Sample records for technology alhat project

  1. ALHAT System Validation

    NASA Technical Reports Server (NTRS)

    Brady, Tye; Bailey, Erik; Crain, Timothy; Paschall, Stephen

    2011-01-01

    NASA has embarked on a multiyear technology development effort to develop a safe and precise lunar landing capability. The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project is investigating a range of landing hazard detection methods while developing a hazard avoidance capability to best field test the proper set of relevant autonomous GNC technologies. Ultimately, the advancement of these technologies through the ALHAT Project will provide an ALHAT System capable of enabling next generation lunar lander vehicles to globally land precisely and safely regardless of lighting condition. This paper provides an overview of the ALHAT System and describes recent validation experiments that have advanced the highly capable GNC architecture.

  2. Autonomous Precision Landing and Hazard Avoidance Technology (ALHAT) Project Status as of May 2010

    NASA Technical Reports Server (NTRS)

    Striepe, Scott A.; Epp, Chirold D.; Robertson, Edward A.

    2010-01-01

    This paper includes the current status of NASA s Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) Project. The ALHAT team has completed several flight tests and two major design analysis cycles. These tests and analyses examine terrain relative navigation sensors, hazard detection and avoidance sensors and algorithms, and hazard relative navigation algorithms, and the guidance and navigation system using these ALHAT functions. The next flight test is scheduled for July 2010. The paper contains results from completed flight tests and analysis cycles. ALHAT system status, upcoming tests and analyses is also addressed. The current ALHAT plans as of May 2010 are discussed. Application of the ALHAT system to landing on bodies other than the Moon is included

  3. The Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT)

    NASA Technical Reports Server (NTRS)

    Epp, Chirold D.; Smith, Thomas B.

    2007-01-01

    As NASA plans to send humans back to the Moon and develop a lunar outpost, technologies must be developed to place humans and cargo safely, precisely, repeatedly, on the lunar surface with the capability to avoid surface hazards. Exploration Space Architecture Study requirements include the need for global lunar surface access with safe, precise landing without lighting constraints on terrain that may have landing hazards for human scale landing vehicles. Landing accuracies of perhaps 1,000 meters for sortie crew missions to 10 s of meters for Outpost class missions are required. The Autonomous precision Landing Hazard Avoidance Technology (ALHAT) project will develop the new and unique descent and landing Guidance, Navigation and Control (GNC) hardware and software technologies necessary for these capabilities. The ALHAT project will qualify a lunar descent and landing GNC system to a Technology Readiness Level (TRL) of 6 capable of supporting lunar crewed, cargo, and robotic missions. The (ALHAT) development project was chartered by NASA Headquarters in October 2006. The initial effort to write a project plan and define an ALHAT Team was followed by a fairly aggressive research and analysis effort to determine what technologies existed that could be developed and applied to the lunar landing problems indicated above. This paper describes the project development, research, analysis and concept evolution that has occurred since the assignment of the project. This includes the areas of systems engineering, GNC, sensors, sensor algorithms, simulations, fielding testing, laboratory testing, Hardware-In-The-Loop testing, system avionics and system certification concepts.

  4. Free-Flight Terrestrial Rocket Lander Demonstration for NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) System

    NASA Technical Reports Server (NTRS)

    Rutishauser, David K.; Epp, Chirold; Robertson, Ed

    2012-01-01

    The Autonomous Landing Hazard Avoidance Technology (ALHAT) Project is chartered to develop and mature to a Technology Readiness Level (TRL) of six an autonomous system combining guidance, navigation and control with terrain sensing and recognition functions for crewed, cargo, and robotic planetary landing vehicles. The ALHAT System must be capable of identifying and avoiding surface hazards to enable a safe and accurate landing to within tens of meters of designated and certified landing sites anywhere on a planetary surface under any lighting conditions. Since its inception in 2006, the ALHAT Project has executed four field test campaigns to characterize and mature sensors and algorithms that support real-time hazard detection and global/local precision navigation for planetary landings. The driving objective for Government Fiscal Year 2012 (GFY2012) is to successfully demonstrate autonomous, real-time, closed loop operation of the ALHAT system in a realistic free flight scenario on Earth using the Morpheus lander developed at the Johnson Space Center (JSC). This goal represents an aggressive target consistent with a lean engineering culture of rapid prototyping and development. This culture is characterized by prioritizing early implementation to gain practical lessons learned and then building on this knowledge with subsequent prototyping design cycles of increasing complexity culminating in the implementation of the baseline design. This paper provides an overview of the ALHAT/Morpheus flight demonstration activities in GFY2012, including accomplishments, current status, results, and lessons learned. The ALHAT/Morpheus effort is also described in the context of a technology path in support of future crewed and robotic planetary exploration missions based upon the core sensing functions of the ALHAT system: Terrain Relative Navigation (TRN), Hazard Detection and Avoidance (HDA), and Hazard Relative Navigation (HRN).

  5. Preparation and Integration of ALHAT Precision Landing Technology for Morpheus Flight Testing

    NASA Technical Reports Server (NTRS)

    Carson, John M., III; Robertson, Edward A.; Pierrottet, Diego F.; Roback, Vincent E.; Trawny, Nikolas; Devolites, Jennifer L.; Hart, Jeremy J.; Estes, Jay N.; Gaddis, Gregory S.

    2014-01-01

    The Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project has developed a suite of prototype sensors for enabling autonomous and safe precision land- ing of robotic or crewed vehicles on solid solar bodies under varying terrain lighting condi- tions. The sensors include a Lidar-based Hazard Detection System (HDS), a multipurpose Navigation Doppler Lidar (NDL), and a long-range Laser Altimeter (LAlt). Preparation for terrestrial ight testing of ALHAT onboard the Morpheus free- ying, rocket-propelled ight test vehicle has been in progress since 2012, with ight tests over a lunar-like ter- rain eld occurring in Spring 2014. Signi cant work e orts within both the ALHAT and Morpheus projects has been required in the preparation of the sensors, vehicle, and test facilities for interfacing, integrating and verifying overall system performance to ensure readiness for ight testing. The ALHAT sensors have undergone numerous stand-alone sensor tests, simulations, and calibrations, along with integrated-system tests in special- ized gantries, trucks, helicopters and xed-wing aircraft. A lunar-like terrain environment was constructed for ALHAT system testing during Morpheus ights, and vibration and thermal testing of the ALHAT sensors was performed based on Morpheus ights prior to ALHAT integration. High- delity simulations were implemented to gain insight into integrated ALHAT sensors and Morpheus GN&C system performance, and command and telemetry interfacing and functional testing was conducted once the ALHAT sensors and electronics were integrated onto Morpheus. This paper captures some of the details and lessons learned in the planning, preparation and integration of the individual ALHAT sen- sors, the vehicle, and the test environment that led up to the joint ight tests.

  6. Autonomous Landing and Hazard Avoidance Technology (ALHAT)

    NASA Technical Reports Server (NTRS)

    Epp, Chirold

    2007-01-01

    This viewgraph presentation reviews the work towards technology that will result in an autonomous landing on the lunar surface, that will avoid the hazards of lunar landing. In October 2005, the Exploration Systems Mission Directorate at NASA Headquarters assigned the development of new technologies to support the return to the moon. One of these was Autonomous Precision Landing and Hazard Detection and Avoidance Technology now known as ALHAT ALHAT is a lunar descent and landing GNC technology development project led by Johnson Space Center (JSC) with team members from Langley Research Center (LaRC), Jet Propulsion Laboratory (JPL), Draper Laboratories (CSDL) and the Applied Physics Laboratory (APL)

  7. Helicopter Field Testing of NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) System fully Integrated with the Morpheus Vertical Test Bed Avionics

    NASA Technical Reports Server (NTRS)

    Epp, Chirold D.; Robertson, Edward A.; Ruthishauser, David K.

    2013-01-01

    The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project was chartered to develop and mature to a Technology Readiness Level (TRL) of six an autonomous system combining guidance, navigation and control with real-time terrain sensing and recognition functions for crewed, cargo, and robotic planetary landing vehicles. The ALHAT System must be capable of identifying and avoiding surface hazards to enable a safe and accurate landing to within tens of meters of designated and certified landing sites anywhere on a planetary surface under any lighting conditions. This is accomplished with the core sensing functions of the ALHAT system: Terrain Relative Navigation (TRN), Hazard Detection and Avoidance (HDA), and Hazard Relative Navigation (HRN). The NASA plan for the ALHAT technology is to perform the TRL6 closed loop demonstration on the Morpheus Vertical Test Bed (VTB). The first Morpheus vehicle was lost in August of 2012 during free-flight testing at Kennedy Space Center (KSC), so the decision was made to perform a helicopter test of the integrated ALHAT System with the Morpheus avionics over the ALHAT planetary hazard field at KSC. The KSC helicopter tests included flight profiles approximating planetary approaches, with the entire ALHAT system interfaced with all appropriate Morpheus subsystems and operated in real-time. During these helicopter flights, the ALHAT system imaged the simulated lunar terrain constructed in FY2012 to support ALHAT/Morpheus testing at KSC. To the best of our knowledge, this represents the highest fidelity testing of a system of this kind to date. During this helicopter testing, two new Morpheus landers were under construction at the Johnson Space Center to support the objective of an integrated ALHAT/Morpheus free-flight demonstration. This paper provides an overview of this helicopter flight test activity, including results and lessons learned, and also provides an overview of recent integrated testing of ALHAT on the second Morpheus vehicle.

  8. Helicopter Field Testing of NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) System fully integrated with the Morpheus Vertical Test Bed Avionics

    NASA Technical Reports Server (NTRS)

    Rutishauser, David; Epp, Chirold; Robertson, Edward

    2013-01-01

    The Autonomous Landing Hazard Avoidance Technology (ALHAT) Project was chartered to develop and mature to a Technology Readiness Level (TRL) of six an autonomous system combining guidance, navigation and control with real-time terrain sensing and recognition functions for crewed, cargo, and robotic planetary landing vehicles. The ALHAT System must be capable of identifying and avoiding surface hazards to enable a safe and accurate landing to within tens of meters of designated and certified landing sites anywhere on a planetary surface under any lighting conditions. This is accomplished with the core sensing functions of the ALHAT system: Terrain Relative Navigation (TRN), Hazard Detection and Avoidance (HDA), and Hazard Relative Navigation (HRN). The NASA plan for the ALHAT technology is to perform the TRL6 closed loop demonstration on the Morpheus Vertical Test Bed (VTB). The first Morpheus vehicle was lost in August of 2012 during free-flight testing at Kennedy Space Center (KSC), so the decision was made to perform a helicopter test of the integrated ALHAT System with the Morpheus avionics over the ALHAT planetary hazard field at KSC. The KSC helicopter tests included flight profiles approximating planetary approaches, with the entire ALHAT system interfaced with all appropriate Morpheus subsystems and operated in real-time. During these helicopter flights, the ALHAT system imaged the simulated lunar terrain constructed in FY2012 to support ALHAT/Morpheus testing at KSC. To the best of our knowledge, this represents the highest fidelity testing of a system of this kind to date. During this helicopter testing, two new Morpheus landers were under construction at the Johnson Space Center to support the objective of an integrated ALHAT/Morpheus free-flight demonstration. This paper provides an overview of this helicopter flight test activity, including results and lessons learned, and also provides an overview of recent integrated testing of ALHAT on the second Morpheus vehicle.

  9. ALHAT: Autonomous Landing and Hazard Avoidance Technology

    NASA Technical Reports Server (NTRS)

    Robertson, Edward A.; Carson, John M., III

    2015-01-01

    The ALHAT project was chartered by NASA HQ in 2006 to develop and mature to TRL 6 an autonomous lunar landing GN&C and sensing system for crewed, cargo, and robotic planetary landing vehicles. The multi-center ALHAT team was tasked with providing a system capable of identifying and avoiding surface hazards in real time to enable safe precision landing to within tens of meters of a designated planetary landing site under any lighting conditions.

  10. POST2 End-To-End Descent and Landing Simulation for the Autonomous Landing and Hazard Avoidance Technology Project

    NASA Technical Reports Server (NTRS)

    Fisher, Jody l.; Striepe, Scott A.

    2007-01-01

    The Program to Optimize Simulated Trajectories II (POST2) is used as a basis for an end-to-end descent and landing trajectory simulation that is essential in determining the design and performance capability of lunar descent and landing system models and lunar environment models for the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. This POST2-based ALHAT simulation provides descent and landing simulation capability by integrating lunar environment and lander system models (including terrain, sensor, guidance, navigation, and control models), along with the data necessary to design and operate a landing system for robotic, human, and cargo lunar-landing success. This paper presents the current and planned development and model validation of the POST2-based end-to-end trajectory simulation used for the testing, performance and evaluation of ALHAT project system and models.

  11. Advances in POST2 End-to-End Descent and Landing Simulation for the ALHAT Project

    NASA Technical Reports Server (NTRS)

    Davis, Jody L.; Striepe, Scott A.; Maddock, Robert W.; Hines, Glenn D.; Paschall, Stephen, II; Cohanim, Babak E.; Fill, Thomas; Johnson, Michael C.; Bishop, Robert H.; DeMars, Kyle J.; hide

    2008-01-01

    Program to Optimize Simulated Trajectories II (POST2) is used as a basis for an end-to-end descent and landing trajectory simulation that is essential in determining design and integration capability and system performance of the lunar descent and landing system and environment models for the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. The POST2 simulation provides a six degree-of-freedom capability necessary to test, design and operate a descent and landing system for successful lunar landing. This paper presents advances in the development and model-implementation of the POST2 simulation, as well as preliminary system performance analysis, used for the testing and evaluation of ALHAT project system models.

  12. Approach-Phase Precision Landing with Hazard Relative Navigation: Terrestrial Test Campaign Results of the Morpheus/ALHAT Project

    NASA Technical Reports Server (NTRS)

    Crain, Timothy P.; Bishop, Robert H.; Carson, John M., III; Trawny, Nikolas; Hanak, Chad; Sullivan, Jacob; Christian, John; DeMars, Kyle; Campbell, Tom; Getchius, Joel

    2016-01-01

    The Morpheus Project began in late 2009 as an ambitious e ort code-named Project M to integrate three ongoing multi-center NASA technology developments: humanoid robotics, liquid oxygen/liquid methane (LOX/LCH4) propulsion and Autonomous Precision Landing and Hazard Avoidance Technology (ALHAT) into a single engineering demonstration mission to be own to the Moon by 2013. The humanoid robot e ort was redirected to a deploy- ment of Robonaut 2 on the International Space Station in February of 2011 while Morpheus continued as a terrestrial eld test project integrating the existing ALHAT Project's tech- nologies into a sub-orbital ight system using the world's rst LOX/LCH4 main propulsion and reaction control system fed from the same blowdown tanks. A series of 33 tethered tests with the Morpheus 1.0 vehicle and Morpheus 1.5 vehicle were conducted from April 2011 - December 2013 before successful, sustained free ights with the primary Vertical Testbed (VTB) navigation con guration began with Free Flight 3 on December 10, 2013. Over the course of the following 12 free ights and 3 tethered ights, components of the ALHAT navigation system were integrated into the Morpheus vehicle, operations, and ight control loop. The ALHAT navigation system was integrated and run concurrently with the VTB navigation system as a reference and fail-safe option in ight (see touchdown position esti- mate comparisons in Fig. 1). Flight testing completed with Free Flight 15 on December 15, 2014 with a completely autonomous Hazard Detection and Avoidance (HDA), integration of surface relative and Hazard Relative Navigation (HRN) measurements into the onboard dual-state inertial estimator Kalman lter software, and landing within 2 meters of the VTB GPS-based navigation solution at the safe landing site target. This paper describes the Mor- pheus joint VTB/ALHAT navigation architecture, the sensors utilized during the terrestrial ight campaign, issues resolved during testing, and the navigation results from the ight tests.

  13. Real-Time Hazard Detection and Avoidance Demonstration for a Planetary Lander

    NASA Technical Reports Server (NTRS)

    Epp, Chirold D.; Robertson, Edward A.; Carson, John M., III

    2014-01-01

    The Autonomous Landing Hazard Avoidance Technology (ALHAT) Project is chartered to develop and mature to a Technology Readiness Level (TRL) of six an autonomous system combining guidance, navigation and control with terrain sensing and recognition functions for crewed, cargo, and robotic planetary landing vehicles. In addition to precision landing close to a pre-mission defined landing location, the ALHAT System must be capable of autonomously identifying and avoiding surface hazards in real-time to enable a safe landing under any lighting conditions. This paper provides an overview of the recent results of the ALHAT closed loop hazard detection and avoidance flight demonstrations on the Morpheus Vertical Testbed (VTB) at the Kennedy Space Center, including results and lessons learned. This effort is also described in the context of a technology path in support of future crewed and robotic planetary exploration missions based upon the core sensing functions of the ALHAT system: Terrain Relative Navigation (TRN), Hazard Detection and Avoidance (HDA), and Hazard Relative Navigation (HRN).

  14. Flight Testing ALHAT Precision Landing Technologies Integrated Onboard the Morpheus Rocket Vehicle

    NASA Technical Reports Server (NTRS)

    Carson, John M. III; Robertson, Edward A.; Trawny, Nikolas; Amzajerdian, Farzin

    2015-01-01

    A suite of prototype sensors, software, and avionics developed within the NASA Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project were terrestrially demonstrated onboard the NASA Morpheus rocket-propelled Vertical Testbed (VTB) in 2014. The sensors included a LIDAR-based Hazard Detection System (HDS), a Navigation Doppler LIDAR (NDL) velocimeter, and a long-range Laser Altimeter (LAlt) that enable autonomous and safe precision landing of robotic or human vehicles on solid solar system bodies under varying terrain lighting conditions. The flight test campaign with the Morpheus vehicle involved a detailed integration and functional verification process, followed by tether testing and six successful free flights, including one night flight. The ALHAT sensor measurements were integrated into a common navigation solution through a specialized ALHAT Navigation filter that was employed in closed-loop flight testing within the Morpheus Guidance, Navigation and Control (GN&C) subsystem. Flight testing on Morpheus utilized ALHAT for safe landing site identification and ranking, followed by precise surface-relative navigation to the selected landing site. The successful autonomous, closed-loop flight demonstrations of the prototype ALHAT system have laid the foundation for the infusion of safe, precision landing capabilities into future planetary exploration missions.

  15. KSC-2012-4172

    NASA Image and Video Library

    2012-08-01

    CAPE CANAVERAL, Fla. - At the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, field at the north end of the Shuttle Landing Facility, or SLF, at NASA’s Kennedy Space Center in Florida, members of the media view the hazard field and speak with Morpheus managers. At left, in the blue shirt is Gregory Gaddis, Kennedy Project Morpheus/ALHAT site manager. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett

  16. KSC-2012-4170

    NASA Image and Video Library

    2012-08-01

    CAPE CANAVERAL, Fla. - At the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, field at the north end of the Shuttle Landing Facility, or SLF, at NASA’s Kennedy Space Center in Florida, members of the media view the hazard field and speak with Morpheus managers. At far left, in the white shirt is Jon Olansen, Johnson Space Center Project Morpheus Manager. At left, in the blue shirt is Chirold Epp, JSC project manager for ALHAT. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett

  17. KSC-2012-4171

    NASA Image and Video Library

    2012-08-01

    CAPE CANAVERAL, Fla. - At the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, field at the north end of the Shuttle Landing Facility, or SLF, at NASA’s Kennedy Space Center in Florida, members of the media view the hazard field and speak with Morpheus managers. In the white shirt is Jon Olansen, Johnson Space Center Project Morpheus Manager. Behind Olansen is Gregory Gaddis, Kennedy Project Morpheus/ALHAT site manager. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett

  18. KSC-2014-2645

    NASA Image and Video Library

    2014-05-21

    CAPE CANAVERAL, Fla. – From left behind the reporter in the white shirt, Chirold Epp, the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, project manager, Jon Olansen, Morpheus project manager, and Greg Gaddis, Morpheus/ALHAT site director, speak to members of the media near the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Media also viewed Morpheus inside a facility near the landing facility. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Frankie Martin

  19. Morpheus Alhat Tether Test Preparations

    NASA Image and Video Library

    2014-03-27

    CAPE CANAVERAL, Fla. – NASA's Project Morpheus prototype lander is positioned near a new launch site at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida for a tether test. The launch pad was moved to a different location at the landing facility to support the next phase of flight testing. Project Morpheus tests NASA’s automated landing and hazard avoidance technology, or ALHAT, and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. In the foreground of the photo is the ALHAT field. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Ben Smegelsky

  20. KSC-2014-2643

    NASA Image and Video Library

    2014-05-21

    CAPE CANAVERAL, Fla. – Chirold Epp, the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, project manager, speaks to members of the media inside a facility near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Behind Epp is the Project Morpheus prototype lander. Project Morpheus tests NASA’s ALHAT sensors and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Frankie Martin

  1. Interfacing and Verifying ALHAT Safe Precision Landing Systems with the Morpheus Vehicle

    NASA Technical Reports Server (NTRS)

    Carson, John M., III; Hirsh, Robert L.; Roback, Vincent E.; Villalpando, Carlos; Busa, Joseph L.; Pierrottet, Diego F.; Trawny, Nikolas; Martin, Keith E.; Hines, Glenn D.

    2015-01-01

    The NASA Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project developed a suite of prototype sensors to enable autonomous and safe precision landing of robotic or crewed vehicles under any terrain lighting conditions. Development of the ALHAT sensor suite was a cross-NASA effort, culminating in integration and testing on-board a variety of terrestrial vehicles toward infusion into future spaceflight applications. Terrestrial tests were conducted on specialized test gantries, moving trucks, helicopter flights, and a flight test onboard the NASA Morpheus free-flying, rocket-propulsive flight-test vehicle. To accomplish these tests, a tedious integration process was developed and followed, which included both command and telemetry interfacing, as well as sensor alignment and calibration verification to ensure valid test data to analyze ALHAT and Guidance, Navigation and Control (GNC) performance. This was especially true for the flight test campaign of ALHAT onboard Morpheus. For interfacing of ALHAT sensors to the Morpheus flight system, an adaptable command and telemetry architecture was developed to allow for the evolution of per-sensor Interface Control Design/Documents (ICDs). Additionally, individual-sensor and on-vehicle verification testing was developed to ensure functional operation of the ALHAT sensors onboard the vehicle, as well as precision-measurement validity for each ALHAT sensor when integrated within the Morpheus GNC system. This paper provides some insight into the interface development and the integrated-systems verification that were a part of the build-up toward success of the ALHAT and Morpheus flight test campaigns in 2014. These campaigns provided valuable performance data that is refining the path toward spaceflight infusion of the ALHAT sensor suite.

  2. ALHAT COBALT: CoOperative Blending of Autonomous Landing Technology

    NASA Technical Reports Server (NTRS)

    Carson, John M.

    2015-01-01

    The COBALT project is a flight demonstration of two NASA ALHAT (Autonomous precision Landing and Hazard Avoidance Technology) capabilities that are key for future robotic or human landing GN&C (Guidance, Navigation and Control) systems. The COBALT payload integrates the Navigation Doppler Lidar (NDL) for ultraprecise velocity and range measurements with the Lander Vision System (LVS) for Terrain Relative Navigation (TRN) position estimates. Terrestrial flight tests of the COBALT payload in an open-loop and closed-loop GN&C configuration will be conducted onboard a commercial, rocket-propulsive Vertical Test Bed (VTB) at a test range in Mojave, CA.

  3. Morpheus Alhat Integrated and Laser Test

    NASA Image and Video Library

    2014-03-21

    CAPE CANAVERAL, Fla. – Engineers and technicians prepare the Project Morpheus prototype lander for an automated landing and hazard avoidance technology, or ALHAT, and laser test at a new launch site at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The launch pad was moved to a different location at the landing facility to support the next phase of flight testing. The seventh free flight test of Morpheus occurred on March 11. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett

  4. Morpheus Alhat Integrated and Laser Test

    NASA Image and Video Library

    2014-03-21

    CAPE CANAVERAL, Fla. – Engineers run an automated landing and hazard avoidance technology, or ALHAT, and laser test on the Project Morpheus prototype lander at a new launch site at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The launch pad was moved to a different location at the landing facility to support the next phase of flight testing. The seventh free flight test of Morpheus occurred on March 11. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett

  5. KSC-2014-2340

    NASA Image and Video Library

    2014-04-30

    CAPE CANAVERAL, Fla. – NASA's Project Morpheus prototype lander touches down on the autonomous landing and hazard avoidance technology, or ALHAT, field after lifting off on a free-flight test from a new launch pad at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The 98-second test began at 1:57 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending more than 800 feet at a peak speed of 36 mph. The vehicle, with its recently installed ALHAT sensors, surveyed the hazard field to determine safe landing sites. Morpheus then flew forward and downward covering approximately 1300 feet while performing a 78-foot divert to simulate a hazard avoidance maneuver. The lander descended and landed on a dedicated pad inside the ALHAT hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett

  6. KSC-2014-2341

    NASA Image and Video Library

    2014-04-30

    CAPE CANAVERAL, Fla. – Engineers and technicians check NASA's Project Morpheus prototype lander after it touched down on a dedicated landing pad inside the autonomous landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Morpheus launched on a free-flight test from a new launch pad at the north end of the landing facility. The 98-second test began at 1:57 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending more than 800 feet at a peak speed of 36 mph. The vehicle, with its recently installed ALHAT sensors, surveyed the hazard field to determine safe landing sites. Morpheus then flew forward and downward covering approximately 1300 feet while performing a 78-foot divert to simulate a hazard avoidance maneuver before landing on the dedicated pad inside the ALHAT hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett

  7. KSC-2014-2336

    NASA Image and Video Library

    2014-04-30

    CAPE CANAVERAL, Fla. – NASA's Project Morpheus prototype lander touches down on the autonomous landing and hazard avoidance technology, or ALHAT, field after lifting off on a free-flight test from a new launch pad at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The 98-second test began at 1:57 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending more than 800 feet at a peak speed of 36 mph. The vehicle, with its recently installed ALHAT sensors, surveyed the hazard field to determine safe landing sites. Morpheus then flew forward and downward covering approximately 1300 feet while performing a 78-foot divert to simulate a hazard avoidance maneuver. The lander descended and landed on a dedicated pad inside the ALHAT hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Frankie Martin

  8. Real-time Imaging Technology for the Return to the Moon

    NASA Technical Reports Server (NTRS)

    Epp, Chirold

    2008-01-01

    This viewgraph presentation reviews realtime Autonomous Landing Hazard Avoidance Technology (ALHAT) technology for the return to the Moon. The topics inclde: 1) ALHAT Background; 2) Safe and Precise Landing; 3) ALHAT Mission Phases; 4) Terminal Descent Phase; 5) Lighting; 6) Lander Tolerance; 7) HDA Sensor Performance; and 8) HDA Terrain Sensors.

  9. KSC-2014-2644

    NASA Image and Video Library

    2014-05-21

    CAPE CANAVERAL, Fla. – From left, Chirold Epp, the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, project manager, and Jon Olansen, Morpheus project manager, speak to members of the media near the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Media also viewed Morpheus inside a facility near the landing facility. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Frankie Martin

  10. KSC-2012-4166

    NASA Image and Video Library

    2012-08-01

    CAPE CANAVERAL, Fla. - At a hangar near the Shuttle Landing Facility, or SLF, at NASA’s Kennedy Space Center in Florida, members of the media view the Morpheus prototype lander and speak with Morpheus managers. In front is Gregory Gaddis, Kennedy Project Morpheus/ALHAT site manager. To his left, are Jon Olansen, Johnson Space Center Project Morpheus manager and Chirold Epp, JSC ALHAT project manager. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett

  11. Morpheus Campaign 1A Liftoff

    NASA Image and Video Library

    2014-01-21

    CAPE CANAVERAL, Fla. – The Project Morpheus prototype lander touches down in the autonomous landing and hazard avoidance technology, or ALHAT, hazard field after launching on its fourth free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 64-second test began at 1:15 p.m. EST with the Morpheus lander launching from the ground over a flame trench and ascending about 305 feet, significantly increasing the ascent velocity from the last test. The lander flew forward, covering about 358 feet in 25 seconds before descending and landing within 15 inches of its target on a dedicated pad inside the ALHAT hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus. Photo credit: NASA/Kim Shiflett

  12. Morpheus Campaign 1A Liftoff

    NASA Image and Video Library

    2014-01-21

    CAPE CANAVERAL, Fla. – The Project Morpheus prototype lander touched down in the autonomous landing and hazard avoidance technology, or ALHAT, hazard field after launching on its fourth free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 64-second test began at 1:15 p.m. EST with the Morpheus lander launching from the ground over a flame trench and ascending about 305 feet, significantly increasing the ascent velocity from the last test. The lander flew forward, covering about 358 feet in 25 seconds before descending and landing within 15 inches of its target on a dedicated pad inside the ALHAT hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus. Photo credit: NASA/Kim Shiflett

  13. Morpheus Alhat Tether Test Preparations

    NASA Image and Video Library

    2014-03-27

    CAPE CANAVERAL, Fla. – Engineers and technicians prepare the Project Morpheus prototype lander for a tether test near a new launch site at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The launch pad was moved to a different location at the landing facility to support the next phase of flight testing. Project Morpheus tests NASA’s automated landing and hazard avoidance technology, or ALHAT, and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Ben Smegelsky

  14. Morpheus Alhat Tether Test Preparations

    NASA Image and Video Library

    2014-03-27

    CAPE CANAVERAL, Fla. – NASA's Project Morpheus prototype lander is positioned near a new launch site at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida for a tether test. The launch pad was moved to a different location at the landing facility to support the next phase of flight testing. Project Morpheus tests NASA’s automated landing and hazard avoidance technology, or ALHAT, and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Ben Smegelsky

  15. Morpheus Alhat Tether Test Preparations

    NASA Image and Video Library

    2014-03-27

    CAPE CANAVERAL, Fla. – A technician prepares the Project Morpheus prototype lander for a tether test near a new launch site at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The launch pad was moved to a different location at the landing facility to support the next phase of flight testing. Project Morpheus tests NASA’s automated landing and hazard avoidance technology, or ALHAT, and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Ben Smegelsky

  16. KSC-2014-4805

    NASA Image and Video Library

    2014-12-11

    CAPE CANAVERAL, Fla. – NASA Project Morpheus prototype lander is being lifted by crane during preparations for free flight test number 15 at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The lander will take off from the ground over a flame trench and use its autonomous landing and hazard avoidance technology, or ALHAT sensors, to survey the hazard field to determine safe landing sites. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Jim Grossmann

  17. KSC-2014-4799

    NASA Image and Video Library

    2014-12-10

    CAPE CANAVERAL, Fla. – NASA's Project Morpheus prototype lander is being transported to the north end of the Shuttle Landing Facility for free flight test number 15 at NASA’s Kennedy Space Center in Florida. The lander will take off from the ground over a flame trench and use its autonomous landing and hazard avoidance technology, or ALHAT sensors, to survey the hazard field to determine safe landing sites. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Jim Grossmann

  18. KSC-2014-4802

    NASA Image and Video Library

    2014-12-10

    CAPE CANAVERAL, Fla. – Engineers and technicians prepare NASA's Project Morpheus prototype lander for free flight test number 15 on a launch pad at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The lander will take off from the ground over a flame trench and use its autonomous landing and hazard avoidance technology, or ALHAT sensors, to survey the hazard field to determine safe landing sites. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Jim Grossmann

  19. KSC-2014-4809

    NASA Image and Video Library

    2014-12-11

    CAPE CANAVERAL, Fla. – Engineers and technicians prepare NASA's Project Morpheus prototype lander for free flight test number 15 at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The lander will take off from the ground over a flame trench and use its autonomous landing and hazard avoidance technology, or ALHAT sensors, to survey the hazard field to determine safe landing sites. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Jim Grossmann

  20. KSC-2014-4804

    NASA Image and Video Library

    2014-12-11

    CAPE CANAVERAL, Fla. – NASA's Project Morpheus prototype lander is prepared for transport to the north end of the Shuttle Landing Facility for free flight test number 15 at NASA’s Kennedy Space Center in Florida. The lander will take off from the ground over a flame trench and use its autonomous landing and hazard avoidance technology, or ALHAT sensors, to survey the hazard field to determine safe landing sites. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Jim Grossmann

  1. KSC-2014-4808

    NASA Image and Video Library

    2014-12-11

    CAPE CANAVERAL, Fla. – Engineers and technicians prepare NASA's Project Morpheus prototype lander for free flight test number 15 at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The lander will take off from the ground over a flame trench and use its autonomous landing and hazard avoidance technology, or ALHAT sensors, to survey the hazard field to determine safe landing sites. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Jim Grossmann

  2. KSC-2014-4800

    NASA Image and Video Library

    2014-12-10

    CAPE CANAVERAL, Fla. – NASA Project Morpheus prototype lander and support equipment are being transported to the north end of the Shuttle Landing Facility for free flight test number 15 at NASA’s Kennedy Space Center in Florida. The lander will take off from the ground over a flame trench and use its autonomous landing and hazard avoidance technology, or ALHAT sensors, to survey the hazard field to determine safe landing sites. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Jim Grossmann

  3. Terrain Hazard Detection and Avoidance During the Descent and Landing Phase of the Altair Mission

    NASA Technical Reports Server (NTRS)

    Strhan, Alan L.; Johnson, Andrew E.

    2010-01-01

    This paper describes some of the environmental challenges associated with landing a crewed or robotic vehicle at any certified location on the lunar surface (i.e. not a mountain peak, permanently dark crater floor or overly steep terrain), with a specific focus on how hazard detection technology may be incorporated to mitigate these challenges. For this discussion, the vehicle of interest is the Altair Lunar Lander, being the vehicle element of the NASA Constellation Program aimed at returning humans to the moon. Lunar environmental challenges for such global lunar access primarily involve terrain and lighting. These would include sizable rocks and slopes, which are more concentrated in highland areas; small craters, which are essentially everywhere independent of terrain type; and for polar regions, low-angle sunlight, which leaves significant terrain in shadow. To address these issues, as well as to provide for precision landing, the Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project was charted by NASA Headquarters, and has since been making significant progress. The ALHAT team considered several sensors for real-time hazard detection, settling on the use of a Flash Lidar mounted to a high-speed gimbal, with computationally intense image processing and elevation interpretation software. The Altair Project has been working with the ALHAT team to understand the capabilities and limitations of their concept, and has incorporated much of the ALHAT hazard detection system into the Altair baseline design. This integration, along with open issues relating to computational performance, the need for system redundancy, and potential pilot interaction, will be explored further in this paper.

