Sample records for technology application team

  1. NASA Application Team Program: Application of aerospace technology in biology and medicine

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The results of the medically related activities of the NASA Application Team Program in technology application for the reporting period September 1, 1972, to August 31, 1973 are reported. The accomplishments of the application team during the reporting period are as follows: The team has identified 39 new problems for investigation, has accomplished 7 technology applications, 4 potential technology applications, 2 impacts, has closed 38 old problems, and has a total of 59 problems under active investigation.

  2. Applications of aerospace technology in biology and medicine

    NASA Technical Reports Server (NTRS)

    Brown, J. N.

    1974-01-01

    The results of the medically related activities of the NASA Application Team Program at the Research Triangle Institute are presented. The RTI team, a multidisciplinary team of scientists and engineers, acted as an information and technology interface between NASA and individuals, institutions, and agencies involved in biomedical research and clinical medicine. The Team has identified 40 new problems for investigation, has accomplished 7 technology applications, 6 potential technology application, 4 impacts, has closed 54 old problems, and has a total of 47 problems under active investigation.

  3. Applications of aerospace technology in biology and medicine

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The results are reported of the medically related activities of the NASA Application Team Program at the Research Triangle Institute. Fourteen medical organizations are presently participating in the RTI Application Team Program: The accomplishments of the Research Triangle Institute Application Team during the reporting period were as follows: The team identified 21 new problems for investigation, accomplished 4 technology applications and 3 potential technology applications, closed 21 old problems, and on February 28, 1973, had a total of 57 problems under active investigation.

  4. NASA technology applications team: Applications of aerospace technology

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This report covers the activities of the Research Triangle Institute (RTI) Technology Applications Team for the period 1 October 1992 through 30 September 1993. The work reported herein was supported by the National Aeronautics and Space Administration (NASA), Contract No. NASW-4367. Highlights of the RTI Applications Team activities over the past year are presented in Section 1.0. The Team's progress in fulfilling the requirements of the contract is summarized in Section 2.0. In addition to our market-driven approach to applications project development, RTI has placed increased effort on activities to commercialize technologies developed at NASA Centers. These Technology Commercialization efforts are summarized in Section 3.0. New problem statements prepared by the Team in the reporting period are presented in Section 4.0. The Team's transfer activities for ongoing projects with the NASA Centers are presented in Section 5.0. Section 6.0 summarizes the status of four add-on tasks. Travel for the reporting period is described in Section 7.0. The RTI Team staff and consultants and their project responsibilities are listed in Appendix A. Appendix B includes Technology Opportunity Announcements and Spinoff! Sheets prepared by the Team while Appendix C contains a series of technology transfer articles prepared by the Team.

  5. Technology Applications Team: Applications of aerospace technology

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Highlights of the Research Triangle Institute (RTI) Applications Team activities over the past quarter are presented in Section 1.0. The Team's progress in fulfilling the requirements of the contract is summarized in Section 2.0. In addition to our market-driven approach to applications project development, RTI has placed increased effort on activities to commercialize technologies developed at NASA Centers. These Technology Commercialization efforts are summarized in Section 3.0. New problem statements prepared by the Team in the reporting period are presented in Section 4.0. The Team's transfer activities for ongoing projects with the NASA Centers are presented in Section 5.0. Section 6.0 summarizes the status of four add-on tasks. Travel for the reporting period is described in Section 7.0. The RTI Team staff and consultants and their project responsibilities are listed in Appendix A. The authors gratefully acknowledge the contributions of many individuals to the RTI Technology Applications Team program. The time and effort contributed by managers, engineers, and scientists throughout NASA were essential to program success. Most important to the program has been a productive working relationship with the NASA Field Center Technology Utilization (TU) Offices. The RTI Team continues to strive for improved effectiveness as a resource to these offices. Industry managers, technical staff, medical researchers, and clinicians have been cooperative and open in their participation. The RTI Team looks forward to continuing expansion of its interaction with U.S. industry to facilitate the transfer of aerospace technology to the private sector.

  6. Applications of aerospace technology in biology and medicine

    NASA Technical Reports Server (NTRS)

    Wooten, F. T.

    1972-01-01

    The results are presented of the medically related activities of the NASA Application Team Program at the Research Triangle Institute. The accomplishments of the Research Triangle Institute Application Team during the reporting period are as follows: The team has identified 44 new problems for investigation, has accomplished 8 technology applications and 8 potential technology applications, has closed 88 old problems, and reactivated 3 old problems, and on August 31, 1972, has a total of 57 problems under active investigation.

  7. Biomedical research and aerospace technology applications

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The accomplishments and activities of an Applications Team for biomedical subjects are presented. The team attempts to couple the technological problems and requirements in medicine with the relevant aerospace technology and, in particular, NASA-generated technology. The team actively engages in identifying these problems through direct contact with medical staffs or problem originators. The identification and specification of medical problems is followed by a search for technology which may be relevant to solutions to these problems.

  8. A status of the Turbine Technology Team activities

    NASA Technical Reports Server (NTRS)

    Griffin, Lisa W.

    1992-01-01

    The recent activities of the Turbine Technology Team of the Consortium for Computational Fluid Dynamics (CFD) Application in Propulsion Technology is presented. The team consists of members from the government, industry, and universities. The goal of this team is to demonstrate the benefits to the turbine design process attainable through the application of CFD. This goal is to be achieved by enhancing and validating turbine design tools for improved loading and flowfield definition and loss prediction, and transferring the advanced technology to the turbine design process. In order to demonstrate the advantages of using CFD early in the design phase, the Space Transportation Main Engine (STME) turbines for the National Launch System (NLS) were chosen on which to focus the team's efforts. The Turbine Team activities run parallel to the STME design work.

  9. Technology and Economics, Inc. Technology Application Team

    NASA Technical Reports Server (NTRS)

    Ballard, T.; Macfadyen, D. J.

    1981-01-01

    Technology + Economics, Inc. (T+E), under contract to the NASA Headquarters Technology Transfer Division, operates a Technology Applications Team (TATeam) to assist in the transfer of NASA-developed aerospace technology. T+E's specific areas of interest are selected urban needs at the local, county, and state levels. T+E contacts users and user agencies at the local, state, and county levels to assist in identifying significant urban needs amenable to potential applications of aerospace technology. Once viable urban needs have been identified in this manner, or through independent research, T+E searches the NASA technology database for technology and/or expertise applicable to the problem. Activities currently under way concerning potential aerospace applications are discussed.

  10. NASA technology applications team. Applications of aerospace technology

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Discussed here are the activities of the Research Triangle Institute (RTI) Technology Applications Team for the period 1 October 1990 through 30 September 1991. Topics researched include automated data acquisition and analysis of highway pavement cracking, thermal insulation for refrigerators, the containment of paint removed from steel structures, improved technologies for Kuwait oil well control, sprayed zinc coatings for corrosion control of reinforcing steel in bridges, and the monitoring and life support of medically fragile children in the educational setting.

  11. 15 CFR 270.1 - Description of rule; purpose; applicability.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS General § 270.1 Description of rule; purpose; applicability. (a) The National Construction Safety Team Act (the Act) (Pub. L. 107-231) provides for the establishment of...

  12. 15 CFR 270.1 - Description of rule; purpose; applicability.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS General § 270.1 Description of rule; purpose; applicability. (a) The National Construction Safety Team Act (the Act) (Pub. L. 107-231) provides for the establishment of...

  13. 15 CFR 270.1 - Description of rule; purpose; applicability.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS General § 270.1 Description of rule; purpose; applicability. (a) The National Construction Safety Team Act (the Act) (Pub. L. 107-231) provides for the establishment of...

  14. 15 CFR 270.1 - Description of rule; purpose; applicability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS General § 270.1 Description of rule; purpose; applicability. (a) The National Construction Safety Team Act (the Act) (Pub. L. 107-231) provides for the establishment of...

  15. 15 CFR 270.1 - Description of rule; purpose; applicability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS General § 270.1 Description of rule; purpose; applicability. (a) The National Construction Safety Team Act (the Act) (Pub. L. 107-231) provides for the establishment of...

  16. Understanding Human Autonomy Teaming Through Applications

    NASA Technical Reports Server (NTRS)

    Aponso, B.; Stallmann, Summer; Lachter, Joel; Shively, Jay; Benton, J.; Kaneshige, John; Mumaw, Randy; Feary, Michael

    2017-01-01

    This presentation describes the development and demonstration of human autonomy teaming technologies for improving aviation safety and efficiency during nominal and off-nominal operations by developing and validating increasingly autonomous systems concepts, technologies, and procedures.

  17. Manufacturing process applications team (MATeam)

    NASA Technical Reports Server (NTRS)

    Bangs, E. R.; Meyer, J. D.

    1978-01-01

    Activities of the manufacturing applications team (MATeam) in effecting widespread transfer of NASA technology to aid in the solution of manufacturing problems in the industrial sector are described. During the program's first year of operation, 450 companies, industry associations, and government agencies were contacted, 150 manufacturing problems were documented, and 20 potential technology transfers were identified. Although none of the technology transfers has been commercialized and put in use, several are in the applications engineering phase, and others are in the early stages of implementation. The technology transfer process is described and guidelines used for the preparation of problems statements are included.

  18. Applications of aerospace technology

    NASA Technical Reports Server (NTRS)

    Rouse, Doris J.

    1984-01-01

    The objective of the Research Triangle Institute Technology Transfer Team is to assist NASA in achieving widespread utilization of aerospace technology in terrestrial applications. Widespread utilization implies that the application of NASA technology is to benefit a significant sector of the economy and population of the Nation. This objective is best attained by stimulating the introduction of new or improved commercially available devices incorporating aerospace technology. A methodology is presented for the team's activities as an active transfer agent linking NASA Field Centers, industry associations, user groups, and the medical community. This methodology is designed to: (1) identify priority technology requirements in industry and medicine, (2) identify applicable NASA technology that represents an opportunity for a successful solution and commercial product, (3) obtain the early participation of industry in the transfer process, and (4) successfully develop a new product based on NASA technology.

  19. Applications of aerospace technology in biology and medicine

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Results of the medically related activities of the NASA Application Team Program at the Research Triangle Institute are reported. A survey of more than 300 major medical device manufacturers has been initiated for the purpose of determining their interest and opinions in regard to participating in the NASA Technology Utilization Program. Design and construction has been commissioned of a permanent exhibit of NASA Biomedical Application Team accomplishments for the aerospace building of the North Carolina Museum of Life and Science at Durham, North Carolina. The team has also initiated an expansion of its activities into the Northeastern United States.

  20. NASA Technology Applications Team: Commercial applications of aerospace technology

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Research Triangle Institute (RTI) is pleased to report the results of NASA contract NASW-4367, 'Operation of a Technology Applications Team'. Through a period of significant change within NASA, the RTI Team has maintained its focus on helping NASA establish partnerships with U.S. industry for dual use development and technology commercialization. Our emphasis has been on outcomes, such as licenses, industry partnerships and commercialization of technologies that are important to NASA in its mission of contributing to the improved competitive position of U.S. industry. RTI's ongoing commitment to quality and customer responsiveness has driven our staff to continuously improve our technology transfer methodologies to meet NASA's requirements. For example, RTI has emphasized the following areas: (1) Methodology For Technology Assessment and Marketing: RTI has developed an implemented effective processes for assessing the commercial potential of NASA technologies. These processes resulted from an RTI study of best practices, hands-on experience, and extensive interaction with the NASA Field Centers to adapt to their specific needs; (2) Effective Marketing Strategies: RTI surveyed industry technology managers to determine effective marketing tools and strategies. The Technology Opportunity Announcement format and content were developed as a result of this industry input. For technologies with a dynamic visual impact, RTI has developed a stand-alone demonstration diskette that was successful in developing industry interest in licensing the technology; and (3) Responsiveness to NASA Requirements: RTI listened to our customer (NASA) and designed our processes to conform with the internal procedures and resources at each NASA Field Center and the direction provided by NASA's Agenda for Change. This report covers the activities of the Research Triangle Institute Technology Applications Team for the period 1 October 1993 through 31 December 1994.

  1. Medically related activities of application team program

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Application team methodology identifies and specifies problems in technology transfer programs to biomedical areas through direct contact with users of aerospace technology. The availability of reengineering sources increases impact of the program on the medical community and results in broad scale application of some bioinstrumentation systems. Examples are given that include devices adapted to the rehabilitation of neuromuscular disorders, power sources for artificial organs, and automated monitoring and detection equipment in clinical medicine.

  2. The Use of Constructive Modeling and Virtual Simulation in Large-Scale Team Training: A Military Case Study.

    ERIC Educational Resources Information Center

    Andrews, Dee H.; Dineen, Toni; Bell, Herbert H.

    1999-01-01

    Discusses the use of constructive modeling and virtual simulation in team training; describes a military application of constructive modeling, including technology issues and communication protocols; considers possible improvements; and discusses applications in team-learning environments other than military, including industry and education. (LRW)

  3. 76 FR 10403 - Hewlett Packard (HP), Global Product Development, Engineering Workstation Refresh Team, Working...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-24

    ...), Global Product Development, Engineering Workstation Refresh Team, Working On-Site at General Motors... groups: The Non-Information Technology Business Development Team, the Engineering Application Support Team, and the Engineering Workstation Refresh Team. On February 2, 2011, the Department issued an...

  4. Manufacturing Process Applications Team (MATeam)

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The activities of the Manufacturing Process Applications Team concerning the promotion of joint Industry/Federal Agency/NASA funded research and technology operating plan (RTOP) programs are reported. Direct transfers occurred in cutting tools, laser wire stripping, soldering, and portable X-ray unit technology. TROP program funding approval was obtained for the further development of the cutting tool Sialon and development of an automated nondestructive fracture toughness testing system.

  5. Activities of the NASA sponsored SRI technology applications team in transferring aerospace technology to the public sector

    NASA Technical Reports Server (NTRS)

    Berke, J. G.

    1971-01-01

    The organization and functions of an interdisciplinary team for the application of aerospace generated technology to the solution of discrete technological problems within the public sector are presented. The interdisciplinary group formed at Stanford Research Institute, California is discussed. The functions of the group are to develop and conduct a program not only optimizing the match between public sector technological problems in criminalistics, transportation, and the postal services and potential solutions found in the aerospace data base, but ensuring that appropriate solutions are acutally utilized. The work accomplished during the period from July 1, 1970 to June 30, 1971 is reported.

  6. Infusing informatics into interprofessional education: the iTEAM (Interprofessional Technology Enhanced Advanced practice Model) project.

    PubMed

    Skiba, Diane J; Barton, Amy J; Knapfel, Sarah; Moore, Gina; Trinkley, Katy

    2014-01-01

    The iTEAM goal is to prepare advanced practice nurses, physicians and pharmacists with the interprofessional (IP) core competencies (informatics, patient centric, quality-focused, evidence based care) to provide technology enhanced collaborative care by: offering technology enhanced learning opportunities through a required informatics course, advanced practice courses (team based experiences with both standardized and virtual patients) and team based clinical experiences including e-health experiences. The innovative features of iTEAM project will be achieved through use of social media strategies, a web accessible Electronic Health Records (EHRs) system, a Virtual Clinic/Hospital in Second Life, various e-health applications including traditional telehealth tools and consumer oriented tools such as patient portals, social media consumer groups and mobile health (m-health) applications for health and wellness functions. It builds upon the schools' rich history of IP education and includes clinical partners, such as the VA and other clinical sites focused on care for underserved patient populations.

  7. NASA Technology Applications Team: Commercial applications of aerospace technology

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Research Triangle Institute (RTI) Team has maintained its focus on helping NASA establish partnerships with U.S. industry for dual use development and technology commercialization. Our emphasis has been on outcomes, such as licenses, industry partnerships and commercialization of technologies, that are important to NASA in its mission of contributing to the improved competitive position of U.S. industry. The RTI Team has been successful in the development of NASA/industry partnerships and commercialization of NASA technologies. RTI ongoing commitment to quality and customer responsiveness has driven our staff to continuously improve our technology transfer methodologies to meet NASA's requirements. For example, RTI has emphasized the following areas: (1) Methodology For Technology Assessment and Marketing: RTI has developed and implemented effective processes for assessing the commercial potential of NASA technologies. These processes resulted from an RTI study of best practices, hands-on experience, and extensive interaction with the NASA Field Centers to adapt to their specific needs. (2) Effective Marketing Strategies: RTI surveyed industry technology managers to determine effective marketing tools and strategies. The Technology Opportunity Announcement format and content were developed as a result of this industry input. For technologies with a dynamic visual impact, RTI has developed a stand-alone demonstration diskette that was successful in developing industry interest in licensing the technology. And (3) Responsiveness to NASA Requirements: RTI listened to our customer (NASA) and designed our processes to conform with the internal procedures and resources at each NASA Field Center and the direction provided by NASA's Agenda for Change. This report covers the activities of the Research Triangle Institute Technology Applications Team for the period 1 October 1993 through 31 December 1994.

  8. ARPA-E: Guiding Technologies to Commercial Success

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuttle, John; Aizenberg, Joanna; Madrone, Leila

    ARPA-E’s Technology-to-Market Advisors work closely with each ARPA-E project team to develop and execute a commercialization strategy. ARPA-E requires our teams to focus on their commercial path forward, because we understand that to have an impact on our energy mission, technologies must have a viable path into the marketplace. ARPA-E Senior Commercialization Advisor Dr. John Tuttle discusses what this Tech-to-Market guidance in practice looks like with reference to two project teams. OPEN 2012 awardees from Harvard University and Sunfolding share their stories of how ARPA-E worked with their teams to analyze market conditions and identify commercial opportunities that ultimately convincedmore » them to pivot their technologies towards market applications with greater potential.« less

  9. The Cascading Impacts of Technology Selection: Incorporating Ruby on Rails into ECHO

    NASA Astrophysics Data System (ADS)

    Pilone, D.; Cechini, M.

    2010-12-01

    NASA’s Earth Observing System (EOS) ClearingHOuse (ECHO) is a SOA based Earth Science Data search and order system implemented in Java with one significant exception: the web client used by 98% of our users is written in Perl. After several decades of maintenance the Perl based application had reached the end of its serviceable life and ECHO was tasked with implementing a replacement. Despite a broad investment in Java, the ECHO team conducted a survey of modern development technologies including Flex, Python/Django, JSF2/Spring and Ruby on Rails. The team ultimately chose Ruby on Rails (RoR) with Cucumber for testing due to its perceived applicability to web application development and corresponding development efficiency gains. Both positive and negative impacts on the entire ECHO team, including our stakeholders, were immediate and sometimes subtle. The technology selection caused shifts in our architecture and design, development and deployment procedures, requirement definition approach, testing approach, and, somewhat surprisingly, our project team structure and software process. This presentation discusses our experiences, including technical, process, and psychological, using RoR on a production system. During this session we will discuss: - Real impacts of introducing a dynamic language to a Java team - Real and perceived efficiency advantages - Impediments to adoption and effectiveness - Impacts of transition from Test Driven Development to Behavior Driven Development - Leveraging Cucumber to provide fully executable requirement documents - Impacts on team structure and roles

  10. Proceedings of the International Academy for Information Management (IAIM) Annual Conference (13th, Helsinki, Finland, December 11-13, 1998).

    ERIC Educational Resources Information Center

    Rogers, Camille, Ed.

    The conference paper topics include: business and information technology (IT) education; knowledge management; teaching software applications; development of multimedia teaching materials; technology job skills in demand; IT management for executives; self-directed teams in information systems courses; a team building exercise to software…

  11. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    The NASA Centennial Challenges prize, level one, is presented to team Mountaineers for successfully completing level one of the NASA 2014 Sample Return Robot Challenge, from left, Ryan Watson, Team Mountaineers; Lucas Behrens, Team Mountaineers; Jarred Strader, Team Mountaineers; Yu Gu, Team Mountaineers; Scott Harper, Team Mountaineers; Dorothy Rasco, NASA Deputy Associate Administrator for the Space Technology Mission Directorate; Laurie Leshin, Worcester Polytechnic Institute (WPI) President; David Miller, NASA Chief Technologist; Alexander Hypes, Team Mountaineers; Nick Ohi,Team Mountaineers; Marvin Cheng, Team Mountaineers; Sam Ortega, NASA Program Manager for Centennial Challenges; and Tanmay Mandal, Team Mountaineers;, Saturday, June 14, 2014, at Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team Mountaineers was the only team to complete the level one challenge. During the competition, teams were required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge was to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  12. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    The NASA Centennial Challenges prize, level one, is presented to team Mountaineers for successfully completing level one of the NASA 2014 Sample Return Robot Challenge, from left, Ken Stafford, WPI Challenge technical advisor; Colleen Shaver, WPI Challenge Manager; Ryan Watson, Team Mountaineers; Marvin Cheng, Team Mountaineers; Alexander Hypes, Team Mountaineers; Jarred Strader, Team Mountaineers; Lucas Behrens, Team Mountaineers; Yu Gu, Team Mountaineers; Nick Ohi, Team Mountaineers; Dorothy Rasco, NASA Deputy Associate Administrator for the Space Technology Mission Directorate; Scott Harper, Team Mountaineers; Tanmay Mandal, Team Mountaineers; David Miller, NASA Chief Technologist; Sam Ortega, NASA Program Manager for Centennial Challenges, Saturday, June 14, 2014, at Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team Mountaineers was the only team to complete the level one challenge. During the competition, teams were required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge was to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  13. PERVAPORATION TECHNOLOGY RESEARCH IN INDUSTRIAL POLLUTION PREVENTION APPLICATIONS

    EPA Science Inventory

    The objective of this presentation is to describe research activities with USDPA's NRMRL Prevaporation Team pertaining to industrial waste. The presentation will provide a brief introduction to pervaporation technology theory and applications. Pervaporation is a membrane separ...

  14. JTEC monograph on biodegradable polymers and plastics in Japan: Research, development, and applications

    NASA Technical Reports Server (NTRS)

    Lenz, Robert W.

    1995-01-01

    A fact-finding team of American scientists and engineers visited Japan to assess the status of research and development and applications in biodegradable polymers. The visit was sponsored by the National Science Foundation and industry. In Japan, the team met with representatives of 31 universities, government ministries and institutes, companies, and associations. Japan's national program on biodegradable polymers and plastics evaluates new technologies, testing methods, and potential markets for biodegradables. The program is coordinated by the Biodegradable Plastics Society of Japan, which seeks to achieve world leadership in biodegradable polymer technology and identify commercial opportunities for exploiting this technology. The team saw no major new technology breakthroughs. Japanese scientists and engineers are focusing on natural polymers from renewable resources, synthetic polymers, and bacterially-produced polymers such as polyhydroxyalkanoates, poly(amino acids), and polysaccharides. The major polymers receiving attention are the Zeneca PHBV copolymers, Biopol(registered trademark), poly(lactic acid) from several sources, polycaprolactone, and the new synthetic polyester, Bionolle(registered trademark), from Showa High Polymer. In their present state of development, these polymers all have major deficiencies that inhibit their acceptance for large-scale applications.

  15. Advanced Metalworking Solutions for Naval Systems that Go in Harm’s Way

    DTIC Science & Technology

    2010-11-10

    TECHNOLOGIES An NMC project team designed, built, and demonstrated at Concurrent Technologies Corporation a low-cost, transportable friction stir welding (LC...technologies for use in shipbuilding applications. For example, NMC and its team members are currently advancing friction stir welding (FSW...lower the cost of Navy ships and improve the quality of ship components. NMC is modifying its previously designed low-cost friction stir welding

  16. NASA spinoffs to bioengineering and medicine

    NASA Technical Reports Server (NTRS)

    Rouse, Doris J.; Winfield, Daniel L.; Canada, S. Catherine

    1989-01-01

    The societal and economic benefits derived from the application of aerospace technology to improved health care are examined, and examples of the space-technology spinoffs are presented. Special attention is given to the applications of aerospace technology from digital image processing, space medicine and biology, microelectronics, optics and electrooptics, and ultrasonic imaging. The role of the NASA Technology Application Team in helping the potential technology users to identify and evaluate the technology transfer opportunities and to apply space technology in the field of medicine is discussed.

  17. Useful new technology

    NASA Technical Reports Server (NTRS)

    1971-01-01

    An information booklet on the Technology Utilization program is presented. Industrial benefits, how to obtain technological data, special publications, Regional Dissemination Centers, multidisciplinary application teams, interagency activities, and patents and licenses are described briefly.

  18. The Potential of Grant Applications as Team Building Exercises: A Case Study

    ERIC Educational Resources Information Center

    Siemens, Lynne

    2010-01-01

    Faced with increasingly complex and technologically sophisticated research questions, academics are working with others through collaboration and research teams. To be effective, these research teams need to maximize the factors that contribute to success while minimizing the potentially negative impact of associated challenges. One particular…

  19. 15 CFR 270.2 - Definitions used in this part.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS General § 270.2 Definitions used in this part. The following definitions are applicable to this part: Act. The National Construction Safety Team Act (Pub. L. 107-231, 116 Stat. 1471...

  20. 15 CFR 270.2 - Definitions used in this part.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS General § 270.2 Definitions used in this part. The following definitions are applicable to this part: Act. The National Construction Safety Team Act (Pub. L. 107-231, 116 Stat. 1471...

  1. 15 CFR 270.2 - Definitions used in this part.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS General § 270.2 Definitions used in this part. The following definitions are applicable to this part: Act. The National Construction Safety Team Act (Pub. L. 107-231, 116 Stat. 1471...

  2. 15 CFR 270.2 - Definitions used in this part.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS General § 270.2 Definitions used in this part. The following definitions are applicable to this part: Act. The National Construction Safety Team Act (Pub. L. 107-231, 116 Stat. 1471...

  3. 15 CFR 270.2 - Definitions used in this part.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS General § 270.2 Definitions used in this part. The following definitions are applicable to this part: Act. The National Construction Safety Team Act (Pub. L. 107-231, 116 Stat. 1471...

  4. The feasibility of a unified role for NASA regional dissemination centers and technology application teams

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Insights and recommendations arising from a study of the feasibility of combining the NASA Regional Dissemination Center (RDC) and Technology Application Team (Tateam) roles to form Regional Application Centers (RADC's) are presented. The apparent convergence of the functions of RDC's and Tateams is demonstrated and strongly supportive of the primary recommendation that an applications function be added to those already being performed by the RDC's. The basis of a national network for technology transfer and public and private sector problem solving is shown to exist, the skeleton of which is an interactive network of Regional Application Centers and NASA Field Centers. The feasibility of developing and extending this network is considered and the detailed ramifications of so doing are discussed and the imperatives emphasized. It is hypothesized that such a national network could become relatively independent of NASA funding within five years.

  5. Hypermedia and intelligent tutoring applications in a mission operations environment

    NASA Technical Reports Server (NTRS)

    Ames, Troy; Baker, Clifford

    1990-01-01

    Hypermedia, hypertext and Intelligent Tutoring System (ITS) applications to support all phases of mission operations are investigated. The application of hypermedia and ITS technology to improve system performance and safety in supervisory control is described - with an emphasis on modeling operator's intentions in the form of goals, plans, tasks, and actions. Review of hypermedia and ITS technology is presented as may be applied to the tutoring of command and control languages. Hypertext based ITS is developed to train flight operation teams and System Test and Operation Language (STOL). Specific hypermedia and ITS application areas are highlighted, including: computer aided instruction of flight operation teams (STOL ITS) and control center software development tools (CHIMES and STOL Certification Tool).

  6. Team climate and attitudes toward information and communication technology among nurses on acute psychiatric wards.

    PubMed

    Koivunen, Marita; Anttila, Minna; Kuosmanen, Lauri; Katajisto, Jouko; Välimäki, Maritta

    2015-01-01

    Objectives: To describe the association of team climate with attitudes toward information and communication technology among nursing staff working on acute psychiatric wards. Background: Implementation of ICT applications in nursing practice brings new operating models to work environments, which may affect experienced team climate on hospital wards. Method: Descriptive survey was used as a study design. Team climate was measured by the Finnish modification of the Team Climate Inventory, and attitudes toward ICT by Burkes' questionnaire. The nursing staff (N = 181, n = 146) on nine acute psychiatric wards participated in the study. Results: It is not self-evident that experienced team climate associates with attitudes toward ICT, but there are some positive relationships between perceived team climate and ICT attitudes. The study showed that nurses' motivation to use ICT had statistically significant connections with experienced team climate, participative safety (p = 0.021), support for innovation (p = 0.042) and task orientation (p = 0.042). Conclusion: The results suggest that asserting team climate and supporting innovative operations may lead to more positive attitudes toward ICT. It is, in particular, possible to influence nurses' motivation to use ICT. More attention should be paid to psychosocial factors such as group education and co-operation at work when ICT applications are implemented in nursing.

  7. Virtual Teams and Human Work Interaction Design - Learning to Work in and Designing for Virtual Teams

    NASA Astrophysics Data System (ADS)

    Orngreen, Rikke; Clemmensen, Torkil; Pejtersen, Annelise Mark

    The boundaries and work processes for how virtual teams interact are undergoing changes, from a tool and stand-alone application orientation, to the use of multiple generic platforms chosen and redesigned to the specific context. These are often at the same time designed both by professional software developers and the individual members of the virtual teams, rather than determined on a single organizational level. There may be no impact of the technology per se on individuals, groups or organizations, as the technology for virtual teams rather enhance situation ambiguity and disrupt existing task-artifact cycles. This ambiguous situation calls for new methods for empirical work analysis and interaction design that can help us understand how organizations, teams and individuals learn to organize, design and work in virtual teams in various networked contexts.

  8. NASA Technology Applications Team

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The contributions of NASA to the advancement of the level of the technology base of the United States are highlighted. Technological transfer from preflight programs, the Viking program, the Apollo program, and the Shuttle and Skylab programs is reported.

  9. Southwest Research Institute assistance to NASA in biomedical areas of the technology utilization program

    NASA Technical Reports Server (NTRS)

    Culclasure, D. F.; Sigmon, J. L.; Carter, J. M.

    1973-01-01

    The activities are reported of the NASA Biomedical Applications Team at Southwest Research Institute between 25 August, 1972 and 15 November, 1973. The program background and methodology are discussed along with the technology applications, and biomedical community impacts.

  10. Applications of aerospace technology in the environmental sciences

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Detailed information is reported on the operations and accomplishments of the RTI Technology Application Team for the period October 11, 1971 to March 10, 1972. Mathematical models for prediction of pollutant formation during combustion are discussed along with generic areas of air pollution problems, which NASA technology offers a high potential for solving. Recommendations for future work are included.

  11. An Overview of High Temperature Seal Development and Testing Capabilities at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Demange, Jeffrey J.; Taylor, Shawn C.; Dunlap, Patrick H.; Steinetz, Bruce M.; Finkbeiner, Joshua R.; Proctor, Margaret P.

    2014-01-01

    The NASA Glenn Research Center (GRC), partnering with the University of Toledo, has a long history of developing and testing seal technologies for high-temperature applications. The GRC Seals Team has conducted research and development on high-temperature seal technologies for applications including advanced propulsion systems, thermal protection systems (airframe and control surface thermal seals), high-temperature preloading technologies, and other extreme-environment seal applications. The team has supported several high-profile projects over the past 30 years and has partnered with numerous organizations, including other government entities, academic institutions, and private organizations. Some of these projects have included the National Aerospace Space Plane (NASP), Space Shuttle Space Transport System (STS), the Multi-Purpose Crew Vehicle (MPCV), and the Dream Chaser Space Transportation System, as well as several high-speed vehicle programs for other government organizations. As part of the support for these programs, NASA GRC has developed unique seal-specific test facilities that permit evaluations and screening exercises in relevant environments. The team has also embarked on developing high-temperature preloaders to help maintain seal functionality in extreme environments. This paper highlights several propulsion-related projects that the NASA GRC Seals Team has supported over the past several years and will provide an overview of existing testing capabilities

  12. Biomedical applications engineering tasks

    NASA Technical Reports Server (NTRS)

    Laenger, C. J., Sr.

