flight Challenge, sponsored by Google, held at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-25
The Embry-Riddle Aeronautical University, EcoEagle aircraft takes off during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-28
Various team members applaud as aircraft return from the speed competition during the 2011 Green Flight Challenge, sponsored by Google, held at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-28
The e-Genius aircraft takes off for the start of the speed competition during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-25
Sid Siddiqi, seated, and other support personnel prepare noise level measuring equipment for the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
JPEG 2000 in advanced ground station architectures
NASA Astrophysics Data System (ADS)
Chien, Alan T.; Brower, Bernard V.; Rajan, Sreekanth D.
2000-11-01
The integration and management of information from distributed and heterogeneous information producers and providers must be a key foundation of any developing imagery intelligence system. Historically, imagery providers acted as production agencies for imagery, imagery intelligence, and geospatial information. In the future, these imagery producers will be evolving to act more like e-business information brokers. The management of imagery and geospatial information-visible, spectral, infrared (IR), radar, elevation, or other feature and foundation data-is crucial from a quality and content perspective. By 2005, there will be significantly advanced collection systems and a myriad of storage devices. There will also be a number of automated and man-in-the-loop correlation, fusion, and exploitation capabilities. All of these new imagery collection and storage systems will result in a higher volume and greater variety of imagery being disseminated and archived in the future. This paper illustrates the importance-from a collection, storage, exploitation, and dissemination perspective-of the proper selection and implementation of standards-based compression technology for ground station and dissemination/archive networks. It specifically discusses the new compression capabilities featured in JPEG 2000 and how that commercially based technology can provide significant improvements to the overall imagery and geospatial enterprise both from an architectural perspective as well as from a user's prospective.
WE-H-209-01: Advances in Ultrasound Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hynynen, K.
Focused ultrasound has been shown to be the only method that allows noninvasive thermal coagulation of tissues and recently this potential has been explored for image-guided drug delivery. In this presentation, the advances in ultrasound phased array technology for energy delivery, exposure monitoring and control will be discussed. Experimental results from novel multi-frequency transmit/receive arrays will be presented. In addition, the feasibility of fully electronically focused and steered high power arrays with many thousands of transducer elements will be discussed. Finally, some of the recent clinical and preclinical results for the treatment of brain disease will be reviewed. Learning Objectives:more » Introduce FUS therapy principles and modern techniques Discuss use of FUS for drug delivery Cover the technology required to deliver FUS and monitor therapy Present clinical examples of the uses of these techniques This research was supported by funding from The Canada Research Chair Program, Grants from CIHR and NIH (no. EB003268).; K. Hynynen, Canada Foundation for Innovation; Canadian Institutes of Health Research; Focused Ultrasound Surgery Foundation; Canada Research Chair Program; Natural Sciences and Engineering Research Council of Canada; Ontario Research Fund; National Institutes of Health; Canadian Cancer Society Research Institute; The Weston Brain Institute; Harmonic Medical; Focused Ultrasound Instruments.« less
NASA Technical Reports Server (NTRS)
Barta, Daniel J.; McQuillan, Jeffrey
2011-01-01
The National Aeronautics and Space Administration (NASA) has recently expanded its mission set for possible future human exploration missions. With multiple options there is interest in identifying technology needs across these missions to focus technology investments. In addition to the Moon and other destinations in cis-lunar space, other destinations including Near Earth Objects and Mars have been added for consideration. Recently, technology programs and projects have been re-organizing to better meet the Agency s strategic goals and address needs across these potential future missions. Life Support and Habitation Systems (LSHS) is one of 10 Foundational Domains as part of the National Aeronautics and Space Administration s Exploration Technology Development Program. The chief goal of LSHS is to develop and mature advanced technologies to sustain human life on missions beyond Low Earth Orbit (LEO) to increase reliability, reduce dependency on resupply and increase vehicle self-sufficiency. For long duration exploration missions, further closure of life support systems is of interest. Focus includes key technologies for atmosphere revitalization, water recovery, waste management, thermal control and crew accommodations. Other areas of focus include technologies for radiation protection, environmental monitoring and fire protection. The aim is to recover additional consumable mass, reduce requirements for power, volume, heat rejection, crew involvement, and meet exploration vehicle requirements. This paper provides a brief description of the LSHS Foundational Domain as defined for fiscal year 2011.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crabtree, George; Glotzer, Sharon; McCurdy, Bill
This report is based on a SC Workshop on Computational Materials Science and Chemistry for Innovation on July 26-27, 2010, to assess the potential of state-of-the-art computer simulations to accelerate understanding and discovery in materials science and chemistry, with a focus on potential impacts in energy technologies and innovation. The urgent demand for new energy technologies has greatly exceeded the capabilities of today's materials and chemical processes. To convert sunlight to fuel, efficiently store energy, or enable a new generation of energy production and utilization technologies requires the development of new materials and processes of unprecedented functionality and performance. Newmore » materials and processes are critical pacing elements for progress in advanced energy systems and virtually all industrial technologies. Over the past two decades, the United States has developed and deployed the world's most powerful collection of tools for the synthesis, processing, characterization, and simulation and modeling of materials and chemical systems at the nanoscale, dimensions of a few atoms to a few hundred atoms across. These tools, which include world-leading x-ray and neutron sources, nanoscale science facilities, and high-performance computers, provide an unprecedented view of the atomic-scale structure and dynamics of materials and the molecular-scale basis of chemical processes. For the first time in history, we are able to synthesize, characterize, and model materials and chemical behavior at the length scale where this behavior is controlled. This ability is transformational for the discovery process and, as a result, confers a significant competitive advantage. Perhaps the most spectacular increase in capability has been demonstrated in high performance computing. Over the past decade, computational power has increased by a factor of a million due to advances in hardware and software. This rate of improvement, which shows no sign of abating, has enabled the development of computer simulations and models of unprecedented fidelity. We are at the threshold of a new era where the integrated synthesis, characterization, and modeling of complex materials and chemical processes will transform our ability to understand and design new materials and chemistries with predictive power. In turn, this predictive capability will transform technological innovation by accelerating the development and deployment of new materials and processes in products and manufacturing. Harnessing the potential of computational science and engineering for the discovery and development of materials and chemical processes is essential to maintaining leadership in these foundational fields that underpin energy technologies and industrial competitiveness. Capitalizing on the opportunities presented by simulation-based engineering and science in materials and chemistry will require an integration of experimental capabilities with theoretical and computational modeling; the development of a robust and sustainable infrastructure to support the development and deployment of advanced computational models; and the assembly of a community of scientists and engineers to implement this integration and infrastructure. This community must extend to industry, where incorporating predictive materials science and chemistry into design tools can accelerate the product development cycle and drive economic competitiveness. The confluence of new theories, new materials synthesis capabilities, and new computer platforms has created an unprecedented opportunity to implement a "materials-by-design" paradigm with wide-ranging benefits in technological innovation and scientific discovery. The Workshop on Computational Materials Science and Chemistry for Innovation was convened in Bethesda, Maryland, on July 26-27, 2010. Sponsored by the Department of Energy (DOE) Offices of Advanced Scientific Computing Research and Basic Energy Sciences, the workshop brought together 160 experts in materials science, chemistry, and computational science representing more than 65 universities, laboratories, and industries, and four agencies. The workshop examined seven foundational challenge areas in materials science and chemistry: materials for extreme conditions, self-assembly, light harvesting, chemical reactions, designer fluids, thin films and interfaces, and electronic structure. Each of these challenge areas is critical to the development of advanced energy systems, and each can be accelerated by the integrated application of predictive capability with theory and experiment. The workshop concluded that emerging capabilities in predictive modeling and simulation have the potential to revolutionize the development of new materials and chemical processes. Coupled with world-leading materials characterization and nanoscale science facilities, this predictive capability provides the foundation for an innovation ecosystem that can accelerate the discovery, development, and deployment of new technologies, including advanced energy systems. Delivering on the promise of this innovation ecosystem requires the following: Integration of synthesis, processing, characterization, theory, and simulation and modeling. Many of the newly established Energy Frontier Research Centers and Energy Hubs are exploiting this integration. Achieving/strengthening predictive capability in foundational challenge areas. Predictive capability in the seven foundational challenge areas described in this report is critical to the development of advanced energy technologies. Developing validated computational approaches that span vast differences in time and length scales. This fundamental computational challenge crosscuts all of the foundational challenge areas. Similarly challenging is coupling of analytical data from multiple instruments and techniques that are required to link these length and time scales. Experimental validation and quantification of uncertainty in simulation and modeling. Uncertainty quantification becomes increasingly challenging as simulations become more complex. Robust and sustainable computational infrastructure, including software and applications. For modeling and simulation, software equals infrastructure. To validate the computational tools, software is critical infrastructure that effectively translates huge arrays of experimental data into useful scientific understanding. An integrated approach for managing this infrastructure is essential. Efficient transfer and incorporation of simulation-based engineering and science in industry. Strategies for bridging the gap between research and industrial applications and for widespread industry adoption of integrated computational materials engineering are needed.« less
Noise Performance of the Advanced LIGO Detectors
NASA Astrophysics Data System (ADS)
Hall, Evan; LIGO Scientific Collaboration
2016-03-01
Advanced LIGO has completed a four-month search for gravitational wave events using two 4-km laser interferometers separated by a 3000 km baseline. These instruments can sense spacetime strain to better than 10-23 /Hz 1 / 2 in their most sensitive frequency band (80 Hz to 400 Hz). The interferometers' sensitivity is limited by a variety of noise sources, including thermal fluctuations of the test masses and their suspensions, quantum and classical fluctuations of the laser light used to interrogate the test masses, residual environmental disturbances, and noises arising from the sensing and control of the interferometers' length and angular degrees of freedom. We present a budget of these noise sources as they appeared during the first observing run, and discuss ongoing improvements as we look forward to Advanced LIGO achieving full design sensitivity. LIGO was constructed by the California Institute of Technology and Massachusetts Institute of Technology with funding from the National Science Foundation and operates under cooperative agreement PHY-0757058.
Informatics Essentials for DNPs.
Jenkins, Melinda L
2018-01-01
Doctor of Nursing Practice (DNP) programs are proliferating around the US as advanced practice nursing programs evolve to build capacity by adding content on professional leadership, policy, and quality improvement to the traditional clinical content. One of the eight "Essentials" for DNP education is "Information systems/technology and patient care technology for the improvement and transformation of health care."[1] A required graduate course was revised and updated in 2017 to provide a foundation in clinical informatics for DNPs, as well as for nursing informatics specialists. Components of the online course, assignments, and free online resources linked to the DNP Essentials are described in this paper.
Teaching of anatomical sciences: A blended learning approach.
Khalil, Mohammed K; Abdel Meguid, Eiman M; Elkhider, Ihsan A
2018-04-01
Blended learning is the integration of different learning approaches, new technologies, and activities that combine traditional face-to-face teaching methods with authentic online methodologies. Although advances in educational technology have helped to expand the selection of different pedagogies, the teaching of anatomical sciences has been challenged by implementation difficulties and other limitations. These challenges are reported to include lack of time, costs, and lack of qualified teachers. Easy access to online information and advances in technology make it possible to resolve these limitations by adopting blended learning approaches. Blended learning strategies have been shown to improve students' academic performance, motivation, attitude, and satisfaction, and to provide convenient and flexible learning. Implementation of blended learning strategies has also proved cost effective. This article provides a theoretical foundation for blended learning and proposes a validated framework for the design of blended learning activities in the teaching and learning of anatomical sciences. Clin. Anat. 31:323-329, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
COBRA ATD minefield detection results for the Joint Countermine ACTD Demonstrations
NASA Astrophysics Data System (ADS)
Stetson, Suzanne P.; Witherspoon, Ned H.; Holloway, John H., Jr.; Suiter, Harold R.; Crosby, Frank J.; Hilton, Russell J.; McCarley, Karen A.
2000-08-01
The Coastal Battlefield Reconnaissance and Analysis)COBRA) system described here was a Marine Corps Advanced Technology Demonstration (ATD) development consisting of an unmanned aerial vehicle (UAV) airborne multispectral video sensor system and ground station which processes the multispectral video data to automatically detect minefields along the flight path. After successful completion of the ATD, the residual COBRA ATD system participated in the Joint Countermine (JCM) Advanced Concept Technology Demonstration (ACTD) Demo I held at Camp Lejeune, North Carolina in conjunction with JTFX97 and Demo II held in Stephenville, Newfoundland in conjunction with MARCOT98. These exercises demonstrated the COBRA ATD system in an operational environment, detecting minefields that included several different mine types in widely varying backgrounds. The COBRA system performed superbly during these demonstrations, detecting mines under water, in the surf zone, on the beach, and inland, and has transitioned to an acquisition program. This paper describes the COBRA operation and performance results for these demonstrations, which represent the first demonstrated capability for remote tactical minefield detection from a UAV. The successful COBRA technologies and techniques demonstrated for tactical UAV minefield detection in the Joint Countermine Advanced Concept Technology Demonstrations have formed the technical foundation for future developments in Marine Corps, Navy, and Army tactical remote airborne mine detection systems.
The use of neurodiagnostic technologies in the 21st century neuroscientific revolution.
Bonner, Anna M
2015-03-01
Neuroscience is fascinating, mysterious, and truly medicine's "final frontier" but deciphering its marvels has historically been inhibited by its sheer complexity. The recent escalation of global neuroscientific endeavors and vast financial backing from governments, foundations, and industries, however are changing this perspective. The sequencing of the human genome, development of innovative tools for mapping neuronal connectivities, and enhanced resolution capabilities of imaging techniques have made landmark contributions toward advancing neurotechnologies. Nations all around the world have initiated and launched brain mapping projects on such a profound and financially immense scale that research in 2015 and beyond are highly anticipated to revolutionize medicine and our interaction with the technological world. Although neurodiagnostic technology is not the vanguard of research interest in the scientific community, it will certainly ride the coattails of these new neuroscientific endeavors. And, in turn, these advancements will greatly impact how we diagnose, treat, and care for our patients in the future. Therefore, the purpose of this article is not only to introduce current neuroscientific enterprises, but to also explore some of the most interesting and instrumental findings using neurodiagnostic technology over the past year.
Science and technology integration for increased human potential and societal outcomes.
Roco, Mihail C
2004-05-01
Unifying science based on the material unity of nature at the nanoscale provides a new foundation for knowledge, innovation, and integration of technology. Revolutionary and synergistic advances at the interfaces between previously separated fields of science, engineering and areas of relevance are ready to create nano-bio-info-cogno (NBIC) transforming tools. Developments in systems approach, mathematics, and computation in conjunction with NBIC allow us to understand the natural world and scientific research as closely coupled, complex, hierarchical entities. At this unique moment of scientific and technical achievement, improvement of human performance at individual and group levels, as well as development of suitable revolutionary products, becomes possible and these are primary goals for converging new technologies. NBIC addresses long-term advances in key areas of human activity, including working, learning, aging, group interaction, organizations, and human evolution ((Roco and Bainbridge, 2003)). Fundamentally new tools, technologies, and products will be integrated into individual and social human architecture. This introductory chapter of the Annals outlines research and education trends, funding activities, and the potential of development of revolutionary products and services.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-31
The ``Environmental Management Technology Leveraging Initiative,`` a cooperative agreement between the Global Environment and Technology Foundation and the Department of Energy-Morgantown Energy Technology Center, has completed its second year. This program, referred to as the Global Environmental Technology Enterprise (GETE) is an experiment to bring together the public and private sectors to identify, formulate, promote and refine methods to develop more cost-effective clean-up treatments. Working closely with Department of Energy officials, National Laboratory representatives, business people, academia, community groups, and other stakeholders, this program attempts to commercialize innovative, DOE-developed technologies. The methodology to do so incorporates three elements: business assistance,more » information, and outreach. A key advance this year was the development of a commercialization guidance document which can be used to diagnose the commercialization level and needs for innovative technologies.« less
NASA Technical Reports Server (NTRS)
Sadin, Stanley R.; Rosen, Robert
1987-01-01
Project Pathfinder is a proposed U.S. Space Research and Technology program intended to enable bold new missions of space exploration. Pathfinder continues the advancement of technological capabilities and extends the foundation established under the Civil Space Technology Initiative, CSTI. By filling critical technological gaps, CSTI enhances access to Earth orbit and supports effective operations and science missions therein. Pathfinder, with a longer-term horizon, looks to a future that builds on Shuttle and Space Station and addresses technologies that support a range of exploration missions including: a return to the Moon to build an outpost; piloted missions to Mars; and continued scientific exploration of Earth and the other planets. The program's objective is to develop, within reasonable time frames, those emerging and innovative technologies that will make possible both new and enhanced missions and system concepts.
Evaluation of Extended-wear Hearing Aid Technology for Operational Military Use
2015-07-01
AFRL), Battlespace Acoustics Branch has been updated and approved to include the Lyric device. The AFRL protocol was sent to the Human Research...Jackson Foundation for the Advancement of Military Medicine Battlespace Acoustics Branch AFRL Wright-Patterson AFB, OH 45433 elizabeth_anne.mckenna.1...just after Hearing Aid 10 Drive speaker Incased in Foam 11 3.0 MEASUREMENTS PERFORMED 3.1 RE102 - Radiated Emissions, Electric Field, 2 MHz to 18
2011-09-27
The e-Genius aircraft prepares to takeoff for the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-25
A Pipistrel-USA team member wipes down the Taurus G4 aircraft prior to competition as part of the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-27
The PhoEnix aircraft prepares to takeoff for the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-28
Pipistrel-USA Taurus G4 Aircraft Pilot Robin Reid poses for a photograph during the 2011 Green Flight Challenge, sponsored by Google, held at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-28
Pipistrel-USA Taurus G4 Aircraft Pilot David Morss poses for a photograph during the 2011 Green Flight Challenge, sponsored by Google, held at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-27
The Pipistrel-USA, Taurus G4 aircraft prepares to takeoff for the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-27
The e-Genius aircraft is pulled out to the runway for the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-27
The EcoEagle, left, and the PhoEnix aircraft are seen on the campus of the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Wednesday, Sept. 28, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-27
Media and ground crew look at aircraft as they participate in the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-25
Team members of the e-Genius aircraft prepare their plane prior to competition as part of the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-25
The Embry-Riddle Aeronautical University, EcoEagle is seen as it passes a Grumman Albatross during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-10-03
Pipistrel-USA Team Lead Jack Langelaan talks after his team won the 2011 Green Flight Challenge, sponsored by Google, on Monday, Oct. 3, 2011 at the NASA Ames Research Center, Mountain View, Calif. The all electric Taurus G4 aircraft achieved the equivalency of more than 400 miles per gallon. NASA and CAFE Foundation held the challenge to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
Faunce, Thomas Alured; Nasu, Hitoshi
2009-06-01
The United Nations Scientific, Education, and Cultural Organization Universal Declaration on Bioethics and Human Rights (UDBHR) expresses in its title and substance a controversial linkage of two normative systems: international human rights law and bioethics. The UDBHR has the status of what is known as a "nonbinding" declaration under public international law. The UDBHR's foundation within bioethics (and association, e.g., with virtue-based or principlist bioethical theories) is more problematic. Nonetheless, the UDBHR contains socially important principles of technology transfer and transnational benefit (articles 14, 15, and 21). This paper is one of the first to explore how the disciplines of bioethics and international human rights law may interact in the UDBHR to advance the policy relevance and health impact of such principles. It investigates their normative ancestry in the UDBHR, as well as relevant conceptual differences between bioethics and public international law in this respect, and how these may be relevant to their conceptual evolution and application.
NASA Astrophysics Data System (ADS)
Research and development spending from private industry funds is expected to grow approximately 11% during 1984 to $48 billion, according to a new report by the National Science Foundation (NSF). Spurring this growth, say industry officials, are industry's need to keep abreast of rapidly advancing technology, the impact of foreign competition, and the expectation that more funds will be available as the economic recovery continues.The NSF report is based on mail response to an inquiry to the foundation's Industrial Panel on Science and Technology and on interviews with officials in several R&D-intensive industries. The panel is composed of about 90 officials, primarily corporate directors of research and development, who are responsible for R&D in their companies. The report, “Companies Plan Increases in R&D Spending Through 1984,” contains projections of R&D expenditures for 1983 and 1984 for the six largest R&D-performing industries: machinery (including computers); electrical equipment and communications; chemicals (including drugs and medicine); motor vehicles; aircraft; and professional and scientific instruments.
Increasing the Capacity of Primary Care Through Enabling Technology.
Young, Heather M; Nesbitt, Thomas S
2017-04-01
Primary care is the foundation of effective and high-quality health care. The role of primary care clinicians has expanded to encompass coordination of care across multiple providers and management of more patients with complex conditions. Enabling technology has the potential to expand the capacity for primary care clinicians to provide integrated, accessible care that channels expertise to the patient and brings specialty consultations into the primary care clinic. Furthermore, technology offers opportunities to engage patients in advancing their health through improved communication and enhanced self-management of chronic conditions. This paper describes enabling technologies in four domains (the body, the home, the community, and the primary care clinic) that can support the critical role primary care clinicians play in the health care system. It also identifies challenges to incorporating these technologies into primary care clinics, care processes, and workflow.
Evaluation of Fieldbus and OPC for Advanced Life Support
NASA Technical Reports Server (NTRS)
Boulanger, Richard P.; Cardinale, Paul; Bradley, Matthew; Luna, Bernadette (Technical Monitor)
2000-01-01
FOUNDATION(Tm) Fieldbus and OP(TM) (OLE(TM)for Process Control) technologies were integrated into an existing control system for a crop growth chamber at NASA Ames Research Center. FOUNDATION(TM) Fieldbus is a digital, bi-directional, multi-drop, serial communications network which functions essentially as a LAN for sensors. FOUNDATION(TM) Fieldbus is heterarchical, with publishers and subscribers of data performing complex control functions at low levels without centralized control and its associated overhead. OPC(TM) is a set of interfaces which replace proprietary drivers with a transparent means of exchanging data between the fieldbus and applications. The objectives were: (1) to integrate FOUNDATION(TM) Fieldbus into existing ALS hardware and determine its overall effectiveness and reliability and, (2) to quantify any savings produced by using fieldbus and OPC technologies. We encountered several problems with the FOUNDATION(TM) Fieldbus hardware chosen. Our hardware exposed 100 data for each channel of the fieldbus. The fieldbus configurator software used to program the fieldbus was simply not adequate. The fieldbus was also not inherently reliable. It lost its settings twice during our tests for unknown reasons. OPC also had issues. It did not function at all as supplied, requiring substitution of some of its components with those from other vendors. It would stop working after a fixed period of time. Certain database calls eventually lock the machine. Overall, we would not recommend FOUNDATION(TM) Fieldbus: it was too difficult to implement with little overall added value. It also seems unlikely that FOUNDATION(TM) Fieldbus will gain sufficient penetration into the laboratory instrument market to ever be cost effective for the ALS community. OPC had good reliability and performance once a stable installation was achieved. It allowed a rapid change to an alternative software strategy when our first strategy failed. It is a cost effective solution to distributed control systems development.
Technology advancement for integrative stem cell analyses.
Jeong, Yoon; Choi, Jonghoon; Lee, Kwan Hyi
2014-12-01
Scientists have endeavored to use stem cells for a variety of applications ranging from basic science research to translational medicine. Population-based characterization of such stem cells, while providing an important foundation to further development, often disregard the heterogeneity inherent among individual constituents within a given population. The population-based analysis and characterization of stem cells and the problems associated with such a blanket approach only underscore the need for the development of new analytical technology. In this article, we review current stem cell analytical technologies, along with the advantages and disadvantages of each, followed by applications of these technologies in the field of stem cells. Furthermore, while recent advances in micro/nano technology have led to a growth in the stem cell analytical field, underlying architectural concepts allow only for a vertical analytical approach, in which different desirable parameters are obtained from multiple individual experiments and there are many technical challenges that limit vertically integrated analytical tools. Therefore, we propose--by introducing a concept of vertical and horizontal approach--that there is the need of adequate methods to the integration of information, such that multiple descriptive parameters from a stem cell can be obtained from a single experiment.
Technology Advancement for Integrative Stem Cell Analyses
Jeong, Yoon
2014-01-01
Scientists have endeavored to use stem cells for a variety of applications ranging from basic science research to translational medicine. Population-based characterization of such stem cells, while providing an important foundation to further development, often disregard the heterogeneity inherent among individual constituents within a given population. The population-based analysis and characterization of stem cells and the problems associated with such a blanket approach only underscore the need for the development of new analytical technology. In this article, we review current stem cell analytical technologies, along with the advantages and disadvantages of each, followed by applications of these technologies in the field of stem cells. Furthermore, while recent advances in micro/nano technology have led to a growth in the stem cell analytical field, underlying architectural concepts allow only for a vertical analytical approach, in which different desirable parameters are obtained from multiple individual experiments and there are many technical challenges that limit vertically integrated analytical tools. Therefore, we propose—by introducing a concept of vertical and horizontal approach—that there is the need of adequate methods to the integration of information, such that multiple descriptive parameters from a stem cell can be obtained from a single experiment. PMID:24874188
Advanced oxidation technology for H2S odor gas using non-thermal plasma
NASA Astrophysics Data System (ADS)
Tao, ZHU; Ruonan, WANG; Wenjing, BIAN; Yang, CHEN; Weidong, JING
2018-05-01
Non-thermal plasma technology is a new type of odor treatment processing. We deal with H2S from waste gas emission using non-thermal plasma generated by dielectric barrier discharge. On the basis of two criteria, removal efficiency and absolute removal amount, we deeply investigate the changes in electrical parameters and process parameters, and the reaction process of the influence of ozone on H2S gas removal. The experimental results show that H2S removal efficiency is proportional to the voltage, frequency, power, residence time and energy efficiency, while it is inversely proportional to the initial concentration of H2S gas, and ozone concentration. This study lays the foundations of non-thermal plasma technology for further commercial application.
High-Temperature (1000 F) Magnetic Thrust Bearing Test Rig Completed and Operational
NASA Technical Reports Server (NTRS)
Montague, Gerald T.
2005-01-01
Large axial loads are induced on the rolling element bearings of a gas turbine. To extend bearing life, designers use pneumatic balance pistons to reduce the axial load on the bearings. A magnetic thrust bearing could replace the balance pistons to further reduce the axial load. To investigate this option, the U.S. Army Research Laboratory, the NASA Glenn Research Center, and Texas A&M University designed and fabricated a 7-in.- diameter magnetic thrust bearing to operate at 1000 F and 30,000 rpm, with a 1000-lb load capacity. This research was funded through a NASA Space Technology Transfer Act with Allison Advance Development Company under the Ultra-Efficient Engine Technology (UEET) Intelligent Propulsion Systems Foundation Technology project.
2011-09-27
The e-Genius aircraft is pulled pulled out to the runway for the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-25
The Pipistrel-USA Taurus G4 aircraft is pushed back to the weigh-in hanger as they start the day's 2011 Green Flight Challenge competition, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-27
The e-Genius pilots talk with a fellow team member prior to their takeoff for the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-25
The Pipistrel-USA, Taurus G4 aircraft approaches for landing as a Grumman Albatross plane is seen in the forground during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-27
The Pipistrel-USA team look up at aircraft as they participate in the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-27
The Embry-Riddle Aeronautical University, EcoEagle prepares to takeoff as an demonstration aircraft for the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-27
The checkered flag is waved as the PhoEnix aircraft crosses the finish line of the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-25
The Pipistrel-USA, Taurus G4 aircraft is prepared to be rolled out of the weigh-in hanger during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-27
The Pipistrel-USA, Taurus G4 aircraft is seen as it participates in the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
Biological Physics major as a means to stimulate an undergraduate physics program
NASA Astrophysics Data System (ADS)
Jaeger, Herbert; Eid, Khalid; Yarrison-Rice, Jan
2013-03-01
In an effort to stress the cross-disciplinary nature of modern physics we added a Biological Physics major. Drawing from coursework in physics, biology, chemistry, mathematics, and related disciplines, it combines a broad curriculum with physical and mathematical rigor in preparation for careers in biophysics, medical physics, and biomedical engineering. Biological Physics offers a new path of studies to a large pool of life science students. We hope to grow our physics majors from 70-80 to more than 100 students and boost our graduation rate from the mid-teens to the mid-twenties. The new major brought about a revision of our sophomore curriculum to make room for modern topics without sidelining fundamentals. As a result, we split our 1-semester long Contemporary Physics course (4 cr hrs) into a year-long sequence Contemporary Physics Foundations and Contemporary Physics Frontiers (both 3 cr hrs). Foundations starts with relativity, then focuses on 4 quantum mechanics topics: wells, spin 1/2, oscillators, and hydrogen. Throughout the course applications are woven in whenever the opportunity arises, e.g. magnetism and NMR with spin 1/2. The following semester Frontiers explores scientific principles and technological advances that make quantum science and resulting technologies different from the large scale. Frontiers covers enabling techniques from atomic, molecular, condensed matter, and particle physics, as well as advances in nanotechnology, quantum optics, and biophysics.
NASA Astrophysics Data System (ADS)
Wartmann, David; Rothbauer, Mario; Kuten, Olga; Barresi, Caterina; Visus, Carmen; Felzmann, Thomas; Ertl, Peter
2015-09-01
The combination of microfabrication-based technologies with cell biology has laid the foundation for the development of advanced in vitro diagnostic systems capable of evaluating cell cultures under defined, reproducible and standardizable measurement conditions. In the present review we describe recent lab-on-a-chip developments for cell analysis and how these methodologies could improve standard quality control in the field of manufacturing cell-based vaccines for clinical purposes. We highlight in particular the regulatory requirements for advanced cell therapy applications using as an example dendritic cell-based cancer vaccines to describe the tangible advantages of microfluidic devices that overcome most of the challenges associated with automation, miniaturization and integration of cell-based assays. As its main advantage lab-on-a-chip technology allows for precise regulation of culturing conditions, while simultaneously monitoring cell relevant parameters using embedded sensory systems. State-of-the-art lab-on-a-chip platforms for in vitro assessment of cell cultures and their potential future applications for cell therapies and cancer immunotherapy are discussed in the present review.
Next generation agricultural system data, models and knowledge products: Introduction.
Antle, John M; Jones, James W; Rosenzweig, Cynthia E
2017-07-01
Agricultural system models have become important tools to provide predictive and assessment capability to a growing array of decision-makers in the private and public sectors. Despite ongoing research and model improvements, many of the agricultural models today are direct descendants of research investments initially made 30-40 years ago, and many of the major advances in data, information and communication technology (ICT) of the past decade have not been fully exploited. The purpose of this Special Issue of Agricultural Systems is to lay the foundation for the next generation of agricultural systems data, models and knowledge products. The Special Issue is based on a "NextGen" study led by the Agricultural Model Intercomparison and Improvement Project (AgMIP) with support from the Bill and Melinda Gates Foundation.
Next Generation Agricultural System Data, Models and Knowledge Products: Introduction
NASA Technical Reports Server (NTRS)
Antle, John M.; Jones, James W.; Rosenzweig, Cynthia E.
2016-01-01
Agricultural system models have become important tools to provide predictive and assessment capability to a growing array of decision-makers in the private and public sectors. Despite ongoing research and model improvements, many of the agricultural models today are direct descendants of research investments initially made 30-40 years ago, and many of the major advances in data, information and communication technology (ICT) of the past decade have not been fully exploited. The purpose of this Special Issue of Agricultural Systems is to lay the foundation for the next generation of agricultural systems data, models and knowledge products. The Special Issue is based on a 'NextGen' study led by the Agricultural Model Intercomparison and Improvement Project (AgMIP) with support from the Bill and Melinda Gates Foundation.
ARMD Strategic Thrust 6: Assured Autonomy for Aviation Transformation
NASA Technical Reports Server (NTRS)
Ballin, Mark; Holbrook, Jon; Sharma, Shivanjli
2016-01-01
In collaboration with the external community and other government agencies, NASA will develop enabling technologies, standards, and design guidelines to support cost-effective applications of automation and limited autonomy for individual components of aviation systems. NASA will also provide foundational knowledge and methods to support the next epoch. Research will address issues of verification and validation, operational evaluation, national policy, and societal cost-benefit. Two research and development approaches to aviation autonomy will advance in parallel. The Increasing Autonomy (IA) approach will seek to advance knowledge and technology through incremental increases in machine-based support of existing human-centered tasks, leading to long-term reallocation of functions between humans and machines. The Autonomy as a New Technology (ANT) approach seeks advances by developing technology to achieve goals that are not currently possible using human-centered concepts of operation. IA applications are mission-enhancing, and their selection will be based on benefits achievable relative to existing operations. ANT applications are mission-enabling, and their value will be assessed based on societal benefit resulting from a new capability. The expected demand for small autonomous unmanned aircraft systems (UAS) provides an opportunity for development of ANT applications. Supervisory autonomy may be implemented as an expansion of the number of functions or systems that may be controlled by an individual human operator. Convergent technology approaches, such as the use of electronic flight bags and existing network servers, will be leveraged to the maximum extent possible.
Proceedings of the Conference on Research for the Development of Geothermal Energy Resources
NASA Technical Reports Server (NTRS)
1974-01-01
The proceedings of a conference on the development of geothermal energy resources are presented. The purpose of the conference was to acquaint potential user groups with the Federal and National Science Foundation geothermal programs and the method by which the users and other interested members can participate in the program. Among the subjects discussed are: (1) resources exploration and assessment, (2) environmental, legal, and institutional research, (3) resource utilization projects, and (4) advanced research and technology.
2011-09-27
The PhoEnix, lower left, EcoEagle, 2nd from left, Taurus G4, and e-Genius aircraft, top right, are seen on the campus of the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Wednesday, Sept. 28, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-25
Wayne Cook, Weights Chief, inspects the Pipistrel-USA, Taurus G4 as it rest on a scale built into the floor of the hanger during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-25
Phoenix Air team members reattach the wings to their PhoEnix aircraft after pulling it out the weigh-in hanger as they start the day's 2011 Green Flight Challenge competition, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-25
Team members of Pipistrel-USA prepare to have their Taurus G4 aircraft wings weighed using a scale built into the floor of the hanger during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-27
The e-Genius, left, Taurus G4, 2nd from left, EcoEagle, and PhoEnix aircraft, top right, are seen on the campus of the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Wednesday, Sept. 28, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
ERIC Educational Resources Information Center
Piefer, Alan
The history of The Carnegie Foundation for the Advancement of Teaching (CFAT) is traced. Three eras are described: 1905 to 1930, a period of initial creativity and influence; 1930 to 1966, a period of gradual decline, leading eventually to loss of independence and virtual extinction; and 1966 to 1979, a period of revitalization. Originally, CFAT…
A review: aluminum nitride MEMS contour-mode resonator
NASA Astrophysics Data System (ADS)
Yunhong, Hou; Meng, Zhang; Guowei, Han; Chaowei, Si; Yongmei, Zhao; Jin, Ning
2016-10-01
Over the past several decades, the technology of micro-electromechanical system (MEMS) has advanced. A clear need of miniaturization and integration of electronics components has had new solutions for the next generation of wireless communications. The aluminum nitride (AlN) MEMS contour-mode resonator (CMR) has emerged and become promising and competitive due to the advantages of the small size, high quality factor and frequency, low resistance, compatibility with integrated circuit (IC) technology, and the ability of integrating multi-frequency devices on a single chip. In this article, a comprehensive review of AlN MEMS CMR technology will be presented, including its basic working principle, main structures, fabrication processes, and methods of performance optimization. Among these, the deposition and etching process of the AlN film will be specially emphasized and recent advances in various performance optimization methods of the CMR will be given through specific examples which are mainly focused on temperature compensation and reducing anchor losses. This review will conclude with an assessment of the challenges and future trends of the CMR. Project supported by National Natural Science Foundation (Nos. 61274001, 61234007, 61504130), the Nurturing and Development Special Projects of Beijing Science and Technology Innovation Base's Financial Support (No. Z131103002813070), and the National Defense Science and Technology Innovation Fund of CAS (No. CXJJ-14-M32).
[Heavy particle radiation therapy].
Lozares, S; Mañeru, F; Pellejero, S
2009-01-01
The characteristics of radiation formed by heavy particles make it a highly useful tool for therapeutic use. Protons, helium nuclei or carbon ions are being successfully employed in radiotherapy installations throughout the world. This article sets out the physical and technological foundations that make these radiation particles suitable for attacking white volume, as well as the different ways of administering treatment. Next, the main clinical applications are described, which show the therapeutic advantages in some of the pathologies most widely employed in proton and hadron therapy centres at present. Under continuous study, the clinical use of heavy particles appears to be an enormously promising path of advance in comparison with classical technologies, both in tumour coverage and in reducing dosages in surrounding tissue.
The foundation mass concrete construction technology of Hongyun Building B tower raft
NASA Astrophysics Data System (ADS)
Liu, Yu; Yin, Suhua; Wu, Yanli; Zhao, Ying
2017-08-01
The foundation of Hongyun building B tower is made of raft board foundation which is 3300mm in the thickness and 2800mm beside side of the core tube. It is researched that the raft foundation mass concrete construction technology is expatiated from temperature and cracks of the raft foundation and the temperature control and monitoring of the concrete base slab construction and concrete curing.
Foundations and the Advancement of Postsecondary Education
ERIC Educational Resources Information Center
Morris, Libby V.