  4. Morpheus Campaign 1A Liftoff

    NASA Image and Video Library

    2014-01-21

    CAPE CANAVERAL, Fla. – Technicians and engineers perform safing procedures on the Project Morpheus prototype lander after it touched down in the autonomous landing and hazard avoidance technology, or ALHAT, hazard field. The lander successfully completed its fourth free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 64-second test began at 1:15 p.m. EST with the Morpheus lander launching from the ground over a flame trench and ascending about 305 feet, significantly increasing the ascent velocity from the last test. The lander flew forward, covering about 358 feet in 25 seconds before descending and landing within 15 inches of its target on a dedicated pad inside the ALHAT hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus. Photo credit: NASA/Kim Shiflett

  5. Morpheus Alhat Integrated and Laser Test

    NASA Image and Video Library

    2014-03-21

    CAPE CANAVERAL, Fla. – A crane lowers the Project Morpheus prototype lander onto a launch pad at a new launch site at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Engineers and technicians are preparing Morpheus for an automated landing and hazard avoidance technology, or ALHAT, and laser test at the new launch site. The launch pad was moved to a different location at the landing facility to support the next phase of flight testing. The seventh free flight test of Morpheus occurred on March 11. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett

  6. Morpheus Alhat Integrated and Laser Test

    NASA Image and Video Library

    2014-03-21

    CAPE CANAVERAL, Fla. – Engineers and technicians wearing safety goggles, prepare the Project Morpheus prototype lander for an automated landing and hazard avoidance technology, or ALHAT, and laser test at a new launch site at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The launch pad was moved to a different location at the landing facility to support the next phase of flight testing. The seventh free flight test of Morpheus occurred on March 11. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett

  7. Morpheus Media Press Event

    NASA Image and Video Library

    2014-01-17

    CAPE CANAVERAL, Fla. – Members of the news media view the Project Morpheus prototype lander inside a hangar near the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Speaking to the media, from left are Jon Olansen, Morpheus project manager at Johnson Space Center in Houston, and Greg Gaddis, the Kennedy Morpheus and ALHAT site manager. Morpheus successfully completed its third free flight test Jan. 16. The 57-second test began at 1:15 p.m. EST with the Morpheus lander launching from the ground over a flame trench and ascending about 187 feet, nearly doubling the target ascent velocity from the last test in December 2013. The lander flew forward, covering about 154 feet in 20 seconds before descending and landing within 11 inches of its target on a dedicated pad inside the autonomous landing and hazard avoidance technology, or ALHAT, hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus. Photo credit: NASA/Kim Shiflett

  8. KSC-2014-4803

    NASA Image and Video Library

    2014-12-11

    CAPE CANAVERAL, Fla. – Engineers and controllers in a mobile control room prepare for flight number 15 of NASA's Project Morpheus prototype lander at the north end of the Shuttle Landing Facility, or SLF, at NASA’s Kennedy Space Center in Florida. The lander will take off from the ground over a flame trench and use its autonomous landing and hazard avoidance technology, or ALHAT sensors, to survey the hazard field to determine safe landing sites. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Jim Grossmann

  9. KSC-2014-4806

    NASA Image and Video Library

    2014-12-11

    CAPE CANAVERAL, Fla. – Engineers and technicians prepare the launch pad for NASA's Project Morpheus prototype lander at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Morpheus is being prepared for free flight test number 15 at the SLF. The lander will take off from the ground over a flame trench and use its autonomous landing and hazard avoidance technology, or ALHAT sensors, to survey the hazard field to determine safe landing sites. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Jim Grossmann

  10. KSC-2014-4798

    NASA Image and Video Library

    2014-12-10

    CAPE CANAVERAL, Fla. – NASA's Project Morpheus prototype lander is being transported from a hangar at the Shuttle Landing Facility, or SLF, for free flight test number 15 at the north end of the SLF at NASA’s Kennedy Space Center in Florida. The lander will take off from the ground over a flame trench and use its autonomous landing and hazard avoidance technology, or ALHAT sensors, to survey the hazard field to determine safe landing sites. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Jim Grossmann

  11. KSC-2014-4801

    NASA Image and Video Library

    2014-12-10

    CAPE CANAVERAL, Fla. – NASA's Project Morpheus prototype lander is being lowered by crane onto a launch pad at the north end of the Shuttle Landing Facility in preparation for free flight test number 15 at NASA’s Kennedy Space Center in Florida. The lander will take off from the ground over a flame trench and use its autonomous landing and hazard avoidance technology, or ALHAT sensors, to survey the hazard field to determine safe landing sites. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Jim Grossmann

  12. KSC-2014-4807

    NASA Image and Video Library

    2014-12-11

    CAPE CANAVERAL, Fla. – Engineers and technicians prepare NASA's Project Morpheus prototype lander for free flight test number 15 on a launch pad at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Morpheus is being lowered by crane onto the launch pad. The lander will take off from the ground over a flame trench and use its autonomous landing and hazard avoidance technology, or ALHAT sensors, to survey the hazard field to determine safe landing sites. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Jim Grossmann

  13. Morpheus Alhat Tether Test Preparations

    NASA Image and Video Library

    2014-03-27

    CAPE CANAVERAL, Fla. – Technicians watch as a crane lowers the Project Morpheus prototype lander onto a launch pad at a new launch site at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Preparations are underway for a tether test. The launch pad was moved to a different location at the landing facility to support the next phase of flight testing. Project Morpheus tests NASA’s automated landing and hazard avoidance technology, or ALHAT, and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Ben Smegelsky

  14. Morpheus Alhat Tether Test Preparations

    NASA Image and Video Library

    2014-03-27

    CAPE CANAVERAL, Fla. – A crane lowers the Project Morpheus prototype lander onto a launch pad at a new launch site at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Preparations are underway for a tether test. The launch pad was moved to a different location at the landing facility to support the next phase of flight testing. Project Morpheus tests NASA’s automated landing and hazard avoidance technology, or ALHAT, and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Ben Smegelsky

  15. Morpheus Alhat Tether Test Preparations

    NASA Image and Video Library

    2014-03-27

    CAPE CANAVERAL, Fla. – Engineers and technicians monitor the progress as a crane lifts the Project Morpheus prototype lander off the ground for a tether test near a new launch site at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The launch pad was moved to a different location at the landing facility to support the next phase of flight testing. Project Morpheus tests NASA’s automated landing and hazard avoidance technology, or ALHAT, and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Ben Smegelsky

  16. Morpheus Campaign 2A Tether Test

    NASA Image and Video Library

    2014-03-27

    CAPE CANAVERAL, Fla. – NASA's Project Morpheus prototype lander is positioned near a new launch site at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida for a tethered test. The test will be performed to verify the lander's recently installed autonomous landing and hazard avoidance technology, or ALHAT, sensors and integration system. The launch pad was moved to a different location at the landing facility to support the next phase of flight testing. Project Morpheus tests NASA’s ALHAT, and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Glenn Benson

  17. Morpheus Trailered to the SLF

    NASA Image and Video Library

    2014-01-21

    CAPE CANAVERAL, Fla. – The Project Morpheus prototype lander is transported to a launch pad at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The prototype lander is being prepared for its fourth free flight test at Kennedy. Morpheus will launch from the ground over a flame trench and then descend and land on a dedicated pad inside the autonomous landing and hazard avoidance technology, or ALHAT, hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus. Photo credit: NASA/Cory Huston

  18. Morpheus Trailered to the SLF

    NASA Image and Video Library

    2014-01-21

    CAPE CANAVERAL, Fla. – The Project Morpheus prototype lander is being lifted by crane for positioning on a launch pad at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The prototype lander is being prepared for its fourth free flight test at Kennedy. Morpheus will launch from the ground over a flame trench and then descend and land on a dedicated pad inside the autonomous landing and hazard avoidance technology, or ALHAT, hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus. Photo credit: NASA/Cory Huston

  19. KSC-2014-2343

    NASA Image and Video Library

    2014-04-30

    CAPE CANAVERAL, Fla. – A technician vents off the gas from the propellant lines of NASA's Project Morpheus prototype lander after it completed a free-flight test at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The 98-second test began at 1:57 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending more than 800 feet at a peak speed of 36 mph. The vehicle, with its recently installed autonomous landing and hazard avoidance technology, or ALHAT, sensors surveyed the hazard field to determine safe landing sites. Morpheus then flew forward and downward covering approximately 1300 feet while performing a 78-foot divert to simulate a hazard avoidance maneuver. The lander descended and landed on a dedicated pad inside the ALHAT hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett

  20. KSC-2014-2344

    NASA Image and Video Library

    2014-04-30

    CAPE CANAVERAL, Fla. – Technicians vent off the gas from the propellant lines of NASA's Project Morpheus prototype lander after it completed a free-flight test at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The 98-second test began at 1:57 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending more than 800 feet at a peak speed of 36 mph. The vehicle, with its recently installed autonomous landing and hazard avoidance technology, or ALHAT, sensors surveyed the hazard field to determine safe landing sites. Morpheus then flew forward and downward covering approximately 1300 feet while performing a 78-foot divert to simulate a hazard avoidance maneuver. The lander descended and landed on a dedicated pad inside the ALHAT hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett

  1. KSC-2014-2342

    NASA Image and Video Library

    2014-04-30

    CAPE CANAVERAL, Fla. – A technician vents off the gas from the propellant lines of NASA's Project Morpheus prototype lander after it landed from a free-flight test at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The 98-second test began at 1:57 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending more than 800 feet at a peak speed of 36 mph. The vehicle, with its recently installed autonomous landing and hazard avoidance technology, or ALHAT, sensors surveyed the hazard field to determine safe landing sites. Morpheus then flew forward and downward covering approximately 1300 feet while performing a 78-foot divert to simulate a hazard avoidance maneuver. The lander descended and landed on a dedicated pad inside the ALHAT hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett

  2. Morpheus Trailered to the SLF

    NASA Image and Video Library

    2014-01-21

    CAPE CANAVERAL, Fla. – Technicians monitor the progress as a crane lowers the Project Morpheus prototype for positioning on a launch pad at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The prototype lander is being prepared for its fourth free flight test at Kennedy. Morpheus will launch from the ground over a flame trench and then descend and land on a dedicated pad inside the autonomous landing and hazard avoidance technology, or ALHAT, hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus. Photo credit: NASA/Cory Huston

  3. Morpheus Trailered to the SLF

    NASA Image and Video Library

    2014-01-21

    CAPE CANAVERAL, Fla. – Technicians and engineers monitor the progress as the Project Morpheus prototype lander is lifted by crane for positioning on a launch pad at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The prototype lander is being prepared for its fourth free flight test at Kennedy. Morpheus will launch from the ground over a flame trench and then descend and land on a dedicated pad inside the autonomous landing and hazard avoidance technology, or ALHAT, hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus. Photo credit: NASA/Cory Huston

  4. Morpheus Trailered to the SLF

    NASA Image and Video Library

    2014-01-21

    CAPE CANAVERAL, Fla. – Technicians monitor the progress as the Project Morpheus prototype lander is lifted by crane for positioning on a launch pad at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The prototype lander is being prepared for its fourth free flight test at Kennedy. Morpheus will launch from the ground over a flame trench and then descend and land on a dedicated pad inside the autonomous landing and hazard avoidance technology, or ALHAT, hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus. Photo credit: NASA/Cory Huston

  5. KSC-2014-2642

    NASA Image and Video Library

    2014-05-21

    CAPE CANAVERAL, Fla. – Jon Olansen, Morpheus project manager, speaks to members of the media inside a facility near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Behind Olansen is the Project Morpheus prototype lander. Project Morpheus tests NASA’s autonomous landing and hazard avoidance technology, or ALHAT, sensors and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Frankie Martin

  6. KSC-2014-2641

    NASA Image and Video Library

    2014-05-21

    CAPE CANAVERAL, Fla. – Jon Olansen, Morpheus project manager, speaks to members of the media inside a facility near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Behind Olansen is the Project Morpheus prototype lander. Project Morpheus tests NASA’s autonomous landing and hazard avoidance technology, or ALHAT, sensors and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Frankie Martin

  7. Morpheus Campaign 1C

    NASA Image and Video Library

    2014-03-05

    CAPE CANAVERAL, Fla. – Engineers and technicians prepare the Project Morpheus prototype lander for its sixth free flight test from a launch pad at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 82-second test began at 11:32 a.m. EST with the Morpheus lander launching from the ground over a flame trench and ascending to 465 feet. The lander flew forward, covering 633 feet while performing a 55-foot divert to emulate a hazard avoidance maneuver before descending and landing on a dedicated pad inside the automated landing and hazard avoidance technology, or ALHAT, hazard field. Morpheus landed 10 inches west of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett

  8. Morpheus Campaign 1C

    NASA Image and Video Library

    2014-03-05

    CAPE CANAVERAL, Fla. – The Project Morpheus prototype lander begins to ascend on its sixth free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 82-second test began at 11:32 a.m. EST with the Morpheus lander launching from the ground over a flame trench and ascending to 465 feet. The lander flew forward, covering 633 feet while performing a 55-foot divert to emulate a hazard avoidance maneuver before descending and landing on a dedicated pad inside the automated landing and hazard avoidance technology, or ALHAT, hazard field. Morpheus landed 10 inches west of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett

  9. KSC-2014-1606

    NASA Image and Video Library

    2014-03-05

    CAPE CANAVERAL, Fla. – The Project Morpheus prototype lander soars high after launching on its sixth free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 82-second test began at 11:32 a.m. EST with the Morpheus lander launching from the ground over a flame trench and ascending to 465 feet. The lander flew forward, covering 633 feet while performing a 55-foot divert to emulate a hazard avoidance maneuver before descending and landing on a dedicated pad inside the automated landing and hazard avoidance technology, or ALHAT, hazard field. Morpheus landed 10 inches west of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett

  10. KSC-2014-1607

    NASA Image and Video Library

    2014-03-05

    CAPE CANAVERAL, Fla. – The Project Morpheus prototype lander soars high and moves forward after launching on its sixth free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 82-second test began at 11:32 a.m. EST with the Morpheus lander launching from the ground over a flame trench and ascending to 465 feet. The lander flew forward, covering 633 feet while performing a 55-foot divert to emulate a hazard avoidance maneuver before descending and landing on a dedicated pad inside the automated landing and hazard avoidance technology, or ALHAT, hazard field. Morpheus landed 10 inches west of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett

  11. KSC-2014-1609

    NASA Image and Video Library

    2014-03-05

    CAPE CANAVERAL, Fla. – The Project Morpheus prototype lander begins to ascend on its sixth free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 82-second test began at 11:32 a.m. EST with the Morpheus lander launching from the ground over a flame trench and ascending to 465 feet. The lander flew forward, covering 633 feet while performing a 55-foot divert to emulate a hazard avoidance maneuver before descending and landing on a dedicated pad inside the automated landing and hazard avoidance technology, or ALHAT, hazard field. Morpheus landed 10 inches west of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Frankie Martin

  12. KSC-2014-1613

    NASA Image and Video Library

    2014-03-05

    CAPE CANAVERAL, Fla. – The Project Morpheus prototype lander soars high after launching on its sixth free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 82-second test began at 11:32 a.m. EST with the Morpheus lander launching from the ground over a flame trench and ascending to 465 feet. The lander flew forward, covering 633 feet while performing a 55-foot divert to emulate a hazard avoidance maneuver before descending and landing on a dedicated pad inside the automated landing and hazard avoidance technology, or ALHAT, hazard field. Morpheus landed 10 inches west of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Frankie Martin

  13. KSC-2014-1610

    NASA Image and Video Library

    2014-03-05

    CAPE CANAVERAL, Fla. – The Project Morpheus prototype lander begins to ascend on its sixth free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 82-second test began at 11:32 a.m. EST with the Morpheus lander launching from the ground over a flame trench and ascending to 465 feet. The lander flew forward, covering 633 feet while performing a 55-foot divert to emulate a hazard avoidance maneuver before descending and landing on a dedicated pad inside the automated landing and hazard avoidance technology, or ALHAT, hazard field. Morpheus landed 10 inches west of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Frankie Martin

  14. Morpheus Campaign 1C

    NASA Image and Video Library

    2014-03-05

    CAPE CANAVERAL, Fla. – The Project Morpheus prototype lander soars high after launching on its sixth free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 82-second test began at 11:32 a.m. EST with the Morpheus lander launching from the ground over a flame trench and ascending to 465 feet. The lander flew forward, covering 633 feet while performing a 55-foot divert to emulate a hazard avoidance maneuver before descending and landing on a dedicated pad inside the automated landing and hazard avoidance technology, or ALHAT, hazard field. Morpheus landed 10 inches west of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett

  15. KSC-2014-1604

    NASA Image and Video Library

    2014-03-05

    CAPE CANAVERAL, Fla. – Engineers and technicians prepare the Project Morpheus prototype lander for its sixth free flight test from a launch pad at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 82-second test began at 11:32 a.m. EST with the Morpheus lander launching from the ground over a flame trench and ascending to 465 feet. The lander flew forward, covering 633 feet while performing a 55-foot divert to emulate a hazard avoidance maneuver before descending and landing on a dedicated pad inside the automated landing and hazard avoidance technology, or ALHAT, hazard field. Morpheus landed 10 inches west of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett

  16. KSC-2014-1612

    NASA Image and Video Library

    2014-03-05

    CAPE CANAVERAL, Fla. – The Project Morpheus prototype lander soars high after launching on its sixth free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 82-second test began at 11:32 a.m. EST with the Morpheus lander launching from the ground over a flame trench and ascending to 465 feet. The lander flew forward, covering 633 feet while performing a 55-foot divert to emulate a hazard avoidance maneuver before descending and landing on a dedicated pad inside the automated landing and hazard avoidance technology, or ALHAT, hazard field. Morpheus landed 10 inches west of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Frankie Martin

  17. KSC-2014-1611

    NASA Image and Video Library

    2014-03-05

    CAPE CANAVERAL, Fla. – The Project Morpheus prototype lander ascends on its sixth free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 82-second test began at 11:32 a.m. EST with the Morpheus lander launching from the ground over a flame trench and ascending to 465 feet. The lander flew forward, covering 633 feet while performing a 55-foot divert to emulate a hazard avoidance maneuver before descending and landing on a dedicated pad inside the automated landing and hazard avoidance technology, or ALHAT, hazard field. Morpheus landed 10 inches west of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Frankie Martin

  18. KSC-2014-1603

    NASA Image and Video Library

    2014-03-05

    CAPE CANAVERAL, Fla. – Engineers and technicians prepare the Project Morpheus prototype lander for its sixth free flight test from a launch pad at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 82-second test began at 11:32 a.m. EST with the Morpheus lander launching from the ground over a flame trench and ascending to 465 feet. The lander flew forward, covering 633 feet while performing a 55-foot divert to emulate a hazard avoidance maneuver before descending and landing on a dedicated pad inside the automated landing and hazard avoidance technology, or ALHAT, hazard field. Morpheus landed 10 inches west of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett

  19. KSC-2014-1614

    NASA Image and Video Library

    2014-03-05

    CAPE CANAVERAL, Fla. – The Project Morpheus prototype lander touches down in the automated landing and hazard avoidance technology, or ALHAT, hazard field after completing its sixth free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 82-second test began at 11:32 a.m. EST with the Morpheus lander launching from the ground over a flame trench and ascending to 465 feet. The lander flew forward, covering 633 feet while performing a 55-foot divert to emulate a hazard avoidance maneuver before descending and landing on a dedicated pad inside the hazard field. Morpheus landed 10 inches west of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Frankie Martin

  20. Flash LIDAR Emulator for HIL Simulation

    NASA Technical Reports Server (NTRS)

    Brewster, Paul F.

    2010-01-01

    NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) project is building a system for detecting hazards and automatically landing controlled vehicles safely anywhere on the Moon. The Flash Light Detection And Ranging (LIDAR) sensor is used to create on-the-fly a 3D map of the unknown terrain for hazard detection. As part of the ALHAT project, a hardware-in-the-loop (HIL) simulation testbed was developed to test the data processing, guidance, and navigation algorithms in real-time to prove their feasibility for flight. Replacing the Flash LIDAR camera with an emulator in the testbed provided a cheaper, safer, more feasible way to test the algorithms in a controlled environment. This emulator must have the same hardware interfaces as the LIDAR camera, have the same performance characteristics, and produce images similar in quality to the camera. This presentation describes the issues involved and the techniques used to create a real-time flash LIDAR emulator to support HIL simulation.

  1. A Super-Resolution Algorithm for Enhancement of FLASH LIDAR Data: Flight Test Results

    NASA Technical Reports Server (NTRS)

    Bulyshev, Alexander; Amzajerdian, Farzin; Roback, Eric; Reisse Robert

    2014-01-01

    This paper describes the results of a 3D super-resolution algorithm applied to the range data obtained from a recent Flash Lidar helicopter flight test. The flight test was conducted by the NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) project over a simulated lunar terrain facility at NASA Kennedy Space Center. ALHAT is developing the technology for safe autonomous landing on the surface of celestial bodies: Moon, Mars, asteroids. One of the test objectives was to verify the ability of 3D super-resolution technique to generate high resolution digital elevation models (DEMs) and to determine time resolved relative positions and orientations of the vehicle. 3D super-resolution algorithm was developed earlier and tested in computational modeling, and laboratory experiments, and in a few dynamic experiments using a moving truck. Prior to the helicopter flight test campaign, a 100mX100m hazard field was constructed having most of the relevant extraterrestrial hazard: slopes, rocks, and craters with different sizes. Data were collected during the flight and then processed by the super-resolution code. The detailed DEM of the hazard field was constructed using independent measurement to be used for comparison. ALHAT navigation system data were used to verify abilities of super-resolution method to provide accurate relative navigation information. Namely, the 6 degree of freedom state vector of the instrument as a function of time was restored from super-resolution data. The results of comparisons show that the super-resolution method can construct high quality DEMs and allows for identifying hazards like rocks and craters within the accordance of ALHAT requirements.

  2. A super-resolution algorithm for enhancement of flash lidar data: flight test results

    NASA Astrophysics Data System (ADS)

    Bulyshev, Alexander; Amzajerdian, Farzin; Roback, Eric; Reisse, Robert

    2013-03-01

    This paper describes the results of a 3D super-resolution algorithm applied to the range data obtained from a recent Flash Lidar helicopter flight test. The flight test was conducted by the NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) project over a simulated lunar terrain facility at NASA Kennedy Space Center. ALHAT is developing the technology for safe autonomous landing on the surface of celestial bodies: Moon, Mars, asteroids. One of the test objectives was to verify the ability of 3D super-resolution technique to generate high resolution digital elevation models (DEMs) and to determine time resolved relative positions and orientations of the vehicle. 3D super-resolution algorithm was developed earlier and tested in computational modeling, and laboratory experiments, and in a few dynamic experiments using a moving truck. Prior to the helicopter flight test campaign, a 100mX100m hazard field was constructed having most of the relevant extraterrestrial hazard: slopes, rocks, and craters with different sizes. Data were collected during the flight and then processed by the super-resolution code. The detailed DEM of the hazard field was constructed using independent measurement to be used for comparison. ALHAT navigation system data were used to verify abilities of super-resolution method to provide accurate relative navigation information. Namely, the 6 degree of freedom state vector of the instrument as a function of time was restored from super-resolution data. The results of comparisons show that the super-resolution method can construct high quality DEMs and allows for identifying hazards like rocks and craters within the accordance of ALHAT requirements.

  3. Lunar Landing Trajectory Design for Onboard Hazard Detection and Avoidance

    NASA Technical Reports Server (NTRS)

    Paschall, Steve; Brady, Tye; Sostaric, Ron

    2009-01-01

    The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project is developing the software and hardware technology needed to support a safe and precise landing for the next generation of lunar missions. ALHAT provides this capability through terrain-relative navigation measurements to enhance global-scale precision, an onboard hazard detection system to select safe landing locations, and an Autonomous Guidance, Navigation, and Control (AGNC) capability to process these measurements and safely direct the vehicle to a landing location. This paper focuses on the key trajectory design issues relevant to providing an onboard Hazard Detection and Avoidance (HDA) capability for the lander. Hazard detection can be accomplished by the crew visually scanning the terrain through a window, a sensor system imaging the terrain, or some combination of both. For ALHAT, this hazard detection activity is provided by a sensor system, which either augments the crew s perception or entirely replaces the crew in the case of a robotic landing. Detecting hazards influences the trajectory design by requiring the proper perspective, range to the landing site, and sufficient time to view the terrain. Following this, the trajectory design must provide additional time to process this information and make a decision about where to safely land. During the final part of the HDA process, the trajectory design must provide sufficient margin to enable a hazard avoidance maneuver. In order to demonstrate the effects of these constraints on the landing trajectory, a tradespace of trajectory designs was created for the initial ALHAT Design Analysis Cycle (ALDAC-1) and each case evaluated with these HDA constraints active. The ALHAT analysis process, described in this paper, narrows down this tradespace and subsequently better defines the trajectory design needed to support onboard HDA. Future ALDACs will enhance this trajectory design by balancing these issues and others in an overall system design process.

  4. Developing a Prototype ALHAT Human System Interface for Landing

    NASA Technical Reports Server (NTRS)

    Hirsh, Robert L.; Chua, Zarrin K.; Heino, Todd A.; Strahan, Al; Major, Laura; Duda, Kevin

    2011-01-01

    The goal of the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project is to safely execute a precision landing anytime/anywhere on the moon. This means the system must operate in any lighting conditions, operate in the presence of any thruster generated regolith clouds, and operate without the help of redeployed navigational aids or prepared landing site at the landing site. In order to reach this ambitious goal, computer aided technologies such as ALHAT will be needed in order to permit these landings to be done safely. Although there will be advanced autonomous capabilities onboard future landers, humans will still be involved (either onboard as astronauts or remotely from mission control) in any mission to the moon or other planetary body. Because many time critical decisions must be made quickly and effectively during the landing sequence, the Descent and Landing displays need to be designed to be as effective as possible at presenting the pertinent information to the operator, and allow the operators decisions to be implemented as quickly as possible. The ALHAT project has established the Human System Interface (HSI) team to lead in the development of these displays and to study the best way to provide operators enhanced situational awareness during landing activities. These displays are prototypes that were developed based on multiple design and feedback sessions with the astronaut office at NASA/ Johnson Space Center. By working with the astronauts in a series of plan/build/evaluate cycles, the HSI team has obtained astronaut feedback from the very beginning of the design process. In addition to developing prototype displays, the HSI team has also worked to provide realistic lunar terrain (and shading) to simulate a "out the window" view that can be adjusted to various lighting conditions (based on a desired date/time) to allow the same terrain to be viewed under varying lighting terrain. This capability will be critical to determining the effect of terrain/lighting on the human pilot, and how they use windows and displays during landing activities. The Apollo missions were limited to about 28 possible launch days a year due to lighting and orbital constraints. In order to take advantage of more landing opportunities and venture to more challenging landing locations, future landers will need to utilize sensors besides human eyes for scanning the surface. The ALHAT HSI system must effectively convey ALHAT produced information to the operator, so that landings can occur during less "optimal" conditions (lighting, surface terrain, slopes, etc) than was possible during Apollo missions. By proving this capability, ALHAT will simultaneously provide more flexible access to the moon, and greater safety margins for future landers. This paper will specifically focus on the development of prototype displays (the Trajectory Profile Display (TPD), Landing Point Designation (LPD), and Crew Camera View (CCV) ), implementation of realistic planetary terrain, human modeling, and future HSI plans.

  5. Coherent Lidar Activities at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Amzajerdian, Farzin; Koch, Grady J.; Singh, Upendra N.; Yu, Jirong

    2007-01-01

    NASA Langley Research Center has been developing and using coherent lidar systems for many years. The current projects at LaRC are the Global Wind Observing Sounder (GWOS) mission preparation, the Laser Risk Reduction Program (LRRP), the Instrument Incubator Program (IIP) compact, rugged Doppler wind lidar project, the Autonomous precision Landing and Hazard detection and Avoidance Technology (ALHAT) project for lunar landing, and the Skywalker project to find and use thermals to extend UAV flight time. These five projects encompass coherent lidar technology development; characterization, validation, and calibration facilities; compact, rugged packaging; computer simulation; trade studies; data acquisition, processing, and display development; system demonstration; and space mission design. This paper will further discuss these activities at LaRC.

  6. KSC-2014-1695

    NASA Image and Video Library

    2014-03-11

    CAPE CANAVERAL, Fla. - The Project Morpheus prototype lander soars high on its seventh free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet, its highest to date. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the automated landing and hazard avoidance technology ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Mike Chambers

  7. KSC-2014-1698

    NASA Image and Video Library

    2014-03-11

    CAPE CANAVERAL, Fla. - The Project Morpheus prototype lander soars high on its seventh free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet, its highest to date. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the automated landing and hazard avoidance technology ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Mike Chambers

  8. KSC-2014-1696

    NASA Image and Video Library

    2014-03-11

    CAPE CANAVERAL, Fla. - The Project Morpheus prototype lander soars high on its seventh free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet, its highest to date. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the automated landing and hazard avoidance technology ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Mike Chambers

  9. Morpheus 1C preps & post launch activities

    NASA Image and Video Library

    2014-03-11

    CAPE CANAVERAL, Fla. - Technicians prepare the Project Morpheus prototype lander for its seventh free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet, its highest to date. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the automated landing and hazard avoidance technology ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett

  10. Morpheus 1C preps & post launch activities

    NASA Image and Video Library

    2014-03-11

    CAPE CANAVERAL, Fla. - Engineers and technicians prepare the Project Morpheus prototype lander for its seventh free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet, its highest to date. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the automated landing and hazard avoidance technology ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett

  11. KSC-2014-1699

    NASA Image and Video Library

    2014-03-11

    CAPE CANAVERAL, Fla. - The Project Morpheus prototype lander touches down in the automated landing and hazard avoidance technology, or ALHAT, hazard field after completing its seventh free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet, its highest to date. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Mike Chambers

  12. KSC-2014-1697

    NASA Image and Video Library

    2014-03-11

    CAPE CANAVERAL, Fla. - The Project Morpheus prototype lander soars high on its seventh free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet, its highest to date. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the automated landing and hazard avoidance technology ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Mike Chambers

  13. Morpheus 1C preps & post launch activities

    NASA Image and Video Library

    2014-03-11

    CAPE CANAVERAL, Fla. - Preparations are underway to prepare the Project Morpheus prototype lander for its seventh free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet, its highest to date. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the automated landing and hazard avoidance technology ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett

  14. Morpheus 1C preps & post launch activities

    NASA Image and Video Library

    2014-03-11

    CAPE CANAVERAL, Fla. - The Project Morpheus prototype lander is transported to the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida for the seventh free flight test. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet, its highest to date. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the automated landing and hazard avoidance technology ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett

  15. KSC-2014-1694

    NASA Image and Video Library

    2014-03-11

    CAPE CANAVERAL, Fla. - The Project Morpheus prototype lander begins to ascend on its seventh free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet, its highest to date. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the automated landing and hazard avoidance technology ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Mike Chambers

  16. Post2 End-to-End Descent and Landing Simulation for ALHAT Design Analysis Cycle 2

    NASA Technical Reports Server (NTRS)

    Davis, Jody L.; Striepe, Scott A.; Maddock, Robert W.; Johnson, Andrew E.; Paschall, Stephen C., II

    2010-01-01

    The ALHAT project is an agency-level program involving NASA centers, academia, and industry, with a primary goal to develop a safe, autonomous, precision-landing system for robotic and crew-piloted lunar and planetary descent vehicles. POST2 is used as the 6DOF descent and landing trajectory simulation for determining integrated system performance of ALHAT landing-system models and lunar environment models. This paper presents updates in the development of the ALHAT POST2 simulation, as well as preliminary system performance analysis for ALDAC-2 used for the testing and assessment of ALHAT system models. The ALDAC-2 POST2 Monte Carlo simulation results have been generated and focus on HRN model performance with the fully integrated system, as well performance improvements of AGNC and TSAR model since the previous design analysis cycle

  17. KSC-2012-4169

    NASA Image and Video Library

    2012-08-01

    CAPE CANAVERAL, Fla. - At a hangar near the Shuttle Landing Facility, or SLF, at NASA’s Kennedy Space Center in Florida, Chirold Epp, Johnson Space Center Project Manager for ALHAT, speaks to members of the media. In the background is the Morpheus prototype lander, which arrived at Kennedy on July 27. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett

  18. Helicopter Flight Test of a Compact, Real-Time 3-D Flash Lidar for Imaging Hazardous Terrain During Planetary Landing

    NASA Technical Reports Server (NTRS)

    Roback, VIncent E.; Amzajerdian, Farzin; Brewster, Paul F.; Barnes, Bruce W.; Kempton, Kevin S.; Reisse, Robert A.; Bulyshev, Alexander E.

    2013-01-01

    A second generation, compact, real-time, air-cooled 3-D imaging Flash Lidar sensor system, developed from a number of cutting-edge components from industry and NASA, is lab characterized and helicopter flight tested under the Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT) project. The ALHAT project is seeking to develop a guidance, navigation, and control (GN&C) and sensing system based on lidar technology capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The Flash Lidar incorporates a 3-D imaging video camera based on Indium-Gallium-Arsenide Avalanche Photo Diode and novel micro-electronic technology for a 128 x 128 pixel array operating at a video rate of 20 Hz, a high pulse-energy 1.06 µm Neodymium-doped: Yttrium Aluminum Garnet (Nd:YAG) laser, a remote laser safety termination system, high performance transmitter and receiver optics with one and five degrees field-of-view (FOV), enhanced onboard thermal control, as well as a compact and self-contained suite of support electronics housed in a single box and built around a PC-104 architecture to enable autonomous operations. The Flash Lidar was developed and then characterized at two NASA-Langley Research Center (LaRC) outdoor laser test range facilities both statically and dynamically, integrated with other ALHAT GN&C subsystems from partner organizations, and installed onto a Bell UH-1H Iroquois "Huey" helicopter at LaRC. The integrated system was flight tested at the NASA-Kennedy Space Center (KSC) on simulated lunar approach to a custom hazard field consisting of rocks, craters, hazardous slopes, and safe-sites near the Shuttle Landing Facility runway starting at slant ranges of 750 m. In order to evaluate different methods of achieving hazard detection, the lidar, in conjunction with the ALHAT hazard detection and GN&C system, operates in both a narrow 1deg FOV raster-scanning mode in which successive, gimbaled images of the hazard field are mosaicked together as well as in a wider, 4.85deg FOV staring mode in which digital magnification, via a novel 3-D superresolution technique, is used to effectively achieve the same spatial precision attained with the more narrow FOV optics. The lidar generates calibrated and corrected 3-D range images of the hazard field in real-time and passes them to the ALHAT Hazard Detection System (HDS) which stitches the images together to generate on-the-fly Digital Elevation Maps (DEM's) and identifies hazards and safe-landing sites which the ALHAT GN&C system can then use to guide the host vehicle to a safe landing on the selected site. Results indicate that, for the KSC hazard field, the lidar operational range extends from 100m to 1.35 km for a 30 degree line-of-sight angle and a range precision as low as 8 cm which permits hazards as small as 25 cm to be identified. Based on the Flash Lidar images, the HDS correctly found and reported safe sites in near-real-time during several of the flights. A follow-on field test, planned for 2013, seeks to complete the closing of the GN&C loop for fully-autonomous operations on-board the Morpheus robotic, rocket-powered, free-flyer test bed in which the ALHAT system would scan the KSC hazard field (which was vetted during the present testing) and command the vehicle to landing on one of the selected safe sites.

  19. High-Fidelity Flash Lidar Model Development

    NASA Technical Reports Server (NTRS)

    Hines, Glenn D.; Pierrottet, Diego F.; Amzajerdian, Farzin

    2014-01-01

    NASA's Autonomous Landing and Hazard Avoidance Technologies (ALHAT) project is currently developing the critical technologies to safely and precisely navigate and land crew, cargo and robotic spacecraft vehicles on and around planetary bodies. One key element of this project is a high-fidelity Flash Lidar sensor that can generate three-dimensional (3-D) images of the planetary surface. These images are processed with hazard detection and avoidance and hazard relative navigation algorithms, and then are subsequently used by the Guidance, Navigation and Control subsystem to generate an optimal navigation solution. A complex, high-fidelity model of the Flash Lidar was developed in order to evaluate the performance of the sensor and its interaction with the interfacing ALHAT components on vehicles with different configurations and under different flight trajectories. The model contains a parameterized, general approach to Flash Lidar detection and reflects physical attributes such as range and electronic noise sources, and laser pulse temporal and spatial profiles. It also provides the realistic interaction of the laser pulse with terrain features that include varying albedo, boulders, craters slopes and shadows. This paper gives a description of the Flash Lidar model and presents results from the Lidar operating under different scenarios.