    1976-01-01

    The engineering tasks performed in response to needs articulated by clinicians are described. Initial contacts were made with these clinician-technology requestors by the Southwest Research Institute NASA Biomedical Applications Team. The basic purpose of the program was to effectively transfer aerospace technology into functional hardware to solve real biomedical problems.

  13. Current projects of the Application Technology Research Unit (ATRU) USDA-ARS, Wooster/Toledo, Ohio

    USDA-ARS?s Scientific Manuscript database

    The Application Technology Research Unit (ATRU) is the largest multidisciplinary research team in the United States Department of Agriculture, Agricultural Research Service, conducting studies on floricultural and nursery crops. On-farm research is a major approach to the mission of this Unit. The...

  14. Combustion devices technology team - An overview and status of STME-related activities

    NASA Technical Reports Server (NTRS)

    Tucker, P. K.; Croteau-Gillespie, Margie

    1992-01-01

    The Consortium for CFD applications in propulsion technology has been formed at NASA/Marshall Space Flight Center. The combustion devices technology team is one of the three teams that constitute the Consortium. While generally aiming to advance combustion devices technology for rocket propulsion, the team's efforts for the last 1 and 1/2 years have been focused on issues relating to the Space Transportation Main Engine (STME) nozzle. The nozzle design uses hydrogen-rich turbine exhaust to cool the wall in a film/dump scheme. This method of cooling presents challenges and associated risks for the nozzle designers and the engine/vehicle integrators. Within the nozzle itself, a key concern is the ability to effectively and efficiently film cool the wall. From the National Launch System vehicle base standpoint, there are concerns with dumping combustible gases at the nozzle exit and their potential adverse effects on the base thermal environment. The Combustion Team has developed and is implementing plans to use validated CFD tools to aid in risk mitigation for both areas.

  15. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Team KuuKulgur waits to begin the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  16. Engineering Design and Automation in the Applied Engineering Technologies (AET) Group at Los Alamos National Laboratory.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wantuck, P. J.; Hollen, R. M.

    2002-01-01

    This paper provides an overview of some design and automation-related projects ongoing within the Applied Engineering Technologies (AET) Group at Los Alamos National Laboratory. AET uses a diverse set of technical capabilities to develop and apply processes and technologies to applications for a variety of customers both internal and external to the Laboratory. The Advanced Recovery and Integrated Extraction System (ARIES) represents a new paradigm for the processing of nuclear material from retired weapon systems in an environment that seeks to minimize the radiation dose to workers. To achieve this goal, ARIES relies upon automation-based features to handle and processmore » the nuclear material. Our Chemical Process Development Team specializes in fuzzy logic and intelligent control systems. Neural network technology has been utilized in some advanced control systems developed by team members. Genetic algorithms and neural networks have often been applied for data analysis. Enterprise modeling, or discrete event simulation, as well as chemical process simulation has been employed for chemical process plant design. Fuel cell research and development has historically been an active effort within the AET organization. Under the principal sponsorship of the Department of Energy, the Fuel Cell Team is now focusing on technologies required to produce fuel cell compatible feed gas from reformation of a variety of conventional fuels (e.g., gasoline, natural gas), principally for automotive applications. This effort involves chemical reactor design and analysis, process modeling, catalyst analysis, as well as full scale system characterization and testing. The group's Automation and Robotics team has at its foundation many years of experience delivering automated and robotic systems for nuclear, analytical chemistry, and bioengineering applications. As an integrator of commercial systems and a developer of unique custom-made systems, the team currently supports the automation needs of many Laboratory programs.« less

  17. Collaborative Learning in Biology: Debating the Ethics of Recombinant DNA Technology.

    ERIC Educational Resources Information Center

    Anderson, Rodney P.

    1998-01-01

    Discusses applications of recombinant DNA technology and the controversies surrounding that technique. Provides a cooperative learning project idea that involves teams of students investigating and debating these issues. (DDR)

  18. The twelfth annual Intelligent Ground Vehicle Competition: team approaches to intelligent vehicles

    NASA Astrophysics Data System (ADS)

    Theisen, Bernard L.; Maslach, Daniel

    2004-10-01

    The Intelligent Ground Vehicle Competition (IGVC) is one of three, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI) in the 1990s. The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics, and mobile platform fundamentals to design and build an unmanned system. Both U.S. and international teams focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities. Over the past 12 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from over 43 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the three-day competition are highlighted. Finally, an assessment of the competition based on participant feedback is presented.

  19. Mobile and Web Game Development: Using Videogames as an Educational and Outreach Tool

    NASA Technical Reports Server (NTRS)

    Jaime, Fernando I.

    2012-01-01

    Few tools reach out to capture the imagination and interests of children like video games do. As such, the development of educational applications that foster young minds' interest in science and technology become of the utmost importance. To this end, I spent my summer internship developing outreach and educational applications in conjunction with JPL's Space Place team. This small, but dedicated, team of people manages three NASA websites that focus on presenting science and technology information in such a manner that young children can understand it and develop an interest in the subjects. Besides the websites, with their plethora of educational content presented through hands-on activities, games and informative articles, the team also creates and coordinates the distribution of printed material to museums, astronomy clubs and a huge network of educators.

  20. Evaluation of Usage of Information Diagnostic Technology in Family and General Medicine

    PubMed Central

    Sivic, Suad; Masic, Izet; Zunic, Lejla; Huseinagic, Senad

    2010-01-01

    Summary Introduction: In recent decades, the development and improvement of technology is rapidly advancing. The development of science, new materials, information technology, new procedures and other modern achievements were his first confirmation sought to improve living conditions, particularly in achieving better health conditions. In an effort to improve living conditions, solve the problem of severe diseases and to facilitate treatment, new technologies, almost always find its first application in medicine. In such conditions of general pressure of new modern technologies, health professionals often succumb to uncritically use these technologies. Methodology: Analyzing data collected from 30,000 research papers that have done 30 doctors of family medicine and 30 doctors of general medicine, and from interviews conducted with all 60 doctors who participated in the research. Results: a) Teams of family medicine have a significantly higher professional education, and it should be noted that there was no significant difference in length of service of employees; b) Teams of family medicine have significantly less committed population on which the care; c) Teams of family medicine in an average have fewer visits per day than the teams in general medicine; d) Information diagnostic technologies are more accessible to family medicine teams. Conclusion: It is necessary to introduce a technology assessment as a standard scientific methods in decision making and the creation of the health system. In fact, it is necessary to establish and enable institutions to assess health technologies and join the developed world in creating better health care. PMID:24493985

  1. Essential elements to the establishment and design of a successful robotic surgery programme.

    PubMed

    Patel, Vipul R

    2006-03-01

    The application of robotic assisted technology has created a new era in surgery, by addressing some of the limitations of conventional open and laparoscopic surgery. To optimize success the incorporation of robotics into a surgical program must be performed with a structured approach. We discuss the key factors for building a successful robotic surgery program. Prior to implementing a robotics program certain essential elements must be examined. One must assess the overall goals of the program, the initial applications of the technology and the time line for success. In addition a financial analysis of the potential impact of the technology must also be performed. Essential personnel should also be identified in order to form a cohesive robotic surgery team. These preparatory sets help coordinate the establishment of the program and help to prevent unrealistic expectations; while generating the best environment for success. Once the purchase of the robotic system has been approved a robotic surgery team is created with certain essential components. This staff includes: the surgeons, nursing staff, physician assistants, resident/fellows, program coordinator, marketing and a financial analysis team. This team will work together to achieve the common goals for the program. Robotic assisted surgery has grown tremendously over the last half decade in certain surgical fields such as urology. The success of programs has been variable and often related to the infrastructure of the program. The key factors appear to be creation of a sound financial plan, early identification of applicable specialties and a motivated surgical team. Copyright 2006 John Wiley & Sons, Ltd.

  2. Thermal Protection System Application to Composite Cryotank Technology Demonstrator

    NASA Technical Reports Server (NTRS)

    Protz, Alison; Nettles, Mindy

    2015-01-01

    The EM41 Thermal Protection System (TPS) team contributed to the success of the Composite Cryotank Technology Demonstrator (CCTD) manufacturing by developing and implementing a low-cost solution to apply cryoinsulation foam on the exterior surface of the tank in the NASA Marshall Space Flight Center (MSFC) TPS Development Facility, Bldg. 4765. The TPS team used techniques developed for the smallscale composite cryotank to apply Stepanfoam S-180 polyurethane foam to the 5.5-meter CCTD using a manual spray process. Manual spray foam technicians utilized lifts and scaffolding to access the barrel and dome sections of the large-scale tank in the horizontal orientation. During manufacturing, the tank was then oriented vertically, allowing access to the final barrel section for manual spray foam application. The CCTD was the largest application of manual spray foam performed to date with the S-180 polyurethane foam and required the TPS team to employ best practices for process controls on the development article.

  3. National Aeronautics and Space Administration technology application team program

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Contracts are reported between the RTI TATeam and the National Aeronautics and Space Administration (NASA), the Environmental Protection Agency (EPA), and other governmental, educational, and industrial organizations participating in NASA's Technology Utilization Program.

  4. Microtechnology in Space: NASA's Lab-on-a-Chip Applications Development Program

    NASA Technical Reports Server (NTRS)

    Monaco, Lisa; Spearing, Scott; Jenkins, Andy; Symonds, Wes; Mayer, Derek; Gouldie, Edd; Wainwright, Norm; Fries, Marc; Maule, Jake; Toporski, Jan

    2004-01-01

    NASA's Marshall Space Flight Center (MSFC) Lab on a Chip Application Development LOCAD) team has worked with microfluidic technology for the past few years in an effort to support NASA's Mission. In that time, such microfluidic based Lab-on-a-Chip (LOC) systems have become common technology in clinical and diagnostic laboratories. The approach is most attractive due to its highly miniaturized platform and ability to perform reagent handling (i-e., dilution, mixing, separation) and diagnostics for multiple reactions in an integrated fashion. LOCAD, along with Caliper Life Sciences has successfully developed the first LOC device for macromolecular crystallization using a workstation acquired specifically for designing custom chips, the Caliper 42. LOCAD uses this, along with a novel MSFC-designed and built workstation for microfluidic development. The team has a cadre of LOC devices that can be used to perform initial feasibility testing to determine the efficacy of the LOC approach for a specific application. Once applicability has been established, the LOCAD team, along with the Army's Aviation and Missile Command microfabrication facility, can then begin to custom design and fabricate a device per the user's specifications. This presentation will highlight the LOCAD team's proven and unique expertise that has been utilized to provide end to end capabilities associated with applying microfluidics for applications that include robotic life detection instrumentation, crew health monitoring and microbial and environmental monitoring for human Exploration.

  5. Big data and tactical analysis in elite soccer: future challenges and opportunities for sports science.

    PubMed

    Rein, Robert; Memmert, Daniel

    2016-01-01

    Until recently tactical analysis in elite soccer were based on observational data using variables which discard most contextual information. Analyses of team tactics require however detailed data from various sources including technical skill, individual physiological performance, and team formations among others to represent the complex processes underlying team tactical behavior. Accordingly, little is known about how these different factors influence team tactical behavior in elite soccer. In parts, this has also been due to the lack of available data. Increasingly however, detailed game logs obtained through next-generation tracking technologies in addition to physiological training data collected through novel miniature sensor technologies have become available for research. This leads however to the opposite problem where the shear amount of data becomes an obstacle in itself as methodological guidelines as well as theoretical modelling of tactical decision making in team sports is lacking. The present paper discusses how big data and modern machine learning technologies may help to address these issues and aid in developing a theoretical model for tactical decision making in team sports. As experience from medical applications show, significant organizational obstacles regarding data governance and access to technologies must be overcome first. The present work discusses these issues with respect to tactical analyses in elite soccer and propose a technological stack which aims to introduce big data technologies into elite soccer research. The proposed approach could also serve as a guideline for other sports science domains as increasing data size is becoming a wide-spread phenomenon.

  6. Assistive Technology for Preschoolers with Disabilities: Collected Resources. The Preschool Technology Training Team Project.

    ERIC Educational Resources Information Center

    Children's Hospital Medical Center of Akron, OH.

    The Preschool Technology Training Project was designed to develop and demonstrate a regional training model on the applications of assistive technology for preschoolers with disabilities. The goal of the training was to enable preschool special education teachers, related services personnel, and parents of young children with disabilities to…

  7. Fuel Cell and Hydrogen Technology Validation | Hydrogen and Fuel Cells |

    Science.gov Websites

    NREL Fuel Cell and Hydrogen Technology Validation Fuel Cell and Hydrogen Technology Validation The NREL technology validation team works on validating hydrogen fuel cell electric vehicles; hydrogen fueling infrastructure; hydrogen system components; and fuel cell use in early market applications such as

  8. Virtual Team Communication and Collaboration in Army and Corporate Applications

    DTIC Science & Technology

    2009-06-12

    Sharmila Pixy Ferri , 49-75. Hershey, PA: Idea Group Inc. Brown, Frederic J. 2006. Building high-performing commander leader teams: Intensive collaboration...Process, Technologies and Practice eds. Susan Hayes Godar and Sharmila Pixy Ferri , 49- 75. Hershey, Pennsylvania: Idea Group Inc. DeMarie, Samuel M. 2000

  9. NASA technology utilization applications. [transfer of medical sciences

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The work is reported from September 1972 through August 1973 by the Technology Applications Group of the Science Communication Division (SCD), formerly the Biological Sciences Communication Project (BSCP) in the Department of Medical and Public Affairs of the George Washington University. The work was supportive of many aspects of the NASA Technology Utilization program but in particular those dealing with Biomedical and Technology Application Teams, Applications Engineering projects, new technology reporting and documentation and transfer activities. Of particular interest are detailed reports on the progress of various hardware projects, and suggestions and criteria for the evaluation of candidate hardware projects. Finally some observations about the future expansion of the TU program are offered.

  10. Tools for Tomorrow's Science and Technology Workforce: MATE's 2006 ROV Competition Sets Students' Sights on Ocean Observing Systems

    NASA Technical Reports Server (NTRS)

    Zande, Jill; Meeson, Blanche; Cook, Susan; Matsumoto, George

    2006-01-01

    Teams participating in the 2006 ROV competition organized by the Marine Advanced Technology Education (MATE) Center and the Marine Technology Society's (MTS) ROV Committee experienced first-hand the scientific and technical challenges that many ocean scientists, technicians, and engineers face every day. The competition tasked more than 1,000 middle and high school, college, and university students from Newfoundland to Hong Kong with designing and building ROVs to support the next generation of ocean observing systems. Teaming up with the National Office for Integrated and Sustained Ocean Observations, Ocean. US, and the Ocean Research Interactive Observatory Networks (ORION) Program, the competition highlighted ocean observing systems and the careers, organizations, and technologies associated with ocean observatories. The student teams were challenged to develop vehicles that can deploy, install, and maintain networks of instruments as well as to explore the practical applications and the research questions made possible by observing systems.

  11. Corridor One:An Integrated Distance Visualization Enuronments for SSI+ASCI Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher R. Johnson, Charles D. Hansen

    2001-10-29

    The goal of Corridor One: An Integrated Distance Visualization Environment for ASCI and SSI Application was to combine the forces of six leading edge laboratories working in the areas of visualization and distributed computing and high performance networking (Argonne National Laboratory, Lawrence Berkeley National Laboratory, Los Alamos National Laboratory, University of Illinois, University of Utah and Princeton University) to develop and deploy the most advanced integrated distance visualization environment for large-scale scientific visualization and demonstrate it on applications relevant to the DOE SSI and ASCI programs. The Corridor One team brought world class expertise in parallel rendering, deep image basedmore » rendering, immersive environment technology, large-format multi-projector wall based displays, volume and surface visualization algorithms, collaboration tools and streaming media technology, network protocols for image transmission, high-performance networking, quality of service technology and distributed computing middleware. Our strategy was to build on the very successful teams that produced the I-WAY, ''Computational Grids'' and CAVE technology and to add these to the teams that have developed the fastest parallel visualizations systems and the most widely used networking infrastructure for multicast and distributed media. Unfortunately, just as we were getting going on the Corridor One project, DOE cut the program after the first year. As such, our final report consists of our progress during year one of the grant.« less

  12. NASA biomedical applications team. Applications of aerospace technology in biology and medicine

    NASA Technical Reports Server (NTRS)

    Rouse, D. J.; Beadles, R.; Beall, H. C.; Brown, J. N., Jr.; Clingman, W. H.; Courtney, M. W.; Mccartney, M.; Scearce, R. W.; Wilson, B.

    1979-01-01

    The use of a bipolar donor-recipient model of medical technology transfer is presented. That methodology is designed to: (1) identify medical problems and aerospace technology that in combination constitute opportunities for successful medical products; (2) obtain the early participation of industry in the transfer process; and (3) obtain acceptance by the medical community of new medical products based on aerospace technology. Problem descriptions and activity reports and the results of a market study on the tissue freezing device are presented.

  13. Collaborative Information and Multimedia to Assess Team Interaction in Technology Teacher Preparation

    ERIC Educational Resources Information Center

    Ernst, Jeremy V.; Clark, Aaron C.

    2011-01-01

    The utilization of information technology to assist communication and collaboration has become a central theme in information systems research and practice. Rising information and communication technologies could considerably enhance interaction and collaboration. For the purposes of this research study, applications that permit documents and…

  14. Manufacturing process applications team (MATeam)

    NASA Technical Reports Server (NTRS)

    Bangs, E. R.

    1980-01-01

    Progress in the transfer of aerospace technology to solve key problems in the manufacturing sector of the economy is reported. Potential RTOP programs are summarized along with dissemination activities. The impact of transferred NASA manufacturing technology is discussed. Specific areas covered include aircraft production, robot technology, machining of alloys, and electrical switching systems.

  15. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Russel Howe of team Survey, center, works on a laptop to prepare the team's robot for a demonstration run after the team's robot failed to leave the starting platform during it's attempt at the level two challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  16. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-10

    A team KuuKulgur Robot from Estonia is seen on the practice field during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team KuuKulgur is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  17. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-10

    Jerry Waechter of team Middleman from Dunedin, Florida, works on their robot named Ro-Bear during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team Middleman is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  18. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-10

    James Leopore, of team Fetch, from Alexandria, Virginia, speaks with judges as he prepares for the NASA 2014 Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team Fetch is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  19. The 13 th Annual Intelligent Ground Vehicle Competition: intelligent ground vehicles created by intelligent teams

    NASA Astrophysics Data System (ADS)

    Theisen, Bernard L.

    2005-10-01

    The Intelligent Ground Vehicle Competition (IGVC) is one of three, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI) in the 1990s. The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics, and mobile platform fundamentals to design and build an unmanned system. Teams from around the world focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities. Over the past 13 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from over 50 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the three-day competition are highlighted. Finally, an assessment of the competition based on participant feedback is presented.

  20. 11th Annual Intelligent Ground Vehicle Competition: team approaches to intelligent driving and machine vision

    NASA Astrophysics Data System (ADS)

    Theisen, Bernard L.; Lane, Gerald R.

    2003-10-01

    The Intelligent Ground Vehicle Competition (IGVC) is one of three, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI) in the 1990's. The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics, and mobile platform fundamentals to design and build an unmanned system. Both the U.S. and international teams focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligtent driving capabilities. Over the past 11 years, the competition has challenged both undergraduates and graduates, including Ph.D. students with real world applications in intelligent transportation systems, the military, and manufacturing automation. To date, teams from over 40 universities and colleges have participated. In this paper, we describe some of the applications of the technologies required by this competition, and discuss the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the three-day competition are highlighted. Finally, an assessment of the competition based on participant feedback is presented.

  1. Transfer of aerospace technology to selected public sector areas of concern

    NASA Technical Reports Server (NTRS)

    Berke, J. G.

    1972-01-01

    The activities of the NASA Technology Applications Team at Stanford Research Institute, California are discussed. The specific activities in the fields of criminalistics and transportation are reported. The overall objectives of the program are stated on the basis of successful technology transfer and providing appropriate visibility for program activities.

  2. NPSS on NASA's Information Power Grid: Using CORBA and Globus to Coordinate Multidisciplinary Aeroscience Applications

    NASA Technical Reports Server (NTRS)

    Lopez, Isaac; Follen, Gregory J.; Gutierrez, Richard; Foster, Ian; Ginsburg, Brian; Larsson, Olle; Martin, Stuart; Tuecke, Steven; Woodford, David

    2000-01-01

    This paper describes a project to evaluate the feasibility of combining Grid and Numerical Propulsion System Simulation (NPSS) technologies, with a view to leveraging the numerous advantages of commodity technologies in a high-performance Grid environment. A team from the NASA Glenn Research Center and Argonne National Laboratory has been studying three problems: a desktop-controlled parameter study using Excel (Microsoft Corporation); a multicomponent application using ADPAC, NPSS, and a controller program-, and an aviation safety application running about 100 jobs in near real time. The team has successfully demonstrated (1) a Common-Object- Request-Broker-Architecture- (CORBA-) to-Globus resource manager gateway that allows CORBA remote procedure calls to be used to control the submission and execution of programs on workstations and massively parallel computers, (2) a gateway from the CORBA Trader service to the Grid information service, and (3) a preliminary integration of CORBA and Grid security mechanisms. We have applied these technologies to two applications related to NPSS, namely a parameter study and a multicomponent simulation.

  3. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Jascha Little of team Survey is seen as he follows the teams robot as it conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  4. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-10

    The University of Waterloo Robotics Team, from Ontario, Canada, prepares their robot for the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. The team from the University of Waterloo is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  5. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-10

    The Oregon State University Mars Rover Team follows their robot on the practice field during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. The Oregon State University Mars Rover Team is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  6. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Jerry Waechter of team Middleman from Dunedin, Florida, speaks about his team's robot, Ro-Bear, as it makes it attempt at the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  7. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-10

    The Oregon State University Mars Rover Team, from Corvallis, Oregon, follows their robot on the practice field during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. The Oregon State University Mars Rover Team is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  8. PEO Integration Acronym Book

    DTIC Science & Technology

    2011-02-01

    Command CASE Computer Aided Software Engineering CASEVAC Casualty Evacuation CASTFOREM Combined Arms And Support Task Force Evaluation Model CAT Center For...Advanced Technologies CAT Civil Affairs Team CAT Combined Arms Training CAT Crew Integration CAT Crisis Action Team CATIA Computer-Aided Three...Dimensional Interactive Application CATOX Catalytic Oxidation CATS Combined Arms Training Strategy CATT Combined Arms Tactical Trainer CATT Computer

  9. Bringing space technology down to earth

    NASA Technical Reports Server (NTRS)

    Gray, E. Z.

    1974-01-01

    The direct transfer of space technology to terrestial applications is demonstrated by the use of fuel cells to augment existing electric power-generation facilities. The role of NASA's Technology Utilization Program is discussed in regard to indirect transfer of technology. The Tech Brief program for identifying and reporting innovations, the regional dissemination centers, and the Applications Teams working with other government agencies and the medical community are described. Projects discussed include the development of a lightweight breathing apparatus for firemen, a practical method for separating nonferrous metals from automobile scrap, and a rechargeable heart pacemaker.

  10. NASA Program Office Technology Investments to Enable Future Missions

    NASA Astrophysics Data System (ADS)

    Thronson, Harley; Pham, Thai; Ganel, Opher

    2018-01-01

    The Cosmic Origins (COR) and Physics of the Cosmos (PCOS) Program Offices (POs) reside at NASA GSFC and implement priorities for the NASA HQ Astrophysics Division (APD). One major aspect of the POs’ activities is managing our Strategic Astrophysics Technology (SAT) program to mature technologies for future strategic missions. The Programs follow APD guidance on which missions are strategic, currently informed by the NRC’s 2010 Decadal Survey report, as well as APD’s Implementation Plan and the Astrophysics Roadmap.In preparation for the upcoming 2020 Decadal Survey, the APD has established Science and Technology Definition Teams (STDTs) to study four large-mission concepts: the Origins Space Telescope (née, Far-IR Surveyor), Habitable Exoplanet Imaging Mission, Large UV/Optical/IR Surveyor, and Lynx (née, X-ray Surveyor). The STDTs will develop the science case and design reference mission, assess technology development needs, and estimate the cost of their concept. A fifth team, the L3 Study Team (L3ST), was charged to study potential US contributions to ESA’s planned Laser Interferometer Space Antenna (LISA) gravitational-wave observatory.The POs use a rigorous and transparent process to solicit technology gaps from the scientific and technical communities, and prioritize those entries based on strategic alignment, expected impact, cross-cutting applicability, and urgency. For the past two years, the technology-gap assessments of the four STDTs and the L3ST are included in our process. Until a study team submits its final report, community-proposed changes to gaps submitted or adopted by a study team are forwarded to that study team for consideration.We discuss our technology development process, with strategic prioritization informing calls for SAT proposals and informing investment decisions. We also present results of the 2017 technology gap prioritization and showcase our current portfolio of technology development projects. To date, 96 COR and 86 PCOS SAT proposals have been received, of which 22 COR and 28 PCOS projects were awarded. For more information, see the Program Annual Technology Reports available through the PO Technology web page at https://apd440.gsfc.nasa.gov/technology.html .

  11. NASA Astrophysics Prioritizes Technology Development Funding for Strategic Missions

    NASA Astrophysics Data System (ADS)

    Thronson, Harley A.; Pham, Bruce; Ganel, Opher

    2017-01-01

    The Cosmic Origins (COR) and Physics of the Cosmos (PCOS) Program Offices (POs) reside at NASA GSFC and implement priorities for the NASA HQ Astrophysics Division (APD). One major aspect of the POs’ activities is managing our Strategic Astrophysics Technology (SAT) program to mature technologies for future strategic missions. The Programs follow APD guidance on which missions are strategic, currently informed by the NRC’s 2010 Decadal Survey report, as well as APD’s Implementation Plan and the Astrophysics Roadmap.In preparation for the upcoming 2020 Decadal Survey, the APD has established Science and Technology Definition Teams (STDTs) to study four large-mission concepts: the Origins Space Telescope, Habitable Exoplanet Imaging Mission, Large UV/Optical/IR Surveyor, and X-ray Surveyor. The STDTs will develop the science case and design reference mission, assess technology development needs, and estimate the cost of their concept. A fifth team, the L3 Study Team (L3ST), was charged to study potential US contributions to ESA’s planned L3 gravitational-wave observatory.The POs use a rigorous and transparent process to solicit technology gaps from the scientific and technical communities, and prioritize those entries based on strategic alignment, expected impact, cross-cutting applicability, and urgency. Starting in 2016, the technology-gap assessments of the four STDTs and the L3ST are included in our process. Until a study team submits its final report, community-proposed changes to gaps submitted or adopted by a study team are forwarded to that study team for consideration.We discuss our technology development process, with strategic prioritization informing calls for SAT proposals and informing investment decisions. We also present results of this year’s technology gap prioritization and showcase our current portfolio of technology development projects. To date, 77 COR and 80 PCOS SAT proposals have been received, of which 18 COR and 22 PCOS projects were funded (PCOS awards starting in 2017 have yet to be announced). For more information, see the respective Program Annual Technology Reports under the technology tabs of the COR website at cor.gsfc.nasa.gov and the PCOS website at pcos.gsfc.nasa.gov.

  12. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Team KuuKulgur watches as their robots attempt the level one competition during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  13. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The Retrievers team robot is seen as it attempts the level one challenge the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  14. The 21st annual intelligent ground vehicle competition: robotists for the future

    NASA Astrophysics Data System (ADS)

    Theisen, Bernard L.

    2013-12-01

    The Intelligent Ground Vehicle Competition (IGVC) is one of four, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI). The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics and mobile platform fundamentals to design and build an unmanned system. Teams from around the world focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities. Over the past 21 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from over 80 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the fourday competition are highlighted. Finally, an assessment of the competition based on participation is presented.

  15. The 20th annual intelligent ground vehicle competition: building a generation of robotists

    NASA Astrophysics Data System (ADS)

    Theisen, Bernard L.; Kosinski, Andrew

    2013-01-01

    The Intelligent Ground Vehicle Competition (IGVC) is one of four, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI). The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics and mobile platform fundamentals to design and build an unmanned system. Teams from around the world focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities. Over the past 20 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from over 80 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the four-day competition are highlighted. Finally, an assessment of the competition based on participation is presented.

  16. Interim report deliverable 1.1 : RADAR sensors for transportation applications of the restricted use technology study

    DOT National Transportation Integrated Search

    2005-09-30

    Under Deliverable 1.1 of the Work Plan governing the Altarum Restricted Use Technology Study, the Altarum project team is required to produce an unclassified summary and comprehensive written report of RADAR systems that can potentially address trans...

  17. Interim report deliverable 2.1 : electro-optical sensors for transportation applications of the restricted use technology study

    DOT National Transportation Integrated Search

    2005-09-30

    Under Deliverable 2.1 of the Work Plan governing the Altarum Restricted Use Technology Study, the Altarum project team is required to produce an unclassified summary and comprehensive written report of Electro-Optical (EO) systems that can potentiall...

  18. A collaborative interaction and visualization multi-modal environment for surgical planning.

    PubMed

    Foo, Jung Leng; Martinez-Escobar, Marisol; Peloquin, Catherine; Lobe, Thom; Winer, Eliot

    2009-01-01

    The proliferation of virtual reality visualization and interaction technologies has changed the way medical image data is analyzed and processed. This paper presents a multi-modal environment that combines a virtual reality application with a desktop application for collaborative surgical planning. Both visualization applications can function independently but can also be synced over a network connection for collaborative work. Any changes to either application is immediately synced and updated to the other. This is an efficient collaboration tool that allows multiple teams of doctors with only an internet connection to visualize and interact with the same patient data simultaneously. With this multi-modal environment framework, one team working in the VR environment and another team from a remote location working on a desktop machine can both collaborate in the examination and discussion for procedures such as diagnosis, surgical planning, teaching and tele-mentoring.

  19. Tracking Vaccination Teams During Polio Campaigns in Northern Nigeria by Use of Geographic Information System Technology: 2013-2015.

    PubMed

    Touray, Kebba; Mkanda, Pascal; Tegegn, Sisay G; Nsubuga, Peter; Erbeto, Tesfaye B; Banda, Richard; Etsano, Andrew; Shuaib, Faisal; Vaz, Rui G

    2016-05-01

    Nigeria is among the 3 countries in which polio remains endemic. The country made significant efforts to reduce polio transmission but remains challenged by poor-quality campaigns and poor team performance in some areas. This article demonstrates the application of geographic information system technology to track vaccination teams to monitor settlement coverage, reduce the number of missed settlements, and improve team performance. In each local government area where tracking was conducted, global positioning system-enabled Android phones were given to each team on a daily basis and were used to record team tracks. These tracks were uploaded to a dashboard to show the level of coverage and identify areas missed by the teams. From 2012 to June 2015, tracking covered 119 immunization days. A total of 1149 tracking activities were conducted. Of these, 681 (59%) were implemented in Kano state. There was an improvement in the geographic coverage of settlements and an overall reduction in the number of missed settlements. The tracking of vaccination teams provided significant feedback during polio campaigns and enabled supervisors to evaluate performance of vaccination teams. The reports supported other polio program activities, such as review of microplans and the deployment of other interventions, for increasing population immunity in northern Nigeria. © 2016 World Health Organization; licensee Oxford Journals.