2017-01-01
The author examined the websites of two large foundations, the Bill and Melinda Gates Foundation and the Lumina Foundation. Each has developed projects and networks, coupled with substantive grants, to improve postsecondary education. These and other foundations have deep and ongoing commitments, not just philosophical but resource-based, to…
Foundations of low-temperature plasma enhanced materials synthesis and etching
NASA Astrophysics Data System (ADS)
Oehrlein, Gottlieb S.; Hamaguchi, Satoshi
2018-02-01
Low temperature plasma (LTP)-based synthesis of advanced materials has played a transformational role in multiple industries, including the semiconductor industry, liquid crystal displays, coatings and renewable energy. Similarly, the plasma-based transfer of lithographically defined resist patterns into other materials, e.g. silicon, SiO2, Si3N4 and other electronic materials, has led to the production of nanometer scale devices that are the basis of the information technology, microsystems, and many other technologies based on patterned films or substrates. In this article we review the scientific foundations of both LTP-based materials synthesis at low substrate temperature and LTP-based isotropic and directional etching used to transfer lithographically produced resist patterns into underlying materials. We cover the fundamental principles that are the basis of successful application of the LTP techniques to technological uses and provide an understanding of technological factors that may control or limit material synthesis or surface processing with the use of LTP. We precede these sections with a general discussion of plasma surface interactions, the LTP-generated particle fluxes including electrons, ions, radicals, excited neutrals and photons that simultaneously contact and modify surfaces. The surfaces can be in the line of sight of the discharge or hidden from direct interaction for structured substrates. All parts of the article are extensively referenced, which is intended to help the reader study the topics discussed here in more detail.
NASA Astrophysics Data System (ADS)
Bodenschatz, Eberhard
2014-11-01
In my talk I shall present results from particle tracking experiments in turbulence. After a short review of the history of the field, I shall summarize the most recent technological advances that range form low and high-density particle tracking to direct measurements of the Lagrangian evolution of vorticity. I shall embark on a journey that describes the discoveries made possible by this new technology in the last 15 years. I present results that challenge our understanding of turbulence and show how Lagrangian particle tracking can help us ask questions on turbulent flows that so far were hidden. I shall show how Lagrangian particle tracking may provide important insights into the reversibility of turbulent flows, on vorticity generation, the energy cascade and turbulent mixing. I shall describe the consequences of inertial particle transport on rain formation and end with an outlook on how Lagrangian particle tracking experiments on non-stationary flows in real-world situations may provide high quality data that can support real world engineering problems. I am very thankful for the support by Cornell University, the National Science Foundation, the Research Corporation, the Alfred P. Sloan Foundation, the Kavli Institute for Theoretical Physics, the German Research Foundation, the European Union and the Max Planck Society. I very gratefully acknowledge the excellent partnership with many colleagues in the field of fluid mechanics and turbulence.
Applying Sensor-Based Technology to Improve Construction Safety Management.
Zhang, Mingyuan; Cao, Tianzhuo; Zhao, Xuefeng
2017-08-11
Construction sites are dynamic and complicated systems. The movement and interaction of people, goods and energy make construction safety management extremely difficult. Due to the ever-increasing amount of information, traditional construction safety management has operated under difficult circumstances. As an effective way to collect, identify and process information, sensor-based technology is deemed to provide new generation of methods for advancing construction safety management. It makes the real-time construction safety management with high efficiency and accuracy a reality and provides a solid foundation for facilitating its modernization, and informatization. Nowadays, various sensor-based technologies have been adopted for construction safety management, including locating sensor-based technology, vision-based sensing and wireless sensor networks. This paper provides a systematic and comprehensive review of previous studies in this field to acknowledge useful findings, identify the research gaps and point out future research directions.
Applying Sensor-Based Technology to Improve Construction Safety Management
Zhang, Mingyuan; Cao, Tianzhuo; Zhao, Xuefeng
2017-01-01
Construction sites are dynamic and complicated systems. The movement and interaction of people, goods and energy make construction safety management extremely difficult. Due to the ever-increasing amount of information, traditional construction safety management has operated under difficult circumstances. As an effective way to collect, identify and process information, sensor-based technology is deemed to provide new generation of methods for advancing construction safety management. It makes the real-time construction safety management with high efficiency and accuracy a reality and provides a solid foundation for facilitating its modernization, and informatization. Nowadays, various sensor-based technologies have been adopted for construction safety management, including locating sensor-based technology, vision-based sensing and wireless sensor networks. This paper provides a systematic and comprehensive review of previous studies in this field to acknowledge useful findings, identify the research gaps and point out future research directions. PMID:28800061
Monitoring of Overhead Transmission Lines: A Review from the Perspective of Contactless Technologies
NASA Astrophysics Data System (ADS)
Khawaja, Arsalan Habib; Huang, Qi; Khan, Zeashan Hameed
2017-12-01
This paper describes a comprehensive review of non-contact technologies for overhead power transmission lines. Due to ever increasing emphasis on reducing accidents and speeding up diagnosis for automatically controlled grids, real time remote sensing and actuation is the new horizon for smart grid implementation. The technology overview with emphasis on the practical implementation of advanced non-contact technologies is discussed in this paper while considering optimization of the high voltage transmission lines parameters. In case of fault, the voltage and the current exceed limits of operation and hence real time reporting for control and diagnosis is a critical requirement. This paper aims to form a strong foundation for control and diagnosis of future power distribution systems so that a practitioner or researcher can make choices for a workable solution in smart grid implementation based on non-contact sensing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder, Seth W; Simon, A.J.
There is an urgency to advancing wastewater technologies due to aging water infrastructure and emerging regulations. A crosscutting working group proposes a conceptual design for a test bed network to understand and evaluate wastewater technologies to drive acceptance and deployment of new technologies to enhance performance. The working group includes contributors from the U.S. Department of Energy, the U.S. Environmental Protection Agency, the U.S. National Science Foundation, and the Water Research Foundation (formerly known as the Water Environment & Reuse Foundation). In “The Water-Energy Nexus: Challenges and Opportunities” (June 2014), the U.S. Department of Energy identified key issues with water-energymore » interdependencies and identified water resource recovery (broadly referred to as “wastewater management” or “sewage treatment”) as a locus of opportunities to improve energy and water security. Traditional sewage treatment uses more than 30 billion kWh per year, almost one percent of our electricity supply (EPRI 2013), and energy use grew 74 percent from 1996 to 2011 (Tarallo 2014). Wastewater is a potential alternative source to address water scarcity. In addition, wastewater contains valuable energy, nutrient, and mineral resources. Traditional sewage treatment does not recover water or other resources. With improved technology and design, reclaimed wastewater could supplement existing water supplies and mitigate water stress. The energy (biogas and heat), nutrients (primarily nitrogen and phosphorus), and minerals in wastewater could displace fossil sources, reduce America’s dependence on imported energy, and reduce greenhouse gas emissions. If fully implemented, resource recovery would reduce discharges to the environment and provide ecosystem services. The primary role of both public and private wastewater facilities is to reduce risk to human health and the environment. The institutional driver is to meet regulatory requirements. Capital budgets and revenue from taxes and services are limited at wastewater utilities, reducing the ability to invest in innovation. Therefore, utilities are very risk averse and slow to adopt new technologies that go beyond their traditional historical mandate.« less
Congressional hearing reviews NSF major research and facilities projects
NASA Astrophysics Data System (ADS)
Showstack, Randy
2012-03-01
An 8 March congressional hearing about the U.S. National Science Foundation's Major Research Equipment and Facilities Construction (NSF MREFC) account focused on fiscal management and accountability of projects in that account and reviewed concerns raised by NSF's Office of Inspector General (OIG). NSF established the MREFC account in 1995 to better plan and manage investments in major equipment and facilities projects, which can cost from tens of millions to hundreds of millions of dollars, and the foundation has funded 17 MREFC projects since then. The Obama administration's proposed fiscal year (FY) 2013 budget includes funding for four MREFC projects: Advanced Laser Gravitational-Wave Observatory (AdvLIGO), Advanced Technology Solar Telescope (ATST), National Ecological Observatory (NEON), and Ocean Observatories Initiative (OOI). The hearing, held by a subcommittee of the House of Representatives' Committee on Science, Space, and Technology, reviewed management oversight throughout the life cycles of MREFC projects and concerns raised in recent OIG reports about the use of budget contingency funds. NSF's February 2012 manual called "Risk management guide for large facilities" states that cost contingency is "that portion of the project budget required to cover `known unknowns,'" such as planning and estimating errors and omissions, minor labor or material price fluctuations, and design developments and changes within the project scope. Committee members acknowledged measures that NSF has made to improve the MREFC oversight process, but they also urged the agency to continue to take steps to ensure better project management.
The design and development of a third generation OSEE instrument
NASA Technical Reports Server (NTRS)
Perey, D. F.; Yost, W. T.; Stone, F. D.; Welch, C. S.; Scales, E.; Gasser, E. S.; Joe, E.; Goodman, T.; Pascual, X.; Hefner, B.
1995-01-01
Optically Stimulated Electron Emission (OSEE) has been used to quantify surface contamination in the aerospace community. As advances are made towards the understanding of OSEE, it is desirable to incorporate technological advances with succeeding generations of instrumentation, so that improvements in the practical application of OSEE may be disseminated among the user community. Several studies undertaken by Yost, Welch, Abedin and others have expanded the knowledge base related to the underlying principles of OSEE. The conclusions of these studies, together with inputs from the user community were the foundation upon which the development of a third generation OSEE instrument was based. This manuscript describes the significant improvements incorporated into a third generation OSEE instrument as well as the elements unique to its design.
SAD phasing: History, current impact and future opportunities.
Rose, John P; Wang, Bi-Cheng
2016-07-15
Single wavelength anomalous diffraction (SAD) can trace its beginnings to the early 1950s. Researchers at the time recognized that SAD offers some unique features that might be advantageous for crystallographic phasing, despite the fact that at that time recording accurate SAD data was problematic. In this review we will follow the trail from those early days, highlighting key advances in the field and interpreting them in terms on how they stimulated continued phasing development that produced the theoretical foundation for the routine macromolecular structure determination by SAD today. The technological advances over the past three decades in both hardware and software, which played a significant role in making SAD phasing a 'first choice method', will also be described. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Donnelly, Judith; Hanes, Fenna; Massa, Nicholas
2007-09-01
Since 1995, the New England Board of Education (NEBHE) has been providing curriculum and professional development as well as laboratory improvement in optics/photonics to middle school and high school teachers and college faculty across the United States. With funding from the National Science Foundation's Advanced Technology Education program, NEBHE's optics/photonics education projects have created a national network of educational and industry alliances resulting in opportunities in optics and photonics for students at participating schools and colleges. The cornerstone of NEBHE projects is collaboration among educational levels, career counselors and teachers/faculty, and industry and academia. In such a rich atmosphere of cooperation, participants have been encouraged to create their own regional projects and activities involving students from middle school through four-year universities. In this paper we will describe the evolution of teacher/faculty professional development from a traditional week-long summer workshop to a collaborative distance learning laboratory course based on adult learning principles and supported by a national network of industry mentors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None None
2012-05-10
In July, 2008, the National Institutes of Health (NIH), National Science Foundation (NSF), and Department of Energy (DOE) asked the National Research Council’s Board on Life Sciences to convene a committee to examine the current state of biological research in the United States and recommend how best to capitalize on recent technological and scientific advances that have allowed biologists to integrate biological research findings, collect and interpret vastly increased amounts of data, and predict the behavior of complex biological systems. From September 2008 through July of 2009, a committee of 16 experts from the fields of biology, engineering and computationalmore » science undertook to delineate those scientific and technological advances and come to a consensus on how the U.S. might best capitalize on them. This report, authored by the Committee on a New Biology for the 21st Century, describes the committee’s work and conclusions.« less
Universities and medical schools: reflections on a half-century of Canadian medical education.
Naimark, A
1993-01-01
After 50 years of accelerated development, universities and medical schools have entered a period of uncertainty and instability. The Flexnerian paradigm of medical education, rooted in biomedical science and conducted under the aegis of a university, reached its apotheosis by the late 1960s and the early 1970s. Fuelled by the introduction of comprehensive, government-sponsored health care insurance and advances in technology, the demand for health care professionals and for access to facilities increased sharply. Medical education, research and advanced clinical services expanded dramatically aided by the emergence of academic health sciences centres and accompanied by a wave of medical curriculum reform. Now medical schools must strike a dynamic balance in responding to the continued expansion of knowledge and technology, the demand for social equity and the exigencies of prolonged fiscal constraint. They must also balance the biological and sociological approaches to medicine in establishing the foundations for the future development of Canadian medical education. PMID:8477376
Stem Cells Applications in Regenerative Medicine and Disease Therapeutics
2016-01-01
Regenerative medicine, the most recent and emerging branch of medical science, deals with functional restoration of tissues or organs for the patient suffering from severe injuries or chronic disease. The spectacular progress in the field of stem cell research has laid the foundation for cell based therapies of disease which cannot be cured by conventional medicines. The indefinite self-renewal and potential to differentiate into other types of cells represent stem cells as frontiers of regenerative medicine. The transdifferentiating potential of stem cells varies with source and according to that regenerative applications also change. Advancements in gene editing and tissue engineering technology have endorsed the ex vivo remodelling of stem cells grown into 3D organoids and tissue structures for personalized applications. This review outlines the most recent advancement in transplantation and tissue engineering technologies of ESCs, TSPSCs, MSCs, UCSCs, BMSCs, and iPSCs in regenerative medicine. Additionally, this review also discusses stem cells regenerative application in wildlife conservation. PMID:27516776
Polymers for Drug Delivery Systems
Liechty, William B.; Kryscio, David R.; Slaughter, Brandon V.; Peppas, Nicholas A.
2012-01-01
Polymers have played an integral role in the advancement of drug delivery technology by providing controlled release of therapeutic agents in constant doses over long periods, cyclic dosage, and tunable release of both hydrophilic and hydrophobic drugs. From early beginnings using off-the-shelf materials, the field has grown tremendously, driven in part by the innovations of chemical engineers. Modern advances in drug delivery are now predicated upon the rational design of polymers tailored for specific cargo and engineered to exert distinct biological functions. In this review, we highlight the fundamental drug delivery systems and their mathematical foundations and discuss the physiological barriers to drug delivery. We review the origins and applications of stimuli-responsive polymer systems and polymer therapeutics such as polymer-protein and polymer-drug conjugates. The latest developments in polymers capable of molecular recognition or directing intracellular delivery are surveyed to illustrate areas of research advancing the frontiers of drug delivery. PMID:22432577
EarthCube: A Community-Driven Cyberinfrastructure for the Geosciences
NASA Astrophysics Data System (ADS)
Koskela, Rebecca; Ramamurthy, Mohan; Pearlman, Jay; Lehnert, Kerstin; Ahern, Tim; Fredericks, Janet; Goring, Simon; Peckham, Scott; Powers, Lindsay; Kamalabdi, Farzad; Rubin, Ken; Yarmey, Lynn
2017-04-01
EarthCube is creating a dynamic, System of Systems (SoS) infrastructure and data tools to collect, access, analyze, share, and visualize all forms of geoscience data and resources, using advanced collaboration, technological, and computational capabilities. EarthCube, as a joint effort between the U.S. National Science Foundation Directorate for Geosciences and the Division of Advanced Cyberinfrastructure, is a quickly growing community of scientists across all geoscience domains, as well as geoinformatics researchers and data scientists. EarthCube has attracted an evolving, dynamic virtual community of more than 2,500 contributors, including earth, ocean, polar, planetary, atmospheric, geospace, computer and social scientists, educators, and data and information professionals. During 2017, EarthCube will transition to the implementation phase. The implementation will balance "innovation" and "production" to advance cross-disciplinary science goals as well as the development of future data scientists. This presentation will describe the current architecture design for the EarthCube cyberinfrastructure and implementation plan.
Injury surveillance in low-resource settings using Geospatial and Social Web technologies
2010-01-01
Background Extensive public health gains have benefited high-income countries in recent decades, however, citizens of low and middle-income countries (LMIC) have largely not enjoyed the same advancements. This is in part due to the fact that public health data - the foundation for public health advances - are rarely collected in many LMIC. Injury data are particularly scarce in many low-resource settings, despite the huge associated burden of morbidity and mortality. Advances in freely-accessible and easy-to-use information and communication (ICT) technology may provide the impetus for increased public health data collection in settings with limited financial and personnel resources. Methods and Results A pilot study was conducted at a hospital in Cape Town, South Africa to assess the utility and feasibility of using free (non-licensed), and easy-to-use Social Web and GeoWeb tools for injury surveillance in low-resource settings. Data entry, geocoding, data exploration, and data visualization were successfully conducted using these technologies, including Google Spreadsheet, Mapalist, BatchGeocode, and Google Earth. Conclusion This study examined the potential for Social Web and GeoWeb technologies to contribute to public health data collection and analysis in low-resource settings through an injury surveillance pilot study conducted in Cape Town, South Africa. The success of this study illustrates the great potential for these technologies to be leveraged for public health surveillance in resource-constrained environments, given their ease-of-use and low-cost, and the sharing and collaboration capabilities they afford. The possibilities and potential limitations of these technologies are discussed in relation to the study, and to the field of public health in general. PMID:20497570
Sun, S J; Huo, J H; Geng, Z J; Sun, X Y; Fu, X B
2018-04-20
Gene engineering has attracted worldwide attention because of its ability of precise location of disease mutations in genome. As a new gene editing technology, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system is simple, fast, and accurate to operate at a specific gene site. It overcomes the long-standing problem of conventional operation. At the same time, stem cells are a good foundation for establishing disease model in vitro. Therefore, it has great significance to combine stem cells with the rapidly developing gene manipulation techniques. In this review, we mainly focus on the mechanism of CRISPR/Cas9 technology and its application in stem cell genomic editing, so as to pave the way for promoting rapid application and development of CRISPR/Cas9 technology.
The research of medical equipment on-line detection system based on Android smartphone
NASA Astrophysics Data System (ADS)
Jiang, Junjie; Dong, Xinyu; Zhang, Hongjie; Liu, Mengjun
2017-06-01
With the unceasing enhancement of medical level, the expanding scale of medical institutions, medical equipment as an important tool for disease diagnosis, treatment and prevention, used in all levels of medical institutions. The quality and accuracy of the Medical equipment play a key role in the doctor's diagnosis and treatment effect, medical metrology as the important technical foundation is to ensure that the equipment, technology, material components are accurate and the application is safe and reliable. Medical equipment have the feature of variety, large quantity, long using cycle, expensive and multi-site, which bring great difficulty in maintenance, equipment management and verification. Therefore, how to get the medical measurement integrate deeply into the advanced internet technology, information technology and the new measuring method, for real-time monitoring of medical equipment, tracking, positioning, and query is particularly important.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-10
... this important step forward. Submitted by the National Science Foundation for the National Coordination... NATIONAL SCIENCE FOUNDATION Toward Innovative Spectrum-Sharing Technologies: Wireless Spectrum.... Suzanne H. Plimpton, Reports Clearance Officer, National Science Foundation. [FR Doc. 2012-16804 Filed 7-9...
2011-09-27
Pipistrel-USA Pilots Robin Reid, left, and David Morss, talk on their cell phones shortly after participating in the miles per gallon (MPG) flight in their Taurus G4 aircraft during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
A TinyOS-based wireless neural interface.
Farshchi, Shahin; Mody, Istvan; Judy, Jack W
2004-01-01
The overlay of a neural interface upon a TinyOS-based sensing and communication platform is described. The system amplifies, digitally encodes, and transmits two EEG channels of neural signals from an un-tethered subject to a remote gateway, which routes the signals to a client PC. This work demonstrates the viability of the TinyOS-based sensor technology as a foundation for chronic remote biological monitoring applications, and thus provides an opportunity to create a system that can leverage from the frequent networking and communications advancements being made by the global TinyOS-development community.
2003-09-01
sensors – now generating more empirical data annually than existed in the field of astronomy before 1980 – and the ability of researchers to make use of it...9701 cray@hpcmo.hpc.mil David W. Hislop , Ph.D. Program Manager, Software and Knowledge Based Systems U.S. Army Research Office P.O. Box 12211 Research...Triangle Park, NC 27709 (919) 549-4255 FAX: (919) 549-4354 hislop @aro-emh1.army.mil Rodger Johnson Program Manager, Defense Research and Engineering
1991-08-09
processes Prof T E Fischer, Stevens Institute of Technology, Hoboken, USA. Friction of granular materials Dr M J Adams, Unilever Research, Wirral, England...Army Research Office, ERO US National Science Foundation US Office of Naval Research, ERO Unilever Research and Engineering Division Mobil Research and...Development Corporation Exxon Research and Engineering Company . We are especially grateful to the ASI Administrator, Mr M G de St V Atkins, who was
The evolving trend in spacecraft health analysis
NASA Technical Reports Server (NTRS)
Kirkpatrick, Russell L.
1993-01-01
The Space Flight Operations Center inaugurated the concept of a central data repository for spacecraft data and the distribution of computing power to the end users for that data's analysis at the Jet Propulsion Laboratory. The Advanced Multimission Operations System is continuing the evolution of this concept as new technologies emerge. Constant improvements in data management tools, data visualization, and hardware lead to ever expanding ideas for improving the analysis of spacecraft health in an era of budget constrained mission operations systems. The foundation of this evolution, its history, and its current plans will be discussed.
Investigation of europium(III)-doped ZnS for immunoassay
NASA Astrophysics Data System (ADS)
Zhu, Chao-Fan; Sha, Xue; Chu, Xue-Ying; Li, Jin-Hua; Xu, Ming-Ze; Jin, Fang-Jun; Xu, Zhi-Kun
2018-02-01
Not Available Project supported by the National Natural Science Foundation of China (Grant No. 61205193), the Project of Science and Technology of Jilin Province, China (Grant No. 20140520107JH), the Technology Foundation of Jilin Provincial Department of Human Resources and Social Security, China (Grant No. RL201306), and the Science Foundation for Young Scientists of Changchun University of Science and Technology, China (Grant No. XQNJJ-2015-03).
Microbial innovations in the world of food.
Kawasaki, Hisashi; Ueda, Kenji
2017-01-01
Technological developments in Japan based on the results of microbial research were a major pillar supporting the postwar industrial revolution. The wellspring of these advancements was the sophisticated technology used in traditional brewing, a foundation of the characteristic Japanese food culture. In this manuscript, we will describe the fermentative production of amino acids and nucleic acids following the discovery of the umami component so distinct in Japanese cuisine, which finally revealed the true power of microbial production. Thereafter, we will describe acetic acid production stemming from brewed vinegar production and the fermentative production of some other organic acids. Finally, we will delve into the massive scale of innovations achieved by the discovery of valuable micro-organisms and how they have affected the field of food.
DOE Office of Scientific and Technical Information (OSTI.GOV)
St. Germain, Shawn W.; Farris, Ronald K.; Whaley, April M.
This research effort is a part of the Light-Water Reactor Sustainability (LWRS) Program, which is a research and development (R&D) program sponsored by Department of Energy (DOE) and performed in close collaboration with industry R&D programs that provide the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants. The LWRS program serves to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. The purpose of this research is to improve management of nuclear powermore » plant (NPP) outages through the development of an advanced outage control center (AOCC) that is specifically designed to maximize the usefulness of communication and collaboration technologies for outage coordination and problem resolution activities. This technical report for industry implementation outlines methods and considerations for the establishment of an AOCC. This report provides a process for implementation of a change management plan, evaluation of current outage processes, the selection of technology, and guidance for the implementation of the selected technology. Methods are presented for both adoption of technologies within an existing OCC and for a complete OCC replacement, including human factors considerations for OCC design and setup.« less
Reynolds, Julie A; Thaiss, Christopher; Katkin, Wendy; Thompson, Robert J
2012-01-01
Despite substantial evidence that writing can be an effective tool to promote student learning and engagement, writing-to-learn (WTL) practices are still not widely implemented in science, technology, engineering, and mathematics (STEM) disciplines, particularly at research universities. Two major deterrents to progress are the lack of a community of science faculty committed to undertaking and applying the necessary pedagogical research, and the absence of a conceptual framework to systematically guide study designs and integrate findings. To address these issues, we undertook an initiative, supported by the National Science Foundation and sponsored by the Reinvention Center, to build a community of WTL/STEM educators who would undertake a heuristic review of the literature and formulate a conceptual framework. In addition to generating a searchable database of empirically validated and promising WTL practices, our work lays the foundation for multi-university empirical studies of the effectiveness of WTL practices in advancing student learning and engagement.
78 FR 24239 - Advisory Committee for Cyberinfrastructure; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-24
... NATIONAL SCIENCE FOUNDATION Advisory Committee for Cyberinfrastructure; Notice of Meeting In... Foundation announces the following meeting: Name: Advisory Committee for Cyberinfrastructure (25150). Date... Person: Marc Rigas, Advanced Cyberinfrastructure (CISE/ ACI), National Science Foundation, 4201 Wilson...
Rising to the Challenge: Making the Most of Gifts That Leverage Gifts.
ERIC Educational Resources Information Center
McNay, Linda Wise
1992-01-01
Emory University (Georgia) has advanced its fundraising by leveraging a $2 million challenge from the Coca-Cola Foundation. The school publicized the challenge, made the case for an added incentive to give, and integrated advancement functions to get greater results. Challenge grants can come from industry, foundations, and alumni; and careful…
ARCTIC FOUNDATIONS, INC. FREEZE BARRIER TECHNOLOGY; INNOVATIVE TECHNOLOGY EVALUATION REPORT
Arctic Foundations, Inc. (AFI), of Anchorage, Alaska has developed a freeze barrier technology designed to prevent the migration of contaminants in groundwater by completely isolating contaminant source areas until appropriate remediation techniques can be applied. With this tech...
NASA Technical Reports Server (NTRS)
Straight, Christian L.; Bubenheim, David L.; Bates, Maynard E.; Flynn, Michael T.
1994-01-01
CELSS Antarctic Analog Project (CAAP) represents a logical solution to the multiple objectives of both the NASA and the National Science Foundation (NSF). CAAP will result in direct transfer of proven technologies and systems, proven under the most rigorous of conditions, to the NSF and to society at large. This project goes beyond, as it must, the generally accepted scope of CELSS and life support systems including the issues of power generation, human dynamics, community systems, and training. CAAP provides a vivid and starkly realistic testbed of Controlled Ecological Life Support System (CELSS) and life support systems and methods. CAAP will also be critical in the development and validation of performance parameters for future advanced life support systems.
From ice-binding proteins to bio-inspired antifreeze materials.
Voets, I K
2017-07-19
Ice-binding proteins (IBP) facilitate survival under extreme conditions in diverse life forms. IBPs in polar fishes block further growth of internalized environmental ice and inhibit ice recrystallization of accumulated internal crystals. Algae use IBPs to structure ice, while ice adhesion is critical for the Antarctic bacterium Marinomonas primoryensis. Successful translation of this natural cryoprotective ability into man-made materials holds great promise but is still in its infancy. This review covers recent advances in the field of ice-binding proteins and their synthetic analogues, highlighting fundamental insights into IBP functioning as a foundation for the knowledge-based development of cheap, bio-inspired mimics through scalable production routes. Recent advances in the utilisation of IBPs and their analogues to e.g. improve cryopreservation, ice-templating strategies, gas hydrate inhibition and other technologies are presented.
NASA Astrophysics Data System (ADS)
Ochoa, Rosibel; DeLong, Hal; Kenyon, Jessica; Wilson, Eli
2011-06-01
The von Liebig Center for Entrepreneurism and Technology Advancement at UC San Diego (vonliebig.ucsd.edu) is focused on accelerating technology transfer and commercialization through programs and education on entrepreneurism. Technology Acceleration Projects (TAPs) that offer pre-venture grants and extensive mentoring on technology commercialization are a key component of its model which has been developed over the past ten years with the support of a grant from the von Liebig Foundation. In 2010, the von Liebig Entrepreneurism Center partnered with the U.S. Army Telemedicine and Advanced Technology Research Center (TATRC), to develop a regional model of Technology Acceleration Program initially focused on military research to be deployed across the nation to increase awareness of military medical needs and to accelerate the commercialization of novel technologies to treat the patient. Participants to these challenges are multi-disciplinary teams of graduate students and faculty in engineering, medicine and business representing universities and research institutes in a region, selected via a competitive process, who receive commercialization assistance and funding grants to support translation of their research discoveries into products or services. To validate this model, a pilot program focused on commercialization of wireless healthcare technologies targeting campuses in Southern California has been conducted with the additional support of Qualcomm, Inc. Three projects representing three different universities in Southern California were selected out of forty five applications from ten different universities and research institutes. Over the next twelve months, these teams will conduct proof of concept studies, technology development and preliminary market research to determine the commercial feasibility of their technologies. This first regional program will help build the needed tools and processes to adapt and replicate this model across other regions in the Country.
Study on the mechanism of perpendicular magnetic anisotropy in Ta/CoFeB/MgO system
NASA Astrophysics Data System (ADS)
Lou, Yongle; Zhang, Yuming; Guo, Hui; Xu, Daqing; Yimen, Zhang
2017-06-01
The mechanism of perpendicular magnetic anisotropy (PMA) in a MgO-based magnetic tunnel junction (MTJ) has been studied in this article. By comparing the magnetic properties and elementary composition analysis for different CoFeB-based structures, such as Ta/CoFeB/MgO, Ta/CoFeB/Ta and Ru/CoFeB/MgO structures, it is found that a certain amount of Fe-oxide existing at the interface of CoFeB/MgO is helpful to enhance the PMA and the PMA is originated from the interface of CoFeB/MgO. In addition, Ta film plays an important role to enhance the PMA in Ta/CoFeB/MgO structure. Project supported by the National Defense Advance Research Foundation (No. 9140A08XXXXXX0DZ106), the Basic Research Program of Ministry of Education, China (No. JY10000925005), the Scientific Research Program Funded by Shaanxi Provincial Education Department (No.11JK0912), the Scientific Research Foundation of Xi’an University of Science and Technology (No. 2010011), the Doctoral Research Startup Fund of Xi’an University of Science and Technology (No. 2010QDJ029).
Reflections on US health care information technology policy from a global perspective.
Huerta, Timothy R; Ford, Eric W
2012-01-01
Health information technology (HIT) has been lauded as a foundation upon which the development of an integral solution to cost and quality problems facing many nations is predicated. Countries throughout the world have taken differing approaches in their efforts to advance that foundation through policy, financial, and cultural systems that come to support or hinder adoption. As we explore potential opportunities to learn from the experience of others, we pause to consider the environmental, regulatory, financial, and social dynamics that define the US context. This chapter outlines the framework for a comparative approach through four dimensions--environmental, regulation, financial, and social--through which comparative HIT studies should be explored. With such markedly different contexts in which their HIT is embedded, it is important to not simply look at other countries as a yardstick upon which we compare our failures and successes. Rather, we must look critically at these examples understanding that the dynamics at play in each context have created opportunities and obligations that have come to define each country's implementation. The need for a common framework through which scholars can explore comparative HIT systems, while remaining grounded in the US context is an important aspect of effective knowledge translation in adoption.
Application of 3D Laser Scanning Technology in Complex Rock Foundation Design
NASA Astrophysics Data System (ADS)
Junjie, Ma; Dan, Lu; Zhilong, Liu
2017-12-01
Taking the complex landform of Tanxi Mountain Landscape Bridge as an example, the application of 3D laser scanning technology in the mapping of complex rock foundations is studied in this paper. A set of 3D laser scanning technologies are formed and several key engineering problems are solved. The first is 3D laser scanning technology of complex landforms. 3D laser scanning technology is used to obtain a complete 3D point cloud data model of the complex landform. The detailed and accurate results of the surveying and mapping decrease the measuring time and supplementary measuring times. The second is 3D collaborative modeling of the complex landform. A 3D model of the complex landform is established based on the 3D point cloud data model. The super-structural foundation model is introduced for 3D collaborative design. The optimal design plan is selected and the construction progress is accelerated. And the last is finite-element analysis technology of the complex landform foundation. A 3D model of the complex landform is introduced into ANSYS for building a finite element model to calculate anti-slide stability of the rock, and provides a basis for the landform foundation design and construction.
Multi-scale computation methods: Their applications in lithium-ion battery research and development
NASA Astrophysics Data System (ADS)
Siqi, Shi; Jian, Gao; Yue, Liu; Yan, Zhao; Qu, Wu; Wangwei, Ju; Chuying, Ouyang; Ruijuan, Xiao
2016-01-01
Based upon advances in theoretical algorithms, modeling and simulations, and computer technologies, the rational design of materials, cells, devices, and packs in the field of lithium-ion batteries is being realized incrementally and will at some point trigger a paradigm revolution by combining calculations and experiments linked by a big shared database, enabling accelerated development of the whole industrial chain. Theory and multi-scale modeling and simulation, as supplements to experimental efforts, can help greatly to close some of the current experimental and technological gaps, as well as predict path-independent properties and help to fundamentally understand path-independent performance in multiple spatial and temporal scales. Project supported by the National Natural Science Foundation of China (Grant Nos. 51372228 and 11234013), the National High Technology Research and Development Program of China (Grant No. 2015AA034201), and Shanghai Pujiang Program, China (Grant No. 14PJ1403900).
ChemTechLinks: Alliances for Chemical Technician Education
NASA Astrophysics Data System (ADS)
Nameroff, Tamara
2003-09-01
ChemTechLinks (CTL) is a project of the American Chemical Society (ACS) Educational and International Activities Division and funded by the National Science Foundation to support and advance chemistry-based technician education. The project aims to help improve technician education programs, foster academic-industry alliances, provide professional development opportunities for faculty, and increase student recruitment into chemical technology. The CTL Web site serves as an information clearinghouse and link to other ACS resources and programs, including a Web-based, Voluntary Industry Standards (VIS) database, the Chemistry Technician Program Approval Service, the College Chemistry Consultants Service, summer workshops for high school teachers and two-year college faculty that emphasize a technology-oriented curriculum, scholarships for two-year college faculty to attend ACS Short Courses, a self-study instructional guide for faculty to use in preparing for classroom instruction, and information and free recruitment materials about career opportunities in chemistry technology.
The raft foundation reinforcement construction technology of Hongyun Building B tower
NASA Astrophysics Data System (ADS)
Liu, Yu; Yin, Suhua; Wu, Yanli; Zhao, Ying
2017-08-01
The foundation of Hongyun building B tower is made of raft board foundation which is 3300mm in the thickness include four kinds of reinforcement Φ32, Φ28, Φ12 and 12 steel grade two, in respective. It is researched that the raft foundation mass concrete construction technology is expatiated from temperature and cracks of the raft foundation and the temperature control and monitoring of the concrete base slab construction and concrete curing. According to the characteristics with large volume and thickness of the engineering of raft foundation, the construction of the reinforced force was calculated and the quality control measures were used to the reinforcement binding and connection, so it is success that Hongyun Building B tower raft foundation reinforced construction.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-13
... NATIONAL SCIENCE FOUNDATION Innovative Technology Experiences for Students and Teachers (ITEST.... SUPPLEMENTARY INFORMATION: Title of Collection: Innovative Technology Experiences for Students and Teachers... for Students and Teachers (ITEST) is a National Science Foundation program that responds to current...
ERIC Educational Resources Information Center
Mitchell, Julia; Levine, Roger; Gonzalez, Raquel; Bitter, Catherine; Webb, Norman; White, Paul
The GK-12 program of the National Science Foundation is an innovative program for enriching the value of graduate and advanced undergraduate students' education while simultaneously enriching science and mathematics teaching at the K-12 level. GK-12 is a fellowship program that offers graduate students and advanced undergraduates the opportunity…
Bridging the Gap from Networking Technologies to Applications: Workshop Report
NASA Technical Reports Server (NTRS)
Johnson, Marjory J.; desJardins, Richard
2000-01-01
The objective of the Next Generation Internet (NGI) Federal program is threefold, encompassing development of networking technologies, high-performance network testbeds, and revolutionary applications. There have been notable advances in emerging network technologies and several nationwide testbeds have been established, but the integration of emerging technologies into applications is lagging. To help bridge this gap between developers of NGI networking technologies and developers of NGI applications, the NASA Research and Education Network (NREN) project hosted a two-day workshop at NASA Ames Research Center in August 1999. This paper presents a summary of the results of this workshop and also describes some of the challenges NREN is facing while incorporating new technologies into HPCC and other NASA applications. The workshop focused on three technologies - Quality of Service (QoS), advanced multicast, and security-and five major NGI application areas - telemedicine, digital earth, digital video, distributed data-intensive applications, and computational infrastructure applications. Network technology experts, application developers, and NGI testbed representatives came together at the workshop to promote cross-fertilization between the groups. Presentations on the first day, including an overview of the three technologies, application case studies and testbed status reports, laid the foundation for discussions on the second day. The objective of these latter discussions, held within smaller breakout groups, was to establish a coherent picture of the current status of the various pieces of each of the three technologies, to create a roadmap outlining future technology development, and to offer technological guidance to application developers. In this paper we first present a brief overview of the NGI applications that were represented at the workshop, focusing on the identification of technological advances that have successfully been incorporated in each application and technological challenges that remain. Next we present the technology roadmaps that were created at the workshop, summarizing the status of various mechanisms that are currently under development and forecasting when various advances are likely to occur within the next one-to-three-year time span. Then we identify issues that were raised at the workshop that might hinder technology development or that might impede integration into NGI applications. We also report some specific guidelines that were offered at the workshop to enable application developers to integrate and effectively use emerging NGI technology building blocks. Finally, we describe NREN activities to incorporate emerging technologies into NASA applications. These activities include support for other NASA High-Performance Computing and Communications Program areas such as IPG (Information Power Grid), support for NASA science enterprises such as Earth science and Mars program prototyping activities, support for satellite/terrestrial networking applications such as the TransAtlantic and TransPacific demonstrations and the Interplanetary Internet, support for NASA telemedicine applications such as the Virtual Collaborative Clinic, and participation in NGI advanced technology testbed initiatives such as the QBone and the NTON/Supernet. For each activity we highlight the primary technological challenge that is associated with it.