  20. KSC-2013-4316

    NASA Image and Video Library

    2013-12-10

    CAPE CANAVERAL, Fla. – Preparations are underway to prepare the Project Morpheus prototype lander for its first free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to asteroids and other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  1. KSC-2013-4370

    NASA Image and Video Library

    2013-12-17

    CAPE CANAVERAL, Fla. -- A technician prepares the Project Morpheus prototype lander for a second free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Dimitri Gerondidakis

  2. KSC-2013-4367

    NASA Image and Video Library

    2013-12-17

    CAPE CANAVERAL, Fla. -- Preparations are underway to prepare the Project Morpheus prototype lander for a second free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Dimitri Gerondidakis

  3. KSC-2013-4369

    NASA Image and Video Library

    2013-12-17

    CAPE CANAVERAL, Fla. -- Engineers and technicians prepare the Project Morpheus prototype lander for a second free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Dimitri Gerondidakis

  4. KSC-2013-4318

    NASA Image and Video Library

    2013-12-10

    CAPE CANAVERAL, Fla. – The first free flight of the Project Morpheus prototype lander begins as the lander’s engine fires at the north of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to asteroids and other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  5. KSC-2013-4315

    NASA Image and Video Library

    2013-12-10

    CAPE CANAVERAL, Fla. – Preparations are underway to prepare the Project Morpheus prototype lander for its first free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to asteroids and other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  6. KSC-2013-4368

    NASA Image and Video Library

    2013-12-17

    CAPE CANAVERAL, Fla. -- A technician prepares the Project Morpheus prototype lander for a second free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Dimitri Gerondidakis

  7. KSC-2013-4319

    NASA Image and Video Library

    2013-12-10

    CAPE CANAVERAL, Fla. – The first free flight of the Project Morpheus prototype lander begins as the lander’s engine fires at the north of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to asteroids and other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  8. KSC-2013-4366

    NASA Image and Video Library

    2013-12-17

    CAPE CANAVERAL, Fla. -- Preparations are underway to prepare the Project Morpheus prototype lander for a second free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Dimitri Gerondidakis

  9. KSC-2013-4320

    NASA Image and Video Library

    2013-12-10

    CAPE CANAVERAL, Fla. – The first free flight of the Project Morpheus prototype lander begins as the lander’s engine fires at the north of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to asteroids and other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  10. KSC-2013-4317

    NASA Image and Video Library

    2013-12-10

    CAPE CANAVERAL, Fla. – Technicians and engineers prepare the Project Morpheus prototype lander for its first free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to asteroids and other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  11. Morpheus 1C preps & post launch activities

    NASA Image and Video Library

    2014-03-11

    CAPE CANAVERAL, Fla. - Engineers and technicians assist as a crane lowers the Project Morpheus prototype lander in preparation for its seventh free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet, its highest to date. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the automated landing and hazard avoidance technology ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett

  12. Morpheus Launch Pad Move

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – A flatbed truck carries the launch pad for the Project Morpheus prototype lander to a new location at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The launch pad is being moved to a different location to support the next phase of flight testing. Morpheus completed its seventh free flight test on March 11. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the automated landing and hazard avoidance technology ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Dimitri Gerondidakis

  13. Morpheus 1C preps & post launch activities

    NASA Image and Video Library

    2014-03-11

    CAPE CANAVERAL, Fla. - An engineer checks the Project Morpheus prototype lander after it landed in the automated landing and hazard avoidance technology, or ALHAT, hazard field, completing its seventh free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet, its highest to date. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett

  14. Morpheus Launch Pad Move

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – Construction workers assist as a crane lowers a portion of the launch pad for the Project Morpheus prototype lander onto a transporter at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The launch pad is being moved to a different location at the landing facility to support the next phase of flight testing. Morpheus completed its seventh free flight test on March 11. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the automated landing and hazard avoidance technology ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Dimitri Gerondidakis

  15. Morpheus Launch Pad Move

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – Construction workers assist as a crane lowers a large portion of the launch pad for the Project Morpheus prototype lander onto a transporter at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The launch pad is being moved to a different location at the landing facility to support the next phase of flight testing. Morpheus completed its seventh free flight test on March 11. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the automated landing and hazard avoidance technology ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Dimitri Gerondidakis

  16. Morpheus 1C preps & post launch activities

    NASA Image and Video Library

    2014-03-11

    CAPE CANAVERAL, Fla. - The Project Morpheus prototype lander lifts off in the automated landing and hazard avoidance technology, or ALHAT, hazard field for its seventh free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet, its highest to date. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett

  17. Morpheus Launch Pad Move

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – A crane is used to lower the launch pad for the Project Morpheus prototype lander onto a new location at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The launch pad was moved to a different location to support the next phase of flight testing. Morpheus completed its seventh free flight test on March 11. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the automated landing and hazard avoidance technology ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Dimitri Gerondidakis

  18. Morpheus Launch Pad Move

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – Construction workers begin to reassemble the launch pad for the Project Morpheus prototype lander at a new location at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The launch pad was moved to a different location to support the next phase of flight testing. Morpheus completed its seventh free flight test on March 11. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the automated landing and hazard avoidance technology ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Dimitri Gerondidakis

  19. Morpheus Launch Pad Move

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – Construction workers attach a crane to part of the launch pad for the Project Morpheus prototype lander at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The launch pad will be moved to a different location at the landing facility to support the next phase of flight testing. The seventh free flight test of Morpheus occurred on March 11. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the automated landing and hazard avoidance technology ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Dimitri Gerondidakis

  20. Lidar Sensors for Autonomous Landing and Hazard Avoidance

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Petway, Larry B.; Hines, Glenn D.; Roback, Vincent E.; Reisse, Robert A.; Pierrottet, Diego F.

    2013-01-01

    Lidar technology will play an important role in enabling highly ambitious missions being envisioned for exploration of solar system bodies. Currently, NASA is developing a set of advanced lidar sensors, under the Autonomous Landing and Hazard Avoidance (ALHAT) project, aimed at safe landing of robotic and manned vehicles at designated sites with a high degree of precision. These lidar sensors are an Imaging Flash Lidar capable of generating high resolution three-dimensional elevation maps of the terrain, a Doppler Lidar for providing precision vehicle velocity and altitude, and a Laser Altimeter for measuring distance to the ground and ground contours from high altitudes. The capabilities of these lidar sensors have been demonstrated through four helicopter and one fixed-wing aircraft flight test campaigns conducted from 2008 through 2012 during different phases of their development. Recently, prototype versions of these landing lidars have been completed for integration into a rocket-powered terrestrial free-flyer vehicle (Morpheus) being built by NASA Johnson Space Center. Operating in closed-loop with other ALHAT avionics, the viability of the lidars for future landing missions will be demonstrated. This paper describes the ALHAT lidar sensors and assesses their capabilities and impacts on future landing missions.

  1. KSC-2013-4322

    NASA Image and Video Library

    2013-12-10

    CAPE CANAVERAL, Fla. – The first free flight of the Project Morpheus prototype lander begins as the engine fires and the lander lifts off at the north of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to asteroids and other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  2. KSC-2013-4321

    NASA Image and Video Library

    2013-12-10

    CAPE CANAVERAL, Fla. – The first free flight of the Project Morpheus prototype lander begins as the engine fires and the lander begins to lift off at the north of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to asteroids and other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  3. Advancing Lidar Sensors Technologies for Next Generation Landing Missions

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Hines, Glenn D.; Roback, Vincent E.; Petway, Larry B.; Barnes, Bruce W.; Brewster, Paul F.; Pierrottet, Diego F.; Bulyshev, Alexander

    2015-01-01

    Missions to solar systems bodies must meet increasingly ambitious objectives requiring highly reliable "precision landing", and "hazard avoidance" capabilities. Robotic missions to the Moon and Mars demand landing at pre-designated sites of high scientific value near hazardous terrain features, such as escarpments, craters, slopes, and rocks. Missions aimed at paving the path for colonization of the Moon and human landing on Mars need to execute onboard hazard detection and precision maneuvering to ensure safe landing near previously deployed assets. Asteroid missions require precision rendezvous, identification of the landing or sampling site location, and navigation to the highly dynamic object that may be tumbling at a fast rate. To meet these needs, NASA Langley Research Center (LaRC) has developed a set of advanced lidar sensors under the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. These lidar sensors can provide precision measurement of vehicle relative proximity, velocity, and orientation, and high resolution elevation maps of the surface during the descent to the targeted body. Recent flights onboard Morpheus free-flyer vehicle have demonstrated the viability of ALHAT lidar sensors for future landing missions to solar system bodies.

  4. A Hybrid FPGA/Tilera Compute Element for Autonomous Hazard Detection and Navigation

    NASA Technical Reports Server (NTRS)

    Villalpando, Carlos Y.; Werner, Robert A.; Carson, John M., III; Khanoyan, Garen; Stern, Ryan A.; Trawny, Nikolas

    2013-01-01

    To increase safety for future missions landing on other planetary or lunar bodies, the Autonomous Landing and Hazard Avoidance Technology (ALHAT) program is developing an integrated sensor for autonomous surface analysis and hazard determination. The ALHAT Hazard Detection System (HDS) consists of a Flash LIDAR for measuring the topography of the landing site, a gimbal to scan across the terrain, and an Inertial Measurement Unit (IMU), along with terrain analysis algorithms to identify the landing site and the local hazards. An FPGA and Manycore processor system was developed to interface all the devices in the HDS, to provide high-resolution timing to accurately measure system state, and to run the surface analysis algorithms quickly and efficiently. In this paper, we will describe how we integrated COTS components such as an FPGA evaluation board, a TILExpress64, and multi-threaded/multi-core aware software to build the HDS Compute Element (HDSCE). The ALHAT program is also working with the NASA Morpheus Project and has integrated the HDS as a sensor on the Morpheus Lander. This paper will also describe how the HDS is integrated with the Morpheus lander and the results of the initial test flights with the HDS installed. We will also describe future improvements to the HDSCE.

  5. A hybrid FPGA/Tilera compute element for autonomous hazard detection and navigation

    NASA Astrophysics Data System (ADS)

    Villalpando, C. Y.; Werner, R. A.; Carson, J. M.; Khanoyan, G.; Stern, R. A.; Trawny, N.

    To increase safety for future missions landing on other planetary or lunar bodies, the Autonomous Landing and Hazard Avoidance Technology (ALHAT) program is developing an integrated sensor for autonomous surface analysis and hazard determination. The ALHAT Hazard Detection System (HDS) consists of a Flash LIDAR for measuring the topography of the landing site, a gimbal to scan across the terrain, and an Inertial Measurement Unit (IMU), along with terrain analysis algorithms to identify the landing site and the local hazards. An FPGA and Manycore processor system was developed to interface all the devices in the HDS, to provide high-resolution timing to accurately measure system state, and to run the surface analysis algorithms quickly and efficiently. In this paper, we will describe how we integrated COTS components such as an FPGA evaluation board, a TILExpress64, and multi-threaded/multi-core aware software to build the HDS Compute Element (HDSCE). The ALHAT program is also working with the NASA Morpheus Project and has integrated the HDS as a sensor on the Morpheus Lander. This paper will also describe how the HDS is integrated with the Morpheus lander and the results of the initial test flights with the HDS installed. We will also describe future improvements to the HDSCE.

  6. Morpheus Launch Pad Move

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – Construction workers assist as a crane is used to lift a large portion of the launch pad for the Project Morpheus prototype lander onto a transporter at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The launch pad is being moved to a different location at the landing facility to support the next phase of flight testing. Morpheus completed its seventh free flight test on March 11. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the automated landing and hazard avoidance technology ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Dimitri Gerondidakis

  7. Morpheus Launch Pad Move

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – Construction workers monitor the progress as a crane is used to lift a portion of the launch pad for the Project Morpheus prototype lander at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The launch pad will be moved to a different location at the landing facility to support the next phase of flight testing. The seventh free flight test of Morpheus occurred on March 11. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the automated landing and hazard avoidance technology ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces . The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Dimitri Gerondidakis

  8. KSC-2014-4826

    NASA Image and Video Library

    2014-12-15

    CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander soars 800 feet above the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida on free flight test No. 15 at. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA

  9. KSC-2014-4825

    NASA Image and Video Library

    2014-12-15

    CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander soars 800 feet above the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida on free flight test No. 15 at. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA

  10. KSC-2014-4829

    NASA Image and Video Library

    2014-12-15

    CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander soars overhead during free flight test No. 15 at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA

  11. KSC-2014-4824

    NASA Image and Video Library

    2014-12-15

    CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander takes off on free flight test No. 15 at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA

  12. KSC-2014-4827

    NASA Image and Video Library

    2014-12-15

    CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander soars 800 feet above the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida on free flight test No. 15. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA

  13. KSC-2014-4828

    NASA Image and Video Library

    2014-12-15

    CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander soars overhead during free flight test No. 15 at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA

  14. A Self Contained Method for Safe and Precise Lunar Landing

    NASA Technical Reports Server (NTRS)

    Paschall, Stephen C., II; Brady, Tye; Cohanim, Babak; Sostaric, Ronald

    2008-01-01

    The return of humans to the Moon will require increased capability beyond that of the previous Apollo missions. Longer stay times and a greater flexibility with regards to landing locations are among the many improvements planned. A descent and landing system that can land the vehicle more accurately than Apollo with a greater ability to detect and avoid hazards is essential to the development of a Lunar Outpost, and also for increasing the number of potentially reachable Lunar Sortie locations. This descent and landing system should allow landings in more challenging terrain and provide more flexibility with regards to mission timing and lighting considerations, while maintaining safety as the top priority. The lunar landing system under development by the ALHAT (Autonomous precision Landing and Hazard detection Avoidance Technology) project is addressing this by providing terrain-relative navigation measurements to enhance global-scale precision, an onboard hazard-detection system to select safe landing locations, and an Autonomous GNC (Guidance, Navigation, and Control) capability to process these measurements and safely direct the vehicle to this landing location. This ALHAT landing system will enable safe and precise lunar landings without requiring lunar infrastructure in the form of navigation aids or a priori identified hazard-free landing locations. The safe landing capability provided by ALHAT uses onboard active sensing to detect hazards that are large enough to be a danger to the vehicle but too small to be detected from orbit, given currently planned orbital terrain resolution limits. Algorithms to interpret raw active sensor terrain data and generate hazard maps as well as identify safe sites and recalculate new trajectories to those sites are included as part of the ALHAT System. These improvements to descent and landing will help contribute to repeated safe and precise landings for a wide variety of terrain on the Moon.

  15. Hazard Detection Software for Lunar Landing

    NASA Technical Reports Server (NTRS)

    Huertas, Andres; Johnson, Andrew E.; Werner, Robert A.; Montgomery, James F.

    2011-01-01

    The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project is developing a system for safe and precise manned lunar landing that involves novel sensors, but also specific algorithms. ALHAT has selected imaging LIDAR (light detection and ranging) as the sensing modality for onboard hazard detection because imaging LIDARs can rapidly generate direct measurements of the lunar surface elevation from high altitude. Then, starting with the LIDAR-based Hazard Detection and Avoidance (HDA) algorithm developed for Mars Landing, JPL has developed a mature set of HDA software for the manned lunar landing problem. Landing hazards exist everywhere on the Moon, and many of the more desirable landing sites are near the most hazardous terrain, so HDA is needed to autonomously and safely land payloads over much of the lunar surface. The HDA requirements used in the ALHAT project are to detect hazards that are 0.3 m tall or higher and slopes that are 5 or greater. Steep slopes, rocks, cliffs, and gullies are all hazards for landing and, by computing the local slope and roughness in an elevation map, all of these hazards can be detected. The algorithm in this innovation is used to measure slope and roughness hazards. In addition to detecting these hazards, the HDA capability also is able to find a safe landing site free of these hazards for a lunar lander with diameter .15 m over most of the lunar surface. This software includes an implementation of the HDA algorithm, software for generating simulated lunar terrain maps for testing, hazard detection performance analysis tools, and associated documentation. The HDA software has been deployed to Langley Research Center and integrated into the POST II Monte Carlo simulation environment. The high-fidelity Monte Carlo simulations determine the required ground spacing between LIDAR samples (ground sample distances) and the noise on the LIDAR range measurement. This simulation has also been used to determine the effect of viewing on hazard detection performance. The software has also been deployed to Johnson Space Center and integrated into the ALHAT real-time Hardware-in-the-Loop testbed.

  16. Project Morpheus: Lean Development of a Terrestrial Flight Testbed for Maturing NASA Lander Technologies

    NASA Technical Reports Server (NTRS)

    Devolites, Jennifer L.; Olansen, Jon B.

    2015-01-01

    NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing that is designed to serve as a testbed for advanced spacecraft technologies. The lander vehicle, propelled by a Liquid Oxygen (LOX)/Methane engine and sized to carry a 500kg payload to the lunar surface, provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. In 2012, Morpheus began integrating the Autonomous Landing and Hazard Avoidance Technology (ALHAT) sensors and software onto the vehicle in order to demonstrate safe, autonomous landing and hazard avoidance. From the beginning, one of goals for the Morpheus Project was to streamline agency processes and practices. The Morpheus project accepted a challenge to tailor the traditional NASA systems engineering approach in a way that would be appropriate for a lower cost, rapid prototype engineering effort, but retain the essence of the guiding principles. This paper describes the tailored project life cycle and systems engineering approach for the Morpheus project, including the processes, tools, and amount of rigor employed over the project's multiple lifecycles since the project began in fiscal year (FY) 2011.

  17. KSC-2014-4821

    NASA Image and Video Library

    2014-12-15

    CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander is enveloped in a cloud of dust as it takes off on free flight test No. 15 at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA

  18. KSC-2014-4822

    NASA Image and Video Library

    2014-12-15

    CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander is enveloped in a cloud of dust as it takes off on free flight test No. 15 at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA

  19. KSC-2014-4831

    NASA Image and Video Library

    2014-12-15

    CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander is moved into position at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida in preparation for free flight test No. 15. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA/Jim Grossman

  20. KSC-2014-4818

    NASA Image and Video Library

    2014-12-15

    CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander rises above a cloud of dust as it takes off on free flight test No. 15 at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA

  1. KSC-2014-4819

    NASA Image and Video Library

    2014-12-15

    CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander is enveloped in a cloud of dust as it takes off on free flight test No. 15 at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA

  2. KSC-2014-4823

    NASA Image and Video Library

    2014-12-15

    CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander comes to rest after a successful landing, capping free flight test No. 15 at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA

  3. KSC-2014-4832

    NASA Image and Video Library

    2014-12-15

    CAPE CANAVERAL, Fla. – Engineers and technicians prepare NASA's Project Morpheus prototype lander for free flight test No. 15 at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA/Jim Grossman

  4. KSC-2014-4820

    NASA Image and Video Library

    2014-12-15

    CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander is enveloped in a cloud of dust as it takes off on free flight test No. 15 at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA

  5. KSC-2014-4522

    NASA Image and Video Library

    2014-11-19

    CAPE CANAVERAL, Fla. –NASA's Project Morpheus prototype lander is lifted by a crane in preparation for a tethered-flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. For the 40-second test, the lander will be hoisted 20 feet. The spacecraft will ascend an additional five feet and hover for five seconds. Morpheus then will perform a 5.6-foot ascent coupled with a 9.8-foot traverse, and hover for five more seconds before returning to the launch point. A number of changes have been made, primarily focused on autonomous landing and hazard avoidance technology ALHAT and moving the Doppler Lidar to the front of the forward liquid oxygen tank. The tether test was cut short due to Morpheus exceeding onboard abort rate limits. The vehicle was taken back to the hangar and data from the test is being studied. After review, managers will determine when a new test date will be set. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett

  6. KSC-2014-4520

    NASA Image and Video Library

    2014-11-19

    CAPE CANAVERAL, Fla. –NASA's Project Morpheus prototype lander undergoes final preparations for a tethered-flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. For the 40-second test, the lander will be hoisted 20 feet. The spacecraft will ascend an additional five feet and hover for five seconds. Morpheus then will perform a 5.6-foot ascent coupled with a 9.8-foot traverse, and hover for five more seconds before returning to the launch point. A number of changes have been made, primarily focused on autonomous landing and hazard avoidance technology ALHAT and moving the Doppler Lidar to the front of the forward liquid oxygen tank. The tether test was cut short due to Morpheus exceeding onboard abort rate limits. The vehicle was taken back to the hangar and data from the test is being studied. After review, managers will determine when a new test date will be set. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett

  7. KSC-2014-4521

    NASA Image and Video Library

    2014-11-19

    CAPE CANAVERAL, Fla. –NASA's Project Morpheus prototype lander is prepared for lifting by a crane in preparation for a tethered-flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. For the 40-second test, the lander will be hoisted 20 feet. The spacecraft will ascend an additional five feet and hover for five seconds. Morpheus then will perform a 5.6-foot ascent coupled with a 9.8-foot traverse, and hover for five more seconds before returning to the launch point. A number of changes have been made, primarily focused on autonomous landing and hazard avoidance technology ALHAT and moving the Doppler Lidar to the front of the forward liquid oxygen tank. The tether test was cut short due to Morpheus exceeding onboard abort rate limits. The vehicle was taken back to the hangar and data from the test is being studied. After review, managers will determine when a new test date will be set. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett

  8. Development of Lidar Sensor Systems for Autonomous Safe Landing on Planetary Bodies

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Pierottet, Diego F.; Petway, Larry B.; Vanek, Michael D.

    2010-01-01

    Lidar has been identified by NASA as a key technology for enabling autonomous safe landing of future robotic and crewed lunar landing vehicles. NASA LaRC has been developing three laser/lidar sensor systems under the ALHAT project. The capabilities of these Lidar sensor systems were evaluated through a series of static tests using a calibrated target and through dynamic tests aboard helicopters and a fixed wing aircraft. The airborne tests were performed over Moon-like terrain in the California and Nevada deserts. These tests provided the necessary data for the development of signal processing software, and algorithms for hazard detection and navigation. The tests helped identify technology areas needing improvement and will also help guide future technology advancement activities.

  9. Helicopter flight test of 3D imaging flash LIDAR technology for safe, autonomous, and precise planetary landing

    NASA Astrophysics Data System (ADS)

    Roback, Vincent; Bulyshev, Alexander; Amzajerdian, Farzin; Reisse, Robert

    2013-05-01

    Two flash lidars, integrated from a number of cutting-edge components from industry and NASA, are lab characterized and flight tested for determination of maximum operational range under the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project (in its fourth development and field test cycle) which is seeking to develop a guidance, navigation, and control (GNC) and sensing system based on lidar technology capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The flash lidars incorporate pioneering 3-D imaging cameras based on Indium-Gallium-Arsenide Avalanche Photo Diode (InGaAs APD) and novel micro-electronic technology for a 128 x 128 pixel array operating at 30 Hz, high pulse-energy 1.06 μm Nd:YAG lasers, and high performance transmitter and receiver fixed and zoom optics. The two flash lidars are characterized on the NASA-Langley Research Center (LaRC) Sensor Test Range, integrated with other portions of the ALHAT GNC system from partner organizations into an instrument pod at NASA-JPL, integrated onto an Erickson Aircrane Helicopter at NASA-Dryden, and flight tested at the Edwards AFB Rogers dry lakebed over a field of humanmade geometric hazards during the summer of 2010. Results show that the maximum operational range goal of 1 km is met and exceeded up to a value of 1.2 km. In addition, calibrated 3-D images of several hazards are acquired in realtime for later reconstruction into Digital Elevation Maps (DEM's).

  10. Helicopter Flight Test of 3-D Imaging Flash LIDAR Technology for Safe, Autonomous, and Precise Planetary Landing

    NASA Technical Reports Server (NTRS)

    Roback, Vincent; Bulyshev, Alexander; Amzajerdian, Farzin; Reisse, Robert

    2013-01-01

    Two flash lidars, integrated from a number of cutting-edge components from industry and NASA, are lab characterized and flight tested for determination of maximum operational range under the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project (in its fourth development and field test cycle) which is seeking to develop a guidance, navigation, and control (GN&C) and sensing system based on lidar technology capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The flash lidars incorporate pioneering 3-D imaging cameras based on Indium-Gallium-Arsenide Avalanche Photo Diode (InGaAs APD) and novel micro-electronic technology for a 128 x 128 pixel array operating at 30 Hz, high pulse-energy 1.06 micrometer Nd:YAG lasers, and high performance transmitter and receiver fixed and zoom optics. The two flash lidars are characterized on the NASA-Langley Research Center (LaRC) Sensor Test Range, integrated with other portions of the ALHAT GN&C system from partner organizations into an instrument pod at NASA-JPL, integrated onto an Erickson Aircrane Helicopter at NASA-Dryden, and flight tested at the Edwards AFB Rogers dry lakebed over a field of human-made geometric hazards during the summer of 2010. Results show that the maximum operational range goal of 1 km is met and exceeded up to a value of 1.2 km. In addition, calibrated 3-D images of several hazards are acquired in real-time for later reconstruction into Digital Elevation Maps (DEM's).

  11. COBALT: A GN&C Payload for Testing ALHAT Capabilities in Closed-Loop Terrestrial Rocket Flights

    NASA Technical Reports Server (NTRS)

    Carson, John M., III; Amzajerdian, Farzin; Hines, Glenn D.; O'Neal, Travis V.; Robertson, Edward A.; Seubert, Carl; Trawny, Nikolas

    2016-01-01

    The COBALT (CoOperative Blending of Autonomous Landing Technology) payload is being developed within NASA as a risk reduction activity to mature, integrate and test ALHAT (Autonomous precision Landing and Hazard Avoidance Technology) systems targeted for infusion into near-term robotic and future human space flight missions. The initial COBALT payload instantiation is integrating the third-generation ALHAT Navigation Doppler Lidar (NDL) sensor, for ultra high-precision velocity plus range measurements, with the passive-optical Lander Vision System (LVS) that provides Terrain Relative Navigation (TRN) global-position estimates. The COBALT payload will be integrated onboard a rocket-propulsive terrestrial testbed and will provide precise navigation estimates and guidance planning during two flight test campaigns in 2017 (one open-loop and closed- loop). The NDL is targeting performance capabilities desired for future Mars and Moon Entry, Descent and Landing (EDL). The LVS is already baselined for TRN on the Mars 2020 robotic lander mission. The COBALT platform will provide NASA with a new risk-reduction capability to test integrated EDL Guidance, Navigation and Control (GN&C) components in closed-loop flight demonstrations prior to the actual mission EDL.

  12. KSC-2012-4016

    NASA Image and Video Library

    2012-07-27

    CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is unloaded at a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser

  13. KSC-2012-4017

    NASA Image and Video Library

    2012-07-27

    CAPE CANAVERAL, Fla. - A forklift is used at the Kennedy Space Center in Florida to unload NASA's Morpheus lander, a vertical test bed vehicle. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser

  14. KSC-2012-4019

    NASA Image and Video Library

    2012-07-27

    CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is inspected after unloading at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser

  15. KSC-2012-4023

    NASA Image and Video Library

    2012-07-27

    CAPE CANAVERAL, Fla. - Wheels are assembled for transporting NASA's Morpheus lander, a vertical test bed vehicle after its arrival at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser

  16. KSC-2012-4028

    NASA Image and Video Library

    2012-07-27

    CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is moved into a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser

  17. KSC-2012-4020

    NASA Image and Video Library

    2012-07-27

    CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is uncrated after unloading at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser

  18. KSC-2012-4013

    NASA Image and Video Library

    2012-07-27

    CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is unloaded at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser

  19. KSC-2012-4029

    NASA Image and Video Library

    2012-07-27

    CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is moved into a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser

  20. KSC-2012-4012

    NASA Image and Video Library

    2012-07-27

    CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is unloaded at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser

  1. KSC-2012-4021

    NASA Image and Video Library

    2012-07-27

    CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is unloaded at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser

  2. KSC-2012-4025

    NASA Image and Video Library

    2012-07-27

    CAPE CANAVERAL, Fla. - A crane supports unloading of NASA's Morpheus lander, a vertical test bed vehicle, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser

  3. KSC-2012-4014

    NASA Image and Video Library

    2012-07-27

    CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is unloaded at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser

  4. KSC-2012-3941

    NASA Image and Video Library

    2012-07-19

    CAPE CANAVERAL, Fla. - Just north of the Kennedy Space Center’s Shuttle Landing Facility, or SLF, a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett

  5. KSC-2012-4008

    NASA Image and Video Library

    2012-07-16

    CAPE CANAVERAL, Fla. –This panoramic view shows a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prot otype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett

  6. KSC-2012-3942

    NASA Image and Video Library

    2012-07-19

    CAPE CANAVERAL, Fla. - Just north of the Kennedy Space Center’s Shuttle Landing Facility runway, a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett

  7. Project Morpheus: Lessons Learned in Lander Technology Development

    NASA Technical Reports Server (NTRS)

    Olansen, Jon B.; Munday, Stephen R.; Mitchell, Jennifer D.

    2013-01-01

    NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing, that is designed to serve as a testbed for advanced spacecraft technologies. The lander vehicle, propelled by a LOX/Methane engine and sized to carry a 500kg payload to the lunar surface, provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. Designed, developed, manufactured and operated in-house by engineers at Johnson Space Center, the initial flight test campaign began on-site at JSC less than one year after project start. After two years of testing, including two major upgrade periods, and recovery from a test crash that caused the loss of a vehicle, flight testing will evolve to executing autonomous flights simulating a 500m lunar approach trajectory, hazard avoidance maneuvers, and precision landing, incorporating the Autonomous Landing and Hazard Avoidance (ALHAT) sensor suite. These free-flights are conducted at a simulated planetary landscape built at Kennedy Space Center's Shuttle Landing Facility. The Morpheus Project represents a departure from recent NASA programs and projects that traditionally require longer development lifecycles and testing at remote, dedicated testing facilities. This paper expands on the project perspective that technologies offer promise, but capabilities offer solutions. It documents the integrated testing campaign, the infrastructure and testing facilities, and the technologies being evaluated in this testbed. The paper also describes the fast pace of the project, rapid prototyping, frequent testing, and lessons learned during this departure from the traditional engineering development process at NASA's Johnson Space Center.

  8. KSC-2014-4372

    NASA Image and Video Library

    2014-11-03

    CAPE CANAVERAL, Fla. - Greg C. Shavers, Lander Technology director at Marshall Space Flight Center in Alabama, speaks to members of the media during an event to announce the agency's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative and introduced one of the partners, Moon Express Inc. of Moffett Field, California. The event took place at Kennedy's automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST. Photo credit: NASA/Ben Smegelsky

  9. Moon Express Media Event

    NASA Image and Video Library

    2014-11-03

    Greg C. Shavers, Lander Technology director at Marshall Space Flight Center in Alabama, speaks to members of the media during an event to announce the agency's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative and introduced one of the partners, Moon Express Inc. of Moffett Field, California. The event took place at Kennedy's automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST.

  10. Moon Express Media Event

    NASA Image and Video Library

    2014-11-03

    Rob Mueller, NASA senior technologist in the Surface Systems Office in Kennedy Space Center's Engineering and Technology Directorate, demonstrates the Regolith Advanced Surface System Operations Robot, or RASSOR, during a media event at Kennedy's automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility. The event was held to announce Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST.

  11. KSC-2012-4122

    NASA Image and Video Library

    2012-07-31

    CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, has been set up at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis

  12. KSC-2012-4118

    NASA Image and Video Library

    2012-07-31

    CAPE CANAVERAL, Fla. - A crane is being used to set up NASA's Morpheus lander, a vertical test bed vehicle, at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis

  13. KSC-2012-4119

    NASA Image and Video Library

    2012-07-31

    CAPE CANAVERAL, Fla. - Technicians secure connections for a crane which will be used to set up NASA's Morpheus lander, a vertical test bed vehicle, at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis

  14. KSC-2012-4117

    NASA Image and Video Library

    2012-07-31

    CAPE CANAVERAL, Fla. - A crane is being used to set up NASA's Morpheus lander, a vertical test bed vehicle, at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis

  15. KSC-2012-4115

    NASA Image and Video Library

    2012-07-31

    CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being set up at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis

  16. KSC-2012-4116

    NASA Image and Video Library

    2012-07-31

    CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being set up at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis

  17. KSC-2012-4121

    NASA Image and Video Library

    2012-07-31

    CAPE CANAVERAL, Fla. - A crane is being used to set up NASA's Morpheus lander, a vertical test bed vehicle, at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis

  18. KSC-2012-4114

    NASA Image and Video Library

    2012-07-31

    CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, arrives at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis

  19. KSC-2012-4107

    NASA Image and Video Library

    2012-07-31

    CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being moved out of its checkout building for a short trip to a launch position at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis

  20. KSC-2012-4010

    NASA Image and Video Library

    2012-07-27

    CAPE CANAVERAL, Fla. - A truck transporting NASA's Morpheus lander, a vertical test bed vehicle, arrives at a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida for unloading. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser

  1. KSC-2012-4109

    NASA Image and Video Library

    2012-07-31

    CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being transported out from its checkout building for a short trip to a launch position at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis

  2. KSC-2012-4106

    NASA Image and Video Library

    2012-07-31

    CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being moved out of its checkout building for a short trip to a launch position at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis

  3. KSC-2012-4110

    NASA Image and Video Library

    2012-07-31

    CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being transported out from its checkout building for a short trip to a launch position at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis

  4. KSC-2012-4104

    NASA Image and Video Library

    2012-07-30

    CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being checked out in a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis

  5. KSC-2012-4009

    NASA Image and Video Library

    2012-07-27

    CAPE CANAVERAL, Fla. - A truck transporting NASA's Morpheus lander, a vertical test bed vehicle, heads towards the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida for unloading. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser

  6. KSC-2012-4026

    NASA Image and Video Library

    2012-07-27

    CAPE CANAVERAL, Fla. - Support equipment for NASA's Morpheus lander, a vertical test bed vehicle, is unloaded at a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser

  7. KSC-2012-4108

    NASA Image and Video Library

    2012-07-31

    CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being transported out of its checkout building for a short trip to a launch position at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis

  8. KSC-2012-4031

    NASA Image and Video Library

    2012-07-27

    CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, has been moved into a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser

  9. KSC-2012-4113

    NASA Image and Video Library

    2012-07-31

    CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being transported along the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida for a short trip to a launch position along the runway. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis

  10. KSC-2012-4032

    NASA Image and Video Library

    2012-07-27

    CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, has been moved into a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser

  11. KSC-2012-4112

    NASA Image and Video Library

    2012-07-31

    CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being transported along the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida for a short trip to a launch position along the runway. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis

  12. KSC-2012-4105

    NASA Image and Video Library

    2012-07-30

    CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being checked out in a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis

  13. KSC-2012-4111

    NASA Image and Video Library

    2012-07-31

    CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being transported along the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida for a short trip to a launch position along the runway. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis

  14. KSC-2012-4095

    NASA Image and Video Library

    2012-07-30

    CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being checked out in a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis

  15. KSC-2012-4120

    NASA Image and Video Library

    2012-07-31

    CAPE CANAVERAL, Fla. - Technicians set up NASA's Morpheus lander, a vertical test bed vehicle, at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis

  16. GN and C Subsystem Concept for Safe Precision Landing of the Proposed Lunar MARE Robotic Science Mission

    NASA Technical Reports Server (NTRS)

    Carson, John M., III; Johnson, Andrew E.; Anderson, F. Scott; Condon, Gerald L.; Nguyen, Louis H.; Olansen, Jon B.; Devolites, Jennifer L.; Harris, William J.; Hines, Glenn D.; Lee, David E.; hide

    2016-01-01

    The Lunar MARE (Moon Age and Regolith Explorer) Discovery Mission concept targets delivery of a science payload to the lunar surface for sample collection and dating. The mission science is within a 100-meter radius region of smooth lunar maria terrain near Aristarchus crater. The location has several small, sharp craters and rocks that present landing hazards to the spacecraft. For successful delivery of the science payload to the surface, the vehicle Guidance, Navigation and Control (GN&C) subsystem requires safe and precise landing capability, so design infuses the NASA Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) and a gimbaled, throttleable LOX/LCH4 main engine. The ALHAT system implemented for Lunar MARE is a specialization of prototype technologies in work within NASA for the past two decades, including a passive optical Terrain Relative Navigation (TRN) sensor, a Navigation Doppler Lidar (NDL) velocity and range sensor, and a Lidar-based Hazard Detection (HD) sensor. The landing descent profile is from a retrograde orbit over lighted terrain with landing near lunar dawn. The GN&C subsystem with ALHAT capabilities will deliver the science payload to the lunar surface within a 20-meter landing ellipse of the target location and at a site having greater than 99% safety probability, which minimizes risk to safe landing and delivery of the MARE science payload to the intended terrain region.