  20. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Russel Howe of team Survey speaks with Sample Return Robot Challenge staff members after the team's robot failed to leave the starting platform during it's attempt at the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  1. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-10

    A pair of Worcester Polytechnic Institute (WPI) students walk past a pair of team KuuKulgur's robots on the campus quad, during a final tuneup before the start of competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team KuuKulgur is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  2. Assessment of rechargeable batteries for high power applications.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delnick, Frank M.; Ripple, Robert Eugene; Butler, Paul Charles

    2004-05-01

    This paper describes an assessment of a variety of battery technologies for high pulse power applications. Sandia National Laboratories (SNL) is performing the assessment activities in collaboration with NSWC-Dahlgren. After an initial study of specifications and manufacturers' data, the assessment team identified the following electrochemistries as promising for detailed evaluation: lead-acid (Pb-acid), nickel/metal hydride (Ni/MH), nickel/cadmium (Ni/Cd), and a recently released high power lithium-ion (Li-ion) technology. In the first three technology cases, test cells were obtained from at least two and in some instances several companies that specialize in the respective electrochemistry. In the case of the Li-ion technology, cellsmore » from a single company and are being tested. All cells were characterized in Sandia's battery test labs. After several characterization tests, the Pb-acid technology was identified as a backup technology for the demanding power levels of these tests. The other technologies showed varying degrees of promise. Following additional cell testing, the assessment team determined that the Ni/MH technology was suitable for scale-up and acquired 50-V Ni/MH modules from two suppliers for testing. Additional tests are underway to better characterize the Ni/Cd and the Li-ion technologies as well. This paper will present the testing methodology and results from these assessment activities.« less

  3. Courseware Development for Semiconductor Technology and Its Application into Instruction

    ERIC Educational Resources Information Center

    Tsai, Shu-chiao

    2009-01-01

    This study reports on the development of ESP (English for specific purposes) courseware for semiconductor technology and its integration as a "silent partner" into instruction. This kind of team-teaching could help overcome current problems encountered in developing ESP in Taiwan. The content of the material under discussion includes…

  4. Tracking dynamic team activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tambe, M.

    1996-12-31

    AI researchers are striving to build complex multi-agent worlds with intended applications ranging from the RoboCup robotic soccer tournaments, to interactive virtual theatre, to large-scale real-world battlefield simulations. Agent tracking - monitoring other agent`s actions and inferring their higher-level goals and intentions - is a central requirement in such worlds. While previous work has mostly focused on tracking individual agents, this paper goes beyond by focusing on agent teams. Team tracking poses the challenge of tracking a team`s joint goals and plans. Dynamic, real-time environments add to the challenge, as ambiguities have to be resolved in real-time. The central hypothesismore » underlying the present work is that an explicit team-oriented perspective enables effective team tracking. This hypothesis is instantiated using the model tracing technology employed in tracking individual agents. Thus, to track team activities, team models are put to service. Team models are a concrete application of the joint intentions framework and enable an agent to track team activities, regardless of the agent`s being a collaborative participant or a non-participant in the team. To facilitate real-time ambiguity resolution with team models: (i) aspects of tracking are cast as constraint satisfaction problems to exploit constraint propagation techniques; and (ii) a cost minimality criterion is applied to constrain tracking search. Empirical results from two separate tasks in real-world, dynamic environments one collaborative and one competitive - are provided.« less

  5. California four cities program, 1971 - 1973. [aerospace-to-urban technology application

    NASA Technical Reports Server (NTRS)

    Macomber, H. L.; Wilson, J. H.

    1974-01-01

    A pilot project in aerospace-to-urban technology application is reported. Companies assigned senior engineering professionals to serve as Science and Technology Advisors to participating city governments. Technical support was provided by the companies and JPL. The cities, Anaheim, Fresno, Pasadena, and San Hose, California, provided the working environment and general service support. Each city/company team developed and carried out one or more technical or management pilot projects together with a number of less formalized technology efforts and studies. An account and evaluation is provided of the initial two-year phase of the program.

  6. Manufacturing process applications team (MATEAM). [technology transfer in the areas of machine tools and robots

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The transfer of NASA technology to the industrial sector is reported. Presentations to the machine tool and robot industries and direct technology transfers of the Adams Manipulator arm, a-c motor control, and the bolt tension monitor are discussed. A listing of proposed RTOP programs with strong potential is included. A detailed description of the rotor technology available to industry is given.

  7. Image Sensors Enhance Camera Technologies

    NASA Technical Reports Server (NTRS)

    2010-01-01

    In the 1990s, a Jet Propulsion Laboratory team led by Eric Fossum researched ways of improving complementary metal-oxide semiconductor (CMOS) image sensors in order to miniaturize cameras on spacecraft while maintaining scientific image quality. Fossum s team founded a company to commercialize the resulting CMOS active pixel sensor. Now called the Aptina Imaging Corporation, based in San Jose, California, the company has shipped over 1 billion sensors for use in applications such as digital cameras, camera phones, Web cameras, and automotive cameras. Today, one of every three cell phone cameras on the planet feature Aptina s sensor technology.

  8. Sensors Applications, Volume 4, Sensors for Automotive Applications

    NASA Astrophysics Data System (ADS)

    Marek, Jiri; Trah, Hans-Peter; Suzuki, Yasutoshi; Yokomori, Iwao

    2003-07-01

    An international team of experts from the leading companies in this field gives a detailed picture of existing as well as future applications. They discuss in detail current technologies, design and construction concepts, market considerations and commercial developments. Topics covered include vehicle safety, fuel consumption, air conditioning, emergency control, traffic control systems, and electronic guidance using radar and video. Meeting the growing need for comprehensive information on the capabilities, potentials and limitations of modern sensor systems, Sensors Applications is a book series covering the use of sophisticated technologies and materials for the creation of advanced sensors and their implementation in the key areas process monitoring, building control, health care, automobiles, aerospace, environmental technology and household appliances.

  9. Commercial technologies from the SP-100 program

    NASA Astrophysics Data System (ADS)

    Truscello, Vincent C.; Fujita, Toshio; Mondt, Jack F.

    1995-01-01

    For more than a decade, the Jet Propulsion Labortory (JPL) and Los Alamos National Laboratory (LANL) have managed a multi-agency funded effort to develop a space reactor power system. This SP-100 Program has developed technologies required for space power systems that can be implemented in the industrial and commercial sectors to improve our competitiveness in the global economy. Initial steps taken to transfer this technology from the laboratories to industrial and commercial entities within the United States include: (1) identifying specific technologies having commercial potential; (2) distributing information describing the identified technologies and interacting with interested commercial and industrial entities to develop application-specific details and requirements; and (3) providing a technological data base that leads to transfer of technology or the forming of teaming arrangements to accomplish the transfer by tailoring the technology to meet application-specific requirements. SP-100 technologies having commercial potential encompass fabrication processes, devices, and components. Examples are a process for bonding refractory metals to graphite, a device to sense the position of an actuator and a component to enable rotating machines to operate without supplying lubrication ( a self-lubricating ball bearing). Shortly after the National Aeronautics and Space Administration (NASA) Regional Technology Transfer Centers widely disseminated information covering SP-100 technologies, over one hundred expressions of interest were received. These early responses indicate that there is a large potential benefit in transferring SP-100 technology. Interactions with industrial and commercial entities have identified a substantial need for creating teaming arrangements involving the interested entity and personnel from laboratories and their contractors, who have the knowledge and ability to tailor the technology to meet application-specific requirements.

  10. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    The team Survey robot retrieves a sample during a demonstration of the level two challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  11. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    The University of California Santa Cruz Rover Team prepares their rover for the rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  12. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Sample Return Robot Challenge staff members confer before the team Survey robots makes it's attempt at the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  13. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The team AERO robot drives off the starting platform during the level one competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  14. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Team Cephal's robot is seen on the starting platform during a rerun of the level one challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  15. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The Oregon State University Mars Rover Team's robot is seen during level one competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  16. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    A robot from the Intrepid Systems team is seen during the rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  17. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    A team KuuKulgur robot is seen as it begins the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  18. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The team Mountaineers robot is seen as it attempts the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  19. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Members of the Oregon State University Mars Rover Team prepare their robot to attempt the level one competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  20. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The Stellar Automation Systems team poses for a picture with their robot after attempting the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  1. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    The team Survey robot is seen as it conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  2. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    All four of team KuuKulgur's robots are seen as they attempt the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  3. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Spectators watch as the team Survey robot conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  4. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Team Middleman's robot, Ro-Bear, is seen as it starts the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  5. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    The team Mountaineers robot is seen after picking up the sample during a rerun of the level one challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  6. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Two of team KuuKulgur's robots are seen as they attempt a rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  7. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    A robot from the University of Waterloo Robotics Team is seen during the rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  8. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Members of team Survey follow their robot as it conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  9. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    A team KuuKulgur robot approaches the sample as it attempts the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  10. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    The team survey robot is seen on the starting platform before begging it's attempt at the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  11. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The Mountaineers team from West Virginia University, watches as their robot attempts the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  12. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    The team Survey robot is seen as it conducts a demonstration of the level two challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  13. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Team Survey's robot is seen as it conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  14. Overview of the NASA/Marshall Space Flight Center (MSFC) CFD Consortium for Applications in Propulsion Technology

    NASA Astrophysics Data System (ADS)

    McConnaughey, P. K.; Schutzenhofer, L. A.

    1992-07-01

    This paper presents an overview of the NASA/Marshall Space Flight Center (MSFC) Computational Fluid Dynamics (CFD) Consortium for Applications in Propulsion Technology (CAPT). The objectives of this consortium are discussed, as is the approach of managing resources and technology to achieve these objectives. Significant results by the three CFD CAPT teams (Turbine, Pump, and Combustion) are briefly highlighted with respect to the advancement of CFD applications, the development and evaluation of advanced hardware concepts, and the integration of these results and CFD as a design tool to support Space Transportation Main Engine and National Launch System development.

  15. A collaborative institutional model for integrating computer applications in the medical curriculum.

    PubMed Central

    Friedman, C. P.; Oxford, G. S.; Juliano, E. L.

    1991-01-01

    The introduction and promotion of information technology in an established medical curriculum with existing academic and technical support structures poses a number of challenges. The UNC School of Medicine has developed the Taskforce on Educational Applications in Medicine (TEAM), to coordinate this effort. TEAM works as a confederation of existing research and support units with interests in computers and education, along with a core of interested faculty with curricular responsibilities. Constituent units of the TEAM confederation include the medical center library, medical television studios, basic science teaching laboratories, educational development office, microcomputer and network support groups, academic affairs administration, and a subset of course directors and teaching faculty. Among our efforts have been the establishment of (1) a mini-grant program to support faculty initiated development and implementation of computer applications in the curriculum, (2) a symposium series with visiting speakers to acquaint faculty with current developments in medical informatics and related curricular efforts at other institution, (3) 20 computer workstations located in the multipurpose teaching labs where first and second year students do much of their academic work, (4) a demonstration center for evaluation of courseware and technologically advanced delivery systems. The student workstations provide convenient access to electronic mail, University schedules and calendars, the CoSy computer conferencing system, and several software applications integral to their courses in pathology, histology, microbiology, biochemistry, and neurobiology. The progress achieved toward the primary goal has modestly exceeded our initial expectations, while the collegiality and interest expressed toward TEAM activities in the local environment stand as empirical measures of the success of the concept. PMID:1807705

  16. Biomedical Applications of NASA Science and Technology

    NASA Technical Reports Server (NTRS)

    Brown, James N., Jr.

    1968-01-01

    During the period 15 September 1968 to 14 December 1968, the NASA supported Biomedical Application Team at the Research Triangle Institute has identified 6 new problems, performed significant activities on 15 of the active problems identified previously, performed 5 computer searches of the NASA aerospace literature, and maintained one current awareness search. As a partial result of these activities, one technology transfer was accomplished. As a part of continuing problem review, 13 problems were classified inactive. Activities during the quarter involved all phases of team activity with respect to biomedical problems. As has been observed in preceding years, it has been exceedingly difficult to arrange meetings with medical investigators during the fourth quarter of the calendar year. This is a result of a combination of factors. Teaching requirements, submission of grant applications and holidays are the most significant factors involved. As a result, the numbers of new problems identified and of transfers and potential transfers are relatively low during this quarter. Most of our activities have thus been directed toward obtaining information related to problems already identified. Consequently, during the next quarter we will follow up on these activities with the expectation that transfers will be accomplished on a number of them. In addition, the normal availability of researchers to the team is expected to be restored during this quarter, permitting an increase in new problem identification activities as well as follow-up with other researchers on old problems. Another activity scheduled for the next quarter is consultation with several interested biomedical equipment manufacturers to explore means of effective interaction between the Biomedical Application Team and these companies.

  17. 77 FR 26273 - President's Council of Advisors on Science and Technology (PCAST)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-03

    ... will be available within one week of the meeting. Questions about the meeting should be directed to Dr... Officer Team Agenda 2012, and two information technology applications--IBM's Watson Project and Google's... . Closed Portion of the Meeting: PCAST may hold a closed meeting of approximately one hour with the...

  18. Surface contamination analysis technology team overview

    NASA Astrophysics Data System (ADS)

    Burns, H. Dewitt, Jr.

    1996-11-01

    The surface contamination analysis technology (SCAT) team was originated as a working roup of NASA civil service, Space Shuttle contractor, and university groups. Participating members of the SCAT Team have included personnel from NASA Marshall Space Flight Center's Materials and Processes Laboratory and Langley Research Center's Instrument Development Group; contractors-Thiokol Corporation's Inspection Technology Group, AC Engineering support contractor, Aerojet, SAIC, and Lockheed MArtin/Oak Ridge Y-12 support contractor and Shuttle External Tank prime contractor; and the University of Alabama in Huntsville's Center for Robotics and Automation. The goal of the SCAT team as originally defined was to develop and integrate a multi-purpose inspection head for robotic application to in-process inspection of contamination sensitive surfaces. One area of interest was replacement of ozone depleting solvents currently used for surface cleanliness verification. The team approach brought together the appropriate personnel to determine what surface inspection techniques were applicable to multi-program surface cleanliness inspection. Major substrates of interest were chosen to simulate space shuttle critical bonding surface or surfaces sensitive to contamination such as fuel system component surfaces. Inspection techniques evaluated include optically stimulated electron emission or photoelectron emission; Fourier transform infrared spectroscopy; near infrared fiber optic spectroscopy; and, ultraviolet fluorescence. Current plans are to demonstrate an integrated system in MSFC's Productivity Enhancement Complex within five years from initiation of this effort in 1992. Instrumentation specifications and designs developed under this effort include a portable diffuse reflectance FTIR system built by Surface Optics Corporation and a third generation optically stimulated electron emission system built by LaRC. This paper will discuss the evaluation of the various techniques on a number of substrate materials contaminated with hydrocarbons, silicones, and fluorocarbons. Discussion will also include standards development for instrument calibration and testing.

  19. Applications of aerospace technology

    NASA Technical Reports Server (NTRS)

    Rouse, D. J.; Brown, J. N., Jr.; Cleland, John; Lehrman, Stephen; Trachtman, Lawrence; Wallace, Robert; Winfield, Daniel; Court, Nancy; Maggin, Bernard; Barnett, Reed

    1987-01-01

    Highlights are presented for the Research Triangle Institute (RTI) Applications Team activities over the past quarter. Progress in fulfilling the requirements of the contract is summarized, along with the status of the eight add-on tasks. New problem statements are presented. Transfer activities for ongoing projects with the NASA Centers are included.

  20. Tracking Vaccination Teams During Polio Campaigns in Northern Nigeria by Use of Geographic Information System Technology: 2013–2015

    PubMed Central

    Touray, Kebba; Mkanda, Pascal; Tegegn, Sisay G.; Nsubuga, Peter; Erbeto, Tesfaye B.; Banda, Richard; Etsano, Andrew; Shuaib, Faisal; Vaz, Rui G.

    2016-01-01

    Introduction. Nigeria is among the 3 countries in which polio remains endemic. The country made significant efforts to reduce polio transmission but remains challenged by poor-quality campaigns and poor team performance in some areas. This article demonstrates the application of geographic information system technology to track vaccination teams to monitor settlement coverage, reduce the number of missed settlements, and improve team performance. Methods. In each local government area where tracking was conducted, global positioning system–enabled Android phones were given to each team on a daily basis and were used to record team tracks. These tracks were uploaded to a dashboard to show the level of coverage and identify areas missed by the teams. Results. From 2012 to June 2015, tracking covered 119 immunization days. A total of 1149 tracking activities were conducted. Of these, 681 (59%) were implemented in Kano state. There was an improvement in the geographic coverage of settlements and an overall reduction in the number of missed settlements. Conclusions. The tracking of vaccination teams provided significant feedback during polio campaigns and enabled supervisors to evaluate performance of vaccination teams. The reports supported other polio program activities, such as review of microplans and the deployment of other interventions, for increasing population immunity in northern Nigeria. PMID:26609004

  1. Robotics in space-age manufacturing

    NASA Technical Reports Server (NTRS)

    Jones, Chip

    1991-01-01

    Robotics technologies are developed to improve manufacturing of space hardware. The following applications of robotics are covered: (1) welding for the space shuttle and space station Freedom programs; (2) manipulation of high-pressure water for shuttle solid rocket booster refurbishment; (3) automating the application of insulation materials; (4) precision application of sealants; and (5) automation of inspection procedures. Commercial robots are used for these development programs, but they are teamed with advanced sensors, process controls, and computer simulation to form highly productive manufacturing systems. Many of the technologies are also being actively pursued in private sector manufacturing operations.

  2. Assistance to NASA in biomedical areas of the technology utilization program

    NASA Technical Reports Server (NTRS)

    Culclasure, D. F.; Eckhardt, L.

    1972-01-01

    The applications of aerospace technology to biomedical research are reported. The medical institutions participating in the Biomedical Applications Program are listed along with the institutions currently utilizing the services of the Southwest Research Institute Biomedical Applications Team. Significant accomplishments during this period include: ultra-low bandpass amplifier for gastro-intestinal electric potentials; non-encumbering EEG electrode assembly suitable for long term sleep research; accurate cardiac telemetry system for active subjects; warning system for the deaf; tracking cane for the blind; and an improved control mechanism to expand the self-sufficiency of quadriplegics.

  3. Enhancing public involvement in assistive technology design research.

    PubMed

    Williamson, Tracey; Kenney, Laurence; Barker, Anthony T; Cooper, Glen; Good, Tim; Healey, Jamie; Heller, Ben; Howard, David; Matthews, Martin; Prenton, Sarah; Ryan, Julia; Smith, Christine

    2015-05-01

    To appraise the application of accepted good practice guidance on public involvement in assistive technology research and to identify its impact on the research team, the public, device and trial design. Critical reflection and within-project evaluation were undertaken in a case study of the development of a functional electrical stimulation device. Individual and group interviews were undertaken with lay members of a 10 strong study user advisory group and also research team members. Public involvement was seen positively by research team members, who reported a positive impact on device and study designs. The public identified positive impact on confidence, skills, self-esteem, enjoyment, contribution to improving the care of others and opportunities for further involvement in research. A negative impact concerned the challenge of engaging the public in dissemination after the study end. The public were able to impact significantly on the design of an assistive technology device which was made more fit for purpose. Research team attitudes to public involvement were more positive after having witnessed its potential first hand. Within-project evaluation underpins this case study which presents a much needed detailed account of public involvement in assistive technology design research to add to the existing weak evidence base. The evidence base for impact of public involvement in rehabilitation technology design is in need of development. Public involvement in co-design of rehabilitation devices can lead to technologies that are fit for purpose. Rehabilitation researchers need to consider the merits of active public involvement in research.

  4. Monitoring Devices for Railroad Emergency Response Teams

    DOT National Transportation Integrated Search

    1986-02-01

    This report examines new devices and technologies either commercially available or being developed which might have application to the railroad hazardous material spill response problem. Procedure and monitoring device information from Southern Railw...

  5. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Members of team Mountaineers pose with officials from the 2014 NASA Centennial Challenges Sample Return Robot Challenge on Saturday, June 14, 2014 at Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team Mountaineer was the only team to complete the level one challenge this year. Team Mountaineer members, from left (in blue shirts) are: Ryan Watson, Marvin Cheng, Scott Harper, Jarred Strader, Lucas Behrens, Yu Gu, Tanmay Mandal, Alexander Hypes, and Nick Ohi Challenge judges and competition staff (in white and green polo shirts) from left are: Sam Ortega, NASA Centennial Challenge program manager; Ken Stafford, challenge technical advisor, WPI; Colleen Shaver, challenge event manager, WPI. During the competition, teams were required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge was to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  6. Application of a design-build-team approach to low cost and weight composite fuselage structure

    NASA Technical Reports Server (NTRS)

    Ilcewicz, L. B.; Walker, T. H.; Willden, K. S.; Swanson, G. D.; Truslove, G.; Metschan, S. L.; Pfahl, C. L.

    1991-01-01

    Relationships between manufacturing costs and design details must be understood to promote the application of advanced composite technologies to transport fuselage structures. A team approach, integrating the disciplines responsible for aircraft structural design and manufacturing, was developed to perform cost and weight trade studies for a twenty-foot diameter aft fuselage section. Baseline composite design and manufacturing concepts were selected for large quadrant panels in crown, side, and keel areas of the fuselage section. The associated technical issues were also identified. Detailed evaluation of crown panels indicated the potential for large weight savings and costs competitive with aluminum technology in the 1995 timeframe. Different processes and material forms were selected for the various elements that comprise the fuselage structure. Additional cost and weight savings potential was estimated for future advancements.

  7. Accelerated Insertion of Materials - Composites (AIM-C) Methodology

    DTIC Science & Technology

    2004-05-12

    the groups even after this point in the maturation process, but the key is that the applications team must know what the technology development team...Threats ( SWOT ) analysis? Was a check made of past showstoppers/major issues related to problem statements of a similar nature? (This will be...in this methodology and in the AIM-C system is helpful to performing strength, weakness, opportunities, and threats ( SWOT ) analyses on the materials

  8. Military and Government Applications of Human-Machine Communication by Voice

    NASA Astrophysics Data System (ADS)

    Weinstein, Clifford J.

    1995-10-01

    This paper describes a range of opportunities for military and government applications of human-machine communication by voice, based on visits and contacts with numerous user organizations in the United States. The applications include some that appear to be feasible by careful integration of current state-of-the-art technology and others that will require a varying mix of advances in speech technology and in integration of the technology into applications environments. Applications that are described include (1) speech recognition and synthesis for mobile command and control; (2) speech processing for a portable multifunction soldier's computer; (3) speech- and language-based technology for naval combat team tactical training; (4) speech technology for command and control on a carrier flight deck; (5) control of auxiliary systems, and alert and warning generation, in fighter aircraft and helicopters; and (6) voice check-in, report entry, and communication for law enforcement agents or special forces. A phased approach for transfer of the technology into applications is advocated, where integration of applications systems is pursued in parallel with advanced research to meet future needs.

  9. Technologies to measure and modify physical activity and eating environments.

    PubMed

    King, Abby C; Glanz, Karen; Patrick, Kevin

    2015-05-01

    The explosion of technologic advances in information capture and delivery offers unparalleled opportunities to assess and modify built and social environments in ways that can positively impact health behaviors. This paper highlights some potentially transformative current and emerging trends in the technology arena applicable to environmental context-based assessment and intervention relevant to physical activity and dietary behaviors. A team of experts convened in 2013 to discuss the main issues related to technology use in assessing and changing built environments for health behaviors particularly relevant to obesity prevention. Each expert was assigned a specific domain to describe, commensurate with their research and expertise in the field, along with examples of specific applications. This activity was accompanied by selective examination of published literature to cover the main issues and elucidate relevant applications of technologic tools and innovations in this field. Decisions concerning which technology examples to highlight were reached through discussion and consensus-building among the team of experts. Two levels of impact are highlighted: the "me" domain, which primarily targets measurement and intervention activities aimed at individual-level behaviors and their surrounding environments; and the "we" domain, which generally focuses on aggregated data aimed at groups and larger population segments and locales. The paper ends with a set of challenges and opportunities for significantly advancing the field. Key areas for progress include data collection and expansion, managing technologic considerations, and working across sectors to maximize the population potential of behavioral health technologies. Copyright © 2015 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  10. Sensors 2000! Program: Advanced Biosensor and Measurement Systems Technologies for Spaceflight Research and Concurrent, Earth-Based Applications

    NASA Technical Reports Server (NTRS)

    Hines, J.

    1999-01-01

    Sensors 2000! (S2K!) is a specialized, integrated projects team organized to provide focused, directed, advanced biosensor and bioinstrumentation systems technology support to NASA's spaceflight and ground-based research and development programs. Specific technology thrusts include telemetry-based sensor systems, chemical/ biological sensors, medical and physiological sensors, miniaturized instrumentation architectures, and data and signal processing systems. A concurrent objective is to promote the mutual use, application, and transition of developed technology by collaborating in academic-commercial-govemment leveraging, joint research, technology utilization and commercialization, and strategic partnering alliances. Sensors 2000! is organized around three primary program elements: Technology and Product Development, Technology infusion and Applications, and Collaborative Activities. Technology and Product Development involves development and demonstration of biosensor and biotelemetry systems for application to NASA Space Life Sciences Programs; production of fully certified spaceflight hardware and payload elements; and sensor/measurement systems development for NASA research and development activities. Technology Infusion and Applications provides technology and program agent support to identify available and applicable technologies from multiple sources for insertion into NASA's strategic enterprises and initiatives. Collaborative Activities involve leveraging of NASA technologies with those of other government agencies, academia, and industry to concurrently provide technology solutions and products of mutual benefit to participating members.

  11. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Team AERO, from the Worcester Polytechnic Institute (WPI) transports their robot to the competition field for the level one of the competition during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  12. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Ahti Heinla, left, and Sulo Kallas, right, from Estonia, prepare team KuuKulgur's robot for the rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  13. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    A sample can be seen on the competition field as the team Survey robot conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  14. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The University of California Santa Cruz Rover Team poses for a picture with their robot after attempting the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  15. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    The University of California Santa Cruz Rover Team's robot is seen prior to starting it's second attempt at the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  16. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The Oregon State University Mars Rover Team poses for a picture with their robot following their attempt at the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  17. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The University of Waterloo Robotics Team, from Canada, prepares to place their robot on the start platform during the level one challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  18. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Jim Rothrock, left, and Carrie Johnson, right, of the Wunderkammer Laboratory team pose for a picture with their robot after attempting the level one competition during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  19. A case study of technology transfer: Cardiology

    NASA Technical Reports Server (NTRS)

    Schafer, G.

    1974-01-01

    Research advancements in cardiology instrumentation and techniques are summarized. Emphasis is placed upon the following techniques: (1) development of electrodes which show good skin compatibility and wearer comfort; (2) contourography - a real time display system for showing the results of EKGs; (3) detection of arteriosclerosis by digital computer processing of X-ray photos; (4) automated, noninvasive systems for blood pressure measurement; (5) ultrasonoscope - a noninvasive device for use in diagnosis of aortic, mitral, and tricuspid valve disease; and (6) rechargable cardiac pacemakers. The formation of a biomedical applications team which is an interdisciplinary team to bridge the gap between the developers and users of technology is described.

  20. Biomedical technology transfer applications of NASA science and technology

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The identification and solution of research and clinical problems in cardiovascular medicine which were investigated by means of biomedical data transfer are reported. The following are sample areas that were focused upon by the Stanford University Biomedical Technology Transfer Team: electrodes for hemiplegia research; vectorcardiogram computer analysis; respiration and phonation electrodes; radiotelemetry of intracranial pressure; and audiotransformation of the electrocardiographic signal. It is concluded that this biomedical technology transfer is significantly aiding present research in cardiovascular medicine.

  1. In-Service Assistive Technology Training to Support People with Intellectual and Developmental Disabilities: A Case Study

    ERIC Educational Resources Information Center

    Haynes, Scott

    2013-01-01

    Assistive technology (AT) benefits many individuals with intellectual and developmental disabilities (IDD). The appropriate application of accommodation solutions, whether they involve the use of AT or not, can be a complex process involving a team of people with various backgrounds. This article describes an in-service AT training program that…

  2. Information Technology Applications on Human Resources Management Functions in Large U.S. Metropolitan Areas

    ERIC Educational Resources Information Center

    Alsawafy, Qais Abdulkadum Kahalf

    2013-01-01

    The existing bond between human resources (HR) that team up in a business enterprise and the "real medium" information technology (IT) itself appears in the moment that the relationship is generated independently of the kind of enterprise and the relationship established between them. In today's competitive business world, companies who…

  3. Defense Systems Modernization and Sustainment Initiative

    DTIC Science & Technology

    2008-07-21

    surface coatings, including metals and plastics , and coating application processes were developed for repairing bearing surfaces. The Modernization through...technologies and applications utilized by the NC3R team. " : eea -cy c le en- ne Oglsti t trei eci d ’leet ~h SSt re*,0 an tnding ecsio Uiprrts ren.c" O e

  4. Mars Surface Habitability Options

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott; Simon, Matthew; Smitherman, David; Howard, Robert; Toups, Larry; Hoffman, Stephen J.

    2015-01-01

    This paper reports on current habitability concepts for an Evolvable Mars Campaign (EMC) prepared by the NASA Human Spaceflight Architecture Team (HAT). For many years NASA has investigated alternative human Mars missions, examining different mission objectives, trajectories, vehicles, and technologies; the combinations of which have been referred to as reference missions or architectures. At the highest levels, decisions regarding the timing and objectives for a human mission to Mars continue to evolve while at the lowest levels, applicable technologies continue to advance. This results in an on-going need for assessments of alternative system designs such as the habitat, a significant element in any human Mars mission scenario, to provide meaningful design sensitivity characterizations to assist decision-makers regarding timing, objectives, and technologies. As a subset of the Evolvable Mars Campaign activities, the habitability team builds upon results from past studies and recommends options for Mars surface habitability compatible with updated technologies.

  5. The Effect of Design Teams on Preservice Teachers' Technology Integration

    ERIC Educational Resources Information Center

    Johnson, Laurene D.

    2012-01-01

    This study examined the effect of a specific instructional approach called design teams on preservice teachers' attitudes toward technology, their technology skills, and their Technological Pedagogical Content Knowledge (TPACK). In a design teams approach, participants work in collaborative teams to design solutions to solve real-world…

  6. ORNL superconducting technology program for electric power systems

    NASA Astrophysics Data System (ADS)

    Hawsey, R. A.

    1994-04-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are conductor development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1993 Annual Program Review held July 28--29, 1993. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to industrial competitiveness projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer to US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

  7. KSC-07pd3598

    NASA Image and Video Library

    2007-12-09

    KENNEDY SPACE CENTER, FLA. -- LeRoy Cain, the Mission Management Team chairman, participates in a news briefing following the conclusion of a team meeting. The meeting followed the morning's launch scrub caused by problems experienced with the space shuttle Atlantis STS-122 external tank's engine cutoff sensor system during tanking for the second launch attempt. An announcement was made during the briefing that the STS-122 launch is postponed to no earlier than Jan. 2, 2008, to give the team time to resolve the system's problems. Atlantis will carry the Columbus Laboratory, the European Space Agency's largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Permanently attached to the Harmony node of the space station, the laboratory will carry out experiments in materials science, fluid physics and biosciences, as well as perform a number of technological applications. Photo credit: NASA/Kim Shiflett

  8. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Members of the Mountaineers team from West Virginia University celebrate after their robot returned to the starting platform after picking up the sample during a rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  9. Military and government applications of human-machine communication by voice.