With Great Measurements Come Great Results
NASA Astrophysics Data System (ADS)
Williams, Carl
Measurements are the foundation for science and modern life. Technologies we take for granted every day depend on them-cell phones, CAT scans, pharmaceuticals, even sports equipment. Metrology, or measurement science, determines what industry can make reliably and what they cannot. At the National Institute of Standards and Technology (NIST) we specialize in making world class measurements that an incredibly wide range of industries use to continually improve their products - computer chips with nanoscale components, atomic clocks that you can hold in your hand, lasers for both super-strong welds and delicate eye surgeries. Think of all the key technologies developed over the last 100 years and better measurements, standards, or analysis techniques played a role in making them possible. NIST works collaboratively with industry researchers on the advanced metrology for tomorrow's technologies. A new kilogram based on electromagnetic force, cars that weigh half as much but are just as strong, quantum computers, personalized medicine, single atom devices - it's all happening in our labs now. This talk will focus on how metrology creates the future.
NASA Astrophysics Data System (ADS)
Saavedra-Duarte, L. A.; Angarita-Jerardino, A.; Ruiz, P. A.; Dulce-Moreno, H. J.; Vera-Rivera, F. H.; V-Niño, E. D.
2017-12-01
Information and Communication Technologies (ICT) are essential in the transfer of knowledge, and the Web tools, as part of ICT, are important for institutions seeking greater visibility of the products developed by their researchers. For this reason, we implemented an application that allows the information management of the FORISTOM Foundation (Foundation of Researchers in Science and Technology of Materials). The application shows a detailed description, not only of all its members also of all the scientific production that they carry out, such as technological developments, research projects, articles, presentations, among others. This application can be implemented by other entities committed to the scientific dissemination and transfer of technology and knowledge.
A Linked Fusion of Things, Services, and Data to Support a Collaborative Data Management Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephan, Eric G.; Elsethagen, Todd O.; Wynne, Adam S.
The purpose of this paper is to illustrate the use of semantic technologies and approaches to seamlessly link things, services, and data in the proposed design of a scientific offshore wind energy research for the U.S. Department of Energy Wind and Water Technology Office of the Office of Energy Efficiency and Renewable Energy (EERE). By adapting linked community best practices, we were able to design a collaborative facility supporting both operational staff and end users that incorporates off-the-shelf components and overcome traditional barriers between devices, resulting data, and processing services. This was made largely possible through complementary advances in themore » Internet of Things (IoT), semantic web, Linked Services, and Linked Data communities, which provide the foundation for our design.« less
Historical Contributions to Vertical Flight at the NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Hodges, William T.; Gorton, Susan A.; Jackson, Karen E.
2016-01-01
The NASA Langley Research Center has had a long and distinguished history in powered lift technology development. This research has formed the foundation of knowledge for the powered lift community worldwide. From aerodynamics to structures, aeromechanics, powered lift, acoustics, materials, stability & control, structural dynamics and human factors, Langley has made significant contributions to the advancement of vertical lift technologies. This research has encompassed basic phenomenological studies through subscale laboratory testing, analytical tool development, applied demonstrations and full scale flight-testing. Since the dedication of Langley in 1920, it has contributed to the understanding, design, analysis, and flight test development of experimental and production V/STOL configurations. This paper will chronicle significant areas of research through the decades from 1920 to 2015 with historical photographs and references.
The autopsy: a professional responsibility in assuring quality of care.
Burton, Elizabeth C
2002-01-01
Forty years ago, the value of autopsies was widely recognized as new diseases were discovered or clarified and scientific technology advanced greatly. Despite the autopsy's strong foundation, its value is not currently being properly conveyed to physicians or patients. Although autopsy-related policy exists, these policies have had little effect on increasing or even maintaining adequate autopsy rates. More recently, the autopsy has fallen on hard times, with US hospital rates now below 5%. The reasons for the decline in rates are multifaceted and include a lack of direct reimbursement for the procedure, lack of defined minimum rate standards, overconfidence in diagnostic technology, and the fear of litigation. Regardless of the reasons for the declining rates, the ethical and professional reasons for increasing the number of autopsies are far more important.
Processing and Characterization of Thousand-Hour 500 C Durable 4H-SiC JFET Integrated Circuits
NASA Technical Reports Server (NTRS)
Spry, David J.; Neudeck, Philip G.; Chen, Liangyu; Lukco, Dorothy; Chang, Carl W.; Beheim, Glenn M.; Krasowski, Michael J.; Prokop, Norman F.
2016-01-01
This work reports fabrication and testing of integrated circuits (ICs) with two levels of interconnect that consistently achieve greater than 1000 hours of stable electrical operation at 500 C in air ambient. These ICs are based on 4H-SiC junction field effect transistor (JFET) technology that integrates hafnium ohmic contacts with TaSi2 interconnects and SiO2 and Si3N4 dielectric layers over 1-m scale vertical topology. Following initial burn-in, important circuit parameters remain stable for more than 1000 hours of 500 C operational testing. These results advance the technology foundation for realizing long-term durable 500 C ICs with increased functional capability for sensing and control combustion engine, planetary, deep-well drilling, and other harsh-environment applications.
Processing and Characterization of Thousand-Hour 500 C Durable 4H-SiC JFET Integrated Circuits
NASA Technical Reports Server (NTRS)
Spry, David J.; Neudeck, Philip G.; Chen, Liang-Yu; Lukco, Dorothy; Chang, Carl W.; Beheim, Glenn M.; Krasowski, Michael J.; Prokop, Norman F.
2016-01-01
This work reports fabrication and testing of integrated circuits (ICs) with two levels of interconnect that consistently achieve greater than 1000 hours of stable electrical operation at 500 C in air ambient. These ICs are based on 4H-SiC junction field effect transistor (JFET) technology that integrates hafnium ohmic contacts with TaSi2 interconnects and SiO2 and Si3N4 dielectric layers over approximately 1-micrometer scale vertical topology. Following initial burn-in, important circuit parameters remain stable for more than 1000 hours of 500 C operational testing. These results advance the technology foundation for realizing long-term durable 500 C ICs with increased functional capability for sensing and control combustion engine, planetary, deep-well drilling, and other harsh-environment applications.
NASA Astrophysics Data System (ADS)
Zhu, Zhi-Fu; Zhang, He-Qiu; Liang, Hong-Wei; Peng, Xin-Cun; Zou, Ji-Jun; Tang, Bin; Du, Guo-Tong
2017-08-01
Not Available Supported by the Natural Science Foundation of Jiangxi Province under Grant No 20133ACB20005, the Key Program of National Natural Science Foundation of China under Grant No 41330318, the Key Program of Science and Technology Research of Ministry of Education under Grant No NRE1515, the Foundation of Training Academic and Technical Leaders for Main Majors of Jiangxi Province under Grant No 20142BCB22006, the Research Foundation of Education Bureau of Jiangxi Province under Grant No GJJ14501, and the Engineering Research Center of Nuclear Technology Application (East China Institute of Technology) Ministry of Education under Grant No HJSJYB2016-1.
TBCC Discipline Overview. Hypersonics Project
NASA Technical Reports Server (NTRS)
Thomas, Scott R.
2011-01-01
The "National Aeronautics Research and Development Policy" document, issued by the National Science and Technology Council in December 2006, stated that one (among several) of the guiding objectives of the federal aeronautics research and development endeavors shall be stable and long-term foundational research efforts. Nearly concurrently, the National Academies issued a more technically focused aeronautics blueprint, entitled: the "Decadal Survey of Civil Aeronautics - Foundations for the Future." Taken together these documents outline the principles of an aeronautics maturation plan. Thus, in response to these overarching inputs (and others), the National Aeronautics and Space Administration (NASA) organized the Fundamental Aeronautics Program (FAP), a program within the NASA Aeronautics Research Mission Directorate (ARMD). The FAP initiated foundational research and technology development tasks to enable the capability of future vehicles that operate across a broad range of Mach numbers, inclusive of the subsonic, supersonic, and hypersonic flight regimes. The FAP Hypersonics Project concentrates on two hypersonic missions: (1) Air-breathing Access to Space (AAS) and (2) the (Planetary Atmospheric) Entry, Decent, and Landing (EDL). The AAS mission focuses on Two-Stage-To-Orbit (TSTO) systems using air-breathing combined-cycle-engine propulsion; whereas, the EDL mission focuses on the challenges associated with delivering large payloads to (and from) Mars. So, the FAP Hypersonic Project investments are aligned to achieve mastery and intellectual stewardship of the core competencies in the hypersonic-flight regime, which ultimately will be required for practical systems with highly integrated aerodynamic/vehicle and propulsion/engine technologies. Within the FAP Hypersonics, the technology management is further divided into disciplines including one targeting Turbine-Based Combine-Cycle (TBCC) propulsion. Additionally, to obtain expertise and support from outside (including industry and academia) the hypersonic uses both NASA Research Announcements (NRAs) and a jointly sponsored, Air Force Office of Scientific Research and NASA, National Hypersonic Science Center that are focused on propulsion research. Finally, these two disciplines use selected external partnership agreements with both governmental agencies and industrial entities. The TBCC discipline is comprised of analytic and experimental tasks, and is structured into the following two research topic areas: (1) TBCC Integrated Flowpath Technologies, and (2) TBCC Component Technologies. These tasks will provide experimental data to support design and analysis tool development and validation that will enable advances in TBCC technology.
The Top Five “Game Changers” in Vaccinology: Toward Rational and Directed Vaccine Development
Kennedy, Richard B.
2011-01-01
Abstract Despite the tremendous success of the classical “isolate, inactivate, and inject” approach to vaccine development, new breakthroughs in vaccine research are increasingly reliant on novel approaches that incorporate cutting edge technology and advances in innate and adaptive immunology, microbiology, virology, pathogen biology, genetics, bioinformatics, and many other disciplines in order to: (1) deepen our understanding of the key biological processes that lead to protective immunity, (2) observe vaccine responses on a global, systems level, and (3) directly apply the new knowledge gained to the development of next-generation vaccines with improved safety profiles, enhanced efficacy, and even targeted utility in select populations. Here we highlight five key components foundational to vaccinomics efforts: applied immunogenomics, next generation sequencing and other cutting-edge “omics” technologies, advanced bioinformatics and analysis techniques, and finally, systems biology applied to immune profiling and vaccine responses. We believe these “game changers” will play a critical role in moving us toward the rational and directed development of new vaccines in the 21st century. PMID:21815811
Beyond the margins: real-time detection of cancer using targeted fluorophores
Zhang, Ray R.; Schroeder, Alexandra B.; Grudzinski, Joseph J.; Rosenthal, Eben L.; Warram, Jason M.; Pinchuk, Anatoly N.; Eliceiri, Kevin W.; Kuo, John S.; Weichert, Jamey P.
2017-01-01
Over the past two decades, synergistic innovations in imaging technology have resulted in a revolution in which a range of biomedical applications are now benefiting from fluorescence imaging. Specifically, advances in fluorophore chemistry and imaging hardware, and the identification of targetable biomarkers have now positioned intraoperative fluorescence as a highly specific real-time detection modality for surgeons in oncology. In particular, the deeper tissue penetration and limited autofluorescence of near-infrared (NIR) fluorescence imaging improves the translational potential of this modality over visible-light fluorescence imaging. Rapid developments in fluorophores with improved characteristics, detection instrumentation, and targeting strategies led to the clinical testing in the early 2010s of the first targeted NIR fluorophores for intraoperative cancer detection. The foundations for the advances that underline this technology continue to be nurtured by the multidisciplinary collaboration of chemists, biologists, engineers, and clinicians. In this Review, we highlight the latest developments in NIR fluorophores, cancer-targeting strategies, and detection instrumentation for intraoperative cancer detection, and consider the unique challenges associated with their effective application in clinical settings. PMID:28094261
NASA Technical Reports Server (NTRS)
Vadali, Srinivas R.; Carter, Michael T.
1994-01-01
The Phillips Laboratory at the Edwards Air Force Base has developed the Advanced Space Structures Technology Research Experiment (ASTREX) facility to serve as a testbed for demonstrating the applicability of proven theories to the challenges of spacecraft maneuvers and structural control. This report describes the work performed on the ASTREX test article by Texas A&M University under contract NAS119373 as a part of the Control-Structure Interaction (CSI) Guest Investigator Program. The focus of this work is on maneuvering the ASTREX test article with compressed air thrusters that can be throttled, while attenuating structural excitation. The theoretical foundation for designing the near minimum-time thrust commands is based on the generation of smooth, parameterized optimal open-loop control profiles, and the determination of control laws for final position regulation and tracking using Lyapunov stability theory. Details of the theory, mathematical modeling, model updating, and compensation for the presence of 'real world' effects are described and the experimental results are presented. The results show an excellent match between theory and experiments.
NASA Astrophysics Data System (ADS)
Zhou, L.; Xiao, G.
2014-12-01
The engineering geological and hydrological conditions of current tunnels are more and more complicated, as the tunnels are elongated with deeper depth. In constructing these complicated tunnels, geological hazards prone to occur as induced by unfavorable geological bodies, such as fault zones, karst or hydrous structures, etc. The working emphasis and difficulty of the advanced geological exploration for complicated tunnels are mainly focused on the structure and water content of these unfavorable geological bodies. The technical aspects of my paper systematically studied the advanced geological exploration theory and application aspects for complicated tunnels, with discussion on the key technical points and useful conclusions. For the all-aroundness and accuracy of advanced geological exploration results, the objective of my paper is targeted on the comprehensive examination on the structure and hydrous characteristic of the unfavorable geological bodies in complicated tunnels. By the multi-component seismic modeling on a more real model containing the air medium, the wave field response characteristics of unfavorable geological bodies can be analyzed, thus providing theoretical foundation for the observation system layout, signal processing and interpretation of seismic methods. Based on the tomographic imaging theory of seismic and electromagnetic method, 2D integrated seismic and electromagnetic tomographic imaging and visualization software was designed and applied in the advanced drilling hole in the tunnel face, after validation of the forward and inverse modeling results on theoretical models. The transmission wave imaging technology introduced in my paper can be served as a new criterion for detection of unfavorable geological bodies. After careful study on the basic theory, data processing and interpretation, practical applications of TSP and ground penetrating radar (GPR) method, as well as serious examination on their application examples, my paper formulated a suite of comprehensive application system of seismic and electromagnetic methods for the advanced geological exploration of complicated tunnels. This research is funded by National Natural Science Foundation of China (Grant No. 41202223) .
Mentoring Faculty: Results from National Science Foundation's ADVANCE Program
NASA Astrophysics Data System (ADS)
Holmes, M. A.
2015-12-01
Faculty mentoring programs are common components of National Science Foundation ADVANCE awards. The ADVANCE program aims to increase the number of women on the faculty in science, technology, engineering and mathematics (STEM) departments through grants to individuals and to entire institutions. These grants target a change in institutional culture so that faculty from non-majority groups will succeed and thrive. Mentoring programs are generally designed to fit the particular institution(s) or target population (e.g., meteorologists at the beginning of their careers). A successful mentoring program makes the implicit knowledge necessary for faculty success explicit: policies and practices are made transparent; routes for finding answers are clarified or generated with faculty input; faculty overcome a sense of isolation and develop a community. Mentoring programs may be formal, with assigned mentors and mentees, or informal, with opportunities for beginning, middle and advanced career STEM faculty to mingle, generally over food and sometimes with a formal speaker. The programs are formally evaluated; in general, attention to mentoring generates better outcomes for all faculty. Research indicates that most successful scientists have a network of mentors rather than relying on one person to help navigate department, institution, and profession. The University of Nebraska-Lincoln's (UNL) award, ADVANCE-Nebraska, offered opportunities for faculty to informally network over luncheons with women speakers, advanced in their careers. We also offered after-hours networking receptions. In response to faculty feedback, we shifted to a series of panel discussions entitled "Conversations". Most panels were conducted by successful UNL faculty; about one-third had an outside expert on a given topic. Topics were chosen based on faculty feedback and targeted specifically to beginning faculty (How to Start Up a Lab; How to Balance Teaching and Writing), mid-career faculty (Putting Together Your Promotion Packet; Balancing Service and Innovation); and/or fully promoted faculty (Professional Society Service; Successful Award Nomination Packets). One unexpected outcome from the panel discussions was the development of collaborations among faculty across departments and colleges.
Designing Biomimetic, Dissipative Material Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balazs, Anna C.; Whitesides, George M.; Brinker, C. Jeffrey
Throughout human history, new materials have been the foundation of transformative technologies: from bronze, paper, and ceramics to steel, silicon, and polymers, each material has enabled far-reaching advances. Today, another new class of materials is emerging—one with both the potential to provide radically new functions and to challenge our notion of what constitutes a “material”. These materials would harvest, transduce, or dissipate energy to perform autonomous, dynamic functions that mimic the behaviors of living organisms. Herein, we discuss the challenges and benefits of creating “dissipative” materials that can potentially blur the boundaries between living and non-living matter.
Picking the Best from the All-Resources Menu: Advanced Tools for Resource Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmintier, Bryan S
Introduces the wide range of electric power systems modeling types and associated questions they can help answer. The presentation focusses on modeling needs for high levels of Distributed Energy Resources (DERs), renewables, and inverter-based technologies as alternatives to traditional centralized power systems. Covers Dynamics, Production Cost/QSTS, Metric Assessment, Resource Planning, and Integrated Simulations with examples drawn from NREL's past and on-going projects. Presented at the McKnight Foundation workshop on 'An All-Resources Approach to Planning for a More Dynamic, Low-Carbon Grid' exploring grid modernization options to replace retiring coal plants in Minnesota.
Leake, Devin
2015-01-01
As scientists make strides toward the goal of developing a form of biological engineering that's as predictive and reliable as chemical engineering is for chemistry, one technology component has become absolutely critical: gene synthesis. Gene synthesis is the process of building stretches of deoxyribonucleic acid (DNA) to order--some stretches based on DNA that exists already in nature, some based on novel designs intended to accomplish new functions. This process is the foundation of synthetic biology, which is rapidly becoming the engineering counterpart to biology.
Building biological foundries for next-generation synthetic biology.
Chao, Ran; Yuan, YongBo; Zhao, HuiMin
2015-07-01
Synthetic biology is an interdisciplinary field that takes top-down approaches to understand and engineer biological systems through design-build-test cycles. A number of advances in this relatively young field have greatly accelerated such engineering cycles. Specifically, various innovative tools were developed for in silico biosystems design, DNA de novo synthesis and assembly, construct verification, as well as metabolite analysis, which have laid a solid foundation for building biological foundries for rapid prototyping of improved or novel biosystems. This review summarizes the state-of-the-art technologies for synthetic biology and discusses the challenges to establish such biological foundries.
ERIC Educational Resources Information Center
Ebrahim, H. B.; Verbeek, D. C.; Mashiya, J. N.
2011-01-01
In developing the Advanced Certificate in Teaching (ACT) as a professional qualification for continuing teacher education for early schooling at the University of KwaZulu-Natal we asked the following: "What are the enabling roles foundation phase teachers need to play in order to reclaim their space as agents who significantly influence their…
Advanced Datapresence From A New Generation Of Research Vessels
NASA Astrophysics Data System (ADS)
Romsos, C. G.; Nahorniak, J.; Watkins-Brandt, K.; Bailey, D.; Reimers, C.
2016-02-01
The design of the next generation Regional Class Research Vessels (RCRV) for the U.S. academic research fleet includes the development of advanced datapresence systems and capabilities. Datapresence is defined here as the real-time transfer of scientific and operational data between vessel and shore, to facilitate shore-based participation in oceanographic expeditions. Datapresent technologies on the RCRVs build upon the demonstrated success of telepresence activities on satellite-connected ships. Specifically, the RCRV datapresence design integrates a broad suite of ocean and meteorological sensors on the vessel into a networked environment with satellite communication access. In addition to enabling operational decisions from shore, these capabilities will bring ocean research to the classroom and local communities, advancing ocean and atmospheric literacy, via dynamic data products that support hands-on exercises and demonstrations of oceanographic and atmospheric processes. The operational requirements of data integration, management, visualization, and user-interaction are being developed and tested now and will be refined over the next 5-6 years during the RCRV construction and transition to operations phases. This presentation will illustrate the RCRV datapresence design and how datapresent technologies will transform these National Science Foundation-owned coastal ships into continuous sampling and data streaming platforms that leverage onshore resources for making efficient scientific and operational decisions.
Non-invasive neural stimulation
NASA Astrophysics Data System (ADS)
Tyler, William J.; Sanguinetti, Joseph L.; Fini, Maria; Hool, Nicholas
2017-05-01
Neurotechnologies for non-invasively interfacing with neural circuits have been evolving from those capable of sensing neural activity to those capable of restoring and enhancing human brain function. Generally referred to as non-invasive neural stimulation (NINS) methods, these neuromodulation approaches rely on electrical, magnetic, photonic, and acoustic or ultrasonic energy to influence nervous system activity, brain function, and behavior. Evidence that has been surmounting for decades shows that advanced neural engineering of NINS technologies will indeed transform the way humans treat diseases, interact with information, communicate, and learn. The physics underlying the ability of various NINS methods to modulate nervous system activity can be quite different from one another depending on the energy modality used as we briefly discuss. For members of commercial and defense industry sectors that have not traditionally engaged in neuroscience research and development, the science, engineering and technology required to advance NINS methods beyond the state-of-the-art presents tremendous opportunities. Within the past few years alone there have been large increases in global investments made by federal agencies, foundations, private investors and multinational corporations to develop advanced applications of NINS technologies. Driven by these efforts NINS methods and devices have recently been introduced to mass markets via the consumer electronics industry. Further, NINS continues to be explored in a growing number of defense applications focused on enhancing human dimensions. The present paper provides a brief introduction to the field of non-invasive neural stimulation by highlighting some of the more common methods in use or under current development today.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutter, David F.
The 2016 Workshop on Advanced Accelerator Concepts (AAC) was held at the Gaylord Hotel and Conference Center, National Harbor, Maryland, from July 31 through August 5, 2016. This workshop was the seventeenth in a biennial series that began at Los Alamos National Laboratory in 1982 with a workshop on laser acceleration of particles (see AIP Conf. Proc. 91). AAC16 was organized under the sponsorship of the IEEE Council on Superconductivity with financial support from the U. S. Department of Energy Office of High Energy Physics and the National Science Foundation. The scope of the AAC Workshop has grown since 1982more » to encompass a broad range of topics related to advancing accelerator science and technology beyond its current scientific and technical limits and is now an internationally acknowledged forum for interdisciplinary discussions on advanced accelerator and beam physics/technology concepts covering the widest possible range of applications. The Workshop continued the trend of growing worldwide participation, attracting world wide participation. The Workshop had a total of 256 attendees comprising (including the U.S.) representatives from 11 countries representing 65 different institutions. Each day’s schedule began with plenary sessions covering broad, cross disciplinary interests or general tutorial topics as selected by the Program Committee, followed by a break out into more narrowly focused working groups. The Workshop was organized into eight Working Groups each with a published statement of topical focus, scope of discussion and goals. A summary of the Working Group activities and conclusions is included in the American Institute of Physics’ (AIP) Conference Proceedings now available as an on line open source document. It has been a long tradition of the AAC workshops to encourage strong student participation. This is accomplished in part by subsidizing student attendance, done for this work shop by using funds from the DOE and National Science Foundation to significantly reduce student registration fees. As a result the registered student participation was 75 persons, or 29% of the total attendance of 256 persons, the highest percentage student enrollment the Workshop has ever had. This is the final report for the DOE Office of Science/Office of High Energy Physics grant NO. DE-SC0015635, entitled “Organization of the17th Advanced Accelerator Concepts Workshop by the IEEE.”« less
New Perspectives on Neuroengineering and Neurotechnologies: NSF-DFG Workshop Report.
Moritz, Chet T; Ruther, Patrick; Goering, Sara; Stett, Alfred; Ball, Tonio; Burgard, Wolfram; Chudler, Eric H; Rao, Rajesh P N
2016-07-01
To identify and overcome barriers to creating new neurotechnologies capable of restoring both motor and sensory function in individuals with neurological conditions. This report builds upon the outcomes of a joint workshop between the US National Science Foundation and the German Research Foundation on New Perspectives in Neuroengineering and Neurotechnology convened in Arlington, VA, USA, November 13-14, 2014. The participants identified key technological challenges for recording and manipulating neural activity, decoding, and interpreting brain data in the presence of plasticity, and early considerations of ethical and social issues pertinent to the adoption of neurotechnologies. The envisaged progress in neuroengineering requires tightly integrated hardware and signal processing efforts, advances in understanding of physiological adaptations to closed-loop interactions with neural devices, and an open dialog with stakeholders and potential end-users of neurotechnology. The development of new neurotechnologies (e.g., bidirectional brain-computer interfaces) could significantly improve the quality of life of people living with the effects of brain or spinal cord injury, or other neurodegenerative diseases. Focused efforts aimed at overcoming the remaining barriers at the electrode tissue interface, developing implantable hardware with on-board computation, and refining stimulation methods to precisely activate neural tissue will advance both our understanding of brain function and our ability to treat currently intractable disorders of the nervous system.
A Framework for Human Performance Criteria for Advanced Reactor Operational Concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacques V Hugo; David I Gertman; Jeffrey C Joe
2014-08-01
This report supports the determination of new Operational Concept models needed in support of the operational design of new reactors. The objective of this research is to establish the technical bases for human performance and human performance criteria frameworks, models, and guidance for operational concepts for advanced reactor designs. The report includes a discussion of operating principles for advanced reactors, the human performance issues and requirements for human performance based upon work domain analysis and current regulatory requirements, and a description of general human performance criteria. The major findings and key observations to date are that there is some operatingmore » experience that informs operational concepts for baseline designs for SFR and HGTRs, with the Experimental Breeder Reactor-II (EBR-II) as a best-case predecessor design. This report summarizes the theoretical and operational foundations for the development of a framework and model for human performance criteria that will influence the development of future Operational Concepts. The report also highlights issues associated with advanced reactor design and clarifies and codifies the identified aspects of technology and operating scenarios.« less
NASA Astrophysics Data System (ADS)
Mack, Kelly
2010-03-01
Despite efforts to increase the number of women faculty in the STEM disciplines, the representation of women, particularly in higher academic ranks remains disproportionately low. As a means of addressing this issue, the National Science Foundation (NSF) ADVANCE Program has as its mission to increase the participation and advancement of women in academic science and engineering careers. As such, the Program utilizes advances in social science research, as well as both demonstrated and novel strategies rooted in organizational change theory as a means of targeting gender diversity issues in the science, technology, engineering, and mathematics (STEM) disciplines. This presentation will provide an overview of the current status of women faculty, as well as the ADVANCE Program and the mechanisms by which it has supported institutions of higher education. Additionally, vital best practices and the concomitant incorporation of them into the institutional infrastructure will be discussed. These include, but are not limited to: strategic training on implicit bias, programmatic focus on departmental leadership, use of professional development grants, institutionalization of mentoring, incorporation of transparency in policies and procedures, demonstration of sensitivities toward work-life balance issues and women of color.
A Foundational Approach to Designing Geoscience Ontologies
NASA Astrophysics Data System (ADS)
Brodaric, B.
2009-05-01
E-science systems are increasingly deploying ontologies to aid online geoscience research. Geoscience ontologies are typically constructed independently by isolated individuals or groups who tend to follow few design principles. This limits the usability of the ontologies due to conceptualizations that are vague, conflicting, or narrow. Advances in foundational ontologies and formal engineering approaches offer promising solutions, but these advanced techniques have had limited application in the geosciences. This paper develops a design approach for geoscience ontologies by extending aspects of the DOLCE foundational ontology and the OntoClean method. Geoscience examples will be presented to demonstrate the feasibility of the approach.
From ice-binding proteins to bio-inspired antifreeze materials
Voets, I. K.
2017-01-01
Ice-binding proteins (IBP) facilitate survival under extreme conditions in diverse life forms. IBPs in polar fishes block further growth of internalized environmental ice and inhibit ice recrystallization of accumulated internal crystals. Algae use IBPs to structure ice, while ice adhesion is critical for the Antarctic bacterium Marinomonas primoryensis. Successful translation of this natural cryoprotective ability into man-made materials holds great promise but is still in its infancy. This review covers recent advances in the field of ice-binding proteins and their synthetic analogues, highlighting fundamental insights into IBP functioning as a foundation for the knowledge-based development of cheap, bio-inspired mimics through scalable production routes. Recent advances in the utilisation of IBPs and their analogues to e.g. improve cryopreservation, ice-templating strategies, gas hydrate inhibition and other technologies are presented. PMID:28657626
Investigating surety methodologies for cognitive systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caudell, Thomas P.; Peercy, David Eugene; Mills, Kristy
2006-11-01
Advances in cognitive science provide a foundation for new tools that promise to advance human capabilities with significant positive impacts. As with any new technology breakthrough, associated technical and non-technical risks are involved. Sandia has mitigated both technical and non-technical risks by applying advanced surety methodologies in such areas as nuclear weapons, nuclear reactor safety, nuclear materials transport, and energy systems. In order to apply surety to the development of cognitive systems, we must understand the concepts and principles that characterize the certainty of a system's operation as well as the risk areas of cognitive sciences. This SAND report documentsmore » a preliminary spectrum of risks involved with cognitive sciences, and identifies some surety methodologies that can be applied to potentially mitigate such risks. Some potential areas for further study are recommended. In particular, a recommendation is made to develop a cognitive systems epistemology framework for more detailed study of these risk areas and applications of surety methods and techniques.« less
Radiation Oncology Physics and Medical Physics Education
NASA Astrophysics Data System (ADS)
Bourland, Dan
2011-10-01
Medical physics, an applied field of physics, is the applications of physics in medicine. Medical physicists are essential professionals in contemporary healthcare, contributing primarily to the diagnosis and treatment of diseases through numerous inventions, advances, and improvements in medical imaging and cancer treatment. Clinical service, research, and teaching by medical physicists benefits thousands of patients and other individuals every day. This talk will cover three main topics. First, exciting current research and development areas in the medical physics sub-specialty of radiation oncology physics will be described, including advanced oncology imaging for treatment simulation, image-guided radiation therapy, and biologically-optimized radiation treatment. Challenges in patient safety in high-technology radiation treatments will be briefly reviewed. Second, the educational path to becoming a medical physicist will be reviewed, including undergraduate foundations, graduate training, residency, board certification, and career opportunities. Third, I will introduce the American Association of Physicists in Medicine (AAPM), which is the professional society that represents, advocates, and advances the field of medical physics (www.aapm.org).
Nursing Practice, Research and Education in the West: The Best Is Yet to Come.
Young, Heather M; Bakewell-Sachs, Susan; Sarna, Linda
This paper celebrates the 60th anniversary of the Western Institute of Nursing, the nursing organization representing 13 states in the Western United States, and envisions a preferred future for nursing practice, research, and education. Three landmark calls to action contribute to transforming nursing and healthcare: the Patient Protection and Affordable Care Act of 2010; the Institute of Medicine report Future of Nursing: Leading Change, Advancing Health; and the report Advancing Healthcare Transformation: A New Era for Academic Nursing. Challenges abound: U.S. healthcare remains expensive, with poorer outcomes than other developed countries; costs of higher education are high; our profession does not reflect the diversity of the population; and health disparities persist. Pressing health issues, such as increases in chronic disease and mental health conditions and substance abuse, coupled with aging of the population, pose new priorities for nursing and healthcare. Changes are needed in practice, research, and education. In practice, innovative, cocreated, evidence-based models of care can open new roles for registered nurses and advanced practice registered nurses who have knowledge, leadership, and team skills to improve quality and address system change. In research, data can provide a foundation for clinical practice and expand our knowledge base in symptom science, wellness, self-management, and end-of-life/palliative care, as well as behavioral health, to demonstrate the value of nursing care and reduce health disparities. In education, personalized, integrative, and technology-enabled teaching and learning can lead to creative and critical thinking/decision-making, ethical and culturally inclusive foundations for practice, ensure team and communication skills, quality and system improvements, and lifelong learning. The role of the Western Institute of Nursing is more relevant than ever as we collectively advance nursing, health, and healthcare through education, clinical practice, and research.
New Technologies for 21st Century Plant Science
Ehrhardt, David W.; Frommer, Wolf B.
2012-01-01
Plants are one of the most fascinating and important groups of organisms living on Earth. They serve as the conduit of energy into the biosphere, provide food, and shape our environment. If we want to make headway in understanding how these essential organisms function and build the foundation for a more sustainable future, then we need to apply the most advanced technologies available to the study of plant life. In 2009, a committee of the National Academy highlighted the “understanding of plant growth” as one of the big challenges for society and part of a new era which they termed “new biology.” The aim of this article is to identify how new technologies can and will transform plant science to address the challenges of new biology. We assess where we stand today regarding current technologies, with an emphasis on molecular and imaging technologies, and we try to address questions about where we may go in the future and whether we can get an idea of what is at and beyond the horizon. PMID:22366161
Biomedical technology prosperity game{trademark}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berman, M.; Boyack, K.W.; Wesenberg, D.L.
1996-07-01
Prosperity Games{trademark} are an outgrowth and adaptation of move/countermove and seminar War Games. Prosperity Games{trademark} are simulations that explore complex issues in a variety of areas including economics, politics, sociology, environment, education and research. These issues can be examined from a variety of perspectives ranging from a global, macroeconomic and geopolitical viewpoint down to the details of customer/supplier/market interactions in specific industries. All Prosperity Games{trademark} are unique in that both the game format and the player contributions vary from game to game. This report documents the Biomedical Technology Prosperity Game{trademark} conducted under the sponsorship of Sandia National Laboratories, the Defensemore » Advanced Research Projects Agency, and the Koop Foundation, Inc. Players were drawn from all stakeholders involved in biomedical technologies including patients, hospitals, doctors, insurance companies, legislators, suppliers/manufacturers, regulators, funding organizations, universities/laboratories, and the legal profession. The primary objectives of this game were to: (1) Identify advanced/critical technology issues that affect the cost and quality of health care. (2) Explore the development, patenting, manufacturing and licensing of needed technologies that would decrease costs while maintaining or improving quality. (3) Identify policy and regulatory changes that would reduce costs and improve quality and timeliness of health care delivery. (4) Identify and apply existing resources and facilities to develop and implement improved technologies and policies. (5) Begin to develop Biomedical Technology Roadmaps for industry and government cooperation. The deliberations and recommendations of these players provided valuable insights as to the views of this diverse group of decision makers concerning biomedical issues. Significant progress was made in the roadmapping of key areas in the biomedical technology field.« less
Converging, pervasive technologies: chronic and emerging issues and policy adequacy.
Seelman, Katherine D
2008-01-01
This article is a thought piece with the expansive goal of identifying policy facilitators and barriers to the development of usable and accessible advanced information and communications technology for people with disabilities across the age span at the research and development and marketing stages. The working hypothesis is as follows: The lack of participation in and representation of the interests of people with disabilities in the technology resource system is a barrier to availability of affordable consumer goods that enable independence and community integration. Converging, pervasive computing technology, especially in housing applications, is used as a case example, drawing especially from research and development conducted by the National Science Foundation Quality of Life Technology Engineering Research Center. A critical theory approach is used to identify problems and seek solutions to the apparent lack of balance between the demand and needs of disabled users and the supply and availability of usable, affordable consumer goods produced by the technology resource system in which allocation decisions are made. The approach uses policy analysis tools such as a technology assessment framework; the participation and environment components of the World Health Organization's International Classification of Functioning, Disability and Health; and participatory action research.
NASA Technical Reports Server (NTRS)
Borowski, S. K.; Sefcik, R. J.; Fittje, J. E.; McCurdy, D. R.; Qualls, A. L.; Schnitzler, B. G; Werner, J.; Weitzberg, A.; Joyner, C. R.
2015-01-01
In FY'11, Nuclear Thermal Propulsion (NTP) was identified as a key propulsion option under the Advanced In-Space Propulsion (AISP) component of NASA's Exploration Technology Development and Demonstration (ETDD) program A strategy was outlined by GRC and NASA HQ that included 2 key elements -"Foundational Technology Development" followed by specific "Technology Demonstration" projects. The "Technology Demonstration "element proposed ground technology demonstration (GTD) testing in the early 2020's, followed by a flight technology demonstration (FTD) mission by approx. 2025. In order to reduce development costs, the demonstration projects would focus on developing a small, low thrust (approx. 7.5 -16.5 klb(f)) engine that utilizes a "common" fuel element design scalable to the higher thrust (approx. 25 klb(f)) engines used in NASA's Mars DRA 5.0 study(NASA-SP-2009-566). Besides reducing development costs and allowing utilization of existing, flight proven engine hard-ware (e.g., hydrogen pumps and nozzles), small, lower thrust ground and flight demonstration engines can validate the technology and offer improved capability -increased payloads and decreased transit times -valued for robotic science missions identified in NASA's Decadal Study.
Increasing the Value of Evaluation to Philanthropic Foundations
ERIC Educational Resources Information Center
Greenwald, Howard P.
2013-01-01
This article synthesizes interview data from evaluation directors and top executives of philanthropic foundations on how evaluation might better advance their missions. In key informant interviews, respondents commented on the purposes of evaluation from the foundation's perspective, challenges to effective evaluation, and the means by which…
NASA Game Changing Development Program Manufacturing Innovation Project
NASA Technical Reports Server (NTRS)
Tolbert, Carol; Vickers, John
2011-01-01
This presentation examines the new NASA Manufacturing Innovation Project. The project is a part of the Game Changing Development Program which is one element of the Space Technology Programs Managed by Office of the Chief Technologist. The project includes innovative technologies in model-based manufacturing, digital additive manufacturing, and other next generation manufacturing tools. The project is also coupled with the larger federal initiatives in this area including the National Digital Engineering and Manufacturing Initiative and the Advanced Manufacturing Partnership. In addition to NASA, other interagency partners include the Department of Defense, Department of Commerce, NIST, Department of Energy, and the National Science Foundation. The development of game-changing manufacturing technologies are critical for NASA s mission of exploration, strengthening America s manufacturing competitiveness, and are highly related to current challenges in defense manufacturing activities. There is strong consensus across industry, academia, and government that the future competitiveness of U.S. industry will be determined, in large part, by a technologically advanced manufacturing sector. This presentation highlights the prospectus of next generation manufacturing technologies to the challenges faced NASA and by the Department of Defense. The project focuses on maturing innovative/high payoff model-based manufacturing technologies that may lead to entirely new approaches for a broad array of future NASA missions and solutions to significant national needs. Digital manufacturing and computer-integrated manufacturing "virtually" guarantee advantages in quality, speed, and cost and offer many long-term benefits across the entire product lifecycle. This paper addresses key enablers and emerging strategies in areas such as: Current government initiatives, Model-based manufacturing, and Additive manufacturing.