  17. KSC-2013-3504

    NASA Image and Video Library

    2013-08-30

    CAPE CANAVERAL, Fla. - Workers install a flame deflector at the Shuttle Landing Facility, or SLF, at NASA's Kennedy Space Center in Florida for the Project Morpheus lander. The site is adjacent to a hazard field created to support the project at the north end of the SLF. Testing of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for a free flight at Kennedy later this year. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst obstacles during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html. Photo credit: NASA/Kim Shiflett

  18. KSC-2013-3505

    NASA Image and Video Library

    2013-08-30

    CAPE CANAVERAL, Fla. - Workers install a flame deflector at the Shuttle Landing Facility, or SLF, at NASA's Kennedy Space Center in Florida for the Project Morpheus lander. The site is adjacent to a hazard field created to support the project at the north end of the SLF. Testing of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for a free flight at Kennedy later this year. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst obstacles during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html. Photo credit: NASA/Kim Shiflett

  19. KSC-2013-3503

    NASA Image and Video Library

    2013-08-30

    CAPE CANAVERAL, Fla. - Workers install a flame deflector at the Shuttle Landing Facility, or SLF, at NASA's Kennedy Space Center in Florida for the Project Morpheus lander. The site is adjacent to a hazard field created to support the project at the north end of the SLF. Testing of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for a free flight at Kennedy later this year. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst obstacles during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html. Photo credit: NASA/Kim Shiflett

  20. KSC-2013-3502

    NASA Image and Video Library

    2013-08-30

    CAPE CANAVERAL, Fla. - Workers install a flame deflector at the Shuttle Landing Facility, or SLF, at NASA's Kennedy Space Center in Florida for the Project Morpheus lander. The site is adjacent to a hazard field created to support the project at the north end of the SLF. Testing of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for a free flight at Kennedy later this year. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst obstacles during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html. Photo credit: NASA/Kim Shiflett

  1. KSC-2013-3507

    NASA Image and Video Library

    2013-08-30

    CAPE CANAVERAL, Fla. - Workers install a flame deflector at the Shuttle Landing Facility, or SLF, at NASA's Kennedy Space Center in Florida for the Project Morpheus lander. The site is adjacent to a hazard field created to support the project at the north end of the SLF. Testing of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for a free flight at Kennedy later this year. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst obstacles during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html. Photo credit: NASA/Kim Shiflett

  2. KSC-2013-3501

    NASA Image and Video Library

    2013-08-30

    CAPE CANAVERAL, Fla. - Workers install a flame deflector at the Shuttle Landing Facility, or SLF, at NASA's Kennedy Space Center in Florida for the Project Morpheus lander. The site is adjacent to a hazard field created to support the project at the north end of the SLF. Testing of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for a free flight at Kennedy later this year. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst obstacles during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html. Photo credit: NASA/Kim Shiflett

  3. KSC-2013-3506

    NASA Image and Video Library

    2013-08-30

    CAPE CANAVERAL, Fla. - Workers install a flame deflector at the Shuttle Landing Facility, or SLF, at NASA's Kennedy Space Center in Florida for the Project Morpheus lander. The site is adjacent to a hazard field created to support the project at the north end of the SLF. Testing of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for a free flight at Kennedy later this year. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst obstacles during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html. Photo credit: NASA/Kim Shiflett

  4. KSC-2012-4254

    NASA Image and Video Library

    2012-08-03

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, NASA Administrator Charles Bolden, left, joins Dr. Jon Olansen, Morpheus project manager, in the control room at the Shuttle Landing Facility for the first tethered flight of the Morpheus lander. After undergoing testing at Johnson Space Center in Houston for nearly a year, Morpheus arrived at Kennedy on July 27 to begin about three months of tests. A field, replete with boulders, rocks, slopes, craters and hazards to avoid, was created at the north end of Kennedy's runway to provide a realistic landscape for test flights of the lander. Morpheus utilizes autonomous landing and hazard avoidance technology, or ALHAT, to navigate to a safe landing site during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA's Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html. Photo credit: NASA/Kim Shiflett

  5. KSC-2012-4253

    NASA Image and Video Library

    2012-08-03

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, NASA Administrator Charles Bolden joins Morpheus project manager Dr. Jon Olansen, pointing at monitor, in the control room at the Shuttle Landing Facility for the first tethered flight of the Morpheus lander. After undergoing testing at Johnson Space Center in Houston for nearly a year, Morpheus arrived at Kennedy on July 27 to begin about three months of tests. A field, replete with boulders, rocks, slopes, craters and hazards to avoid, was created at the north end of Kennedy's runway to provide a realistic landscape for test flights of the lander. Morpheus utilizes autonomous landing and hazard avoidance technology, or ALHAT, to navigate to a safe landing site during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA's Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html. Photo credit: NASA/Kim Shiflett

  6. KSC-2012-3954

    NASA Image and Video Library

    2012-07-19

    CAPE CANAVERAL, Fla. – This aerial view shows the 15,000-foot long Shuttle Landing Facility at the Kennedy Space Center, Fla. At the north end of the runway, to the bottom, is a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett

  7. KSC-2012-3943

    NASA Image and Video Library

    2012-07-19

    CAPE CANAVERAL, Fla. – This aerial view shows the north end of the Kennedy Space Center’s 15,000-foot long Shuttle Landing Facility. On the far left at the end of the runway, a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett

  8. KSC-2012-3946

    NASA Image and Video Library

    2012-07-19

    CAPE CANAVERAL, Fla. – This aerial view shows a rock and crater-filled planetary scape that has been built at the north end of the Kennedy Space Center’s Shuttle Landing Facility. The site will allow engineers to test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett

  9. KSC-2012-3944

    NASA Image and Video Library

    2012-07-19

    CAPE CANAVERAL, Fla. – This aerial view shows the north end of the Kennedy Space Center’s Shuttle Landing Facility. At the end of the runway, in the upper right, a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett

  10. KSC-2012-3952

    NASA Image and Video Library

    2012-07-19

    CAPE CANAVERAL, Fla. – This aerial view shows the north end of the Kennedy Space Center’s Shuttle Landing Facility. At the end of the runway, to the right, is a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett

  11. KSC-2012-3951

    NASA Image and Video Library

    2012-07-19

    CAPE CANAVERAL, Fla. – This aerial view shows the north end of the Kennedy Space Center’s Shuttle Landing Facility. At the end of the runway is a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett

  12. KSC-2012-3953

    NASA Image and Video Library

    2012-07-19

    CAPE CANAVERAL, Fla. – This aerial view shows the 15,000-foot long Shuttle Landing Facility at the Kennedy Space Center, Fla. At the north end of the runway, to the right, is a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett

  13. KSC-2012-3947

    NASA Image and Video Library

    2012-07-19

    CAPE CANAVERAL, Fla. – This aerial view shows the north end of the Kennedy Space Center’s Shuttle Landing Facility. At the end of the runway is a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett

  14. KSC-2012-3945

    NASA Image and Video Library

    2012-07-19

    CAPE CANAVERAL, Fla. –This aerial view shows a rock and crater-filled planetary scape that has been built at the north end of the Kennedy Space Center’s Shuttle Landing Facility. The site will allow engineers to test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett

  15. KSC-2012-3950

    NASA Image and Video Library

    2012-07-19

    CAPE CANAVERAL, Fla. – This aerial view shows the north end of the Kennedy Space Center’s Shuttle Landing Facility. At the end of the runway is a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett

  16. Lean Development with the Morpheus Simulation Software

    NASA Technical Reports Server (NTRS)

    Brogley, Aaron C.

    2013-01-01

    The Morpheus project is an autonomous robotic testbed currently in development at NASA's Johnson Space Center (JSC) with support from other centers. Its primary objectives are to test new 'green' fuel propulsion systems and to demonstrate the capability of the Autonomous Lander Hazard Avoidance Technology (ALHAT) sensor, provided by the Jet Propulsion Laboratory (JPL) on a lunar landing trajectory. If successful, these technologies and lessons learned from the Morpheus testing cycle may be incorporated into a landing descent vehicle used on the moon, an asteroid, or Mars. In an effort to reduce development costs and cycle time, the project employs lean development engineering practices in its development of flight and simulation software. The Morpheus simulation makes use of existing software packages where possible to reduce the development time. The development and testing of flight software occurs primarily through the frequent test operation of the vehicle and incrementally increasing the scope of the test. With rapid development cycles, risk of loss of the vehicle and loss of the mission are possible, but efficient progress in development would not be possible without that risk.

  17. Lidar Sensor Performance in Closed-Loop Flight Testing of the Morpheus Rocket-Propelled Lander to a Lunar-Like Hazard Field

    NASA Technical Reports Server (NTRS)

    Roback, V. Eric; Pierrottet, Diego F.; Amzajerdian, Farzin; Barnes, Bruce W.; Bulyshev, Alexander E.; Hines, Glenn D.; Petway, Larry B.; Brewster, Paul F.; Kempton, Kevin S.

    2015-01-01

    For the first time, a suite of three lidar sensors have been used in flight to scan a lunar-like hazard field, identify a safe landing site, and, in concert with an experimental Guidance, Navigation, and Control (GN&C) system, help to guide the Morpheus autonomous, rocket-propelled, free-flying lander to that safe site on the hazard field. The lidar sensors and GN&C system are part of the Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT) project which has been seeking to develop a system capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The 3-D imaging Flash Lidar is a second generation, compact, real-time, aircooled instrument developed from a number of components from industry and NASA and is used as part of the ALHAT Hazard Detection System (HDS) to scan the hazard field and build a 3-D Digital Elevation Map (DEM) in near-real time for identifying safe sites. The Flash Lidar is capable of identifying a 30 cm hazard from a slant range of 1 km with its 8 cm range precision (1-s). The Flash Lidar is also used in Hazard Relative Navigation (HRN) to provide position updates down to a 250m slant range to the ALHAT navigation filter as it guides Morpheus to the safe site. The Navigation Doppler Lidar (NDL) system has been developed within NASA to provide velocity measurements with an accuracy of 0.2 cm/sec and range measurements with an accuracy of 17 cm both from a maximum range of 2,200 m to a minimum range of several meters above the ground. The NDLâ€"TM"s measurements are fed into the ALHAT navigation filter to provide lander guidance to the safe site. The Laser Altimeter (LA), also developed within NASA, provides range measurements with an accuracy of 5 cm from a maximum operational range of 30 km down to 1 m and, being a separate sensor from the Flash Lidar, can provide range along a separate vector. The LA measurements are also fed into the ALHAT navigation filter to provide lander guidance to the safe site. The flight tests served as the culmination of the TRL 6 journey for the ALHAT system and included launch from a pad situated at the NASA-Kennedy Space Center Shuttle Landing Facility (SLF) runway, a lunar-like descent trajectory from an altitude of 250m, and landing on a lunar-like hazard field of rocks, craters, hazardous slopes, and safe sites 400m down-range just off the North end of the runway. The tests both confirmed the expected performance and also revealed several challenges present in the flight-like environment which will feed into future TRL advancement of the sensors. Guidance provided by the ALHAT system was impeded in portions of the trajectory and intermittent near the end of the trajectory due to optical effects arising from air heated by the rocket engine. The Flash Lidar identified hazards as small as 30 cm from the maximum slant range of 450 m which Morpheus could provide; however, it was occasionally susceptible to an increase in range noise due to scintillation arising from air heated by the Morpheus rocket engine which entered its Field-of-View (FOV). The Flash Lidar was also susceptible to pre-triggering, during the HRN phase, on a dust cloud created during launch and transported down-range by the wind. The NDL provided velocity and range measurements to the expected accuracy levels yet it was also susceptible to signal degradation due to air heated by the rocket engine. The LA, operating with a degraded transmitter laser, also showed signal attenuation over a few seconds at a specific phase of the flight due to the heat plume generated by the rocket engine.

  18. KSC-2014-4375

    NASA Image and Video Library

    2014-11-03

    CAPE CANAVERAL, Fla. - Rob Mueller, NASA senior technologist in the Surface Systems Office in Kennedy Space Center's Engineering and Technology Directorate, demonstrates the Regolith Advanced Surface System Operations Robot, or RASSOR, during a media event at Kennedy's automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility. The event was held to announce Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST. Photo credit: NASA/Ben Smegelsky

  19. Moon Express Media Event

    NASA Image and Video Library

    2014-11-03

    Rob Mueller, left, NASA senior technologist in the Surface Systems Office in Kennedy Space Center's Engineering and Technology Directorate, talks with former NASA Apollo astronaut Buzz Aldrin during a demonstration of the Regolith Advanced Surface Systems Operations Robot, or RASSOR, at the automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The event was held to announce Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST.

  20. Moon Express Media Event

    NASA Image and Video Library

    2014-11-03

    Rob Mueller, left, NASA senior technologist in the Surface Systems Office in Kennedy Space Center's Engineering and Technology Directorate, talks with former NASA Apollo astronaut Buzz Aldrin during a demonstration of the Regolith Advanced Surface System Operations Robot, or RASSOR, at the automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The event was held to announce Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST.

  1. KSC-2012-4102

    NASA Image and Video Library

    2012-07-30

    CAPE CANAVERAL, Fla. - Russell Romanella, director of Safety and Mission Assurance at NASA's Kennedy Space Center in Florida, right, is briefed on NASA's Morpheus lander, a vertical test bed vehicle. Morpheus is being checked out by technicians and engineers in a building at the Shuttle Landing Facility, or SLF, at Kennedy. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis

  2. KSC-2012-4099

    NASA Image and Video Library

    2012-07-30

    CAPE CANAVERAL, Fla. - Russell Romanella, director of Safety and Mission Assurance at NASA's Kennedy Space Center in Florida, center, is briefed on NASA's Morpheus lander, a vertical test bed vehicle. Morpheus is being checked out by technicians and engineers in a building at the Shuttle Landing Facility, or SLF, at Kennedy. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis

  3. KSC-2012-4101

    NASA Image and Video Library

    2012-07-30

    CAPE CANAVERAL, Fla. - Russell Romanella, director of Safety and Mission Assurance at NASA's Kennedy Space Center in Florida, right-center, is briefed on NASA's Morpheus lander, a vertical test bed vehicle. Morpheus is being checked out by technicians and engineers in a building at the Shuttle Landing Facility, or SLF, at Kennedy. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis

  4. KSC-2012-4100

    NASA Image and Video Library

    2012-07-30

    CAPE CANAVERAL, Fla. - Russell Romanella, director of Safety and Mission Assurance at NASA's Kennedy Space Center in Florida, kneeling on the left, is briefed on NASA's Morpheus lander, a vertical test bed vehicle. Morpheus is being checked out by technicians and engineers in a building at the Shuttle Landing Facility, or SLF, at Kennedy. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis

  5. KSC-2012-4103

    NASA Image and Video Library

    2012-07-30

    CAPE CANAVERAL, Fla. - Russell Romanella, director of Safety and Mission Assurance at NASA's Kennedy Space Center in Florida, left, is briefed on NASA's Morpheus lander, a vertical test bed vehicle. Morpheus is being checked out by technicians and engineers in a building at the Shuttle Landing Facility, or SLF, at Kennedy. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis

  6. Powered Descent Trajectory Guidance and Some Considerations for Human Lunar Landing

    NASA Technical Reports Server (NTRS)

    Sostaric, Ronald R.

    2007-01-01

    The Autonomous Precision Landing and Hazard Detection and Avoidance Technology development (ALHAT) will enable an accurate (better than 100m) landing on the lunar surface. This technology will also permit autonomous (independent from ground) avoidance of hazards detected in real time. A preliminary trajectory guidance algorithm capable of supporting these tasks has been developed and demonstrated in simulations. Early results suggest that with expected improvements in sensor technology and lunar mapping, mission objectives are achievable.

  7. KSC-2012-4167

    NASA Image and Video Library

    2012-08-01

    CAPE CANAVERAL, Fla. - At a hangar near the Shuttle Landing Facility, or SLF, at NASA’s Kennedy Space Center in Florida, the Johnson Space Center Project Morpheus Manager Jon Olansen speaks to members of the media. In the foreground is the Morpheus prototype lander, which arrived at Kennedy on July 27. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett

  8. KSC-2012-4168

    NASA Image and Video Library

    2012-08-01

    CAPE CANAVERAL, Fla. - At a hangar near the Shuttle Landing Facility, or SLF, at NASA’s Kennedy Space Center in Florida, the Johnson Space Center Project Morpheus Manager Jon Olansen speaks to members of the media. In the background is the Morpheus prototype lander, which arrived at Kennedy on July 27. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett

  9. KSC-2012-3955

    NASA Image and Video Library

    2012-07-19

    CAPE CANAVERAL, Fla. – This aerial view shows the Shuttle Landing Facility’s air traffic control tower at the Kennedy Space Center in Florida. Just below the tower is the mid-field park site used for runway support vehicles. At the north end of the runway, a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett

  10. KSC-2012-3948

    NASA Image and Video Library

    2012-07-19

    CAPE CANAVERAL, Fla. – This aerial view shows the launch platform for the Project Morpheus lander at the midfield point of the Shuttle Landing Facility, or SLF, at NASA’s Kennedy Space Center in Florida. At the north end of the runway is a rock and crater-filled planetary scape built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett

  11. KSC-2012-3949

    NASA Image and Video Library

    2012-07-19

    CAPE CANAVERAL, Fla. – This aerial view shows the launch platform for the Project Morpheus lander at the midfield point of the Shuttle Landing Facility, or SLF, at NASA’s Kennedy Space Center in Florida. At the north end of the runway is a rock and crater-filled planetary scape built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett

  12. KSC-2014-4377

    NASA Image and Video Library

    2014-11-03

    CAPE CANAVERAL, Fla. - Rob Mueller, left, NASA senior technologist in the Surface Systems Office in Kennedy Space Center's Engineering and Technology Directorate, talks with former NASA Apollo astronaut Buzz Aldrin during a demonstration of the Regolith Advanced Surface System Operations Robot, or RASSOR, at the automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The event was held to announce Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST. Photo credit: NASA/Ben Smegelsky

  13. KSC-2014-4378

    NASA Image and Video Library

    2014-11-03

    CAPE CANAVERAL, Fla. - Rob Mueller, left, NASA senior technologist in the Surface Systems Office in Kennedy Space Center's Engineering and Technology Directorate, talks with former NASA Apollo astronaut Buzz Aldrin during a demonstration of the Regolith Advanced Surface Systems Operations Robot, or RASSOR, at the automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The event was held to announce Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST. Photo credit: NASA/Ben Smegelsky

  14. KSC-2013-4226

    NASA Image and Video Library

    2013-12-04

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, technicians prepare to load the Project Morpheus Prototype Lander with propellant at the launch platform located at the north end of the Shuttle Landing Facility. Morpheus is being prepared for a dress rehearsal of a tethered flight test. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  15. KSC-2013-4195

    NASA Image and Video Library

    2013-12-03

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, a team of engineers and technicians assist as a tether is used to lower the Project Morpheus prototype lander onto a launch platform at the north end of the Shuttle Landing Facility. Testing of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  16. KSC-2013-4227

    NASA Image and Video Library

    2013-12-04

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, technicians have loaded the Project Morpheus Prototype Lander with propellant at the launch platform located at the north end of the Shuttle Landing Facility. Morpheus is being prepared for a dress rehearsal of a tethered flight test. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  17. KSC-2013-4225

    NASA Image and Video Library

    2013-12-04

    CAPE CANAVERAL, Fla. – The Project Morpheus prototype lander is attached to a tether at the launch platform located at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Morpheus is being prepared for a dress rehearsal of a tethered flight test. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  18. KSC-2013-4194

    NASA Image and Video Library

    2013-12-03

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, a team of engineers and technicians assist as a tether is used to move the Project Morpheus prototype lander to a launch platform at the north end of the Shuttle Landing Facility. Testing of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  19. KSC-2013-4188

    NASA Image and Video Library

    2013-12-03

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, technicians prepare the Project Morpheus prototype lander to be transported from a support building to a launch platform at the north end of the Shuttle Landing Facility. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  20. KSC-2013-4192

    NASA Image and Video Library

    2013-12-03

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, a team of engineers and technicians attaches a tether to the Project Morpheus prototype lander near the north end of the Shuttle Landing Facility. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for Morpheus’ tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  1. KSC-2013-4190

    NASA Image and Video Library

    2013-12-03

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, a convoy of vehicles accompanies the Project Morpheus prototype lander as it is transported to a launch platform at the north end of the Shuttle Landing Facility. Testing of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  2. KSC-2013-4189

    NASA Image and Video Library

    2013-12-03

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, the Project Morpheus prototype lander is prepared for its move from a support building to a launch platform at the north end of the Shuttle Landing Facility. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  3. Moon Express Media Event

    NASA Image and Video Library

    2014-11-03

    Bob Richards, co-founder and chief executive officer of Moon Express Inc., of Moffett Field, California, speaks to the media during an event to announce the company's selection to use Kennedy Space Center's facilities as part of NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. The event took place at Kennedy's automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST.

  4. KSC-2014-4371

    NASA Image and Video Library

    2014-11-03

    CAPE CANAVERAL, Fla. - Tom Engler, deputy director of Center Planning and Development at NASA's Kennedy Space Center in Florida, speaks to members of the media during an event to announce the agency's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative and introduced one of the partners, Moon Express Inc. of Moffett Field, California. The event took place at Kennedy's automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST. Photo credit: NASA/Ben Smegelsky

  5. KSC-2014-4373

    NASA Image and Video Library

    2014-11-03

    CAPE CANAVERAL, Fla. - Bob Richards, co-founder and chief executive officer of Moon Express Inc., of Moffett Field, California, speaks to the media during an event to announce the company's selection to use Kennedy Space Center's facilities as part of NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. The event took place at Kennedy's automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST. Photo credit: NASA/Ben Smegelsky

  6. Moon Express Media Event

    NASA Image and Video Library

    2014-11-03

    Tom Engler, deputy director of Center Planning and Development at NASA's Kennedy Space Center in Florida, speaks to members of the media during an event to announce the agency's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative and introduced one of the partners, Moon Express Inc. of Moffett Field, California. The event took place at Kennedy's automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST.

  7. Navigation Doppler lidar sensor for precision altitude and vector velocity measurements: flight test results

    NASA Astrophysics Data System (ADS)

    Pierrottet, Diego; Amzajerdian, Farzin; Petway, Larry; Barnes, Bruce; Lockard, George; Hines, Glenn

    2011-06-01

    An all fiber Navigation Doppler Lidar (NDL) system is under development at NASA Langley Research Center (LaRC) for precision descent and landing applications on planetary bodies. The sensor produces high-resolution line of sight range, altitude above ground, ground relative attitude, and high precision velocity vector measurements. Previous helicopter flight test results demonstrated the NDL measurement concepts, including measurement precision, accuracies, and operational range. This paper discusses the results obtained from a recent campaign to test the improved sensor hardware, and various signal processing algorithms applicable to real-time processing. The NDL was mounted in an instrumentation pod aboard an Erickson Air-Crane helicopter and flown over various terrains. The sensor was one of several sensors tested in this field test by NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) project.

  8. Navigation Doppler Lidar Sensor for Precision Altitude and Vector Velocity Measurements Flight Test Results

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego F.; Lockhard, George; Amzajerdian, Farzin; Petway, Larry B.; Barnes, Bruce; Hines, Glenn D.

    2011-01-01

    An all fiber Navigation Doppler Lidar (NDL) system is under development at NASA Langley Research Center (LaRC) for precision descent and landing applications on planetary bodies. The sensor produces high resolution line of sight range, altitude above ground, ground relative attitude, and high precision velocity vector measurements. Previous helicopter flight test results demonstrated the NDL measurement concepts, including measurement precision, accuracies, and operational range. This paper discusses the results obtained from a recent campaign to test the improved sensor hardware, and various signal processing algorithms applicable to real-time processing. The NDL was mounted in an instrumentation pod aboard an Erickson Air-Crane helicopter and flown over vegetation free terrain. The sensor was one of several sensors tested in this field test by NASA?s Autonomous Landing and Hazard Avoidance Technology (ALHAT) project.

  9. Flight Test Performance of a High Precision Navigation Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego; Amzajerdian, Farzin; Petway, Larry; Barnes, Bruce; Lockard, George

    2009-01-01

    A navigation Doppler Lidar (DL) was developed at NASA Langley Research Center (LaRC) for high precision velocity measurements from a lunar or planetary landing vehicle in support of the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. A unique feature of this DL is that it has the capability to provide a precision velocity vector which can be easily separated into horizontal and vertical velocity components and high accuracy line of sight (LOS) range measurements. This dual mode of operation can provide useful information, such as vehicle orientation relative to the direction of travel, and vehicle attitude relative to the sensor footprint on the ground. System performance was evaluated in a series of helicopter flight tests over the California desert. This paper provides a description of the DL system and presents results obtained from these flight tests.

  10. Flight Testing a Real-Time Hazard Detection System for Safe Lunar Landing on the Rocket-Powered Morpheus Vehicle

    NASA Technical Reports Server (NTRS)

    Trawny, Nikolas; Huertas, Andres; Luna, Michael E.; Villalpando, Carlos Y.; Martin, Keith E.; Carson, John M.; Johnson, Andrew E.; Restrepo, Carolina; Roback, Vincent E.

    2015-01-01

    The Hazard Detection System (HDS) is a component of the ALHAT (Autonomous Landing and Hazard Avoidance Technology) sensor suite, which together provide a lander Guidance, Navigation and Control (GN&C) system with the relevant measurements necessary to enable safe precision landing under any lighting conditions. The HDS consists of a stand-alone compute element (CE), an Inertial Measurement Unit (IMU), and a gimbaled flash LIDAR sensor that are used, in real-time, to generate a Digital Elevation Map (DEM) of the landing terrain, detect candidate safe landing sites for the vehicle through Hazard Detection (HD), and generate hazard-relative navigation (HRN) measurements used for safe precision landing. Following an extensive ground and helicopter test campaign, ALHAT was integrated onto the Morpheus rocket-powered terrestrial test vehicle in March 2014. Morpheus and ALHAT then performed five successful free flights at the simulated lunar hazard field constructed at the Shuttle Landing Facility (SLF) at Kennedy Space Center, for the first time testing the full system on a lunar-like approach geometry in a relevant dynamic environment. During these flights, the HDS successfully generated DEMs, correctly identified safe landing sites and provided HRN measurements to the vehicle, marking the first autonomous landing of a NASA rocket-powered vehicle in hazardous terrain. This paper provides a brief overview of the HDS architecture and describes its in-flight performance.

  11. KSC-2012-3956

    NASA Image and Video Library

    2012-07-19

    CAPE CANAVERAL, Fla. – This aerial view shows a 50,000-square-foot hangar located on the Shuttle Landing Facility at the Kennedy Space Center, Fla., providing shelter and storage for NASA and non-NASA aircraft and maintenance operations. Adjacent to the hangar is an operations building housing personnel who support operations at the 15,000-foot long concrete runway. At the north end of the runway, a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett

  12. KSC-2012-4343

    NASA Image and Video Library

    2012-08-09

    CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida, the Morpheus prototype lander begins to lift off of the ground during a free-flight test. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. Morpheus was manufactured and assembled at JSC and Armadillo Aerospace. Morpheus is large enough to carry 1,100 pounds of cargo to the moon – for example, a humanoid robot, a small rover, or a small laboratory to convert moon dust into oxygen. The primary focus of the test is to demonstrate an integrated propulsion and guidance, navigation and control system that can fly a lunar descent profile to exercise the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, safe landing sensors and closed-loop flight control. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA

  13. LIDAR-Aided Inertial Navigation with Extended Kalman Filtering for Pinpoint Landing

    NASA Technical Reports Server (NTRS)

    Busnardo, David M.; Aitken, Matthew L.; Tolson, Robert H.; Pierrottet, Diego; Amzajerdian, Farzin

    2011-01-01

    In support of NASA s Autonomous Landing and Hazard Avoidance Technology (ALHAT) project, an extended Kalman filter routine has been developed for estimating the position, velocity, and attitude of a spacecraft during the landing phase of a planetary mission. The proposed filter combines measurements of acceleration and angular velocity from an inertial measurement unit (IMU) with range and Doppler velocity observations from an onboard light detection and ranging (LIDAR) system. These high-precision LIDAR measurements of distance to the ground and approach velocity will enable both robotic and manned vehicles to land safely and precisely at scientifically interesting sites. The filter has been extensively tested using a lunar landing simulation and shown to improve navigation over flat surfaces or rough terrain. Experimental results from a helicopter flight test performed at NASA Dryden in August 2008 demonstrate that LIDAR can be employed to significantly improve navigation based exclusively on IMU integration.

  14. Moon Express Media Event

    NASA Image and Video Library

    2014-11-03

    Members of the media watch a demonstration of the Regolith Advanced Surface System Operations Robot, or RASSOR, during a media event at the automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Tom Engler, center, in the suit, deputy director of Kennedy's Center Planning and Development, announced Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST.

  15. KSC-2014-4376

    NASA Image and Video Library

    2014-11-03

    CAPE CANAVERAL, Fla. - Members of the media watch a demonstration of the Regolith Advanced Surface System Operations Robot, or RASSOR, during a media event at the automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Tom Engler, center, in the suit, deputy director of Kennedy's Center Planning and Development, announced Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST. Photo credit: NASA/Ben Smegelsky

  16. 3D flash lidar performance in flight testing on the Morpheus autonomous, rocket-propelled lander to a lunar-like hazard field

    NASA Astrophysics Data System (ADS)

    Roback, Vincent E.; Amzajerdian, Farzin; Bulyshev, Alexander E.; Brewster, Paul F.; Barnes, Bruce W.

    2016-05-01

    For the first time, a 3-D imaging Flash Lidar instrument has been used in flight to scan a lunar-like hazard field, build a 3-D Digital Elevation Map (DEM), identify a safe landing site, and, in concert with an experimental Guidance, Navigation, and Control system, help to guide the Morpheus autonomous, rocket-propelled, free-flying lander to that safe site on the hazard field. The flight tests served as the TRL 6 demo of the Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT) system and included launch from NASA-Kennedy, a lunar-like descent trajectory from an altitude of 250m, and landing on a lunar-like hazard field of rocks, craters, hazardous slopes, and safe sites 400m down-range. The ALHAT project developed a system capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The Flash Lidar is a second generation, compact, real-time, air-cooled instrument. Based upon extensive on-ground characterization at flight ranges, the Flash Lidar was shown to be capable of imaging hazards from a slant range of 1 km with an 8 cm range precision and a range accuracy better than 35 cm, both at 1-σ. The Flash Lidar identified landing hazards as small as 30 cm from the maximum slant range which Morpheus could achieve (450 m); however, under certain wind conditions it was susceptible to scintillation arising from air heated by the rocket engine and to pre-triggering on a dust cloud created during launch and transported down-range by wind.

  17. 3-D Flash Lidar Performance in Flight Testing on the Morpheus Autonomous, Rocket-Propelled Lander to a Lunar-Like Hazard Field

    NASA Technical Reports Server (NTRS)

    Roback, Vincent E.; Amzajerdian, Farzin; Bulyshev, Alexander E.; Brewster, Paul F.; Barnes, Bruce W.

    2016-01-01

    For the first time, a 3-D imaging Flash Lidar instrument has been used in flight to scan a lunar-like hazard field, build a 3-D Digital Elevation Map (DEM), identify a safe landing site, and, in concert with an experimental Guidance, Navigation, and Control (GN&C) system, help to guide the Morpheus autonomous, rocket-propelled, free-flying lander to that safe site on the hazard field. The flight tests served as the TRL 6 demo of the Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT) system and included launch from NASA-Kennedy, a lunar-like descent trajectory from an altitude of 250m, and landing on a lunar-like hazard field of rocks, craters, hazardous slopes, and safe sites 400m down-range. The ALHAT project developed a system capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The Flash Lidar is a second generation, compact, real-time, air-cooled instrument. Based upon extensive on-ground characterization at flight ranges, the Flash Lidar was shown to be capable of imaging hazards from a slant range of 1 km with an 8 cm range precision and a range accuracy better than 35 cm, both at 1-delta. The Flash Lidar identified landing hazards as small as 30 cm from the maximum slant range which Morpheus could achieve (450 m); however, under certain wind conditions it was susceptible to scintillation arising from air heated by the rocket engine and to pre-triggering on a dust cloud created during launch and transported down-range by wind.

  18. Project M: Scale Model of Lunar Landing Site of Apollo 17: Focus on Lighting Conditions and Analysis

    NASA Technical Reports Server (NTRS)

    Vanik, Christopher S.; Crain, Timothy P.

    2010-01-01

    This document captures the research and development of a scale model representation of the Apollo 17 landing site on the moon as part of the NASA INSPIRE program. Several key elements in this model were surface slope characteristics, crater sizes and locations, prominent rocks, and lighting conditions. This model supports development of Autonomous Landing and Hazard Avoidance Technology (ALHAT) and Project M for the GN&C Autonomous Flight Systems Branch. It will help project engineers visualize the landing site, and is housed in the building 16 Navigation Systems Technology Lab. The lead mentor was Dr. Timothy P. Crain. The purpose of this project was to develop an accurate scale representation of the Apollo 17 landing site on the moon. This was done on an 8'2.5"X10'1.375" reduced friction granite table, which can be restored to its previous condition if needed. The first step in this project was to research the best way to model and recreate the Apollo 17 landing site for the mockup. The project required a thorough plan, budget, and schedule, which was presented to the EG6 Branch for build approval. The final phase was to build the model. The project also required thorough research on the Apollo 17 landing site and the topography of the moon. This research was done on the internet and in person with Dean Eppler, a space scientist, from JSC KX. This data was used to analyze and calculate the scale of the mockup and the ratio of the sizes of the craters, ridges, etc. The final goal was to effectively communicate project status and demonstrate the multiple advantages of using our model. The conclusion of this project was that the mockup was completed as accurately as possible, and it successfully enables the Project M specialists to visualize and plan their goal on an accurate three dimensional surface representation.

  19. KSC-2013-4284

    NASA Image and Video Library

    2013-12-06

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, the Project Morpheus prototype lander has been lifted by a tether and hovers above a transportable launch platform positioned at the north end of the Shuttle Landing Facility. The lander’s engine begins firing for a tethered test that includes lifting it 20 feet by crane, ascending another 10 feet, maneuvering backwards 10 feet, and then flying forward and descending to its original position, landing at the end of the tether. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper

  20. KSC-2013-4286

    NASA Image and Video Library

    2013-12-06

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, the Project Morpheus prototype lander’s engine begins to fire during a tether test at the north end of the Shuttle Landing Facility. During the test, the lander is lifted 20 feet by crane, and will ascend another 10 feet, maneuver backwards 10 feet, and then fly forward and descend to its original position, landing at the end of the tether onto a transportable launch platform. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper

  1. KSC-2013-4295

    NASA Image and Video Library

    2013-12-06

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, the Project Morpheus prototype lander’s engine has completed its firing during a tether test at the north end of the Shuttle Landing Facility. During the test, the lander was lifted 20 feet by crane, and then ascended another 10 feet, maneuvered backwards 10 feet, and then flew forward. It will descend to its original position, landing at the end of the tether onto a transportable launch platform. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper

  2. KSC-2013-4289

    NASA Image and Video Library

    2013-12-06

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, smoke fills the air as the Project Morpheus prototype lander’s engine fires during a tether test at the north end of the Shuttle Landing Facility. During the test, the lander was lifted 20 feet by crane, and then ascended another 10 feet, maneuvered backwards 10 feet, and then flew forward. It will descend to its original position, landing at the end of the tether onto a transportable launch platform. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper

  3. KSC-2013-4282

    NASA Image and Video Library

    2013-12-06

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, the Project Morpheus prototype lander has been attached to a tether and is being raised from a transportable launch platform positioned at the north end of the Shuttle Landing Facility. The tethered test includes lifting the lander 20 feet by crane, ascending another 10 feet, maneuvering backwards 10 feet, and then flying forward and descending to its original position, landing at the end of the tether. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper

  4. KSC-2013-4281

    NASA Image and Video Library

    2013-12-06

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, the Project Morpheus prototype lander has been attached to a tether and is being prepared for a tether test on a transportable launch platform positioned at the north end of the Shuttle Landing Facility. The tether test includes lifting the lander 20 feet by crane, ascending another 10 feet, maneuvering backwards 10 feet, and then flying forward and descending to its original position, landing at the end of the tether. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper

  5. KSC-2013-4292

    NASA Image and Video Library

    2013-12-06

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, smoke fills the air as the Project Morpheus prototype lander’s engine fires during a tether test at the north end of the Shuttle Landing Facility. During the test, the lander was lifted 20 feet by crane, and then ascended another 10 feet, maneuvered backwards 10 feet, and then flew forward. It will descend to its original position, landing at the end of the tether onto a transportable launch platform. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper

  6. KSC-2013-4256

    NASA Image and Video Library

    2013-12-06

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, the Project Morpheus prototype lander is being prepared for placement on a transportable launch platform positioned at the north end of the Shuttle Landing Facility. The lander will be prepared for a tethered test that includes lifting it 20 feet by crane, ascending another 10 feet, maneuvering backwards 10 feet, and then flying forward and descending to its original position, landing at the end of the tether. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  7. KSC-2013-4290

    NASA Image and Video Library

    2013-12-06

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, smoke fills the air as the Project Morpheus prototype lander’s engine fires during a tether test at the north end of the Shuttle Landing Facility. During the test, the lander was lifted 20 feet by crane, and then ascended another 10 feet, maneuvered backwards 10 feet, and then flew forward. It will descend to its original position, landing at the end of the tether onto a transportable launch platform. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper

  8. KSC-2013-4291

    NASA Image and Video Library

    2013-12-06

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, smoke fills the air as the Project Morpheus prototype lander’s engine fires during a tether test at the north end of the Shuttle Landing Facility. During the test, the lander was lifted 20 feet by crane, and then ascended another 10 feet, maneuvered backwards 10 feet, and then flew forward. It will descend to its original position, landing at the end of the tether onto a transportable launch platform. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper

  9. Doppler Lidar Sensor for Precision Landing on the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Petway, Larry; Hines, Glenn; Barnes, Bruce; Pierrottet, Diego; Lockhard, George

    2012-01-01

    Landing mission concepts that are being developed for exploration of planetary bodies are increasingly ambitious in their implementations and objectives. Most of these missions require accurate position and velocity data during their descent phase in order to ensure safe soft landing at the pre-designated sites. To address this need, a Doppler lidar is being developed by NASA under the Autonomous Landing and Hazard Avoidance (ALHAT) project. This lidar sensor is a versatile instrument capable of providing precision velocity vectors, vehicle ground relative altitude, and attitude. The capabilities of this advanced technology have been demonstrated through two helicopter flight test campaigns conducted over a vegetation-free terrain in 2008 and 2010. Presently, a prototype version of this sensor is being assembled for integration into a rocket-powered terrestrial free-flyer vehicle. Operating in a closed loop with vehicle's guidance and navigation system, the viability of this advanced sensor for future landing missions will be demonstrated through a series of flight tests in 2012.