    PubMed Central

    Weinstein, C J

    1995-01-01

    This paper describes a range of opportunities for military and government applications of human-machine communication by voice, based on visits and contacts with numerous user organizations in the United States. The applications include some that appear to be feasible by careful integration of current state-of-the-art technology and others that will require a varying mix of advances in speech technology and in integration of the technology into applications environments. Applications that are described include (1) speech recognition and synthesis for mobile command and control; (2) speech processing for a portable multifunction soldier's computer; (3) speech- and language-based technology for naval combat team tactical training; (4) speech technology for command and control on a carrier flight deck; (5) control of auxiliary systems, and alert and warning generation, in fighter aircraft and helicopters; and (6) voice check-in, report entry, and communication for law enforcement agents or special forces. A phased approach for transfer of the technology into applications is advocated, where integration of applications systems is pursued in parallel with advanced research to meet future needs. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:7479718

  10. Aeroelastic Uncertainty Quantification Studies Using the S4T Wind Tunnel Model

    NASA Technical Reports Server (NTRS)

    Nikbay, Melike; Heeg, Jennifer

    2017-01-01

    This paper originates from the joint efforts of an aeroelastic study team in the Applied Vehicle Technology Panel from NATO Science and Technology Organization, with the Task Group number AVT-191, titled "Application of Sensitivity Analysis and Uncertainty Quantification to Military Vehicle Design." We present aeroelastic uncertainty quantification studies using the SemiSpan Supersonic Transport wind tunnel model at the NASA Langley Research Center. The aeroelastic study team decided treat both structural and aerodynamic input parameters as uncertain and represent them as samples drawn from statistical distributions, propagating them through aeroelastic analysis frameworks. Uncertainty quantification processes require many function evaluations to asses the impact of variations in numerous parameters on the vehicle characteristics, rapidly increasing the computational time requirement relative to that required to assess a system deterministically. The increased computational time is particularly prohibitive if high-fidelity analyses are employed. As a remedy, the Istanbul Technical University team employed an Euler solver in an aeroelastic analysis framework, and implemented reduced order modeling with Polynomial Chaos Expansion and Proper Orthogonal Decomposition to perform the uncertainty propagation. The NASA team chose to reduce the prohibitive computational time by employing linear solution processes. The NASA team also focused on determining input sample distributions.

  11. Best practices for team-based assistive technology design courses.

    PubMed

    Goldberg, Mary R; Pearlman, Jonathan L

    2013-09-01

    Team-based design courses focused on products for people with disabilities have become relatively common, in part because of training grants such as the NSF Research to Aid Persons with Disabilities course grants. An output from these courses is an annual description of courses and projects but has yet to be complied into a "best practices guide," though it could be helpful for instructors. To meet this need, we conducted a study to generate best practices for assistive technology product development courses and how to use these courses to teach students the fundamentals of innovation. A full list of recommendations is comprised in the manuscript and include identifying a client through a reliable clinical partner; allowing for transparency between the instructors, the client, and the team(s); establishing multi-disciplinary teams; using a process-oriented vs. solution-oriented product development model; using a project management software to facilitate and archive communication and outputs; facilitating client interaction through frequent communication; seeking to develop professional role confidence to inspire students' commitment to engineering and (where applicable) rehabilitation field; publishing student designs on repositories; incorporating both formal and informal education opportunities related to design; and encouraging students to submit their designs to local or national entrepreneurship competitions.

  12. The SMART Platform: early experience enabling substitutable applications for electronic health records.

    PubMed

    Mandl, Kenneth D; Mandel, Joshua C; Murphy, Shawn N; Bernstam, Elmer Victor; Ramoni, Rachel L; Kreda, David A; McCoy, J Michael; Adida, Ben; Kohane, Isaac S

    2012-01-01

    The Substitutable Medical Applications, Reusable Technologies (SMART) Platforms project seeks to develop a health information technology platform with substitutable applications (apps) constructed around core services. The authors believe this is a promising approach to driving down healthcare costs, supporting standards evolution, accommodating differences in care workflow, fostering competition in the market, and accelerating innovation. The Office of the National Coordinator for Health Information Technology, through the Strategic Health IT Advanced Research Projects (SHARP) Program, funds the project. The SMART team has focused on enabling the property of substitutability through an app programming interface leveraging web standards, presenting predictable data payloads, and abstracting away many details of enterprise health information technology systems. Containers--health information technology systems, such as electronic health records (EHR), personally controlled health records, and health information exchanges that use the SMART app programming interface or a portion of it--marshal data sources and present data simply, reliably, and consistently to apps. The SMART team has completed the first phase of the project (a) defining an app programming interface, (b) developing containers, and (c) producing a set of charter apps that showcase the system capabilities. A focal point of this phase was the SMART Apps Challenge, publicized by the White House, using http://www.challenge.gov website, and generating 15 app submissions with diverse functionality. Key strategic decisions must be made about the most effective market for further disseminating SMART: existing market-leading EHR vendors, new entrants into the EHR market, or other stakeholders such as health information exchanges.

  13. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  14. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  15. Development of laser technology in Poland: 2016

    NASA Astrophysics Data System (ADS)

    Jankiewicz, Zdzisław; Jabczyński, Jan K.; Romaniuk, Ryszard S.

    2016-12-01

    The paper is an introduction to the volume of proceedings and a concise digest of works presented during the XIth National Symposium on Laser Technology (SLT2016) [1]. The Symposium is organized since 1984 every three years [2-8]. SLT2016 was organized by the Institute of Optoelectronics, Military University of Technology (IO, WAT) [9], Warsaw, with cooperation of Warsaw University of Technology (WUT) [10], in Jastarnia on 27-30 September 2016. Symposium Proceedings are traditionally published by SPIE [11-19]. The meeting has gathered around 150 participants who presented around 120 research and technical papers. The Symposium, organized every 3 years is a good portrait of laser technology and laser applications development in Poland at university laboratories, governmental institutes, company R&D laboratories, etc. The SLT also presents the current technical projects under realization by the national research, development and industrial teams. Topical tracks of the Symposium, traditionally divided to two large areas - sources and applications, were: laser sources in near and medium infrared, picosecond and femtosecond lasers, optical fiber lasers and amplifiers, semiconductor lasers, high power and high energy lasers and their applications, new materials and components for laser technology, applications of laser technology in measurements, metrology and science, military applications of laser technology, laser applications in environment protection and remote detection of trace substances, laser applications in medicine and biomedical engineering, laser applications in industry, technologies and material engineering.

  16. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Dorothy Rasco, NASA Deputy Associate Administrator for the Space Technology Mission Directorate, speaks at the TouchTomorrow Festival, held in conjunction with the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  17. Bladder Monitor

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Diagnostic Ultrasound Corporation's Bladder Scan Monitor continuously records and monitors bladder fullness and alerts the wearer or caretaker when voiding is required. The sensor is held against the lower abdomen by a belt and connected to the monitor by a cable. The sensor obtains bladder volume data from sound waves reflecting off the bladder wall. The device was developed by Langley Research Center, the Ames Research Center and the NASA Technology Applications Team. It utilizes Langley's advanced ultrasound technology. It is licensed to the ARC for medical applications, and sublicensed to Diagnostics Ultrasound. Central monitoring systems are planned for the future.

  18. ARS Nursery and Floricultural Crop Research in Ohio

    USDA-ARS?s Scientific Manuscript database

    The Application Technology Research Unit is the largest multidisciplinary research team in the United States Department of Agriculture, Agricultural Research Service, conducting studies on floricultural and nursery crops. On-farm research, part of ATRU Mission to conduct fundamental and development...

  19. Cybathlon experiences of the Graz BCI racing team Mirage91 in the brain-computer interface discipline.

    PubMed

    Statthaler, Karina; Schwarz, Andreas; Steyrl, David; Kobler, Reinmar; Höller, Maria Katharina; Brandstetter, Julia; Hehenberger, Lea; Bigga, Marvin; Müller-Putz, Gernot

    2017-12-28

    In this work, we share our experiences made at the world-wide first CYBATHLON, an event organized by the Eidgenössische Technische Hochschule Zürich (ETH Zürich), which took place in Zurich in October 2016. It is a championship for severely motor impaired people using assistive prototype devices to compete against each other. Our team, the Graz BCI Racing Team MIRAGE91 from Graz University of Technology, participated in the discipline "Brain-Computer Interface Race". A brain-computer interface (BCI) is a device facilitating control of applications via the user's thoughts. Prominent applications include assistive technology such as wheelchairs, neuroprostheses or communication devices. In the CYBATHLON BCI Race, pilots compete in a BCI-controlled computer game. We report on setting up our team, the BCI customization to our pilot including long term training and the final BCI system. Furthermore, we describe CYBATHLON participation and analyze our CYBATHLON result. We found that our pilot was compliant over the whole time and that we could significantly reduce the average runtime between start and finish from initially 178 s to 143 s. After the release of the final championship specifications with shorter track length, the average runtime converged to 120 s. We successfully participated in the qualification race at CYBATHLON 2016, but performed notably worse than during training, with a runtime of 196 s. We speculate that shifts in the features, due to the nonstationarities in the electroencephalogram (EEG), but also arousal are possible reasons for the unexpected result. Potential counteracting measures are discussed. The CYBATHLON 2016 was a great opportunity for our student team. We consolidated our theoretical knowledge and turned it into practice, allowing our pilot to play a computer game. However, further research is required to make BCI technology invariant to non-task related changes of the EEG.

  20. High Endoatmospheric Defense Interceptor (HEDI) Technology Testing Program Environmental Assessment

    DTIC Science & Technology

    1989-05-31

    FICATION I DOWNGRADING SCHEDULE UNLIMITED 4. PERFORMING ORGANIZATION REPORT NUMBER( S ) S . MONITORING ORGANIZATION REPORT NUMBER( S ) 6a. NAME OF...Technology Testing Program Environmental Asessment (U’. 12. PERSONAL AUTHOR( S ) HEDI Environmental Assessment Team, Mr. Dru Barrineau, Chairman. 13a...was the application of assessment criteria to identify test activities deemed to present no S -1 potential for significant environmental consequences

  1. Constructing Training Demonstrations

    DTIC Science & Technology

    2009-01-16

    evaluates approaches and platforms to be employed for demonstrations, such as film, video , computer-based training, videogames , and simulations [10...environments using 3-D multiplayer gaming technologies. Together these avenues inform our effort to create demonstrations for Army curricula. 1 2 TABLE OF...space of technology platforms with a focus on 3-D game engines. With these two pieces of work in mind, we examine team training applications for

  2. Propulsion Technology Lifecycle Operational Analysis

    NASA Technical Reports Server (NTRS)

    Robinson, John W.; Rhodes, Russell E.

    2010-01-01

    The paper presents the results of a focused effort performed by the members of the Space Propulsion Synergy Team (SPST) Functional Requirements Sub-team to develop propulsion data to support Advanced Technology Lifecycle Analysis System (ATLAS). This is a spreadsheet application to analyze the impact of technology decisions at a system-of-systems level. Results are summarized in an Excel workbook we call the Technology Tool Box (TTB). The TTB provides data for technology performance, operations, and programmatic parameters in the form of a library of technical information to support analysis tools and/or models. The lifecycle of technologies can be analyzed from this data and particularly useful for system operations involving long running missions. The propulsion technologies in this paper are listed against Chemical Rocket Engines in a Work Breakdown Structure (WBS) format. The overall effort involved establishing four elements: (1) A general purpose Functional System Breakdown Structure (FSBS). (2) Operational Requirements for Rocket Engines. (3) Technology Metric Values associated with Operating Systems (4) Work Breakdown Structure (WBS) of Chemical Rocket Engines The list of Chemical Rocket Engines identified in the WBS is by no means complete. It is planned to update the TTB with a more complete list of available Chemical Rocket Engines for United States (US) engines and add the Foreign rocket engines to the WBS which are available to NASA and the Aerospace Industry. The Operational Technology Metric Values were derived by the SPST Sub-team in the form of the TTB and establishes a database for users to help evaluate and establish the technology level of each Chemical Rocket Engine in the database. The Technology Metric Values will serve as a guide to help determine which rocket engine to invest technology money in for future development.

  3. 75 FR 20388 - International Business Machines Corporation, Global Technology Services Business Unit, Integrated...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-19

    ... Expense Team, Working From Various States in the United States, Including On-Site Leased Workers From... Technology Services Business Unit, Integrated Technology Services, Cost and Expense Team working from various... Technology Services Business Unit, Integrated Technology Services, Cost and Expense Team. The Department has...

  4. International Space Exploration Coordination Group Assessment of Technology Gaps for LOx/Methane Propulsion Systems for the Global Exploration Roadmap

    NASA Technical Reports Server (NTRS)

    Hurlbert, Eric A.; Whitley, Ryan; Klem, Mark D.; Johnson, Wesley; Alexander, Leslie; D'Aversa, Emanuela; Ruault, Jean-Marc; Manfletti, Chiara; Caruana, Jean-Noel; Ueno, Hiroshi; hide

    2016-01-01

    As part of the Global Exploration Roadmap (GER), the International Space Exploration Coordination Group (ISECG) formed two technology gap assessment teams to evaluate topic discipline areas that had not been worked at an international level to date. The participating agencies were ASI, CNES, DLR, ESA, JAXA, and NASA. Accordingly, the ISECG Technology Working Group (TWG) recommended two discipline areas based on Critical Technology Needs reflected within the GER Technology Development Map (GTDM): Dust Mitigation and LOX/Methane Propulsion. LOx/Methane propulsion systems are enabling for future human missions Mars by significantly reducing the landed mass of the Mars ascent stage through the use of in-situ propellant production, for improving common fluids for life support, power and propulion thus allowing for diverse redundancy, for eliminating the corrosive and toxic propellants thereby improving surface operations and resusabilty, and for inceasing the performance of propulsion systems. The goals and objectives of the international team are to determine the gaps in technology that must be closed for LOx/Methane to be used in human exploration missions in cis-lunar, lunar, and Mars mission applications. An emphasis is placed on near term lunar lander applications with extensibility to Mars. Each agency provided a status of the substantial amount of Lox/Methane propulsion system development to date and their inputs on the gaps in the technology that are remaining. The gaps, which are now opportunities for collaboration, are then discussed.

  5. Teaming with Technology: "Real" iPad Applications

    ERIC Educational Resources Information Center

    Ensor, Tami

    2012-01-01

    This column features essays written by current middle school and high school teachers, media specialists, librarians, literacy coaches, curriculum specialists, administrators, preservice teachers, teacher educators, and adolescent and adult learners. They highlight diverse perspectives on teaching and/or learning with literacies to inspire reader…

  6. NASA biomedical Applications Team Advisory Center for Medical Technology and Systems

    NASA Technical Reports Server (NTRS)

    Siedband, M. P.

    1981-01-01

    Projects carried out by the UW-BATeam are reported. The following subjects were investigated: clinical opthalmic ultrasound improvements, magnetic cell sorters, hyperthermia treatment for cancer, joystick driving control for the handicapped, qualitative coronary artery imaging (MIPS), and speech autocuers.

  7. Inflatable Structures Technology Handbook. Chapter 21; Inflatable Habitats

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.; Raboin, Jasen; Spexarth, Gary; Valle, Gerard

    2000-01-01

    The technologies required to design, fabricate, and utilize an inflatable module for space applications has been demonstrated and proven by the TransHab team during the development phase of the program. Through testing and hands-on development several issues about inflatable space structures have been addressed , such as: ease of manufacturing, structural integrity, micrometeorite protection, folding , and vacuum deployment. The TransHab inflatable technology development program has proven that not only are inflatable structures a viable option, but they also offer significant advantages over conventional metallic structures.

  8. SHARED VIRTUAL ENVIRONMENTS FOR COLLECTIVE TRAINING

    NASA Technical Reports Server (NTRS)

    Loftin, R. Bowen

    2000-01-01

    Historically NASA has trained teams of astronauts by bringing them to the Johnson Space Center in Houston to undergo generic training, followed by mission-specific training. This latter training begins after a crew has been selected for a mission (perhaps two years before the launch of that mission). While some Space Shuttle flights have included an astronaut from a foreign country, the International Space Station will be consistently crewed by teams comprised of astronauts from two or more of the partner nations. The cost of training these international teams continues to grow in both monetary and personal terms. Thus, NASA has been seeking alternative training approaches for the International Space Station program. Since 1994 we have been developing, testing, and refining shared virtual environments for astronaut team training, including the use of virtual environments for use while in or in transit to the task location. In parallel with this effort, we have also been preparing applications for training teams of military personnel engaged in peacekeeping missions. This paper will describe the applications developed to date, some of the technological challenges that have been overcome in their development, and the research performed to guide the development and to measure the efficacy of these shared environments as training tools.

  9. Pneumatic injection system using a hot exhaust gases, developed in Institute of Automobiles and Internal Combustion Engines of Cracow University of Technology

    NASA Astrophysics Data System (ADS)

    Marek, W.; Śliwiński, K.

    2016-09-01

    The article concerns research carried out by the Krakow University of Technology on the concept of a pneumatic fuel injection spark ignition engines. In this artkule an example of an application of this type of power to the Wankel's engine, together with a description of its design and operating principles and the benefits of its use. The work was carried out over many years by Prof. Stanislaw Jarnuszkiewicz despite the development of many patents but not widely used in engines. Authors who were involved in the team-work of the team of Prof. Jarnuszkiewicz, after conducting exploratory studies, believed that this solution has development potential and this will be presented in future articles.

  10. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Sam Ortega, NASA program manager for Centennial Challenges, is seen during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  11. The Research Doesn't Always Apply: Practical Solutions to Evidence-Based Training-Load Monitoring in Elite Team Sports.

    PubMed

    Burgess, Darren J

    2017-04-01

    Research describing load-monitoring techniques for team sport is plentiful. Much of this research is conducted retrospectively and typically involves recreational or semielite teams. Load-monitoring research conducted on professional team sports is largely observational. Challenges exist for the practitioner in implementing peer-reviewed research into the applied setting. These challenges include match scheduling, player adherence, manager/coach buy-in, sport traditions, and staff availability. External-load monitoring often attracts questions surrounding technology reliability and validity, while internal-load monitoring makes some assumptions about player adherence, as well as having some uncertainty around the impact these measures have on player performance This commentary outlines examples of load-monitoring research, discusses the issues associated with the application of this research in an elite team-sport setting, and suggests practical adjustments to the existing research where necessary.

  12. Accelerating the commercialization of university technologies for military healthcare applications: the role of the proof of concept process

    NASA Astrophysics Data System (ADS)

    Ochoa, Rosibel; DeLong, Hal; Kenyon, Jessica; Wilson, Eli

    2011-06-01

    The von Liebig Center for Entrepreneurism and Technology Advancement at UC San Diego (vonliebig.ucsd.edu) is focused on accelerating technology transfer and commercialization through programs and education on entrepreneurism. Technology Acceleration Projects (TAPs) that offer pre-venture grants and extensive mentoring on technology commercialization are a key component of its model which has been developed over the past ten years with the support of a grant from the von Liebig Foundation. In 2010, the von Liebig Entrepreneurism Center partnered with the U.S. Army Telemedicine and Advanced Technology Research Center (TATRC), to develop a regional model of Technology Acceleration Program initially focused on military research to be deployed across the nation to increase awareness of military medical needs and to accelerate the commercialization of novel technologies to treat the patient. Participants to these challenges are multi-disciplinary teams of graduate students and faculty in engineering, medicine and business representing universities and research institutes in a region, selected via a competitive process, who receive commercialization assistance and funding grants to support translation of their research discoveries into products or services. To validate this model, a pilot program focused on commercialization of wireless healthcare technologies targeting campuses in Southern California has been conducted with the additional support of Qualcomm, Inc. Three projects representing three different universities in Southern California were selected out of forty five applications from ten different universities and research institutes. Over the next twelve months, these teams will conduct proof of concept studies, technology development and preliminary market research to determine the commercial feasibility of their technologies. This first regional program will help build the needed tools and processes to adapt and replicate this model across other regions in the Country.

  13. [Investigation methodology and application on scientific and technological personnel of traditional Chinese medical resources based on data from Chinese scientific research paper].

    PubMed

    Li, Hai-yan; Li, Yuan-hai; Yang, Yang; Liu, Fang-zhou; Wang, Jing; Tian, Ye; Yang, Ce; Liu, Yang; Li, Meng; Sun Li-ying

    2015-12-01

    The aim of this study is to identify the present status of the scientific and technological personnel in the field of traditional Chinese medicine (TCM) resource science. Based on the data from Chinese scientific research paper, an investigation regarding the number of the personnel, the distribution, their output of paper, their scientific research teams, high-yield authors and high-cited authors was conducted. The study covers seven subfields of traditional Chinese medicine identification, quality standard, Chinese medicine cultivation, harvest processing of TCM, market development and resource protection and resource management, as well as 82 widely used Chinese medicine species, such as Ginseng and Radix Astragali. One hundred and fifteen domain authority experts were selected based on the data of high-yield authors and high-cited authors. The database system platform "Skilled Scientific and Technological Personnel in the field of Traditional Chinese Medicine Resource Science-Chinese papers" was established. This platform successfully provided the retrieval result of the personnel, output of paper, and their core research team by input the study field, year, and Chinese medicine species. The investigation provides basic data of scientific and technological personnel in the field of traditional Chinese medicine resource science for administrative agencies and also evidence for the selection of scientific and technological personnel and construction of scientific research teams.

  14. The SMART Platform: early experience enabling substitutable applications for electronic health records

    PubMed Central

    Mandel, Joshua C; Murphy, Shawn N; Bernstam, Elmer Victor; Ramoni, Rachel L; Kreda, David A; McCoy, J Michael; Adida, Ben; Kohane, Isaac S

    2012-01-01

    Objective The Substitutable Medical Applications, Reusable Technologies (SMART) Platforms project seeks to develop a health information technology platform with substitutable applications (apps) constructed around core services. The authors believe this is a promising approach to driving down healthcare costs, supporting standards evolution, accommodating differences in care workflow, fostering competition in the market, and accelerating innovation. Materials and methods The Office of the National Coordinator for Health Information Technology, through the Strategic Health IT Advanced Research Projects (SHARP) Program, funds the project. The SMART team has focused on enabling the property of substitutability through an app programming interface leveraging web standards, presenting predictable data payloads, and abstracting away many details of enterprise health information technology systems. Containers—health information technology systems, such as electronic health records (EHR), personally controlled health records, and health information exchanges that use the SMART app programming interface or a portion of it—marshal data sources and present data simply, reliably, and consistently to apps. Results The SMART team has completed the first phase of the project (a) defining an app programming interface, (b) developing containers, and (c) producing a set of charter apps that showcase the system capabilities. A focal point of this phase was the SMART Apps Challenge, publicized by the White House, using http://www.challenge.gov website, and generating 15 app submissions with diverse functionality. Conclusion Key strategic decisions must be made about the most effective market for further disseminating SMART: existing market-leading EHR vendors, new entrants into the EHR market, or other stakeholders such as health information exchanges. PMID:22427539

  15. Replicated x-ray optics for space applications

    NASA Astrophysics Data System (ADS)

    Hudec, René; Pína, Ladislav; Inneman, Adolf

    2017-11-01

    We report on the program of design and development of X-ray optics for space applications in the Czech Republic. Having more than 30 years background in X-ray optics development for space applications (for use in astronomical X-ray telescopes onboard spacecrafts, before 1989 mostly for Soviet and East European INTERKOSMOS program), we focus nowadays on novel technologies and approaches, thin shell replicated mirrors, as well as studies of light-weight mirrors based on innovative materials such as ceramics. The collaboration includes teams from the Academy of Sciences, Universities, and industry. We will describe and discuss both the history of the development of Xray optics in the Czech Republic and the developed technologies and approaches (with focus on replication technology) as well as recent activities and developments including our participation on the ESA XEUS mirror technology development based on the Agreement between ESA and Czech Government.

  16. Linking engineering and medicine: fostering collaboration skills in interdisciplinary teams.

    PubMed

    Khoo, Michael C K

    2012-07-01

    Biomedical engineering embodies the spirit of combining disciplines. The engineer's pragmatic approach to--and appetite for--solving problems is matched by a bounty of technical challenges generated in medical domains. From nanoscale diagnostics to the redesign of systems of health-care delivery, engineers have been connecting advances in basic and applied science with applications that have helped to improve medical care and outcomes. Increasingly, however, integrating these areas of knowledge and application is less individualistic and more of a team sport. Success increasingly relies on a direct focus on practicing and developing collaboration skills in interdisciplinary teams. Such an approach does not fit easily into individual-focused, discipline-based programs. Biomedical engineering has done its fair share of silo busting, but new approaches are needed to inspire interdisciplinary teams to form around challenges in particular areas. Health care offers a wide variety of complex challenges across an array of delivery settings that can call for new interdisciplinary approaches. This was recognized by the deans of the University of Southern California's (USC's) Medical and Engineering Schools when they began the planning process, leading to the creation of the Health, Technology, and Engineering (HTE@USC or HTE for short) program. “Health care and technology are changing rapidly, and future physicians and engineers need intellectual tools to stay ahead of this change,” says Carmen A. Puliafito, dean of the Keck School of Medicine. His goal is to train national leaders in the quest for devices and processes to improve health care.

  17. An integrative framework for sensor-based measurement of teamwork in healthcare

    PubMed Central

    Rosen, Michael A; Dietz, Aaron S; Yang, Ting; Priebe, Carey E; Pronovost, Peter J

    2015-01-01

    There is a strong link between teamwork and patient safety. Emerging evidence supports the efficacy of teamwork improvement interventions. However, the availability of reliable, valid, and practical measurement tools and strategies is commonly cited as a barrier to long-term sustainment and spread of these teamwork interventions. This article describes the potential value of sensor-based technology as a methodology to measure and evaluate teamwork in healthcare. The article summarizes the teamwork literature within healthcare, including team improvement interventions and measurement. Current applications of sensor-based measurement of teamwork are reviewed to assess the feasibility of employing this approach in healthcare. The article concludes with a discussion highlighting current application needs and gaps and relevant analytical techniques to overcome the challenges to implementation. Compelling studies exist documenting the feasibility of capturing a broad array of team input, process, and output variables with sensor-based methods. Implications of this research are summarized in a framework for development of multi-method team performance measurement systems. Sensor-based measurement within healthcare can unobtrusively capture information related to social networks, conversational patterns, physical activity, and an array of other meaningful information without having to directly observe or periodically survey clinicians. However, trust and privacy concerns present challenges that need to be overcome through engagement of end users in healthcare. Initial evidence exists to support the feasibility of sensor-based measurement to drive feedback and learning across individual, team, unit, and organizational levels. Future research is needed to refine methods, technologies, theory, and analytical strategies. PMID:25053579

  18. Impact of a low-technology simulation-based obstetric and newborn care training scheme on non-emergency delivery practices in Guatemala.

    PubMed

    Walton, Anna; Kestler, Edgar; Dettinger, Julia C; Zelek, Sarah; Holme, Francesca; Walker, Dilys

    2016-03-01

    To assess the effect of a low-technology simulation-based training scheme for obstetric and perinatal emergency management (PRONTO; Programa de Rescate Obstétrico y Neonatal: Tratamiento Óptimo y Oportuno) on non-emergency delivery practices at primary level clinics in Guatemala. A paired cross-sectional birth observation study was conducted with a convenience sample of 18 clinics (nine pairs of intervention and control clinics) from June 28 to August 7, 2013. Outcomes included implementation of practices known to decrease maternal and/or neonatal mortality and improve patient care. Overall, 25 and 17 births occurred in intervention and control clinics, respectively. Active management of the third stage of labor was appropriately performed by 20 (83%) of 24 intervention teams versus 7 (50%) of 14 control teams (P=0.015). Intervention teams implemented more practices to decrease neonatal mortality than did control teams (P<0.001). Intervention teams ensured patient privacy in 23 (92%) of 25 births versus 11 (65%) of 17 births for control teams (P=0.014). All 15 applicable intervention teams kept patients informed versus 6 (55%) of 11 control teams (P=0.001). Differences were also noted in teamwork; in particular, skill-based tools were used more often at intervention sites than control sites (P=0.012). Use of PRONTO enhanced non-emergency delivery care by increasing evidence-based practice, patient-centered care, and teamwork. Copyright © 2015 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  19. The University of Kansas High-Throughput Screening laboratory. Part I: meeting drug-discovery needs in the heartland of America with entrepreneurial flair.

    PubMed

    McDonald, Peter R; Roy, Anuradha; Chaguturu, Rathnam

    2011-05-01

    The University of Kansas High-Throughput Screening (KU HTS) core is a state-of-the-art drug-discovery facility with an entrepreneurial open-service policy, which provides centralized resources supporting public- and private-sector research initiatives. The KU HTS core applies pharmaceutical industry project-management principles in an academic setting by bringing together multidisciplinary teams to fill critical scientific and technology gaps, using an experienced team of industry-trained researchers and project managers. The KU HTS proactively engages in supporting grant applications for extramural funding, intellectual-property management and technology transfer. The KU HTS staff further provides educational opportunities for the KU faculty and students to learn cutting-edge technologies in drug-discovery platforms through seminars, workshops, internships and course teaching. This is the first instalment of a two-part contribution from the KU HTS laboratory.

  20. 76 FR 49485 - Announcement of Requirements and Registration for “Lifeline Facebook App Challenge”

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ... multidisciplinary teams of technology developers, entrepreneurs, and members of the disaster preparedness, response... application (app) that will provide actionable steps for Facebook users to increase their own personal... to increase personal preparedness, locate potential disaster victims, and streamline information...

  1. Health Management Applications for International Space Station

    NASA Technical Reports Server (NTRS)

    Alena, Richard; Duncavage, Dan

    2005-01-01

    Traditional mission and vehicle management involves teams of highly trained specialists monitoring vehicle status and crew activities, responding rapidly to any anomalies encountered during operations. These teams work from the Mission Control Center and have access to engineering support teams with specialized expertise in International Space Station (ISS) subsystems. Integrated System Health Management (ISHM) applications can significantly augment these capabilities by providing enhanced monitoring, prognostic and diagnostic tools for critical decision support and mission management. The Intelligent Systems Division of NASA Ames Research Center is developing many prototype applications using model-based reasoning, data mining and simulation, working with Mission Control through the ISHM Testbed and Prototypes Project. This paper will briefly describe information technology that supports current mission management practice, and will extend this to a vision for future mission control workflow incorporating new ISHM applications. It will describe ISHM applications currently under development at NASA and will define technical approaches for implementing our vision of future human exploration mission management incorporating artificial intelligence and distributed web service architectures using specific examples. Several prototypes are under development, each highlighting a different computational approach. The ISStrider application allows in-depth analysis of Caution and Warning (C&W) events by correlating real-time telemetry with the logical fault trees used to define off-nominal events. The application uses live telemetry data and the Livingstone diagnostic inference engine to display the specific parameters and fault trees that generated the C&W event, allowing a flight controller to identify the root cause of the event from thousands of possibilities by simply navigating animated fault tree models on their workstation. SimStation models the functional power flow for the ISS Electrical Power System and can predict power balance for nominal and off-nominal conditions. SimStation uses realtime telemetry data to keep detailed computational physics models synchronized with actual ISS power system state. In the event of failure, the application can then rapidly diagnose root cause, predict future resource levels and even correlate technical documents relevant to the specific failure. These advanced computational models will allow better insight and more precise control of ISS subsystems, increasing safety margins by speeding up anomaly resolution and reducing,engineering team effort and cost. This technology will make operating ISS more efficient and is directly applicable to next-generation exploration missions and Crew Exploration Vehicles.

  2. Manufacturing process applications team (MATeam)

    NASA Technical Reports Server (NTRS)

    Bangs, E. R.

    1980-01-01

    The objectives and activities of an aerospace technology transfer group are outlined and programs in various stages of progress are described including the orbital tube flaring device, infrared proximity sensor for robot positioning, laser stripping magnet wire, infrared imaging as welding process tracking system, carbide coating of cutting tools, nondestructive fracture toughness testing of titanium welds, portable solar system for agricultural applications, and an anerobic methane gas generator.

  3. Hidden Disruptions: Technology and Technological Literacy as Influences on Professional Writing Student Teams

    ERIC Educational Resources Information Center

    McGrady, Lisa

    2010-01-01

    This article reports on a study designed to explore whether and in what ways individual students' technological literacies might impact collaborative teams. For the collaborative team discussed in this article, technological literacy--specifically, limited repertoires for solving technical problems, clashes between document management strategies,…

  4. Disaster Coverage Predication for the Emerging Tethered Balloon Technology: Capability for Preparedness, Detection, Mitigation, and Response.