NASA Astrophysics Data System (ADS)
Tulebekova, S.; Saliyev, D.; Zhang, D.; Kim, J. R.; Karabay, A.; Turlybek, A.; Kazybayeva, L.
2017-11-01
Compressed air energy storage technology is one of the promising methods that have high reliability, economic feasibility and low environmental impact. Current applications of the technology are mainly limited to energy storage for power plants using large scale underground caverns. This paper explores the possibility of making use of reinforced concrete pile foundations to store renewable energy generated from solar panels or windmills attached to building structures. The energy will be stored inside the pile foundation with hollow sections via compressed air. Given the relatively small volume of storage provided by the foundation, the required storage pressure is expected to be higher than that in the large-scale underground cavern. The high air pressure typically associated with large temperature increase, combined with structural loads, will make the pile foundation in a complicated loading condition, which might cause issues in the structural and geotechnical safety. This paper presents a preliminary analytical study on the performance of the pile foundation subjected to high pressure, large temperature increase and structural loads. Finite element analyses on pile foundation models, which are built from selected prototype structures, have been conducted. The analytical study identifies maximum stresses in the concrete of the pile foundation under combined pressure, temperature change and structural loads. Recommendations have been made for the use of reinforced concrete pile foundations for renewable energy storage.
1995 Federal Research and Development Program in Materials Science and Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1995-12-01
The Nation's economic prosperity and military security depend heavily on development and commercialization of advanced materials. Materials are a key facet of many technologies, providing the key ingredient for entire industries and tens of millions of jobs. With foreign competition in many areas of technology growing, improvements in materials and associated processes are needed now more than ever, both to create the new products and jobs of the future and to ensure that U.S. industry and military forces can compete and win in the international arena. The Federal Government has invested in materials research and development (R&D) for nearly amore » century, helping to lay the foundation for many of the best commercial products and military components used today. But while the United States has led the world in the science and development of advanced materials, it often has lagged in commercializing them. This long-standing hurdle must be overcome now if the nation is to maintain its leadership in materials R&D and the many technologies that depend on it. The Administration therefore seeks to foster commercialization of state-of-the-art materials for both commercial and military use, as a means of promoting US industrial competitiveness as well as the procurement of advanced military and space systems and other products at affordable costs. The Federal R&D effort in Fiscal Year 1994 for materials science and technology is an estimated $2123.7 million. It includes the ongoing R&D base that support the missions of nine Federal departments and agencies, increased strategic investment to overcome obstacles to commercialization of advanced materials technologies, interagency cooperation in R&D areas of mutual benefit to leverage assets and eliminate duplicative work, cost-shared research with industrial and academic partners in critical precompetitive technology areas, and international cooperation on selected R&D topics with assured benefits for the United States. The materials R&D program also supports the Administration's specific technological objectives, emphasizing development of affordable, high-performance commercial and military aircraft; ultra-fuel-efficient, low-emissions automobiles that are also safe and comfortable; powerful yet inexpensive electronic systems; environmentally safe products and processes; and a durable building and transportation infrastructure.« less
2003-03-31
KENNEDY SPACE CENTER, FLA. - At the airport in San Jose, Costa Rica, the NASA hangar is dedicated. The speaker is Hermann Faith, executive director, Costa Rica-USA (CRUSA) Foundation. At the table are (from left) Dr. Jorge Andres Diaz, head scientiest CARTA mission; Gary Shelton, NASA deployment manager; Dr. Pedro Leon, general director, National Center for Advanced Technology (CENAT); Dr. Rogelio Pardo, minister of science and tchnology; John Danilovioch, U.S. ambassador to Costa Rica; and Lic. Vilma Lopez, subdirector, Civil Aviation (DGAC). NASA KSC has been testing its Aircraft-based Volcanic Emission Mass Spectrometer (AVEMS) in flights over the Turrialba volcano and in the crater, sampling and analyzing fresh volcanic gases in their natural chemical state. The AVEMS system has been developed for use in the Space Shuttle program, to detect toxic gas leaks and emissions in the Shuttle’s aft compartment and the crew compartment.
The emergence and policy implications of converging new technologies integrated from the nanoscale
NASA Astrophysics Data System (ADS)
Roco, M. C.
2005-06-01
Science based on the unified concepts on matter at the nanoscale provides a new foundation for knowledge creation, innovation, and technology integration. Convergent new technologies refers to the synergistic combination of nanotechnology, biotechnology, information technology and cognitive sciences (NBIC), each of which is currently progressing at a rapid rate, experiencing qualitative advancements, and interacting with the more established fields such as mathematics and environmental technologies (Roco & Bainbridge, 2002). It is expected that converging technologies will bring about tremendous improvements in transforming tools, new products and services, enable human personal abilities and social achievements, and reshape societal relationships. After a brief overview of the general implications of converging new technologies, this paper focuses on its effects on R&D policies and business models as part of changing societal relationships. These R&D policies will have implications on investments in research and industry, with the main goal of taking advantage of the transformative development of NBIC. Introduction of converging technologies must be done with respect of immediate concerns (privacy, toxicity of new materials, etc.) and longer-term concerns including human integrity, dignity and welfare. The efficient introduction and development of converging new technologies will require new organizations and business models, as well as solutions for preparing the economy, such as multifunctional research facilities, integrative technology platforms, and global risk governance.
ARCTIC FOUNDATIONS, INC. FREEZE BARRIER SYSTEM - SITE TECHNOLOGY CAPSULE
Arctic Foundations, Inc. (AFI), of Anchorage, Alaska has developed a freeze barrier technology designed to prevent the migration of contaminants in groundwater by completely isolating contaminant source areas until appropriate remediation techniques can be applied. With this tec...
Resonant nuclear reaction 23Mg (p,γ) 24Al in strongly screening magnetized neutron star crust
NASA Astrophysics Data System (ADS)
Liu, Jing-Jing; Liu, Dong-Mei
2017-12-01
Based on the relativistic theory of superstrong magnetic fields (SMF), by using three models those of Lai (LD), Fushiki (FGP), and our own (LJ), we investigate the influence of SMFs due to strong electron screening (SES) on the nuclear reaction 23Mg (p,γ) 24Al in magnetars. In a relatively low density environment (e.g., ρ 7<0.01) and 1102), our reaction rates can be 1.58 times and about three orders of magnitude larger than those of FGP and LD, respectively (B 12, ρ 7 are in units of 1012G, 107g cm-3). The significant increase of strong screening rate can imply that more 23Mg will escape from the Ne-Na cycle due to SES in a SMF. As a consequence, the next reaction, 24Al (β+, ν) 24Mg, will produce more 24Mg to participate in the Mg-Al cycle. Thus, it may lead to synthesis of a large amount of A>20 nuclides in magnetars. Supported by National Natural Science Foundation of China (11565020), the Counterpart Foundation of Sanya (2016PT43), the Special Foundation of Science and Technology Cooperation for Advanced Academy and Regional of Sanya (2016YD28), the Scientific Research Starting Foundation for 515 Talented Project of Hainan Tropical Ocean University (RHDRC201701) and the Natural Science Foundation of Hainan Province (114012)
ERIC Educational Resources Information Center
Chapman, William E., Jr.
2009-01-01
The reputed benefits of using technology in schools have been the topic of many research studies. When the World Wide Workshop Foundation implemented their Globaloria program The reputed benefits of using technology in schools have been the topic of many research studies. When the World Wide Workshop Foundation implemented their Globaloria program…
For All Intents and Purposes: Twitter as a Foundational Technology for Teachers
ERIC Educational Resources Information Center
Greenhalgh, Spencer P.; Rosenberg, Joshua M.; Wolf, Leigh Graves
2016-01-01
Twitter is increasingly accepted as an important educational technology and has been shown to serve a range of purposes. In fact, this variety suggests that Twitter has the potential to serve as a foundational technology: one capable of supporting teachers' learning across multiple formal and informal contexts. To explore this possibility, we…
ERIC Educational Resources Information Center
National Science Foundation, Washington, DC.
Presented are nine working papers prepared for the National Science Foundation as one means of assisting the Office of Science and Technology Policy in preparing the administration's "Annual Science and Technology Report to the Congress, 1982." The papers explore aspects of three broad themes central to the administration's science and…
NASA Astrophysics Data System (ADS)
Qin, Haiyun; Zhao, Wei; Zhang, Chen; Liu, Yong; Wang, Guiren; Wang, Kaige
2018-03-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11672229 and 61378083), International Cooperation Foundation of the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011DFA12220), Major Research Plan of the National Natural Science Foundation of China (Grant No. 91123030), Natural Science Foundation of Shaanxi Province of China (Grant Nos. 2010JS110 and 2013SZS03-Z01), Natural Science Basic Research Program of Shaanxi Province — Major Basic Research Project, China (Grant No. 2016ZDJC-15), Young Scientist Fund of the National Natural Science Foundation of China (Grant No. 11504294), and the Youth Talent Plan of the Natural Science Foundation of Shaanxi Province of China (Grant No. 2016JQ103).
NASA Astrophysics Data System (ADS)
Liu, Xiu-Ying; Yu, Jing-Xin; Li, Xiao-Dong; Liu, Gui-Cheng; Li, Xiao-Feng; Lee, Joong-Kee
2017-02-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11304079, 11304140, 11404094, and 11504088), the China National Scholarship Foundation (Grant No. 201508410255), the Foundation for Young Core Teachers of Higher Education Institutions of Henan Province of China, the Foundation for Young Core Teachers of Henan University of Technology in China, the Korea Institute of Science and Technology (KIST) Institutional Program (Grant No. 2E26291) and Flag Program (Grant No. 2E26300), and the Research Grants of NRF funded by the National Research Foundation under the Ministry of Science, ICT & Future, Korea (Grant No. NRF-2015H1D3A1036078).
WE-H-209-00: Carson/Zagzebski Distinguished Lectureship: Image Guided Ultrasound Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Focused ultrasound has been shown to be the only method that allows noninvasive thermal coagulation of tissues and recently this potential has been explored for image-guided drug delivery. In this presentation, the advances in ultrasound phased array technology for energy delivery, exposure monitoring and control will be discussed. Experimental results from novel multi-frequency transmit/receive arrays will be presented. In addition, the feasibility of fully electronically focused and steered high power arrays with many thousands of transducer elements will be discussed. Finally, some of the recent clinical and preclinical results for the treatment of brain disease will be reviewed. Learning Objectives:more » Introduce FUS therapy principles and modern techniques Discuss use of FUS for drug delivery Cover the technology required to deliver FUS and monitor therapy Present clinical examples of the uses of these techniques This research was supported by funding from The Canada Research Chair Program, Grants from CIHR and NIH (no. EB003268).; K. Hynynen, Canada Foundation for Innovation; Canadian Institutes of Health Research; Focused Ultrasound Surgery Foundation; Canada Research Chair Program; Natural Sciences and Engineering Research Council of Canada; Ontario Research Fund; National Institutes of Health; Canadian Cancer Society Research Institute; The Weston Brain Institute; Harmonic Medical; Focused Ultrasound Instruments.« less
A Nuclear Cryogenic Propulsion Stage for Near-Term Space Missions
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Adams, Robert B.; Bechtel, Ryan D.; Borowski, Stanley K.; George, Jeffrey A.
2013-01-01
The potential capability of NTP is game changing for space exploration. A first generation NCPS could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Near-term NCPS systems would provide a foundation for the development of significantly more advanced, higher performance systems. John F. Kennedy made his historic special address to Congress on the importance of space on May 25, 1961, "First, I believe that this nation should commit itself to achieving the goal, before this decade is out, of landing a man on the Moon and returning him safely to the Earth..." This was accomplished. John F. Kennedy also made a second request, "Secondly... accelerate development of the Rover nuclear rocket. This gives promise of some day providing a means for even more exciting and ambitious exploration of space, perhaps beyond the Moon, perhaps to the very end of the solar system itself." The investment in the Rover nuclear rocket program provided the foundation of technology that gives us assurance for greater performing rockets that are capable of taking us further into space. Combined with current technologies, the vision to go beyond the Moon and to the very end of the solar system can be realized with space nuclear propulsion and power.
ERIC Educational Resources Information Center
Ch'i, Hsi-sheng
This volume traces the history of a collaboration between the Carnegie Foundation for the Advancement of Teaching and China's National Center for Education Development Research. The collaboration, which began in 1988, was initiated to conduct a comparative study of education in the two countries through information exchanges and seminars.…
Evidence for a universal localization transition underlying the glass transition
NASA Astrophysics Data System (ADS)
Simmons, David; Hung, Jui-Hsiang; Patra, Tarak; Meenakshisundaram, Venkatesh; Mangalara, Jayachandra Hari
The glass transition is a ubiquitous pathway to the development of solid-like character, occurring in materials ranging from polymers to metals. Despite its technological and fundamental importance across diverse materials, the underlying nature of the glass transition remains a durable open question. Here we describe results from high-throughput simulations of the glass transition in metals, polymers, small organic molecules, and organics, indicating that a universal particle localization transition underlies the dynamic glass transition. We find that a single adjustable parameter is sufficient to describe the nonuniversal growth in relaxation time resulting from this localization event. These results point to an opportunity to advance the modern understanding of the glass transition by refocusing attention on the onset of localization rather than the growth in relaxation time as the key experimental observable. This work was made possible by generous support from the W. M. Keck Foundation. This material is based in part on work sup-ported by the National Science Foundation NSF Career Award Grant Number DMR1554920.
Biomanufacturing: a US-China National Science Foundation-sponsored workshop.
Sun, Wei; Yan, Yongnian; Lin, Feng; Spector, Myron
2006-05-01
A recent US-China National Science Foundation-sponsored workshop on biomanufacturing reviewed the state-of-the-art of an array of new technologies for producing scaffolds for tissue engineering, providing precision multi-scale control of material, architecture, and cells. One broad category of such techniques has been termed solid freeform fabrication. The techniques in this category include: stereolithography, selected laser sintering, single- and multiple-nozzle deposition and fused deposition modeling, and three-dimensional printing. The precise and repetitive placement of material and cells in a three-dimensional construct at the micrometer length scale demands computer control. These novel computer-controlled scaffold production techniques, when coupled with computer-based imaging and structural modeling methods for the production of the templates for the scaffolds, define an emerging field of computer-aided tissue engineering. In formulating the questions that remain to be answered and discussing the knowledge required to further advance the field, the Workshop provided a basis for recommendations for future work.
Writing-to-Learn in Undergraduate Science Education: A Community-Based, Conceptually Driven Approach
Reynolds, Julie A.; Thaiss, Christopher; Katkin, Wendy; Thompson, Robert J.
2012-01-01
Despite substantial evidence that writing can be an effective tool to promote student learning and engagement, writing-to-learn (WTL) practices are still not widely implemented in science, technology, engineering, and mathematics (STEM) disciplines, particularly at research universities. Two major deterrents to progress are the lack of a community of science faculty committed to undertaking and applying the necessary pedagogical research, and the absence of a conceptual framework to systematically guide study designs and integrate findings. To address these issues, we undertook an initiative, supported by the National Science Foundation and sponsored by the Reinvention Center, to build a community of WTL/STEM educators who would undertake a heuristic review of the literature and formulate a conceptual framework. In addition to generating a searchable database of empirically validated and promising WTL practices, our work lays the foundation for multi-university empirical studies of the effectiveness of WTL practices in advancing student learning and engagement. PMID:22383613
NSF Programs That Support Research in the Two-Year College Classroom
NASA Astrophysics Data System (ADS)
Carter, V.; Ryan, J. G.; Singer, J.
2011-12-01
The National Science Foundation recognizes the significant role provided by two-year institutions in providing high quality STEM courses to large numbers of students. For some students the STEM courses completed while attending a two-year institution represent the only STEM courses a student may take; for others the courses serve as the foundation to continue on into a STEM major at a four-year institution; and some students complete STEM courses that lead directly into the workforce. Several programs in the Division of Undergraduate Research, including the Advanced Technological Education (ATE) program, STEM Talent Expansion Program (STEP), and the Transforming Undergraduate Education in STEM (TUES) program, support the inclusion of student research experiences at two-year institutions. Information about these programs and examples of successful funded projects will be provided. Resources for faculty considering applying for support will be shared with special attention to a faculty development program designed to help faculty learn about funding opportunities and prepare proposals for submission to the TUES and ATE programs.
Cleveland, Ana D
2011-01-01
This lecture discusses a philosophy of educating health information professionals in a rapidly changing health care and information environment. Education for health information professionals must be based upon a solid foundation of the changing paradigms and trends in health care and health information, as well as technological advances, to produce a well-prepared information workforce to meet the demands of health-related environments. Educational programs should begin with the core principles of library and information sciences and expand in interdisciplinary collaborations. A model of the health care environment is presented to serve as a framework for developing educational programs for health information professionals. Interdisciplinary and collaborative relationships-which merge health care, library and information sciences, and other information-related disciplines-should form the basis of education for health information professionals.
Engaged, embedded, enjoined: science and technology studies in the National Science Foundation.
Hackett, Edward J; Rhoten, Diana R
2011-12-01
Engaged scholarship is an intellectual movement sweeping across higher education, not only in the social and behavioral sciences but also in fields of natural science and engineering. It is predicated on the idea that major advances in knowledge will transpire when scholars, while pursuing their research interests, also consider addressing the core problems confronting society. For a workable engaged agenda in science and technology studies, one that informs scholarship as well as shapes practice and policy, the traditional terms of engagement must be renegotiated to be more open and mutual than has historically characterized the nature of inquiry in this field. At the same time, it is essential to protect individual privacy and preserve government confidentiality. Yet there is a scientific possibility for and benefit to introducing more collaborative and deliberative research approaches between scholar and subject in ways that will not violate these first-order ethics. To make the case, this article discusses the possibilities and perils of engaged science and technology scholarship by drawing on our own recent experiences to conduct and apply STS research while embedded in the National Science Foundation. Brief accounts of these experiences reveal the opportunities as well as the challenges of engaged scholarship. They also provide lessons for those fellow travelers who might follow the authors to this or other like host organizations with ambitions of increasing fundamental knowledge about and applying research to the policies, programs, and decisions of the scientific enterprise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, C.D.
1987-07-01
Despite the recent drop in world oil prices, the Japanese government is continuing to stress energy conservation, because Japan relies on imports for 85% of its total energy requirements and virtually 100% of its petroleum. Japan stresses long-term developments and sees conservation as an integral part of its 50- to 100-year transition from fossil fuels to nuclear and renewable sources of energy. The Japanese government is targeting new materials, biotechnology, and electronics technologies as the foundation of Japan's economy in the 21st century. Most government research programs in Japan are governed by aggressive timetables and fixed technical goals and aremore » usually guaranteed funding over a 5- to 10-year period. Of the major energy conservation research programs, the best known is the Moonlight Project, administered by the Ministry of International Trade and Industry (MITI), and oriented towards end-use technologies such as Stirling engines and advanced heat pumps. Parts of MITI's Basic Technologies for Future Industries Program involve research in new materials and bioreactors. The Science and Technology Agency's Exploratory Research in Advanced Technologies (ERATO) Program is also investigating these technologies while emphasizing basic research. Other ministries supporting research related to energy conservation are the Ministry of Education, Science, and Culture and the Ministry of Construction. For 1985, government spending for energy conservation research was at least $50 million. Private sector funding of energy conservation research was $500 million in 1984. A brief outline of major programs and key participants is included for several of the most relevant technologies. An overview of Japan's experience in international scientific collaboration is also included.« less
Hagland, Mark
2010-03-01
CIOs must ensure the creation of a technology foundation underlying the implementation of new applications, in order to guarantee continuous computing and other essential characteristics of IT service for end-users, going forward. Focusing on the needs of end-users will be essential to creating that foundation. End-user expectations are already outstripping technological capabilities, putting pressure on CIOs to carefully balance the offering of highly desired applications with the creation of a strong tech foundation to undergird those apps.
Survey of Constellation-Era LOX/Methane Development Activities and Future Development Needs
NASA Technical Reports Server (NTRS)
Marshall, William M.; Stiegemeier, Benjamin; Greene, Sandra Elam; Hurlbert, Eric A.
2017-01-01
NASA formed the Constellation Program in 2005 to achieve the objectives of maintaining American presence in low-Earth orbit, returning to the moon for purposes of establishing an outpost, and laying the foundation to explore Mars and beyond in the first half of the 21st century. The Exploration Technology Development Program (ETDP) was formulated to address the technology needs to address Constellation architecture decisions. The Propellants and Cryogenic Advanced Development (PCAD) project was tasked with risk mitigation of specific propulsion related technologies to support ETDP. Propulsion systems were identified as critical technologies owing to the high gear-ratio of lunar Mars landers Cryogenic propellants offer performance advantage over storables (NTOMMH) Mass savings translate to greater payload capacity In-situ production of propellant an attractive feature; methane and oxygen identified as possible Martian in-situ propellants New technologies were required to meet more difficult missions High performance LOX/LH2 deep throttle descent engines High performance LOX/LCH4 ascent main and reaction control system (RCS) engines The PCAD project sought to provide those technologies through Reliable ignition pulse RCS Fast start High efficiency engines Stable deep throttling.
Professional development in optics and photonics education
NASA Astrophysics Data System (ADS)
Donnelly, Judith F.; Hanes, Fenna; Massa, Nicholas J.; Washburn, Barbara R.
2002-05-01
In recent years, several New England projects have promoted professional development and curriculum design in optics and photonics. Funded in part by the Advanced Technological Education (ATE) program of the National Science Foundation (NSF), these projects have prepared middle and high school teachers, college faculty and career counselors from more than 100 New England institutions to introduce fiber optics, telecommunications and photonics technology education. Four of these projects will be discussed here: (1) The New England Board of Higher Education's (NEBHE) Fiber Optics Technology Education Project, (FOTEP) was designed to teach fiber optics theory and to provide laboratory experiences at the secondary and postsecondary levels. (2) Springfield Technical Community College's Northeast Center for Telecommunications Technologies (NCTT) is developing curricula and instructional materials in lightwave, networking and wireless telecommunications technologies. (3) The Harvard-Smithsonian Center for Astrophysics project ComTech developed a 12-week, hands-on curriculum and teaching strategies for middle and high school science and technology teachers in telecommunications and focused on optical communication (fiber optics). (4) NEBHE's project PHOTON is preparing middle, secondary and postsecondary instructors to introduce theory and laboratory experiences in photonics, including geometric and wave optics as well as principles of lasers and photonics applications.
Early convergence research and education supported by the National Science Foundation.
Bainbridge, William Sims
2004-05-01
The following pages describe research grants awarded by the National Science Foundation that illustrate how different fields of science and technology can converge in order to increase human potential. Technological convergence involves the unification of the sciences of Nanotechnology, Biotechnology, Information Technology, and new technologies based on Cognitive Science (NBIC). Because it supports research across all major branches of science and technology, including the social and behavioral sciences, the NSF has been a focus of discussions about converging technologies to enhance human capabilities and serve human needs.
ERIC Educational Resources Information Center
National Science Foundation, Washington, DC.
The eight working papers presented in this compendium were prepared for the National Science Foundation (NSF) as one means to assist the Office of Science and Technology Policy with preparation of the Administration's Annual Science and Technology Report to the Congress, 1981. They focus on specific aspects of three central themes directly related…
Teachers' Experiences of Technology-Based Teaching and Learning in the Foundation Phase
ERIC Educational Resources Information Center
Hannaway, D. M.; Steyn, M. G.
2017-01-01
This paper presents one aspect of a larger scale doctoral study, namely the teachers' experiences of technology-based teaching and learning in the Foundation Phase. Technology is a huge driver of change and South African education has to change regularly to meet the requirements set out by the Department of Education, including the development of…
Sperber, A D; Gwee, K A; Hungin, A P; Corazziari, E; Fukudo, S; Gerson, C; Ghoshal, U C; Kang, J-Y; Levy, R L; Schmulson, M; Dumitrascu, D; Gerson, M-J; Chen, M; Myung, S-J; Quigley, E M M; Whorwell, P J; Zarzar, K; Whitehead, W E
2014-11-01
Cross-cultural, multinational research can advance the field of functional gastrointestinal disorders (FGIDs). Cross-cultural comparative research can make a significant contribution in areas such as epidemiology, genetics, psychosocial modulators, symptom reporting and interpretation, extra-intestinal co-morbidity, diagnosis and treatment, determinants of disease severity, health care utilisation, and health-related quality of life, all issues that can be affected by geographical region, culture, ethnicity and race. To identify methodological challenges for cross-cultural, multinational research, and suggest possible solutions. This report, which summarises the full report of a working team established by the Rome Foundation that is available on the Internet, reflects an effort by an international committee of FGID clinicians and researchers. It is based on comprehensive literature reviews and expert opinion. Cross-cultural, multinational research is important and feasible, but has barriers to successful implementation. This report contains recommendations for future research relating to study design, subject recruitment, availability of appropriate study instruments, translation and validation of study instruments, documenting confounders, statistical analyses and reporting of results. Advances in study design and methodology, as well as cross-cultural research competence, have not matched technological advancements. The development of multinational research networks and cross-cultural research collaboration is still in its early stages. This report is intended to be aspirational rather than prescriptive, so we present recommendations, not guidelines. We aim to raise awareness of these issues and to pose higher standards, but not to discourage investigators from doing what is feasible in any particular setting. © 2014 John Wiley & Sons Ltd.
Michael J. Fox Foundation for Parkinson's Research
... Prize Alpha-Synuclein Imaging Prize DONATE TO ADVANCE RESEARCH FUNDRAISE WITH TEAM FOX PARTICIPATE IN YOUR AREA ... Program Pre-Proposals Due: CLOSED APPLY NOW Support Research Monthly Become a monthly supporter of the Foundation's ...
Spectral Characteristics of Laser-Induced Graphite Plasma in Ambient Air
NASA Astrophysics Data System (ADS)
Wang, Jinmei; Zheng, Peichao; Liu, Hongdi; Fang, Liang
2016-11-01
An experimental setup of laser-induced graphite plasma was built and the spectral characteristics and properties of graphite plasma were studied. From the temporal behavior of graphite plasma, the duration of CN partials (B2 Σ+ → X2 Σ+) emission was two times longer than that of atomic carbon, and all intensities reached the maximum during the early stage from 0.2 μs to 0.8 μs. The electron temperature decreased from 11807 K to 8755 K, the vibration temperature decreased from 8973 K to 6472 K, and the rotational temperature decreased from 7288 K to 4491 K with the delay time, respectively. The effect of the laser energy was also studied, and it was found that the thresholds and spectral characteristics of CN molecular and C atomic spectroscopy presented great differences. At lower laser energies, the electron excited temperature, the electron density, the vibrational temperature and rotational temperature of CN partials increased rapidly. At higher laser energies, the increasing of electron excited temperature and electron density slow down, and the vibrational temperature and rotational temperature even trend to saturation due to plasma shielding and dissociation of CN molecules. The relationship among the three kinds of temperatures was Telec>Tvib>Trot at the same time. The electron density of the graphite plasma was in the order of 1017 cm-3 and 1018 cm-3. supported by National Natural Science Foundation of China (No. 61205149), Scientific Research Foundation for the Returned Overseas Chinese Scholars of State Education Ministry, Science Research Funds of Chongqing Municipal Education Commission (KJ1500436), Scientific and Technological Talents Training Project of Chongqing (CSTC2013kjrc-qnrc40002), Key Project of Foundation and Advanced Technology Research Project of Chongqing (CSTC2015jcyjB0358), Visiting Scholarship of State Key Laboratory of Power Transmission Equipment & System Security and New Technology (2007DA10512714409)
78 FR 69138 - Proposal Review Panel for Computing Communication Foundations; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-18
... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Computing Communication Foundations; Notice... National Science Foundation announces the following meeting: Name: Site Visit, Proposal Panel Review for Science and Technology Centers--Integrative Partnerships ( 1192). Date/Time: December 3, 2013, 6:30 p.m.-8...
77 FR 70483 - Proposal Review Panel for Computing Communication Foundations; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-26
... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Computing Communication Foundations; Notice... National Science Foundation announces the following meeting: Name: Site Visit, Proposal Panel Review for Science and Technology Centers--Integrative Partnerships ( 1192). Date/Time: December 3, 2012, 6:30 p.m.-8...
Nuclear Data Uncertainty Quantification: Past, Present and Future
NASA Astrophysics Data System (ADS)
Smith, D. L.
2015-01-01
An historical overview is provided of the mathematical foundations of uncertainty quantification and the roles played in the more recent past by nuclear data uncertainties in nuclear data evaluations and nuclear applications. Significant advances that have established the mathematical framework for contemporary nuclear data evaluation methods, as well as the use of uncertainty information in nuclear data evaluation and nuclear applications, are described. This is followed by a brief examination of the current status concerning nuclear data evaluation methodology, covariance data generation, and the application of evaluated nuclear data uncertainties in contemporary nuclear technology. A few possible areas for future investigation of this subject are also suggested.
2011-10-03
Comparative Aircraft Flight Efficiency (CAFE) Foundation President Brien A. Seeley M.D., left, NASA Acting Chief Technologist Joe Parrish, 2nd from left, and Pipistrel-USA Team Lead Jack Langelaan, center with suit, and the entire Pipistrel-USA, Taurus G4 aircraft team pose for a photograph shortly after winning the 2011 Green Flight Challenge, sponsored by Google, on Monday, Oct. 3, 2011 at the NASA Ames Research Center, Mountain View, Calif. The all electric Taurus G4 aircraft achieved the equivalency of more than 400 miles per gallon. NASA and CAFE held the challenge to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
Experiment to measure vacuum birefringence: Conceptual design
NASA Astrophysics Data System (ADS)
Mueller, Guido; Tanner, David; Doebrich, Babette; Poeld, Jan; Lindner, Axel; Willke, Benno
2016-03-01
Vacuum birefringence is another lingering challenge which will soon become accessible to experimental verification. The effect was first calculated by Euler and Heisenberg in 1936 and is these days described as a one-loop correction to the differential index of refraction between light which is polarized parallel and perpendicular to an external magnetic field. Our plan is to realize (and slightly modify) an idea which was originally published by Hall, Ye, and Ma using advanced LIGO and LISA technology and the infrastructure of the ALPS light-shining-through-walls experiment following the ALPS IIc science run. This work is supported by the Deutsche Forschungsgemeinschaft and the Heising-Simons Foundation.
Meeting report: Global vaccine and immunization research forum.
Ford, Andrew Q; Touchette, Nancy; Fenton Hall, B; Hwang, Angela; Hombach, Joachim
2018-02-08
Building on the success of the first Global Vaccine and Immunization Research Forum (GVIRF), the World Health Organization, the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health in the United States of America, and the Bill & Melinda Gates Foundation convened the second GVIRF in March 2016. Leading scientists, vaccine developers, and public health officials from around the world discussed scientific advances and innovative technologies to design and deliver vaccines as well as novel tools and approaches to increase the uptake of vaccines throughout the world. This report summarizes the discussions and conclusions from the forum participants. Copyright © 2018.
Targeted therapies for the treatment of leukemia.
Stull, Dawn Marie
2003-05-01
To review novel targeted therapies for the treatment of leukemia. Professional journals, books, and government publications. Nonspecific cytotoxic chemotherapeutic agents provide marginal therapeutic benefit and significant toxicity when used in the treatment of leukemia. There is a tremendous need for new therapies with increased efficacy and decreased adverse effects. Advances in molecular science, genetics, and immunology, along with improved laboratory technology, have led to the discovery of unique targets integral to the growth and proliferation of malignant cells which are providing the foundation for the development of a new generation of antitumor agents. Nurses must be prepared to educate patients, administer novel therapies, and manage side effects.
NASA Technical Reports Server (NTRS)
Willis, Jerry W.
1993-01-01
For a number of years, the Software Technology Branch of the Information Systems Directorate has been involved in the application of cutting edge hardware and software technologies to instructional tasks related to NASA projects. The branch has developed intelligent computer aided training shells, instructional applications of virtual reality and multimedia, and computer-based instructional packages that use fuzzy logic for both instructional and diagnostic decision making. One outcome of the work on space-related technology-supported instruction has been the creation of a significant pool of human talent in the branch with current expertise on the cutting edges of instructional technologies. When the human talent is combined with advanced technologies for graphics, sound, video, CD-ROM, and high speed computing, the result is a powerful research and development group that both contributes to the applied foundations of instructional technology and creates effective instructional packages that take advantage of a range of advanced technologies. Several branch projects are currently underway that combine NASA-developed expertise to significant instructional problems in public education. The branch, for example, has developed intelligent computer aided software to help high school students learn physics and staff are currently working on a project to produce educational software for young children with language deficits. This report deals with another project, the adult literacy tutor. Unfortunately, while there are a number of computer-based instructional packages available for adult literacy instruction, most of them are based on the same instructional models that failed these students when they were in school. The teacher-centered, discrete skill and drill-oriented, instructional strategies, even when they are supported by color computer graphics and animation, that form the foundation for most of the computer-based literacy packages currently on the market may not be the most effective or most desirable way to use computer technology in literacy programs. This project is developing a series of instructional packages that are based on a different instructional model - authentic instruction. The instructional development model used to create these packages is also different. Instead of using the traditional five stage linear, sequential model based on behavioral learning theory, the project uses the recursive, reflective design and development model (R2D2) that is based on cognitive learning theory, particularly the social constructivism of Vygotsky, and an epistemology based on critical theory. Using alternative instructional and instructional development theories, the result of the summer faculty fellowship is LiteraCity, a multimedia adult literacy instructional package that is a simulation of finding and applying for a job. The program, which is about 120 megabytes, is distributed on CD-ROM.
McBride, Ruari-Santiago
2017-09-01
In this article I examine the advancement of therapeutic penality in the UK, a penal philosophy that reimagines prison policy, practices and environments utilising psychological knowledge. Adopting a historical approach, I show how modern therapeutic penality is linked to the emergence of personality science in the nineteenth century and the development of the democratic therapeutic community (DTC) model in the twentieth century. I outline how at the turn of the twenty-first century a catalytic event generated a moral panic that led the British government to mobilise psychological knowledge and technologies in an attempt to manage dangerous people with severe personality disorder. Tracing subsequent developments, I argue psychological ways of talking, thinking and acting have obtained unparalleled salience in domains of penality and, in turn, radically transformed the conditions of imprisonment. © 2017 Foundation for the Sociology of Health & Illness.
White House announces “big data” initiative
NASA Astrophysics Data System (ADS)
Showstack, Randy
2012-04-01
The world is now generating zetabytes—which is 10 to the 21st power, or a billion trillion bytess—of information every year, according to John Holdren, director of the White House Office of Science and Technology Policy. With data volumes growing exponentially from a variety of sources such as computers running large-scale models, scientific instruments including telescopes and particle accelerators, and even online retail transactions, a key challenge is to better manage and utilize the data. The Big Data Research and Development Initiative, launched by the White House at a 29 March briefing, initially includes six federal departments and agencies providing more than $200 million in new commitments to improve tools and techniques for better accessing, organizing, and using data for scientific advances. The agencies and departments include the National Science Foundation (NSF), Department of Energy, U.S. Geological Survey (USGS), National Institutes of Health (NIH), Department of Defense, and Defense Advanced Research Projects Agency.
Sensor-Only System Identification for Structural Health Monitoring of Advanced Aircraft
NASA Technical Reports Server (NTRS)
Kukreja, Sunil L.; Bernstein, Dennis S.
2012-01-01
Environmental conditions, cyclic loading, and aging contribute to structural wear and degradation, and thus potentially catastrophic events. The challenge of health monitoring technology is to determine incipient changes accurately and efficiently. This project addresses this challenge by developing health monitoring techniques that depend only on sensor measurements. Since actively controlled excitation is not needed, sensor-to-sensor identification (S2SID) provides an in-flight diagnostic tool that exploits ambient excitation to provide advance warning of significant changes. S2SID can subsequently be followed up by ground testing to localize and quantify structural changes. The conceptual foundation of S2SID is the notion of a pseudo-transfer function, where one sensor is viewed as the pseudo-input and another is viewed as the pseudo-output, is approach is less restrictive than transmissibility identification and operational modal analysis since no assumption is made about the locations of the sensors relative to the excitation.
In Brief: Revitalizing Earth science education
NASA Astrophysics Data System (ADS)
Showstack, Randy
2008-12-01
A 5-year, $3.9-million U.S. National Science Foundation Math Science Partnership grant to Michigan Technological University (MTU), in Houghton, aims to improve instruction in middle-school Earth and space science courses. The program will enable geoscience and education researchers to work with middle-school science teachers to test strategies designed to reform science, technology, engineering, and math (STEM) education. Project lead researcher Bill Rose said the project could be a template for improvement in STEM throughout the United States. Rose, one of seven MTU faculty members involved with the Michigan Institute for Teaching Excellence Program (MITEP), said the project is ``trying to do something constructive to attract more talented young people to advanced science, math, and technology.'' The project includes data collection and analysis overseen by an evaluation team from the Colorado School of Mines. Also participating in the project are scientists from Grand Valley State University, Allendale, Mich.; the Grand Rapids (Mich.) Area Pre-College Engineering Program; the American Geological Institute; and the U.S. National Park Service.