  10. Lidar Sensor Performance in Closed-Loop Flight Testing of the Morpheus Rocket-Propelled Lander to a Lunar-Like Hazard Field

    NASA Technical Reports Server (NTRS)

    Roback, Vincent E.; Pierrottet, Diego F.; Amzajerdian, Farzin; Barnes, Bruce W.; Hines, Glenn D.; Petway, Larry B.; Brewster, Paul F.; Kempton, Kevin S.; Bulyshev, Alexander E.

    2015-01-01

    For the first time, a suite of three lidar sensors have been used in flight to scan a lunar-like hazard field, identify a safe landing site, and, in concert with an experimental Guidance, Navigation, and Control (GN&C) system, guide the Morpheus autonomous, rocket-propelled, free-flying test bed to a safe landing on the hazard field. The lidar sensors and GN&C system are part of the Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT) project which has been seeking to develop a system capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The 3-D imaging flash lidar is a second generation, compact, real-time, air-cooled instrument developed from a number of cutting-edge components from industry and NASA and is used as part of the ALHAT Hazard Detection System (HDS) to scan the hazard field and build a 3-D Digital Elevation Map (DEM) in near-real time for identifying safe sites. The flash lidar is capable of identifying a 30 cm hazard from a slant range of 1 km with its 8 cm range precision at 1 sigma. The flash lidar is also used in Hazard Relative Navigation (HRN) to provide position updates down to a 250m slant range to the ALHAT navigation filter as it guides Morpheus to the safe site. The Doppler Lidar system has been developed within NASA to provide velocity measurements with an accuracy of 0.2 cm/sec and range measurements with an accuracy of 17 cm both from a maximum range of 2,200 m to a minimum range of several meters above the ground. The Doppler Lidar's measurements are fed into the ALHAT navigation filter to provide lander guidance to the safe site. The Laser Altimeter, also developed within NASA, provides range measurements with an accuracy of 5 cm from a maximum operational range of 30 km down to 1 m and, being a separate sensor from the flash lidar, can provide range along a separate vector. The Laser Altimeter measurements are also fed into the ALHAT navigation filter to provide lander guidance to the safe site. The flight tests served as the culmination of the TRL 6 journey for the lidar suite and included launch from a pad situated at the NASA-Kennedy Space Center Shuttle Landing Facility (SLF) runway, a lunar-like descent trajectory from an altitude of 250m, and landing on a lunar-like hazard field of rocks, craters, hazardous slopes, and safe sites 400m down-range just off the North end of the runway. The tests both confirmed the expected performance and also revealed several challenges present in the flight-like environment which will feed into future TRL advancement of the sensors. The flash lidar identified hazards as small as 30 cm from the maximum slant range of 450 m which Morpheus could provide, however, it was occasionally susceptible to an increase in range noise due to heated air from the Morpheus rocket plume which entered its Field-of-View (FOV). The flash lidar was also susceptible to pre-triggering on dust during the HRN phase which was created during launch and transported by the wind. The Doppler Lidar provided velocity and range measurements to the expected accuracy levels yet it was also susceptible to signal degradation due to air heated by the rocket engine. The Laser Altimeter, operating with a degraded transmitter laser, also showed signal attenuation over a few seconds at a specific phase of the flight due to the heat plume generated by the rocket engine.

  11. KSC-2013-4257

    NASA Image and Video Library

    2013-12-06

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, the Project Morpheus prototype lander has been attached to a tether and is being prepared for placement on a transportable launch platform positioned at the north end of the Shuttle Landing Facility. The lander will be prepared for a tethered test that includes lifting it 20 feet by crane, ascending another 10 feet, maneuvering backwards 10 feet, and then flying forward and descending to its original position, landing at the end of the tether. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  12. KSC-2013-4260

    NASA Image and Video Library

    2013-12-06

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, technicians and engineers assist as the Project Morpheus prototype lander is attached to a tether and lowered onto a transportable launch platform positioned at the north end of the Shuttle Landing Facility. The lander will be prepared for a tethered test that includes lifting it 20 feet by crane, ascending another 10 feet, maneuvering backwards 10 feet, and then flying forward and descending to its original position, landing at the end of the tether. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  13. KSC-2013-4288

    NASA Image and Video Library

    2013-12-06

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, smoke fills the air as the Project Morpheus prototype lander’s engine fires during a tether test at the north end of the Shuttle Landing Facility. During the test, the lander was lifted 20 feet by crane, and then ascended another 10 feet. The lander will maneuver backwards 10 feet, and then fly forward and descend to its original position, landing at the end of the tether onto a transportable launch platform. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper

  14. KSC-2013-4280

    NASA Image and Video Library

    2013-12-06

    CAPE CANAVERAL, Fla. – Inside a control room at NASA’s Kennedy Space Center in Florida, engineers monitor the progress as the Project Morpheus prototype lander is being prepared for a tether test on a transportable launch platform positioned at the north end of the Shuttle Landing Facility. The tethered test will include lifting it 20 feet by crane, ascending another 10 feet, maneuvering backwards 10 feet, and then flying forward and descending to its original position, landing at the end of the tether. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper

  15. KSC-2013-4258

    NASA Image and Video Library

    2013-12-06

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, the Project Morpheus prototype lander has been attached to a tether and is being lowered onto a transportable launch platform positioned at the north end of the Shuttle Landing Facility. The lander will be prepared for a tethered test that includes lifting it 20 feet by crane, ascending another 10 feet, maneuvering backwards 10 feet, and then flying forward and descending to its original position, landing at the end of the tether. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  16. KSC-2012-4344

    NASA Image and Video Library

    2012-08-09

    CAPE CANAVERAL, Fla. – During a free-flight test of the Project Morpheus vehicle at the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida, the vehicle lifted off the ground and then experienced a hardware component failure, which prevented it from maintaining stable flight. Engineers are looking into the test data and the agency will release information as it becomes available. Failures such as these were anticipated prior to the test, and are part of the development process for any complex spaceflight hardware. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. Morpheus was manufactured and assembled at JSC and Armadillo Aerospace. Morpheus is large enough to carry 1,100 pounds of cargo to the moon – for example, a humanoid robot, a small rover, or a small laboratory to convert moon dust into oxygen. The primary focus of the test is to demonstrate an integrated propulsion and guidance, navigation and control system that can fly a lunar descent profile to exercise the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, safe landing sensors and closed-loop flight control. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA

  17. KSC-2012-4345

    NASA Image and Video Library

    2012-08-09

    CAPE CANAVERAL, Fla. – During a free-flight test of the Project Morpheus vehicle at the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida, the vehicle lifted off the ground and then experienced a hardware component failure, which prevented it from maintaining stable flight. No one was injured and the resulting fire was extinguished by Kennedy fire personnel. Engineers are looking into the test data and the agency will release information as it becomes available. Failures such as these were anticipated prior to the test, and are part of the development process for any complex spaceflight hardware. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. Morpheus was manufactured and assembled at JSC and Armadillo Aerospace. Morpheus is large enough to carry 1,100 pounds of cargo to the moon – for example, a humanoid robot, a small rover, or a small laboratory to convert moon dust into oxygen. The primary focus of the test is to demonstrate an integrated propulsion and guidance, navigation and control system that can fly a lunar descent profile to exercise the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, safe landing sensors and closed-loop flight control. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA

  18. KSC-2012-4346

    NASA Image and Video Library

    2012-08-09

    CAPE CANAVERAL, Fla. – During a free-flight test of the Project Morpheus vehicle at the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida, the vehicle lifted off the ground and then experienced a hardware component failure, which prevented it from maintaining stable flight. No one was injured and the resulting fire was extinguished by Kennedy fire personnel. Engineers are looking into the test data and the agency will release information as it becomes available. Failures such as these were anticipated prior to the test, and are part of the development process for any complex spaceflight hardware. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. Morpheus was manufactured and assembled at JSC and Armadillo Aerospace. Morpheus is large enough to carry 1,100 pounds of cargo to the moon – for example, a humanoid robot, a small rover, or a small laboratory to convert moon dust into oxygen. The primary focus of the test is to demonstrate an integrated propulsion and guidance, navigation and control system that can fly a lunar descent profile to exercise the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, safe landing sensors and closed-loop flight control. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA

  19. Development of Navigation Doppler Lidar for Future Landing Mission

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Hines, Glenn D.; Petway, Larry B.; Barnes, Bruce W.; Pierrottet, Diego F.; Carson, John M., III

    2016-01-01

    A coherent Navigation Doppler Lidar (NDL) sensor has been developed under the Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project to support future NASA missions to planetary bodies. This lidar sensor provides accurate surface-relative altitude and vector velocity data during the descent phase that can be used by an autonomous Guidance, Navigation, and Control (GN&C) system to precisely navigate the vehicle from a few kilometers above the ground to a designated location and execute a controlled soft touchdown. The operation and performance of the NDL was demonstrated through closed-loop flights onboard the rocket-propelled Morpheus vehicle in 2014. In Morpheus flights, conducted at the NASA Kennedy Space Center, the NDL data was used by an autonomous GN&C system to navigate and land the vehicle precisely at the selected location surrounded by hazardous rocks and craters. Since then, development efforts for the NDL have shifted toward enhancing performance, optimizing design, and addressing spaceflight size and mass constraints and environmental and reliability requirements. The next generation NDL, with expanded operational envelope and significantly reduced size, will be demonstrated in 2017 through a new flight test campaign onboard a commercial rocketpropelled test vehicle.

  20. KSC-2012-6375

    NASA Image and Video Library

    2012-12-04

    CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, hazard avoidance instrumentation it being prepared for installation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Jim Grossmann

  1. KSC-2012-6422

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis

  2. KSC-2012-6427

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis

  3. KSC-2012-6424

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis

  4. KSC-2012-6417

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis

  5. KSC-2012-6452

    NASA Image and Video Library

    2012-12-13

    CAPE CANAVERAL, Fla. – A Huey helicopter tests hazard avoidance instrumentation at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks using the instrument. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Photo credit: NASA/Jim Grossmann

  6. KSC-2012-6419

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis

  7. KSC-2012-6425

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis

  8. KSC-2012-6420

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis

  9. KSC-2012-6374

    NASA Image and Video Library

    2012-12-04

    CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Jim Grossmann

  10. KSC-2012-6421

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis

  11. KSC-2012-6376

    NASA Image and Video Library

    2012-12-04

    CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a technician installs hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Jim Grossmann

  12. KSC-2012-6412

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis

  13. KSC-2012-6414

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis

  14. KSC-2012-6423

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis

  15. KSC-2012-6413

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis

  16. KSC-2012-6373

    NASA Image and Video Library

    2012-12-04

    CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Jim Grossmann

  17. KSC-2012-6377

    NASA Image and Video Library

    2012-12-04

    CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a technician tests hazard avoidance instrumentation recently installed on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Jim Grossmann

  18. KSC-2012-6416

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis

  19. KSC-2012-6372

    NASA Image and Video Library

    2012-12-04

    CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Jim Grossmann

  20. KSC-2012-6415

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis

  1. KSC-2012-6418

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis

  2. Project M: Scale Model of Lunar Landing Site of Apollo 17

    NASA Technical Reports Server (NTRS)

    O'Brien, Hollie; Crain, Timothy P.

    2010-01-01

    The basis of the project was creating a scale model representation of the Apollo 17 lunar landing site. Vital components included surface slope characteristics, crater sizes and locations, prominent rocks, and lighting conditions. The model was made for Project M support when evaluating approach and terminal descent as well as when planning surface operations with respect to the terrain. The project had five main mi lestones during the length of the project. The first was examining the best method to use to re-create the Apollo 17 landing site and then reviewing research fmdings with Dr. Tim Crain and EO staff which occurred on June 25, 2010 at a meeting. The second step was formulating a construction plan, budget, and schedule and then presenting the plan for authority to proceed which occurred on July 6,2010. The third part was building a prototype to test materials and building processes which were completed by July 13, 2010. Next was assembling the landing site model and presenting a mid-term construction status report on July 29, 2010. The fifth and final milestone was demonstrating the model and presenting an exit pitch which happened on August 4, 2010. The project was very technical: it needed a lot of research about moon topography, lighting conditions and angles of the sun on the moon, Apollo 17, and Autonomous Landing and Hazard Avoidance Technology (ALHAT), before starting the actual building process. This required using Spreadsheets, searching internet sources and conducting personal meetings with project representatives. This information assisted the interns in deciding the scale of the model with respect to cracks, craters and rocks and their relative sizes as the objects mentioned could interfere with any of the Lunar Landers: Apollo, Project M and future Landers. The project concluded with the completion of a three dimensional scale model of the Apollo 17 Lunar landing site. This model assists Project M members because they can now visualize approach phase, terminal descent phase, and surface phase operations on the physical model. The project had an additional requirement that was also satisfied: the granite table the model was placed on must be returnable to its original condition if needed in the future.

  3. Doppler Lidar System Design via Interdisciplinary Design Concept at NASA Langley Research Center - Part I

    NASA Technical Reports Server (NTRS)

    Boyer, Charles M.; Jackson, Trevor P.; Beyon, Jeffrey Y.; Petway, Larry B.

    2013-01-01

    Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. Mechanical placement collaboration reduced potential electromagnetic interference (EMI). Through application of newly selected electrical components and thermal analysis data, a total electronic chassis redesign was accomplished. Use of an innovative forced convection tunnel heat sink was employed to meet and exceed project requirements for cooling, mass reduction, and volume reduction. Functionality was a key concern to make efficient use of airflow, and accessibility was also imperative to allow for servicing of chassis internals. The collaborative process provided for accelerated design maturation with substantiated function.

  4. Compute Element and Interface Box for the Hazard Detection System

    NASA Technical Reports Server (NTRS)

    Villalpando, Carlos Y.; Khanoyan, Garen; Stern, Ryan A.; Some, Raphael R.; Bailey, Erik S.; Carson, John M.; Vaughan, Geoffrey M.; Werner, Robert A.; Salomon, Phil M.; Martin, Keith E.; hide

    2013-01-01

    The Autonomous Landing and Hazard Avoidance Technology (ALHAT) program is building a sensor that enables a spacecraft to evaluate autonomously a potential landing area to generate a list of hazardous and safe landing sites. It will also provide navigation inputs relative to those safe sites. The Hazard Detection System Compute Element (HDS-CE) box combines a field-programmable gate array (FPGA) board for sensor integration and timing, with a multicore computer board for processing. The FPGA does system-level timing and data aggregation, and acts as a go-between, removing the real-time requirements from the processor and labeling events with a high resolution time. The processor manages the behavior of the system, controls the instruments connected to the HDS-CE, and services the "heavy lifting" computational requirements for analyzing the potential landing spots.

  5. Flyover Modeling of Planetary Pits - Undergraduate Student Instrument Project

    NASA Astrophysics Data System (ADS)

    Bhasin, N.; Whittaker, W.

    2015-12-01

    On the surface of the moon and Mars there are hundreds of skylights, which are collapsed holes that are believed to lead to underground caves. This research uses Vision, Inertial, and LIDAR sensors to build a high resolution model of a skylight as a landing vehicle flies overhead. We design and fabricate a pit modeling instrument to accomplish this task, implement software, and demonstrate sensing and modeling capability on a suborbital reusable launch vehicle flying over a simulated pit. Future missions on other planets and moons will explore pits and caves, led by the technology developed by this research. Sensor software utilizes modern graph-based optimization techniques to build 3D models using camera, LIDAR, and inertial data. The modeling performance was validated with a test flyover of a planetary skylight analog structure on the Masten Xombie sRLV. The trajectory profile closely follows that of autonomous planetary powered descent, including translational and rotational dynamics as well as shock and vibration. A hexagonal structure made of shipping containers provides a terrain feature that serves as an appropriate analog for the rim and upper walls of a cylindrical planetary skylight. The skylight analog floor, walls, and rim are modeled in elevation with a 96% coverage rate at 0.25m2 resolution. The inner skylight walls have 5.9cm2 color image resolution and the rims are 6.7cm2 with measurement precision superior to 1m. The multidisciplinary student team included students of all experience levels, with backgrounds in robotics, physics, computer science, systems, mechanical and electrical engineering. The team was commited to authentic scientific experimentation, and defined specific instrument requirements and measurable experiment objectives to verify successful completion.This work was made possible by the NASA Undergraduate Student Instrument Project Educational Flight Opportunity 2013 program. Additional support was provided by the sponsorship of an IMU by KVH industries and mentorship was provided by members of the NASA ALHAT team. In addition to external support, this project was supported by two CMU Small Undergraduate Research Grants, the availability of a high-power CMU LIDAR sensor, dedicated workspace, and mentorship from research and shop faculty.

  6. A Long Distance Laser Altimeter for Terrain Relative Navigation and Spacecraft Landing

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego F.; Amzajerdian, Farzin; Barnes, Bruce W.

    2014-01-01

    A high precision laser altimeter was developed under the Autonomous Landing and Hazard Avoidance (ALHAT) project at NASA Langley Research Center. The laser altimeter provides slant-path range measurements from operational ranges exceeding 30 km that will be used to support surface-relative state estimation and navigation during planetary descent and precision landing. The altimeter uses an advanced time-of-arrival receiver, which produces multiple signal-return range measurements from tens of kilometers with 5 cm precision. The transmitter is eye-safe, simplifying operations and testing on earth. The prototype is fully autonomous, and able to withstand the thermal and mechanical stresses experienced during test flights conducted aboard helicopters, fixed-wing aircraft, and Morpheus, a terrestrial rocket-powered vehicle developed by NASA Johnson Space Center. This paper provides an overview of the sensor and presents results obtained during recent field experiments including a helicopter flight test conducted in December 2012 and Morpheus flight tests conducted during March of 2014.

  7. Development of LIDAR sensor systems for autonomous safe landing on planetary bodies

    NASA Astrophysics Data System (ADS)

    Amzajerdian, F.; Pierrottet, D.; Petway, L.; Vanek, M.

    2017-11-01

    Future NASA exploratory missions to the Moon and Mars will require safe soft-landings at the designated sites with a high degree of precision. These sites may include areas of high scientific value with relatively rough terrain with little or no solar illumination and possibly areas near pre-deployed assets. The ability of lidar technology to provide three-dimensional elevation maps of the terrain, high precision distance to the ground, and approach velocity can enable safe landing of large robotic and manned vehicles with a high degree of precision. Currently, NASA-LaRC is developing novel lidar sensors aimed at meeting NASA's objectives for future planetary landing missions under the Autonomous Landing and Hazard Avoidance (ALHAT) project. These lidar sensors are 3-Dimensional Imaging Flash Lidar, Doppler Lidar, and Laser Altimeter. The Flash Lidar is capable of generating elevation maps of the terrain identifying hazardous features such as rocks, craters, and steep slopes. The elevation maps collected during the approach phase between 1000 m to 500 m above the ground can be used to determine the most suitable safe landing site. The Doppler Lidar provides highly accurate ground velocity and distance data allowing for precision navigation to the selected landing site. Prior to the approach phase at altitudes of over 15 km, the Laser Altimeter can provide sufficient data for updating the vehicle position and attitude data from the Inertial Measurement Unit. At these higher altitudes, either the Laser Altimeter or the Flash Lidar can be used for generating a contour map of the terrain below for identifying known surface features such as craters for further reducing the vehicle relative position error.

  8. Development of lidar sensor systems for autonomous safe landing on planetary bodies

    NASA Astrophysics Data System (ADS)

    Amzajerdian, F.; Pierrottet, D.; Petway, L.; Vanek, M.

    2017-11-01

    Future NASA exploratory missions to the Moon and Mars will require safe soft-landings at the designated sites with a high degree of precision. These sites may include areas of high scientific value with relatively rough terrain with little or no solar illumination and possibly areas near pre-deployed assets. The ability of lidar technology to provide three-dimensional elevation maps of the terrain, high precision distance to the ground, and approach velocity can enable safe landing of large robotic and manned vehicles with a high degree of precision. Currently, NASA-LaRC is developing novel lidar sensors aimed at meeting NASA's objectives for future planetary landing missions under the Autonomous Landing and Hazard Avoidance (ALHAT) project [1]. These lidar sensors are 3-Dimensional Imaging Flash Lidar, Doppler Lidar, and Laser Altimeter. The Flash Lidar is capable of generating elevation maps of the terrain identifying hazardous features such as rocks, craters, and steep slopes. The elevation maps collected during the approach phase between 1000 m to 500 m above the ground can be used to determine the most suitable safe landing site. The Doppler Lidar provides highly accurate ground velocity and distance data allowing for precision navigation to the selected landing site. Prior to the approach phase at altitudes of over 15 km, the Laser Altimeter can provide sufficient data for updating the vehicle position and attitude data from the Inertial Measurement Unit. At these higher altitudes, either the Laser Altimeter or the Flash Lidar can be used for generating a contour map of the terrain below for identifying known surface features such as craters for further reducing the vehicle relative position error.

  9. Linear FMCW Laser Radar for Precision Range and Vector Velocity Measurements

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego; Amzajerdian, Farzin; Petway, Larry; Barnes, Bruce; Lockhard, George; Rubio, Manuel

    2008-01-01

    An all fiber linear frequency modulated continuous wave (FMCW) coherent laser radar system is under development with a goal to aide NASA s new Space Exploration initiative for manned and robotic missions to the Moon and Mars. By employing a combination of optical heterodyne and linear frequency modulation techniques and utilizing state-of-the-art fiber optic technologies, highly efficient, compact and reliable laser radar suitable for operation in a space environment is being developed. Linear FMCW lidar has the capability of high-resolution range measurements, and when configured into a multi-channel receiver system it has the capability of obtaining high precision horizontal and vertical velocity measurements. Precision range and vector velocity data are beneficial to navigating planetary landing pods to the preselected site and achieving autonomous, safe soft-landing. The all-fiber coherent laser radar has several important advantages over more conventional pulsed laser altimeters or range finders. One of the advantages of the coherent laser radar is its ability to measure directly the platform velocity by extracting the Doppler shift generated from the motion, as opposed to time of flight range finders where terrain features such as hills, cliffs, or slopes add error to the velocity measurement. Doppler measurements are about two orders of magnitude more accurate than the velocity estimates obtained by pulsed laser altimeters. In addition, most of the components of the device are efficient and reliable commercial off-the-shelf fiber optic telecommunication components. This paper discusses the design and performance of a second-generation brassboard system under development at NASA Langley Research Center as part of the Autonomous Landing and Hazard Avoidance (ALHAT) project.

  10. Doppler Lidar System Design via Interdisciplinary Design Concept at NASA Langley Research Center - Part III

    NASA Technical Reports Server (NTRS)

    Barnes, Bruce W.; Sessions, Alaric M.; Beyon, Jeffrey; Petway, Larry B.

    2014-01-01

    Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. The existing power system was analyzed to rank components in terms of inefficiency, power dissipation, footprint and mass. Design considerations and priorities are compared along with the results of each design iteration. Overall power system improvements are summarized for design implementations.

  11. All-digital full waveform recording photon counting flash lidar

    NASA Astrophysics Data System (ADS)

    Grund, Christian J.; Harwit, Alex

    2010-08-01

    Current generation analog and photon counting flash lidar approaches suffer from limitation in waveform depth, dynamic range, sensitivity, false alarm rates, optical acceptance angle (f/#), optical and electronic cross talk, and pixel density. To address these issues Ball Aerospace is developing a new approach to flash lidar that employs direct coupling of a photocathode and microchannel plate front end to a high-speed, pipelined, all-digital Read Out Integrated Circuit (ROIC) to achieve photon-counting temporal waveform capture in each pixel on each laser return pulse. A unique characteristic is the absence of performance-limiting analog or mixed signal components. When implemented in 65nm CMOS technology, the Ball Intensified Imaging Photon Counting (I2PC) flash lidar FPA technology can record up to 300 photon arrivals in each pixel with 100 ps resolution on each photon return, with up to 6000 range bins in each pixel. The architecture supports near 100% fill factor and fast optical system designs (f/#<1), and array sizes to 3000×3000 pixels. Compared to existing technologies, >60 dB ultimate dynamic range improvement, and >104 reductions in false alarm rates are anticipated, while achieving single photon range precision better than 1cm. I2PC significantly extends long-range and low-power hard target imaging capabilities useful for autonomous hazard avoidance (ALHAT), navigation, imaging vibrometry, and inspection applications, and enables scannerless 3D imaging for distributed target applications such as range-resolved atmospheric remote sensing, vegetation canopies, and camouflage penetration from terrestrial, airborne, GEO, and LEO platforms. We discuss the I2PC architecture, development status, anticipated performance advantages, and limitations.

  12. An Inertial Dual-State State Estimator for Precision Planetary Landing with Hazard Detection and Avoidance

    NASA Technical Reports Server (NTRS)

    Bishop, Robert H.; DeMars, Kyle; Trawny, Nikolas; Crain, Tim; Hanak, Chad; Carson, John M.; Christian, John

    2016-01-01

    The navigation filter architecture successfully deployed on the Morpheus flight vehicle is presented. The filter was developed as a key element of the NASA Autonomous Landing and Hazard Avoidance Technology (ALHAT) project and over the course of 15 free fights was integrated into the Morpheus vehicle, operations, and flight control loop. Flight testing completed by demonstrating autonomous hazard detection and avoidance, integration of an altimeter, surface relative velocity (velocimeter) and hazard relative navigation (HRN) measurements into the onboard dual-state inertial estimator Kalman flter software, and landing within 2 meters of the vertical testbed GPS-based navigation solution at the safe landing site target. Morpheus followed a trajectory that included an ascent phase followed by a partial descent-to-landing, although the proposed filter architecture is applicable to more general planetary precision entry, descent, and landings. The main new contribution is the incorporation of a sophisticated hazard relative navigation sensor-originally intended to locate safe landing sites-into the navigation system and employed as a navigation sensor. The formulation of a dual-state inertial extended Kalman filter was designed to address the precision planetary landing problem when viewed as a rendezvous problem with an intended landing site. For the required precision navigation system that is capable of navigating along a descent-to-landing trajectory to a precise landing, the impact of attitude errors on the translational state estimation are included in a fully integrated navigation structure in which translation state estimation is combined with attitude state estimation. The map tie errors are estimated as part of the process, thereby creating a dual-state filter implementation. Also, the filter is implemented using inertial states rather than states relative to the target. External measurements include altimeter, velocimeter, star camera, terrain relative navigation sensor, and a hazard relative navigation sensor providing information regarding hazards on a map generated on-the-fly.

  13. Advances in LADAR Components and Subsystems at Raytheon

    NASA Technical Reports Server (NTRS)

    Jack, Michael; Chapman, George; Edwards, John; McKeag, William; Veeder, Tricia; Wehner, Justin; Roberts, Tom; Robinson, Tom; Neisz, James; Andressen, Cliff; hide

    2012-01-01

    Raytheon is developing NIR sensor chip assemblies (SCAs) for scanning and staring 3D LADAR systems. High sensitivity is obtained by integrating high performance detectors with gain, i.e., APDs with very low noise Readout Integrated Circuits (ROICs). Unique aspects of these designs include: independent acquisition (non-gated) of pulse returns, multiple pulse returns with both time and intensity reported to enable full 3D reconstruction of the image. Recent breakthrough in device design has resulted in HgCdTe APDs operating at 300K with essentially no excess noise to gains in excess of 100, low NEP <1nW and GHz bandwidths and have demonstrated linear mode photon counting. SCAs utilizing these high performance APDs have been integrated and demonstrated excellent spatial and range resolution enabling detailed 3D imagery both at short range and long ranges. In the following we will review progress in real-time 3D LADAR imaging receiver products in three areas: (1) scanning 256 x 4 configuration for the Multi-Mode Sensor Seeker (MMSS) program and (2) staring 256 x 256 configuration for the Autonomous Landing and Hazard Avoidance Technology (ALHAT) lunar landing mission and (3) Photon-Counting SCAs which have demonstrated a dramatic reduction in dark count rate due to improved design, operation and processing.

  14. Doppler Lidar System Design via Interdisciplinary Design Concept at NASA Langley Research Center - Part II

    NASA Technical Reports Server (NTRS)

    Crasner, Aaron I.; Scola,Salvatore; Beyon, Jeffrey Y.; Petway, Larry B.

    2014-01-01

    Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. Thermal modeling software was used to run steady state thermal analyses, which were used to both validate the designs and recommend further changes. Analyses were run on each redesign, as well as the original system. Thermal Desktop was used to run trade studies to account for uncertainty and assumptions about fan performance and boundary conditions. The studies suggested that, even if the assumptions were significantly wrong, the redesigned systems would remain within operating temperature limits.

  15. Linking_Learning: Migrant Education Technology Projects, 1999.

    ERIC Educational Resources Information Center

    Carson, Nancy

    1999-01-01

    The two issues of Linking_Learning published in 1999 update the education community and others regarding six migrant education technology projects funded by the U.S. Department of Education. The projects are the Anchor School Project, InTime (Integrating Technology into Migrant Education), MECHA, KMTP (Kentucky Migrant Technology Project),…

  16. Software Engineering Research/Developer Collaborations in 2005

    NASA Technical Reports Server (NTRS)

    Pressburger, Tom

    2006-01-01

    In CY 2005, three collaborations between software engineering technology providers and NASA software development personnel deployed three software engineering technologies on NASA development projects (a different technology on each project). The main purposes were to benefit the projects, infuse the technologies if beneficial into NASA, and give feedback to the technology providers to improve the technologies. Each collaboration project produced a final report. Section 2 of this report summarizes each project, drawing from the final reports and communications with the software developers and technology providers. Section 3 indicates paths to further infusion of the technologies into NASA practice. Section 4 summarizes some technology transfer lessons learned. Also included is an acronym list.

  17. Projects in Technology Education and Fostering Learning: The Potential and Its Realization

    NASA Astrophysics Data System (ADS)

    Barak, Moshe; Shachar, Ahron

    2008-06-01

    The current study aimed at examining the efficacy of technological projects as learning tools by exploring the following questions: the extent to which projects in technology develop students as independent learners; the types of knowledge the students deal with in working on their projects; the role of problem-solving in technological projects; and how projects integrate into traditional schooling. The subjects were 53 high school (12th grade) students who prepared graduating projects in technology under the supervision of nine teachers. Data were collected by observing the students in the laboratory, administrating two questionnaires to both the students and the teachers, and analyzing 25 portfolios prepared by the students of their projects. The findings indicate that projects in technology provide a good opportunity to engage students in challenging tasks that enhance their learning skills. To maximize this potential, it is necessary to employ the project method from the early stages of learning technology. It is especially important that teachers having a strong engineering orientation also acquire pedagogical knowledge on issues such as fostering independent learning, creativity, peer learning and reflective practice in the technological classroom.

  18. MSFC Technology Year in Review 2015

    NASA Technical Reports Server (NTRS)

    Reynolds, David; Tinker, Mike

    2015-01-01

    MSFC has a strong diverse portfolio of technology development projects, ranging from flight projects to very low Technology Readiness Level (TRL) laboratory projects. The 2015 Year in Review highlights the Center's technology projects and celebrates their accomplishments to raise awareness of technology development work that is integral to the success of future Agency flight programs.

  19. Proposed Project Selection Method for Human Support Research and Technology Development (HSR&TD)

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2005-01-01

    The purpose of HSR&TD is to deliver human support technologies to the Exploration Systems Mission Directorate (ESMD) that will be selected for future missions. This requires identifying promising candidate technologies and advancing them in technology readiness until they are acceptable. HSR&TD must select an may of technology development projects, guide them, and either terminate or continue them, so as to maximize the resulting number of usable advanced human support technologies. This paper proposes an effective project scoring methodology to support managing the HSR&TD project portfolio. Researchers strongly disagree as to what are the best technology project selection methods, or even if there are any proven ones. Technology development is risky and outstanding achievements are rare and unpredictable. There is no simple formula for success. Organizations that are satisfied with their project selection approach typically use a mix of financial, strategic, and scoring methods in an open, established, explicit, formal process. This approach helps to build consensus and develop management insight. It encourages better project proposals by clarifying the desired project attributes. We propose a project scoring technique based on a method previously used in a federal laboratory and supported by recent research. Projects are ranked by their perceived relevance, risk, and return - a new 3 R's. Relevance is the degree to which the project objective supports the HSR&TD goal of developing usable advanced human support technologies. Risk is the estimated probability that the project will achieve its specific objective. Return is the reduction in mission life cycle cost obtained if the project is successful. If the project objective technology performs a new function with no current cost, its return is the estimated cash value of performing the new function. The proposed project selection scoring method includes definitions of the criteria, a project evaluation questionnaire, and a scoring formula.

  20. Projecting technology change to improve space technology planning and systems management

    NASA Astrophysics Data System (ADS)

    Walk, Steven Robert

    2011-04-01

    Projecting technology performance evolution has been improving over the years. Reliable quantitative forecasting methods have been developed that project the growth, diffusion, and performance of technology in time, including projecting technology substitutions, saturation levels, and performance improvements. These forecasts can be applied at the early stages of space technology planning to better predict available future technology performance, assure the successful selection of technology, and improve technology systems management strategy. Often what is published as a technology forecast is simply scenario planning, usually made by extrapolating current trends into the future, with perhaps some subjective insight added. Typically, the accuracy of such predictions falls rapidly with distance in time. Quantitative technology forecasting (QTF), on the other hand, includes the study of historic data to identify one of or a combination of several recognized universal technology diffusion or substitution patterns. In the same manner that quantitative models of physical phenomena provide excellent predictions of system behavior, so do QTF models provide reliable technological performance trajectories. In practice, a quantitative technology forecast is completed to ascertain with confidence when the projected performance of a technology or system of technologies will occur. Such projections provide reliable time-referenced information when considering cost and performance trade-offs in maintaining, replacing, or migrating a technology, component, or system. This paper introduces various quantitative technology forecasting techniques and illustrates their practical application in space technology and technology systems management.

  1. Smart Gun Technology project. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, D.R.

    The goal of the Smart Gun Technology project is to eliminate the capability of an unauthorized user form firing a law officer`s firearm by implementing user-recognizing-and-authorizing (or {open_quotes}smart{close_quotes}) surety technologies. This project was funded by the National Institute of Justice. This report lists the findings and results of the project`s three primary objectives. First, to find and document the requirements for a smart firearm technology that law enforcement officers will value. Second, to investigate, evaluate, and prioritize technologies that meet the requirements for a law enforcement officer`s smart firearm. Third, to demonstrate and document the most promising technology`s usefulness inmore » models of a smart firearm.« less

  2. Project inspection using mobile technology - phase II : assessing the impacts of mobile technology on project inspection.

    DOT National Transportation Integrated Search

    2015-01-01

    As mobile technology becomes widely available and affordable, transportation agencies can use this : technology to streamline operations involved within project inspection. This research, conducted in two : phases, identified opportunities for proces...

  3. DLP-based 3D metrology by structured light or projected fringe technology for life sciences and industrial metrology

    NASA Astrophysics Data System (ADS)

    Frankowski, G.; Hainich, R.

    2009-02-01

    Since the mid-eighties, a fundamental idea for achieving measuring accuracy in projected fringe technology was to consider the projected fringe pattern as an interferogram and evaluate it on the basis of advanced algorithms widely used for phase measuring in real-time interferometry. A fundamental requirement for obtaining a sufficiently high degree of measuring accuracy with this so-called "phase measuring projected fringe technology" is that the projected fringes, analogous to interference fringes, must have a cos2-shaped intensity distribution. Until the mid-nineties, this requirement for the projected fringe pattern measurement technology presented a basic handicap for its wide application in 3D metrology. This situation changed abruptly, when in the nineties Texas Instruments introduced to the market advanced digital light projection on the basis of micro mirror based projection systems, socalled DLP technology, which also facilitated the generation and projection of cos2-shaped intensity and/or fringe patterns. With this DLP technology, which from its original approach was actually oriented towards completely different applications such as multimedia projection, Texas Instruments boosted phase-measuring fringe projection in optical 3D metrology to a worldwide breakthrough both for medical as well as industrial applications. A subject matter of the lecture will be to present the fundamental principles and the resulting advantages of optical 3D metrology based on phase-measuring fringe projection using DLP technology. Further will be presented and discussed applications of the measurement technology in medical engineering and industrial metrology.