    PubMed

    Alsamhi, Saeed H; Samar Ansari, Mohd; Rajput, Navin S

    2018-04-01

    A disaster is a consequence of natural hazards and terrorist acts, which have significant potential to disrupt the entire wireless communication infrastructure. Therefore, the essential rescue squads and recovery operations during a catastrophic event will be severely debilitated. To provide efficient communication services, and to reduce casualty mortality and morbidity during the catastrophic events, we proposed the Tethered Balloon technology for disaster preparedness, detection, mitigation, and recovery assessment. The proposed Tethered Balloon is applicable to any type of disaster except for storms. The Tethered Balloon is being actively researched and developed as a simple solution to improve the performance of rescues, facilities, and services of emergency medical communication in the disaster area. The most important requirement for rescue and relief teams during or after the disaster is a high quality of service of delivery communication services to save people's lives. Using our proposed technology, we report that the Tethered Balloon has a large disaster coverage area. Therefore, the rescue and research teams are given higher priority, and their performance significantly improved in the particular coverage area. Tethered Balloon features made it suitable for disaster preparedness, mitigation, and recovery. The performance of rescue and relief teams was effective and efficient before and after the disaster as well as can be continued to coordinate the relief teams until disaster recovery. (Disaster Med Public Health Preparedness. 2018;12:222-231).

  5. Through the Looking Glass: Real-Time Video Using 'Smart' Technology Provides Enhanced Intraoperative Logistics.

    PubMed

    Baldwin, Andrew C W; Mallidi, Hari R; Baldwin, John C; Sandoval, Elena; Cohn, William E; Frazier, O H; Singh, Steve K

    2016-01-01

    In the setting of increasingly complex medical therapies and limited physician resources, the recent emergence of 'smart' technology offers tremendous potential for improved logistics, efficiency, and communication between medical team members. In an effort to harness these capabilities, we sought to evaluate the utility of this technology in surgical practice through the employment of a wearable camera device during cardiothoracic organ recovery. A single procurement surgeon was trained for use of an Explorer Edition Google Glass (Google Inc., Mountain View, CA) during the recovery process. Live video feed of each procedure was securely broadcast to allow for members of the home transplant team to remotely participate in organ assessment. Primary outcomes involved demonstration of technological feasibility and validation of quality assurance through group assessment. The device was employed for the recovery of four organs: a right single lung, a left single lung, and two bilateral lung harvests. Live video of the visualization process was remotely accessed by the home transplant team, and supplemented final verification of organ quality. In each case, the organs were accepted for transplant without disruption of standard procurement protocols. Media files generated during the procedures were stored in a secure drive for future documentation, evaluation, and education purposes without preservation of patient identifiers. Live video streaming can improve quality assurance measures by allowing off-site members of the transplant team to participate in the final assessment of donor organ quality. While further studies are needed, this project suggests that the application of mobile 'smart' technology offers not just immediate value, but the potential to transform our approach to the practice of medicine.

  6. Purple: a modular system for developing and deploying behavioral intervention technologies.

    PubMed

    Schueller, Stephen M; Begale, Mark; Penedo, Frank J; Mohr, David C

    2014-07-30

    The creation, deployment, and evaluation of Web-based and mobile-based applications for health, mental health, and wellness within research settings has tended to be siloed, with each research group developing their own systems and features. This has led to technological features and products that are not sharable across research teams, thereby limiting collaboration, reducing the speed of dissemination, and raising the bar for entry into this area of research. This paper provides an overview of Purple, an extensible, modular, and repurposable system created for the development of Web-based and mobile-based applications for health behavior change. Purple contains features required to construct applications and to manage and evaluate research trials using these applications. Core functionality of Purple includes elements that support user management, content authorship, content delivery, and data management. We discuss the history and development of the Purple system guided by the rationale of producing a system that allows greater collaboration and understanding across research teams interested in investigating similar questions and using similar methods. Purple provides a useful tool to meet the needs of stakeholders involved in the creation, provision, and usage of eHealth and mHealth applications. Housed in a non-profit, academic institution, Purple also offers the potential to facilitate the diffusion of knowledge across the research community and improve our capacity to deliver useful and usable applications that support the behavior change of end users.

  7. Purple: A Modular System for Developing and Deploying Behavioral Intervention Technologies

    PubMed Central

    Schueller, Stephen M; Begale, Mark; Penedo, Frank J

    2014-01-01

    The creation, deployment, and evaluation of Web-based and mobile-based applications for health, mental health, and wellness within research settings has tended to be siloed, with each research group developing their own systems and features. This has led to technological features and products that are not sharable across research teams, thereby limiting collaboration, reducing the speed of dissemination, and raising the bar for entry into this area of research. This paper provides an overview of Purple, an extensible, modular, and repurposable system created for the development of Web-based and mobile-based applications for health behavior change. Purple contains features required to construct applications and to manage and evaluate research trials using these applications. Core functionality of Purple includes elements that support user management, content authorship, content delivery, and data management. We discuss the history and development of the Purple system guided by the rationale of producing a system that allows greater collaboration and understanding across research teams interested in investigating similar questions and using similar methods. Purple provides a useful tool to meet the needs of stakeholders involved in the creation, provision, and usage of eHealth and mHealth applications. Housed in a non-profit, academic institution, Purple also offers the potential to facilitate the diffusion of knowledge across the research community and improve our capacity to deliver useful and usable applications that support the behavior change of end users. PMID:25079298

  8. Photonics engineering: snapshot applications in healthcare, homeland security, agriculture, and industry

    NASA Astrophysics Data System (ADS)

    Sumriddetchkajorn, Sarun

    2015-01-01

    Throughout my experience in photonics engineering, this article shows that photonics is indeed a key technology enabler for enhancing our competitiveness. In particular, I snapshot the achievements of NECTEC research teams in implementing devices and systems suitable for healthcare, homeland security, agriculture, and industry.

  9. Improving NASA's technology transfer process through increased screening and evaluation in the information dissemination program

    NASA Technical Reports Server (NTRS)

    Laepple, H.

    1979-01-01

    The current status of NASA's technology transfer system can be improved if the technology transfer process is better understood. This understanding will only be gained if a detailed knowledge about factors generally influencing technology transfer is developed, and particularly those factors affecting technology transfer from government R and D agencies to industry. Secondary utilization of aerospace technology is made more difficult because it depends on a transfer process which crosses established organizational lines of authority and which is outside well understood patterns of technical applications. In the absence of a sound theory about technology transfer and because of the limited capability of government agencies to explore industry's needs, a team approach to screening and evaluation of NASA generated technologies is proposed which calls for NASA, and other organizations of the private and public sectors which influence the transfer of NASA generated technology, to participate in a screening and evaluation process to determine the commercial feasibility of a wide range of technical applications.

  10. Microsystem technology as a road from macro to nanoworld.

    PubMed

    Grabiec, Piotr; Domański, Krzysztof; Janus, Paweł; Zaborowski, Michał; Jaroszewicz, Bogdan

    2005-04-01

    Tremendous progress of microelectronic technology observed within last 40 years is closely related to even more remarkable progress of technological tools. It is important to note however, that these new tools may be used for fabrication of diverse multifunctional structures as well. Such devices, called MEMS (Micro-Electro-Mechanical-System) and MOEMS (Micro-Electro-Opto-Mechanical-System) integrate microelectronic and micromechanical structures in one system enabling interdisciplinary application, with most interesting and prospective being bio-medical investigations. Development of these applications requires however cooperation of multidisciplinary team of specialists, covering broad range of physics, (bio) chemistry and electronics, not mentioning medical doctors and other medical specialists. Thus, dissemination, of knowledge about existing processing capabilities is of key importance. In this paper, examples of various applications of microelectronic technology for fabrication of Microsystems which may be used for medicine and chemistry, will be presented. Besides, information concerning a design and technology potential available in poland and new, emerging opportunities will be given.

  11. OSMA Research and Technology Strategy Team Summary

    NASA Technical Reports Server (NTRS)

    Wetherholt, Martha

    2010-01-01

    This slide presentation reviews the work of the Office of Safety and Mission Assurance (OSMA), and the OSMA Research and Technology Strategy (ORTS) team. There is discussion of the charter of the team, Technology Readiness Levels (TRLs) and how the teams responsibilities are related to these TRLs. In order to improve the safety of all levels of the development through the TRL phases, improved communication, understanding and cooperation is required at all levels, particularly at the mid level technologies development.

  12. Flight Avionics Hardware Roadmap

    NASA Technical Reports Server (NTRS)

    Some, Raphael; Goforth, Monte; Chen, Yuan; Powell, Wes; Paulick, Paul; Vitalpur, Sharada; Buscher, Deborah; Wade, Ray; West, John; Redifer, Matt; hide

    2014-01-01

    The Avionics Technology Roadmap takes an 80% approach to technology investment in spacecraft avionics. It delineates a suite of technologies covering foundational, component, and subsystem-levels, which directly support 80% of future NASA space mission needs. The roadmap eschews high cost, limited utility technologies in favor of lower cost, and broadly applicable technologies with high return on investment. The roadmap is also phased to support future NASA mission needs and desires, with a view towards creating an optimized investment portfolio that matures specific, high impact technologies on a schedule that matches optimum insertion points of these technologies into NASA missions. The roadmap looks out over 15+ years and covers some 114 technologies, 58 of which are targeted for TRL6 within 5 years, with 23 additional technologies to be at TRL6 by 2020. Of that number, only a few are recommended for near term investment: 1. Rad Hard High Performance Computing 2. Extreme temperature capable electronics and packaging 3. RFID/SAW-based spacecraft sensors and instruments 4. Lightweight, low power 2D displays suitable for crewed missions 5. Radiation tolerant Graphics Processing Unit to drive crew displays 6. Distributed/reconfigurable, extreme temperature and radiation tolerant, spacecraft sensor controller and sensor modules 7. Spacecraft to spacecraft, long link data communication protocols 8. High performance and extreme temperature capable C&DH subsystem In addition, the roadmap team recommends several other activities that it believes are necessary to advance avionics technology across NASA: center dot Engage the OCT roadmap teams to coordinate avionics technology advances and infusion into these roadmaps and their mission set center dot Charter a team to develop a set of use cases for future avionics capabilities in order to decouple this roadmap from specific missions center dot Partner with the Software Steering Committee to coordinate computing hardware and software technology roadmaps and investment recommendations center dot Continue monitoring foundational technologies upon which future avionics technologies will be dependent, e.g., RHBD and COTS semiconductor technologies

  13. Optoelectronics technologies for Virtual Reality systems

    NASA Astrophysics Data System (ADS)

    Piszczek, Marek; Maciejewski, Marcin; Pomianek, Mateusz; Szustakowski, Mieczysław

    2017-08-01

    Solutions in the field of virtual reality are very strongly associated with optoelectronic technologies. This applies to both process design and operation of VR applications. Technologies such as 360 cameras and 3D scanners significantly improve the design work. What is more, HMD displays with high field of view or optoelectronic Motion Capture systems and 3D cameras guarantee an extraordinary experience in immersive VR applications. This article reviews selected technologies from the perspective of their use in a broadly defined process of creating and implementing solutions for virtual reality. There is also the ability to create, modify and adapt new approaches that show team own work (SteamVR tracker). Most of the introduced examples are effectively used by authors to create different VR applications. The use of optoelectronic technology in virtual reality is presented in terms of design and operation of the system as well as referring to specific applications. Designers and users of VR systems should take a close look on new optoelectronics solutions, as they can significantly contribute to increased work efficiency and offer completely new opportunities for virtual world reception.

  14. Lessons Learned from Deploying an Analytical Task Management Database

    NASA Technical Reports Server (NTRS)

    O'Neil, Daniel A.; Welch, Clara; Arceneaux, Joshua; Bulgatz, Dennis; Hunt, Mitch; Young, Stephen

    2007-01-01

    Defining requirements, missions, technologies, and concepts for space exploration involves multiple levels of organizations, teams of people with complementary skills, and analytical models and simulations. Analytical activities range from filling a To-Be-Determined (TBD) in a requirement to creating animations and simulations of exploration missions. In a program as large as returning to the Moon, there are hundreds of simultaneous analysis activities. A way to manage and integrate efforts of this magnitude is to deploy a centralized database that provides the capability to define tasks, identify resources, describe products, schedule deliveries, and generate a variety of reports. This paper describes a web-accessible task management system and explains the lessons learned during the development and deployment of the database. Through the database, managers and team leaders can define tasks, establish review schedules, assign teams, link tasks to specific requirements, identify products, and link the task data records to external repositories that contain the products. Data filters and spreadsheet export utilities provide a powerful capability to create custom reports. Import utilities provide a means to populate the database from previously filled form files. Within a four month period, a small team analyzed requirements, developed a prototype, conducted multiple system demonstrations, and deployed a working system supporting hundreds of users across the aeros pace community. Open-source technologies and agile software development techniques, applied by a skilled team enabled this impressive achievement. Topics in the paper cover the web application technologies, agile software development, an overview of the system's functions and features, dealing with increasing scope, and deploying new versions of the system.

  15. Integration of Slack, a cloud-based team collaboration application, into research coordination.

    PubMed

    Gofine, Miriam; Clark, Sunday

    2017-06-30

    Practitioners of epidemiology require efficient real-time communication and shared access to numerous documents in order to effectively manage a study. Much of this communication involves study logistics and does not require use of Protected Health Information. Slack is a team collaboration app; it archives all direct messages and group conversations, hosts documents internally, and integrates with the Google Docs application. Slack has both desktop and mobile applications, allowing users to communicate in real-time without the need to find email addresses or phone numbers or create contact lists. METHOD: We piloted the integration of Slack into our research team of one faculty member, one research coordinator, and approximately 20 research assistants. Statistics describing the app's usage were calculated twelve months after its implementation. RESULTS: Results indicating heavy usage by both research professionals and assistants are presented. Our Slack group included a cumulative 51 users. Between October 2015 and November 2016, approximately 10,600 messages were sent through Slack; 53% were sent by RA's and 47% were sent by us. Of the 106 files stored on Slack, 82% were uploaded by research staff. In a January 2016 survey, 100% of RA's agreed or strongly agreed that Slack improved communication within the team. CONCLUSION: We demonstrate a model for integration of communication technology into academic activities by research teams. Slack is easily integrated into the workflow at an urban, academic medical center and is adopted by users as a highly effective tool for meeting research teams' communication and document management needs.

  16. Capabilities of the Materials Contamination Team at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Burns, H. D.; Finckenor, M. M.; Boothe, R. E.; Albyn, K. C.; Finchum, C. A.

    2003-01-01

    The Materials Contamination Team of the Environmental Effects Group, Materials, Processes, and Manufacturing Department, has been recognized for its contribution to space flight, including space transportation, space science and flight projects, such as the reusable solid rocket motor, Chandra X-Ray Observatory, and the International Space Station. The Materials Contamination Team s realm of responsibility encompasses all phases of hardware development including design, manufacturing, assembly, test, transportation, launch-site processing, on-orbit exposure, return, and refurbishment if required. Contamination is a concern in the Space Shuttle with sensitivity bondlines and reactive fluid (liquid oxygen) compatibility as well as for sensitive optics, particularly spacecraft such as Hubble Space Telescope and Chandra X-Ray Observatory. The Materials Contamination Team has a variety of facilities and instrumentation capable of contaminant detection identification, and monitoring. The team addresses material applications dealing with environments, including production facilities, clean rooms, and on-orbit exposure. The team of engineers and technicians also develop and evaluates new surface cleanliness inspection technologies. Databases are maintained by the team for proces! materials as well as outgassing and optical compatibility test results for specific environments.

  17. Gas Generators and Their Potential to Support Human-Scale HIADS (Hypersonic Inflatable Aerodynamic Decelerators)

    NASA Technical Reports Server (NTRS)

    Bodkin, Richard J.; Cheatwood, F. M.; Dillman, Robert A; Dinonno, John M.; Hughes, Stephen J.; Lucy, Melvin H.

    2016-01-01

    As HIAD technology progresses from 3-m diameter experimental scale to as large as 20-m diameter for human Mars entry, the mass penalties of carrying compressed gas has led the HIAD team to research current state-of-the-art gas generator approaches. Summarized below are several technologies identified in this survey, along with some of the pros and cons with respect to supporting large-scale HIAD applications.

  18. Knowledge Sharing within Virtual Teams: A Qualitative Case Study of the Role Technology Plays in Team Sharing Practices

    ERIC Educational Resources Information Center

    Parker, Denise L.

    2017-01-01

    Virtual teams are comprised of members from various locations who use Information and Communication Technology (ICT) for member interaction. Many organizations have accepted virtual teams as an alternative to face-to-face teams. With the acceptance comes many challenges, one of those challenges is supporting team sharing in the virtual…

  19. Strategies for the War on Terrorism: Results of a Special Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MOORE, JUDY H.

    2002-08-01

    On September 13, 2001, the first day after the attacks of September 11 that Sandia National Laboratories re-opened, Vice President Gerry Yonas entirely redirected the efforts of his organization, the Advanced Concepts Group (ACG), to the problem of terrorism. For the next several weeks, the ACG focused on trying to better characterize the international terrorist threat and the vulnerabilities of the US to further attacks. This work culminated in a presentation by Dr . Yonas to the Fall Leadership Focus meeting at Sandia National Laboratories on October 22. Following that meeting, President and Lab Director, Paul Robinson, asked Dr. Yonasmore » and the ACG to develop a long-term (3-5 year) technology roadmap showing how Sandia could direct efforts to making major contributions to the success of the nation's war on terrorism. The ACG effort would communicate with other Labs activities working on near-term responses to Federal calls for technological support. The ACG study was conducted in two phases. The first, more exploratory, stage divided the terrorism challenge into three broad parts, each examined by a team that included both permanent ACG staff and part-time staff and consultants from other Sandia organizations. The ''Red'' team looked at the problems of finding and stopping terrorists before they strike (or strike again). The ''Yellow'' team studied the problems of protecting people and facilities from terrorist attacks, as well as those of responding to attacks that occur. The ''Green'' team attempted to understand the long-term, ''root'' causes of terrorism, and how technology might help ameliorate the conditions that lead people to support, or even become, terrorists. In addition, a ''Purple'' team worked with the other teams to provide an integrating vision for them all, to help make appropriate connections among them, and to see that they left no important gaps between them. The findings of these teams were presented to a broad representation of laboratory staff and management on January 3, 2002. From the many ideas explored by the Red, Green, and Yellow teams, and keeping in mind criteria formulated by the Purple team, the ACG assembled a set of five major technology development goals. These goals, if pursued, could lead to major contributions to the war on terrorism. With some rearrangement of team members and coordinators, a new set of teams began fleshing out these five ''Big Hairy Audacious Goals'' for the consideration of Laboratory leadership. Dr. Yonas briefed Sandia upper management on the work of these teams on February 4, 2002. This report presents the essence of that work as applicable to the R&D community of the nation interested in the development of better tools for a long term ''War on Terrorism.''« less

  20. 101 Tips, Traps, and To-Dos for Creating Teams: A Guidebook for School Leaders. Guiding Groups To Become Teams, Facilitating Them To Become High-Performance Teams, and Empowering Them To Become Technology-Based Teams.

    ERIC Educational Resources Information Center

    Bailey, Gerald D.; Ross, Tweed; Bailey, Gwen L.; Lumley, Dan

    Using teams is an effective way to meet the challenges of breaking down teacher isolation, halting curriculum fragmentation, and creating a learning organization. This guide is designed to help school leaders train groups to become teams, guide them to become high-performance teams, and empower them to become technology-based teams. It contains…

  1. Team Learning in Technology-Mediated Distributed Teams

    ERIC Educational Resources Information Center

    Andres, Hayward P.; Shipps, Belinda P.

    2010-01-01

    This study examines technological, educational/learning, and social affordances associated with the facilitation of project-based learning and problem solving in technology-mediated distributed teams. An empirical interpretive research approach using direct observation is used to interpret, evaluate and rate observable manifested behaviors and…

  2. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Sam Ortega, NASA program manager of Centennial Challenges, watches as robots attempt the rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  3. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Worcester Polytechnic Institute (WPI) President Laurie Leshin, speaks at a breakfast opening the TouchTomorrow Festival, held in conjunction with the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  4. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    David Miller, NASA Chief Technologist, speaks at a breakfast opening the TouchTomorrow Festival, held in conjunction with the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  5. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The entrance to Institute Park is seen during the level one challenge as during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  6. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Sam Ortega, NASA Centennial Challenges Program Manager, speaks at a breakfast opening the TouchTomorrow Festival, held in conjunction with the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  7. Electronic Nursing Notes: A Case Study on Interdisciplinary Collaboration

    ERIC Educational Resources Information Center

    Howard, Elizabeth V.; Teets, Janet

    2006-01-01

    In an interdisciplinary collaboration between the Computer & Information Technology (CIT) and Nursing (NSG) Departments at the Middletown and Hamilton regional campuses of Miami University (of Ohio), student team members created a Web-based application to create Electronic Nursing Notes. Students from the two departments worked together to…

  8. NASA's Evolutionary Xenon Thruster (NEXT) Ion Propulsion System Information Summary

    NASA Technical Reports Server (NTRS)

    Pencil, Eirc S.; Benson, Scott W.

    2008-01-01

    This document is a guide to New Frontiers mission proposal teams. The document describes the development and status of the NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system (IPS) technology, its application to planetary missions, and the process anticipated to transition NEXT to the first flight mission.

  9. A Mobile Phone-Based Sensor Grid for Distributed Team Operations

    DTIC Science & Technology

    2010-09-01

    A. IPHONE ACCELEROMETER ACCESS To understand the capabilities of the IPhone, it is necessary to review how the IPhone uses Objective C and COCOA ...battery technology, as well as on reducing the power consumption of the phones. These would help make applications such as ours more practical on

  10. NASA technology applications team: Applications of aerospace technology

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Two critical aspects of the Applications Engineering Program were especially successful: commercializing products of Application Projects; and leveraging NASA funds for projects by developing cofunding from industry and other agencies. Results are presented in the following areas: the excimer laser was commercialized for clearing plaque in the arteries of patients with coronary artery disease; the ultrasound burn depth analysis technology is to be licensed and commercialized; a phased commercialization plan was submitted to NASA for the intracranial pressure monitor; the Flexible Agricultural Robotics Manipulator System (FARMS) is making progress in the development of sensors and a customized end effector for a roboticized greenhouse operation; a dual robot are controller was improved; a multisensor urodynamic pressure catherer was successful in clinical tests; commercial applications were examined for diamond like carbon coatings; further work was done on the multichannel flow cytometer; progress on the liquid airpack for fire fighters; a wind energy conversion device was tested in a low speed wind tunnel; and the Space Shuttle Thermal Protection System was reviewed.

  11. Using detailed inter-network simulation and model abstraction to investigate and evaluate joint battlespace infosphere (JBI) support technologies

    NASA Astrophysics Data System (ADS)

    Green, David M.; Dallaire, Joel D.; Reaper, Jerome H.

    2004-08-01

    The Joint Battlespace Infosphere (JBI) program is performing a technology investigation into global communications, data mining and warehousing, and data fusion technologies by focusing on techniques and methodologies that support twenty first century military distributed collaboration. Advancement of these technologies is vitally important if military decision makers are to have the right data, in the right format, at the right time and place to support making the right decisions within available timelines. A quantitative understanding of individual and combinational effects arising from the application of technologies within a framework is presently far too complex to evaluate at more than a cursory depth. In order to facilitate quantitative analysis under these circumstances, the Distributed Information Enterprise Modeling and Simulation (DIEMS) team was formed to apply modeling and simulation (M&S) techniques to help in addressing JBI analysis challenges. The DIEMS team has been tasked utilizing collaborative distributed M&S architectures to quantitatively evaluate JBI technologies and tradeoffs. This paper first presents a high level view of the DIEMS project. Once this approach has been established, a more concentrated view of the detailed communications simulation techniques used in generating the underlying support data sets is presented.

  12. How to tap NASA-developed technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruzic, N.

    The National Aeronautics and Space Administration (NASA) space program's contribution to technology and the transfer of its achievements to industrial and consumer products is unprecedented. The process of transferring new technology suffers, however, partly because managers tend to ignore new technological markets unless new products solve their specific problems and partly because managers may not know the technology is available. NASA's Technology Utilization Branch has learned to initiate transfer, using a network of centers to dispense information on applications. NASA also has a large software library and computer programs, as well as teams to make person-to-person contacts. Examples of successfulmore » transfers have affected energy sources, building contruction, health, and safety. (DCK)« less

  13. ISS Asset Tracking Using SAW RFID Technology

    NASA Technical Reports Server (NTRS)

    Schellhase, Amy; Powers, Annie

    2004-01-01

    A team at the NASA Johnson Space Center (JSC) is undergoing final preparations to test Surface Acoustic Wave (SAW) Radio Frequency Identification (RFID) technology to track assets aboard the International Space Station (ISS). Currently, almost 10,000 U.S. items onboard the ISS are tracked within a database maintained by both the JSC ground teams and crew onboard the ISS. This barcode-based inventory management system has successfully tracked the location of 97% of the items onboard, but its accuracy is dependant on the crew to report hardware movements, taking valuable time away from science and other activities. With the addition of future modules, the volume of inventory to be tracked is expected to increase significantly. The first test of RFID technology on ISS, which will be conducted by the Expedition 16 crew later this year, will evaluate the ability of RFID technology to track consumable items. These consumables, which include office supplies and clothing, are regularly supplied to ISS and can be tagged on the ground. Automation will eliminate line-of-sight auditing requirements, directly saving crew time. This first step in automating an inventory tracking system will pave the way for future uses of RFID for inventory tracking in space. Not only are there immediate benefits for ISS applications, it is a crucial step to ensure efficient logistics support for future vehicles and exploration missions where resupplies are not readily available. Following a successful initial test, the team plans to execute additional tests for new technology, expanded operations concepts, and increased automation.

  14. The effect of collision avoidance for autonomous robot team formation

    NASA Astrophysics Data System (ADS)

    Seidman, Mark H.; Yang, Shanchieh J.

    2007-04-01

    As technology and research advance to the era of cooperative robots, many autonomous robot team algorithms have emerged. Shape formation is a common and critical task in many cooperative robot applications. While theoretical studies of robot team formation have shown success, it is unclear whether such algorithms will perform well in a real-world environment. This work examines the effect of collision avoidance schemes on an ideal circle formation algorithm, but behaves similarly if robot-to-robot communications are in place. Our findings reveal that robots with basic collision avoidance capabilities are still able to form into a circle, under most conditions. Moreover, the robot sizes, sensing ranges, and other critical physical parameters are examined to determine their effects on algorithm's performance.

  15. The Informal Workplace Learning Experiences of Virtual Team Members: A Look at the Role of Collaborative Technologies

    ERIC Educational Resources Information Center

    Jones, Frankie S.

    2007-01-01

    This qualitative study explored how collaborative technologies influence the informal learning experiences of virtual team members. Inputs revealed as critical to virtual informal learning were integrated, collaborative technological systems; positive relationships and trust; and organizational support and virtual team management. These inputs…

  16. Technology Transfer: A Contact Sport

    NASA Technical Reports Server (NTRS)

    Paynter, Nina P.

    1995-01-01

    Technology transfer is a dynamic process, involving dynamic people as the bridge between NASA Langley Research Center and the outside world. This bridge, for nonaerospace applications, is known as the Technology Applications Group. The introduction of new innovations and expertise where they are needed occurs through a 'push' and 'pull' process. A 'push' occurs when a new technology is first developed with high commercial potential and then a company is found to licence or further develop the technology. The 'pull' process occurs through problem statements. A company or group will submit a written statement of what they need and the shortcomings of commercially available technology. The Technology Transfer Team (T3) reviews these problem statements and decides where NASA LaRC can offer assistance. A researcher or group of researchers are then identified who can help solve the problem and they are put in contact with the company. Depending upon the situation in either method, a Space Act Agreement (SAA), or outline of the responsibilities for each party, is developed.

  17. NREL Topic 1 Final Report: Cohesive Application of Standards-Based Connected Devices to Enable Clean Energy Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudgins, Andrew P.; Sparn, Bethany F.; Jin, Xin

    This document is the final report of a two-year development, test, and demonstration project entitled 'Cohesive Application of Standards-Based Connected Devices to Enable Clean Energy Technologies.' The project was part of the National Renewable Energy Laboratory's (NREL) Integrated Network Test-bed for Energy Grid Research and Technology (INTEGRATE) initiative. The Electric Power Research Institute (EPRI) and a team of partners were selected by NREL to carry out a project to develop and test how smart, connected consumer devices can act to enable the use of more clean energy technologies on the electric power grid. The project team includes a set ofmore » leading companies that produce key products in relation to achieving this vision: thermostats, water heaters, pool pumps, solar inverters, electric vehicle supply equipment, and battery storage systems. A key requirement of the project was open access at the device level - a feature seen as foundational to achieving a future of widespread distributed generation and storage. The internal intelligence, standard functionality and communication interfaces utilized in this project result in the ability to integrate devices at any level, to work collectively at the level of the home/business, microgrid, community, distribution circuit or other. Collectively, the set of products serve as a platform on which a wide range of control strategies may be developed and deployed.« less

  18. Summary Findings from the AVT-191 Project to Assess Sensitivity Analysis and Uncertainty Quantification Methods for Military Vehicle Design

    NASA Technical Reports Server (NTRS)

    Benek, John A.; Luckring, James M.

    2017-01-01

    A NATO symposium held in Greece in 2008 identified many promising sensitivity analysis and uncertainty quantification technologies, but the maturity and suitability of these methods for realistic applications was not clear. The NATO Science and Technology Organization, Task Group AVT-191 was established to evaluate the maturity and suitability of various sensitivity analysis and uncertainty quantification methods for application to realistic vehicle development problems. The program ran from 2011 to 2015, and the work was organized into four discipline-centric teams: external aerodynamics, internal aerodynamics, aeroelasticity, and hydrodynamics. This paper summarizes findings and lessons learned from the task group.

  19. System model development for nuclear thermal propulsion

    NASA Technical Reports Server (NTRS)

    Walton, James T.; Hannan, Nelson A.; Perkins, Ken R.; Buksa, John H.; Worley, Brian A.; Dobranich, Dean

    1992-01-01

    A critical enabling technology in the evolutionary development of nuclear thermal propulsion (NTP) is the ability to predict the system performance under a variety of operating conditions. This is crucial for mission analysis and for control subsystem testing as well as for the modeling of various failure modes. Performance must be accurately predicted during steady-state and transient operation, including startup, shutdown, and post operation cooling. The development and application of verified and validated system models has the potential to reduce the design, testing, and cost and time required for the technology to reach flight-ready status. Since Oct. 1991, the U.S. Department of Energy (DOE), Department of Defense (DOD), and NASA have initiated critical technology development efforts for NTP systems to be used on Space Exploration Initiative (SEI) missions to the Moon and Mars. This paper presents the strategy and progress of an interagency NASA/DOE/DOD team for NTP system modeling. It is the intent of the interagency team to develop several levels of computer programs to simulate various NTP systems. The first level will provide rapid, parameterized calculations of overall system performance. Succeeding computer programs will provide analysis of each component in sufficient detail to guide the design teams and experimental efforts. The computer programs will allow simulation of the entire system to allow prediction of the integrated performance. An interagency team was formed for this task to use the best capabilities available and to assure appropriate peer review.

  20. Is Information Technology Education Betters Learned in Teams? An Exploratory Study of Teamwork Effectiveness at a Higher Education Institution

    ERIC Educational Resources Information Center

    Lauridsen, Barbara L.