Innovative technologies for powder metallurgy-based disk superalloys: Progress and proposal
NASA Astrophysics Data System (ADS)
Chong-Lin, Jia; Chang-Chun, Ge; Qing-Zhi, Yan
2016-02-01
Powder metallurgy (PM) superalloys are an important class of high temperature structural materials, key to the rotating components of aero engines. In the purview of the present challenges associated with PM superalloys, two novel approaches namely, powder preparation and the innovative spray-forming technique (for making turbine disk) are proposed and studied. Subsequently, advanced technologies like electrode-induction-melting gas atomization (EIGA), and spark-plasma discharge spheroidization (SPDS) are introduced, for ceramic-free superalloy powders. Presently, new processing routes are sought after for preparing finer and cleaner raw powders for disk superalloys. The progress of research in spray-formed PM superalloys is first summarized in detail. The spray-formed superalloy disks specifically exhibit excellent mechanical properties. This paper reviews the recent progress in innovative technologies for PM superalloys, with an emphasis on new ideas and approaches, central to the innovation driving techniques like powder processing and spray forming. Project supported by the National Natural Science Foundation of China (Grant Nos. 50974016 and 50071014).
TIMSS Advanced 2015 Assessment Frameworks
ERIC Educational Resources Information Center
Mullis, Ina V. S., Ed.; Martin, Michael O., Ed.
2014-01-01
The "TIMSS Advanced 2015 Assessment Frameworks" provides the foundation for the two international assessments to take place as part of the International Association for the Evaluation of Educational Achievement's TIMSS (Trends in International Mathematics and Science Study) Advanced 2015--Advanced Mathematics and Physics. Chapter 1 (Liv…
NASA Astrophysics Data System (ADS)
Weiyi, Xie; Pengcheng
2018-03-01
The deep foundation pit supporting technology in the soft soil area of the Pearl River Delta is more complicated, and many factors influence and restrict it. In this project as an example, according to the geological conditions and the surrounding circumstances, the main foundation using bored piles and pre-stressed anchor cable supporting structure + five axis cement mixing pile curtain supporting form; partial use of double row piles supporting structure + five axis cement mixing pile curtain support type. Through the monitoring results of construction show that the foundation pit, the indicators of environmental changes are in the design range, the supporting scheme of deep foundation pit technology is feasible and reliable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. This project describes an innovative, minimally invasive foundation insulation upgrade technique on an existing home that uses hydrovac excavation technology combined with a liquid insulating foam. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features,more » utility meters, and landscaping would be minimal or non-existent in an excavationless process.« less
NASA Astrophysics Data System (ADS)
Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Al-Bataineh, H.; Al-Ta'ani, H.; Alexander, J.; Alfred, M.; Andrews, K. R.; Angerami, A.; Aoki, K.; Apadula, N.; Aphecetche, L.; Appelt, E.; Aramaki, Y.; Armendariz, R.; Aronson, S. H.; Asai, J.; Asano, H.; Aschenauer, E. C.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bai, X.; Baksay, G.; Baksay, L.; Baldisseri, A.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Barnes, P. D.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Batsouli, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belikov, S.; Belmont, R.; Ben-Benjamin, J.; Bennett, R.; Berdnikov, A.; Berdnikov, Y.; Bhom, J. H.; Bickley, A. A.; Bing, X.; Black, D.; Blau, D. S.; Boissevain, J. G.; Bok, J. S.; Borel, H.; Boyle, K.; Brooks, M. L.; Broxmeyer, D.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Camacho, C. M.; Campbell, S.; Caringi, A.; Castera, P.; Chang, B. S.; Chang, W. C.; Charvet, J.-L.; Chen, C.-H.; Chernichenko, S.; Chi, C. Y.; Chiba, J.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Churyn, A.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cleven, C. R.; Cole, B. A.; Comets, M. P.; Conesa del Valle, Z.; Connors, M.; Constantin, P.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Danchev, I.; Das, K.; Datta, A.; Daugherity, M. S.; David, G.; Dayananda, M. K.; Deaton, M. B.; DeBlasio, K.; Dehmelt, K.; Delagrange, H.; Denisov, A.; d'Enterria, D.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Ding, L.; Dion, A.; Do, J. H.; Donadelli, M.; Drapier, O.; Drees, A.; Drees, K. A.; Dubey, A. K.; Durham, J. M.; Durum, A.; Dutta, D.; Dzhordzhadze, V.; D'Orazio, L.; Edwards, S.; Efremenko, Y. V.; Egdemir, J.; Ellinghaus, F.; Emam, W. S.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Gadrat, S.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, H.; Gong, X.; Gonin, M.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grim, G.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guo, L.; Guragain, H.; Gustafsson, H.-Å.; Hachiya, T.; Hadj Henni, A.; Haegemann, C.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Han, R.; Han, S. Y.; Hanks, J.; Harada, H.; Harper, C.; Hartouni, E. P.; Haruna, K.; Hasegawa, S.; Hashimoto, K.; Haslum, E.; Hayano, R.; Hayashi, S.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hiejima, H.; Hill, J. C.; Hobbs, R.; Hohlmann, M.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hori, Y.; Hornback, D.; Hoshino, T.; Huang, J.; Huang, S.; Ichihara, T.; Ichimiya, R.; Ide, J.; Iinuma, H.; Ikeda, Y.; Imai, K.; Imazu, Y.; Imrek, J.; Inaba, M.; Inoue, Y.; Iordanova, A.; Isenhower, D.; Isenhower, L.; Ishihara, M.; Isinhue, A.; Isobe, T.; Issah, M.; Isupov, A.; Ivanischev, D.; Ivanishchev, D.; Iwanaga, Y.; Jacak, B. V.; Javani, M.; Jeon, S. J.; Jezghani, M.; Jia, J.; Jiang, X.; Jin, J.; Jinnouchi, O.; John, D.; Johnson, B. M.; Jones, T.; Joo, E.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kamin, J.; Kanda, S.; Kaneta, M.; Kaneti, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kanou, H.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kihara, K.; Kijima, K. M.; Kikuchi, J.; Kim, A.; Kim, B. I.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.; Kim, E.-J.; Kim, H.-J.; Kim, H. J.; Kim, K.-B.; Kim, M.; Kim, S. H.; Kim, Y.-J.; Kim, Y. K.; Kinney, E.; Kiriluk, K.; Kiss, Á.; Kistenev, E.; Kiyomichi, A.; Klatsky, J.; Klay, J.; Klein-Boesing, C.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kochenda, L.; Kochetkov, V.; Kofarago, M.; Komatsu, Y.; Komkov, B.; Konno, M.; Koster, J.; Kotchetkov, D.; Kotov, D.; Kozlov, A.; Král, A.; Kravitz, A.; Krizek, F.; Kubart, J.; Kunde, G. J.; Kurihara, N.; Kurita, K.; Kurosawa, M.; Kweon, M. J.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Layton, D.; Lebedev, A.; Lee, B.; Lee, D. M.; Lee, G. H.; Lee, J.; Lee, K.; Lee, K. B.; Lee, K. S.; Lee, M. K.; Lee, S. H.; Lee, S. R.; Lee, T.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Leitner, E.; Lenzi, B.; Lewis, B.; Li, X.; Lichtenwalner, P.; Liebing, P.; Lim, S. H.; Linden Levy, L. A.; Liška, T.; Litvinenko, A.; Liu, H.; Liu, M. X.; Love, B.; Luechtenborg, R.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Ma, M.; Malakhov, A.; Malik, M. D.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Maruyama, T.; Mašek, L.; Masui, H.; Masumoto, S.; Matathias, F.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Midori, J.; Mignerey, A. C.; Mikeš, P.; Miki, K.; Miller, A. J.; Miller, T. E.; Milov, A.; Mioduszewski, S.; Mishra, D. K.; Mishra, M.; Mitchell, J. T.; Mitrovski, M.; Miyachi, Y.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Montuenga, P.; Moon, H. J.; Moon, T.; Morino, Y.; Morreale, A.; Morrison, D. P.; Moskowitz, M.; Motschwiller, S.; Moukhanova, T. V.; Mukhopadhyay, D.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagata, Y.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nam, S.; Nattrass, C.; Nederlof, A.; Netrakanti, P. K.; Newby, J.; Nguyen, M.; Nihashi, M.; Niida, T.; Norman, B. E.; Nouicer, R.; Novak, T.; Novitzky, N.; Nukariya, A.; Nyanin, A. S.; Oakley, C.; Obayashi, H.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Ohnishi, H.; Oide, H.; Oka, M.; Okada, K.; Omiwade, O. O.; Onuki, Y.; Orjuela Koop, J. D.; Oskarsson, A.; Ouchida, M.; Ozaki, H.; Ozawa, K.; Pak, R.; Pal, D.; Palounek, A. P. T.; Pantuev, V.; Papavassiliou, V.; Park, B. H.; Park, I. H.; Park, J.; Park, S.; Park, S. K.; Park, W. J.; Pate, S. F.; Patel, L.; Patel, M.; Pei, H.; Peng, J.-C.; Pereira, H.; Perepelitsa, D. V.; Perera, G. D. N.; Peresedov, V.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Purwar, A. K.; Qu, H.; Rak, J.; Rakotozafindrabe, A.; Ravinovich, I.; Read, K. F.; Rembeczki, S.; Reuter, M.; Reygers, K.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Riveli, N.; Roach, D.; Roche, G.; Rolnick, S. D.; Romana, A.; Rosati, M.; Rosen, C. A.; Rosendahl, S. S. E.; Rosnet, P.; Rowan, Z.; Rubin, J. G.; Rukoyatkin, P.; Ružička, P.; Rykov, V. L.; Ryu, M. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakai, S.; Sakashita, K.; Sakata, H.; Sako, H.; Samsonov, V.; Sano, M.; Sano, S.; Sarsour, M.; Sato, S.; Sato, T.; Savastio, M.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sekiguchi, Y.; Semenov, A. Yu.; Semenov, V.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shaver, A.; Shein, I.; Shevel, A.; Shibata, T.-A.; Shigaki, K.; Shim, H. H.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Skolnik, M.; Skutnik, S.; Slunečka, M.; Sodre, T.; Solano, S.; Soldatov, A.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Soumya, M.; Sourikova, I. V.; Sparks, N. A.; Staley, F.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Stone, M. R.; Sugitate, T.; Suire, C.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Tabaru, T.; Takagi, S.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarján, P.; Tennant, E.; Themann, H.; Thomas, D.; Thomas, T. L.; Timilsina, A.; Todoroki, T.; Togawa, M.; Toia, A.; Tojo, J.; Tomášek, L.; Tomášek, M.; Tomita, Y.; Torii, H.; Towell, M.; Towell, R.; Towell, R. S.; Tram, V.-N.; Tserruya, I.; Tsuchimoto, Y.; Tsuji, T.; Utsunomiya, K.; Vale, C.; Valle, H.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Vinogradov, A. A.; Virius, M.; Voas, B.; Vossen, A.; Vrba, V.; Vznuzdaev, E.; Wagner, M.; Walker, D.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Wessels, J.; Whitaker, S.; White, S. N.; Winter, D.; Wolin, S.; Wood, J. P.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Xia, B.; Xie, W.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamaura, K.; Yang, R.; Yanovich, A.; Yasin, Z.; Ying, J.; Yokkaichi, S.; Yoo, J. S.; Yoon, I.; You, Z.; Young, G. R.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zaudtke, O.; Zelenski, A.; Zhang, C.; Zhou, S.; Zimányi, J.; Zolin, L.
2014-12-01
We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, a sponsored research grant from Renaissance Technologies LLC, Abilene Christian University Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (USA), Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan), Conselho Nacional de Desenvolvimento Científico e Tecnológico and Fundação de Amparo à Pesquisa do Estado de São Paulo (Brazil), Natural Science Foundation of China, (People's Republic of China), Ministry of Science, Education, and Sports (Croatia), Ministry of Education, Youth and Sports (Czech Republic), Centre National de la Recherche Scientifique, Commissariat à l'Énergie Atomique, and Institut National de Physique Nucléaire et de Physique des Particules (France), Bundesministerium für Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany), OTKA NK 101 428 grant and the Ch. Simonyi Fund (Hungary), Department of Atomic Energy and Department of Science and Technology (India), Israel Science Foundation (Israel), National Research Foundation and WCU program of the Ministry Education Science and Technology (Republic of Korea), Physics Department, Lahore University of Management Sciences (Pakistan), Ministry of Education and Science, Russian Academy of Sciences, Federal Agency of Atomic Energy (Russia), VR and Wallenberg Foundation (Sweden), the US Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, and the US-Israel Binational Science Foundation.
NASA Astrophysics Data System (ADS)
Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Al-Bataineh, H.; Al-Ta'ani, H.; Alexander, J.; Alfred, M.; Andrews, K. R.; Angerami, A.; Aoki, K.; Apadula, N.; Aphecetche, L.; Appelt, E.; Aramaki, Y.; Armendariz, R.; Aronson, S. H.; Asai, J.; Asano, H.; Aschenauer, E. C.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bai, X.; Baksay, G.; Baksay, L.; Baldisseri, A.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Barnes, P. D.; Barnes, P. D.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Batsouli, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belikov, S.; Belmont, R.; Ben-Benjamin, J.; Bennett, R.; Berdnikov, A.; Berdnikov, Y.; Bhom, J. H.; Bickley, A. A.; Bing, X.; Black, D.; Blau, D. S.; Boissevain, J. G.; Bok, J.; Bok, J. S.; Borel, H.; Boyle, K.; Brooks, M. L.; Broxmeyer, D.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Camacho, C. M.; Campbell, S.; Caringi, A.; Castera, P.; Chang, B. S.; Chang, W. C.; Charvet, J.-L.; Chen, C.-H.; Chernichenko, S.; Chi, C. Y.; Chiba, J.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Churyn, A.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cleven, C. R.; Cole, B. A.; Comets, M. P.; Conesa del Valle, Z.; Connors, M.; Constantin, P.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Danchev, I.; Das, K.; Datta, A.; Daugherity, M. S.; David, G.; Dayananda, M. K.; Deaton, M. B.; DeBlasio, K.; Dehmelt, K.; Delagrange, H.; Denisov, A.; d'Enterria, D.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Ding, L.; Dion, A.; Do, J. H.; Donadelli, M.; Drapier, O.; Drees, A.; Drees, K. A.; Dubey, A. K.; Durham, J. M.; Durum, A.; Dutta, D.; Dzhordzhadze, V.; D'Orazio, L.; Edwards, S.; Efremenko, Y. V.; Egdemir, J.; Ellinghaus, F.; Emam, W. S.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Gadrat, S.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, H.; Gong, X.; Gonin, M.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grim, G.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guo, L.; Guragain, H.; Gustafsson, H.-Å.; Hachiya, T.; Hadj Henni, A.; Haegemann, C.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Han, R.; Han, S. Y.; Hanks, J.; Harada, H.; Harper, C.; Hartouni, E. P.; Haruna, K.; Hasegawa, S.; Hashimoto, K.; Haslum, E.; Hayano, R.; Hayashi, S.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hiejima, H.; Hill, J. C.; Hobbs, R.; Hohlmann, M.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hori, Y.; Hornback, D.; Hoshino, T.; Huang, J.; Huang, S.; Ichihara, T.; Ichimiya, R.; Ide, J.; Iinuma, H.; Ikeda, Y.; Imai, K.; Imazu, Y.; Imrek, J.; Inaba, M.; Inoue, Y.; Iordanova, A.; Isenhower, D.; Isenhower, L.; Ishihara, M.; Isinhue, A.; Isobe, T.; Issah, M.; Isupov, A.; Ivanischev, D.; Ivanishchev, D.; Iwanaga, Y.; Jacak, B. V.; Javani, M.; Jeon, S. J.; Jezghani, M.; Jia, J.; Jiang, X.; Jin, J.; Jinnouchi, O.; John, D.; Johnson, B. M.; Jones, T.; Joo, E.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kamin, J.; Kanda, S.; Kaneta, M.; Kaneti, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kanou, H.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kihara, K.; Kijima, K. M.; Kikuchi, J.; Kim, A.; Kim, B. I.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.; Kim, E.-J.; Kim, H.-J.; Kim, H. J.; Kim, K.-B.; Kim, M.; Kim, S. H.; Kim, Y.-J.; Kim, Y. K.; Kinney, E.; Kiriluk, K.; Kiss, Á.; Kistenev, E.; Kiyomichi, A.; Klatsky, J.; Klay, J.; Klein-Boesing, C.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kochenda, L.; Kochetkov, V.; Kofarago, M.; Komatsu, Y.; Komkov, B.; Konno, M.; Koster, J.; Kotchetkov, D.; Kotov, D.; Kozlov, A.; Král, A.; Kravitz, A.; Krizek, F.; Kubart, J.; Kunde, G. J.; Kurihara, N.; Kurita, K.; Kurosawa, M.; Kweon, M. J.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Layton, D.; Lebedev, A.; Lee, B.; Lee, D. M.; Lee, G. H.; Lee, J.; Lee, K.; Lee, K. B.; Lee, K. S.; Lee, M. K.; Lee, S. H.; Lee, S. R.; Lee, T.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Leitner, E.; Lenzi, B.; Lewis, B.; Li, X.; Lichtenwalner, P.; Liebing, P.; Lim, S. H.; Linden Levy, L. A.; Liška, T.; Litvinenko, A.; Liu, H.; Liu, M. X.; Love, B.; Luechtenborg, R.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Maai, M.; Malakhov, A.; Malik, M. D.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Maruyama, T.; Mašek, L.; Masui, H.; Masumoto, S.; Matathias, F.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Midori, J.; Mignerey, A. C.; Mikeš, P.; Miki, K.; Miller, A. J.; Miller, T. E.; Milov, A.; Mioduszewski, S.; Mishra, D. K.; Mishra, M.; Mitchell, J. T.; Mitrovski, M.; Miyachi, Y.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Montuenga, P.; Moon, H. J.; Moon, T.; Morino, Y.; Morreale, A.; Morrison, D. P.; Moskowitz, M.; Motschwiller, S.; Moukhanova, T. V.; Mukhopadhyay, D.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagata, Y.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nam, S.; Nattrass, C.; Nederlof, A.; Netrakanti, P. K.; Newby, J.; Nguyen, M.; Nihashi, M.; Niida, T.; Norman, B. E.; Nouicer, R.; Novak, T.; Novitzky, N.; Nukariya, A.; Nyanin, A. S.; Oakley, C.; Obayashi, H.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Ohnishi, H.; Oide, H.; Oka, M.; Okada, K.; Omiwade, O. O.; Onuki, Y.; Orjuela Koop, J. D.; Oskarsson, A.; Ouchida, M.; Ozaki, H.; Ozawa, K.; Pak, R.; Pal, D.; Palounek, A. P. T.; Pantuev, V.; Papavassiliou, V.; Park, B. H.; Park, I. H.; Park, J.; Park, S.; Park, S. K.; Park, W. J.; Pate, S. F.; Patel, L.; Patel, M.; Pei, H.; Peng, J.-C.; Pereira, H.; Perepelitsa, D. V.; Perera, G. D. N.; Peresedov, V.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Purwar, A. K.; Qu, H.; Rak, J.; Rakotozafindrabe, A.; Ravinovich, I.; Read, K. F.; Rembeczki, S.; Reuter, M.; Reygers, K.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Riveli, N.; Roach, D.; Roche, G.; Rolnick, S. D.; Romana, A.; Rosati, M.; Rosen, C. A.; Rosendahl, S. S. E.; Rosnet, P.; Rowan, Z.; Rubin, J. G.; Rukoyatkin, P.; Ružička, P.; Rykov, V. L.; Ryu, M. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakai, S.; Sakashita, K.; Sakata, H.; Sako, H.; Samsonov, V.; Sano, M.; Sano, S.; Sarsour, M.; Sato, S.; Sato, T.; Savastio, M.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sekiguchi, Y.; Semenov, A. Yu.; Semenov, V.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shaver, A.; Shein, I.; Shevel, A.; Shibata, T.-A.; Shigaki, K.; Shim, H. H.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Skolnik, M.; Skutnik, S.; Slunečka, M.; Sodre, T.; Solano, S.; Soldatov, A.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Soumya, M.; Sourikova, I. V.; Sparks, N. A.; Staley, F.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Stone, M. R.; Sugitate, T.; Suire, C.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Tabaru, T.; Takagi, S.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarján, P.; Tennant, E.; Themann, H.; Thomas, D.; Thomas, T. L.; Timilsina, A.; Todoroki, T.; Togawa, M.; Toia, A.; Tojo, J.; Tomášek, L.; Tomášek, M.; Tomita, Y.; Torii, H.; Towell, M.; Towell, R.; Towell, R. S.; Tram, V.-N.; Tserruya, I.; Tsuchimoto, Y.; Tsuji, T.; Utsunomiya, K.; Vale, C.; Valle, H.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Vinogradov, A. A.; Virius, M.; Voas, B.; Vossen, A.; Vrba, V.; Vznuzdaev, E.; Wagner, M.; Walker, D.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Wessels, J.; Whitaker, S.; White, S. N.; Winter, D.; Wolin, S.; Wood, J. P.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Xia, B.; Xie, W.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamaura, K.; Yang, R.; Yanovich, A.; Yasin, Z.; Ying, J.; Yokkaichi, S.; Yoo, J. S.; Yoon, I.; You, Z.; Young, G. R.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zaudtke, O.; Zelenski, A.; Zhang, C.; Zhou, S.; Zimányi, J.; Zolin, L.
2014-11-01
We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, a sponsored research grant from Renaissance Technologies LLC, Abilene Christian University Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (USA), Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan), Conselho Nacional de Desenvolvimento Científico e Tecnológico and Fundaç ao de Amparo à Pesquisa do Estado de São Paulo (Brazil), Natural Science Foundation of China (People's Republic of China), Ministry of Science, Education, and Sports (Croatia), Ministry of Education, Youth and Sports (Czech Republic), Centre National de la Recherche Scientifique, Commissariat à l'Énergie Atomique, and Institut National de Physique Nucléaire et de Physique des Particules (France), Bundesministerium für Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany), OTKA NK 101 428 grant and the Ch. Simonyi Fund (Hungary), Department of Atomic Energy and Department of Science and Technology (India), Israel Science Foundation (Israel), National Research Foundation and WCU program of the Ministry Education Science and Technology (Korea), Physics Department, Lahore University of Management Sciences (Pakistan), Ministry of Education and Science, Russian Academy of Sciences, Federal Agency of Atomic Energy (Russia), VR and Wallenberg Foundation (Sweden), the US Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, and the US-Israel Binational Science Foundation.
A New Perspective: The Common Factors Model as a Foundation for Social Work Practice Education
ERIC Educational Resources Information Center
Cameron, Mark; Keenan, Elizabeth King
2009-01-01
Foundation social work practice education is critical to the preparation of BSW practitioners for professional practice and the establishment of a theoretical and skill base upon which graduate students may build competencies in the advanced curriculum. Issues in the foundation practice curriculum may hinder this development. The common factors…
Study of Collaborative Management for Transportation Construction Project Based on BIM Technology
NASA Astrophysics Data System (ADS)
Jianhua, Liu; Genchuan, Luo; Daiquan, Liu; Wenlei, Li; Bowen, Feng
2018-03-01
Abstract. Building Information Modeling(BIM) is a building modeling technology based on the relevant information data of the construction project. It is an advanced technology and management concept, which is widely used in the whole life cycle process of planning, design, construction and operation. Based on BIM technology, transportation construction project collaborative management can have better communication through authenticity simulation and architectural visualization and can obtain the basic and real-time information such as project schedule, engineering quality, cost and environmental impact etc. The main services of highway construction management are integrated on the unified BIM platform for collaborative management to realize information intercommunication and exchange, to change the isolated situation of information in the past, and improve the level of information management. The final BIM model is integrated not only for the information management of project and the integration of preliminary documents and design drawings, but also for the automatic generation of completion data and final accounts, which covers the whole life cycle of traffic construction projects and lays a good foundation for smart highway construction.
A Next-Generation Sequencing Primer—How Does It Work and What Can It Do?
Alekseyev, Yuriy O.; Fazeli, Roghayeh; Yang, Shi; Basran, Raveen; Miller, Nancy S.
2018-01-01
Next-generation sequencing refers to a high-throughput technology that determines the nucleic acid sequences and identifies variants in a sample. The technology has been introduced into clinical laboratory testing and produces test results for precision medicine. Since next-generation sequencing is relatively new, graduate students, medical students, pathology residents, and other physicians may benefit from a primer to provide a foundation about basic next-generation sequencing methods and applications, as well as specific examples where it has had diagnostic and prognostic utility. Next-generation sequencing technology grew out of advances in multiple fields to produce a sophisticated laboratory test with tremendous potential. Next-generation sequencing may be used in the clinical setting to look for specific genetic alterations in patients with cancer, diagnose inherited conditions such as cystic fibrosis, and detect and profile microbial organisms. This primer will review DNA sequencing technology, the commercialization of next-generation sequencing, and clinical uses of next-generation sequencing. Specific applications where next-generation sequencing has demonstrated utility in oncology are provided. PMID:29761157
Research on the Properties of the Waste Glass Concrete Composite Foundation
NASA Astrophysics Data System (ADS)
Jia, Shilong; Chen, Kaihui; Chen, Zhongliang
2018-02-01
The composite foundation of glass concrete can not only reuse the large number of waste glass, but also improve the bearing capacity of weak foundation and soil with special properties. In this paper, the engineering properties of glass concrete composite foundation are studied based on the development situation of glass concrete and the technology of composite foundation.
NASA's In Space Propulsion Technology Program Accomplishments and Lessons Learned
NASA Technical Reports Server (NTRS)
Johnson, Les C.; Harris, David
2008-01-01
NASA's In-Space Propulsion Technology (ISPT) Program was managed for 5 years at the NASA MSFC and significant strides were made in the advancement of key transportation technologies that will enable or enhance future robotic science and deep space exploration missions. At the program's inception, a set of technology investment priorities were established using an NASA-wide, mission-driven prioritization process and, for the most part, these priorities changed little - thus allowing a consistent framework in which to fund and manage technology development. Technologies in the portfolio included aerocapture, advanced chemical propulsion, solar electric propulsion, solar sail propulsion, electrodynamic and momentum transfer tethers, and various very advanced propulsion technologies with significantly lower technology readiness. The program invested in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. By developing the capability to support mid-term robotic mission needs, the program was to lay the technological foundation for travel to nearby interstellar space. The ambitious goals of the program at its inception included supporting the development of technologies that could support all of NASA's missions, both human and robotic. As time went on and budgets were never as high as planned, the scope of the program was reduced almost every year, forcing the elimination of not only the broader goals of the initial program, but also of funding for over half of the technologies in the original portfolio. In addition, the frequency at which the application requirements for the program changed exceeded the development time required to mature technologies: forcing sometimes radical rescoping of research efforts already halfway (or more) to completion. At the end of its fifth year, both the scope and funding of the program were at a minimum despite the program successfully meeting all of it's initial high priority objectives. This paper will describe the program, its requirements, technology portfolio, and technology maturation processes. Also discussed will be the major technology milestones achieved and the lessons learned from managing a $100M+ technology program.
Success Stories in Control: Nonlinear Dynamic Inversion Control
NASA Technical Reports Server (NTRS)
Bosworth, John T.
2010-01-01
NASA plays an important role in advancing the state of the art in flight control systems. In the case of Nonlinear Dynamic Inversion (NDI) NASA supported initial implementation of the theory in an aircraft and demonstration in a space vehicle. Dr. Dale Enns of Honeywell Aerospace Advanced Technology performed this work in cooperation with NASA and under NASA contract. Honeywell and Lockheed Martin were subsequently contracted by AFRL to create "Design Guidelines for Multivariable Control Theory". This foundational work directly contributed to the advancement of the technology and the credibility of the control law as a design option. As a result Honeywell collaborated with Lockheed Martin to produce a Nonlinear Dynamic Inversion controller for the X-35 and subsequently Lockheed Martin did the same for the production Lockheed Martin F-35 vehicle. The theory behind NDI is to use a systematic generalized approach to controlling a vehicle. Using general aircraft nonlinear equations of motion and onboard aerodynamic, mass properties, and engine models specific to the vehicle, a relationship between control effectors and desired aircraft motion can be formulated. Using this formulation a control combination is used that provides a predictable response to commanded motion. Control loops around this formulation shape the response as desired and provide robustness to modeling errors. Once the control law is designed it can be used on a similar class of vehicle with only an update to the vehicle specific onboard models.
Innovation in the Harnessing and Transfer of Technology: The Gran Mariscal de Ayacucho Foundation
ERIC Educational Resources Information Center
Lerner de Almea, Ruth
1977-01-01
Discusses the background, organization, success, problems, and functions of the Gran Mariscal de Ayacucho Foundation, Caracas, Venezuela, for producing human resources for the harnessing of scientific technology. The fellowship program supports study by students both at home and abroad. (SL)
Low Specific On-Resistance SOI LDMOS with Non-Depleted Embedded P-Island and Dual Trench Gate
NASA Astrophysics Data System (ADS)
Fan, Jie; Sun, Sheng-Ming; Wang, Hai-Zhu; Zou, Yong-Gang
2018-03-01
Not Available Supported by the Youth Science Foundation of Changchun University of Science and Technology under Grant No XQNJJ-2015-10, and the Innovation Science Foundation of Changchun University of Science and Technology under Grant No XJJLG-2016-07.
Laboratory Directed Research and Development Program FY98
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, T.; Chartock, M.
1999-02-05
The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program providesmore » the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.« less
Engaging Girls in STEM: A Discussion of Foundational and Current Research on What Works
NASA Astrophysics Data System (ADS)
Peterson, K.; Jesse, J.; Migus, L. H.
2012-08-01
Diversity in science, technology, engineering, and mathematics (STEM) education and careers occupies center stage in national discussions on U.S. competitiveness in the 21st century. Women constitute roughly half the total workforce in the U.S., but they hold just 25% of mathematical and science jobs and 11% of engineering jobs. Women earn nearly 60% of all bachelors and masters degrees, except in physics, computer science, and engineering, where the percentages are 20-25%. This disparity is even more pronounced at the doctoral level, where women earn fewer than 20% of awarded Ph.D.'s in physics or engineering. However, at the high school level, there is far less gender disparity: both female and male students take comparable advanced physical science and math courses. What, then, accounts for the lack of gender diversity in STEM advanced education and career paths? In fact, there is no consensus even among experts. So, what information and strategies do the EPO community need to know and include as part of designing and implementing programs to encourage more girls and women to engage in STEM for the long term? The panelists will discuss foundational and current research on pressing questions on why these trends exist and what can be done to change them. They will highlight research and evaluation results from programs that are successfully engaging girls in STEM.
E224G Regulation of the PIP2-Induced Gating Kinetics of Kir2.1 Channels
NASA Astrophysics Data System (ADS)
Ren, Shu-Xi; Li, Jun-Wei; Zhang, Su-Hua; Logothetis, D. E.; An, Hai-Long; Zhan, Yong
2017-01-01
Not Available Supported by the National Natural Science Foundation for Distinguished Young Scholars of Hebei Province under Grant Nos C2015202340 and C2013202244, the Foundation for Outstanding Talents of Hebei Province under Grant No C201400305, the National Natural Science Foundation of China under Grant Nos 11247010, 11175055, 11475053, 11347017, 31400711 and 11647121, the NIH R01 under Grant No HL059949-18, the Foundation for the Science and Technology Program of Higher Education Institutions of Hebei Province under Grant No QN2016113, and the Scientific Innovation Fund for Excellent Young Scientists of Hebei University of Technology under Grant No 2015010.
Sterilization of mycete attached on the unearthed silk fabrics by an atmospheric pressure plasma jet
NASA Astrophysics Data System (ADS)
Zhang, Rui; Yu, Jin-song; Huang, Jun; Chen, Guang-liang; Liu, Xin; Chen, Wei; Wang, Xing-quan; Li, Chao-rong
2018-05-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11665005, 11505032, 11547139, 51672249, and 11565003), the Zhejiang Natural Science Foundation of China (Grant No. LY16A050002), the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20161BAB211026, 20171ACB21049, and 20171BAB211012), the Science and Technology Project of Jiangxi Provincial Department of Education, China (Grant No. GJJ150981), the Program for Innovative Research Team of Zhejiang Sci-Tech University, China, and the Opening Foundation of Insititue of Textile Technology, Wuhan Texitle Universitiy, China (Grant No. GCZX201702).
Small satellites (MSTI-3) for remote sensing: pushing the limits of sensor and bus technology
NASA Astrophysics Data System (ADS)
Jeffrey, William; Fraser, James C.; Gobel, Richard W.; Matlock, Richard S.; Schneider, Garret L.
1995-01-01
The miniature sensor technology integration (MSTI) program sponsored by the United States Department of Defense (DoD) exploits advances in sensor and small satellite bus technology for theater and national missile defense. MSTI-1 and MSTI-2 were used to demonstrate the capability of the common bus and to build up the integration and management infrastructure to allow for `faster, better, cheaper' missions. MSTI-3 is the newest of the MSTI series and the first to fully exploit the developed infrastructure. Given the foundation laid down by MSTI-1 and MSTI-2, MSTI-3's mission is totally science-driven and demonstrates the quality of science possible from a small satellite in low earth orbit. The MSTI-3 satellite will achieve bus and payload performance historically attributable only to much larger satellites -- while maintaining the cost and schedule advantages inherent in small systems. The MSTI program illustrates the paradigm shift that is beginning to occur and has the mantra: `faster, better, cheaper.' The disciples of smallsat technology have adopted this mantra as a goal -- whereas the MSTI program is demonstrating its reality. The new paradigm illustrated by MSTI-3 bases its foundation on a development philosophy coined the `Three Golden Truths of Small Satellites.' First, bus and payload performance do not need to be sacrificed by a smallsat. Second, big science can be done with a smallsat. And third, a quick timeline minimizes budget exposure and increases the likelihood of a hardware program as opposed to a paper study. These themes are elaborated using MSTI-3 as an example of the tremendous potential small satellites have for making space science more affordable and accessible to a large science community.
NASA Astrophysics Data System (ADS)
Fan, Lin; Wang, Fengyou; Liang, Junhui; Yao, Xin; Fang, Jia; Zhang, Dekun; Wei, Changchun; Zhao, Ying; Zhang, Xiaodan
2017-01-01
A rising candidate for upgrading the performance of an established narrow-bandgap solar technology without adding much cost is to construct the tandem solar cells from a crystalline silicon bottom cell and a high open-circuit voltage top cell. Here, we present a four-terminal tandem solar cell architecture consisting of a self-filtered planar architecture perovskite top cell and a silicon heterojunction bottom cell. A transparent ultrathin gold electrode has been used in perovskite solar cells to achieve a semi-transparent device. The transparent ultrathin gold contact could provide a better electrical conductivity and optical reflectance-scattering to maintain the performance of the top cell compared with the traditional metal oxide contact. The four-terminal tandem solar cell yields an efficiency of 14.8%, with contributions of the top (8.98%) and the bottom cell (5.82%), respectively. We also point out that in terms of optical losses, the intermediate contact of self-filtered tandem architecture is the uppermost problem, which has been addressed in this communication, and the results show that reducing the parasitic light absorption and improving the long wavelength range transmittance without scarifying the electrical properties of the intermediate hole contact layer are the key issues towards further improving the efficiency of this architecture device. Project supported by the International Cooperation Projects of the Ministry of Science and Technology (No. 2014DFE60170), the National Natural Science Foundation of China (Nos. 61474065, 61674084), the Tianjin Research Key Program of Application Foundation and Advanced Technology (No. 15JCZDJC31300), the Key Project in the Science & Technology Pillar Program of Jiangsu Province (No. BE2014147-3), and the 111 Project (No. B16027).
Affordable Development and Demonstration of a Small NTR Engine and Stage: How Small is Big Enough?
NASA Technical Reports Server (NTRS)
Borowski, S. K.; Sefcik, R. J.; Fittje, J. E.; McCurdy, D. R.; Qualls, A. L.; Schnitzler, B. G.; Werner, J.; Weitzberg, A.; Joyner, C. R.
2015-01-01
In FY11, NASA formulated a plan for Nuclear Thermal Propulsion (NTP) development that included Foundational Technology Development followed by system-level Technology Demonstrations The ongoing NTP project, funded by NASAs Advanced Exploration Systems (AES) program, is focused on Foundational Technology Development and includes 5 key task activities:(1) Fuel element fabrication and non-nuclear validation testing of heritage fuel options;(2) Engine conceptual design;(3) Mission analysis and engine requirements definition;(4) Identification of affordable options for ground testing; and(5) Formulation of an affordable and sustainable NTP development program Performance parameters for Point of Departure designs for a small criticality-limited and full size 25 klbf-class engine were developed during FYs 13-14 using heritage fuel element designs for both RoverNERVA Graphite Composite (GC) and Ceramic Metal (Cermet) fuel forms To focus the fuel development effort and maximize use of its resources, the AES program decided, in FY14, that a leader-follower down selection between GC and cermet fuel was required An Independent Review Panel (IRP) was convened by NASA and tasked with reviewing the available fuel data and making a recommendation to NASA. In February 2015, the IRP recommended and the AES program endorsed GC as the leader fuel In FY14, a preliminary development schedule DDTE plan was produced by GRC, DOE industry for the AES program. Assumptions, considerations and key task activities are presented here Two small (7.5 and 16.5 klbf) engine sizes were considered for ground and flight technology demonstration within a 10-year timeframe; their ability to support future human exploration missions was also examined and a recommendation on a preferred size is provided.
NASA Technical Reports Server (NTRS)
Lupisella, Mark L.; Mueller, Thomas
2016-01-01
This paper will provide a summary and analysis of the SpaceOps 2015 Workshop all-day session on "Advanced Technologies for Robotic Exploration, Leading to Human Exploration", held at Fucino Space Center, Italy on June 12th, 2015. The session was primarily intended to explore how robotic missions and robotics technologies more generally can help lead to human exploration missions. The session included a wide range of presentations that were roughly grouped into (1) broader background, conceptual, and high-level operations concepts presentations such as the International Space Exploration Coordination Group Roadmap, followed by (2) more detailed narrower presentations such as rover autonomy and communications. The broader presentations helped to provide context and specific technical hooks, and helped lay a foundation for the narrower presentations on more specific challenges and technologies, as well as for the discussion that followed. The discussion that followed the presentations touched on key questions, themes, actions and potential international collaboration opportunities. Some of the themes that were touched on were (1) multi-agent systems, (2) decentralized command and control, (3) autonomy, (4) low-latency teleoperations, (5) science operations, (6) communications, (7) technology pull vs. technology push, and (8) the roles and challenges of operations in early human architecture and mission concept formulation. A number of potential action items resulted from the workshop session, including: (1) using CCSDS as a further collaboration mechanism for human mission operations, (2) making further contact with subject matter experts, (3) initiating informal collaborative efforts to allow for rapid and efficient implementation, and (4) exploring how SpaceOps can support collaboration and information exchange with human exploration efforts. This paper will summarize the session and provide an overview of the above subjects as they emerged from the SpaceOps 2015 Workshop session.