  4. Ares Project Technology Assessment: Approach and Tools

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; Tyson, Richard

    2010-01-01

    Technology assessments provide a status of the development maturity of specific technologies. Along with benefit analysis, the risks the project assumes can be quantified. Normally due to budget constraints, the competing technologies are prioritized and decisions are made which ones to fund. A detailed technology development plan is produced for the selected technologies to provide a roadmap to reach the desired maturity by the project s critical design review. Technology assessments can be conducted for both technology only tasks or for product development programs. This paper is primarily biased toward the product development programs. The paper discusses the Ares Project s approach to technology assessment. System benefit analysis, risk assessment, technology prioritization, and technology readiness assessment are addressed. A description of the technology readiness level tool being used is provided.

  5. Construction Project Performance Improvement through Radio Frequency Identification Technology Application on a Project Supply Chain

    ERIC Educational Resources Information Center

    Wang, Heng

    2017-01-01

    Construction project productivity typically lags other industries and it has been the focus of numerous studies in order to improve the project performance. This research investigated the application of Radio Frequency Identification (RFID) technology on construction projects' supply chain and determined that RFID technology can improve the…

  6. The Columbia River Protection Supplemental Technologies Quality Assurance Project Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fix, N. J.

    Pacific Northwest National Laboratory researchers are working on the Columbia River Protection Supplemental Technologies Project. This project is a U. S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies, and technologies for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Technologies Project staff.

  7. REMEDIATION TECHNOLOGY EVALUATION AT THE GILT EDGE MINE, SOUTH DAKOTA

    EPA Science Inventory

    This document reports the findings of the Mine Waste Technology Program's Activity III, Project 29,The Remediation Technology Evaluation Project at the Gilt Edge Mine, S.D. This project consisted of evaluating three emerging acidic waste rock stabilization technologies and compar...

  8. Comparing Efficiency Projections (released in AEO2010)

    EIA Publications

    2010-01-01

    Realized improvements in energy efficiency generally rely on a combination of technology and economics. The figure below illustrates the role of technology assumptions in the Annual Energy Outlook 2010 projections for energy efficiency in the residential and commercial buildings sector. Projected energy consumption in the Reference case is compared with projections in the Best Available Technology, High Technology, and 2009 Technology cases and an estimate based on an assumption of no change in efficiency for building shells and equipment.

  9. Exploring the Relationship between Authentic Leadership and Project Outcomes and Job Satisfaction with Information Technology Professionals

    ERIC Educational Resources Information Center

    Fischer, Mark A.

    2014-01-01

    One of the most important issues for organizations and information technology (IT) professionals is measuring the success or failure of information technology projects. How we understand the value and usefulness of IT projects is critical to how information technology executives evaluate and decide on technology investments. In a 2009 CHAOS…

  10. Composite Technology for Exploration

    NASA Technical Reports Server (NTRS)

    Fikes, John

    2017-01-01

    The CTE (Composite Technology for Exploration) Project will develop and demonstrate critical composites technologies with a focus on joints that utilize NASA expertise and capabilities. The project will advance composite technologies providing lightweight structures to support future NASA exploration missions. The CTE project will demonstrate weight-saving, performance-enhancing bonded joint technology for Space Launch System (SLS)-scale composite hardware.

  11. Industrial Technology Modernization Program. Project 28. Automation of Receiving, Receiving Inspection and Stores

    DTIC Science & Technology

    1987-06-15

    001 GENERAL DYNAMICS 00 FORT WORTH DIVISION INDUSTRIAL TECHNOLOGY MODERNIZATION PROGRAM Phase 2 Final Project Repc t JUNG 0 ?7 PROJECT 28 AUTOMATION...DYNAMICS FORT WORTH DIVISION INDUSTRIAL TECHNOLOGY MODERNIZATION PROGRAM Phase 2 Final Project Report PROJECT 28 AUTOMATION OF RECEIVING, RECEIVING...13 6 PROJECT ASSUMPTIONS 20 7 PRELIMINARY/FINAL DESIGN AND FINDINGS 21 8 SYSTEM/EQUIPMENT/MACHINING SPECIFICATIONS 37 9 VENDOR/ INDUSTRY ANALYSIS

  12. Space Technology for Rural Education; Brazil Experiment. Project SACI.

    ERIC Educational Resources Information Center

    Cusack, Mary Ann

    An eight-year project--Project SACI--begun in 1969 is introducing technology into Brazil's educational system. It is based upon the hypotheses that technology can deliver education to more students, increase achievement, and provide cost-effective teacher education. To rest these hypotheses, Project SACI aims to bring satellite transmission of…

  13. Research on the application of BIM technology in the whole life cycle of construction projects

    NASA Astrophysics Data System (ADS)

    Chang-liu, CHEN; Wei-wei, KOU; Shuai-hua, YE

    2018-05-01

    BIM technology can realize information sharing, and good BIM application will reduce the whole life cycle cost of construction projects. The popularization of BIM technology challenges the application of BIM technology at all stages of the whole life cycle of the construction project. It will give full play to the value of BIM, if developing a reasonable BIM project execution plan, defining BIM requirements, specifying Level of Development, determining the BIM quality control plan and clearing BIM application content of each stage, and will provide a unified method for project stakeholders, realize the whole life cycle of construction projects, and achieve the desired information sharing in construction project.

  14. Technology transfer for adaptation

    NASA Astrophysics Data System (ADS)

    Biagini, Bonizella; Kuhl, Laura; Gallagher, Kelly Sims; Ortiz, Claudia

    2014-09-01

    Technology alone will not be able to solve adaptation challenges, but it is likely to play an important role. As a result of the role of technology in adaptation and the importance of international collaboration for climate change, technology transfer for adaptation is a critical but understudied issue. Through an analysis of Global Environment Facility-managed adaptation projects, we find there is significantly more technology transfer occurring in adaptation projects than might be expected given the pessimistic rhetoric surrounding technology transfer for adaptation. Most projects focused on demonstration and early deployment/niche formation for existing technologies rather than earlier stages of innovation, which is understandable considering the pilot nature of the projects. Key challenges for the transfer process, including technology selection and appropriateness under climate change, markets and access to technology, and diffusion strategies are discussed in more detail.

  15. Software Engineering Research/Developer Collaborations in 2004 (C104)

    NASA Technical Reports Server (NTRS)

    Pressburger, Tom; Markosian, Lawrance

    2005-01-01

    In 2004, six collaborations between software engineering technology providers and NASA software development personnel deployed a total of five software engineering technologies (for references, see Section 7.2) on the NASA projects. The main purposes were to benefit the projects, infuse the technologies if beneficial into NASA, and give feedback to the technology providers to improve the technologies. Each collaboration project produced a final report (for references, see Section 7.1). Section 2 of this report summarizes each project, drawing from the final reports and communications with the software developers and technology providers. Section 3 indicates paths to further infusion of the technologies into NASA practice. Section 4 summarizes some technology transfer lessons learned. Section 6 lists the acronyms used in this report.

  16. Technology Infusion Strategy: Beginning with a Pilot Project is the Key.

    ERIC Educational Resources Information Center

    Ball, John

    1996-01-01

    Presents an effective way to start a technological revolution in schools by beginning with a single exciting project that incorporates new technologies and then letting interest in the project prompt others to action. (JRH)

  17. Users speak out on technology deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, Mark; Prochaska, Marty; Cromer, Paul

    2001-02-25

    This report summarizes user feedback data collected during a recent Accelerated Site Technology Deployment (ASTD) project: the Fluor Fernald ASTD Technology Deployment Project from May, 1999 through September, 2000. The main goal of the ASTD project was to use the ''Fernald approach'' to expedite the deployment of new or innovative technologies with superior safety, cost, and/or productivity benefits to Department of Energy (DOE) facilities. The Fernald approach targets technology end-users and their managers and directly involves them with hands-on demonstrations of new or innovative technologies during technology transfer sessions. The two technologies deployed through this project were the Personal Icemore » Cooling System (PICS) and the oxy-gasoline torch. Participants of technology transfer sessions were requested to complete feedback surveys. Surveys evaluated the effectiveness of the Fernald approach to technology deployment and assessed the responsiveness of employees to new technologies. This report presents the results of those surveys.« less

  18. Technology Base Research Project for electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Kinoshita, K.

    1985-06-01

    The DOE Electrochemical Energy Storage Program is divided into two projects: (1) the exploratory technology development and testing (ETD) project and (2) the technology base research (TBR) project. The role of the TBR Project is to perform supporting research for the advanced battery systems under development by the ETD Project, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the TBR Project is to identify the most promising electrochemical technologies and transfer them to industry and/or the ETD Project for further development and scale-up. This report summarizes the research, financial, and management activities relevant to the TBR Project in CY 1984. General problem areas addressed by the project include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the assessment of fuel-cell technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The TBR Project is divided into three major project elements: exploratory research, applied science research, and air systems research.

  19. Project Trans(m)it: Creating Dance Collaboratively via Technology--A Best Practices Overview

    ERIC Educational Resources Information Center

    Weber, Rebecca; Mizanty, Megan; Allen, Lora

    2017-01-01

    Project Trans(m)it is a collaborative research project among a cohort of intercontinental artists exploring dance creation via technological platforms. This paper seeks to disseminate our practice-led research findings on "best practices" for transferring embodied information via technology, as well as posit how technology will shape and…

  20. Top Level Summary of Technologies

    NASA Technical Reports Server (NTRS)

    Craig, Douglas, A.

    2009-01-01

    This document is a chart that reviews the technology of various NASA projects. Included in the chart is the title, a brief description of the technology, the funding status, a statement of the benefits, the date required, how the element connects to the Constellation project architecture, and how critical the technology is to the Constellation project.

  1. Workplace Factors That Shape Information Technology Project Success

    ERIC Educational Resources Information Center

    Nguyen, Dan Schilling

    2013-01-01

    Information technology (IT) project success depends on having a project manager with effective decision making, leadership, and project management skills. Project success also depends on completing the project in a given budget, time, and scope. Despite these critical qualities of a successful project manager, little research has explored the…

  2. Research review for information management

    NASA Technical Reports Server (NTRS)

    Bishop, Peter C.

    1988-01-01

    The goal of RICIS research in information management is to apply currently available technology to existing problems in information management. Research projects include the following: the Space Business Research Center (SBRC), the Management Information and Decision Support Environment (MIDSE), and the investigation of visual interface technology. Several additional projects issued reports. New projects include the following: (1) the AdaNET project to develop a technology transfer network for software engineering and the Ada programming language; and (2) work on designing a communication system for the Space Station Project Office at JSC. The central aim of all projects is to use information technology to help people work more productively.

  3. Technology base research project for electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Kinoshita, Kim

    1988-07-01

    The progress made by the technology base research (TBR) project for electrochemical energy storage during calendar year 1987 was summarized. The primary objective of the TBR Project, which is sponsored by the Department of Energy (DOE) and managed by Lawrence Berkeley Laboratory (LBL), is to identify electrochemical technologies that can satisfy stringent performance and economic requirements for electric vehicles and stationary energy storage applications. The ultimate goal is to transfer the most promising electrochemical technologies to the private sector or to another DOE project (e.g., Sandia National Laboratories' Exploratory Technology Development and Testing Project) for further development and scale-up. Besides LBL, which has overall responsibility for the TBR Project, Los Alamos National Laboratory (LANL), Brookhaven National Laboratory (BNL) and Argonne National Laboratory (ANL) participate in the TBR Project by providing key research support in several of the project elements. The TBR Project consists of three major project elements: exploratory research; applied science research; and air systems research. The objectives and the specific battery and electrochemical systems addressed by each project element are discussed in the following sections, which also include technical summaries that relate to the individual projects. Financial information that relates to the various projects and a description of the management activities for the TBR Project are described in the Executive Summary.

  4. High-Tech Opens Doors.

    ERIC Educational Resources Information Center

    Eichleay, Kristen; Pressman, Harvey

    1987-01-01

    Exemplary projects which help disabled people use technology (particularly computers) expand their employment opportunities include: Project Entry (Seattle); Georgia Computer Programmer Project (Atlanta); Perkins Project with Industry (Watertown, Massachusetts); Project Byte (Newton Massachusetts); Technology Relevant to You (St. Louis); Special…

  5. Present situation and trend of precision guidance technology and its intelligence

    NASA Astrophysics Data System (ADS)

    Shang, Zhengguo; Liu, Tiandong

    2017-11-01

    This paper first introduces the basic concepts of precision guidance technology and artificial intelligence technology. Then gives a brief introduction of intelligent precision guidance technology, and with the help of development of intelligent weapon based on deep learning project in foreign: LRASM missile project, TRACE project, and BLADE project, this paper gives an overview of the current foreign precision guidance technology. Finally, the future development trend of intelligent precision guidance technology is summarized, mainly concentrated in the multi objectives, intelligent classification, weak target detection and recognition, intelligent between complex environment intelligent jamming and multi-source, multi missile cooperative fighting and other aspects.

  6. 25 CFR 700.465 - Technical feasibility.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... construction, technology, or another engineering project, however, an application for a construction, technology or another engineering project shall: (a) Include sufficient information to determine the nature... construction, technology, or other engineering project prior to construction. The Commission shall review the...

  7. 25 CFR 700.465 - Technical feasibility.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... construction, technology, or another engineering project, however, an application for a construction, technology or another engineering project shall: (a) Include sufficient information to determine the nature... construction, technology, or other engineering project prior to construction. The Commission shall review the...

  8. 25 CFR 700.465 - Technical feasibility.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... construction, technology, or another engineering project, however, an application for a construction, technology or another engineering project shall: (a) Include sufficient information to determine the nature... construction, technology, or other engineering project prior to construction. The Commission shall review the...

  9. 25 CFR 700.465 - Technical feasibility.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... construction, technology, or another engineering project, however, an application for a construction, technology or another engineering project shall: (a) Include sufficient information to determine the nature... construction, technology, or other engineering project prior to construction. The Commission shall review the...

  10. 25 CFR 700.465 - Technical feasibility.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... construction, technology, or another engineering project, however, an application for a construction, technology or another engineering project shall: (a) Include sufficient information to determine the nature... construction, technology, or other engineering project prior to construction. The Commission shall review the...

  11. Collaborative project-based learning: an integrative science and technological education project

    NASA Astrophysics Data System (ADS)

    Baser, Derya; Ozden, M. Yasar; Karaarslan, Hasan

    2017-04-01

    Background: Blending collaborative learning and project-based learning (PBL) based on Wolff (2003) design categories, students interacted in a learning environment where they developed their technology integration practices as well as their technological and collaborative skills.

  12. Crew Office Evaluation of a Precision Lunar Landing System

    NASA Technical Reports Server (NTRS)

    Major, Laura M.; Duda, Kevin R.; Hirsh, Robert L.

    2011-01-01

    A representative Human System Interface for a precision lunar landing system, ALHAT, has been developed as a platform for prototype visualization and interaction concepts. This facilitates analysis of crew interaction with advanced sensors and AGNC systems. Human-in-the-loop evaluations with representatives from the Crew Office (i.e. astronauts) and Mission Operations Directorate (MOD) were performed to refine the crew role and information requirements during the final phases of landing. The results include a number of lessons learned from Shuttle that are applicable to the design of a human supervisory landing system and cockpit. Overall, the results provide a first order analysis of the tasks the crew will perform during lunar landing, an architecture for the Human System Interface based on these tasks, as well as details on the information needs to land safely.

  13. The Columbia River Protection Supplemental Technologies Quality Assurance Project Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fix, N. J.

    The U.S. Department of Energy (DOE) has conducted interim groundwater remedial activities on the Hanford Site since the mid-1990s for several groundwater contamination plumes. DOE established the Columbia River Protection Supplemental Technologies Project (Technologies Project) in 2006 to evaluate alternative treatment technologies. The objectives for the technology project are as follows: develop a 300 Area polyphosphate treatability test to immobilize uranium, design and test infiltration of a phosphate/apatite technology for Sr-90 at 100-N, perform carbon tetrachloride and chloroform attenuation parameter studies, perform vadose zone chromium characterization and geochemistry studies, perform in situ biostimulation of chromium studies for a reducing barriermore » at 100-D, and perform a treatability test for phytoremediation for Sr-90 at 100-N. This document provides the quality assurance guidelines that will be followed by the Technologies Project. This Quality Assurance Project Plan is based on the quality assurance requirements of DOE Order 414.1C, Quality Assurance, and 10 CFR 830, Subpart A--Quality Assurance Requirements as delineated in Pacific Northwest National Laboratory’s Standards-Based Management System. In addition, the technology project is subject to the Environmental Protection Agency (EPA) Requirements for Quality Assurance Project Plans (EPA/240/B-01/003, QA/R-5). The Hanford Analytical Services Quality Assurance Requirements Documents (HASQARD, DOE/RL-96-68) apply to portions of this project and to the subcontractors. HASQARD requirements are discussed within applicable sections of this plan.« less

  14. Developing a decision support system for R&D project portfolio selection with interdependencies

    NASA Astrophysics Data System (ADS)

    Ashrafi, Maryam; Davoudpour, Hamid; Abbassi, Mohammad

    2012-11-01

    Although investment in research and technology is a promising tool for technology centered organizations through obtaining their objectives, resource constraints make organizations select between their pool of research and technology projects through means of R&D project portfolio selection techniques mitigating corresponding risks and enhancing the overall value of project portfolio.

  15. Delivering Core Engineering Concepts to Secondary Level Students. Research in Engineering and Technology Education

    ERIC Educational Resources Information Center

    Merrill, Chris; Custer, Rodney L.; Daugherty, Jenny; Westrick, Martin; Zeng, Yong

    2007-01-01

    Within primary and secondary school technology education, engineering has been proposed as an avenue to bring about technological literacy. Different initiatives such as curriculum development projects (i.e., Project ProBase and Project Lead The Way) and National Science Foundation funded projects such as the National Center for Engineering and…

  16. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Aeronautics Research Mission Directorate Programs and Projects for 2015

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research/Small Business Technology Transfer (SBIR)/(STTR) technologies into NASA Aeronautics Research Mission Directorate (ARMD) projects. Other Government and commercial projects managers can also find this useful.

  17. Space Transportation Technology Workshop: Propulsion Research and Technology

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This viewgraph presentation gives an overview of the Space Transportation Technology Workshop topics, including Propulsion Research and Technology (PR&T) project level organization, FY 2001 - 2006 project roadmap, points of contact, foundation technologies, auxiliary propulsion technology, PR&T Low Cost Turbo Rocket, and PR&T advanced reusable technologies RBCC test bed.

  18. Design as a Focus for Technology Integration: Lessons Learned from a PT3 Project

    ERIC Educational Resources Information Center

    Nelson, Wayne A.; Thomeczek, Melissa

    2007-01-01

    Plugging in to L.I.T.E.S. project (Leaders in Technology Enhanced Schools--a previously funded Technology Innovation Challenge grant project) at Southern Illinois University Edwardsville (SIUE) has been very successful in its attempts to enhance the technology integration skills of teacher education students, and to improve the capabilities of our…

  19. Geothermal Project Consulting | Geothermal Technologies | NREL

    Science.gov Websites

    Geothermal Project Consulting Geothermal Project Consulting When consulting on projects, NREL focuses on identifying specific barriers or challenges that are likely to impact geothermal project , validation, and deployment of geothermal technologies Assess and evaluate geothermal R&D projects

  20. Develop Improved Materials to Support the Hydrogen Economy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Michael C. Martin

    The Edison Materials Technology Center (EMTEC) solicited and funded hydrogen infrastructure related projects that have a near term potential for commercialization. The subject technology of each project is related to the US Department of Energy hydrogen economy goals as outlined in the multi-year plan titled, 'Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan.' Preference was given to cross cutting materials development projects that might lead to the establishment of manufacturing capability and job creation. The Edison Materials Technology Center (EMTEC) used the US Department of Energy hydrogen economy goals to find and fund projects withmore » near term commercialization potential. An RFP process aligned with this plan required performance based objectives with go/no-go technology based milestones. Protocols established for this program consisted of a RFP solicitation process, white papers and proposals with peer technology and commercialization review (including DoE), EMTEC project negotiation and definition and DoE cost share approval. Our RFP approach specified proposals/projects for hydrogen production, hydrogen storage or hydrogen infrastructure processing which may include sensor, separator, compression, maintenance, or delivery technologies. EMTEC was especially alert for projects in the appropriate subject area that have cross cutting materials technology with near term manufacturing and commercialization opportunities.« less

  1. 7 CFR 2.37 - Chief Information Officer.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... technology program or project. (3) Providing advice and other assistance to the Secretary and other senior... selection of agency Chief Information Officers and agency major information technology system project... recommendations to Agency Heads for the removal or replacement of information technology project managers, when...

  2. Technology Projects for the Classroom [and] Teacher's Guide.

    ERIC Educational Resources Information Center

    Kaufman, Allan; Flowers, Jim

    This book presents 20 projects for technology education students. The emphasis is on problem solving and hands-on learning through projects dealing with a wide variety of technologies/industries, including the following: robotics, information storage and retrieval, communications, transportation, electronics, manufacturing, construction, materials…

  3. Influences of Government Championship on the Technology Innovation Process at the Project-level

    NASA Astrophysics Data System (ADS)

    Yue, Xin

    Government support is a popular instrument to foster technology innovation. It can take various forms such as financial aid, tax credits, and technological assistance. Along with the firm characteristics, strategic behavior of the project team, characteristics of the technology and the market, and the regulatory environment, government support influences firms' research and development (R&D) motivations, decision making process, and hence technology development performance. How government support influences the performance in different industries is an important policy and research question. There are many studies on the effectiveness and impacts of government support, mostly at program-level or industry-level. Government Championship is a form of government support distinct from direct financial or technological assistance. Championship includes expressing confidence in the innovation, encouraging others to support the innovation, and persisting under adversity. Championship has been studied as a critical inside factor for innovation success, particularly at project-level. Usually a champion emerged within the organization responsible for the innovation project. However, with the intention to encourage technology development, governments can also play a championship role. Government championship, besides government financial and technological assistance (hereafter "government F&T"), could be one major category of government support to facilitate high-technology innovation. However, there are few studies focusing on the effectiveness of government championship, and how it influences the innovation process. This thesis addresses this question through two studies on high-technology development projects. The first study has tested the effectiveness of government championship on the performance of 431 government sponsored technology innovation projects. Government championship and government F&T, as well as project team strategic behavior, are hypothesized to influence the technology innovation performance. The team strategy has two dimensions in this model: pro-activeness and defensiveness, which indicate the emphasis of the team on exploiting new opportunities, and enhancing the current methods, respectively. A survey was administered to the project managers of li-ion battery projects in the United States. After data was collected, factor analysis and regression were used to test hypotheses. The results suggest that both government championship and government F&T are positive factors in technology innovation performance, while strategic behaviors are positive and more significant. The results also suggest a strong correlation between government support (both championship and F&T assistance) and the R&D team strategy, which means government intervention and team strategic behavior could affect each other. To understand how the government champions and the project team impact each other during the project, the second study employed a single in-depth case study, investigating the Shenhua Direct-Coal-Liquefaction (DCL) Project. A variety of government championship behaviors have been identified, and their situation and impacts on the project performance and outcome were analyzed. This case is a good start to accumulate information and observations for a better understanding of the influences of government championship in technology innovation. These two studies will help increase understanding of how government championship behaviors influence the process, the project performance, and the outcome of technology innovation, particularly in high-technology industries.

  4. Factors that Impact Software Project Success in Offshore Information Technology (IT) Companies

    ERIC Educational Resources Information Center

    Edara, Venkatarao

    2011-01-01

    Information technology (IT) projects are unsuccessful at a rate of 65% to 75% per year, in spite of employing the latest technologies and training employees. Although many studies have been conducted on project successes in U.S. companies, there is a lack of research studying the impact of various factors on software project success in offshore IT…

  5. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Science Mission Directorate Projects at Glenn Research Center for 2015

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    This report is intended to help NASA program and project managers incorporate Glenn ResearchCenter Small Business Innovation Research/Small Business Technology Transfer (SBIR)/(STTR)technologies into NASA Science Mission Directorate (SMD) programs/projects. Other Government and commercial project managers can also find this useful.

  6. Nuclear rocket propulsion technology - A joint NASA/DOE project

    NASA Technical Reports Server (NTRS)

    Clark, John S.

    1991-01-01

    NASA and the DOE have initiated critical technology development for nuclear rocket propulsion systems for SEI human and robotic missions to the moon and to Mars. The activities and project plan of the interagency project planning team in FY 1990 and 1991 are summarized. The project plan includes evolutionary technology development for both nuclear thermal and nuclear electric propulsion systems.

  7. The Learning Process and Technological Change in Wind Power: Evidence from China's CDM Wind Projects

    ERIC Educational Resources Information Center

    Tang, Tian; Popp, David

    2016-01-01

    The Clean Development Mechanism (CDM) is a project-based carbon trade mechanism that subsidizes the users of climate-friendly technologies and encourages technology transfer. The CDM has provided financial support for a large share of Chinese wind projects since 2002. Using pooled cross-sectional data of 486 registered CDM wind projects in China…

  8. Initiating the 2002 Mars Science Laboratory (MSL) Technology Program

    NASA Technical Reports Server (NTRS)

    Caffrey, Robert T.; Udomkesmalee, Gabriel; Hayati, Samad A.; Henderson, Rebecca

    2004-01-01

    The Mars Science Laboratory (MSL) Project is an aggressive mission launching in 2009 to investigate the Martian environment and requires new capabilities that are currently are not available. The MSL Technology Program is developing a wide-range of technologies needed for this Mission and potentially other space missions. The MSL Technology Program reports to both the MSL Project and the Mars Technology Program (MTP). The dual reporting process creates a challenging management situation, but ensures the new technology meets both the specific MSL requirements and the broader Mars Program requirements. MTP is a NASA-wide technology development program managed by JPL and is divided into a Focused Program and a Base Program. The MSL Technology Program is under the focused program and is tightly coupled to MSL's mission milestones and deliverables. The technology budget is separate from the flight Project budget, but the technology's requirements and the development process are tightly coordinated with the Project. The MSL Technology Program combines the proven management techniques of flight projects with the commercial technology management strategies of industry and academia, to create a technology management program that meets the short-term requirements of MSL and the long-term requirements of MTP. This paper examines the initiation of 2002 MSL Technology program. Some of the areas discussed in this paper include technology definition, task selection, technology management, and technology assessment. This paper also provides an update of the 2003 MSL technology program and examines some of the drivers that changed the program from its initiation.

  9. 14 CFR 1216.305 - Criteria for actions requiring environmental assessments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... spacecraft development and flight projects in space and terrestrial applications. (3) Specific experimental projects in aeronautics and space technology and energy technology applications. (4) Development and... technology applications (e.g., Research and Technology Base, Systems Technology Programs) other than...

  10. Airframe Research and Technology for Hypersonic Airbreathing Vehicles

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Merski, N. Ronald; Glass, Christopher E.

    2002-01-01

    The Hypersonics Investment Area (HIA) within NASA's Advanced Space Transportation Program (ASTP) has the responsibility to develop hypersonic airbreathing vehicles for access to space. The Airframe Research and Technology (AR and T) Project, as one of six projects in the HIA, will push the state-of-the-art in airframe and vehicle systems for low-cost, reliable, and safe space transportation. The individual technologies within the project are focused on advanced, breakthrough technologies in airframe and vehicle systems and cross-cutting activities that are the basis for improvements in these disciplines. Both low and medium technology readiness level (TRL) activities are being pursued. The key technical areas that will be addressed by the project include analysis and design tools, integrated vehicle health management (IVHM), composite (polymer, metal, and ceramic matrix) materials development, thermal/structural wall concepts, thermal protection systems, seals, leading edges, aerothermodynamics, and airframe/propulsion flowpath technology. Each of the technical areas or sub-projects within the Airframe R and T Project is described in this paper.

  11. Aeronautical technology 2000: A projection of advanced vehicle concepts

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Aeronautics and Space Engineering Board (ASEB) of the National Research Council conducted a Workshop on Aeronautical Technology: a Projection to the Year 2000 (Aerotech 2000 Workshop). The panels were asked to project advances in aeronautical technologies that could be available by the year 2000. As the workshop was drawing to a close, it became evident that a more comprehensive investigation of advanced air vehicle concepts than was possible in the limited time available at the workshop would be valuable. Thus, a special panel on vehicle applications was organized. In the course of two meetings, the panel identified and described representative types of aircraft judged possible with the workshop's technology projections. These representative aircraft types include: military aircraft; transport aircraft; rotorcraft; extremely high altitude aircraft; and transatmospheric aircraft. Improvements in performance, efficiency, and operational characteristics possible through the application of the workshop's year 2000 technology projections were discussed. The subgroups also identified the technologies considered essential and enhancing or supporting to achieve the projected aircraft improvements.

  12. Changing Technology and Work: Northern Telecom. CAW Technology Project.

    ERIC Educational Resources Information Center

    Robertson, David; Wareham, Jeff

    A project to examine the implications of technological change at Northern Telecom consisted of two major components: a technological survey and case study research. A questionnaire that contained more than 90 questions on technological change was distributed through local union technology committee meetings in Brampton, London, Belleville, and…

  13. The development and technology transfer of software engineering technology at NASA. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Pitman, C. L.; Erb, D. M.; Izygon, M. E.; Fridge, E. M., III; Roush, G. B.; Braley, D. M.; Savely, R. T.

    1992-01-01

    The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described.

  14. Assessing the Relationship between Ethical Project Management and Information Technology Project Success

    ERIC Educational Resources Information Center

    Howell, Byron Winter

    2010-01-01

    The purpose of this quantitative study was to assess the relationship between ethical project management and information technology (IT) project success. The success of IT projects is important for organizational success, but the rate of IT projects is historically low, costing billions of dollars annually. Using four key ethical variables…

  15. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Human Exploration and Operations Mission Directorate Projects at Glenn Research Center for 2015

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    This report is intended to help NASA program and project managers incorporate Glenn Research Center Small Business Innovation Research/Small Business Technology Transfer (SBIR)/(STTR) technologies into NASA Human Exploration and Operations Mission Directorate (HEOMD) programs and projects. Other Government and commercial project managers can also find this useful. Introduction Incorporating Small Business Innovation Research (SBIR)-developed technology into NASA projects is important, especially given the Agency's limited resources for technology development. The SBIR program's original intention was for technologies that had completed Phase II to be ready for integration into NASA programs, however, in many cases there is a gap between Technology Readiness Levels (TRLs) 5 and 6 that needs to be closed. After SBIR Phase II projects are completed, the technology is evaluated against various parameters and a TRL rating is assigned. Most programs tend to adopt more mature technologies-at least TRL 6 to reduce the risk to the mission rather than adopt TRLs between 3 and 5 because those technologies are perceived as too risky. The gap between TRLs 5 and 6 is often called the "Valley of Death" (Figure 1), and historically it has been difficult to close because of a lack of funding support from programs. Several papers have already suggested remedies on how to close the gap (Refs. 1 to 4).

  16. Smart and intelligent sensor payload project

    NASA Image and Video Library

    2009-04-01

    Engineers working on the smart and intelligent sensor payload project include (l to r): Ed Conley (NASA), Mark Mitchell (Jacobs Technology), Luke Richards (NASA), Robert Drackett (Jacobs Technology), Mark Turowski (Jacobs Technology) , Richard Franzl (seated, Jacobs Technology), Greg McVay (Jacobs Technology), Brianne Guillot (Jacobs Technology), Jon Morris (Jacobs Technology), Stephen Rawls (NASA), John Schmalzel (NASA) and Andrew Bracey (NASA).

  17. Development of sanitation technologies in African context : how could we make it more sustainable?

    NASA Astrophysics Data System (ADS)

    Dakouré, M. S.; Traoré, M. B.; Sossou, S. K.; Maïga, A. H.

    2017-03-01

    Access to sanitation technologies remains one of the biggest challenges in sub-Saharan Africa. To overcome this gap, a sanitation project called “Ameli-EAUR” translated from French as improvement of water and sanitation in urban and rural areas, was implemented in Burkina Faso for 5 years (2010-2016). The technologies from the project were designed on the basis of agro-sanitation concept, leading to package containing a composting toilet, a grey water treatment facility and a set of urine collection and treatment. The study aimed to evaluate of Ameli-EAUR project, one year after the end, and identify some key factors of sustainability of technologies. As methodology, a survey and a technical diagnostic of implemented technologies were done. The results showed that, the pilot families stopped using all the technologies one year after the end of the project. However, two main lessons can be learnt: (1) in term of efficiency and effectiveness of the project the technology of composting toilet was not robust enough, leading to a rapid abandonment after the project (2) in term of impact and sustainability, the economic incentive of the resource oriented sanitation concept was very weak compared to the needed workload. The technologies development in this kind of project should be carried on and associated with a more inclusive system driven by economic incentive.

  18. A Correlational Study Assessing the Relationships among Information Technology Project Complexity, Project Complication, and Project Success

    ERIC Educational Resources Information Center

    Williamson, David J.

    2011-01-01

    The specific problem addressed in this study was the low success rate of information technology (IT) projects in the U.S. Due to the abstract nature and inherent complexity of software development, IT projects are among the most complex projects encountered. Most existing schools of project management theory are based on the rational systems…

  19. Clean Coal Technology Demonstration Program: Program Update 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assistant Secretary for Fossil Energy

    1999-03-01

    Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  20. Wireless Technology in the Library: The RIT Experience: Overview of the Project.

    ERIC Educational Resources Information Center

    Pitkin, Pat

    2001-01-01

    Provides an overview of a project at RIT (Rochester Institute of Technology) that experimented with wireless technology, including laptop computers that circulate within the library building. Discusses project requirements, including ease of use, low maintenance, and low cost; motivation, including mobility; implementation; and benefits to the…

  1. An Examination of the Determinants of Top Management Support of Information Technology Projects

    ERIC Educational Resources Information Center

    Mahoney, Michael L.

    2011-01-01

    Despite compelling evidence that top management support promotes information technology project success, existing research fails to offer insight into the antecedents of top management support of such projects. This gap in the literature is significant since the exploitation of information technology offers organizations unique opportunities for…

  2. The Early Childhood Interactive Technology Literacy Curriculum Project: A Final Report.

    ERIC Educational Resources Information Center

    Hutinger, Patricia; Robinsosn, Linda; Schneider, Carol; Johanson, Joyce

    This final report describes the activities and outcomes of the Interactive Technology Literacy Curriculum (ITLC) project. This federally funded 5-year model demonstration project was designed to advance the availability, quality, use and effectiveness of computer technology in addressing the acquisition of emergent literacy among young children…

  3. Collaborative Project-Based Learning: An Integrative Science and Technological Education Project

    ERIC Educational Resources Information Center

    Baser, Derya; Ozden, M. Yasar; Karaarslan, Hasan

    2017-01-01

    Background: Blending collaborative learning and project-based learning (PBL) based on Wolff (2003) design categories, students interacted in a learning environment where they developed their technology integration practices as well as their technological and collaborative skills. Purpose: The study aims to understand how seventh grade students…

  4. FY2017 Electrification Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    During fiscal year 2017 (FY 2017), the U.S. Department of Energy (DOE) Vehicle Technologies Office (VTO) funded early stage research & development (R&D) projects that address Batteries and Electrification of the U.S. transportation sector. The VTO Electrification Sub-Program is composed of Electric Drive Technologies, and Grid Integration activities. The Electric Drive Technologies group conducts R&D projects that advance Electric Motors and Power Electronics technologies. The Grid and Charging Infrastructure group conducts R&D projects that advance Grid Modernization and Electric Vehicle Charging technologies. This document presents a brief overview of the Electrification Sub-Program and progress reports for its R&D projects. Eachmore » of the progress reports provide a project overview and highlights of the technical results that were accomplished in FY 2017.« less

  5. Advanced Refrigerator/Freezer Technology Development. Technology Assessment

    NASA Technical Reports Server (NTRS)

    Gaseor, Thomas; Hunter, Rick; Hamill, Doris

    1996-01-01

    The NASA Lewis Research Center, through contract with Oceaneering Space Systems, is engaged in a project to develop advanced refrigerator/freezer (R/F) technologies for future Life and Biomedical Sciences space flight missions. The first phase of this project, a technology assessment, has been completed to identify the advanced R/F technologies needed and best suited to meet the requirements for the five R/F classifications specified by Life and Biomedical Science researchers. Additional objectives of the technology assessment were to rank those technologies based on benefit and risk, and to recommend technology development activities that can be accomplished within this project. This report presents the basis, the methodology, and results of the R/F technology assessment, along with technology development recommendations.