    2013-01-01

    The purpose of this research was to determine if the effectiveness of technology education can be significantly increased through use of team-based activities including both real-time team encounters and results-driven team assignments. The research addresses this purpose by examining perceptions regarding effectiveness of team-based learning in…

  1. Enhancing HumanAgent Teaming with Individualized, Adaptive Technologies: A Discussion of Critical Scientific Questions

    DTIC Science & Technology

    2018-05-04

    ARL-TR-8359 ● MAY 2018 US Army Research Laboratory Enhancing Human–Agent Teaming with Individualized, Adaptive Technologies : A...with Individualized, Adaptive Technologies : A Discussion of Critical Scientific Questions by Arwen H DeCostanza, Amar R Marathe, Addison Bohannon...Enhancing Human–Agent Teaming with Individualized, Adaptive Technologies : A Discussion of Critical Scientific Questions 5a. CONTRACT NUMBER 5b

  2. The structural approach to shared knowledge: an application to engineering design teams.

    PubMed

    Avnet, Mark S; Weigel, Annalisa L

    2013-06-01

    We propose a methodology for analyzing shared knowledge in engineering design teams. Whereas prior work has focused on shared knowledge in small teams at a specific point in time, the model presented here is both scalable and dynamic. By quantifying team members' common views of design drivers, we build a network of shared mental models to reveal the structure of shared knowledge at a snapshot in time. Based on a structural comparison of networks at different points in time, a metric of change in shared knowledge is computed. Analysis of survey data from 12 conceptual space mission design sessions reveals a correlation between change in shared knowledge and each of several system attributes, including system development time, system mass, and technological maturity. From these results, we conclude that an early period of learning and consensus building could be beneficial to the design of engineered systems. Although we do not examine team performance directly, we demonstrate that shared knowledge is related to the technical design and thus provide a foundation for improving design products by incorporating the knowledge and thoughts of the engineering design team into the process.

  3. Building Virtual Teams: Experiential Learning Using Emerging Technologies

    ERIC Educational Resources Information Center

    Hu, Haihong

    2015-01-01

    Currently, virtual teams are being used exponentially in higher education and business because of the development of technologies and globalization. These teams have become an essential approach for collaborative learning as well as task completion. Team learning, especially in an online format, can be challenging due to lack of effective…

  4. Assessing Team Learning in Technology-Mediated Collaboration: An Experimental Study

    ERIC Educational Resources Information Center

    Andres, Hayward P.; Akan, Obasi H.

    2010-01-01

    This study examined the effects of collaboration mode (collocated versus non-collocated videoconferencing-mediated) on team learning and team interaction quality in a team-based problem solving context. Situated learning theory and the theory of affordances are used to provide a framework that describes how technology-mediated collaboration…

  5. NCI's Proteome Characterization Centers Announced | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The National Cancer Institute (NCI), part of the National Institutes of Health, announces the launch of a Clinical Proteomic Tumor Analysis Consortium (CPTAC). CPTAC is a comprehensive, coordinated team effort to accelerate the understanding of the molecular basis of cancer through the application of robust, quantitative, proteomic technologies and workflows.

  6. TLE TeachLive™: Using Technology to Provide Quality Professional Development in Rural Schools

    ERIC Educational Resources Information Center

    Dieker, Lisa A.; Hynes, Michael C.; Hughes, Charles E.; Hardin, Stacey; Becht, Kathleen

    2015-01-01

    Rural schools face challenges in training and retaining qualified teachers, especially special education personnel. This article describes how an interdisciplinary team at the University of Central Florida developed TLE TeachLivE™, a virtual reality application designed to serve as a classroom simulation to support teachers and administrators to…

  7. Treatment of Complicated Grief Using Virtual Reality: A Case Report

    ERIC Educational Resources Information Center

    Botella, C.; Osma, J.; Palacios, A. Garcia; Guillen, V.; Banos, R.

    2008-01-01

    This is the first work exploring the application of new technologies, concretely virtual reality, to facilitate emotional processing in the treatment of Complicated Grief. Our research team has designed a virtual reality environment (EMMA's World) to foster the expression and processing of emotions. In this study the authors present a description…

  8. 78 FR 50119 - Submission for Review: Application for Deferred or Postponed Retirement; Federal Employees...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-16

    ... information technology, e.g., permitting electronic submissions of responses. DATES: Comments are encouraged... to the U.S. Office of Personnel Management, Retirement Services, Union Square 370, 1900 E Street NW... contacting the U.S. Office of Personnel Management, Retirement Services Publications Team, 1900 E Street NW...

  9. The NASA LeRC regenerative fuel cell system testbed program for goverment and commercial applications

    NASA Astrophysics Data System (ADS)

    Maloney, Thomas M.; Prokopius, Paul R.; Voecks, Gerald E.

    1995-01-01

    The Electrochemical Technology Branch of the NASA Lewis Research Center (LeRC) has initiated a program to develop a renewable energy system testbed to evaluate, characterize, and demonstrate fully integrated regenerative fuel cell (RFC) system for space, military, and commercial applications. A multi-agency management team, led by NASA LeRC, is implementing the program through a unique international coalition which encompasses both government and industry participants. This open-ended teaming strategy optimizes the development for space, military, and commercial RFC system technologies. Program activities to date include system design and analysis, and reactant storage sub-system design, with a major emphasis centered upon testbed fabrication and installation and testing of two key RFC system components, namely, the fuel cells and electrolyzers. Construction of the LeRC 25 kW RFC system testbed at the NASA-Jet Propulsion Labortory (JPL) facility at Edwards Air Force Base (EAFB) is nearly complete and some sub-system components have already been installed. Furthermore, planning for the first commercial RFC system demonstration is underway.

  10. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Robots that will be competing in the Level one competition are seen as they sit in impound prior to the start of competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  11. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Sam Ortega, NASA program manager for Centennial Challenges, is interviewed by a member of the media before the start of level two competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  12. Distributed Planning and Control for Teams of Cooperating Mobile Robots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, L.E.

    2004-06-15

    This CRADA project involved the cooperative research of investigators in ORNL's Center for Engineering Science Advanced Research (CESAR) with researchers at Caterpillar, Inc. The subject of the research was the development of cooperative control strategies for autonomous vehicles performing applications of interest to Caterpillar customers. The project involved three Phases of research, conducted over the time period of November 1998 through December 2001. This project led to the successful development of several technologies and demonstrations in realistic simulation that illustrated the effectiveness of the control approaches for distributed planning and cooperation in multi-robot teams.

  13. Distributing Planning and Control for Teams of Cooperating Mobile Robots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, L.E.

    2004-07-19

    This CRADA project involved the cooperative research of investigators in ORNL's Center for Engineering Science Advanced Research (CESAR) with researchers at Caterpillar, Inc. The subject of the research was the development of cooperative control strategies for autonomous vehicles performing applications of interest to Caterpillar customers. The project involved three Phases of research, conducted over the time period of November 1998 through December 2001. This project led to the successful development of several technologies and demonstrations in realistic simulation that illustrated the effectiveness of our control approaches for distributed planning and cooperation in multi-robot teams. The primary objectives of this researchmore » project were to: (1) Develop autonomous control technologies to enable multiple vehicles to work together cooperatively, (2) Provide the foundational capabilities for a human operator to exercise oversight and guidance during the multi-vehicle task execution, and (3) Integrate these capabilities to the ALLIANCE-based autonomous control approach for multi-robot teams. These objectives have been successfully met with the results implemented and demonstrated in a near real-time multi-vehicle simulation of up to four vehicles performing mission-relevant tasks.« less

  14. Improving the Flow

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In early 1995, NASA s Glenn Research Center (then Lewis Research Center) formed an industry-government team with several jet engine companies to develop the National Combustion Code (NCC), which would help aerospace engineers solve complex aerodynamics and combustion problems in gas turbine, rocket, and hypersonic engines. The original development team consisted of Allison Engine Company (now Rolls-Royce Allison), CFD Research Corporation, GE Aircraft Engines, Pratt and Whitney, and NASA. After the baseline beta version was established in July 1998, the team focused its efforts on consolidation, streamlining, and integration, as well as enhancement, evaluation, validation, and application. These activities, mainly conducted at NASA Glenn, led to the completion of NCC version 1.0 in October 2000. NCC version 1.0 features high-fidelity representation of complex geometry, advanced models for two-phase turbulent combustion, and massively parallel computing. Researchers and engineers at Glenn have been using NCC to provide analysis and design support for various aerospace propulsion technology development projects. NASA transfers NCC technology to external customers using non- exclusive Space Act Agreements. Glenn researchers also communicate research and development results derived from NCC's further development through publications and special sessions at technical conferences.

  15. Dragon 2 Programme Achievements and Cooperation

    NASA Astrophysics Data System (ADS)

    Desnos, Yves-Louis; Li, Zengyuan; Zmuda, Andy; Gao, Zhihai

    2013-01-01

    The cooperation between ESA and National Remote Sensing Center of China (NRSCC) / Ministry of Science and Technology of China (MOST) in the development of Earth Observation (EO) applications started 17 years ago. In 2004, a new phase in cooperation began with the start of the Dragon Programme which focused on science and application using ESA ERS and Envisat satellite data. The programme was completed in 2008. Following on, the cooperation took on greater momentum with the start of a four-year EO science and exploitation programme called “Dragon 2”. The programme formally closed in June at the 2012 Beijing Symposium. The programme brought together joint Sino-European teams to investigate land, ocean and atmospheric applications in P.R. China using EO data from ESA, Third Party Mission (TPM) and Chinese satellites. The teams were led by principal EO scientists. Young European and Chinese scientists were also engaged on the projects. Advanced training courses in land, ocean and atmospheric applications were held in each year of the programme in China. Altogether, two courses on land, one course on atmospheric applications and one course on oceanographic applications were held. Here-in provided is an overview of the achievements, cooperation, reporting and training activities at the completion of the programme. The Sino-European teams have delivered world-class scientific results across a wide range of disciplines. The programme provided a platform for the joint exploitation of ESA, TPM and Chinese EO data from optical, thermal and microwave sensors for geo-science application and development in China.

  16. Hot Structure Control Surface Progress for X-37 Technology Development Program

    NASA Technical Reports Server (NTRS)

    Valentine, P. G.; Meyer, David L. (Editor); Snow, Holly (Editor)

    2004-01-01

    The NASA Marshall Space Flight Center (MSFC) has been leading the development of technologies that will enable the development, fabrication, and flight of the automated X-37 Orbital Vehicle (OV). With the Administration s recent announcement of the Vision for Space Exploration, NASA placed the X-37 OV design on hold while developing detailed requirements for a Crew Exploration Vehicle, but has continued funding the development of high-risk, critical technologies for potential future space exploration vehicle applications. Hot Structure Control Surfaces (HSCS) technology development is one of the high-priority areas being funded at this time. The goal of HSCS research is to mitigate risk by qualifying the lightest possible components that meet the stringent X-37 OV weight and performance requirements, including Shuttle-type reen- try environments with peak temperatures of 2800 OF. The small size of the X-37 OV (25.7-feet long and 14.9-foot wingspan) drives the need for advanced HSCS because the vehicle's two primary aerodynamic surfaces, the flaperons and ruddervators, have thicknesses ranging from approximately 5 in. down to 1 in. Traditional metallic or polymer-matrix composites covered with tile or blanket thermal protection system (TPS) materials cannot be used as there is insufficient volume to fabricate such multi-component structures. Therefore, carbon-carbon (C-C) and carbodsilicon-carbide (C-SiC) composite HSCS structures are being developed in parallel by two teams supporting the X-37 prime contractor (The Boeing Company). The Science Applications International Coy. (SAIC) and Carbon-Carbon Advanced Technologies, Inc. (C-CAT) team is developing the C-C HSCS, while the General Electric Energy Power Systems Composites (GE-PSC) and Materials Research and Design (MRD) team is developing the C-SiC HSCS. These two teams were selected to reduce the high level of risk associated with developing advanced control surface components. They have continued HSCS development work as part of the X-37 critical technology development contract. The SAIC/C-CAT team is using Advanced Carbon-Carbon (ACC) because its fabrication is very similar to the process used for Space Shuttle Reinforced Carbon-Carbon fabrication, including the Sic-based pack cementation conversion coating systems using with both materials. ACC was selected over RCC because it has much higher tension and compressions strengths, and because T-300 fiber is readily available, whereas RCC rayon fiber is no longer manufactured. The GE-PSC/MRD team is using a T-300 fiber-reinforced Sic matrix composite material densified by chemical vapor infiltration. The C-Sic material has an Sic-based environmental barrier coating. Major accomplishments have been made over the past year by both HSCS teams. C-C and C- SiC flaperon subcomponents, which are truncated full-scale versions of flight hardware, have been fabricated and are undergoing testing at the NASA Dryden Flight Research Center, NASA Langley Research Center, and U.S. Air Force Research Laboratory. By the end of 2004, ruddervator subcomponents also will be delivered and tested. As NASA moves forward in realizing the Vision for Space Exploration, it will continue to invest in advanced research and development aimed at making new generations of spacecraft safer, more reliable, and more affordable. The X-37 HSCS effort ultimately will benefit the Agency's vision and mission.

  17. Team Conflict in ICT-Rich Environments: Roles of Technologies in Conflict Management

    ERIC Educational Resources Information Center

    Correia, Ana-Paula

    2008-01-01

    This study looks at how an information and communication technologies (ICT)-rich environment impacts team conflict and conflict management strategies. A case study research method was used. Three teams, part of a graduate class in instructional design, participated in the study. Data were collected through observations of team meetings, interviews…

  18. 76 FR 5834 - International Business Machines Corporation, Global Technology Services Business Unit, Integrated...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-02

    ... Expense Team, Payroll, Travel and Mobility Services Team, Working From Various States In the United States... Unit, Integrated Technology Services, Cost and Expense Team, working from various states in the United... reports that workers of the Payroll, Travel, and Mobility Services Team were part of the International...

  19. Novel application of three-dimensional technologies in a case of dismemberment.

    PubMed

    Baier, Waltraud; Norman, Danielle G; Warnett, Jason M; Payne, Mark; Harrison, Nigel P; Hunt, Nicholas C A; Burnett, Brian A; Williams, Mark A

    2017-01-01

    This case study reports the novel application of three-dimensional technologies such as micro-CT and 3D printing to the forensic investigation of a complex case of dismemberment. Micro-CT was successfully employed to virtually align severed skeletal elements found in different locations, analyse tool marks created during the dismemberment process, and virtually dissect a charred piece of evidence. High resolution 3D prints of the burnt human bone contained within were created for physical visualisation to assist the investigation team. Micro-CT as a forensic radiological method provided vital information and the basis for visualisation both during the investigation and in the subsequent trial making it one of the first examples of such technology in a UK court. Copyright © 2016. Published by Elsevier B.V.

  20. Earth Science Resource Teachers: A Mentor Program for NASA's Explorer Schools

    NASA Astrophysics Data System (ADS)

    Ireton, F.; Owens, A.; Steffen, P. L.

    2004-12-01

    Each year, the NASA Explorer Schools (NES) program establishes a three-year partnership between NASA and 50 school teams, consisting of teachers and education administrators from diverse communities across the country. While partnered with NASA, NES teams acquire and use new teaching resources and technology tools for grades 4 - 9 using NASA's unique content, experts and other resources. Schools in the program are eligible to receive funding (pending budget approval) over the three-year period to purchase technology tools that support science and mathematics instruction. Explorer School teams attend a one-week summer institute at one of NASA's field centers each summer. The weeklong institutes are designed to introduce the teachers and administrators to the wealth of NASA information and resources available and to provide them with content background on NASA's exploration programs. During the 2004 summer institutes at Goddard Space Flight Center (GSFC) the National Earth Science Teachers Association (NESTA) entered into a pilot program with NES to test the feasibility of master teachers serving as mentors for the NES teams. Five master teachers were selected as Earth Science Resource Teachers (ESRT) from an application pool and attended the NES workshop at GSFC. During the workshop they participated in the program along side the NES teams which provided the opportunity for them to meet the teams and develop a rapport. Over the next year the ESRT will be in communication with the NES teams to offer suggestions on classroom management, content issues, classroom resources, and will be able to assist them in meeting the goals of NES. This paper will discuss the planning, selection, participation, outcomes, costs, and suggestions for future ESRT mentorship programs.

  1. Lab-On-a-Chip Application Development (LOCAD): Bridging Technology Readiness for Exploration

    NASA Technical Reports Server (NTRS)

    Spearing, Scott F.; Jenkins, Andy

    2004-01-01

    At Marshall Space Flight Center we have established a capability to investigate the use of microfluidics for space flight. The Lab-On-a-Chip Application Development (LOCAD) team has created a program for advancing Technology Readiness Levels (TRL) of 1 and 2 to TRL 6 and 7, quickly and economically for Lab-On-a-Chip (LOC) applications. Scientists and engineers can utilize LOCAD'S process to efficiently learn about microfluidics and determine if microfluidics is applicable to their needs. Once the applicability has been determined, LOCAD can then perform tests to develop the new fluidic protocols which are different from macro-scale chemical reaction protocols. With this information new micro-fluidic devices can be created and tested. Currently, LOCAD is focused on using microfluidics for both Environmental Monitoring & Control, and Medical Systems. Eventually, handheld portable units utilizing LOC technology will perform rapid tests to determine water quality, and microbial contamination levels. Since LOC technology is drastically reduced in physical size, it thereby reduces power, weight, volume, and sample requirements, a big advantage considering the resource constraints associated with spaceflight. Another one of LOCAD's current activities is the development of a microfluidic system to aid in the search for life on Mars.

  2. Radio Gaga? Intra-team communication of Australian Rules Football umpires - effect of radio communication on content, structure and frequency.

    PubMed

    Neville, Timothy J; Salmon, Paul M; Read, Gemma J M

    2018-02-01

    Intra-team communication plays an important role in team effectiveness in various domains including sport. As such, it is a key consideration when introducing new tools within systems that utilise teams. The difference in intra-team communication of Australian Rules Football (AFL) umpiring teams was studied when umpiring with or without radio communications technology. A cross-sectional observational study was conducted to analyse the verbal communication of seven umpiring teams (20 participants) grouped according to their experience with radio communication. The results identified that radio communication technology increased the frequency and altered the structure of intra-team communication. Examination of the content of the intra-team communication identified impacts on the 'Big Five' teamwork behaviours and associated coordinating mechanisms. Analysis revealed that the communications utilised did not align with the closed-loop form of communication described in the Big Five model. Implications for teamwork models, coaching and training of AFL umpires are discussed. Practitioner Summary: Assessing the impact of technology on performance is of interest to ergonomics practitioners. The impact of radio communications on teamwork is explored in the highly dynamic domain of AFL umpiring. When given radio technology, intra-team communication increased which supported teamwork behaviours, such as backup behaviour and mutual performance monitoring.

  3. The Application of NASA Technology to Public Health

    NASA Technical Reports Server (NTRS)

    Rickman, Douglas L.; Watts, C.

    2007-01-01

    NASA scientists have a history of applying technologies created to handle satellite data to human health at various spatial scales. Scientists are now engaged in multiple public health application projects that integrate NASA satellite data with measures of public health. Such integration requires overcoming disparities between the environmental and the health data. Ground based sensors, satellite imagery, model outputs and other environmental sources have inconsistent spatial and temporal distributions. The MSFC team has recognized the approach used by environmental scientists to fill in the empty places can also be applied to outcomes, exposures and similar data. A revisit to the classic epidemiology study of 1854 using modern day surface modeling and GIS technology, demonstrates how spatial technology can enhance and change the future of environmental epidemiology. Thus, NASA brings to public health, not just a set of data, but an innovative way of thinking about the data.

  4. SHARED TECHNOLOGY TRANSFER PROGRAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GRIFFIN, JOHN M. HAUT, RICHARD C.

    2008-03-07

    The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderockmore » unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.« less

  5. Secure, Mobile, Wireless Network Technology Designed, Developed, and Demonstrated

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Paulsen, Phillip E.

    2004-01-01

    The inability to seamlessly disseminate data securely over a high-integrity, wireless broadband network has been identified as a primary technical barrier to providing an order-of-magnitude increase in aviation capacity and safety. Secure, autonomous communications to and from aircraft will enable advanced, automated, data-intensive air traffic management concepts, increase National Air Space (NAS) capacity, and potentially reduce the overall cost of air travel operations. For the first time ever, secure, mobile, network technology was designed, developed, and demonstrated with state-ofthe- art protocols and applications by a diverse, cooperative Government-industry team led by the NASA Glenn Research Center. This revolutionary technology solution will make fundamentally new airplane system capabilities possible by enabling secure, seamless network connections from platforms in motion (e.g., cars, ships, aircraft, and satellites) to existing terrestrial systems without the need for manual reconfiguration. Called Mobile Router, the new technology autonomously connects and configures networks as they traverse from one operating theater to another. The Mobile Router demonstration aboard the Neah Bay, a U.S. Coast Guard vessel stationed in Cleveland, Ohio, accomplished secure, seamless interoperability of mobile network systems across multiple domains without manual system reconfiguration. The Neah Bay was chosen because of its low cost and communications mission similarity to low-Earth-orbiting satellite platforms. This technology was successfully advanced from technology readiness level (TRL) 2 (concept and/or application formation) to TRL 6 (system model or prototype demonstration in a relevant environment). The secure, seamless interoperability offered by the Mobile Router and encryption device will enable several new, vehicle-specific and systemwide technologies to perform such things as remote, autonomous aircraft performance monitoring and early detection and mitigation of potential equipment malfunctions. As an additional benefit, team advancements were incorporated into open standards, ensuring technology transfer. Low-cost, commercial products incorporating the new technology are already available. Furthermore, these products are fully interoperable with legacy network technology equipment currently being used throughout the world.

  6. Arch Venture Partners' investment considerations for CBRNE products and opportunities

    NASA Astrophysics Data System (ADS)

    Crandell, K.; Lazarus, S.; Gardner, P. J.

    2008-04-01

    ARCH is interested in building leading, highly-valued companies from leading research. Toward that end we value innovations created by the leading researchers in the world, many of which are funded to solve critical scientific challenges including those in the instrumentation and CBRNE area. The most important CBRNE innovations we have seen at ARCH are breakthroughs involving significant unaddressed technology risk and have the potential for broad proprietary intellectual property as a result. The model ARCH has evolved in instrumentation is to look for a breakthrough innovation, with strong intellectual property and continue to strengthen the patent estate through the life of the company. ARCH looks to build companies around leading interdisciplinary scientific and engineering teams, and we favor platform technology that can be applied to multiple market applications both commercial and government. As part of a strategy to build a great company, addressing important CBRNE challenges can help a company strengthen its technical team and its IP estate. This supports a focus on early low volume markets on the way toward addressing a fuller portfolio of applications. Experienced Venture Capitalists can help this process by identifying important executive talent, partners and applications, offering financial syndication strength, and helping shape the company's strategy to maximize the ultimate value realized.

  7. Telemedicine at the top of the world: the 1998 and 1999 Everest extreme expeditions.

    PubMed

    Angood, P B; Satava, R; Doarn, C; Merrell, R

    2000-01-01

    The National Aeronautics and Space Administration (NASA) initially established a Commercial Space Center (CSC) in the Department of Surgery at Yale University School of Medicine to further develop and evaluate technologies in information systems, telecommunications applied to medicine, and physiologic sensors. The CSC is known as the Medical Informatics and Technology Applications Consortium (MITAC). The overall purpose for this NASA program is to leverage technology, innovation, and resources from industry and academia through collaborative partnerships. The Yale-NASA CSC/MITAC organized the Everest Extreme Expeditions (E3) for the spring Himalayan climbing seasons in the years 1998 and 1999. The primary mission was to deliver advanced medical support with global telemedicine capabilities to one of the world's most remote and hostile settings--Mount Everest. The purpose was both humanitarian (providing medical support) and scientific (conducting medical and technology research). The Yale team provided medical care for the Everest Base Camp community; conducted validation experiments for several types of advanced medical technologies in this remote, hostile environment; and performed real-time monitoring of selected climbers, while also assessing the basic science of altitude physiology. Additionally, the teams conducted outreach medical care to the citizens of Nepal and provided several educational forums for a variety of medical and nonmedical personnel--including school-age children. As part of the project's mission, the E3 medical teams at both Nepal and New Haven were on a 24-hour emergency call system to deliver medical care in the event of a crisis. Unlike most of the teams at Everest, the mission of E3 was not to climb the 29,028-foot mountain the Nepalese call Sagarmatha ("Sky Head"). The mountain served as an extreme testing ground for telemedicine. The lessons learned from this testbed are reviewed here and further clarify the abilities to provide better health care in remote and extreme environments--which for some may even be their home environment during/after a medical illness.

  8. Augmenting team cognition in human-automation teams performing in complex operational environments.

    PubMed

    Cuevas, Haydee M; Fiore, Stephen M; Caldwell, Barrett S; Strater, Laura

    2007-05-01

    There is a growing reliance on automation (e.g., intelligent agents, semi-autonomous robotic systems) to effectively execute increasingly cognitively complex tasks. Successful team performance for such tasks has become even more dependent on team cognition, addressing both human-human and human-automation teams. Team cognition can be viewed as the binding mechanism that produces coordinated behavior within experienced teams, emerging from the interplay between each team member's individual cognition and team process behaviors (e.g., coordination, communication). In order to better understand team cognition in human-automation teams, team performance models need to address issues surrounding the effect of human-agent and human-robot interaction on critical team processes such as coordination and communication. Toward this end, we present a preliminary theoretical framework illustrating how the design and implementation of automation technology may influence team cognition and team coordination in complex operational environments. Integrating constructs from organizational and cognitive science, our proposed framework outlines how information exchange and updating between humans and automation technology may affect lower-level (e.g., working memory) and higher-level (e.g., sense making) cognitive processes as well as teams' higher-order "metacognitive" processes (e.g., performance monitoring). Issues surrounding human-automation interaction are discussed and implications are presented within the context of designing automation technology to improve task performance in human-automation teams.

  9. An integrative framework for sensor-based measurement of teamwork in healthcare.

    PubMed

    Rosen, Michael A; Dietz, Aaron S; Yang, Ting; Priebe, Carey E; Pronovost, Peter J

    2015-01-01

    There is a strong link between teamwork and patient safety. Emerging evidence supports the efficacy of teamwork improvement interventions. However, the availability of reliable, valid, and practical measurement tools and strategies is commonly cited as a barrier to long-term sustainment and spread of these teamwork interventions. This article describes the potential value of sensor-based technology as a methodology to measure and evaluate teamwork in healthcare. The article summarizes the teamwork literature within healthcare, including team improvement interventions and measurement. Current applications of sensor-based measurement of teamwork are reviewed to assess the feasibility of employing this approach in healthcare. The article concludes with a discussion highlighting current application needs and gaps and relevant analytical techniques to overcome the challenges to implementation. Compelling studies exist documenting the feasibility of capturing a broad array of team input, process, and output variables with sensor-based methods. Implications of this research are summarized in a framework for development of multi-method team performance measurement systems. Sensor-based measurement within healthcare can unobtrusively capture information related to social networks, conversational patterns, physical activity, and an array of other meaningful information without having to directly observe or periodically survey clinicians. However, trust and privacy concerns present challenges that need to be overcome through engagement of end users in healthcare. Initial evidence exists to support the feasibility of sensor-based measurement to drive feedback and learning across individual, team, unit, and organizational levels. Future research is needed to refine methods, technologies, theory, and analytical strategies. © The Author 2014. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.comFor numbered affiliations see end of article.

  10. Automation of Shuttle Tile Inspection - Engineering methodology for Space Station

    NASA Technical Reports Server (NTRS)

    Wiskerchen, M. J.; Mollakarimi, C.

    1987-01-01

    The Space Systems Integration and Operations Research Applications (SIORA) Program was initiated in late 1986 as a cooperative applications research effort between Stanford University, NASA Kennedy Space Center, and Lockheed Space Operations Company. One of the major initial SIORA tasks was the application of automation and robotics technology to all aspects of the Shuttle tile processing and inspection system. This effort has adopted a systems engineering approach consisting of an integrated set of rapid prototyping testbeds in which a government/university/industry team of users, technologists, and engineers test and evaluate new concepts and technologies within the operational world of Shuttle. These integrated testbeds include speech recognition and synthesis, laser imaging inspection systems, distributed Ada programming environments, distributed relational database architectures, distributed computer network architectures, multimedia workbenches, and human factors considerations.

  11. Earth Science Mobile App Development for Non-Programmers

    NASA Astrophysics Data System (ADS)

    Oostra, D.; Crecelius, S.; Lewis, P.; Chambers, L. H.

    2012-08-01

    A number of cloud based visual development tools have emerged that provide methods for developing mobile applications quickly and without previous programming experience. The MY NASA DATA (MND) team would like to begin a discussion on how we can best leverage current mobile app technologies and available Earth science datasets. The MY NASA DATA team is developing an approach based on two main ideas. The first is to teach our constituents how to create mobile applications that interact with NASA datasets; the second is to provide web services or Application Programming Interfaces (APIs) that create sources of data that educators, students and scientists can use in their own mobile app development. This framework allows data providers to foster mobile application development and interaction while not becoming a software clearing house. MY NASA DATA's research has included meetings with local data providers, educators, libraries and individuals. A high level of interest has been identified from initial discussions and interviews. This overt interest combined with the marked popularity of mobile applications in our societies has created a new channel for outreach and communications with and between the science and educational communities.

  12. Aspects on the design, implementation, and simulation of a tracked mini robot destined for special applications in theatres of operations

    NASA Astrophysics Data System (ADS)

    Petrişor, Silviu-Mihai; Bârsan, GhiÅ£Ä.ƒ

    2013-12-01

    The authors of this paper wish to highlight elements regarding the organology, functioning and simulation, in a real workspace, of a tracked mini robot structure destined for special applications in theatres of operation, a technological product which is subject to a national patent granted to our institution (patent no. RO a 2012 01051), the result of research activities undertaken under a contract won by national competition, a grant for young research teams, PN-RUTE- 2010 type. The issues outlined in this paper are aspects related to the original invention in comparison with other mini-robot structures, the inventors presenting succinctly the technological product description and its applicability both in the military and applicative area as well as in the educational one. Additionally, the advantages of using the technological product are shown in a real workspace, the constructive and functional solution before, finally, presenting, based on the modelling of the mechanical structure of the tilting module attached to the mini-robot, an application on the simulation and programming of the mini-robot under study.

  13. Avatars Go to Class: A Virtual Environment Soil Science Activity

    ERIC Educational Resources Information Center

    Mamo, M.; Namuth-Covert, D.; Guru, A.; Nugent, G.; Phillips, L.; Sandall, L.; Kettler, T.; McCallister, D.

    2011-01-01

    Web 2.0 technology is expanding rapidly from social and gaming uses into the educational applications. Specifically, the multi-user virtual environment (MUVE), such as SecondLife, allows educators to fill the gap of first-hand experience by creating simulated realistic evolving problems/games. In a pilot study, a team of educators at the…

  14. 7 CFR 4290.360 - Initial review of Applicant's management team's qualifications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Initial review of Applicant's management team's...'s management team's qualifications. The Secretary will review the information submitted by the Applicant concerning the qualifications of the Applicant's management team to determine in his or her sole...

  15. 7 CFR 4290.360 - Initial review of Applicant's management team's qualifications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Initial review of Applicant's management team's...'s management team's qualifications. The Secretary will review the information submitted by the Applicant concerning the qualifications of the Applicant's management team to determine in his or her sole...

  16. 7 CFR 4290.360 - Initial review of Applicant's management team's qualifications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Initial review of Applicant's management team's...'s management team's qualifications. The Secretary will review the information submitted by the Applicant concerning the qualifications of the Applicant's management team to determine in his or her sole...

  17. 7 CFR 4290.360 - Initial review of Applicant's management team's qualifications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Initial review of Applicant's management team's...'s management team's qualifications. The Secretary will review the information submitted by the Applicant concerning the qualifications of the Applicant's management team to determine in his or her sole...