Abawi, Karim; Chandra-Mouli, Venkatraman; Toskin, Igor; Festin, Mario Philip; Gertiser, Lynn; Idris, Raqibat; Hamamy, Hanan; Ali, Moazzam; Bonventure, Ameyo Masakhwe; Temmerman, Marleen; Campana, Aldo
2016-12-07
Technological advancement has resulted in the increasing use of e-learning and online education, initially in high-income countries and increasingly in low- and middle-income countries. In 2010, the Geneva Foundation for Medical Education and Research, in collaboration with the World Health Organization and partner institutions, developed an online postgraduate course "From Research to Practice: Training Course in Sexual and Reproductive Health Research". This course takes advantage of the advancing Internet technology to provide training opportunities to health professionals mostly from low- and middle-income countries whose access to quality education is constrained by time, financial resources, or both. To assess the outcomes of the course, an evaluation was conducted by sending a self-administered questionnaire to graduates of the 2010-2012 programme. The objectives were to determine if the graduates had applied the knowledge gained from the course to their work and whether they had implemented their research project developed during the course. The evaluation also appraised the number of graduates who participated in the design or implementation of a new research project since the course concluded and whether the course had contributed to advancement in their careers. A total of 175 of 219 course graduates answered the questionnaire. The evaluation revealed that the majority of respondents (98%) had utilized the knowledge acquired, with nearly half of them (47%) having published a scientific paper as author or co-author. About a third of respondents (39%) had implemented their course research project and about three quarters of them (74%) have been involved in the design or implementation of a research project after completing the course. Over three quarters (81%) of respondents opined that the course had contributed to their career advancement and almost half of them (46%) had a career promotion as a direct or indirect benefit of the course. We surmise that the course positively impacted the participants' knowledge and understanding of sexual and reproductive health, which they applied in their professional work, as well as strengthened their research capacity. Success factors for the e-learning programme include tailor-made content to meet participants' needs, flexibility of access, and ongoing engagement/personal interactivity with course coaches.
Chaos generation by a hybrid integrated chaotic semiconductor laser
NASA Astrophysics Data System (ADS)
Zhang, Ming-Jiang; Niu, Ya-Nan; Zhao, Tong; Zhang, Jian-Zhong; Liu, Yi; Xu, Yu-Hang; Meng, Jie; Wang, Yun-Cai; Wang, An-Bang
2018-05-01
Not Available Project supported by the International Science and Technology Cooperation Program of China (Grant No. 2014DFA50870), the National Natural Science Foundation of China (Grant Nos. 61377089, 61475111, and 61527819), Shanxi Province Natural Science Foundation, China (Grant No. 2015011049), Shanxi Province Youth Science and Technology Foundation, China (Grant No. 201601D021069), Shanxi Scholarship Council of China (Grant No. 2016-036), Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, China, and Program for Sanjin Scholar, China.
Reference Book of Nuclear Testing Contractors 1945-1965. Revision 1
1987-05-30
Corps of Engineers W49-129-Eng-148 Armour Research Foundation of Illinois Institute of Technology Project 3.3 AF 33(038)9761 (Air Material Command...VnVnPT^^flW1iVi’U’*J ’^." v*-" I*H*JI w VI«HIIWIWI^I ^ -i« - BUSTER JANGLE Armour Research Foundation Illinois Institute of Technology Chicago, IL...v TUMBLER SNAPPER Armour Research Foundation (ARF) AF 33(616)3218 Bendix Corp/Bendix Aviation Aviation Pacific Division Development
Hybrid functional microfibers for textile electronics and biosensors
NASA Astrophysics Data System (ADS)
Nanda Sahoo, Bichitra; Choi, Byungwoo; Seo, Jungmok; Lee, Taeyoon
2018-01-01
Fibers are low-cost substrates that are abundantly used in our daily lives. This review highlights recent advances in the fabrication and application of multifunctional fibers to achieve fibers with unique functions for specific applications ranging from textile electronics to biomedical applications. By incorporating various nanomaterials such as carbon nanomaterials, metallic nanomaterials, and hydrogel-based biomaterials, the functions of fibers can be precisely engineered. This review also highlights the performance of the functional fibers and electronic materials incorporated with textiles and demonstrates their practical application in pressure/tensile sensors, chemical/biosensors, and drug delivery. Textile technologies in which fibers containing biological factors and cells are formed and assembled into constructions with biomimetic properties have attracted substantial attention in the field of tissue engineering. We also discuss the current limitations of functional textile-based devices and their prospects for use in various future applications. Project supported by the Priority Research Centers Program (No. 2012-0006689) through the National Research Foundation (NRF) of Korea funded by the Ministry of Education, Science and Technology (MEST) and the R&D program of MOTIE/KEIT [10064081, Development of fiber-based flexible multimodal pressure sensor and algorithm for gesture/posture-recognizable wearable devices]. We gratefully acknowledge partial support from the National Research Foundation of Korea (No. NRF-2017K2A9A2A06013377, NRF-2017M3A7B4049466) and the Yonsei University Future-leading Research Initiative and Implantable artificial electronic skin for an ubiquitous healthcare system of 2016-12-0050. This work is also supported by KIST Project (Nos. 2E26900, 2E27630). Dr. Seo was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2016R1A6A3A03006491).
Social Foundations of Education as an Unwelcome Counter-Narrative and as Educational Praxis
ERIC Educational Resources Information Center
Tozer, Steve
2018-01-01
I am grateful for this opportunity to reflect on the field of Social Foundations of Education (SFE), in part because it affords an opportunity to advance an historical analysis of the trajectory of the field different from what we provided when my colleagues and I sent to press the "Handbook of Research the Social Foundations of…
Henly, Susan J; McCarthy, Donna O; Wyman, Jean F; Heitkemper, Margaret M; Redeker, Nancy S; Titler, Marita G; McCarthy, Ann Marie; Stone, Patricia W; Moore, Shirley M; Alt-White, Anna C; Conley, Yvette P; Dunbar-Jacob, Jacqueline
2015-01-01
The Council for the Advancement of Nursing Science aims to "facilitate and recognize life-long nursing science career development" as an important part of its mission. In light of fast-paced advances in science and technology that are inspiring new questions and methods of investigation in the health sciences, the Council for the Advancement of Nursing Science convened the Idea Festival for Nursing Science Education and appointed the Idea Festival Advisory Committee (IFAC) to stimulate dialogue about linking PhD education with a renewed vision for preparation of the next generation of nursing scientists. Building on the 2005 National Research Council report Advancing The Nation's Health Needs and the 2010 American Association of Colleges of Nursing Position Statement on the Research-Focused Doctorate Pathways to Excellence, the IFAC specifically addressed the capacity of PhD programs to prepare nursing scientists to conduct cutting-edge research in the following key emerging and priority areas of health sciences research: omics and the microbiome; health behavior, behavior change, and biobehavioral science; patient-reported outcomes; big data, e-science, and informatics; quantitative sciences; translation science; and health economics. The purpose of this article is to (a) describe IFAC activities, (b) summarize 2014 discussions hosted as part of the Idea Festival, and (c) present IFAC recommendations for incorporating these emerging areas of science and technology into research-focused doctoral programs committed to preparing graduates for lifelong, competitive careers in nursing science. The recommendations address clearer articulation of program focus areas; inclusion of foundational knowledge in emerging areas of science in core courses on nursing science and research methods; faculty composition; prerequisite student knowledge and skills; and in-depth, interdisciplinary training in supporting area of science content and methods. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Cheung, W.
2012-12-01
Under the auspices of the National Science Foundation's Advanced Technological Education Grant and the Department of Education's Title V/HSI Grant, Palomar College students from a variety of disciplines have not only been exposed to the high growth field of geospatial technologies, but have also been exposed to the geosciences and regional environmental issues in their GIS courses. By integrating introductory Physical Geography topics such as liquefaction, subsidence, ozone depletion, plate tectonics, and coastal processes in the introductory GIS curriculum, GIS students from fields ranging from Archaeology to Zoology were exposed to basic geosciences theories in a series of hands-on interactive exercises, while gaining competency in geospatial technologies. Additionally, as students undertake interdisciplinary service learning projects under the supervision of experts in the private, governmental, and nonprofit sectors, students were introduced to the STEM workplace, forged invaluable professional connections, applied their classroom knowledge to advance research (e.g. analyzing migration patterns of cephalopod), and analyzed regional environmental issues (e.g. distribution of invasive plants in state natural preserves). In order to further the retention and completion of students in GIS, Earth Science, and other STEM courses, a STEM Student Learning Center was constructed, whereby students can receive services such as supplemental instruction, walk-in tutoring, STEM counseling and transfer advising, as well as faculty and peer mentoring.
3rd congress on applied synthetic biology in Europe (Costa da Caparica, Portugal, February 2016).
Cueva, Miguel
2017-03-25
The third meeting organised by the European Federation of Biotechnology (EFB) on advances in Applied Synthetic Biotechnology in Europe (ASBE) was held in Costa da Caparica, Portugal, in February 2016. Abundant novel applications in synthetic biology were described in the six sessions of the meeting, which was divided into technology and tools for synthetic biology (I, II and III), bionanoscience, biosynthetic pathways and enzyme synthetic biology, and metabolic engineering and chemical manufacturing. The meeting presented numerous methods for the development of novel synthetic strains, synthetic biological tools and synthetic biology applications. With the aid of synthetic biology, production costs of chemicals, metabolites and food products are expected to decrease, by generating sustainable biochemical production of such resources. Also, such synthetic biological advances could be applied for medical purposes, as in pharmaceuticals and for biosensors. Recurrent, linked themes throughout the meeting were the shortage of resources, the world's transition into a bioeconomy, and how synthetic biology is helping tackle these issues through cutting-edge technologies. While there are still limitations in synthetic biology research, innovation is propelling the development of technology, the standardisation of synthetic biological tools and the use of suitable host organisms. These developments are laying a foundation to providing a future where cutting-edge research could generate potential solutions to society's pressing issues, thus incentivising a transition into a bioeconomy. Copyright © 2016 Elsevier B.V. All rights reserved.
Human Exploration of the Solar System by 2100
NASA Technical Reports Server (NTRS)
Litchford, Ronald J.
2017-01-01
It has been suggested that the U.S., in concert with private entities and international partners, set itself on a course to accomplish human exploration of the solar system by the end of this century. This is a strikingly bold vision intended to revitalize the aspirations of HSF in service to the security, economic, and scientific interests of the nation. Solar system distance and time scales impose severe requirements on crewed space transportation systems, however, and fully realizing all objectives in support of this goal will require a multi-decade commitment employing radically advanced technologies - most prominently, space habitats capable of sustaining and protecting life in harsh radiation environments under zero gravity conditions and in-space propulsion technologies capable of rapid deep space transits with earth return, the subject of this paper. While near term mission destinations such as the moon and Mars can be accomplished with chemical propulsion and/or high power SEP, fundamental capability constraints render these traditional systems ineffective for solar system wide exploration. Nuclear based propulsion and alternative energetic methods, on the other hand, represent potential avenues, perhaps the only viable avenues, to high specific power space transport evincing reduced trip time, reduced IMLEO, and expanded deep space reach. Here, very long term HSF objectives for solar system wide exploration are examined in relation to the advanced propulsion technology solution landscape including foundational science, technical/engineering challenges, and developmental prospects.
Cell-based tissue engineering strategies used in the clinical repair of articular cartilage.
Huang, Brian J; Hu, Jerry C; Athanasiou, Kyriacos A
2016-08-01
One of the most important issues facing cartilage tissue engineering is the inability to move technologies into the clinic. Despite the multitude of current research in the field, it is known that 90% of new drugs that advance past animal studies fail clinical trials. The objective of this review is to provide readers with an understanding of the scientific details of tissue engineered cartilage products that have demonstrated a certain level of efficacy in humans, so that newer technologies may be developed upon this foundation. Compared to existing treatments, such as microfracture or autologous chondrocyte implantation, a tissue engineered product can potentially provide more consistent clinical results in forming hyaline repair tissue and in filling the entirety of the defect. The various tissue engineering strategies (e.g., cell expansion, scaffold material, media formulations, biomimetic stimuli, etc.) used in forming these products, as collected from published literature, company websites, and relevant patents, are critically discussed. The authors note that many details about these products remain proprietary, not all information is made public, and that advancements to the products are continuously made. Nevertheless, by understanding the design and production processes of these emerging technologies, one can gain tremendous insight into how to best use them and also how to design the next generation of tissue engineered cartilage products. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cell-based tissue engineering strategies used in the clinical repair of articular cartilage
Huang, Brian J.; Hu, Jerry C.; Athanasiou, Kyriacos A.
2016-01-01
One of the most important issues facing cartilage tissue engineering is the inability to move technologies into the clinic. Despite the multitude of review articles on the paradigm of biomaterials, signals, and cells, it is reported that 90% of new drugs that advance past animal studies fail clinical trials (1). The intent of this review is to provide readers with an understanding of the scientific details of tissue engineered cartilage products that have demonstrated a certain level of efficacy in humans, so that newer technologies may be developed upon this foundation. Compared to existing treatments, such as microfracture or autologous chondrocyte implantation, a tissue engineered product can potentially provide more consistent clinical results in forming hyaline repair tissue and in filling the entirety of the defect. The various tissue engineering strategies (e.g., cell expansion, scaffold material, media formulations, biomimetic stimuli, etc.) used in forming these products, as collected from published literature, company websites, and relevant patents, are critically discussed. The authors note that many details about these products remain proprietary, not all information is made public, and that advancements to the products are continuously made. Nevertheless, by fully understanding the design and production processes of these emerging technologies, one can gain tremendous insight into how to best use them and also how to design the next generation of tissue engineered cartilage products. PMID:27177218
Molecular cartography of the human skin surface in 3D.
Bouslimani, Amina; Porto, Carla; Rath, Christopher M; Wang, Mingxun; Guo, Yurong; Gonzalez, Antonio; Berg-Lyon, Donna; Ackermann, Gail; Moeller Christensen, Gitte Julie; Nakatsuji, Teruaki; Zhang, Lingjuan; Borkowski, Andrew W; Meehan, Michael J; Dorrestein, Kathleen; Gallo, Richard L; Bandeira, Nuno; Knight, Rob; Alexandrov, Theodore; Dorrestein, Pieter C
2015-04-28
The human skin is an organ with a surface area of 1.5-2 m(2) that provides our interface with the environment. The molecular composition of this organ is derived from host cells, microbiota, and external molecules. The chemical makeup of the skin surface is largely undefined. Here we advance the technologies needed to explore the topographical distribution of skin molecules, using 3D mapping of mass spectrometry data and microbial 16S rRNA amplicon sequences. Our 3D maps reveal that the molecular composition of skin has diverse distributions and that the composition is defined not only by skin cells and microbes but also by our daily routines, including the application of hygiene products. The technological development of these maps lays a foundation for studying the spatial relationships of human skin with hygiene, the microbiota, and environment, with potential for developing predictive models of skin phenotypes tailored to individual health.
Molecular cartography of the human skin surface in 3D
Bouslimani, Amina; Porto, Carla; Rath, Christopher M.; Wang, Mingxun; Guo, Yurong; Gonzalez, Antonio; Berg-Lyon, Donna; Ackermann, Gail; Moeller Christensen, Gitte Julie; Nakatsuji, Teruaki; Zhang, Lingjuan; Borkowski, Andrew W.; Meehan, Michael J.; Dorrestein, Kathleen; Gallo, Richard L.; Bandeira, Nuno; Knight, Rob; Alexandrov, Theodore; Dorrestein, Pieter C.
2015-01-01
The human skin is an organ with a surface area of 1.5–2 m2 that provides our interface with the environment. The molecular composition of this organ is derived from host cells, microbiota, and external molecules. The chemical makeup of the skin surface is largely undefined. Here we advance the technologies needed to explore the topographical distribution of skin molecules, using 3D mapping of mass spectrometry data and microbial 16S rRNA amplicon sequences. Our 3D maps reveal that the molecular composition of skin has diverse distributions and that the composition is defined not only by skin cells and microbes but also by our daily routines, including the application of hygiene products. The technological development of these maps lays a foundation for studying the spatial relationships of human skin with hygiene, the microbiota, and environment, with potential for developing predictive models of skin phenotypes tailored to individual health. PMID:25825778
[Ethics as first philosophy: the ethics of responsibility as a rationale for health care].
Belli, Laura Florencia; Quadrelli, Silvia
2010-01-01
The origins of bioethics as a discipline arouse from the need to provide an answer to new ethical questions generated as a result of technological advances in the health field and the new arenas in which biomedical research began to develop. Discussions were first focused on the relevance of the applicability of new technologies and the need to redefine a number of concepts related to the beginning and end of life. Then, over the years, this discipline was shaped and reconfigured incorporating issues related to the process of decision making in daily medical care, patient rights, protection of their freedoms and obligations of medical professionals, among others. The purpose of this essay is to reflect upon the ethical foundations of health care, trying to provide an answer to the question "why movide care" in light of the thought of Emmanuel Lévinas.
BTFS: The Border Trade Facilitation System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, L.R.
The author demonstrates the Border Trade Facilitation System (BTFS), an agent-based bilingual e-commerce system built to expedite the regulation, control, and execution of commercial trans-border shipments during the delivery phase. The system was built to serve maquila industries at the US/Mexican border. The BTFS uses foundation technology developed here at Sandia Laboratories' Advanced Information Systems Lab (AISL), including a distributed object substrate, a general-purpose agent development framework, dynamically generated agent-human interaction via the World-Wide Web, and a collaborative agent architecture. This technology is also the substrate for the Multi-Agent Simulation Management System (MASMAS) proposed for demonstration at this conference. Themore » BTFS executes authenticated transactions among agents performing open trading over the Internet. With the BTFS in place, one could conduct secure international transactions from any site with an Internet connection and a web browser. The BTFS is currently being evaluated for commercialization.« less
NASA Astrophysics Data System (ADS)
Liu, Peng; Xie, Shulin; Zhang, Lixiao; Zhou, Guangyi; Zhao, Xuefeng
2018-03-01
A certain level of horizontal displacement will occur during excavation or subsequent construction of deep foundation pit. If the support is improper and the horizontal displacement of the foundation pit is too large, it will cause collapse and even affect the buildings around the foundation pit, which will endanger people's life and property. Therefore, the horizontal displacement monitoring of deep foundation pit becomes more and more important. At present, the electronic total station is often used to monitor the horizontal displacement of the foundation pit, but this monitoring method is expensive, prone to accidental errors, and can not be used for real-time monitoring. Therefore, a method of monitoring the horizontal displacement of deep foundation pit by using laser projection sensing technique is proposed in this paper. The horizontal displacement of the foundation pit is replaced by the displacement of the laser spot emitted by the laser, and the horizontal displacement of the foundation pit can be obtained by identifying the displacement of the laser spot projected on the screen. A series of experiments show that the accuracy of this monitoring method meets the engineering requirements and greatly reduces the cost, which provides a new technology for the displacement monitoring of deep foundation pit.
75 FR 63209 - Advisory Committee for Education and Human Resources; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-14
... NATIONAL SCIENCE FOUNDATION Advisory Committee for Education and Human Resources; Notice of... Science Foundation announces the following meeting: Name: Advisory Committee for Education and Human... Foundation's science, technology, engineering, and mathematics (STEM) education and human resources...
ERIC Educational Resources Information Center
Pike, Mark A.
2009-01-01
The Emmanuel Schools Foundation (ESF) has so far sponsored four schools in England. Beginning with Emmanuel College in Gateshead in 1990 (which remains a City Technology College) the Foundation sponsors the King's Academy in Middlesbrough, which opened in 2003, and Trinity Academy in Thorne near Doncaster, which opened in 2005. The Foundation's…
ERIC Educational Resources Information Center
Schneider, Sandra B.
2010-01-01
The conflicts arising between the pedagogical preferences of the fields of instructional design and technology (IDT) and social foundations of education are substantial. This conflict is primarily one of pedagogical values separating the Social Foundations with its emphasis on critical and creative thinking and the presumption of value and theory…
Math, Science, and Technology in the Early Grades
ERIC Educational Resources Information Center
Clements, Douglas H.; Sarama, Julie
2016-01-01
Do young children naturally develop the foundations of science, technology, engineering, and math (STEM)? And if so, should we build on these foundations by using STEM curricula in preschools? In this article, Douglas Clements and Julie Sarama argue that the answer to both these questions is yes. First, the authors show that young children possess…
When Technique Is the Foundation of Health Care
ERIC Educational Resources Information Center
Downing, Raymond
2012-01-01
One of the clearest examples of a technological system, in the sense that Ellul discussed it, is contemporary biomedical health care. The foundation of technological systems is technique: efficient methods for achieving isolated goals. However, the goal of health care should be to achieve health in the full sense of wholeness. Traditional healing…
Engaging with Employers in Work-Based Learning: A Foundation Degree in Applied Technology
ERIC Educational Resources Information Center
Benefer, Richard
2007-01-01
Purpose: This paper aims to describe the work of Staffordshire University in engaging with local employers and local further education colleges in the development of a Foundation Degree in Applied Technology. Design/methodology/approach: Following an outline of current government policy in employer engagement, the paper identifies--from the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benz, Jacob M.; Tanner, Jennifer E.; Smart, Heidi A.
2016-01-18
The objective of this report is to identify the foundational elements which will drive the survey and evaluation of potential technologies to be considered to maintain CoK of spent fuel within a pool in the potential absence of light or in low light scenarios. These foundational elements include identifying use cases that highlight the type of environments in which the technologies may be asked to operate; the CoK elements required of the technologies, such as unique identification or presence/absence identification; the functional and operational requirements for the technologies; and the criteria against which the technologies will be evaluated.
77 FR 61033 - Advisory Committee for Education and Human Resources; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-05
... NATIONAL SCIENCE FOUNDATION Advisory Committee for Education and Human Resources; Notice of... Science Foundation announces the following meeting: Name: Advisory Committee for Education and Human... with respect to the Foundation's science technology, engineering, and mathematics (STEM) education and...
Applications and Implications of Fractional Dynamics for Dielectric Relaxation
NASA Astrophysics Data System (ADS)
Hilfer, R.
This article summarizes briefly the presentation given by the author at the NATO Advanced Research Workshop on "Broadband Dielectric Spectroscopy and its Advanced Technological Applications", held in Perpignan, France, in September 2011. The purpose of the invited presentation at the workshop was to review and summarize the basic theory of fractional dynamics (Hilfer, Phys Rev E 48:2466, 1993; Hilfer and Anton, Phys Rev E Rapid Commun 51:R848, 1995; Hilfer, Fractals 3(1):211, 1995; Hilfer, Chaos Solitons Fractals 5:1475, 1995; Hilfer, Fractals 3:549, 1995; Hilfer, Physica A 221:89, 1995; Hilfer, On fractional diffusion and its relation with continuous time random walks. In: Pekalski et al. (eds) Anomalous diffusion: from basis to applications. Springer, Berlin, p 77, 1999; Hilfer, Fractional evolution equations and irreversibility. In: Helbing et al. (eds) Traffic and granular flow'99. Springer, Berlin, p 215, 2000; Hilfer, Fractional time evolution. In: Hilfer (ed) Applications of fractional calculus in physics. World Scientific, Singapore, p 87, 2000; Hilfer, Remarks on fractional time. In: Castell and Ischebeck (eds) Time, quantum and information. Springer, Berlin, p 235, 2003; Hilfer, Physica A 329:35, 2003; Hilfer, Threefold introduction to fractional derivatives. In: Klages et al. (eds) Anomalous transport: foundations and applications. Wiley-VCH, Weinheim, pp 17-74, 2008; Hilfer, Foundations of fractional dynamics: a short account. In: Klafter et al. (eds) Fractional dynamics: recent advances. World Scientific, Singapore, p 207, 2011) and demonstrate its relevance and application to broadband dielectric spectroscopy (Hilfer, J Phys Condens Matter 14:2297, 2002; Hilfer, Chem Phys 284:399, 2002; Hilfer, Fractals 11:251, 2003; Hilfer et al., Fractional Calc Appl Anal 12:299, 2009). It was argued, that broadband dielectric spectroscopy might be useful to test effective field theories based on fractional dynamics.
Nuclear Data Uncertainty Quantification: Past, Present and Future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, D. L.
2015-01-01
An historical overview is provided of the mathematical foundations of uncertainty quantification and the roles played in the more recent past by nuclear data uncertainties in nuclear data evaluations and nuclear applications. Significant advances that have established the mathematical framework for contemporary nuclear data evaluation methods, as well as the use of uncertainty information in nuclear data evaluation and nuclear applications, are described. This is followed by a brief examination of the current status concerning nuclear data evaluation methodology, covariance data generation, and the application of evaluated nuclear data uncertainties in contemporary nuclear technology. A few possible areas for futuremore » investigation of this subject are also suggested.« less
Nuclear Data Uncertainty Quantification: Past, Present and Future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, D.L., E-mail: Donald.L.Smith@anl.gov
2015-01-15
An historical overview is provided of the mathematical foundations of uncertainty quantification and the roles played in the more recent past by nuclear data uncertainties in nuclear data evaluations and nuclear applications. Significant advances that have established the mathematical framework for contemporary nuclear data evaluation methods, as well as the use of uncertainty information in nuclear data evaluation and nuclear applications, are described. This is followed by a brief examination of the current status concerning nuclear data evaluation methodology, covariance data generation, and the application of evaluated nuclear data uncertainties in contemporary nuclear technology. A few possible areas for futuremore » investigation of this subject are also suggested.« less
Science and Technology Review June 2005
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aufderheide, M
2005-05-03
This is the articles in this month's issue: (1) Close Collaborations Advance Progress in Genomic Research--Commentary by Elbert Branscomb; (2) Mining Genomes--Livermore computer programs help locate the stretches of DNA in gene deserts that regulate protein-making genes; (3) Shedding Light on Quantum Physics--Laboratory laser research builds from the foundation of Einstein's description of the quantization of light. (4) The Sharper Image for Surveillance--Speckle imaging-an image-processing technique used in astronomy is bringing long-distance surveillance into sharper focus. (5) Keeping Cool Close to the Sun--The specially coated gamma-ray spectrometer aboard the MESSENGER spacecraft will help scientists determine the abundance of elements inmore » Mercury's crust.« less
Efficient production of spin singlets in lattice-confined spinor condensates
NASA Astrophysics Data System (ADS)
Zhao, Lichao; Chen, Zihe; Tang, Tao; Liu, Yingmei
2017-04-01
We present an efficient experimental scheme for a production of spin singlets in an antiferromagnetic spinor condensate confined by a cubic optical lattice. Via two independent detection methods, we demonstrate that about 80 percent of atoms in the lattice-confined spinor condensate can form spin singlets, immediately after the atoms cross a first-order superfluid to Mott-insulator phase transition in a sufficiently low microwave dressing field. We also discuss a good agreement between our data and the mean field theory, and two applications of spin singlets in quantum information science. We thank the National Science Foundation and the Oklahoma Center for the Advancement of Science and Technology for financial support.
... know Host an event, engage legislators, or distribute educational materials about pulmonary fibrosis. Get Involved ... CARE, RESEARCH AND TECHNOLOGY REPORTED AT PULMONARY FIBROSIS FOUNDATION CONFERENCE Physicians and ...
PHOTON2: A web-based professional development model for photonics technology education
NASA Astrophysics Data System (ADS)
Massa, Nicholas M.; Washburn, Barbara A.; Kehrhahn, Marijke; Donnelly, Judith F.; Hanes, Fenna D.
2004-10-01
In this paper, we present a web-based teacher professional development model for photonics technology education funded by the National Science Foundation Advanced Technology Education (ATE) program. In response to the rapidly growing demand for skilled photonics technicians, the PHOTON2 project will increase the number of high school teachers and community college faculty across the US proficient in teaching photonics technology at their own institutions. The project will also focus on building the capacity of educators to engage in lifelong learning through web-based professional development. Unlike the traditional professional development model whereby educators receive training through intensive short-term workshops, the PHOTON2 project team has developed a pedagogical framework designed specifically for adult learners in which technical content, curriculum development, and learner self-regulatory development are integrated into an active, collaborative, and sustained online learning environment. In Spring 2004, two cohorts of science and technology educators, career/guidance counselors, and industry mentors from eleven states including California, Pennsylvania, Texas, Arizona, Hawaii, and the six New England states commenced participation in the three-year project. Qualitative and quantitative research, focused on individual and environmental factors related to web-based learning, will examine the viability of web-based teacher/faculty professional development in engineering technology education.
Advances in ice mechanics - 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, J.S.; Hallam, S.D.; Maatanen, M.
1987-01-01
This book presents the papers given at a symposium on the interaction of icebergs with offshore platforms. Topics considered at the symposium included advances in ice mechanics in the United Kingdom, ice mechanics in Finland, recent advances in ice mechanics in Canada, advances in sea ice mechanics in the USA, foundations, monitoring, hazards, risk assessment, and deformation.
ERIC Educational Resources Information Center
de Silva, Chamelle R.; Chigona, A.; Adendorff, S. A.
2016-01-01
Among its many affordances, the interactive whiteboard (IWB) as a digital space for children's dialogic engagement in the Foundation Phase classroom remains largely under-exploited. This paper emanates from a study which was undertaken in an attempt to understand how teachers acquire knowledge of emerging technologies and how this shapes their…
ERIC Educational Resources Information Center
Crutchfield, Orpheus S. L.; Harrison, Christopher D.; Haas, Guy; Garcia, Daniel D.; Humphreys, Sheila M.; Lewis, Colleen M.; Khooshabeh, Peter
2011-01-01
The Berkeley Foundation for Opportunities in Information Technology is a decade-old endeavor to expose pre-college young women and underrepresented racial and ethnic minorities to the fields of computer science and engineering, and prepare them for rigorous, university-level study. We have served more than 150 students, and graduated more than 65…
Student Activity Ideas for the Technology Sequence Systems and Foundation Courses.
ERIC Educational Resources Information Center
New York State Education Dept., Albany.
This publication provides single-page outlines of brief ideas for high school student activities in each of the System and Foundation Courses of the New York State technology sequence. The idea outlines are provided as a resource to assist teachers in the development of student learning activities. The six courses for which ideas are presented are…
Reflections on the Draft National Educational Technology Plan 2010: Foundations for Transformation
ERIC Educational Resources Information Center
Dede, Chris
2010-01-01
This article provides personal reflections about aspects of the draft "National Educational Technology Plan 2010". Its focus is on ideas in the Plan that could be foundational for transforming our industrial-era schooling system. In sharing these thoughts, the author is speaking only for himself: they do not necessarily reflect the discussions or…
An advanced SEU tolerant latch based on error detection
NASA Astrophysics Data System (ADS)
Xu, Hui; Zhu, Jianwei; Lu, Xiaoping; Li, Jingzhao
2018-05-01
This paper proposes a latch that can mitigate SEUs via an error detection circuit. The error detection circuit is hardened by a C-element and a stacked PMOS. In the hold state, a particle strikes the latch or the error detection circuit may cause a fault logic state of the circuit. The error detection circuit can detect the upset node in the latch and the fault output will be corrected. The upset node in the error detection circuit can be corrected by the C-element. The power dissipation and propagation delay of the proposed latch are analyzed by HSPICE simulations. The proposed latch consumes about 77.5% less energy and 33.1% less propagation delay than the triple modular redundancy (TMR) latch. Simulation results demonstrate that the proposed latch can mitigate SEU effectively. Project supported by the National Natural Science Foundation of China (Nos. 61404001, 61306046), the Anhui Province University Natural Science Research Major Project (No. KJ2014ZD12), the Huainan Science and Technology Program (No. 2013A4011), and the National Natural Science Foundation of China (No. 61371025).
Spin-dependent γ softness or triaxiality in even-even 132-138Nd nuclei
NASA Astrophysics Data System (ADS)
Chai, Qing-Zhen; Wang, Hua-Lei; Yang, Qiong; Liu, Min-Liang
2015-02-01
The properties of γ instability in rapidly rotating even-even 132-138Nd isotopes have been investigated using the pairing-deformation self-consistent total-Routhian-surface calculations in a deformation space of (β2, γ, β4). It is found that even-even 134-138Nd nuclei exhibit triaxiality in both ground and excited states, even up to high-spin states. The lightest isotope possesses a well-deformed prolate shape without a γ deformation component. The current numerical results are compared with previous calculations and available observables such as quadrupole deformation β2 and the feature of γ-band levels, showing basically a general agreement with the observed trend of γ correlations (e.g. the pattern of the odd-even energy staggering of the γ band). The existing differences between theory and experiment are analyzed and discussed briefly. Supported by National Natural Science Foundation of China (10805040,11175217), Foundation and Advanced Technology Research Program of Henan Province(132300410125) and S & T Research Key Program of Henan Province Education Department (13A140667)
Mars habitat modules: launch, scaling and functional design considerations.
Bell, Larry; Hines, Gerald D
2005-07-01
The Sasakawa International Center for Space Architecture (SICSA) is undertaking a multi-year research, planning and design study that is exploring near- and long-term commercial space development opportunities. The central goal of this activity is to conceptualize a scenario of sequential, integrated private enterprise initiatives that can carry humankind forward to Mars. Each development stage is planned as a building block to provide the economic foundation, technology advancements and operational infrastructure to support others that follow. This report presents fundamental issues and requirements associated with planning human Mars initiatives that can transfer crews, habitats and equipment from Earth to Mars orbit, deliver them to the planet's surface, and return people and samples safely back to Earth. The study builds in part upon previous studies which are summarized in SICSA's: Commercial Space Development Plan and the Artificial Gravity Science and Excursion Vehicle reports. Information and conclusions produced in this study provide assumptions and a conceptual foundation for a subsequent report titled The First Mars Outpost: Planning and Concepts. c2005 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, Sang Eun
This dissertation examines gender differences in career advancement outcomes among academic science, technology, engineering and mathematics (STEM) scientists. In particular, this research examines effects of gender, PhD advisors and postdoctoral supervisors mentoring resources and gender homophily in the mentoring dyads on the career advancement outcomes at early career stages. Female academic scientists have disadvantages in the career progress in the academic STEM. They tend to fall behind throughout their career paths and to leave the field compared to their male colleagues. Researchers have found that gender differences in the career advancement are shaped by gender-biased evaluations derived from gender stereotypes. Other studies demonstrate the positive impacts of mentoring and gender homophily in the mentoring dyads. To add greater insights to the current findings of female academic scientists' career disadvantages, this dissertation investigates comprehensive effects of gender, mentoring, and gender homophily in the mentoring dyads on female scientists' career advancement outcomes in academic science. Based on the Status Characteristics Theory, the concept of mentoring, Social Capital Theory, and Ingroup Bias Theory, causal path models are developed to test direct and indirect effects of gender, mentoring resources, and gender homophily on STEM faculty's career advancement. The research models were tested using structural equation modeling (SEM) with data collected from a national survey, funded by the National Science Foundation, completed in 2011 by tenured and tenure-track academic STEM faculty from higher education institutions in the United States. Findings suggest that there is no gender difference in career advancement controlling for mentoring resources and gender homophily in the mentoring dyads and other factors including research productivity and domestic caregiving responsibilities. Findings also show that the positive relationship between gender homophily in mentoring dyads and the reception of the mentoring resources, especially regarding providing help on career development and research collaboration, lead to enhanced early stage career advancement. Insights from the findings contribute both to theoretical understandings of the overall effects of gender, mentoring, and gender homophily in the mentoring dyads on female academic scientists' career advancement at early career stages and to provide evidence of positive effects of same-gender mentoring dyads to universities.
A Tour of Big Data, Open Source Data Management Technologies from the Apache Software Foundation
NASA Astrophysics Data System (ADS)
Mattmann, C. A.
2012-12-01
The Apache Software Foundation, a non-profit foundation charged with dissemination of open source software for the public good, provides a suite of data management technologies for distributed archiving, data ingestion, data dissemination, processing, triage and a host of other functionalities that are becoming critical in the Big Data regime. Apache is the world's largest open source software organization, boasting over 3000 developers from around the world all contributing to some of the most pervasive technologies in use today, from the HTTPD web server that powers a majority of Internet web sites to the Hadoop technology that is now projected at over a $1B dollar industry. Apache data management technologies are emerging as de facto off-the-shelf components for searching, distributing, processing and archiving key science data sets both geophysical, space and planetary based, all the way to biomedicine. In this talk, I will give a virtual tour of the Apache Software Foundation, its meritocracy and governance structure, and also its key big data technologies that organizations can take advantage of today and use to save cost, schedule, and resources in implementing their Big Data needs. I'll illustrate the Apache technologies in the context of several national priority projects, including the U.S. National Climate Assessment (NCA), and in the International Square Kilometre Array (SKA) project that are stretching the boundaries of volume, velocity, complexity, and other key Big Data dimensions.
An image encryption scheme based on three-dimensional Brownian motion and chaotic system
NASA Astrophysics Data System (ADS)
Chai, Xiu-Li; Gan, Zhi-Hua; Yuan, Ke; Lu, Yang; Chen, Yi-Ran
2017-02-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 41571417 and 61305042), the National Science Foundation of the United States (Grant Nos. CNS-1253424 and ECCS-1202225), the Science and Technology Foundation of Henan Province, China (Grant No. 152102210048), the Foundation and Frontier Project of Henan Province, China (Grant No. 162300410196), China Postdoctoral Science Foundation (Grant No. 2016M602235), the Natural Science Foundation of Educational Committee of Henan Province, China (Grant No. 14A413015), and the Research Foundation of Henan University, China (Grant No. xxjc20140006).