  6. Advanced structures technology and aircraft safety

    NASA Technical Reports Server (NTRS)

    Mccomb, H. G., Jr.

    1983-01-01

    NASA research and development on advanced aeronautical structures technology related to flight safety is reviewed. The effort is categorized as research in the technology base and projects sponsored by the Aircraft Energy Efficiency (ACEE) Project Office. Base technology research includes mechanics of composite structures, crash dynamics, and landing dynamics. The ACEE projects involve development and fabrication of selected composite structural components for existing commercial transport aircraft. Technology emanating from this research is intended to result in airframe structures with improved efficiency and safety.

  7. Pilot Field Demonstration of Alternative Fuels in Force Projection Petroleum and Water Distribution Equipment

    DTIC Science & Technology

    2014-09-04

    They included two Force Projection Technology (FPT) diesel driven pumping assemblies of 350 and 600 gallons per minute (GPM), and the Advanced...Army Tank Automotive Research Development and Engineering Center (TARDEC). They included two Force Projection Technology (FPT) diesel driven...research programs. The first two systems identified were Force Projection Technology (FPT) diesel -driven pumping assemblies of 350 and 600 gallons per

  8. Hydrogen tomorrow: Demands and technology requirements

    NASA Technical Reports Server (NTRS)

    1975-01-01

    National needs for hydrogen are projected and the technologies of production, handling, and utilization are evaluated. Research and technology activities required to meet the projected needs are determined.

  9. 7 CFR 2.24 - Assistant Secretary for Administration.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... determining whether to continue, modify, or terminate an information technology program or project. (iii..., computer conferencing, televideo technologies, and other applications of office automation technology which... information technology system project managers in accordance with OMB policies. (D) Providing recommendations...

  10. SELENIUM TREATMENT/REMOVAL ALTERNATIVES DEMONSTRATION PROJECT - MINE WASTE TECHNOLOGY PROGRAM ACTIVITY III, PROJECT 20

    EPA Science Inventory

    This document is the final report for EPA's Mine WAste Technology Program (MWTP) Activity III, Project 20--Selenium Treatment/Removal Alternatives Demonstration project. Selenium contamination originates from many sources including mining operations, mineral processing, abandoned...

  11. Advanced Development Projects for Constellation From The Next Generation Launch Technology Program Elements

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Saiyed, Naseem H.; Swith, Marion Shayne

    2005-01-01

    When United States President George W. Bush announced the Vision for Space Exploration in January 2004, twelve propulsion and launch system projects were being pursued in the Next Generation Launch Technology (NGLT) Program. These projects underwent a review for near-term relevance to the Vision. Subsequently, five projects were chosen as advanced development projects by NASA s Exploration Systems Mission Directorate (ESMD). These five projects were Auxiliary Propulsion, Integrated Powerhead Demonstrator, Propulsion Technology and Integration, Vehicle Subsystems, and Constellation University Institutes. Recently, an NGLT effort in Vehicle Structures was identified as a gap technology that was executed via the Advanced Development Projects Office within ESMD. For all of these advanced development projects, there is an emphasis on producing specific, near-term technical deliverables related to space transportation that constitute a subset of the promised NGLT capabilities. The purpose of this paper is to provide a brief description of the relevancy review process and provide a status of the aforementioned projects. For each project, the background, objectives, significant technical accomplishments, and future plans will be discussed. In contrast to many of the current ESMD activities, these areas are providing hardware and testing to further develop relevant technologies in support of the Vision for Space Exploration.

  12. BIM integration in education: A case study of the construction technology project Bolt Tower Dolni Vitkovice

    NASA Astrophysics Data System (ADS)

    Venkrbec, Vaclav; Bittnerova, Lucie

    2017-12-01

    Building information modeling (BIM) can support effectiveness during many activities in the AEC industry. even when processing a construction-technological project. This paper presents an approach how to use building information model in higher education, especially during the work on diploma thesis and it supervision. Diploma thesis is project based work, which aims to compile a construction-technological project for a selected construction. The paper describes the use of input data, working with them and compares this process with standard input data such as printed design documentation. The effectiveness of using the building information model as a input data for construction-technological project is described in the conclusion.

  13. Information Technology Team Projects in Higher Education: An International Viewpoint

    ERIC Educational Resources Information Center

    Lynch, Kathy; Heinze, Aleksej; Scott, Elsje

    2007-01-01

    It is common to find final or near final year undergraduate Information Technology students undertaking a substantial development project; a project where the students have the opportunity to be fully involved in the analysis, design, and development of an information technology service or product. This involvement has been catalyzed and prepared…

  14. Projecting technological change

    Treesearch

    Kenneth E. Skog

    2007-01-01

    Improving efficiency in the use of both wood and nonwood inputs has characterized the US forest sector over the last 50 years. This chapter explores methods used to reflect this pattern of technological change and others in the Timber Assessment Projection System models. The development and use of three types of technology projection methods are explained: (1)...

  15. E-Learning and the Use of New Technologies in the "Kolumbus-Kids" Project in Germany

    ERIC Educational Resources Information Center

    Wegner, Claas; Homann, Wiebke; Strehlke, Friederike; Borgmann, Annika

    2014-01-01

    This article presents the science project "Kolumbus-Kids" as an example of the innovative use of "E-Learning" and other "new technologies" to advance student learning and new-media education. The project benefits from various technology-based education strategies and E-Learning scenarios which are employed during the…

  16. A Quantitative Study into the Information Technology Project Portfolio Practice: The Impact on Information Technology Project Deliverables

    ERIC Educational Resources Information Center

    Yu, Wei

    2013-01-01

    This dissertation applied the quantitative approach to the data gathered from online survey questionnaires regarding the three objects: Information Technology (IT) Portfolio Management, IT-Business Alignment, and IT Project Deliverables. By studying this data, this dissertation uncovered the underlying relationships that exist between the…

  17. The AECT HistoryMakers Project: Conversations with Leaders in Educational Technology

    ERIC Educational Resources Information Center

    Lockee, Barbara B.; Song, Kibong; Li, Wei

    2014-01-01

    The early beginnings and evolution of the field of educational technology (ET) have been documented by various scholars in the field. Recently, another form of historical documentation has been undertaken through a project of the Association for Educational Communications and Technology (AECT). The AECT HistoryMakers Project is a collaborative…

  18. Teaching Engineering Statistics with Technology, Group Learning, Contextual Projects, Simulation Models and Student Presentations

    ERIC Educational Resources Information Center

    Romeu, Jorge Luis

    2008-01-01

    This article discusses our teaching approach in graduate level Engineering Statistics. It is based on the use of modern technology, learning groups, contextual projects, simulation models, and statistical and simulation software to entice student motivation. The use of technology to facilitate group projects and presentations, and to generate,…

  19. NASA technology utilization applications. [transfer of medical sciences

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The work is reported from September 1972 through August 1973 by the Technology Applications Group of the Science Communication Division (SCD), formerly the Biological Sciences Communication Project (BSCP) in the Department of Medical and Public Affairs of the George Washington University. The work was supportive of many aspects of the NASA Technology Utilization program but in particular those dealing with Biomedical and Technology Application Teams, Applications Engineering projects, new technology reporting and documentation and transfer activities. Of particular interest are detailed reports on the progress of various hardware projects, and suggestions and criteria for the evaluation of candidate hardware projects. Finally some observations about the future expansion of the TU program are offered.

  20. [Earth Science Technology Office's Computational Technologies Project

    NASA Technical Reports Server (NTRS)

    Fischer, James (Technical Monitor); Merkey, Phillip

    2005-01-01

    This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.

  1. 7 CFR 2.89 - Chief Information Officer.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... continue, modify, or terminate an information technology program or project. (3) Provide advice and other..., computer conferencing, televideo technologies, and other applications of office automation technology which... technology system project managers in accordance with OMB policies. (iv) Providing recommendations to Agency...

  2. 7 CFR 2.89 - Chief Information Officer.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... continue, modify, or terminate an information technology program or project. (3) Provide advice and other..., computer conferencing, televideo technologies, and other applications of office automation technology which... technology system project managers in accordance with OMB policies. (iv) Providing recommendations to Agency...

  3. Building Technological Capability within Satellite Programs in Developing Countries

    NASA Astrophysics Data System (ADS)

    Wood, Danielle Renee

    Global participation in space activity is growing as satellite technology matures and spreads. Countries in Africa, Asia and Latin America are creating or reinvigorating national satellite programs. These countries are building local capability in space through technological learning. They sometimes pursue this via collaborative satellite development projects with foreign firms that provide training. This phenomenon of collaborative satellite development projects is poorly understood by researchers of technological learning and technology transfer. The approach has potential to facilitate learning, but there are also challenges due to misaligned incentives and the tacit nature of the technology. Perspectives from literature on Technological Learning, Technology Transfer, Complex Product Systems and Product Delivery provide useful but incomplete insight for decision makers in such projects. This work seeks a deeper understanding of capability building through collaborative technology projects by conceiving of the projects as complex, socio-technical systems with architectures. The architecture of a system is the assignment of form to execute a function along a series of dimensions. The research questions explore the architecture of collaborative satellite projects, the nature of capability building during such projects, and the relationship between architecture and capability building. The research design uses inductive, exploratory case studies to investigate six collaborative satellite development projects. Data collection harnesses international field work driven by interviews, observation, and documents. The data analysis develops structured narratives, architectural comparison and capability building assessment. The architectural comparison reveals substantial variation in project implementation, especially in the areas of project initiation, technical specifications of the satellite, training approaches and the supplier selection process. The individual capability building assessment shows that most trainee engineers gradually progressed from no experience with satellites through theoretical training to supervised experience; a minority achieved independent experience. At the organizational level, the emerging space organizations achieved high levels of autonomy in project definition and satellite operation, but they were dependent on foreign firms for satellite design, manufacture, test and launch. The case studies can be summarized by three archetypal projects defined as "Politically Pushed," "Structured," and "Risk Taking." Countries in the case studies tended to start in a Politically Pushed mode, and then moved into either Structured or Risk Taking mode. Decision makers in emerging satellite programs can use the results of this dissertation to consider the broad set of architectural options for capability building. Future work will continue to probe how specific architectural decisions impact capability building outcomes in satellite projects and other technologies. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs@mit.edu)

  4. An Innovative Project in Educational Technology: The Panama-Venezuela Project.

    ERIC Educational Resources Information Center

    Rojas, Alicia Mabel

    1980-01-01

    Describes a project which is being implemented in the field of educational technology in Panama and Venezuela. The project emphasizes inservice training of a cadre of professionals who will direct efforts to identify and resolve significant problems in education. (Author/CHC)

  5. Information Technology Project Processes: Understanding the Barriers to Improvement and Adoption

    ERIC Educational Resources Information Center

    Williams, Bernard L.

    2009-01-01

    Every year, organizations lose millions of dollars due to IT (Information Technology) project failures. Over time, organizations have developed processes and procedures to help reduce the incidence of challenged IT projects. Research has shown that IT project processes can work to help reduce the number of challenged projects. The research in this…

  6. NCMS ESS 2000 Project

    NASA Technical Reports Server (NTRS)

    Gibbel, Mark; Bellamy, Marvin; DeSantis, Charlie; Hess, John; Pattok, Tracy; Quintero, Andrew; Silver, R.

    1996-01-01

    ESS 2000 has the vision of enhancing the knowledge necessary to implement cost-effective, leading-edge ESS technologies and procedures in order to increase U.S. electronics industry competitiveness. This paper defines EES and discusses the factors driving the project, the objectives of the project, its participants, the three phases of the project, the technologies involved, and project deliverables.

  7. A Synthesis and Survey of Critical Success Factors for Computer Technology Projects

    ERIC Educational Resources Information Center

    Baker, Ross A.

    2012-01-01

    The author investigated the existence of critical success factors for computer technology projects. Current research literature and a survey of experienced project managers indicate that there are 23 critical success factors (CSFs) that correlate with project success. The survey gathered an assessment of project success and the degree to which…

  8. Electric energy savings from new technologies. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrer, B.J.; Kellogg, M.A.; Lyke, A.J.

    1986-09-01

    Purpose of the report is to provide information about the electricity-saving potential of new technologies to OCEP that it can use in developing alternative long-term projections of US electricity consumption. Low-, base-, and high-case scenarios of the electricity savings for 10 technologies were prepared. The total projected annual savings for the year 2000 for all 10 technologies were 137 billion kilowatt hours (BkWh), 279 BkWh, and 470 BkWh, respectively, for the three cases. The magnitude of these savings projections can be gauged by comparing them to the Department's reference case projection for the 1985 National Energy Policy Plan. In themore » Department's reference case, total consumption in 2000 is projected to be 3319 BkWh. Because approximately 75% of the base-case estimate of savings are already incorporated into the reference projection, only 25% of the savings estimated here should be subtracted from the reference projection for analysis purposes.« less

  9. Advanced component technologies for energy-efficient turbofan engines

    NASA Technical Reports Server (NTRS)

    Saunders, N. T.

    1980-01-01

    The paper reviews NASA's Energy Efficient Engine Project which was initiated to provide the advanced technology base for a new generation of fuel-conservative engines for introduction into airline service by the late 1980s. Efforts in this project are directed at advancing engine component and systems technologies to a point of demonstrating technology-readiness by 1984. Early results indicate high promise in achieving most of the goals established in the project.

  10. Project inspection using mobile technology - phase I : an investigation into existing business processes and areas for improvement using mobile technology.

    DOT National Transportation Integrated Search

    2013-08-01

    As mobile technology becomes widely available and affordable, transportation agencies can use this technology to : streamline operations involved within project inspection. This research, conducted in two phases, identified : opportunities for proces...

  11. 7 CFR 1709.111 - Limitations on use of grant funds.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... are unrelated to the grant project. (b) Unproven technology. Only projects that utilize technology with a proven operating history, and for which there is an established industry for the design... utilizing experimental, developmental, or prototype technologies or technology demonstrations are not...

  12. Technology Development Report: CDDF, Dual Use Partnerships, SBIR/STTR: Fiscal Year 2003 Activities

    NASA Technical Reports Server (NTRS)

    Bailey, John W.

    2004-01-01

    The FY2003 NASA John C. Stennis Stennis Space Center (SSC) Technology Development Report provides an integrated report of all technology development activities at SSC. This report actually combines three annual reports: the Center Director's Discretionary Fund (CDDF) Program Report, Dual Use Program Report, and the Small Business Innovation Research (SBIR)/Small Business Technology Transfer (STTR) Program Report. These reports are integrated in one document to summarize all technology development activities underway in support of the NASA missions assigned to SSC. The Dual Use Program Report provides a summary review of the results and status of the nine (9) Dual Use technology development partnership projects funded and managed at SSC during FY2003. The objective of these partnership projects is to develop or enhance technologies that will meet the technology needs of the two NASA SSC Mission Areas: Propulsion Test and Earth Science Applications. During FY2003, the TDTO managed twenty (20) SBIR Phase II Projects and two (2) STTR Phase II Projects. The SBIR contracts support low TRL technology development that supports both the Propulsion Test and the Earth Science Application missions. These projects are shown in the SBIR/STTR Report. In addition to the Phase II contracts, the TDTO managed ten (10) SBIR Phase I contracts which are fixed price, six month feasibility study contracts. These are not listed in this report. Together, the Dual Use Projects and the SBIR/STTR Projects constitute a technology development partnership approach that has demonstrated that success can be achieved through the identification of the technical needs of the NASA mission and using various available partnership techniques to maximize resource utilization to achieve mutual technology goals. Greater use of these partnership techniques and the resource leveraging they provide, is a goal of the TDTO, providing more support to meet the technology development needs of the mission areas at SSC.

  13. Disruption of Information Technology Projects: The Reactive Decoupling of Project Management Methodologies

    ERIC Educational Resources Information Center

    Schmitz, Kurt W.

    2013-01-01

    Information Technology projects have migrated toward two dominant Project Management (PM) methodologies. Plan-driven practices provide organizational control through highly structured plans, schedules, and specifications that facilitate oversight by hierarchical bureaucracies. In contrast, agile practices emphasize empowered teams using flexible…

  14. Human Body Interfacing.

    ERIC Educational Resources Information Center

    Fryda, Lawrence J.; Harrington, Robert; Szumal, Clint

    Electronics Engineering Technology majors in the Industrial and Engineering Technology department at Central Michigan University have developed many real-world projects that represent the type of problem-solving projects encouraged by industry. Two projects that can be used by other educators as freestanding projects or as the core for further…

  15. Factors Influencing the Selection of the Systems Integration Organizational Model Type for Planning and Implementing Government High-Technology Programs

    NASA Technical Reports Server (NTRS)

    Thomas, Leann; Utley, Dawn

    2006-01-01

    While there has been extensive research in defining project organizational structures for traditional projects, little research exists to support high technology government project s organizational structure definition. High-Technology Government projects differ from traditional projects in that they are non-profit, span across Government-Industry organizations, typically require significant integration effort, and are strongly susceptible to a volatile external environment. Systems Integration implementation has been identified as a major contributor to both project success and failure. The literature research bridges program management organizational planning, systems integration, organizational theory, and independent project reports, in order to assess Systems Integration (SI) organizational structure selection for improving the high-technology government project s probability of success. This paper will describe the methodology used to 1) Identify and assess SI organizational structures and their success rate, and 2) Identify key factors to be used in the selection of these SI organizational structures during the acquisition strategy process.

  16. In-Space Assembly and Construction Technology Project Summary: Infrastructure Operations Area of the Operations Technology Program

    NASA Technical Reports Server (NTRS)

    Bush, Harold

    1991-01-01

    Viewgraphs describing the in-space assembly and construction technology project of the infrastructure operations area of the operation technology program are presented. Th objective of the project is to develop and demonstrate an in-space assembly and construction capability for large and/or massive spacecraft. The in-space assembly and construction technology program will support the need to build, in orbit, the full range of spacecraft required for the missions to and from planet Earth, including: earth-orbiting platforms, lunar transfer vehicles, and Mars transfer vehicles.

  17. Advanced CO 2 Leakage Mitigation using Engineered Biomineralization Sealing Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spangler, Lee; Cunningham, Alfred; Phillips, Adrienne

    2015-03-31

    This research project addresses one of the goals of the DOE Carbon Sequestration Program (CSP). The CSP core R&D effort is driven by technology and is accomplished through laboratory and pilot scale research aimed at new technologies for greenhouse gas mitigation. Accordingly, this project was directed at developing novel technologies for mitigating unwanted upward leakage of carbon dioxide (CO 2) injected into the subsurface as part of carbon capture and storage (CCS) activities. The technology developed by way of this research project is referred to as microbially induced calcite precipitation (MICP).

  18. McIntosh Unit 4 PCFB demonstration project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodd, A.M.; Dryden, R.J.; Morehead, H.T.

    1997-12-31

    The City of Lakeland, Foster Wheeler Corporation and Westinghouse Electric Corporation have embarked on a utility scale demonstration of Pressurized Circulating Fluidized Bed (PCFB) technology at Lakeland`s McIntosh Power Station in Lakeland, Florida. The US Department of Energy will be providing approximately $195 million of funding for the project through two Cooperative Agreements under the auspices of the Clean Coal Technology Program. The project will involve the commercial demonstration of Foster Wheeler Pyroflow PCFB technology integrated with Westinghouse`s Hot Gas Filter (HGF) and power generation technologies. The total project duration will be approximately eight years and will be structured intomore » three separate phases; two years of design and permitting, followed by an initial period of two years of fabrication and construction and concluding with a four year demonstration (commercial operation) period. It is expected that the project will show that Foster Wheeler`s Pyroflow PCFB technology coupled with Westinghouse`s HGF and power generation technologies represents a cost effective, high efficiency, low emissions means of adding greenfield generation capacity and that this same technology is also well suited for repowering applications.« less

  19. Technology Education Professional Enhancement Project

    NASA Technical Reports Server (NTRS)

    Hughes, Thomas A., Jr.

    1996-01-01

    The two goals of this project are: the use of integrative field of aerospace technology to enhance the content and instruction delivered by math, science, and technology teachers through the development of a new publication entitled NASA Technology Today, and to develop a rationale and structure for the study of technology, which establishes the foundation for developing technology education standards and programs of the future.

  20. Airspace Technology Demonstration 3 (ATD-3): Applied Traffic Flow Management Project Overview

    NASA Technical Reports Server (NTRS)

    Gong, Chester

    2016-01-01

    ATD-3 Project Overview for 3rd Joint Workshop for KAIA-KARI - NASA ATM Research Collaboration. This presentation gives a high level description of the ATD-3 project and related technologies. These technologies include Multi-Flight Common Routes (MFCR), Traffic Aware Strategic Aircrew Requests (TASAR) and Dynamic Routes for Arrivals in Weather (DRAW).

  1. Solar Thermal Power Systems parabolic dish project

    NASA Technical Reports Server (NTRS)

    Truscello, V. C.

    1981-01-01

    The status of the Solar Thermal Power Systems Project for FY 1980 is summarized. Included is: a discussion of the project's goals, program structure, and progress in parabolic dish technology. Analyses and test results of concentrators, receivers, and power converters are discussed. Progress toward the objectives of technology feasibility, technology readiness, system feasibility, and system readiness are covered.

  2. Experience in Use of Project Method during Technology Lessons in Secondary Schools of the USA

    ERIC Educational Resources Information Center

    Sheludko, Inna

    2015-01-01

    The article examines the opportunities and prospects for the use of experience of project method during "technology lessons" in US secondary schools, since the value of project technology implementation experience into the educational process in the USA for ensuring holistic development of children, preparing them for adult life, in…

  3. Telescope technology for space-borne submillimeter astronomy

    NASA Technical Reports Server (NTRS)

    Lehman, David H.; Helou, George

    1990-01-01

    The Precision Segmented Reflector (PSR) project which is developing telescope technology needed for future spaceborne submillimeter astronomy missions is described. Four major technical areas are under development. Lighweight composite mirrors and associated materials, precision structures and segmented reflector figure sensing and control are discussed. The objectives of the PSR project, approaches, and project technology status, are reported.

  4. Advanced Monobore Concept, Development of CFEX Self-Expanding Tubular Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeff Spray

    2007-09-30

    The Advanced Monobore Concept--CFEX{copyright} Self-Expanding Tubular Technology Development was a successfully executed fundamental research through field demonstration project. This final report is presented as a progression, according to basic technology development steps. For this project, the research and development steps used were: concept development, engineering analysis, manufacturing, testing, demonstration, and technology transfer. The CFEX{copyright} Technology Development--Advanced Monobore Concept Project successfully completed all of the steps for technology development, covering fundamental research, conceptual development, engineering design, advanced-level prototype construction, mechanical testing, and downhole demonstration. Within an approximately two year period, a partially defined, broad concept was evolved into a substantial newmore » technological area for drilling and production engineering applicable a variety of extractive industries--which was also successfully demonstrated in a test well. The demonstration achievement included an actual mono-diameter placement of two self-expanding tubulars. The fundamental result is that an economical and technically proficient means of casing any size of drilling or production well or borehole is indicated as feasible based on the results of the project. Highlighted major accomplishments during the project's Concept, Engineering, Manufacturing, Demonstration, and Technology Transfer phases, are given.« less

  5. Implementing a radiology-information technology project: mobile image viewing use case and a general guideline for radiologist-information technology team collaboration.

    PubMed

    Walz-Flannigan, Alisa; Kotsenas, Amy L; Hein, Shelly; Persons, Kenneth R; Langer, Steve G; Erickson, Bradley J; Tjelta, Jason A; Luetmer, Patrick H

    2015-04-01

    This article illustrates the importance of radiologist engagement in the successful implementation of radiology-information technology (IT) projects through the example of establishing a mobile image viewing solution for health care professionals. With an understanding of the types of decisions that benefit from radiologist input, this article outlines an overall project framework to provide a context for how radiologists might engage in the project cycle.

  6. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Human Exploration and Operations Mission Directorate Projects for 2016

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2017-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research Small Business Technology Transfer (SBIR/STTR) technologies into NASA Human Exploration and Operations Mission Directorate (HEOMD) projects. Other Government and commercial projects managers can also find this useful. Space Transportation; Life Support and Habitation Systems; Extra-Vehicular Activity; High EfficiencySpace Power; Human Exploration and Operations Mission,

  7. Network models for solving the problem of multicriterial adaptive optimization of investment projects control with several acceptable technologies

    NASA Astrophysics Data System (ADS)

    Shorikov, A. F.; Butsenko, E. V.

    2017-10-01

    This paper discusses the problem of multicriterial adaptive optimization the control of investment projects in the presence of several technologies. On the basis of network modeling proposed a new economic and mathematical model and a method for solving the problem of multicriterial adaptive optimization the control of investment projects in the presence of several technologies. Network economic and mathematical modeling allows you to determine the optimal time and calendar schedule for the implementation of the investment project and serves as an instrument to increase the economic potential and competitiveness of the enterprise. On a meaningful practical example, the processes of forming network models are shown, including the definition of the sequence of actions of a particular investment projecting process, the network-based work schedules are constructed. The calculation of the parameters of network models is carried out. Optimal (critical) paths have been formed and the optimal time for implementing the chosen technologies of the investment project has been calculated. It also shows the selection of the optimal technology from a set of possible technologies for project implementation, taking into account the time and cost of the work. The proposed model and method for solving the problem of managing investment projects can serve as a basis for the development, creation and application of appropriate computer information systems to support the adoption of managerial decisions by business people.

  8. Correlational Study of Project Managers' Competence Experience, Education, and Technology Experience on Project

    ERIC Educational Resources Information Center

    Hosford, Bryan

    2017-01-01

    Organizations continue to rely on information technology (IT) as a foundational element, yet poor IT project success continues to impact growth and innovation. Research into IT project success is widespread yet has focused on high-level project management attributes, not specific IT solutions. A review of the research literature revealed that the…

  9. The Role of the Project Management Office on Information Technology Project Success

    ERIC Educational Resources Information Center

    Stewart, Jacob S.

    2010-01-01

    The rate of failed and challenged Information Technology (IT) projects is too high according to the CHAOS Studies by the Standish Group and the literature on project management (Standish Group, 2008). The CHAOS Studies define project success as meeting the triple constraints of scope, time, and cost. Assessing critical success factors is another…

  10. Manufacturing Methods and Technology (MMT) project execution report

    NASA Astrophysics Data System (ADS)

    Swim, P. A.

    1982-10-01

    This document is a summary compilation of the manufacturing methods and technology program project status reports (RCS DRCMT-301) submitted to IBEA from DARCOM major Army subcommands and project managers. Each page of the computerized section lists project number, title, status, funding, and projected completion date. Summary pages give information relating to the overall DARCOM program.

  11. The Interactions among Information Technology Organizational Learning, Project Learning, and Project Success

    ERIC Educational Resources Information Center

    McKay, Donald S., II

    2012-01-01

    Knowledge gained from completed information technology (IT) projects was not often shared with emerging project teams. Learning lessons from other project teams was not pursued because people lack time, do not see value in learning, fear a potentially painful process, and had concerns that sharing knowledge will hurt their career. Leaders could…

  12. Teachers, Technology, and Policy: What Have We Learned?

    ERIC Educational Resources Information Center

    Sanchez, N. A.; Nichols, P.

    This paper summarizes Technology Integration Project efforts in four urban elementary schools that were involved in Professional Development Schools (PDSs). Project activities centered on: supporting the rooting of technology integration into school culture and teachers' efforts to integrate technology into their classrooms and strengthening the…

  13. Application of BIM technology in construction bidding

    NASA Astrophysics Data System (ADS)

    wei, Li

    2017-12-01

    bidding is a very important step of construction project. For the owners, bidding is the key link of selecting the best construction plan and saving the project cost to the maximum extent. For Construction Corporation, it is the key to show their construction technology which can improve the probability of winning the bid. this paper researches on the application of BIM technology in bidding process of construction project in detail, and discussesthe application of BIM technology in construction field comprehensively.

  14. Touch and Go: COMET Project Brings Multitouch Technology to the Military

    DTIC Science & Technology

    2011-05-01

    Defense AT&L: May–June 2011 28 Touch and Go COMET Project Brings Multitouch Technology to the Military Claire Heininger Report Documentation...DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Touch and Go. COMET Project Brings Multitouch Technology to the Military 5a...research agreement. Now, just 2 years later, the same team of engineers and developers are on the cutting edge of multitouch technology for the armed

  15. 78 FR 20359 - NASA Advisory Council; Technology and Innovation Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... NASA Robotics Technologies project and NASA's work with the National Robotics Initiative; and an annual... Sail project --Update on NASA's Robotic Technologies and the National Robotics Initiative It is...

  16. Terrestrial applications from space technology

    NASA Technical Reports Server (NTRS)

    Clarks, H.

    1985-01-01

    NASA's Technology Utilization Program, which is concerned with transferring aerospace technologies to the public and private sectors, is described. The strategy for transferring the NASA technologies to engineering projects includes: (1) identification of the problem, (2) selection of an appropriate aerospace technology, (3) development of a partnership with the company, (4) implementation of the project, and (5) commercialization of the product. Three examples revealing the application of aerospace technologies to projects in biomedical engineering, materials, and automation and robotics are presented; the development of a programmable, implantable medication system and a programmable, mask-based optical correlator, and the improvement of heat and erosion resistance in continuous casting are examined.

  17. Initiating the 2002 Mars Science Laboratory (MSL) Focused Technology Program

    NASA Technical Reports Server (NTRS)

    Caffrey, Robert T.; Udomkesmalee, Gabriel; Hayati, Samad A.

    2004-01-01

    The Mars Science Laboratory (MSL) Project is an aggressive mission launching in 2009 to deliver a new generation of rover safely to the surface of Mars and conduct comprehensive in situ investigations using a new generation of instruments. This system will be designed to land with precision and be capable of operating over a large percentage on the surface of Mars. It will have capabilities that will support NASA's scientific goals into the next decade of exphation. The MSL Technology program is developing a wide-range of technologies needed for this Mission and potentially other space missions. The MSL Technology Program reports to both the MSL Project and the Mars Technology Program (MTP). The dual reporting process creates a challenging management situation, but ensures the new technology meets both the specific MSL requirements and the broader Mars Program requirements. MTP is a NASA-wide technology development program managed by the Jet Propulsion Laboratory (JPL) and is divided into a Focused Program and a Base Program. The Focused Technology Program addresses technologies that are specific and critical to near-term missions, while the Base Technology Program addresses those technologies that are applicable to multiple missions and which can be characterized as longer term, higher risk, and high payoff technologies. The MSL Technology Program is under the Focused Program and is tightly coupled to MSL's mission milestones and deliverables. The technology budget is separate from the flight Project budget, but the technology s requirements and the development process are tightly coordinated with the Project. The Technology Program combines proven management techniques of flight projects with commercial and academic technology management strategies, to create a technology management program that meets the near-term requirements of MSL and the long-term requirements of MTP. This paper examines the initiation of 2002 MSL Technology program. Some of the areas discussed in this paper include technology definition, task selection, technology management, and technology assessment.

  18. Integrating First-Year Technology and Finite Mathematics Courses

    ERIC Educational Resources Information Center

    Shafii-Mousavi, Morteza; Kochanowski, Paul

    2006-01-01

    This paper describes an interdisciplinary project-based mathematics course linked to a computer technology course. The linkage encourages an appreciation of mathematics and technology as students see an immediate use for these skills in completing actual real-world projects. Linking mathematics and technology integrates subjects taught in…

  19. Miniaturized Power Processing Unit Study: A Cubesat Electric Propulsion Technology Enabler Project

    NASA Technical Reports Server (NTRS)

    Ghassemieh, Shakib M.

    2014-01-01

    This study evaluates High Voltage Power Processing Unit (PPU) technology and driving requirements necessary to enable the Microfluidic Electric Propulsion technology research and development by NASA and university partners. This study provides an overview of the state of the art PPU technology with recommendations for technology demonstration projects and missions for NASA to pursue.

  20. An overview of the Communications Technology Satellite (CTS) project

    NASA Technical Reports Server (NTRS)

    Rapp, W.; Ogden, D.; Wright, D.

    1982-01-01

    The Communications Technology Satellite (CTS) project is reviewed. A technical description of the CTS spacecraft and its cognate hardware and operations is included. A historical treatise of the CTS project is provided. Also presented is an overview of the CTS experiments and demonstrations conducted during the course of the project.

  1. Projection displays and MEMS: timely convergence for a bright future

    NASA Astrophysics Data System (ADS)

    Hornbeck, Larry J.

    1995-09-01

    Projection displays and microelectromechanical systems (MEMS) have evolved independently, occasionally crossing paths as early as the 1950s. But the commercially viable use of MEMS for projection displays has been illusive until the recent invention of Texas Instruments Digital Light Processing TM (DLP) technology. DLP technology is based on the Digital Micromirror DeviceTM (DMD) microchip, a MEMS technology that is a semiconductor digital light switch that precisely controls a light source for projection display and hardcopy applications. DLP technology provides a unique business opportunity because of the timely convergence of market needs and technology advances. The world is rapidly moving to an all- digital communications and entertainment infrastructure. In the near future, most of the technologies necessary for this infrastrucutre will be available at the right performance and price levels. This will make commercially viable an all-digital chain (capture, compression, transmission, reception decompression, hearing, and viewing). Unfortunately, the digital images received today must be translated into analog signals for viewing on today's televisions. Digital video is the final link in the all-digital infrastructure and DLP technoogy provides that link. DLP technology is an enabler for digital, high-resolution, color projection displays that have high contrast, are bright, seamless, and have the accuracy of color and grayscale that can be achieved only by digital control. This paper contains an introduction to DMD and DLP technology, including the historical context from which to view their developemnt. The architecture, projection operation, and fabrication are presented. Finally, the paper includes an update about current DMD business opportunities in projection displays and hardcopy.

  2. Space science technology: In-situ science. Sample Acquisition, Analysis, and Preservation Project summary

    NASA Technical Reports Server (NTRS)

    Aaron, Kim

    1991-01-01

    The Sample Acquisition, Analysis, and Preservation Project is summarized in outline and graphic form. The objective of the project is to develop component and system level technology to enable the unmanned collection, analysis and preservation of physical, chemical and mineralogical data from the surface of planetary bodies. Technology needs and challenges are identified and specific objectives are described.

  3. Projected progress in the engineering state-of-the-art. [for aerospace

    NASA Technical Reports Server (NTRS)

    Nicks, O. W.

    1978-01-01

    Projected advances in discipline areas associated with aerospace engineering are discussed. The areas examined are propulsion and power, materials and structures, aerothermodynamics, and electronics. Attention is directed to interdisciplinary relationships; one example would be the application of communications technology to the solution of propulsion problems. Examples involving projected technology changes are presented, and technology integration and societal effects are considered.

  4. Human genome project: revolutionizing biology through leveraging technology

    NASA Astrophysics Data System (ADS)

    Dahl, Carol A.; Strausberg, Robert L.

    1996-04-01

    The Human Genome Project (HGP) is an international project to develop genetic, physical, and sequence-based maps of the human genome. Since the inception of the HGP it has been clear that substantially improved technology would be required to meet the scientific goals, particularly in order to acquire the complete sequence of the human genome, and that these technologies coupled with the information forthcoming from the project would have a dramatic effect on the way biomedical research is performed in the future. In this paper, we discuss the state-of-the-art for genomic DNA sequencing, technological challenges that remain, and the potential technological paths that could yield substantially improved genomic sequencing technology. The impact of the technology developed from the HGP is broad-reaching and a discussion of other research and medical applications that are leveraging HGP-derived DNA analysis technologies is included. The multidisciplinary approach to the development of new technologies that has been successful for the HGP provides a paradigm for facilitating new genomic approaches toward understanding the biological role of functional elements and systems within the cell, including those encoded within genomic DNA and their molecular products.

  5. Professional development in optics and photonics education

    NASA Astrophysics Data System (ADS)

    Donnelly, Judith F.; Hanes, Fenna; Massa, Nicholas J.; Washburn, Barbara R.