  18. 7 CFR 4290.360 - Initial review of Applicant's management team's qualifications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Initial review of Applicant's management team's...'s management team's qualifications. The Secretary will review the information submitted by the Applicant concerning the qualifications of the Applicant's management team to determine in his or her sole...

  19. Progress and Achievements At the Mid Term Stage of the Dragon 2 Programme

    NASA Astrophysics Data System (ADS)

    Desnos, Yves-Louis; Li, Zhengyuan; Zmuda, Andy; Gao, Zhihai

    2010-10-01

    The cooperation between ESA and National Remote Sensing Center of China (NRSCC) / Ministry Of Science and Technology of China (MOST) in the development of Earth Observation (EO) applications started 15 years ago. In 2004, a new phase in cooperation began with the start of the Dragon Programme which focused on science and application using ESA satellite data. The programme was completed in 2008. Following on, the cooperation took on greater momentum with the start of a four-year EO science and exploitation programme called 'Dragon 2'. This programme brings together joint Sino-European teams to investigate land, ocean and atmospheric applications in P.R. China using data from ESA, Third Party Mission and Chinese Earth Observation satellites. The teams are led by leading EO scientists and young scientists are also engaged on the projects. Advanced training in land, ocean and atmospheric applications is a feature of the programme and after 2 years, two courses on land and one course on atmospheric applications have been successfully held in 2008, 2009 and 2010 in China. Here-in provided is an overview of the results, reporting and training activities at the mid term stage of the programme. The Sino-European teams continue to deliver world-class scientific results across a wide range of disciplines. The programme provides a platform for the joint exploitation of ESA, TPM and Chinese EO data from optical, infrared, thermal and microwave sensors for science and application development.

  20. Spacecraft control center automation using the generic inferential executor (GENIE)

    NASA Technical Reports Server (NTRS)

    Hartley, Jonathan; Luczak, Ed; Stump, Doug

    1996-01-01

    The increasing requirement to dramatically reduce the cost of mission operations led to increased emphasis on automation technology. The expert system technology used at the Goddard Space Flight Center (MD) is currently being applied to the automation of spacecraft control center activities. The generic inferential executor (GENIE) is a tool which allows pass automation applications to be constructed. The pass script templates constructed encode the tasks necessary to mimic flight operations team interactions with the spacecraft during a pass. These templates can be configured with data specific to a particular pass. Animated graphical displays illustrate the progress during the pass. The first GENIE application automates passes of the solar, anomalous and magnetospheric particle explorer (SAMPEX) spacecraft.

  1. A technology-based patient and family engagement consult service for the pediatric hospital setting.

    PubMed

    Jackson, Gretchen P; Robinson, Jamie R; Ingram, Ebone; Masterman, Mary; Ivory, Catherine; Holloway, Diane; Anders, Shilo; Cronin, Robert M

    2018-02-01

    The Vanderbilt Children's Hospital launched an innovative Technology-Based Patient and Family Engagement Consult Service in 2014. This paper describes our initial experience with this service, characterizes health-related needs of families of hospitalized children, and details the technologies recommended to promote engagement and meet needs. We retrospectively reviewed consult service documentation for patient characteristics, health-related needs, and consultation team recommendations. Needs were categorized using a consumer health needs taxonomy. Recommendations were classified by technology type. Twenty-two consultations were conducted with families of patients ranging in age from newborn to 15 years, most with new diagnoses or chronic illnesses. The consultation team identified 99 health-related needs (4.5 per consultation) and made 166 recommendations (7.5 per consultation, 1.7 per need). Need categories included 38 informational needs, 26 medical needs, 23 logistical needs, and 12 social needs. The most common recommendations were websites (50, 30%) and mobile applications (30, 18%). The most frequent recommendations by need category were websites for informational needs (39, 50%), mobile applications for medical needs (15, 40%), patient portals for logistical needs (12, 44%), and disease-specific support groups for social needs (19, 56%). Families of hospitalized pediatric patients have a variety of health-related needs, many of which could be addressed by technology recommendations from an engagement consult service. This service is the first of its kind, offering a potentially generalizable and scalable approach to assessing health-related needs, meeting them with technologies, and promoting patient and family engagement in the inpatient setting. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobson, J.E.; Durfee, R.C.

    Explorers from competing teams race to find a mysterious lost city in the heart of Africa. The American team is continuously in touch with its Houston home base through satellite communications. In flight, team leader Karen Ross displays a map of Africa on her computer screen and notes the multicolored lines suggesting different routes from city to city and into the rain forest. Each pathway is accompanied by a precise estimate of travel time to the final destination. Zooming in on the target area, she switches to satellite images and interprets them in shades of blue, purple, and green. Atmore » each checkpoint, the team reports its progress and gets a revised estimate of arrival time. Beset by difficulties, the explorers ask for a faster route, but the computer says the alternative is too dangerous. A simulation model with data representing geology, terrain, vegetation, weather, and many other geographic factors predicts local hazards, including the impending eruption of a nearby volcano. The Americans take the faster route anyway and beat the odds. This fictional account of emerging geographic information system (GIS) technologies comes from Michael Crichton`s 1980 novel Congo, which was made into a 1995 movie. The same technologies were highlighted in Clive Cussler`s 1988 techno-thriller Treasure. In reality, GIS technology began more than a quarter of a century ago at key universities and government laboratories in the United States and Canada. Since 1969, Oak Ridge National Laboratory has been among the leading institutions in this diverse, now booming field. GIS has been evolving through new forms and applications ever since.« less

  3. The Methodological Illumination of a Blind Spot: Information and Communication Technology and International Research Team Dynamics in a Higher Education Research Program

    ERIC Educational Resources Information Center

    Hoffman, David M.; Blasi, Brigida; Culum, Bojana; Dragšic, Žarko; Ewen, Amy; Horta, Hugo; Nokkala, Terhi; Rios-Aguilar, Cecilia

    2014-01-01

    This "self-ethnography" complements the other articles in this special issue by spotlighting a set of key challenges facing international research teams. The study is focused on the relationship between information and communication technology (ICT)-based collaboration and research team dynamics. Our diverse team, drawn from researchers…

  4. Integration of remote blood glucose meter upload technology into a clinical pharmacist medication therapy management service.

    PubMed

    Schenk, Robert J; Schenk, Jenna

    2011-01-01

    A pharmacist-delivered, outpatient-focused medication therapy management (MTM) program is using a remote blood glucose (BG) meter upload device to provide better care and to improve outcomes for its patients with diabetes. Sharing uploaded BG meter data, presented in easily comprehensible graphs and charts, enables patients, caregivers, and the medical team to better understand how the patients' diabetes care is progressing. Pharmacists are becoming increasingly more active in helping to manage patients' complex medication regimens in an effort to help detect and avoid medication-related problems. Working together with patients and their physicians as part of an interdisciplinary health care team, pharmacists are helping to improve medication outcomes. This article focuses on two case studies highlighting the Diabetes Monitoring Program, one component of the Meridian Pharmacology Institute MTM service, and discusses the clinical application of a unique BG meter upload device. © 2010 Diabetes Technology Society.

  5. KSC-07pd3599

    NASA Image and Video Library

    2007-12-09

    KENNEDY SPACE CENTER, FLA. -- Doug Lyons, STS-122 launch director, participates in a news briefing following the conclusion of a Mission Management Team, or MMT, meeting. The meeting followed the morning's launch scrub of the space shuttle Atlantis STS-122 mission caused by problems experienced with the external tank's engine cutoff sensor system during tanking for the second launch attempt. An announcement was made during the briefing that the STS-122 launch is postponed to no earlier than Jan. 2, 2008, to give the team time to resolve the system's problems. Atlantis will carry the Columbus Laboratory, the European Space Agency's largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Permanently attached to the Harmony node of the space station, the laboratory will carry out experiments in materials science, fluid physics and biosciences, as well as perform a number of technological applications. Photo credit: NASA/Kim Shiflett

  6. KSC-07pd3597

    NASA Image and Video Library

    2007-12-09

    KENNEDY SPACE CENTER, FLA. -- Bill Gerstenmaier, associate administrator for Space Operations, participates in a news briefing following the conclusion of a Mission Management Team, or MMT, meeting. The meeting followed the morning's launch scrub of the space shuttle Atlantis STS-122 mission caused by problems experienced with the external tank's engine cutoff sensor system during tanking for the second launch attempt. An announcement was made during the briefing that the STS-122 launch is postponed to no earlier than Jan. 2, 2008, to give the team time to resolve the system's problems. Atlantis will carry the Columbus Laboratory, the European Space Agency's largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Permanently attached to the Harmony node of the space station, the laboratory will carry out experiments in materials science, fluid physics and biosciences, as well as perform a number of technological applications. Photo credit: NASA/Kim Shiflett

  7. NASA's Discovery Program

    NASA Astrophysics Data System (ADS)

    Kicza, Mary; Bruegge, Richard Vorder

    1995-01-01

    NASA's Discovery Program represents an new era in planetary exploration. Discovery's primary goal: to maintain U.S. scientific leadership in planetary research by conducting a series of highly focused, cost effective missions to answer critical questions in solar system science. The Program will stimulate the development of innovative management approaches by encouraging new teaming arrangements among industry, universities and the government. The program encourages the prudent use of new technologies to enable/enhance science return and to reduce life cycle cost, and it supports the transfer of these technologies to the private sector for secondary applications. The Near-Earth Asteroid Rendezvous and Mars Pathfinder missions have been selected as the first two Discovery missions. Both will be launched in 1996. Subsequent, competitively selected missions will be conceived and proposed to NASA by teams of scientists and engineers from industry, academia, and government organizations. This paper summarizes the status of Discovery Program planning.

  8. Lightning detection from Space Science and Applications Team review. [optical and radio frequency sensors

    NASA Technical Reports Server (NTRS)

    Few, A. A., Jr.

    1981-01-01

    The various needs for lightning data that exist among potential users of satellite lightning data were identified and systems were defined which utilize the optical and radio frequency radiations from lightning to serve as the satellite based lightning mapper. Three teams worked interactively with NASA to develop a system concept. An assessment of the results may be summarized as follows: (1) a small sensor system can be easily designed to operate on a geostationary satellite that can provide the bulk of the real time user requirements; (2) radio frequency systems in space may be feasible but would be much larger and more costly; RF technology for this problem lags the optical technology by years; and (3) a hybrid approach (optical in space and RF on the ground) would provide the most complete information but is probably unreasonably complex and costly at this time.

  9. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Kenneth Stafford, Assistant Director of Robotics Engineering and Director of the Robotics Resource Center at the Worcester Polytechnic Institute (WPI), verifies the location of the target sample during the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  10. Human-Robot Teaming for Hydrologic Data Gathering at Multiple Scales

    NASA Astrophysics Data System (ADS)

    Peschel, J.; Young, S. N.

    2017-12-01

    The use of personal robot-assistive technology by researchers and practitioners for hydrologic data gathering has grown in recent years as barriers to platform capability, cost, and human-robot interaction have been overcome. One consequence to this growth is a broad availability of unmanned platforms that might or might not be suitable for a specific hydrologic investigation. Through multiple field studies, a set of recommendations has been developed to help guide novice through experienced users in choosing the appropriate unmanned platforms for a given application. This talk will present a series of hydrologic data sets gathered using a human-robot teaming approach that has leveraged unmanned aerial, ground, and surface vehicles over multiple scales. The field case studies discussed will be connected to the best practices, also provided in the presentation. This talk will be of interest to geoscience researchers and practitioners, in general, as well as those working in fields related to emerging technologies.

  11. Information sharing systems and teamwork between sub-teams: a mathematical modeling perspective

    NASA Astrophysics Data System (ADS)

    Tohidi, Hamid; Namdari, Alireza; Keyser, Thomas K.; Drzymalski, Julie

    2017-12-01

    Teamwork contributes to a considerable improvement in quality and quantity of the ultimate outcome. Collaboration and alliance between team members bring a substantial progress for any business. However, it is imperative to acquire an appropriate team since many factors must be considered in this regard. Team size may represent the effectiveness of a team and it is of paramount importance to determine what the ideal team size exactly should be. In addition, information technology increasingly plays a differentiating role in productivity and adopting appropriate information sharing systems may contribute to improvement in efficiency especially in competitive markets when there are numerous producers that compete with each other. The significance of transmitting information to individuals is inevitable to assure an improvement in team performance. In this paper, a model of teamwork and its organizational structure are presented. Furthermore, a mathematical model is proposed in order to characterize a group of sub-teams according to two criteria: team size and information technology. The effect of information technology on performance of team and sub-teams as well as optimum size of those team and sub-teams from a productivity perspective are studied. Moreover, a quantitative sensitivity analysis is presented in order to analyze the interaction between these two factors through a sharing system.

  12. Team 282 prepares for the FIRST competition

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Orange Crusher team (282) works on their robot, which is named Rust Bot, during the FIRST competition. The team of students from Lake Howell, Winter Springs and Orange Christian Private high schools was co-sponsored by NASA Kennedy Space Center, Matern Professional Engineering The Foundation, Control Technologies, Lucent Technologies and Sandy Engineering. Students from all over the country are at the KSC Visitor Complex for the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition March 9-11 in the Rocket Garden. Teams of high school students are testing the limits of their imagination using robots they have designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing, 16 are Florida teams co- sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusville.

  13. NASA/industry advanced turboprop technology program

    NASA Technical Reports Server (NTRS)

    Ziemianski, Joseph A.; Whitlow, John B., Jr.

    1988-01-01

    Experimental and analytical effort shows that use of advanced turboprop (propfan) propulsion instead of conventional turbofans in the older narrow-body airline fleet could reduce fuel consumption for this type of aircraft by up to 50 percent. The NASA Advanced Turboprop (ATP) program was formulated to address the key technologies required for these thin, swept-blade propeller concepts. A NASA, industry, and university team was assembled to develop and validate applicable design codes and prove by ground and flight test the viability of these propeller concepts. Some of the history of the ATP project, an overview of some of the issues, and a summary of the technology developed to make advanced propellers viable in the high-subsonic cruise speed application are presented. The ATP program was awarded the prestigious Robert J. Collier Trophy for the greatest achievement in aeronautics and astronautics in America in 1987.

  14. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  15. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  16. [Modern methods application of genotyping of infectious diseases pathogens in the context of operational work of specialized anti-epidemic team during the XXII Olympic Winter Games and XI Paralympic Winter Games].

    PubMed

    Kuzkin, B P; Kulichenko, A N; Volynkina, A S; Efremenko, D V; Kuznetsova, I V; Kotenev, E S; Lyamkin, G I; Kartsev, N N; Klindukhov, V P

    2015-01-01

    This paper considers the experience of genotyping and sequencing technologies in laboratories of specialized anti-epidemic team (SAET) during the XXII Olympic Winter Games and XI Paralympic Winter Games of 2014 in Sochi. The work carried out during the pre-Olympic period on performance of readiness by SAET for these studies is analyzed. The results of genotyping strains of pathogens during the Olympic Games are presented. A conclusion about the effectiveness of the use of molecular genetic techniques in terms of SAET is made.

  17. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  18. Quick Response codes for surgical safety: a prospective pilot study.

    PubMed

    Dixon, Jennifer L; Smythe, William Roy; Momsen, Lara S; Jupiter, Daniel; Papaconstantinou, Harry T

    2013-09-01

    Surgical safety programs have been shown to reduce patient harm; however, there is variable compliance. The purpose of this study is to determine if innovative technology such as Quick Response (QR) codes can facilitate surgical safety initiatives. We prospectively evaluated the use of QR codes during the surgical time-out for 40 operations. Feasibility and accuracy were assessed. Perceptions of the current time-out process and the QR code application were evaluated through surveys using a 5-point Likert scale and binomial yes or no questions. At baseline (n = 53), survey results from the surgical team agreed or strongly agreed that the current time-out process was efficient (64%), easy to use (77%), and provided clear information (89%). However, 65% of surgeons felt that process improvements were needed. Thirty-seven of 40 (92.5%) QR codes scanned successfully, of which 100% were accurate. Three scan failures resulted from excessive curvature or wrinkling of the QR code label on the body. Follow-up survey results (n = 33) showed that the surgical team agreed or strongly agreed that the QR program was clearer (70%), easier to use (57%), and more accurate (84%). Seventy-four percent preferred the QR system to the current time-out process. QR codes accurately transmit patient information during the time-out procedure and are preferred to the current process by surgical team members. The novel application of this technology may improve compliance, accuracy, and outcomes. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Applications of aerospace technology in biology and medicine

    NASA Technical Reports Server (NTRS)

    Beall, H. C.; Brown, J. N.; Rouse, D. J.; Ruddle, J. C.; Scearce, R. W.

    1978-01-01

    A bipolar, donor-recipient model of medical technology transfer is introduced to provide a basis for the team's methodology. That methodology is designed (1) to identify medical problems and NASA technology that in combination constitute opportunities for successful medical products, (2) to obtain the early participation of industry in the transfer proces, and (3) to obtain acceptance by the medical community of new medical products based on NASA technology. Two commercial technology transfers and five institutional technology transfers were completed in 1977. A new, commercially available teaching manikin system uses NASA-developed concepts and techniques for effective visual presentation of information and data. Drugs shipped by the National Cancer Institute to locations throughout the world are maintained at low temperatures in shipping containers that incorporate recommendations made by NASA.

  20. The Design and Development of CollaborAT: A Groupware Solution for IEP Teams Supporting School-Age Students Who Use Assistive Technology

    ERIC Educational Resources Information Center

    Geist, Lori A.

    2010-01-01

    Team collaboration is necessary to fully support school-age students who use assistive technology (AT). Teams should include the student, his or her family, and school professionals. Unfortunately, team collaboration is often not realized due to constraints that range from scheduling conflicts and language barriers to lack of defined roles and…

  1. International Space Exploration Coordination Group Assessment of Technology Gaps for Dust Mitigation for the Global Exploration Roadmap

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Vangen, Scott; Abel, Phil; Agui, Juan; Buffington, Jesse; Calle, Carlos; Mary, Natalie; Smith, Jonathan Drew; Straka, Sharon; Mugnuolo, Raffaele; hide

    2016-01-01

    The International Space Exploration Coordination Group (ISECG) formed two Gap Assessment teams to evaluate topic discipline areas that had not been worked at an international level to date. Accordingly, the ISECG Technology Working Group (TWG) recommended two discipline areas based on Global Exploration Roadmap (GER) Critical Technology Needs reflected within the GER Technology Development Map (GTDM): Dust Mitigation and LOX/Methane Propulsion, with this paper addressing the former. The ISECG approved the recommended Gap Assessment teams, and tasked the TWG to formulate the new teams with subject matter experts (SMEs) from the participating agencies. The participating agencies for the Dust Mitigation Gap Assessment Team were ASI, CSA, ESA, JAXA, and NASA. The team was asked to identify and make a presentation on technology gaps related to the GER2 mission scenario (including cislunar and lunar mission themes and long-lead items for human exploration of Mars) at the international level. In addition the team was tasked to produce a gap assessment in the form of a summary report and presentation identifying those GER Critical Technology Needs, including opportunities for international coordination and cooperation in closing the identified gaps. Dust is still a principal limiting factor in returning to the lunar surface for missions of any extended duration. However, viable technology solutions have been identified, but need maturation to be available to support both lunar and Mars missions.

  2. A case history of technology transfer

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A sequence of events, occurring over the last 25 years, are described that chronicle the evolution of ion-bombardment electric propulsion technology. Emphasis is placed on the latter phases of this evolution, where special efforts were made to pave the way toward the use of this technology in operational space flight systems. These efforts consisted of a planned program to focus the technology toward its end applications and an organized process that was followed to transfer the technology from the research-technology NASA Center to the user-development NASA Center and its industry team. Major milestones in this evolution, which are described, include the development of thruster technology across a large size range, the successful completion of two space electric rocket tests, SERT I and SERT II, development of power-processing technology for electric propulsion, completion of a program to make the technology ready for flight system development, and finally the technology transfer events.

  3. Spaceport Command and Control System - Support Software Development

    NASA Technical Reports Server (NTRS)

    Tremblay, Shayne

    2016-01-01

    The Information Architecture Support (IAS) Team, the component of the Spaceport Command and Control System (SCCS) that is in charge of all the pre-runtime data, was in need of some report features to be added to their internal web application, Information Architecture (IA). Development of these reports is crucial for the speed and productivity of the development team, as they are needed to quickly and efficiently make specific and complicated data requests against the massive IA database. These reports were being put on the back burner, as other development of IA was prioritized over them, but the need for them resulted in internships being created to fill this need. The creation of these reports required learning Ruby on Rails development, along with related web technologies, and they will continue to serve IAS and other support software teams and their IA data needs.

  4. ORNL superconducting technology program for electric energy systems

    NASA Astrophysics Data System (ADS)

    Hawsey, R. A.

    1993-02-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy's (DOE's) Office of Conservation and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and systems development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY-92 Peer Review of Projects, which was conducted by DOE's Office of Program Analysis, Office of Energy Research. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer to US industry. Working together, the collaborative teams are making tremendous progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

  5. Virtual Team Effectiveness: An Empirical Study Using SEM

    ERIC Educational Resources Information Center

    Bhat, Swati Kaul; Pande, Neerja; Ahuja, Vandana

    2016-01-01

    Advances in communication and information technology create new opportunities for organizations to build and manage virtual teams. Virtual teams have become a norm for organizations whose members work across disparate geographical locations, relying primarily or exclusively, on the usage of Information and Communications Technology (ICT) for the…

  6. Using process monitor wafers to understand directed self-assembly defects

    NASA Astrophysics Data System (ADS)

    Cao, Yi; Her, YoungJun; Delgadillo, Paulina R.; Vandenbroeck, Nadia; Gronheid, Roel; Chan, Boon Teik; Hashimoto, Yukio; Romo, Ainhoa; Somervell, Mark; Nafus, Kathleen; Nealey, Paul F.

    2013-03-01

    As directed self-assembly (DSA) has gained momentum over the past few years, questions about its application to high volume manufacturing have arisen. One of the major concerns is about the fundamental limits of defectivity that can be attained with the technology. If DSA applications demonstrate defectivity that rivals of traditional lithographic technologies, the pathway to the cost benefits of the technology creates a very compelling case for its large scale implementation. To address this critical question, our team at IMEC has established a process monitor flow to track the defectivity behaviors of an exemplary chemo-epitaxy application for printing line/space patterns. Through establishing this baseline, we have been able to understand both traditional lithographic defect sources in new materials as well as new classes of assembly defects associated with DSA technology. Moreover, we have explored new materials and processing to lower the level of the defectivity baseline. The robustness of the material sets and process is investigated as well. In this paper, we will report the understandings learned from the IMEC DSA process monitor flow.

  7. Virtualizing Resources for the Application Services and Framework Team

    NASA Technical Reports Server (NTRS)

    Varner, Justin T.; Crawford, Linda K.

    2010-01-01

    Virtualization is an emerging technology that will undoubtedly have a major impact on the future of Information Technology. It allows for the centralization of resources in an enterprise system without the need to make any changes to the host operating system, file system, or registry. In turn, this significantly reduces cost and administration, and provides a much greater level of security, compatibility, and efficiency. This experiment examined the practicality, methodology, challenges, and benefits of implementing the technology for the Launch Control System (LCS), and more specifically the Application Services (AS) group of the National Aeronautics and Space Administration (NASA) at the Kennedy Space Center (KSC). In order to carry out this experiment, I used several tools from the virtualization company known as VMWare; these programs included VMWare ThinApp, VMWare Workstation, and VMWare ACE. Used in conjunction, these utilities provided the engine necessary to virtualize and deploy applications in a desktop environment on any Windows platform available. The results clearly show that virtualization is a viable technology that can, when implemented properly, dramatically cut costs, enhance stability and security, and provide easier management for administrators.

  8. Distributed Observer Network

    NASA Technical Reports Server (NTRS)

    Conroy, Michael; Mazzone, Rebecca; Little, William; Elfrey, Priscilla; Mann, David; Mabie, Kevin; Cuddy, Thomas; Loundermon, Mario; Spiker, Stephen; McArthur, Frank; hide

    2010-01-01

    The Distributed Observer network (DON) is a NASA-collaborative environment that leverages game technology to bring three-dimensional simulations to conventional desktop and laptop computers in order to allow teams of engineers working on design and operations, either individually or in groups, to view and collaborate on 3D representations of data generated by authoritative tools such as Delmia Envision, Pro/Engineer, or Maya. The DON takes models and telemetry from these sources and, using commercial game engine technology, displays the simulation results in a 3D visual environment. DON has been designed to enhance accessibility and user ability to observe and analyze visual simulations in real time. A variety of NASA mission segment simulations [Synergistic Engineering Environment (SEE) data, NASA Enterprise Visualization Analysis (NEVA) ground processing simulations, the DSS simulation for lunar operations, and the Johnson Space Center (JSC) TRICK tool for guidance, navigation, and control analysis] were experimented with. Desired functionalities, [i.e. Tivo-like functions, the capability to communicate textually or via Voice-over-Internet Protocol (VoIP) among team members, and the ability to write and save notes to be accessed later] were targeted. The resulting DON application was slated for early 2008 release to support simulation use for the Constellation Program and its teams. Those using the DON connect through a client that runs on their PC or Mac. This enables them to observe and analyze the simulation data as their schedule allows, and to review it as frequently as desired. DON team members can move freely within the virtual world. Preset camera points can be established, enabling team members to jump to specific views. This improves opportunities for shared analysis of options, design reviews, tests, operations, training, and evaluations, and improves prospects for verification of requirements, issues, and approaches among dispersed teams.

  9. Systems Engineering and Integration for Technology Programs

    NASA Technical Reports Server (NTRS)

    Kennedy, Kruss J.

    2006-01-01

    The Architecture, Habitability & Integration group (AH&I) is a system engineering and integration test team within the NASA Crew and Thermal Systems Division (CTSD) at Johnson Space Center. AH&I identifies and resolves system-level integration issues within the research and technology development community. The timely resolution of these integration issues is fundamental to the development of human system requirements and exploration capability. The integration of the many individual components necessary to construct an artificial environment is difficult. The necessary interactions between individual components and systems must be approached in a piece-wise fashion to achieve repeatable results. A formal systems engineering (SE) approach to define, develop, and integrate quality systems within the life support community has been developed. This approach will allow a Research & Technology Program to systematically approach the development, management, and quality of technology deliverables to the various exploration missions. A tiered system engineering structure has been proposed to implement best systems engineering practices across all development levels from basic research to working assemblies. These practices will be implemented through a management plan across all applicable programs, projects, elements and teams. While many of the engineering practices are common to other industries, the implementation is specific to technology development. An accounting of the systems engineering management philosophy will be discussed and the associated programmatic processes will be presented.

  10. Proceedings of the 1999 U.S. DOE Hydrogen Program Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NREL

    2000-08-28

    The Proceedings of the 1999 US Department of Energy (DOE) Hydrogen Program Review serve as an important technology reference for the DOE Hydrogen Program. This document contains technical progress reports on 60 research and technology validation projects funded by the DOE Hydrogen Program in Fiscal Year 1999, in support of its mission to make hydrogen a cost-effective energy carrier for utility, building, and transportation applications. Each year, the Program conducts a rigorous review of its portfolio of projects, utilizing teams of experts to provide vital feedback on the progress of research.

  11. KSC00pp0325

    NASA Image and Video Library

    2000-03-10

    The Orange Crusher team (282) works on their robot, which is named Rust Bot, during the FIRST competition. The team of students from Lake Howell, Winter Springs and Orange Christian Private high schools was co-sponsored by NASA Kennedy Space Center, Matern Professional Engineering The Foundation, Control Technologies, Lucent Technologies and Sandy Engineering. Students from all over the country are at the KSC Visitor Complex for the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition March 9-11 in the Rocket Garden. Teams of high school students are testing the limits of their imagination using robots they have designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing, 16 are Florida teams co-sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusvill

  12. KSC-00pp0325

    NASA Image and Video Library

    2000-03-10

    The Orange Crusher team (282) works on their robot, which is named Rust Bot, during the FIRST competition. The team of students from Lake Howell, Winter Springs and Orange Christian Private high schools was co-sponsored by NASA Kennedy Space Center, Matern Professional Engineering The Foundation, Control Technologies, Lucent Technologies and Sandy Engineering. Students from all over the country are at the KSC Visitor Complex for the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition March 9-11 in the Rocket Garden. Teams of high school students are testing the limits of their imagination using robots they have designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing, 16 are Florida teams co-sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusvill

  13. Has Technology Been Considered? A Guide for IEP Teams. CASE/TAM Assistive Technology Policy and Practice Series.

    ERIC Educational Resources Information Center

    Chambers, A. C.

    This guide compiles information essential to a working knowledge of assistive technology for children with disabilities. It addresses the definition of assistive technology and provides information on laws which direct the provision of assistive technology. The manual provides a framework to guide the Individualized Education Program (IEP) team as…

  14. The SWAT Team: Successfully Integrating Technology into the Curriculum.

    ERIC Educational Resources Information Center

    Cathey, Marcy E.

    The Madeira School (McLean, Virginia) had been behind on advanced technology as compared to many of its competitor schools. In the fall of 1996, the cornerstone for the Savvy With All Technology (SWAT) team program was laid. The idea of SWAT was to infiltrate departments with technology specialists and users so that technology would be used across…

  15. NASA Mission: The Universe

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This booklet is mainly a recruitment tool for the various NASA Centers. This well illustrated booklet briefly describes NASA's mission and career opportunities on the NASA team. NASA field installations and their missions are briefly noted. NASA's four chief program offices are briefly described. They are: (1) Aeronautics, Exploration, and Space Technology; (2) Space Flight; (3) Space Operations; and (4) Space Science and Applications.

  16. Building Partner Capacity to Combat Weapons of Mass Destruction

    DTIC Science & Technology

    2009-01-01

    EDUCATION ENERGY AND ENVIRONMENT HEALTH AND HEALTH CARE INTERNATIONAL AFFAIRS NATIONAL SECURITY POPULATION AND AGING PUBLIC SAFETY SCIENCE AND...also met with officials from the government of the United Kingdom (the 12 The Science Applications International Corporation study team identified...Activity Description Ends Ways International Science and Technology Center Provides weapons experts in CIS the opportunity to redirect their

  17. Postsecondary Play: The Role of Games and Social Media in Higher Education. Tech.edu: A Hopkins Series on Education and Technology

    ERIC Educational Resources Information Center

    Tierney, William G., Ed.; Corwin, Zoë B., Ed.; Fullerton, Tracy, Ed.; Ragusa, Gisele, Ed.

    2017-01-01

    The college application process--which entails multiple forms, essays, test scores, and deadlines--can be intimidating. For students without substantial school and family support, the complexity of this process can become a barrier to access. William G. Tierney, Tracy Fullerton, and their teams at the University of Southern California approach…

  18. Preparing Brigade Combat Team Soldiers for Mission Readiness Through Research on Intangible Psychological Constructs and their Applications. Phase 2: Measurement and Learning Methods

    DTIC Science & Technology

    2014-02-01

    10 Cognitive Learning Strategies, Metacognitive Strategies, Scaffolding, and Cognitive Tutoring...culture, technology , and instructional practices. 11 7. Motivational and emotional influences on learning - What and how much is learned is...of learning and intangible skills. These resulting set of theories includes: 12 • Cognitive learning strategies, metacognitive strategies

  19. Experience of valorization projects ISTC for laser technologies

    NASA Astrophysics Data System (ADS)

    Sartory, A. V.; Stepennov, D. B.; Vlasova, E. Y.; Pokrovsky, K. K.

    2002-04-01

    Application of the achievements of the ISTC projects is one of the main problems being solved to achieve one of the basic goals of the ISTC, namely, to adapt Russian scientists to conditions of developing market economy in Russia. The present report is aimed at rendering of promotional services for ISTC project teams in the context of the program of projects outcomes valorization.