Future Dietitian 2025: informing the development of a workforce strategy for dietetics.
Hickson, M; Child, J; Collinson, A
2018-02-01
Healthcare is changing and the professions that deliver it need to adapt and change too. The aim of this research was to inform the development of a workforce strategy for Dietetics for 2020-2030. This included an understanding of the drivers for change, the views of stakeholders and recommendations to prepare the profession for the future. The research included three phases: (i) establishing the context which included a literature and document review (environmental scan); (ii) discovering the profession and professional issues using crowd-sourcing technology; and (iii) articulating the vision for the future using appreciative inquiry. The environmental scan described the current status of the dietetic profession, the changing healthcare environment, the context in which dietitians work and what future opportunities exist for the profession. The online conversation facilitated by crowd-sourcing technology asked the question: 'How can dietitians strengthen their future role, influence and impact?' Dietitians and interested stakeholders (726 and 109, respectively) made 6130 contributions. Seven priorities were identified and fed into the appreciative inquiry event. The event bought together 54 dietitians and analysis of the discussions generated five themes: (i) professional identity; (ii) strong foundations-creating structure and direction for the profession; (iii) amplifying visibility and influence; (iv) embracing advances in science and technology; and (v) career advancement and emerging opportunities. A series of recommendations were made for the next steps in moving the workforce to a new future. The future for dietetics looks bright, embracing technology, as well as exploring different ways of working and new opportunities, as this dynamic profession continues to evolve. © 2017 The British Dietetic Association Ltd.
NASA Technical Reports Server (NTRS)
Bruckner, Robert J.
2010-01-01
Over the past several years the term oil-free turbomachinery has been used to describe a rotor support system for high speed turbomachinery that does not require oil for lubrication, damping, or cooling. The foundation technology for oil-free turbomachinery is the compliant foil bearing. This technology can replace the conventional rolling element bearings found in current engines. Two major benefits are realized with this technology. The primary benefit is the elimination of the oil lubrication system, accessory gearbox, tower shaft, and one turbine frame. These components account for 8 to 13 percent of the turbofan engine weight. The second benefit that compliant foil bearings offer to turbofan engines is the capability to operate at higher rotational speeds and shaft diameters. While traditional rolling element bearings have diminished life, reliability, and load capacity with increasing speeds, the foil bearing has a load capacity proportional to speed. The traditional applications for foil bearings have been in small, lightweight machines. However, recent advancements in the design and manufacturing of foil bearings have increased their potential size. An analysis, grounded in experimentally proven operation, is performed to assess the scalability of the modern foil bearing. This analysis was coupled to the requirements of civilian turbofan engines. The application of the foil bearing to larger, high bypass ratio engines nominally at the 120 kN (approx.25000 lb) thrust class has been examined. The application of this advanced technology to this system was found to reduce mission fuel burn by 3.05 percent.
Performance of a Fuel-Cell-Powered, Small Electric Airplane Assessed
NASA Technical Reports Server (NTRS)
Berton, Jeffrey J.
2004-01-01
Rapidly emerging fuel-cell-power technologies may be used to launch a new revolution of electric propulsion systems for light aircraft. Future small electric airplanes using fuel cell technologies hold the promise of high reliability, low maintenance, low noise, and - with the exception of water vapor - zero emissions. An analytical feasibility and performance assessment was conducted by NASA Glenn Research Center's Airbreathing Systems Analysis Office of a fuel-cell-powered, propeller-driven, small electric airplane based on a model of the MCR-01 two-place kitplane (Dyn'Aero, Darois, France). This assessment was conducted in parallel with an ongoing effort by the Advanced Technology Products Corporation and the Foundation for Advancing Science and Technology Education. Their project - partially funded by a NASA grant - is to design, build, and fly the first manned, continuously propelled, nongliding electric airplane. In our study, an analytical performance model of a proton exchange membrane (PEM) fuel cell propulsion system was developed and applied to a notional, two-place light airplane modeled after the MCR-01 kitplane. The PEM fuel cell stack was fed pure hydrogen fuel and humidified ambient air via a small automotive centrifugal supercharger. The fuel cell performance models were based on chemical reaction analyses calibrated with published data from the fledgling U.S. automotive fuel cell industry. Electric propeller motors, rated at two shaft power levels in separate assessments, were used to directly drive a two-bladed, variable-pitch propeller. Fuel sources considered were compressed hydrogen gas and cryogenic liquid hydrogen. Both of these fuel sources provided pure, contaminant-free hydrogen for the PEM cells.
Application of NASA's Advanced Life Support Technologies in Polar Regions
NASA Technical Reports Server (NTRS)
Bubenheim, David L.
1997-01-01
The problems of obtaining adequate pure drinking water and disposing of liquid and solid waste in the U.S Arctic, a region where virtually all water is frozen solid for much of the year, has led to unsanitary solutions. Sanitation and a safe water supply are particularly problems in rural villages. These villages are without running water and use plastic buckets for toilets. The outbreak of diseases is believed to be partially attributable to exposure to human waste and lack of sanitation. Villages with the most frequent outbreaks of disease are those in which running water is difficult to obtain. Waste is emptied into open lagoons, rivers, or onto the sea coast. It does not degrade rapidly and in addition to affecting human health, can be harmful to the fragile ecology of the Arctic and the indigenous wildlife and fish populations. Current practices for waste management and sanitation pose serious human hazards as well as threaten the environment. NASA's unique knowledge of water/wastewater treatment systems for extreme environments, identified in the Congressional Office of Technology Assessment report entitled An Alaskan Challenge: Native Villagt Sanitation, may offer practical solutions addressing the issues of safe drinking water and effective sanitation practices in rural villages. NASA's advanced life support technologies are being combined with Arctic science and engineering knowledge to address the unique needs of the remote communities of Alaska through the Advanced Life Systems for Extreme Environments (ALSEE) project. ALSEE is a collaborative effort involving the NASA, the State of Alaska, the University of Alaska, the North Slope Borough of Alaska, Ilisagvik College in Barrow and the National Science Foundation (NSF). The focus is a major issue in the State of Alaska and other areas of the Circumpolar North; the health and welfare of its people, their lives and the subsistence lifestyle in remote communities, economic opportunity, and care for the environment. As advanced technologies are transferred to the commercial sector the ALSEE project Offers the potential for development of new industries in Alaska to supply the products to support remote communities of the globe.
Delivery of agricultural technology to resource-poor farmers in Africa.
Mignouna, Hodeba D; Abang, Mathew M; Omanya, Gospel; Nang'ayo, Francis; Bokanga, Mpoko; Boadi, Richard; Muchiri, Nancy; Terry, Eugene
2008-01-01
Recent developments in agricultural science and technology have the potential to transform the agricultural sector in the developing world. These technological advances constitute key drivers of economic growth and hold great promise for poverty reduction in sub-Saharan Africa (SSA). Agricultural research and development in Africa is undergoing a major paradigm shift. Until recently, public-sector institutions in Africa worked in isolation to create and disseminate agricultural technologies to smallholder farmers. However, they need access to improved proprietary technologies developed for the most part by the private sector in developed countries. These technologies are currently concentrated in the hands of a few large corporations and are protected by intellectual property rights. The African Agricultural Technology Foundation (AATF) is a new initiative addressing the challenges associated with the access, development, and deployment of agricultural technologies to smallholder farmers in SSA. This article describes the AATF model of facilitating the creation of partnership alliances dedicated to promote and support collaboration among a wide variety of public- and private-sector organizations around shared agricultural research and development goals for the public good. It explains AATF's public-private partnership framework for technology delivery in the light of market failures, institutional constraints, and systemic weaknesses, which impede public-sector organizations from accessing and delivering pro-poor knowledge and technology to farmers. The article provides policy makers, research managers, and business decision makers with an understanding of how access to, and delivery of, proprietary technologies could contribute to food security and the improvement of farmers' livelihoods in Africa.
Center for the Advancement of Health
... Cancer Care Kellogg Health Scholars Program KP Burch Leadership Program Diversity Data Place, Migration & Health Network * The Center for Advancing Health was a nonprofit organization founded in 1992, supported by individuals and foundations ...
76 FR 6828 - National Science Board; Sunshine Act Meetings; Notice
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-08
... Future Advancement: Discussion in the Context of Recent STEM Education Policy Developments Committee on... NATIONAL SCIENCE FOUNDATION National Science Board; Sunshine Act Meetings; Notice The National Science Board, pursuant to NSF regulations (45 CFR Part 614), the National Science Foundation Act, as...
[Analysis on the trend of innovation and development in the field of ophthalmology].
Shan, L H; An, X Y; Xu, M M; Fan, S P; Zhong, H; Ni, P; Chi, H
2018-06-11
Objective: To systematically analyze the innovation and development trend in the field of ophthalmology. Methods: The latest ophthalmology funding program from the National Eye Institute and National Natural Science Foundation of China, and funding project for 2012 to 2016 from the National Institutes of Health, National Natural Science Foundation of China and National key research and development plan of China was collected. Using the comparative analysis method, the major ophthalmology funding areas at home and abroad were analyzed. Papers published in 2012 to 2016 in the field of ophthalmology were collected from the Web of Science Core Collection, among which ESI highly cited papers and hot papers were particularly selected. Using bibliometric methods, the time trend of the number of papers and the citation frequency were analyzed. Using the co-occurrence cluster analysis method, the continued focuses and emerging concerns of ophthalmology papers was analyzed. Results: The funding plan of the National Eye Institute mainly covers nine major diseases in ophthalmology. NSFC focuses on retinal damage and repair mechanisms. The National Key Research and Development Program of China focuses on research on high-end ophthalmic implants. NIH continues to focus on the molecular mechanisms of blinding eye disease such as diabetic retinopathy, age-related macular degeneration, glaucoma, corneal disease and cataracts, basic research in genetics, and advanced diagnostic techniques such as imaging. Latest areas of interest involve gene editing techniques and the application of stem cell technology in ophthalmology. In China, research and application of stem cells in ophthalmic diseases, intraocular sustained-release drug carrier, and precision medicine research in ophthalmology are emerging areas of funding. In 2012 to 2016, research topics of 168 papers collected by ESI focused on macular degeneration, retinal diseases, glaucoma and other eye diseases. How to quickly promote new drugs and new technological achievements to the clinical application is a problem in the field of ophthalmology. How to change the ophthalmology clinic model, so as to provide patients with convenient and quality service, has become a research topic that needs to be given attention to. Conclusions: Based on the multidimensional analysis of innovation and development in the field of ophthalmology, cross application and integration of ophthalmology and high - tech fields such as advanced imaging technology, stem cell technology, gene editing technology, molecular targeting, and artificial intelligence will provide a strong basis for the enhancement of China's ophthalmology research innovation and international competitiveness. Research efforts for ophthalmic transformation should be strengthened, in order to realize the clinical application of the achievements as soon as possible. (Chin J Ophthalmol, 2018, 54: 452 - 463) .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borth, F.C. III; Thompson, J.W.; Mishaga, J.M.
1996-11-01
Through ComEd Fossil (Generating) Division`s Competitive Action Plan (CAP) evaluation changes have been identified which are necessary to improve generating station performance. These changes are intended to improve both station reliability and financial margins, and are essential for stations to be successful in a competitive marketplace. Plant upgrades, advanced equipment stewardship, and personnel reductions have been identified as necessary steps in achieving industry leadership and competitive advantage. To deal effectively with plant systems and contend in the competitive marketplace Information Technology (IT) solutions to business problems are being developed. Data acquisition, storage, and retrieval are being automated through use ofmore » state-of-the-art Data Historians. Total plant, high resolution, long term process information will be accessed through Local/Wide Area Networks (LAN/WAN) connections from desktop PC`s. Generating unit Thermal Performance Monitors accessing the Data Historian will analyze plant and system performance enabling reductions in operating costs, and improvements in process control. As inputs to proactive maintenance toolsets this data allows anticipation of equipment service needs, advanced service scheduling, and cost/benefit analysis. The ultimate goal is to optimize repair needs with revenue generation. Advanced applications building upon these foundations will bring knowledge of the costs associated with all the products a generating station offers its customer(s). An overall design philosophy along with preliminary results is presented; these results include shortfalls, lessons learned, and future options.« less
Space Station Freedom ECLSS: A step toward autonomous regenerative life support systems
NASA Technical Reports Server (NTRS)
Dewberry, Brandon S.
1990-01-01
The Environmental Control and Life Support System (ECLSS) is a Freedom Station distributed system with inherent applicability to extensive automation primarily due to its comparatively long control system latencies. These allow longer contemplation times in which to form a more intelligent control strategy and to prevent and diagnose faults. The regenerative nature of the Space Station Freedom ECLSS will contribute closed loop complexities never before encountered in life support systems. A study to determine ECLSS automation approaches has been completed. The ECLSS baseline software and system processes could be augmented with more advanced fault management and regenerative control systems for a more autonomous evolutionary system, as well as serving as a firm foundation for future regenerative life support systems. Emerging advanced software technology and tools can be successfully applied to fault management, but a fully automated life support system will require research and development of regenerative control systems and models. The baseline Environmental Control and Life Support System utilizes ground tests in development of batch chemical and microbial control processes. Long duration regenerative life support systems will require more active chemical and microbial feedback control systems which, in turn, will require advancements in regenerative life support models and tools. These models can be verified using ground and on orbit life support test and operational data, and used in the engineering analysis of proposed intelligent instrumentation feedback and flexible process control technologies for future autonomous regenerative life support systems, including the evolutionary Space Station Freedom ECLSS.
Using Virtual Reality to Bring Ocean Science Field Experiences to the Classroom and Beyond
NASA Astrophysics Data System (ADS)
Waite, A. J.; Rosenberg, A.; Frehm, V.; Gravinese, P.; Jackson, J.; Killingsworth, S.; Williams, C.
2017-12-01
While still in its infancy, the application of virtual reality (VR) technology to classroom education provides unparalleled opportunities to transport students to otherwise inaccessible localities and increase awareness of and engagement in STEAM fields. Here we share VR programming in development by the ANGARI Foundation, a 501(c)(3) nonprofit committed to advancing ocean science research and education. ANGARI Foundation's series of thematic VR films features the research of ocean scientists from onboard the Foundation's research vessel, R/V ANGARI. The films are developed and produced through an iterative process between expedition scientists, the film production team, and ANGARI staff and Educator Council members. Upon completion of filming, the K-12 and informal educators of ANGARI's Educator Council work with ANGARI staff and affiliated scientists to develop and implement standards-aligned (e.g. Next Generation Science Standards and International Baccalaureate) lesson plans for the classroom. The goal of ANGARI Foundation's VR films is to immerse broad audiences in the marine environment, while actively engaging them in the at-sea scientific methods of expert scientists, ultimately increasing knowledge of our oceans and promoting their conservation. The foundation's VR films and developed lessons are made available for free to the public via YouTube and www.ANGARI.org. While South Florida educators may request that ANGARI Foundation visit their classrooms and bring the necessary headsets to run the experience, the Foundation is also partnering with VR hardware companies to facilitate the acquisition and adoption of VR headsets by schools in the U.S. and abroad. In this presentation we will share our most recent VR film that highlights coral reef ecosystems and the Florida Reef Tract, taking an interdisciplinary approach to investigating how it has changed over time and the issues and opportunities it currently faces. We will also discuss classroom implementation of VR and the invaluable opportunities that the ANGARI VR series provides for educator professional development and public engagement as it continues to break down barriers between scientists and the public.
Proposed National Science Foundation Budget on Target to Double
NASA Astrophysics Data System (ADS)
Showstack, Randy
2009-06-01
The Obama administration's proposed fiscal year (FY) 2010 budget for the U.S. National Science Foundation (NSF) is US$7.05 billion, $555 million (8.5%) above its FY 2009 budget, and is in addition to $3 billion in stimulus funding from the 2009 American Recovery and Reinvestment Act (ARRA). The proposed funding, which represents strong support from the administration for NSF and for science and technology, would put the foundation on track to double its budget between 2006 and 2016 (see Eos, 90(10), 83, 2009; 90(20), 175, 2009; and 90(21), 183, 2009). Agency-wide, the FY 2010 request would increase most appropriations accounts. Research and Related Activities would receive $5.73 billion, up $550.1 million (10.6%) compared with the FY 2009 budget. Education and Human Resources would register a slight rise to $857.8 million, up $12.5 million (1.5%). Major Research Equipment and Facilities Construction ( MREFC) would dip to $117.3 million, down $34.7 million (22.8%). The MREFC account would include $46.3 million for the Advanced Laser Interferometer Gravitational Wave Observatory, $42.8 million for the Atacama Large Millimeter Array (down from $82.3 million), $14.3 million for the Ocean Observatories Initiative (which received $105.9 million in stimulus funding), and $0.95 million for IceCube (down from $11.3 million in its final year of funding).
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. House Committee on Science, Space and Technology.
This document contains prepared remarks and testimony of the hearings before the subcommittee on science, research and technology regarding the oversight of the National Science Foundation (NSF) particularly the status of science education in the United States. The document includes the testimony and prepared statements of: (1) Hon. Sherwood…
Wilderer, P A
2005-01-01
Installation of advanced urban water management systems is one of the most important first steps in the attempt to overcome poverty on earth, outbreak of diseases, crime and even terrorism. Because world wide application of traditional water supply, sewerage and wastewater treatment technology requires financial resources which are basically not available within a reasonable short time frame novel solutions must be found, developed and implemented. The combination of high-tech on-site treatment of the various waste streams generated in households, enterprises and industrial sites, and reuse of the valuable materials obtained from the treatment plants, including the purified water, is one of the options which is investigated by various groups of researchers and technology developers, nowadays. This concept may help meeting the UN Millennium Development Goals, provided people are ready to accept this new way of dealing with household wastes. Education is necessary to build up the foundation which modern water technology can be based upon. In parallel, tailored modifications are to be considered to satisfy the specific demands of local communities. In this context, female participation appears to be extremely important in the decision making process.
The Planetary Consciousness of British Travel Writers
NASA Astrophysics Data System (ADS)
Henry, H.
2013-04-01
Global travel, advanced in the early 20th century by trains, automobiles, and airplanes, transformed modernist thought and experience. Stephen Kern has commented that in the modern period “a series of sweeping changes in technology and culture created distinctive new modes of thinking about and experiencing of time and space. Technological innovations including the telephone, wireless telegraph, x-ray, cinema, bicycle, automobile, and airplane established the material foundation for this reorientation.” (1983, pp. 1-2). Emerging travel technologies not only hurled passengers through multiple time zones in a day but also brought to the fore a global awareness regarding Earth as a globe in space and one's position on it. As early as 1909, while traveling in Florence, Virginia Woolf had noted in her diary, “It is strange how one begins to hold a globe in one's head: I can travel from Florence to Fitzroy Square on solid land all the time” (1984, p. 399). This paper traces the ways modernist British travel writers challenged England's geographical and geopolitical imagination at the turn of the 20th century through their travel narratives.
Visualizing Chemistry: The Progess and Promise of Advanced Chemical Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Committee on Revealing Chemistry Through Advanced Chemical Imaging
2006-09-01
The field of chemical imaging can provide detailed structural, functional, and applicable information about chemistry and chemical engineering phenomena that have enormous impacts on medicine, materials, and technology. In recognizing the potential for more research development in the field of chemical imaging, the National Academies was asked by the National Science Foundation, Department of Energy, U.S. Army, and National Cancer Institute to complete a study that would review the current state of molecular imaging technology, point to promising future developments and their applications, and suggest a research and educational agenda to enable breakthrough improvements in the ability to image molecularmore » processes simultaneously in multiple physical dimensions as well as time. The study resulted in a consensus report that provides guidance for a focused research and development program in chemical imaging and identifies research needs and possible applications of imaging technologies that can provide the breakthrough knowledge in chemistry, materials science, biology, and engineering for which we should strive. Public release of this report is expected in early October.« less
[The democratic side of science-fiction].
Lecellier, Charles-Henri
2011-04-01
Suspicion towards technological advances has progressively grown during the xx(th) century. However, in the XXI(st) century, reading the NBIC (nanotechnology, biotechnology, information technology and cognitive science) report of the National Science Foundation, we can note that science has caught up with science fiction. These changes in public mentality on one side and in scientific capacities on the other argue for an evolution of the debate on sciences. The recent example of the national debate on nanotechnology in France has clearly shown that the public is no longer waiting for additional sources of scientific knowledge but rather waiting for the recognition of its authority to participate in the definition of the national R&D priority and associated scientific strategies. This is all the more legitimate that these strategies will have profound impact on the future of our societies and therefore cannot be decided only by scientists. Hence, it is crucial to identify innovative tools promoting debate on sciences and their technological spin-off. Here, we contend that science fiction has major assets that could face this challenge and facilitate the dialogue between sciences and society.
Science at the interstices: an evolution in the academy.
Balser, Jeffrey R; Baruchin, Andrea
2008-09-01
Biomedical science is at an evolutionary turning point. Many of the rate-limiting steps to realizing the next generation of personalized, highly targeted diagnostics and therapeutics rest at the interstices between biomedical science and the classic, university-based disciplines, such as physics, mathematics, computational science, engineering, social sciences, business, and law. Institutes, centers, or other entities created to foster interdisciplinary science are rapidly forming to tackle these formidable challenges, but they are plagued with substantive barriers, born of traditions, processes, and culture, which impede scientific progress and endanger success. Without a more seamless interdisciplinary framework, academic health centers will struggle to move transformative advances in technology into the foundation of biomedical science, and the equally challenging advancement of models that effectively integrate new molecular diagnostics and therapies into the business and social fabric of our population will be similarly hampered. At the same time, excess attention on rankings tied to competition for National Institutes of Health and other federal funds adversely encourages academic medical centers (AMCs) and universities to hoard, rather than share, resources effectively and efficiently. To fully realize their discovery potential, AMCs must consider a substantive realignment relative to one another, as well as with their associated universities, as the academy looks toward innovative approaches to provide a more supportive foundation for the emergent biomedical research enterprise. The authors discuss potential models that could serve to lower barriers to interdisciplinary science, promoting a new synergy between AMCs and their parent universities.
Agile Port and High Speed Ship Technologies
2009-12-31
Alternative Shipboard Powering Systems for Naval and Regulatory Review • The Evaluation and Implementation Plan for Southern California Maglev ...Ackerman". CSULB Foundation Annual Report. CSULB Foundation, Long Beach, CA. December 2005. " Maglev Technology ’Conveys’ Port Transportation Solutions...34. Newsflash. College of Engineering, California State University, Long Beach. Cover page. Spring 2006 Hanson, Kristopher. "Engineers Tout Maglev at
ERIC Educational Resources Information Center
Ali, Holi Ibrahim Holi
2012-01-01
This paper explores EFL teachers' perceptions in relation to the pedagogical and conceptual challenges that they face in promoting generic skills in the Higher College of Technology (HCT), Muscat, in the context of post foundation level provision. A questionnaire was administered to 17 EFL teachers at HCT, at post foundation levels to investigate…
Emerging trends in technology assessment
NASA Technical Reports Server (NTRS)
Coates, V. T.
1975-01-01
Recent trends and problems in technology assessment are discussed briefly. The Congressional Office of Technology Assessment and its performance are reviewed along with technology assessment activity in the National Science Foundation.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 22 Foreign Relations 2 2011-04-01 2009-04-01 true Reports. 1507.13 Section 1507.13 Foreign Relations AFRICAN DEVELOPMENT FOUNDATION RULES SAFEGUARDING PERSONAL INFORMATION § 1507.13 Reports. (a) The Foundation shall provide to Congress and the Office of Management and Budget advance notice of any proposal...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 22 Foreign Relations 2 2013-04-01 2009-04-01 true Reports. 1507.13 Section 1507.13 Foreign Relations AFRICAN DEVELOPMENT FOUNDATION RULES SAFEGUARDING PERSONAL INFORMATION § 1507.13 Reports. (a) The Foundation shall provide to Congress and the Office of Management and Budget advance notice of any proposal...
State Technologies Advancement Collaborative
DOE Office of Scientific and Technical Information (OSTI.GOV)
David S. Terry
2012-01-30
The U. S. Department of Energy (DOE), National Association of State Energy Officials (NASEO), and Association of State Energy Research and Technology Transfer Institutions (ASERTTI) signed an intergovernmental agreement on November 14, 2002, that allowed states and territories and the Federal Government to better collaborate on energy research, development, demonstration and deployment (RDD&D) projects. The agreement established the State Technologies Advancement Collaborative (STAC) which allowed the states and DOE to move RDD&D forward using an innovative competitive project selection and funding process. A cooperative agreement between DOE and NASEO served as the contracting instrument for this innovative federal-state partnership obligatingmore » funds from DOE's Office of Energy Efficiency and Renewable Energy and Office of Fossil Energy to plan, fund, and implement RDD&D projects that were consistent with the common priorities of the states and DOE. DOE's Golden Field Office provided Federal oversight and guidance for the STAC cooperative agreement. The STAC program was built on the foundation of prior Federal-State efforts to collaborate on and engage in joint planning for RDD&D. Although STAC builds on existing, successful programs, it is important to note that it was not intended to replace other successful joint DOE/State initiatives such as the State Energy Program or EERE Special Projects. Overall the STAC process was used to fund, through three competitive solicitations, 35 successful multi-state research, development, deployment, and demonstration projects with an overall average non-federal cost share of 43%. Twenty-two states were awarded at least one prime contract, and organizations in all 50 states and some territories were involved as subcontractors in at least one STAC project. Projects were funded in seven program areas: (1) Building Technologies, (2) Industrial Technologies, (3) Transportation Technologies, (4) Distributed Energy Resources, (5) Hydrogen Technology Learning Centers, (6) Fossil Energy, and (7) Rebuild America.« less
TU-CD-BRA-11: Application of Bone Suppression Technique to Inspiratory/expiratory Chest Radiography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, R; Sanada, S; Sakuta, K
Purpose: The bone suppression technique based on advanced image processing can suppress the conspicuity of bones on chest radiographs, creating soft tissue images normally obtained by the dual-energy subtraction technique. This study was performed to investigate the usefulness of bone suppression technique in quantitative analysis of pulmonary function in inspiratory/expiratory chest radiography. Methods: Commercial bone suppression image processing software (ClearRead; Riverain Technologies) was applied to paired inspiratory/expiratory chest radiographs of 107 patients (normal, 33; abnormal, 74) to create corresponding bone suppression images. The abnormal subjects had been diagnosed with pulmonary diseases, such as pneumothorax, pneumonia, emphysema, asthma, and lung cancer.more » After recognition of the lung area, the vectors of respiratory displacement were measured in all local lung areas using a cross-correlation technique. The measured displacement in each area was visualized as displacement color maps. The distribution pattern of respiratory displacement was assessed by comparison with the findings of lung scintigraphy. Results: Respiratory displacement of pulmonary markings (soft tissues) was able to be quantified separately from the rib movements on bone suppression images. The resulting displacement map showed a left-right symmetric distribution increasing from the lung apex to the bottom region of the lung in many cases. However, patients with ventilatory impairments showed a nonuniform distribution caused by decreased displacement of pulmonary markings, which were confirmed to correspond to area with ventilatory impairments found on the lung scintigrams. Conclusion: The bone suppression technique was useful for quantitative analysis of respiratory displacement of pulmonary markings without any interruption of the rib shadows. Abnormal areas could be detected as decreased displacement of pulmonary markings. Inspiratory/expiratory chest radiography combined with the bone suppression technique has potential for predicting local lung function on the basis of dynamic analysis of pulmonary markings. This work was partially supported by Nakatani Foundation, Grant-in-aid for Scientific Research (C) of Ministry of Education, Culture, Sports, Science and Technology, JAPAN (Grant number : 24601007), and Nakatani Foundation, Mitsubishi Foundation, and the he Mitani Foundation for Research and Development. Yasushi Kishitani is a staff of TOYO corporation.« less
Laboratory directed research and development program, FY 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-02-01
The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides themore » resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.« less
Gould, Rebecca A; Canter, Deborah
2008-11-01
Fewer than 50% of registered dietitians (RDs) supervise personnel and 76% have no budget authority. Because higher salaries are tied to increasing levels of authority and responsibility, RDs must seek management and leadership roles to enjoy the increased remuneration tied to such positions. Advanced-level practice in any area of dietetics demands powerful communication abilities, proficiency in budgeting and finance, comfort with technology, higher-order decision-making/problem-solving skills, and well-honed human resource management capabilities, all foundational to competent management practice. As RDs envision the future of the dietetics profession, practitioners must evaluate management competence in both hard and soft skills. Just as research is needed to support evidenced-based clinical practice, the same is needed to support management practice across the profession. Dietetics educators and preceptors should be as enthusiastic about management practice as they are clinical practice when educating and mentoring future professionals. Such encouragement and support can mean that new RDs and dietetic technicians, registered, will understand what it takes to advance to higher levels of responsibility, authority, and subsequent enhanced remuneration. In the ever-changing social, legal, ethical, political, economic, technological, and ecological environments of work, food and nutrition professionals who are willing to step forward and assume the risks and responsibilities of management also will share in the rewards, and propel the profession to new heights of recognition and respect.
High-throughput Crystallography for Structural Genomics
Joachimiak, Andrzej
2009-01-01
Protein X-ray crystallography recently celebrated its 50th anniversary. The structures of myoglobin and hemoglobin determined by Kendrew and Perutz provided the first glimpses into the complex protein architecture and chemistry. Since then, the field of structural molecular biology has experienced extraordinary progress and now over 53,000 proteins structures have been deposited into the Protein Data Bank. In the past decade many advances in macromolecular crystallography have been driven by world-wide structural genomics efforts. This was made possible because of third-generation synchrotron sources, structure phasing approaches using anomalous signal and cryo-crystallography. Complementary progress in molecular biology, proteomics, hardware and software for crystallographic data collection, structure determination and refinement, computer science, databases, robotics and automation improved and accelerated many processes. These advancements provide the robust foundation for structural molecular biology and assure strong contribution to science in the future. In this report we focus mainly on reviewing structural genomics high-throughput X-ray crystallography technologies and their impact. PMID:19765976
Multi-Infarct Dementia: A Historical Perspective.
McKay, Erin; Counts, Scott E
2017-01-01
Multi-infarct dementia (MID), a prominent subtype of vascular dementia (VaD), has only achieved recognition in the last 4 decades. Since its original description, the characterization, etiological understanding, and therapeutic direction of MID and other VaD subtypes has progressed at an astounding rate. This paper divides the landmark discoveries and emergence of new research strategies for MID into decade-defining patterns so that a condensed picture of the total history of MID and its eventual inclusion as a VaD subtype emerges. This paper follows the first descriptive decade, a shift to a preventative focus, a renewed interest coinciding with timely advances in research technology, and a hopeful return to treatment possibilities for VaD. Concisely tracing the historical lineage of the modern understanding of MID, both as a singular entity and as part of the VaD con-stellation of disorders, provides a novel perspective on the foundation upon which future advances in combating vascular contributions to dementia will be based.
Anti-Lung-Cancer Activity and Liposome-Based Delivery Systems of β-Elemene
Chen, Meiwan; Zhang, Jinming; Yu, Siqin; Wang, Shengpeng; Zhang, Zaijun; Chen, Jianqiang; Xiao, Jian; Wang, Yitao
2012-01-01
In the past decade, β-elemene played an important role in enhancing the effects of many anticancer drugs and was widely used in the treatment of different kinds of malignancies and in reducing the side effects of chemotherapy. Further study showed that it is also a promising anti-lung cancer drug. However, the clinical application of β-elemene was limited by its hydrophobic property, poor stability, and low bioavailability. With the development of new excipients and novel technologies, plenty of novel formulations of β-elemene have improved dramatically, which provide a positive perspective in terms of clinical application for β-elemene. Liposome as a drug delivery system shows great advantages over traditional formulations for β-elemene. In this paper, we summarize the advanced progress being made in anti-lung cancer activity and the new liposomes delivery systems of β-elemene. This advancement is expected to improve the level of pharmacy research and provide a stronger scientific foundation for further study on β-elemene. PMID:23243436
Recent advances in sequence assembly: principles and applications.
Chen, Qingfeng; Lan, Chaowang; Zhao, Liang; Wang, Jianxin; Chen, Baoshan; Chen, Yi-Ping Phoebe
2017-11-01
The application of advanced sequencing technologies and the rapid growth of various sequence data have led to increasing interest in DNA sequence assembly. However, repeats and polymorphism occur frequently in genomes, and each of these has different impacts on assembly. Further, many new applications for sequencing, such as metagenomics regarding multiple species, have emerged in recent years. These not only give rise to higher complexity but also prevent short-read assembly in an efficient way. This article reviews the theoretical foundations that underlie current mapping-based assembly and de novo-based assembly, and highlights the key issues and feasible solutions that need to be considered. It focuses on how individual processes, such as optimal k-mer determination and error correction in assembly, rely on intelligent strategies or high-performance computation. We also survey primary algorithms/software and offer a discussion on the emerging challenges in assembly. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Some recent advances of intelligent health monitoring systems for civil infrastructures in HIT
NASA Astrophysics Data System (ADS)
Ou, Jinping
2005-06-01
The intelligent health monitoring systems more and more become a technique for ensuring the health and safety of civil infrastructures and also an important approach for research of the damage accumulation or even disaster evolving characteristics of civil infrastructures, and attracts prodigious research interests and active development interests of scientists and engineers since a great number of civil infrastructures are planning and building each year in mainland China. In this paper, some recent advances on research, development nad implementation of intelligent health monitoring systems for civil infrastructuresin mainland China, especially in Harbin Institute of Technology (HIT), P.R.China. The main contents include smart sensors such as optical fiber Bragg grating (OFBG) and polivinyllidene fluoride (PVDF) sensors, fatigue life gauges, self-sensing mortar and carbon fiber reinforced polymer (CFRP), wireless sensor networks and their implementation in practical infrastructures such as offshore platform structures, hydraulic engineering structures, large span bridges and large space structures. Finally, the relative research projects supported by the national foundation agencies of China are briefly introduced.
Abramoff, Michael D.; Fort, Patrice E.; Han, Ian C.; Jayasundera, K. Thiran; Sohn, Elliott H.; Gardner, Thomas W.
2018-01-01
The Early Treatment Diabetic Retinopathy Study (ETDRS) and other standardized classification schemes have laid a foundation for tremendous advances in the understanding and management of diabetic retinopathy (DR). However, technological advances in optics and image analysis, especially optical coherence tomography (OCT), OCT angiography (OCTa), and ultra-widefield imaging, as well as new discoveries in diabetic retinal neuropathy (DRN), are exposing the limitations of ETDRS and other classification systems to completely characterize retinal changes in diabetes, which we term diabetic retinal disease (DRD). While it may be most straightforward to add axes to existing classification schemes, as diabetic macular edema (DME) was added as an axis to earlier DR classifications, doing so may make these classifications increasingly complicated and thus clinically intractable. Therefore, we propose future research efforts to develop a new, comprehensive, and clinically useful classification system that will identify multimodal biomarkers to reflect the complex pathophysiology of DRD and accelerate the development of therapies to prevent vision-threatening DRD. PMID:29372250
Abramoff, Michael D; Fort, Patrice E; Han, Ian C; Jayasundera, K Thiran; Sohn, Elliott H; Gardner, Thomas W
2018-01-01
The Early Treatment Diabetic Retinopathy Study (ETDRS) and other standardized classification schemes have laid a foundation for tremendous advances in the understanding and management of diabetic retinopathy (DR). However, technological advances in optics and image analysis, especially optical coherence tomography (OCT), OCT angiography (OCTa), and ultra-widefield imaging, as well as new discoveries in diabetic retinal neuropathy (DRN), are exposing the limitations of ETDRS and other classification systems to completely characterize retinal changes in diabetes, which we term diabetic retinal disease (DRD). While it may be most straightforward to add axes to existing classification schemes, as diabetic macular edema (DME) was added as an axis to earlier DR classifications, doing so may make these classifications increasingly complicated and thus clinically intractable. Therefore, we propose future research efforts to develop a new, comprehensive, and clinically useful classification system that will identify multimodal biomarkers to reflect the complex pathophysiology of DRD and accelerate the development of therapies to prevent vision-threatening DRD.
Implantable Cardiac Defibrillator Lead Failure and Management.
Swerdlow, Charles D; Kalahasty, Gautham; Ellenbogen, Kenneth A
2016-03-22
The implantable-cardioverter defibrillator (ICD) lead is the most vulnerable component of the ICD system. Despite advanced engineering design, sophisticated manufacturing techniques, and extensive bench, pre-clinical, and clinical testing, lead failure (LF) remains the Achilles' heel of the ICD system. ICD LF has a broad range of adverse outcomes, ranging from intermittent inappropriate pacing to proarrhythmia leading to patient mortality. ICD LF is often considered in the context of design or construction defects, but is more appropriately considered in the context of the finite service life of a mechanical component placed in chemically stressful environment and subjected to continuous mechanical stresses. This clinical review summarizes LF mechanisms, assessment, and differential diagnosis of LF, including lead diagnostics, recent prominent lead recalls, and management of LF and functioning, but recalled leads. Despite recent advances in lead technology, physicians will likely continue to need to understand how to manage patients with transvenous ICD leads. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Søreide, Kjetil; Sund, Malin
2015-01-28
Pancreatic cancer remains one of the deadliest human cancers with little progress made in survival over the past decades, and 5-year survival usually below 5%. Despite this dismal scenario, progresses have been made in understanding of the underlying tumor biology through among other definition of precursor lesions, delineation of molecular pathways, and advances in genome-wide technology. Further, exploring the relationship between epidemiological risk factors involving metabolic features to that of an altered cancer metabolism may provide the foundation for new therapies. Here we explore how nutrients and caloric intake may influence the KRAS-driven ductal carcinogenesis through mediators of metabolic stress, including autophagy in presence of TP53, advanced glycation end products (AGE) and the receptors (RAGE) and ligands (HMGB1), as well as glutamine pathways, among others. Effective understanding the cancer metabolism mechanisms in pancreatic cancer may propose new ways of prevention and treatment. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
The History of Evidence-Based Practice in Nursing Education and Practice.