    2002-05-01

    In recent years, several New England projects have promoted professional development and curriculum design in optics and photonics. Funded in part by the Advanced Technological Education (ATE) program of the National Science Foundation (NSF), these projects have prepared middle and high school teachers, college faculty and career counselors from more than 100 New England institutions to introduce fiber optics, telecommunications and photonics technology education. Four of these projects will be discussed here: (1) The New England Board of Higher Education's (NEBHE) Fiber Optics Technology Education Project, (FOTEP) was designed to teach fiber optics theory and to provide laboratory experiences at the secondary and postsecondary levels. (2) Springfield Technical Community College's Northeast Center for Telecommunications Technologies (NCTT) is developing curricula and instructional materials in lightwave, networking and wireless telecommunications technologies. (3) The Harvard-Smithsonian Center for Astrophysics project ComTech developed a 12-week, hands-on curriculum and teaching strategies for middle and high school science and technology teachers in telecommunications and focused on optical communication (fiber optics). (4) NEBHE's project PHOTON is preparing middle, secondary and postsecondary instructors to introduce theory and laboratory experiences in photonics, including geometric and wave optics as well as principles of lasers and photonics applications.

  6. Project Career: An individualized postsecondary approach to promoting independence, functioning, and employment success among students with traumatic brain injuries.

    PubMed

    Minton, Deborah; Elias, Eileen; Rumrill, Phillip; Hendricks, Deborah J; Jacobs, Karen; Leopold, Anne; Nardone, Amanda; Sampson, Elaine; Scherer, Marcia; Gee Cormier, Aundrea; Taylor, Aiyana; DeLatte, Caitlin

    2017-09-14

    Project Career is a five-year interdisciplinary demonstration project funded by NIDILRR. It provides technology-driven supports, merging Cognitive Support Technology (CST) evidence-based practices and rehabilitation counseling, to improve postsecondary and employment outcomes for veteran and civilian undergraduate students with traumatic brain injury (TBI). Provide a technology-driven individualized support program to improve career and employment outcomes for students with TBI. Project staff provide assessments of students' needs relative to assistive technology, academic achievement, and career preparation; provide CST training to 150 students; match students with mentors; provide vocational case management; deliver job development and placement assistance; and maintain an electronic portal regarding accommodation and career resources. Participating students receive cognitive support technology training, academic enrichment, and career preparatory assistance from trained professionals at three implementation sites. Staff address cognitive challenges using the 'Matching Person with Technology' assessment to accommodate CST use (iPad and selected applications (apps)). JBS International (JBS) provides the project's evaluation. To date, 117 students participate with 63% report improved life quality and 75% report improved academic performance. Project Career provides a national model based on best practices for enabling postsecondary students with TBI to attain academic, employment, and career goals.

  7. Earthwork haul-truck cycle-time monitoring : a case study.

    DOT National Transportation Integrated Search

    2016-03-01

    Recent developments in autonomous technologies have motivated practitioners to adopt new technologies in highway and : earthwork construction projects. This project set out to (1) identify new and emerging autonomous earthwork technologies and : (2) ...

  8. Advanced Avionics and Processor Systems for Space and Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Ray, Robert E.; Johnson, Michael A.; Cressler, John D.

    2009-01-01

    NASA's newly named Advanced Avionics and Processor Systems (AAPS) project, formerly known as the Radiation Hardened Electronics for Space Environments (RHESE) project, endeavors to mature and develop the avionic and processor technologies required to fulfill NASA's goals for future space and lunar exploration. Over the past year, multiple advancements have been made within each of the individual AAPS technology development tasks that will facilitate the success of the Constellation program elements. This paper provides a brief review of the project's recent technology advancements, discusses their application to Constellation projects, and addresses the project's plans for the coming year.

  9. Avionics Architectures for Exploration: Wireless Technologies and Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Goforth, Montgomery B.; Ratliff, James E.; Barton, Richard J.; Wagner, Raymond S.; Lansdowne, Chatwin

    2014-01-01

    The authors describe ongoing efforts by the Avionics Architectures for Exploration (AAE) project chartered by NASA's Advanced Exploration Systems (AES) Program to evaluate new avionics architectures and technologies, provide objective comparisons of them, and mature selected technologies for flight and for use by other AES projects. The AAE project team includes members from most NASA centers and from industry. This paper provides an overview of recent AAE efforts, with particular emphasis on the wireless technologies being evaluated under AES to support human spaceflight.

  10. How to Fund Technology Projects.

    ERIC Educational Resources Information Center

    Schnitzer, Denise K.

    1995-01-01

    The answer to financing technology projects may lie in developing grant proposals to submit to federal, state, and/or private organizations. The first step is to identify a need stemming from goals and objectives established in the school or district technology plan. Providing a well-researched rationale for purchasing and using technology is…

  11. Strengthening 4-H Program Communication through Technology

    ERIC Educational Resources Information Center

    Robideau, Kari; Santl, Karyn

    2011-01-01

    Advances in technology are transforming how youth and parents interact with programs. The Strengthening 4-H Communication through Technology project was implemented in eight county 4-H programs in Northwest Minnesota. This article outlines the intentional process used to effectively implement technology in program planning. The project includes:…

  12. Technological Education for the Rural Community (TERC) Project: Technical Mathematics for the Advanced Manufacturing Technician

    ERIC Educational Resources Information Center

    McCormack, Sherry L.; Zieman, Stuart

    2017-01-01

    Hopkinsville Community College's Technological Education for the Rural Community (TERC) project is funded through the National Science Foundation Advanced Technological Education (NSF ATE) division. It is advancing innovative educational pathways for technological education promoted at the community college level serving rural communities to fill…

  13. 76 FR 12343 - Technology and Media Services for Individuals With Disabilities-Steppingstones of Technology...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-07

    ... two phases: (1) Development and (2) research on effectiveness. Abstracts of projects funded under... approaches. Phase 2 projects must subject technology-based approaches to rigorous field-based research to... scientifically rigorous research or theory, that demonstrates the potential effectiveness of the technology-based...

  14. Integrated Network Testbed for Energy Grid Research and Technology

    Science.gov Websites

    Network Testbed for Energy Grid Research and Technology Experimentation Project Under the Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) project, NREL and partners completed five successful technology demonstrations at the ESIF. INTEGRATE is a $6.5-million, cost

  15. FHWA bicycle-pedestrian count technology pilot project : summary report

    DOT National Transportation Integrated Search

    2016-12-01

    This report summarizes the Federal Highway Administration (FHWA)s one-year Bicycle-Pedestrian Count Technology Pilot Project. The purpose of the pilot project was to increase the organizational and technical capacity of Metropolitan Planning Organ...

  16. Two-panel LCOS-based projection system: a potentially compact high-resolution avionics display

    NASA Astrophysics Data System (ADS)

    Sharp, Gary D.; Chen, Jianmin; Robinson, Michael B.; Korah, John K.

    2003-09-01

    Military displays have been limited first by the availability of CRT and then AMLCD for color multifunctional displays. Projection display technology has been offered as an alternative. With the growth of the LCOS based consumer projection display industry, commercially off the shelf (COTS) components and technology are becoming readily available. A projection display system addresses the lessons learned from the CRT or AMLCD based attempts. This approach presents multiple vendors and user defined aspect ratio, resolution, brightness and color. This paper will present the latest work at ColorLink, Inc. on a two-panel LCOS based projection light engine developed for the consumer industry driven Rear Projection Television (RPTV) market. This engine demonstrates throughput, contrast and color performance that exceeds military requirements using COTS technology and components. We will introduce the core technology and philosophy followed by this industry in defining such a product.

  17. The Strategic Technologies for Automation and Robotics (STEAR) program: Protection of materials in the space environment subprogram

    NASA Technical Reports Server (NTRS)

    Schmidt, Lorne R.; Francoeur, J.; Aguero, Alina; Wertheimer, Michael R.; Klemberg-Sapieha, J. E.; Martinu, L.; Blezius, J. W.; Oliver, M.; Singh, A.

    1995-01-01

    Three projects are currently underway for the development of new coatings for the protection of materials in the space environment. These coatings are based on vacuum deposition technologies. The projects will go as far as the proof-of-concept stage when the commercial potential for the technology will be demonstrated on pilot-scale fabrication facilities in 1996. These projects are part of a subprogram to develop supporting technologies for automation and robotics technologies being developed under the Canadian Space Agency's STEAR Program, part of the Canadian Space Station Program.

  18. Technology transfer to a developing nation, Korea

    NASA Technical Reports Server (NTRS)

    Stone, C. A.; Uccetta, S. J.

    1973-01-01

    An experimental project is reported which was undertaken. to determine if selected types of technology developed for the aerospace program during the past decade are relevant to specific industrial problems of a developing nation and to test whether a structured program could facilitate the transfer of relevant technologies. The Korea Institute of Science and Technology and the IIT Research Institute were selected as the active transfer agents to participate in the program. The pilot project was based upon the approach to the transfer of domestic technology developed by the NASA Technology Utilization Division and utilized the extensive data and technical resources available through the Space Agency and its contractors. This pilot project has helped to clarify some aspects of the international technology transfer process and to upgrade Korean technological capabilities.

  19. FY2017 Technology Integration Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The 2017 Technology Integration Annual Progress Report covers 27 multi-year projects funded by the Vehicle Technologies Office. The report includes information on 20 competitively awarded projects, ranging from training on alternative fuels and vehicles for first responders, to safety training and design for maintenance facilities housing gaseous fuel vehicles, to electric vehicle community partner programs. It also includes seven projects conducted by several of VTO’s national laboratory partners, Argonne National Laboratory, Oak Ridge National Laboratory and the National Renewable Energy Laboratory. These projects range from a Technical Assistance project for business, industry, government and individuals, to the EcoCar 3 Studentmore » Competition, and the Fuel Economy Information Project.« less

  20. HANDBOOK FOR CONDUCTING ORAL HISTORY INTERVIEWS RELATED TO TRIBAL AND INDIAN PARTICIPATION IN THE CONSTRUCTION, OPERATION AND CLEANUP OF THE NUCLEAR WEAPONS COMPLEX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cristann Gibson; Mervyn L. Tano; Albert Wing

    1999-08-31

    There were three major projects undertaken at the outset of the DOE/EM 22 Cooperative Agreement back in September 1995. There was a project relating to Tribal oral histories. Another project of the Cooperative Agreement related to technology and Tribal values and needs. This project by analogy could apply to issues of technology, environmental cleanup and other indigenous peoples internationally. How can Indian Tribes participate in defining the need for technology development rather than merely learning to adapt themselves and their situations and values to technology developed by others with differing needs, values and economic resources? And the third project wasmore » the placement of a Tribal intern in EM-22.« less

  1. Promoting the safe and strategic use of technology for victims of intimate partner violence: evaluation of the technology safety project.

    PubMed

    Finn, Jerry; Atkinson, Teresa

    2009-11-01

    The Technology Safety Project of the Washington State Coalition Against Domestic Violence was designed to increase awareness and knowledge of technology safety issues for domestic violence victims, survivors, and advocacy staff. The project used a "train-the-trainer" model and provided computer and Internet resources to domestic violence service providers to (a) increase safe computer and Internet access for domestic violence survivors in Washington, (b) reduce the risk posed by abusers by educating survivors about technology safety and privacy, and (c) increase the ability of survivors to help themselves and their children through information technology. Evaluation of the project suggests that the program is needed, useful, and effective. Consumer satisfaction was high, and there was perceived improvement in computer confidence and knowledge of computer safety. Areas for future program development and further research are discussed.

  2. Overview of NASA's Thermal Control System Development for Exploration Project

    NASA Technical Reports Server (NTRS)

    Stephan, Ryan A.

    2010-01-01

    NASA's Constellation Program includes the Orion, Altair, and Lunar Surface Systems project offices. The first two elements, Orion and Altair, are manned space vehicles while the third element is broader and includes several sub-elements including Rovers and a Lunar Habitat. The upcoming planned missions involving these systems and vehicles include several risks and design challenges. Due to the unique thermal environment, many of these risks and challenges are associated with the vehicles' thermal control system. NASA's Exploration Systems Mission Directorate (ESMD) includes the Exploration Technology Development Program (ETDP). ETDP consists of several technology development projects. The project chartered with mitigating the aforementioned risks and design challenges is the Thermal Control System Development for Exploration Project. The risks and design challenges are addressed through a rigorous technology development process that culminates with an integrated thermal control system test. The resulting hardware typically has a Technology Readiness Level (TRL) of six. This paper summarizes the development efforts being performed by the technology development project. The development efforts involve heat acquisition and heat rejection hardware including radiators, heat exchangers, and evaporators. The project has also been developing advanced phase change material heat sinks and performing assessments for thermal control system fluids.

  3. Structured Innovation of High-Performance Wave Energy Converter Technology: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Jochem W.; Laird, Daniel

    Wave energy converter (WEC) technology development has not yet delivered the desired commercial maturity nor, and more importantly, the techno-economic performance. The reasons for this have been recognized and fundamental requirements for successful WEC technology development have been identified. This paper describes a multi-year project pursued in collaboration by the National Renewable Energy Laboratory and Sandia National Laboratories to innovate and develop new WEC technology. It specifies the project strategy, shows how this differs from the state-of-the-art approach and presents some early project results. Based on the specification of fundamental functional requirements of WEC technology, structured innovation and systemic problemmore » solving methodologies are applied to invent and identify new WEC technology concepts. Using Technology Performance Levels (TPL) as an assessment metric of the techno-economic performance potential, high performance technology concepts are identified and selected for further development. System performance is numerically modelled and optimized and key performance aspects are empirically validated. The project deliverables are WEC technology specifications of high techno-economic performance technologies of TPL 7 or higher at TRL 3 with some key technology challenges investigated at higher TRL. These wave energy converter technology specifications will be made available to industry for further, full development and commercialisation (TRL 4 - TRL 9).« less

  4. Project Tradition and Technology (Project TNT): The Hualapai Bilingual Academic Excellence Program.

    ERIC Educational Resources Information Center

    Reed, Michael D.; And Others

    Project Tradition and Technology (TNT) at Peach Springs Elementary School (Peach Springs, Arizona) is 1 of 12 programs recognized nationally as an outstanding model of bilingual education by the U.S. Department of Education. Project TNT is a process-oriented curriculum development model that identifies the community's needs and expectations for…

  5. Harnessing the Power of Technologies to Manage Collaborative e-Learning Projects in Dispersed Environments

    ERIC Educational Resources Information Center

    Gosper, Maree Veroncia; McNeill, Margot Anne; Woo, Karen

    2010-01-01

    "The impact of web-based lecture technologies on current and future practice in learning and teaching" was a collaborative project across four Australian universities, funded by the Australian Learning and Teaching Council (ALTC). The project was both exploratory and developmental in nature and according to the project's external…

  6. Concentrating Solar Power Projects - Chabei 64MW Molten Salt Parabolic

    Science.gov Websites

    project Status Date: September 29, 2016 Project Overview Project Name: Chabei 64MW Molten Salt Parabolic Technology: Parabolic trough Turbine Capacity: Net: 64.0 MW Gross: 64.0 MW Status: Under development Do you have more information, corrections, or comments? Background Technology: Parabolic trough Status: Under

  7. Concentrating Solar Power Projects by Technology | Concentrating Solar

    Science.gov Websites

    ) technology from the list below. You can then select a specific project and review a profile covering project basics, participating organizations, and power plant configuration data for the solar field, power block

  8. Composites for Exploration Upper Stage

    NASA Technical Reports Server (NTRS)

    Fikes, J. C.; Jackson, J. R.; Richardson, S. W.; Thomas, A. D.; Mann, T. O.; Miller, S. G.

    2016-01-01

    The Composites for Exploration Upper Stage (CEUS) was a 3-year, level III project within the Technology Demonstration Missions program of the NASA Space Technology Mission Directorate. Studies have shown that composites provide important programmatic enhancements, including reduced weight to increase capability and accelerated expansion of exploration and science mission objectives. The CEUS project was focused on technologies that best advanced innovation, infusion, and broad applications for the inclusion of composites on future large human-rated launch vehicles and spacecraft. The benefits included near- and far-term opportunities for infusion (NASA, industry/commercial, Department of Defense), demonstrated critical technologies and technically implementable evolvable innovations, and sustained Agency experience. The initial scope of the project was to advance technologies for large composite structures applicable to the Space Launch System (SLS) Exploration Upper Stage (EUS) by focusing on the affordability and technical performance of the EUS forward and aft skirts. The project was tasked to develop and demonstrate critical composite technologies with a focus on full-scale materials, design, manufacturing, and test using NASA in-house capabilities. This would have demonstrated a major advancement in confidence and matured the large-scale composite technology to a Technology Readiness Level 6. This project would, therefore, have bridged the gap for providing composite application to SLS upgrades, enabling future exploration missions.

  9. Benchmark Report on Key Outage Attributes: An Analysis of Outage Improvement Opportunities and Priorities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germain, Shawn St.; Farris, Ronald

    2014-09-01

    Advanced Outage Control Center (AOCC), is a multi-year pilot project targeted at Nuclear Power Plant (NPP) outage improvement. The purpose of this pilot project is to improve management of NPP outages through the development of an AOCC that is specifically designed to maximize the usefulness of communication and collaboration technologies for outage coordination and problem resolution activities. This report documents the results of a benchmarking effort to evaluate the transferability of technologies demonstrated at Idaho National Laboratory and the primary pilot project partner, Palo Verde Nuclear Generating Station. The initial assumption for this pilot project was that NPPs generally domore » not take advantage of advanced technology to support outage management activities. Several researchers involved in this pilot project have commercial NPP experience and believed that very little technology has been applied towards outage communication and collaboration. To verify that the technology options researched and demonstrated through this pilot project would in fact have broad application for the US commercial nuclear fleet, and to look for additional outage management best practices, LWRS program researchers visited several additional nuclear facilities.« less

  10. Arsenic Removal from Drinking Water by Point of Entry/Point of Use Adsorptive Media U.S. EPA Demonstration Project at Oregon Institute of Technology at Klamath Falls, OR - Final Performance Evaluation Report

    EPA Science Inventory

    This report documents the activities performed during and the results obtained from the arsenic removal treatment technology demonstration project at Oregon Institute of Technology (OIT) at Klamath Falls, OR. The objectives of the project were to evaluate: (1) the effectiveness...

  11. Online Assessment in Mathematics and Writing: Reports from the NAEP Technology-Based Assessment Project, Research and Development Series. NCES 2005-457

    ERIC Educational Resources Information Center

    Sandene, Brent; Horkay, Nancy; Bennett, Randy Elliot; Allen, Nancy; Braswell, James; Kaplan, Bruce; Oranje, Andreas

    2005-01-01

    This publication presents the reports from two studies, Math Online (MOL) and Writing Online (WOL), part of the National Assessment of Educational Progress (NAEP) Technology-Based Assessment (TBA) project. Funded by the National Center for Education Statistics (NCES), the Technology-Based Assessment project is intended to explore the use of new…

  12. Moonlight project promotes energy-saving technology

    NASA Astrophysics Data System (ADS)

    Ishihara, A.

    1986-01-01

    In promoting energy saving, development of energy conservation technologies aimed at raising energy efficiency in the fields of energy conversion, its transportation, its storage, and its consumption is considered, along with enactment of legal actions urging rational use of energies and implementation of an enlightenment campaign for energy conservation to play a crucial role. Under the Moonlight Project, technical development is at present being centered around the following six pillars: (1) large scale energy saving technology; (2) pioneering and fundamental energy saving technology; (3) international cooperative research project; (4) research and survey of energy saving technology; (5) energy saving technology development by private industry; and (6) promotion of energy saving through standardization. Heat pumps, magnetohydrodynamic generators and fuel cells are discussed.

  13. Johnson Space Center Research and Technology Annual Report 1998-1999

    NASA Technical Reports Server (NTRS)

    Abbey, George W. S.

    2004-01-01

    As the principle center for NASA's Human Exploration and Development of Space (HEDS) Enterprise, the Johnson Space Center (JSC) leads NASA development of human spacecraft, human support systems, and human spacecraft operations. An important element in implementing this mission, JSC has focused on developing the infrastructure and partnerships that enable the technology development for future NASA programs. In our efforts to develop key technologies, we have found that collaborative relationships with private industry and academia strengthen our capabilities, infuse innovative ideas, and provide alternative applications for our development projects. The American public has entrusted NASA with the responsibility for space technology development, and JSC is committed to the transfer of the technologies that we develop to the private sector for further development and application. It is our belief that commercialization of NASA technologies benefits both American industry and NASA through technology innovation and continued partnering. To this end, we present the 1998-1999 JSC Research and Technology Report. As your guide to the current JSC technologies, this report showcases the projects in work at JSC that may be of interest to U.S. industry, academia, and other government agencies (federal, state, and local). For each project, potential alternative uses and commercial applications are described. To aid in your search, projects are arranged according to the Major Product Groups used by CorpTech to classify and index types of industry. Some projects fall into multiple categories and are placed under the predominant category, for example, an artificial intelligence project is listed under the Computer Software category, while its function is to automate a process (Automation category).

  14. Development of Life Support System Technologies for Human Lunar Missions

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Ewert, Michael K.

    2009-01-01

    With the Preliminary Design Review (PDR) for the Orion Crew Exploration Vehicle planned to be completed in 2009, Exploration Life Support (ELS), a technology development project under the National Aeronautics and Space Administration s (NASA) Exploration Technology Development Program, is focusing its efforts on needs for human lunar missions. The ELS Project s goal is to develop and mature a suite of Environmental Control and Life Support System (ECLSS) technologies for potential use on human spacecraft under development in support of U.S. Space Exploration Policy. ELS technology development is directed at three major vehicle projects within NASA s Constellation Program (CxP): the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems, including habitats and pressurized rovers. The ELS Project includes four technical elements: Atmosphere Revitalization Systems, Water Recovery Systems, Waste Management Systems and Habitation Engineering, and two cross cutting elements, Systems Integration, Modeling and Analysis, and Validation and Testing. This paper will provide an overview of the ELS Project, connectivity with its customers and an update to content within its technology development portfolio with focus on human lunar missions.

  15. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weakley, Steven A.

    The purpose of the project described in this report is to identify and document the commercial and emerging (projected to be commercialized within the next 3 years) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies (FCT) Program in the Office of Energy Efficiency and Renewable Energy (EERE). Pacific Northwest National Laboratory (PNNL) undertook two efforts simultaneously to accomplish this project. The first effort was a patent search and analysis to identify patents related to hydrogen and fuel cells that are associated with FCT-funded projects (or projects conducted by DOE-EEREmore » predecessor programs) and to ascertain the patents’ current status, as well as any commercial products that may have used the technology documented in the patent. The second effort was a series of interviews with current and past FCT personnel, a review of relevant program annual reports, and an examination of grants made under the Small Business Innovation Research and Small Business Technology Transfer Programs that are related to hydrogen and fuel cells.« less

  16. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weakley, Steven A.; Brown, Scott A.

    The purpose of the project described in this report is to identify and document the commercial and emerging (projected to be commercialized within the next 3 years) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies (FCT) Program in the Office of Energy Efficiency and Renewable Energy (EERE). To do this, Pacific Northwest National Laboratory (PNNL) undertook two efforts simultaneously to accomplish this project. The first effort was a patent search and analysis to identify hydrogen- and fuel-cell-related patents that are associated with FCT-funded projects (or projects conducted by DOE-EEREmore » predecessor programs) and to ascertain the patents current status, as well as any commercial products that may have used the technology documented in the patent. The second effort was a series of interviews with current and past FCT personnel, a review of relevant program annual reports, and an examination of hydrogen- and fuel-cell-related grants made under the Small Business Innovation Research and Small Business Technology Transfer Programs, and within the FCT portfolio.« less

  17. Innovative Remediation Technologies: Field-Scale Demonstration Projects in North America, 2nd Edition

    EPA Pesticide Factsheets

    This report consolidates key reference information in a matrix that allows project mangers to quickly identify new technologies that may answer their cleanup needs and contacts for obtaining technology demonstration results and other information.

  18. ACTTive Technology, 1996.

    ERIC Educational Resources Information Center

    ACTTive Teachnology, 1996

    1996-01-01

    Four issues of this newsletter published by Project ACTT (Activating Children Through Technology), an Early Education Program for Children with Disabilities Outreach Project on educational technology, include the following major articles: "Computer Applications and Young Children with Disabilities: Positive Outcomes" (Patricia Hutinger); "Project…

  19. 7 CFR 2.24 - Assistant Secretary for Administration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... continue, modify, or terminate an information technology program or project. (iii) Provide advice and other... exchange, scheduling, computer conferencing, televideo technologies, and other applications of office... Chief Information Officers and agency major information technology system project managers in accordance...

  20. 7 CFR 2.24 - Assistant Secretary for Administration.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... continue, modify, or terminate an information technology program or project. (iii) Provide advice and other... exchange, scheduling, computer conferencing, televideo technologies, and other applications of office... Chief Information Officers and agency major information technology system project managers in accordance...

  1. ExMC Technology Watch

    NASA Technical Reports Server (NTRS)

    Krihak, M.; Watkins, S.; Shaw, T.

    2014-01-01

    The Technology Watch (Tech Watch) project is directed by the NASA Human Research Program's (HRP) Exploration Medical Capability (ExMC) element, and primarily focuses on ExMC technology gaps. The project coordinates the efforts of multiple NASA centers, including the Johnson Space Center (JSC), Glenn Research Center (GRC), Ames Research Center (ARC), and the Langley Research Center (LaRC). The objective of Tech Watch is to identify emerging, high-impact technologies that augment current NASA HRP technology development efforts. Identifying such technologies accelerates the development of medical care and research capabilities for the mitigation of potential health issues encountered during human space exploration missions. The aim of this process is to leverage technologies developed by academia, industry and other government agencies and to identify the effective utilization of NASA resources to maximize the HRP return on investment. The establishment of collaborations with these entities is beneficial to technology development, assessment and/or insertion, and advance NASA's goal to provide a safe and healthy environment for human exploration. In fiscal year 2013, the Tech Watch project maintained student project activity aimed at specific ExMC gaps, completed the gap report review cycle for all gaps through a maturated gap report review process, and revised the ExMC Tech Watch Sharepoint site for enhanced data content and organization. Through site visits, internships and promotions via aerospace journals, several student projects were initiated and completed this past year. Upon project completion, the students presented their results via telecom or WebEx to the ExMC Element as a whole. The upcoming year will continue to forge strategic alliances and student projects in the interest of technology and knowledge gap closure. Through the population of Sharepoint with technologies assessed by the gap owners, the database expansion will develop a more comprehensive technology set for each gap. By placing such data in Sharepoint, the gap report updates in fiscal year 2014 are anticipated to be streamlined since the evaluated technologies will be readily available to the gap owners in a sortable archive, and may be simply exported into the final gap report presentation

  2. ExMC Technology Watch

    NASA Technical Reports Server (NTRS)

    Krihak, M.; Watkins, S.; Shaw, T.

    2014-01-01

    The Technology Watch (Tech Watch) project is directed by the NASA Human Research Programs (HRP) Exploration Medical Capability (ExMC) element, and primarily focuses on ExMC technology gaps. The project coordinates the efforts of multiple NASA centers, including the Johnson Space Center (JSC), Glenn Research Center (GRC), Ames Research Center (ARC), and the Langley Research Center (LaRC). The objective of Tech Watch is to identify emerging, high-impact technologies that augment current NASA HRP technology development efforts. Identifying such technologies accelerates the development of medical care and research capabilities for the mitigation of potential health issues encountered during human space exploration missions. The aim of this process is to leverage technologies developed by academia, industry and other government agencies and to identify the effective utilization of NASA resources to maximize the HRP return on investment. The establishment of collaborations with these entities is beneficial to technology development, assessment and/or insertion, and advance NASAs goal to provide a safe and healthy environment for human exploration. In fiscal year 2013, the Tech Watch project maintained student project activity aimed at specific ExMC gaps, completed the gap report review cycle for all gaps through a maturated gap report review process, and revised the ExMC Tech Watch Sharepoint site for enhanced data content and organization. Through site visits, internships and promotions via aerospace journals, several student projects were initiated and completed this past year. Upon project completion, the students presented their results via telecom or WebEx to the ExMC Element as a whole. The upcoming year will continue to forge strategic alliances and student projects in the interest of technology and knowledge gap closure. Through the population of Sharepoint with technologies assessed by the gap owners, the database expansion will develop a more comprehensive technology set for each gap. By placing such data in Sharepoint, the gap report updates in fiscal year 2014 are anticipated to be streamlined since the evaluated technologies will be readily available to the gap owners in a sortable archive, and may be simply exported into the final gap report presentation.

  3. Assistive Technology for Preschoolers with Disabilities: Collected Resources. The Preschool Technology Training Team Project.

    ERIC Educational Resources Information Center

    Children's Hospital Medical Center of Akron, OH.

    The Preschool Technology Training Project was designed to develop and demonstrate a regional training model on the applications of assistive technology for preschoolers with disabilities. The goal of the training was to enable preschool special education teachers, related services personnel, and parents of young children with disabilities to…

  4. Integration of Innovative Technologies for Enhancing Students' Motivation for Science Learning and Career

    ERIC Educational Resources Information Center

    Xie, Yichun; Reider, David

    2014-01-01

    This paper analyzes the outcomes of an innovative technology experience for students and teachers (ITEST) project, Mayor's Youth Technology Corps (MYTCs) in Detroit, MI, which was funded by the NSF ITEST program. The MYTC project offered an integration of two technologies, geographic information system (GIS) and information assurance (IA), to…

  5. Videophone Technology and Students with Deaf-Blindness: A Method for Increasing Access and Communication

    ERIC Educational Resources Information Center

    Emerson, Judith; Bishop, John

    2012-01-01

    Introduction: Seeing the Possibilities with Videophone Technology began as research project funded by the National Center for Technology Innovation. The project implemented a face-to-face social networking program for students with deaf-blindness to investigate the potential for increasing access and communication using videophone technology.…

  6. How Undergraduate Students Use Social Media Technologies to Support Group Project Work

    ERIC Educational Resources Information Center

    McAliney, Peter J.

    2013-01-01

    Technology continues to evolve and become accessible to students in higher education. Concurrently, teamwork has become an important skill in academia and the workplace and students have adopted established technologies to support their learning in both individual and team project work. Given the emergence of social media technologies, I examined…

  7. Accelerating Project and Process Improvement using Advanced Software Simulation Technology: From the Office to the Enterprise

    DTIC Science & Technology

    2010-04-29

    Technology: From the Office Larry Smith Software Technology Support Center to the Enterprise 517 SMXS/MXDEA 6022 Fir Avenue Hill AFB, UT 84056 801...2010 to 00-00-2010 4. TITLE AND SUBTITLE Accelerating Project and Process Improvement using Advanced Software Simulation Technology: From the Office to

  8. Diffusion of Appropriate Educational Technology in Open & Distance Learning in Developing Commonwealth Countries. Final Project Report.

    ERIC Educational Resources Information Center

    Williams, Roy

    The Diffusion of Appropriate Educational Technology in Open and Distance Learning in Developing Countries project was designed to determine awareness and use of educational technologies and communications media in developing countries, to identify factors constraining wider use of educational technologies by developing nations, and to explore…

  9. NASA Fixed Wing Project: Green Technologies for Future Aircraft Generation

    NASA Technical Reports Server (NTRS)

    DelRosario, Ruben

    2014-01-01

    The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advances in multidisciplinary technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the FW Project vision of revolutionary systems and technologies needed to achieve the challenging goals of aviation. Specifically, the primary focus of the FW Project is on the N+3 generation that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehoff, Ryan R.; List, III, Frederick Alyious; Carver, Keith

    ORNL Manufacturing Demonstration Facility worked with ECM Technologies LLC to investigate the use of precision electro-chemical machining technology to polish the surface of parts created by Arcam electron beam melting. The goals for phase one of this project have been met. The project goal was to determine whether electro-chemical machining is a viable method to improve the surface finish of Inconel 718 parts fabricated using the Arcam EBM method. The project partner (ECM) demonstrated viability for parts of both simple and complex geometry. During the course of the project, detailed process knowledge was generated. This project has resulted in themore » expansion of United States operations for ECM Technologies.« less

  11. Technology Investments in the NASA Entry Systems Modeling Project

    NASA Technical Reports Server (NTRS)

    Barnhardt, Michael; Wright, Michael; Hughes, Monica

    2017-01-01

    The Entry Systems Modeling (ESM) technology development project, initiated in 2012 under NASAs Game Changing Development (GCD) Program, is engaged in maturation of fundamental research developing aerosciences, materials, and integrated systems products for entry, descent, and landing(EDL)technologies [1]. To date, the ESM project has published over 200 papers in these areas, comprising the bulk of NASAs research program for EDL modeling. This presentation will provide an overview of the projects successes and challenges, and an assessment of future investments in EDL modeling and simulation relevant to NASAs mission

  12. The implementation of the Human Exploration Demonstration Project (HEDP), a systems technology testbed

    NASA Technical Reports Server (NTRS)

    Rosen, Robert; Korsmeyer, David J.

    1993-01-01

    The Human Exploration Demonstration Project (HEDP) is an ongoing task at the NASA's Ames Research Center to address the advanced technology requirements necessary to implement an integrated working and living environment for a planetary surface habitat. The integrated environment consists of life support systems, physiological monitoring of project crew, a virtual environment work station, and centralized data acquisition and habitat systems health monitoring. The HEDP is an integrated technology demonstrator, as well as an initial operational testbed. There are several robotic systems operational in a simulated planetary landscape external to the habitat environment, to provide representative work loads for the crew. This paper describes the evolution of the HEDP from initial concept to operational project; the status of the HEDP after two years; the final facilities composing the HEDP; the project's role as a NASA Ames Research Center systems technology testbed; and the interim demonstration scenarios that have been run to feature the developing technologies in 1993.

  13. I-95 Corridor Coalition Project #3 (95-003) : surveillance requirements/technology

    DOT National Transportation Integrated Search

    1995-06-23

    The purpose of this Surveillance Requirements/Technology (SR/T) Project is to develop an : implementation plan for a Corridor-wide traffic and environmental surveillance system using state-of-the-art and cost-effective technologies. To fulfill this p...

  14. 7 CFR 2.89 - Chief Information Officer.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... continue, modify, or terminate an information technology program or project. (3) Provide advice and other... computer-based systems for message exchange, scheduling, computer conferencing, televideo technologies, and... removal or replacement of information technology project managers, when, in the opinion of the Chief...

  15. 7 CFR 2.89 - Chief Information Officer.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... continue, modify, or terminate an information technology program or project. (3) Provide advice and other... computer-based systems for message exchange, scheduling, computer conferencing, televideo technologies, and... removal or replacement of information technology project managers, when, in the opinion of the Chief...

  16. Truck size and weight enforcement technologies : state of the practice

    DOT National Transportation Integrated Search

    2009-05-01

    This report is a deliverable of Task 2 of FHWAs Truck Size and Weight Enforcement Technology Project. The primary project objective was to recommend strategies to encourage the deployment of roadside technologies to improve truck size and weight e...

  17. Johnson Space Center Research and Technology 1997 Annual Report

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This report highlights key projects and technologies at Johnson Space Center for 1997. The report focuses on the commercial potential of the projects and technologies and is arranged by CorpTech Major Products Groups. Emerging technologies in these major disciplines we summarized: solar system sciences, life sciences, technology transfer, computer sciences, space technology, and human support technology. Them NASA advances have a range of potential commercial applications, from a school internet manager for networks to a liquid metal mirror for optical measurements.

  18. Food irradiation: Technology transfer in Asia, practical experiences

    NASA Astrophysics Data System (ADS)

    Kunstadt, Peter; Eng, P.

    1993-10-01

    Nordion International Inc., in cooperation with the Thai Office of Atomic Energy for Peace (OAEP) and the Canadian International Development Agency (CIDA) recently completed a unique food irradiation technology transfer project in Thailand. This complete food irradiation technology transfer project included the design and construction of an automatic multipurpose irradiation facility as well as the services of construction and installation management and experts in facility operation, maintenance and training. This paper provides an insight into the many events that led to the succesful conclusion of the world's first complete food irradiation technology transfer project.

  19. Smart gun technology requirements preliminary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, D.R.; Brandt, D.J.; Tweet, K.D.

    Goal of the Smart Gun Technology project is to eliminate the capability of an unauthorized user from firing a law enforcement officer`s firearm by implementing user-recognizing-and-authorizing surety technologies. This project is funded by the National Institute of Justice. This document reports the projects first objective: to find and document the requirements for a user-recognizing-and-authorizing firearm technology that law enforcement officers will value. This report details the problem of firearm takeaways in law enforcement, the methodology used to develop the law enforcement officers` requirements, and the requirements themselves.

  20. Technology as the Language of Schooling: Utopian Visions of Technology in Swedish General Education in the 1960s

    ERIC Educational Resources Information Center

    Hultén, Magnus

    2013-01-01

    In the state-of-the-art Glass Project run by the Swedish National Agency for Education during the second half of the 1960s, a new type of comprehensive technology education was developed. The project had little impact on school practice and was soon forgotten about. However, the project is interesting from several points of view. First, it…

Top