Mackey, April; Bassendowski, Sandra
Beginning with Florence Nightingale in the 1800s and evolving again within the medical community, evidence-based practice continues to advance along with the nursing discipline. Evidence-based practice is foundational to undergraduate and graduate nursing education and is a way for the nursing discipline to minimize the theory to practice gap. This article discusses the concept of evidence-based practice from a historical perspective as it relates to nursing in the educational and practice domains. The concept evidence-based practice is defined, and the similarities and differences to evidence-based medicine are discussed. It is crucial that registered nurses be proactive in their quest for research knowledge, so the gap between theory and practice continues to close. Utilizing nursing best practice guidelines, reviewing and implementing applicable research evidence, and taking advantage of technological advances are all ways in which nursing can move forward as a well-informed discipline. Copyright © 2016 Elsevier Inc. All rights reserved.
Lamar, Melissa; Zhou, Xiaohong Joe; Charlton, Rebecca A.; Dean, Douglas; Little, Deborah; Deoni, Sean C
2013-01-01
Human brain imaging has seen many advances in the quantification of white matter in vivo. For example, these advances have revealed the association between white matter damage and vascular disease as well as their impact on risk for and development of dementia and depression in an aging population. Current neuroimaging methods to quantify white matter damage provide a foundation for understanding such age-related neuropathology; however, these methods are not as adept at determining the underlying microstructural abnormalities signaling at risk tissue or driving white matter damage in the aging brain. This review will begin with a brief overview of the use of diffusion tensor imaging (DTI) in understanding white matter alterations in aging before focusing in more detail on select advances in both diffusion-based methods and multi-component relaxometry techniques for imaging white matter microstructural integrity within myelin sheaths and the axons they encase. While DTI greatly extended the field of white matter interrogation, these more recent technological advances will add clarity to the underlying microstructural mechanisms that contribute to white matter damage. More specifically, the methods highlighted in this review may prove more sensitive (and specific) for determining the contribution of myelin versus axonal integrity to the aging of white matter in brain. PMID:24080382
Final technical report for the Center for Catalytic Hydrocarbon Functionalization (an EFRC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunnoe, Thomas Brent
Greater than 95% of all materials produced by the chemical industry are derived from a small slate of simple hydrocarbons that are derived primarily from natural gas and petroleum, predominantly through oxygenation, C–C bond formation, halogenation or amination. Yet, current technologies for hydrocarbon conversion are typically high temperature, multi-step processes that are energy and capital intensive and result in excessive emissions (including carbon dioxide). The Center for Catalytic Hydrocarbon Functionalization (CCHF) brought together research teams with the broad coalition of skills and knowledge needed to make the fundamental advances in catalysis required for next-generation technologies to convert hydrocarbons (particularly lightmore » alkanes and methane) at high efficiency and low cost. Our new catalyst technologies offer many opportunities including enhanced utilization of natural gas in the transportation sector (via conversion to liquid fuels), more efficient generation of electricity from natural gas using direct methane fuel cells, reduced energy consumption and waste production for large petrochemical processes, and the preparation of high value molecules for use in biological/medical applications or the agricultural sector. The five year collaborative project accelerated fundamental understanding of catalyst design for the conversion of C–H bonds to functionalized products, essential to achieve the goals listed above, as evidenced by the publication of 134 manuscripts. Many of these fundamental advancements provide a foundation for potential commercialization, as evidenced by the submission of 11 patents from research support by the CCHF.« less
Consciousness in humans and non-human animals: recent advances and future directions
Boly, Melanie; Seth, Anil K.; Wilke, Melanie; Ingmundson, Paul; Baars, Bernard; Laureys, Steven; Edelman, David B.; Tsuchiya, Naotsugu
2013-01-01
This joint article reflects the authors' personal views regarding noteworthy advances in the neuroscience of consciousness in the last 10 years, and suggests what we feel may be promising future directions. It is based on a small conference at the Samoset Resort in Rockport, Maine, USA, in July of 2012, organized by the Mind Science Foundation of San Antonio, Texas. Here, we summarize recent advances in our understanding of subjectivity in humans and other animals, including empirical, applied, technical, and conceptual insights. These include the evidence for the importance of fronto-parietal connectivity and of “top-down” processes, both of which enable information to travel across distant cortical areas effectively, as well as numerous dissociations between consciousness and cognitive functions, such as attention, in humans. In addition, we describe the development of mental imagery paradigms, which made it possible to identify covert awareness in non-responsive subjects. Non-human animal consciousness research has also witnessed substantial advances on the specific role of cortical areas and higher order thalamus for consciousness, thanks to important technological enhancements. In addition, much progress has been made in the understanding of non-vertebrate cognition relevant to possible conscious states. Finally, major advances have been made in theories of consciousness, and also in their comparison with the available evidence. Along with reviewing these findings, each author suggests future avenues for research in their field of investigation. PMID:24198791
NASA Astrophysics Data System (ADS)
Rosser, Sue V.
2007-04-01
Beginning in 2001, the National Science Foundation launched the ADVANCE Initiative, which has now awarded more than 70 million to some thirty institutions for transformations to advance women. Results of studies on how to attract and retain women students and faculty underpinned our ADVANCE Institutional Transformation grant funded by the NSF for 3.7 million for five years, beginning in 2001. As co-principal investigator on this grant, I insured that this research informed the five major threads of the grant: 1) Four termed ADVANCE professors to mentor junior women faculty in each college; 2) Collection of MIT-Report-like data indicators to assess whether advancement of women really occurs during and after the institutional transformation undertaken through ADVANCE; 3) Family-friendly policies and practices to stop the tenure clock and provide active service, modified duties, lactation stations and day care; 4) Mini-retreats to facilitate access for tenure-track women faculty to male decision-makers and administrators for informal conversations and discussion on topics important to women faculty; 5) Removal of subtle gender, racial, and other biases in promotion and tenure. The dynamic changes resulting from the grant in quality of mentoring, new understanding of promotion and tenure, numbers of women retained and given endowed chairs, and emergence of new family friendly policies gave me hope for genuine diversification of leadership in science and technology. As the grant funding ends, the absence of NSF prestige and monitoring, coupled with a change in academic leadership at the top, provide new challenges for institutionalization, recruitment, and advancement of women into leadership positions in science and engineering.
The New York Stem Cell Foundation. Interview with Susan Solomon.
Solomon, Susan
2012-11-01
We caught up with Susan Solomon, Co-Founder of The New York Stem Cell Foundation, to discuss the role of the Foundation in facilitating some of the top advances in stem cell science in recent years. Susan L Solomon is Chief Executive Officer and Co-Founder of The New York Stem Cell Foundation (NYSCF), a nonprofit organization established in 2005 to accelerate cures through stem cell research. A longtime healthcare advocate, Susan is a founding member and current President of New Yorkers for the Advancement of Medical Research, is on the Executive Committee for the Alliance for Regenerative Medicine, and she has been a member of the Board of Directors of the Juvenile Diabetes Research Foundation, New York Chapter. Susan was also a member of the Strategic Planning Committee of the Empire State Stem Cell Board. In March 2008, Susan received a New York State Women of Excellence Award from the Governor of New York. In September 2008, she received the Triumph Award from the Brooke Ellison Foundation for her work in establishing NYSCF. Prior to founding NYSCF, Susan, an attorney, spent much of her career building businesses. She established and ran Solomon Partners LLC to provide strategic management consulting to corporations, cultural institutions, foundations and nonprofit organizations. She has also held executive positions at MacAndrews and Forbes Holdings and MMG Patricof and Co. She was the founding Chief Executive Officer of Sothebys.com and was President of Sony Worldwide Networks.
Straight, C L; Bubenheim, D L; Bates, M E; Flynn, M T
1994-01-01
The Controlled Ecological Life Support System (CELSS) Antarctic Analog Project (CAAP) is a joint endeavor between the National Science Foundation, Office of Polar Programs (NSF-OPP) and the National Aeronautics and Space Administration (NASA). Its fundamental objective is to develop, deploy and operate a testbed of NASA CELSS technologies and life support approaches at the Amundsen-Scott South Pole Station, located at latitude 90 degrees S, longitude 0 degrees. The goal of NASA's CELSS Program is to develop technologies and systems that will allow spacefaring scientists and explorers to carry out long duration extraterrestrial missions, leading ultimately to permanent habitation of the Solar System, without total dependence on a costly resupply system. A CELSS would do this by providing regenerated life support materials (air, food and water) and by processing "waste" materials into useful resources. This will be accomplished using biological and physical/chemical techniques in a nearly closed environmental habitation system. CELSS technologies also have great implications for application to terrestrial systems with intrinsic transferability to society at large. The CELSS Program intends to provide opportunities for the transfer of these systems and technologies outside the US Space Program, to applications within the American economy as space technology spin-offs.
Hyper-Spectral Networking Concept of Operations and Future Air Traffic Management Simulations
NASA Technical Reports Server (NTRS)
Davis, Paul; Boisvert, Benjamin
2017-01-01
The NASA sponsored Hyper-Spectral Communications and Networking for Air Traffic Management (ATM) (HSCNA) project is conducting research to improve the operational efficiency of the future National Airspace System (NAS) through diverse and secure multi-band, multi-mode, and millimeter-wave (mmWave) wireless links. Worldwide growth of air transportation and the coming of unmanned aircraft systems (UAS) will increase air traffic density and complexity. Safe coordination of aircraft will require more capable technologies for communications, navigation, and surveillance (CNS). The HSCNA project will provide a foundation for technology and operational concepts to accommodate a significantly greater number of networked aircraft. This paper describes two of the HSCNA projects technical challenges. The first technical challenge is to develop a multi-band networking concept of operations (ConOps) for use in multiple phases of flight and all communication link types. This ConOps will integrate the advanced technologies explored by the HSCNA project and future operational concepts into a harmonized vision of future NAS communications and networking. The second technical challenge discussed is to conduct simulations of future ATM operations using multi-bandmulti-mode networking and technologies. Large-scale simulations will assess the impact, compared to todays system, of the new and integrated networks and technologies under future air traffic demand.
American Foundation for the Blind
... and Electronic Materials Webinars and Online Courses Accessible Technology AccessWorld ® : Technology News for People Who Are Blind or Visually Impaired Find Assistive Technology Products Using Technology: Apps, Guides, Video Demonstrations, and ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
St Germain, Shawn Walter; Farris, Ronald Keith; Thomas, Kenneth David
The long-term viability of existing nuclear power plants in the United States (U.S.) is dependent upon a number of factors, including maintaining high capacity factors, maintaining nuclear safety, and reducing operating costs, particularly those associated with refueling outages. Refueling outages typically take 20-30 days, and for existing light water NPPs in the U.S., the reactor cannot be in operation during the outage. Furthermore, given that many NPPs generate between $1-1.5 million/day in revenue when in operation, there is considerable interest in shortening the length of refueling outages. Yet refueling outages are highly complex operations, involving multiple concurrent and dependent activitiesmore » that are somewhat challenging to coordinate; therefore, finding ways to improve refueling outage performance, while maintaining nuclear safety has proven to be difficult. The Advanced Outage Control Center (AOCC) project is a research and development (R&D) demonstration activity under the LWRS Program. LWRS is an R&D program that works closely with industry R&D programs to establish technical foundations for the licensing and managing of long-term, safe, and economical operation of current fleet of NPPs. As such, the LWRS Advanced Outage Control Center project has the goal of improving the management of commercial NPP refueling outages. To accomplish this goal, INL is developing an advanced outage control center (OCC) that is specifically designed to maximize the usefulness of communication and collaboration technologies for outage coordination and problem resolution activities. The overall focus is on developing an AOCC with the following capabilities that enables plant and OCC staff to; Collaborate in real-time to address emergent issues; Effectively communicate outage status to all workers involved in the outage; Effectively communicate discovered conditions in the field to the OCC; Provide real-time work status; Provide automatic pending support notifications; Provide real-time requirements monitoring; Maximize their collective situational awareness to improve decision-making; and Leverage macro data to better support resource allocation. INL has partnered with several commercial NPP utilities to develop a number of advanced outage management technologies. These outage management technologies have focused on both collaborative technologies for control centers and developing mobile technologies for NPP field workers. This report describes recent efforts made in developing a suite of outage technologies to support more effective schedule management. Currently, a master outage schedule is created months in advance using the plant’s existing scheduling software (e.g., Primavera P6). Typically, during the outage, the latest version of the schedule is printed at the beginning of each shift. INL and its partners are developing technologies that will have capabilities such as Automatic Schedule Updating, Automatic Pending Support Notifications, and the ability to allocate and schedule outage support task resources on a sub-hour basis (e.g., outage Micro-Scheduling). The remaining sections of this report describe in more detail the scheduling challenges that occur during outages, how the outage scheduling technologies INL is developing helps address those challenges, and the latest developments on this task (e.g., work accomplished to date and the path forward)« less
Greenforce Initiative: Advancing Greener Careers
ERIC Educational Resources Information Center
Mwase, Gloria; Keniry, Julian
2011-01-01
With support from the Bank of America Charitable Foundation and the Charles Stewart Mott Foundation, the National Wildlife Federation (NWF) and Jobs for the Future (JFF) formed the Greenforce Initiative--a two-year venture that will work with community colleges across the nation to strengthen their capacity to implement or refine quality pathways…
Beyond US-Centered Multicultural Foundations on Race
ERIC Educational Resources Information Center
Jupp, James C.; Espinosa-Dulanto, Miryam
2017-01-01
Our conceptual essay begins with the recognition of the U.S. racialized tragedy and embattled discussions on race. Within this tragedy and embattled discussion, we attempt to renew and reinvigorate authentic, dialogic, and vulnerable exchanges on race. With this focus, we critique yet further advance multicultural foundations' notions of racial…
Possible Martensitic Transformation in Heusler Alloy Pt2MnSn from First Principles
NASA Astrophysics Data System (ADS)
Feng, Lin; Guo, Chen-Chen; Zhang, Xue-Ying; Xuan, Hai-Cheng; Wang, Wen-Hong; Liu, En-Ke; Wu, Guang-Heng
2018-03-01
Not Available Supported by the National Natural Science Foundation of China under Grant Nos 51301119, 51301195, 51171206 and 51401140, the National Science Foundation for Young Scientists of Shanxi Province under Grant No 2013021010-1, and the Youth Foundation of Taiyuan University of Technology under Grant No 1205-04020102.
ERIC Educational Resources Information Center
James, Sylvia M.; Singer, Susan R.
2016-01-01
The National Science Foundation (NSF) has a long history of investment in broadening participation (BP) in science, technology, engineering, and mathematics (STEM) education. A review of past NSF BP efforts provides insights into how the portfolio of programs and activities has evolved and the broad array of innovative strategies that has been…
Software Process Automation: Interviews, Survey, and Workshop Results.
1997-10-01
International Business Machines Coproration Foundation is a pending trademark of Foundation Software , Inc. FrameMaker is a registered trademark of Adobe, Inc...amount of technology Integration of technologies, con- flicting points of view between adopting org. and consultants E CM FrameMaker Labor/resource...Weaver FrameMaker , CM System Integration of CM tool L InConcert Cadre, AutoPlan, DBStar Ineffective process integration, poor training, time
Information from imagery: ISPRS scientific vision and research agenda
NASA Astrophysics Data System (ADS)
Chen, Jun; Dowman, Ian; Li, Songnian; Li, Zhilin; Madden, Marguerite; Mills, Jon; Paparoditis, Nicolas; Rottensteiner, Franz; Sester, Monika; Toth, Charles; Trinder, John; Heipke, Christian
2016-05-01
With the increased availability of very high-resolution satellite imagery, terrain based imaging and participatory sensing, inexpensive platforms, and advanced information and communication technologies, the application of imagery is now ubiquitous, playing an important role in many aspects of life and work today. As a leading organisation in this field, the International Society for Photogrammetry and Remote Sensing (ISPRS) has been devoted to effectively and efficiently obtaining and utilising information from imagery since its foundation in the year 1910. This paper examines the significant challenges currently facing ISPRS and its communities, such as providing high-quality information, enabling advanced geospatial computing, and supporting collaborative problem solving. The state-of-the-art in ISPRS related research and development is reviewed and the trends and topics for future work are identified. By providing an overarching scientific vision and research agenda, we hope to call on and mobilise all ISPRS scientists, practitioners and other stakeholders to continue improving our understanding and capacity on information from imagery and to deliver advanced geospatial knowledge that enables humankind to better deal with the challenges ahead, posed for example by global change, ubiquitous sensing, and a demand for real-time information generation.
NanoSPD activity in Ufa and International Cooperation
NASA Astrophysics Data System (ADS)
Reshetnikova, N.; Salakhova, M.
2014-08-01
This report presents main achievements of R&D activities of the Institute of Physics of Advanced Materials of Ufa State Aviation Technical University (IPAM USATU, Ufa, Russia) with a special attention to innovative potential of nanostructured metals and alloys produced by the severe plastic deformation (SPD) techniques. Several examples of the first promising applications of bulk nanostructured materials (BNM) as well as potential competing technologies are considered and discussed. The authors would like to focus special emphasis on international cooperation in view of numerous emerging projects as well as different conferences and seminars that pave the way to close and fruitful cooperation, working visits and exchange of young scientists. The possibilities of international cooperation through various foundations and programs are considered.
Antiferromagnetic spinor condensates in a bichromatic superlattice
NASA Astrophysics Data System (ADS)
Tang, Tao; Zhao, Lichao; Chen, Zihe; Liu, Yingmei
2017-04-01
A spinor Bose-Einstein condensate in an optical supelattice has been considered as a good quantum simulator for understanding mesoscopic magnetism. We report an experimental study on an antiferromagnetic spinor condensate in a bichromatic superlattice constructed by a cubic red-detuned optical lattice and a one-dimensional blue-detuned optical lattice. Our data demonstrate a few advantages of this bichromatic superlattice over a monochromatic lattice. One distinct advantage is that the bichromatic superlattice enables realizing the first-order superfluid to Mott-insulator phase transitions within a much wider range of magnetic fields. In addition, we discuss an apparent discrepancy between our data and the mean-field theory. We thank the National Science Foundation and the Oklahoma Center for the Advancement of Science and Technology for financial support.
Wind Vision: Updating the DOE 20% Wind Energy by 2030 Report (Poster)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baring-Gould, E. I.
The 20% Wind Energy by 2030 report was developed as part of the Advanced Energy Initiative. Published in 2008, the report was largely based on information collected and analyzed in 2006. Much has changed since then, including shifts in technology, markets, and policy. The industry needs a new, clear, vision for wind power that is shared among stakeholders from the U.S. government, industry, academia, and NGO communities. At WINDPOWER 2013, the U.S. Department of Energy, in partnership with the American Wind Energy Association and the Wind Energy Foundation, launched a project to update the 20% report with new objectives. Thismore » conference poster outlines the elements of the new Wind Vision.« less
Proceedings: Joint DOE/NSF Workshop on flow of particulates and fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-12-31
These proceedings are the result of the Fifth DOR-NSF Workshop on fundamental research in the area of particulate two-phase flow and granular flow. The present collection of twenty contributions from universities and national laboratories is based on research projects sponsored by either the Department of Energy or the National Science Foundation. These papers illustrate some of the latest advances in theory, simulations, and experiments. The papers from the Workshop held September 29--October 1, 1993 have been separated into three basic areas: experiments, theory, and numerical simulations. A list of attendees at the workshop is included at the end of themore » proceedings. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.« less
General Theory of Relativity: Will It Survive the Next Decade?
NASA Technical Reports Server (NTRS)
Bertolami, Orfeu; Paramos, Jorge; Turyshev, Slava G.
2006-01-01
The nature of gravity is fundamental to our understanding of our own solar system, the galaxy and the structure and evolution of the Universe. Einstein's general theory of relativity is the standard model that is used for almost ninety years to describe gravitational phenomena on these various scales. We review the foundations of general relativity, discuss the recent progress in the tests of relativistic gravity, and present motivations for high-accuracy gravitational experiments in space. We also summarize the science objectives and technology needs for the laboratory experiments in space with laboratory being the entire solar system. We discuss the advances in our understanding of fundamental physics anticipated in the near future and evaluate discovery potential for the recently proposed gravitational experiments.
Faculty Peer Networks: Role and Relevance in Advancing Agency and Gender Equity
ERIC Educational Resources Information Center
O'Meara, KerryAnn; Stromquist, Nelly P.
2015-01-01
Organisational efforts to alter gender asymmetries are relatively rare, yet they are taking place in a number of universities. In the USA, sponsored by the National Science Foundation, ADVANCE programmes implement a number of interventions to improve the recruitment, retention, and advancement of women faculty. This study focused on one common…
Intelligent Propulsion System Foundation Technology: Summary of Research
NASA Technical Reports Server (NTRS)
Williams, James C.
2004-01-01
The purpose of this cooperative agreement was to develop a foundation of intelligent propulsion technologies for NASA and industry that will have an impact on safety, noise, emissions and cost. These intelligent engine technologies included sensors, electronics, communications, control logic, actuators, and smart materials and structures. Furthermore this cooperative agreement helped prepare future graduates to develop the revolutionary intelligent propulsion technologies that will be needed to ensure pre-eminence of the U.S. aerospace industry. The program consisted of three primary research areas (and associated work elements at Ohio universities): 1.0 Turbine Engine Prognostics, 2.0 Active Controls for Emissions and Noise Reduction, and 3.0 Active Structural Controls.
Memristive Behavior Based on Ba-Doped SrTiO3 Films
NASA Astrophysics Data System (ADS)
Dou, Gang; Yu, Yang; Guo, Mei; Zhang, Yu-Man; Sun, Zhao; Li, Yu-Xia
2017-03-01
Not Available Supported by the National Natural Science Foundation of China under Grant No 61473177, the Research Fund for the Doctoral Program of Higher Education of China under Grant Nos 2013371812009 and 20133718110011, the Natural Science Foundation of Shandong Province under Grant No ZR2014FQ006, the China Postdoctoral Science Foundation under Grant No 2015M582114, the Shandong Postdoctoral Special Foundation under Grant No 201502017, the Qingdao Science and Technology Plan Project under Grant No 15-9-1-39-jch, and the Qingdao Postdoctoral Science Foundation.
Walsh, Sarah E; Myers, Gail; Chubinski, Jennifer; Zepeda, Susan G
2014-09-01
With finite resources to advance their missions, regional health foundations should critically evaluate the investments they make. This article reviews the costs and associated benefits of large-scale public opinion polling--specifically, the annual Kentucky Health Issues Poll, which is sponsored by the Foundation for a Healthy Kentucky and Interact for Health, formerly the Health Foundation of Greater Cincinnati. In addition to the information generated by the poll, the sponsoring foundations have benefited from increased name recognition and credibility with key stakeholders, including state policy makers and the media. Furthermore, jointly funding the poll has strengthened the relationship between the sponsoring foundations and has fostered other key collaborations. We find that the benefits from this poll more than justify its modest costs ($120,000 per year) and hope that this assessment may prove informative for other funders considering similar investments. Project HOPE—The People-to-People Health Foundation, Inc.
Gray, Carolyn Steele; Mercer, Stewart; Palen, Ted; McKinstry, Brian; Hendry, Anne
2016-01-01
Information technology (IT) in healthcare, also referred to as eHealth technologies, may offer a promising solution to the provision of better care and support for people who have multiple conditions and complex care needs, and their caregivers. eHealth technologies can include electronic medical records, telemonitoring systems and web-based portals, and mobile health (mHealth) technologies that enable information sharing between providers, patients, clients and their families. IT often acts as an enabler of improved care delivery, rather than being an intervention per se. But how are different countries seeking to leverage adoption of these technologies to support people who have chronic conditions and complex care needs? This article presents three case examples from Ontario (Canada), Scotland and Kaiser Permanente Colorado (United States) to identify how these jurisdictions are currently using technology to address multimorbidity. A SWOT (strengths, weaknesses, opportunities, threats) analysis is presented for each case and a final discussion addresses the future of eHealth for complex care needs. The case reports presented in this manuscript mark the foundational work of the Multi-National eHealth Research Partnership Supporting Complex Chronic Disease and Disability (the eCCDD Network); a CIHR-funded project intended to support the international development and uptake of eHealth tools for people with complex care needs.
DNA Assembly in 3D Printed Fluidics
Patrick, William G.; Nielsen, Alec A. K.; Keating, Steven J.; Levy, Taylor J.; Wang, Che-Wei; Rivera, Jaime J.; Mondragón-Palomino, Octavio; Carr, Peter A.; Voigt, Christopher A.; Oxman, Neri; Kong, David S.
2015-01-01
The process of connecting genetic parts—DNA assembly—is a foundational technology for synthetic biology. Microfluidics present an attractive solution for minimizing use of costly reagents, enabling multiplexed reactions, and automating protocols by integrating multiple protocol steps. However, microfluidics fabrication and operation can be expensive and requires expertise, limiting access to the technology. With advances in commodity digital fabrication tools, it is now possible to directly print fluidic devices and supporting hardware. 3D printed micro- and millifluidic devices are inexpensive, easy to make and quick to produce. We demonstrate Golden Gate DNA assembly in 3D-printed fluidics with reaction volumes as small as 490 nL, channel widths as fine as 220 microns, and per unit part costs ranging from $0.61 to $5.71. A 3D-printed syringe pump with an accompanying programmable software interface was designed and fabricated to operate the devices. Quick turnaround and inexpensive materials allowed for rapid exploration of device parameters, demonstrating a manufacturing paradigm for designing and fabricating hardware for synthetic biology. PMID:26716448
An Assessment of the Effectiveness of the AGATE Program Management Model
NASA Technical Reports Server (NTRS)
Warner, Timothy P. (Technical Monitor); Masson, Paul
2005-01-01
This report describes the collaborative program model chosen to implement an aeronautics research and technology program from 1994 through 2001: the Advanced General Aviation Transport Experiments (AGATE) Program. The Program had one primary objective: to improve the ability of the General Aviation industry to adopt technology as a solution to fulfill public benefit objectives. The primary objective of this report is to assess the program s ability to meet a combination of "effectiveness measures" from multiple stakeholders. The "effectiveness" of any model forms the foundation of legitimate questions for policy makers and professional federal managers. The participants rated AGATE as achieving its primary objectives and rating well on effectiveness in most areas, with high measures for relevance, cost, speed and public benefit, but lower measures for institutional fit and flexibility at dealing with the larger NASA organizational structure. This pattern mirrors private sector surveys and represents a tradeoff between the benefits of tailoring a program using partnering, versus the changes necessary within the institutional structure to support such tailoring.
Bioethics and conflicting ethical criteria.
George, Michael
2002-01-01
Some of the major problematic issues in contemporary ethical discourse are highlighted in the field of bioethics. The need to incorporate new understandings and foundational shifts in essential criteria because of technological advances in the areas of medicine and human sciences increasingly challenges traditional and accepted notions of ethics. As the possibilities of technical progress increase, more and more pressure is put on traditional understandings of the human person, identity, and value. In the face of ethical relativism and emotivism, which are already widespread in social and political discourse, the immediacy of bioethics as a response to technology and its impact on human lives reinforces the need for ethics to become interdisciplinary, while attempting to provide some coherence to both the questions and the responses that contemporary life generates. In this paper, the author intends to sketch the outlines of some of these problems, and suggest one approach which might allow a certain methodical intelligibility to emerge which takes into account shifts in consciousness and the dependence on historically grounded perspective.
2014 SRNL LDRD Annual Report, Rev. 0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mcwhorter, S.
2015-03-15
Laboratory Directed Research and Development is a congressionally authorized program that provides the ‘innovation inspiration’ from which many of the Laboratory’s multi-discipline advancements are made in both science and engineering technology. The program is the backbone for insuring that scientific, technical and engineering capabilities can meet current and future needs. It is an important tool in reducing the probability of technological surprise by allowing laboratory technical staff room to innovate and keep abreast of scientific breakthroughs. Drawing from the synergism among the EM and NNSA missions, and work from other federal agencies ensures that LDRD is the key element inmore » maintaining the vitality of SRNL’s technical programs. The LDRD program aims to position the Laboratory for new business in clean energy, national security, nuclear materials management and environmental stewardship by leveraging the unique capabilities of the Laboratory to yield foundational scientific research in core business areas, while aligning with SRS strategic initiatives and maintaining a vision for ultimate DOE applications.« less
NASA Technical Reports Server (NTRS)
Hilderman, Don R.
2006-01-01
The purpose of the NASA Glenn Research Center Weather Information Communications (WINCOMM) project was to develop advanced communications and information technologies to enable the high-quality and timely dissemination of strategic weather information between the flight deck and ground users as well as tactical turbulence hazard information between relevant aircraft and to the ground. This report will document and reference accomplishments on the dissemination of weather information during the en route phase of flight from ground-based weather information providers to the flight deck (ground-to-air), from airborne meteorological sensors to ground users (air-to-ground), and weather turbulence and icing hazard information between relevant aircraft (air-to-air). In addition, references in this report will demonstrate the architecture necessary to implement and perform successful transmission and reception of weather information to the cockpit, show that weather information flow does not impact "normal" traffic, demonstrate the feasibility of operational implementation, and lay foundation for future data link development.
NASA Astrophysics Data System (ADS)
Paek, Seung Weon; Kang, Jae Hyun; Ha, Naya; Kim, Byung-Moo; Jang, Dae-Hyun; Jeon, Junsu; Kim, DaeWook; Chung, Kun Young; Yu, Sung-eun; Park, Joo Hyun; Bae, SangMin; Song, DongSup; Noh, WooYoung; Kim, YoungDuck; Song, HyunSeok; Choi, HungBok; Kim, Kee Sup; Choi, Kyu-Myung; Choi, Woonhyuk; Jeon, JoongWon; Lee, JinWoo; Kim, Ki-Su; Park, SeongHo; Chung, No-Young; Lee, KangDuck; Hong, YoungKi; Kim, BongSeok
2012-03-01
A set of design for manufacturing (DFM) techniques have been developed and applied to 45nm, 32nm and 28nm logic process technologies. A noble technology combined a number of potential confliction of DFM techniques into a comprehensive solution. These techniques work in three phases for design optimization and one phase for silicon diagnostics. In the DFM prevention phase, foundation IP such as standard cells, IO, and memory and P&R tech file are optimized. In the DFM solution phase, which happens during ECO step, auto fixing of process weak patterns and advanced RC extraction are performed. In the DFM polishing phase, post-layout tuning is done to improve manufacturability. DFM analysis enables prioritization of random and systematic failures. The DFM technique presented in this paper has been silicon-proven with three successful tape-outs in Samsung 32nm processes; about 5% improvement in yield was achieved without any notable side effects. Visual inspection of silicon also confirmed the positive effect of the DFM techniques.
Investigating the Nature of and Methods for Managing Metroplex Operations
NASA Technical Reports Server (NTRS)
Atkins, Stephen; Capozzi, Brian; Hinkey, Jim; Idris, Husni; Kaiser, Kent
2011-01-01
A combination of traffic demand growth, Next Generation Air Transportation System (NextGen) technologies and operational concepts, and increased utilization of regional airports is expected to increase the occurrence and severity of coupling between operations at proximate airports. These metroplex phenomena constrain the efficiency and/or capacity of airport operations and, in NextGen, have the potential to reduce safety and prevent environmental benefits. Without understanding the nature of metroplexes and developing solutions that provide efficient coordination of operations between closely-spaced airports, the use of NextGen technologies and distribution of demand to regional airports may provide little increase in the overall metroplex capacity. However, the characteristics and control of metroplex operations have not received significant study. This project advanced the state of knowledge about metroplexes by completing three objectives: 1. developed a foundational understand of the nature of metroplexes; 2. provided a framework for discussing metroplexes; 3. suggested and studied an approach for optimally managing metroplexes that is consistent with other NextGen concepts
Advanced Materials and Solids Analysis Research Core (AMSARC)
The Advanced Materials and Solids Analysis Research Core (AMSARC), centered at the U.S. Environmental Protection Agency's (EPA) Andrew W. Breidenbach Environmental Research Center in Cincinnati, Ohio, is the foundation for the Agency's solids and surfaces analysis capabilities. ...
A local energy-preserving scheme for Zakharov system
NASA Astrophysics Data System (ADS)
Hong, Qi; Wang, Jia-ling; Wang, Yu-Shun
2018-02-01
Not Available Project supported by the National Natural Science Foundation of China (Grant No. 11771213) and the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology (Grant No. 2243141701090).
Multi-Electron Effects in Attosecond Transient Absorption of CO Molecules
NASA Astrophysics Data System (ADS)
Zhang, Bin; Zhao, Jian; Zhao, Zeng-Xiu
2018-04-01
Not Available Supported by the National Basic Research Program of China under Grant No 2013CB922203, the National Natural Science Foundation of China under Grant No 11374366, the Innovation Foundation of National University of Defense Technology under Grant No B110204, and the Hunan Provincial Innovation Foundation for Postgraduate under Grant No CX2011B010.
Carnegie Foundation Creates New "Owner's Manual" for Doctoral Programs
ERIC Educational Resources Information Center
Wasley, Paula
2007-01-01
In his 1990 book "Scholarship Reconsidered: Priorities of the Professoriate", Ernest L. Boyer, who was then president of the Carnegie Foundation for the Advancement of Teaching, analyzed the balance between teaching and research in the scholarly endeavors of that era. His conclusion that the university rewarded research at the expense of teaching…
Carnegie's New Community Engagement Classification: Affirming Higher Education's Role in Community
ERIC Educational Resources Information Center
Driscoll, Amy
2009-01-01
In 2005, the Carnegie Foundation for the Advancement of Teaching (CFAT) stirred the higher education world with the announcement of a new classification for institutions that engage with community. The classification, community engagement, is the first in a set of planned classification schemes resulting from the foundation's reexamination of the…
Change and Sustain/Ability: A Program Director's Reflections on Institutional Learning
ERIC Educational Resources Information Center
Asera, Rose
2008-01-01
Strengthening Pre-collegiate Education in Community Colleges (SPECC) was organized by The Carnegie Foundation for the Advancement of Teaching in partnership with The William and Flora Hewlett Foundation to increase student learning in developmental--or basic skills--classes. However, their concern was not just the success of students in classes…
National Science Foundation FY 2004 Performance and Accountability Report.
ERIC Educational Resources Information Center
National Science Foundation, 2004
2004-01-01
The information provided in this report documents that the National Science Foundation (NSF) is a well-managed and effective organization with an outstanding staff dedicated to ensuring that America's future is secure and prosperous. Despite its small size, NSF is widely recognized as the catalyst for the advancement of basic research in America.…
Haggarty, Stephen J; Perlis, Roy H
2014-06-15
The advent of somatic cell reprogramming technologies-which enables the generation of patient-specific, induced pluripotent stem cell and other trans-differentiated human neuronal cell models-provides new means of gaining insight into the molecular mechanisms and neural substrates of psychiatric disorders. By allowing a more precise understanding of genotype-phenotype relationship in disease-relevant human cell types, the use of reprogramming technologies in tandem with emerging genome engineering approaches provides a previously "missing link" between basic research and translational efforts. In this review, we summarize advances in applying human pluripotent stem cell and reprogramming technologies to generate specific neural subtypes with a focus on the use of these in vitro systems for the discovery of small molecule-probes and novel therapeutics. Examples are given where human cell models of psychiatric disorders have begun to reveal new mechanistic insight into pathophysiology and simultaneously have provided the foundation for developing disease-relevant, phenotypic assays suitable for both functional genomic and chemical screens. A number of areas for future research are discussed, including the need to develop robust methodology for the reproducible, large-scale production of disease-relevant neural cell types in formats compatible with high-throughput screening modalities, including high-content imaging, multidimensional, signature-based screening, and in vitro network with multielectrode arrays. Limitations, including the challenges in recapitulating neurocircuits and non-cell autonomous phenotypes are discussed. Although these technologies are still in active development, we conclude that, as our understanding of how to efficiently generate and probe the plasticity of patient-specific stem models improves, their utility is likely to advance rapidly. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
ETV PILOT FOR SOURCE WATER PROTECTION TECHNOLOGY VERIFICATION
The Environmental Technology Verification (ETV) Program, a five-year pilot, provides technology purchasers, permitters and developers with objective, quality assured performance data on new and/or improved technologies. EPA has partnered with the National Sanitation Foundation (...
Krecek, R C; Penzhorn, B L; de Waal, D T; Peter, R J; Prichard, R; Sumption, D
2011-03-01
The origin of the World Association for the Advancement of Veterinary Parasitology (WAAVP) African Foundation is described. The 16th WAAVP Conference held in South Africa in 1997 generated a surplus of ZAR 430 460 (US$ 70 116). This was invested and a foundation established to manage the fund with the intention of using it to the mutual advantage of the WAAVP and African veterinary parasitologists. To date, more than 110 scholarship applications have been screened, and 51 full and partial scholarships awarded to young African veterinary parasitologists to attend subsequent biennial WAAVP Conferences. This investment has grown into a very successful endowment currently valued at US$ 206 553. This article is written in response to many queries across the globe about the origin of this fund and how it has been invested, managed, sustained and utilised.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-06
... Subsidy: $490,500 Number of Units: 42 McHenry, IL Luth Social Service of Illinois Capital Advance: $9,487... Jamestown, ND Lutheran Social Services Housing, Incorporated Capital Advance: $2,951,000 Three-year Rental... Inc Co-Sponsor: Wiregrass Foundation Capital Advance: $4,007,200 Three-year Rental Subsidy: $354,600...