  20. State University of New York Institute of Technology (SUNYIT) Visiting Scholars Program

    DTIC Science & Technology

    2013-05-01

    team members, and build the necessary backend metal interconnections. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 4 Baek-Young Choi...Cooperative and Opportunistic Mobile Cloud for Energy Efficient Positioning; Department of Computer Science Electrical Engineering, University of...Missouri - Kansas City The fast growing popularity of smartphones and tablets enables us the use of various intelligent mobile applications. As many of

  1. Solar Storm GIC Forecasting: Solar Shield Extension Development of the End-User Forecasting System Requirements

    NASA Technical Reports Server (NTRS)

    Pulkkinen, A.; Mahmood, S.; Ngwira, C.; Balch, C.; Lordan, R.; Fugate, D.; Jacobs, W.; Honkonen, I.

    2015-01-01

    A NASA Goddard Space Flight Center Heliophysics Science Division-led team that includes NOAA Space Weather Prediction Center, the Catholic University of America, Electric Power Research Institute (EPRI), and Electric Research and Management, Inc., recently partnered with the Department of Homeland Security (DHS) Science and Technology Directorate (S&T) to better understand the impact of Geomagnetically Induced Currents (GIC) on the electric power industry. This effort builds on a previous NASA-sponsored Applied Sciences Program for predicting GIC, known as Solar Shield. The focus of the new DHS S&T funded effort is to revise and extend the existing Solar Shield system to enhance its forecasting capability and provide tailored, timely, actionable information for electric utility decision makers. To enhance the forecasting capabilities of the new Solar Shield, a key undertaking is to extend the prediction system coverage across Contiguous United States (CONUS), as the previous version was only applicable to high latitudes. The team also leverages the latest enhancements in space weather modeling capacity residing at Community Coordinated Modeling Center to increase the Technological Readiness Level, or Applications Readiness Level of the system http://www.nasa.gov/sites/default/files/files/ExpandedARLDefinitions4813.pdf.

  2. The NASA LeRC regenerative fuel cell system testbed program for goverment and commercial applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maloney, T.M.; Prokopius, P.R.; Voecks, G.E.

    1995-01-25

    The Electrochemical Technology Branch of the NASA Lewis Research Center (LeRC) has initiated a program to develop a renewable energy system testbed to evaluate, characterize, and demonstrate fully integrated regenerative fuel cell (RFC) system for space, military, and commercial applications. A multi-agency management team, led by NASA LeRC, is implementing the program through a unique international coalition which encompasses both government and industry participants. This open-ended teaming strategy optimizes the development for space, military, and commercial RFC system technologies. Program activities to date include system design and analysis, and reactant storage sub-system design, with a major emphasis centered upon testbedmore » fabrication and installation and testing of two key RFC system components, namely, the fuel cells and electrolyzers. Construction of the LeRC 25 kW RFC system testbed at the NASA-Jet Propulsion Labortory (JPL) facility at Edwards Air Force Base (EAFB) is nearly complete and some sub-system components have already been installed. Furthermore, planning for the first commercial RFC system demonstration is underway. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}« less

  3. Virtual Team Governance: Addressing the Governance Mechanisms and Virtual Team Performance

    NASA Astrophysics Data System (ADS)

    Zhan, Yihong; Bai, Yu; Liu, Ziheng

    As technology has improved and collaborative software has been developed, virtual teams with geographically dispersed members spread across diverse physical locations have become increasingly prominent. Virtual team is supported by advancing communication technologies, which makes virtual teams able to largely transcend time and space. Virtual teams have changed the corporate landscape, which are more complex and dynamic than traditional teams since the members of virtual teams are spread on diverse geographical locations and their roles in the virtual team are different. Therefore, how to realize good governance of virtual team and arrive at good virtual team performance is becoming critical and challenging. Good virtual team governance is essential for a high-performance virtual team. This paper explores the performance and the governance mechanism of virtual team. It establishes a model to explain the relationship between the performance and the governance mechanisms in virtual teams. This paper is focusing on managing virtual teams. It aims to find the strategies to help business organizations to improve the performance of their virtual teams and arrive at the objectives of good virtual team management.

  4. Virtual Teams and Synchronous Presentations: An Online Class Experience

    ERIC Educational Resources Information Center

    Adkins, Joni K.

    2013-01-01

    Global expansion, cost containment, and technology advances have all played a role in the increase of virtual teams in today's workplace. Virtual teams in an online graduate information technology management class prepared and presented synchronous presentations over a business or non-profit sector case. This paper includes a brief literature…

  5. School Technology Leadership: Artifacts in Systems of Practice

    ERIC Educational Resources Information Center

    Dexter, Sara

    2011-01-01

    A cross-case analysis of five case studies of team-based technology leadership in middle schools with laptop programs identifies systems of practice that organize teams' distributed leadership. These cases suggest that successfully implementing a complex improvement effort warrants a team-based leadership approach, especially for an improvement…

  6. General Motors and the University of Michigan smart materials and structures collaborative research laboratory

    NASA Astrophysics Data System (ADS)

    Brei, Diann; Luntz, Jonathan; Shaw, John; Johnson, Nancy L.; Browne, Alan L.; Alexander, Paul W.; Mankame, Nilesh D.

    2007-04-01

    The field of Smart Materials and Structures is evolving from high-end, one-of-a-kind products for medical, military and aerospace applications to the point of viability for mainstream affordable high volume products for automotive applications. For the automotive industry, there are significant potential benefits to be realized including reduction in vehicle mass, added functionality and design flexibility and decrease in component size and cost. To further accelerate the path from basic research and development to launched competitive products, General Motors (GM) has teamed with the College of Engineering at the University of Michigan (UM) to establish a $2.9 Million Collaborative Research Laboratory (CRL) in Smart Materials and Structures. Researchers at both GM and UM are working closely together to create leap-frog technologies which start at conceptualization and proceed all the way through demonstration and handoff to product teams, thereby bridging the traditional technology gap between industry and academia. In addition to Smart Device Technology Innovation, other thrust areas in the CRL include Smart Material Maturity with a basic research focus on overcoming material issues that form roadblocks to commercialism and Mechamatronic System Design Methodology with an applied focus on development tools (synthesis and analysis) to aid the engineer in application of smart materials to system engineering. This CRL is a global effort with partners across the nation and world from GM's Global Research Network such as HRL Laboratories in California and GM's India Science Lab in Bangalore, India. This paper provides an overview of this new CRL and gives examples of several of the projects underway.

  7. High-Power, High-Thrust Ion Thruster (HPHTion)

    NASA Technical Reports Server (NTRS)

    Peterson, Peter Y.

    2015-01-01

    Advances in high-power photovoltaic technology have enabled the possibility of reasonably sized, high-specific power solar arrays. At high specific powers, power levels ranging from 50 to several hundred kilowatts are feasible. Ion thrusters offer long life and overall high efficiency (typically greater than 70 percent efficiency). In Phase I, the team at ElectroDynamic Applications, Inc., built a 25-kW, 50-cm ion thruster discharge chamber and fabricated a laboratory model. This was in response to the need for a single, high-powered engine to fill the gulf between the 7-kW NASA's Evolutionary Xenon Thruster (NEXT) system and a notional 25-kW engine. The Phase II project matured the laboratory model into a protoengineering model ion thruster. This involved the evolution of the discharge chamber to a high-performance thruster by performance testing and characterization via simulated and full beam extraction testing. Through such testing, the team optimized the design and built a protoengineering model thruster. Coupled with gridded ion thruster technology, this technology can enable a wide range of missions, including ambitious near-Earth NASA missions, Department of Defense missions, and commercial satellite activities.

  8. An industrial approach to design compelling VR and AR experience

    NASA Astrophysics Data System (ADS)

    Richir, Simon; Fuchs, Philippe; Lourdeaux, Domitile; Buche, Cédric; Querrec, Ronan

    2013-03-01

    The convergence of technologies currently observed in the field of VR, AR, robotics and consumer electronic reinforces the trend of new applications appearing every day. But when transferring knowledge acquired from research to businesses, research laboratories are often at a loss because of a lack of knowledge of the design and integration processes in creating an industrial scale product. In fact, the innovation approaches that take a good idea from the laboratory to a successful industrial product are often little known to researchers. The objective of this paper is to present the results of the work of several research teams that have finalized a working method for researchers and manufacturers that allow them to design virtual or augmented reality systems and enable their users to enjoy "a compelling VR experience". That approach, called "the I2I method", present 11 phases from "Establishing technological and competitive intelligence and industrial property" to "Improvements" through the "Definition of the Behavioral Interface, Virtual Environment and Behavioral Software Assistance". As a result of the experience gained by various research teams, this design approach benefits from contributions from current VR and AR research. Our objective is to validate and continuously move such multidisciplinary design team methods forward.

  9. Weapons team engagement trainer: a transfer of high-tech military training technology to the law enforcement community

    NASA Astrophysics Data System (ADS)

    Franz, Thomas M.; Gonos, Greg; Simek, Lisa

    1999-01-01

    Six years ago at SPIE, a team of government researchers and engineers unveiled a new, military, weapons team engagement trainer (WTET). At that time, potential applications of this prototype military training device to civilian law enforcement training were realized. Subsequent action was taken under the Federal Technology Transfer Act of 1986, enabling the transfer of WTET to the private sector, through a cooperative agreement between: the Office of Naval Research (ONR), NAWCTSD, and the commercial weapons training organization Firearms Training Systems, Inc. (FATS). Planning also began for release of a commercial WTET sytem. The government research and development facility and the National Institute of Justice (NIJ) formed a cooperative agreement to make the prototype system available to military, federal, and local law enforcement agencies for use in Orlando, Florida - until a commercial version could become available. This cooperative effort has provided evidence of the effectiveness and realism of WTET with law enforcement personnel. This paper offers a technical description of the improvements made to WTET, a brief explanation of the commercialization process, a summary of the evaluations conducted to date, and insight into how that information has been used in the development of the commercial version.

  10. Healthcare teams over the Internet: towards a certificate-based approach.

    PubMed

    Georgiadis, Christos K; Mavridis, Ioannis K; Pangalos, George I

    2002-01-01

    Healthcare environments are a representative case of collaborative environments since individuals (e.g. doctors) in many cases collaborate in order to provide care to patients in a more proficient way. At the same time modem healthcare institutions are increasingly interested in sharing access of their information resources in the networked environment. Healthcare applications over the Internet offer an attractive communication infrastructure at worldwide level but with a noticeably great factor of risk. Security has therefore become a major concern for healthcare applications over the Internet. However, although an adequate level of security can be relied upon digital certificates, if an appropriate security policy is used, additional security considerations are needed in order to deal efficiently with the above team-work concerns. The already known Hybrid Access Control security model supports and handles efficiently healthcare teams with active security capabilities and is capable to exploit the benefits of certificate technology. In this paper we present the way for encoding the appropriate authoritative information in various types of certificates, as well as the overall operational architecture of the implemented access control system for healthcare collaborative environments over the Internet. A pilot implementation of the proposed methodology in a major Greek hospital has shown the applicability of the proposals and the flexibility of the access control provided.

  11. NASA's PEM Fuel Cell Power Plant Development Program for Space Applications

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark A.

    2008-01-01

    A three-center NASA team led by the Glenn Research Center in Cleveland, Ohio is completing a five-year PEM fuel cell power plant development program for future space applications. The focus of the program has been to adapt commercial PEM fuel cell technology for space applications by addressing the key mission requirements of using pure oxygen as an oxidant and operating in a multi-gravity environment. Competing vendors developed breadboard units in the 1 to 5 kW power range during the first phase of the program, and a single vendor developed a nominal 10-kW engineering model power pant during the second phase of the program. Successful performance and environmental tests conducted by NASA established confidence that PEM fuel cell technology will be ready to meet the electrical power needs of future space missions.

  12. High-performance teams and the physician leader: an overview.

    PubMed

    Majmudar, Aalap; Jain, Anshu K; Chaudry, Joseph; Schwartz, Richard W

    2010-01-01

    The complexity of health care delivery within the United States continues to escalate in an exponential fashion driven by an explosion of medical technology, an ever-expanding research enterprise, and a growing emphasis on evidence-based practices. The delivery of care occurs on a continuum that spans across multiple disciplines, now requiring complex coordination of care through the use of novel clinical teams. The use of teams permeates the health care industry and has done so for many years, but confusion about the structure and role of teams in many organizations contributes to limited effectiveness and suboptimal outcomes. Teams are an essential component of graduate medical education training programs. The health care industry's relative lack of focus regarding the fundamentals of teamwork theory has contributed to ineffective team leadership at the physician level. As a follow-up to our earlier manuscripts on teamwork, this article clarifies a model of teamwork and discusses its application to high-performance teams in health care organizations. Emphasized in this discussion is the role played by the physician leader in ensuring team effectiveness. By educating health care professionals on the fundamentals of high-performance teamwork, we hope to stimulate the development of future physician leaders who use proven teamwork principles to achieve the goals of trainee education and excellent patient care. Copyright 2010 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  13. The Genome-based Knowledge Management in Cycles model: a complex adaptive systems framework for implementation of genomic applications.

    PubMed

    Arar, Nedal; Knight, Sara J; Modell, Stephen M; Issa, Amalia M

    2011-03-01

    The main mission of the Genomic Applications in Practice and Prevention Network™ is to advance collaborative efforts involving partners from across the public health sector to realize the promise of genomics in healthcare and disease prevention. We introduce a new framework that supports the Genomic Applications in Practice and Prevention Network mission and leverages the characteristics of the complex adaptive systems approach. We call this framework the Genome-based Knowledge Management in Cycles model (G-KNOMIC). G-KNOMIC proposes that the collaborative work of multidisciplinary teams utilizing genome-based applications will enhance translating evidence-based genomic findings by creating ongoing knowledge management cycles. Each cycle consists of knowledge synthesis, knowledge evaluation, knowledge implementation and knowledge utilization. Our framework acknowledges that all the elements in the knowledge translation process are interconnected and continuously changing. It also recognizes the importance of feedback loops, and the ability of teams to self-organize within a dynamic system. We demonstrate how this framework can be used to improve the adoption of genomic technologies into practice using two case studies of genomic uptake.

  14. Digital watermarking in telemedicine applications--towards enhanced data security and accessibility.

    PubMed

    Giakoumaki, Aggeliki L; Perakis, Konstantinos; Tagaris, Anastassios; Koutsouris, Dimitris

    2006-01-01

    Implementing telemedical solutions has become a trend amongst the various research teams at an international level. Yet, contemporary information access and distribution technologies raise critical issues that urgently need to be addressed, especially those related to security. The paper suggests the use of watermarking in telemedical applications in order to enhance security of the transmitted sensitive medical data, familiarizes the users with a telemedical system and a watermarking module that have already been developed, and proposes an architecture that will enable the integration of the two systems, taking into account a variety of use cases and application scenarios.

  15. Sensors for process control Focus Team report

    NASA Astrophysics Data System (ADS)

    At the Semiconductor Technology Workshop, held in November 1992, the Semiconductor Industry Association (SIA) convened 179 semiconductor technology experts to assess the 15-year outlook for the semiconductor manufacturing industry. The output of the Workshop, a document entitled 'Semiconductor Technology: Workshop Working Group Reports,' contained an overall roadmap for the technology characteristics envisioned in integrated circuits (IC's) for the period 1992-2007. In addition, the document contained individual roadmaps for numerous key areas in IC manufacturing, such as film deposition, thermal processing, manufacturing systems, exposure technology, etc. The SIA Report did not contain a separate roadmap for contamination free manufacturing (CFM). A key component of CFM for the next 15 years is the use of sensors for (1) defect reduction, (2) improved product quality, (3) improved yield, (4) improved tool utilization through contamination reduction, and (5) real time process control in semiconductor fabrication. The objective of this Focus Team is to generate a Sensors for Process Control Roadmap. Implicit in this objective is the identification of gaps in current sensor technology so that research and development activity in the sensor industry can be stimulated to develop sensor systems capable of meeting the projected roadmap needs. Sensor performance features of interest include detection limit, specificity, sensitivity, ease of installation and maintenance, range, response time, accuracy, precision, ease and frequency of calibration, degree of automation, and adaptability to in-line process control applications.

  16. Solving Autonomy Technology Gaps through Wireless Technology and Orion Avionics Architectural Principles

    NASA Astrophysics Data System (ADS)

    Black, Randy; Bai, Haowei; Michalicek, Andrew; Shelton, Blaine; Villela, Mark

    2008-01-01

    Currently, autonomy in space applications is limited by a variety of technology gaps. Innovative application of wireless technology and avionics architectural principles drawn from the Orion crew exploration vehicle provide solutions for several of these gaps. The Vision for Space Exploration envisions extensive use of autonomous systems. Economic realities preclude continuing the level of operator support currently required of autonomous systems in space. In order to decrease the number of operators, more autonomy must be afforded to automated systems. However, certification authorities have been notoriously reluctant to certify autonomous software in the presence of humans or when costly missions may be jeopardized. The Orion avionics architecture, drawn from advanced commercial aircraft avionics, is based upon several architectural principles including partitioning in software. Robust software partitioning provides "brick wall" separation between software applications executing on a single processor, along with controlled data movement between applications. Taking advantage of these attributes, non-deterministic applications can be placed in one partition and a "Safety" application created in a separate partition. This "Safety" partition can track the position of astronauts or critical equipment and prevent any unsafe command from executing. Only the Safety partition need be certified to a human rated level. As a proof-of-concept demonstration, Honeywell has teamed with the Ultra WideBand (UWB) Working Group at NASA Johnson Space Center to provide tracking of humans, autonomous systems, and critical equipment. Using UWB the NASA team can determine positioning to within less than one inch resolution, allowing a Safety partition to halt operation of autonomous systems in the event that an unplanned collision is imminent. Another challenge facing autonomous systems is the coordination of multiple autonomous agents. Current approaches address the issue as one of networking and coordination of multiple independent units, each with its own mission. As a proof-of-concept Honeywell is developing and testing various algorithms that lead to a deterministic, fault tolerant, reliable wireless backplane. Just as advanced avionics systems control several subsystems, actuators, sensors, displays, etc.; a single "master" autonomous agent (or base station computer) could control multiple autonomous systems. The problem is simplified to controlling a flexible body consisting of several sensors and actuators, rather than one of coordinating multiple independent units. By filling technology gaps associated with space based autonomous system, wireless technology and Orion architectural principles provide the means for decreasing operational costs and simplifying problems associated with collaboration of multiple autonomous systems.

  17. Object and technologies in the working process of an itinerant team in mental health.

    PubMed

    Eslabão, Adriane Domingues; Pinho, Leandro Barbosa de; Coimbra, Valéria Cristina Christello; Lima, Maria Alice Dias da Silva; Camatta, Marcio Wagner; Santos, Elitiele Ortiz Dos

    2017-01-01

    Objective To analyze the work object and the technologies in the working process of a Mental Health Itinerant Team in the attention to drug users. Methods Qualitative case study, carried out in a municipality in the South of Brazil. The theoretical framework was the Healthcare Labor Process. The data was collected through participant observation and semi-structured interviews with the professionals of an itinerant team in the year of 2015. For data analysis we used the Thematic Content Analysis. Results In the first empirical category - work object - the user is considered as a focus, bringing new challenges in the team's relationship with the network. In the second category - technologies of the work process - potentialities and contradictions of the team work tools are highlighted. Conclusions As an innovation in the mental health context, the itinerant team brings real possibilities to reinvent the care for the drug user as well as new institutional challenges.

  18. Understanding the Adaptive Use of Virtual World Technology Capabilities and Trust in Virtual Teams

    ERIC Educational Resources Information Center

    Owens, Dawn

    2012-01-01

    In an environment of global competition and constant technological change, the use of virtual teams has become commonplace for many organizations. Virtual team members are geographically and temporally dispersed, experience cultural diversity, and lack shared social context and face-to-face encounters considered as irreplaceable for building and…

  19. The Essence of Using Collaborative Technology for Virtual Team Members: A Study Using Interpretative Phenomenology

    ERIC Educational Resources Information Center

    Houck, Christiana L.

    2013-01-01

    This interpretative phenomenological study used semi-structured interviews of 10 participants to gain a deeper understanding of the experience for virtual team members using collaborative technology. The participants were knowledge workers from global software companies working on cross-functional project teams at a distance. There were no…

  20. Systems Engineering Knowledge Asset (SEKA) Management for Higher Performing Engineering Teams: People, Process and Technology toward Effective Knowledge-Workers

    ERIC Educational Resources Information Center

    Shelby, Kenneth R., Jr.

    2013-01-01

    Systems engineering teams' value-creation for enterprises is slower than possible due to inefficiencies in communication, learning, common knowledge collaboration and leadership conduct. This dissertation outlines the surrounding people, process and technology dimensions for higher performing engineering teams. It describes a true experiment…

  1. The Impact of Virtual Collaboration and Collaboration Technologies on Knowledge Transfer and Team Performance in Distributed Organizations

    ERIC Educational Resources Information Center

    Ngoma, Ngoma Sylvestre

    2013-01-01

    Virtual teams are increasingly viewed as a powerful determinant of competitive advantage in geographically distributed organizations. This study was designed to provide insights into the interdependencies between virtual collaboration, collaboration technologies, knowledge transfer, and virtual team performance in an effort to understand whether…

  2. Designing and Building a Cardboard Chair: Children's Engineering at the TECA Eastern Regional Conference

    ERIC Educational Resources Information Center

    Linnell, Charles C.

    2007-01-01

    This article describes the 2006 Technology Education Collegiate Association (TECA) Eastern Regional elementary competition, wherein teams of technology education students from nine different universities designed and built cardboard chairs. The competition required the teams (four or five to a team) from universities up and down the East Coast to…

  3. NASA/industry advanced turboprop technology program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziemianski, J.A.; Whitlow, J.B. Jr.

    1988-01-01

    Experimental and analytical effort shows that use of advanced turboprop (propfan) propulsion instead of conventional turbofans in the older narrow-body airline fleet could reduce fuel consumption for this type of aircraft by up to 50 percent. The NASA Advanced Turboprop (ATP) program was formulated to address the key technologies required for these thin, swept-blade propeller concepts. A NASA, industry, and university team was assembled to develop and validate applicable design codes and prove by ground and flight test the viability of these propeller concepts. Some of the history of the ATP project, an overview of some of the issues, andmore » a summary of the technology developed to make advanced propellers viable in the high-subsonic cruise speed application are presented. The ATP program was awarded the prestigious Robert J. Collier Trophy for the greatest achievement in aeronautics and astronautics in America in 1987.« less

  4. Biomedical technology transfer: Applications of NASA science and technology

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The major efforts of the Stanford Biomedical Applications Team Program at the Stanford University School of Medicine for the period from October 1, 1975 to September 31, 1976 are covered. A completed EMG biotelemetry system which monitors the physiological signals of man and animals in space related research is discussed. The results of a pilot study involving lower body negative pressure testing in cardiac patients has been completed as well as the design and construction of a new leg negative pressure unit for evaluating heart patients. This technology utilizes vacuum chambers to stress the cardiovascular system during space flight. Laboratory tests of an intracranial pressure transducer, have been conducted. Extremely stable long term data using capacative pressure sensors has lead to the order of commercially manufactured monitoring systems base. Projects involving commercialization are: flexible medical electrodes, an echocardioscope, a miniature biotelemetry system, and an on-line ventricular contour detector.

  5. DNA microarrays: a powerful genomic tool for biomedical and clinical research

    PubMed Central

    Trevino, Victor; Falciani, Francesco; Barrera-Saldaña, Hugo A.

    2007-01-01

    Among the many benefits of the Human Genome Project are new and powerful tools such as the genome-wide hybridization devices referred as microarrays. Initially designed to measure gene transcriptional levels, microarray technologies are now used for comparing other genome features among individuals and their tissues and cells. Results provide valuable information on disease subcategories, disease prognosis, and treatment outcome. Likewise, reveal differences in genetic makeup, regulatory mechanisms and subtle variations are approaching the era of personalized medicine. To understand this powerful tool, its versatility and how it is dramatically changing the molecular approach to biomedical and clinical research, this review describes the technology, its applications, a didactic step-by-step review of a typical microarray protocol, and a real experiment. Finally, it calls the attention of the medical community to integrate multidisciplinary teams, to take advantage of this technology and its expanding applications that in a slide reveals our genetic inheritance and destiny. PMID:17660860

  6. NASA's Launch Propulsion Systems Technology Roadmap

    NASA Technical Reports Server (NTRS)

    McConnaughey, Paul K.; Femminineo, Mark G.; Koelfgen, Syri J.; Lepsch, Roger A; Ryan, Richard M.; Taylor, Steven A.

    2012-01-01

    Safe, reliable, and affordable access to low-Earth (LEO) orbit is necessary for all of the United States (US) space endeavors. In 2010, NASA s Office of the Chief Technologist commissioned 14 teams to develop technology roadmaps that could be used to guide the Agency s and US technology investment decisions for the next few decades. The Launch Propulsion Systems Technology Area (LPSTA) team was tasked to address the propulsion technology challenges for access to LEO. The developed LPSTA roadmap addresses technologies that enhance existing solid or liquid propulsion technologies and their related ancillary systems or significantly advance the technology readiness level (TRL) of less mature systems like airbreathing, unconventional, and other launch technologies. In developing this roadmap, the LPSTA team consulted previous NASA, military, and industry studies as well as subject matter experts to develop their assessment of this field, which has fundamental technological and strategic impacts for US space capabilities.

  7. Mixed waste focus area alternative technologies workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borduin, L.C.; Palmer, B.A.; Pendergrass, J.A.

    1995-05-24

    This report documents the Mixed Waste Focus Area (MWFA)-sponsored Alternative Technology Workshop held in Salt Lake City, Utah, from January 24--27, 1995. The primary workshop goal was identifying potential applications for emerging technologies within the Options Analysis Team (OAT) ``wise`` configuration. Consistent with the scope of the OAT analysis, the review was limited to the Mixed Low-Level Waste (MLLW) fraction of DOE`s mixed waste inventory. The Los Alamos team prepared workshop materials (databases and compilations) to be used as bases for participant review and recommendations. These materials derived from the Mixed Waste Inventory Report (MWIR) data base (May 1994), themore » Draft Site Treatment Plan (DSTP) data base, and the OAT treatment facility configuration of December 7, 1994. In reviewing workshop results, the reader should note several caveats regarding data limitations. Link-up of the MWIR and DSTP data bases, while representing the most comprehensive array of mixed waste information available at the time of the workshop, requires additional data to completely characterize all waste streams. A number of changes in waste identification (new and redefined streams) occurred during the interval from compilation of the data base to compilation of the DSTP data base with the end result that precise identification of radiological and contaminant characteristics was not possible for these streams. To a degree, these shortcomings compromise the workshop results; however, the preponderance of waste data was linked adequately, and therefore, these analyses should provide useful insight into potential applications of alternative technologies to DOE MLLW treatment facilities.« less

  8. Materials and Structures Research for Gas Turbine Applications Within the NASA Subsonic Fixed Wing Project

    NASA Technical Reports Server (NTRS)

    Hurst, Janet

    2011-01-01

    A brief overview is presented of the current materials and structures research geared toward propulsion applications for NASA s Subsonic Fixed Wing Project one of four projects within the Fundamental Aeronautics Program of the NASA Aeronautics Research Mission Directorate. The Subsonic Fixed Wing (SFW) Project has selected challenging goals which anticipate an increasing emphasis on aviation s impact upon the global issue of environmental responsibility. These goals are greatly reduced noise, reduced emissions and reduced fuel consumption and address 25 to 30 years of technology development. Successful implementation of these demanding goals will require development of new materials and structural approaches within gas turbine propulsion technology. The Materials and Structures discipline, within the SFW project, comprise cross-cutting technologies ranging from basic investigations to component validation in laboratory environments. Material advances are teamed with innovative designs in a multidisciplinary approach with the resulting technology advances directed to promote the goals of reduced noise and emissions along with improved performance.

  9. Global positioning systems (GPS) and microtechnology sensors in team sports: a systematic review.

    PubMed

    Cummins, Cloe; Orr, Rhonda; O'Connor, Helen; West, Cameron

    2013-10-01

    Use of Global positioning system (GPS) technology in team sport permits measurement of player position, velocity, and movement patterns. GPS provides scope for better understanding of the specific and positional physiological demands of team sport and can be used to design training programs that adequately prepare athletes for competition with the aim of optimizing on-field performance. The objective of this study was to conduct a systematic review of the depth and scope of reported GPS and microtechnology measures used within individual sports in order to present the contemporary and emerging themes of GPS application within team sports. A systematic review of the application of GPS technology in team sports was conducted. We systematically searched electronic databases from earliest record to June 2012. Permutations of key words included GPS; male and female; age 12-50 years; able-bodied; and recreational to elite competitive team sports. The 35 manuscripts meeting the eligibility criteria included 1,276 participants (age 11.2-31.5 years; 95 % males; 53.8 % elite adult athletes). The majority of manuscripts reported on GPS use in various football codes: Australian football league (AFL; n = 8), soccer (n = 7), rugby union (n = 6), and rugby league (n = 6), with limited representation in other team sports: cricket (n = 3), hockey (n = 3), lacrosse (n = 1), and netball (n = 1). Of the included manuscripts, 34 (97 %) detailed work rate patterns such as distance, relative distance, speed, and accelerations, with only five (14.3 %) reporting on impact variables. Activity profiles characterizing positional play and competitive levels were also described. Work rate patterns were typically categorized into six speed zones, ranging from 0 to 36.0 km·h⁻¹, with descriptors ranging from walking to sprinting used to identify the type of activity mainly performed in each zone. With the exception of cricket, no standardized speed zones or definitions were observed within or between sports. Furthermore, speed zone criteria often varied widely within (e.g. zone 3 of AFL ranged from 7 to 16 km·h⁻¹) and between sports (e.g. zone 3 of soccer ranged from 3.0 to <13 km·h⁻¹ code). Activity descriptors for a zone also varied widely between sports (e.g. zone 4 definitions ranged from jog, run, high velocity, to high-intensity run). Most manuscripts focused on the demands of higher intensity efforts (running and sprint) required by players. Body loads and impacts, also summarized into six zones, showed small variations in descriptions, with zone criteria based upon grading systems provided by GPS manufacturers. This systematic review highlights that GPS technology has been used more often across a range of football codes than across other team sports. Work rate pattern activities are most often reported, whilst impact data, which require the use of microtechnology sensors such as accelerometers, are least reported. There is a lack of consistency in the definition of speed zones and activity descriptors, both within and across team sports, thus underscoring the difficulties encountered in meaningful comparisons of the physiological demands both within and between team sports. A consensus on definitions of speed zones and activity descriptors within sports would facilitate direct comparison of the demands within the same sport. Meta-analysis from systematic review would also be supported. Standardization of speed zones between sports may not be feasible due to disparities in work rate pattern activities.

  10. Distributed teaming on JPL projects

    NASA Technical Reports Server (NTRS)

    Baroff, L. E.

    2002-01-01

    This paper addresses structures, actions and technologies that contribute to real team development of a distributed team, and the leadership skills and tools that are used to implement that team development.

  11. NREL/industry interaction: Amorphous silicon alloy research team formation

    NASA Astrophysics Data System (ADS)

    Luft, Werner

    1994-06-01

    The low material cost and proven manufacturability of amorphous silicon (a-Si) alloy photovoltaic technology make it ideally suited for large-scale terrestrial applications. The present efficiency of a-Si alloy modules is, however, much lower than the 15% stable efficiency that would lead to significant penetration of the electric utility bulk-power market. The slow progress in achieving high stabilized a-Si alloy module efficiencies may in part be attributed to the fact that only in the last few years did we emphasize stable efficiencies. A mission-focused integrated effort among the a-Si PV industry, universities, and the National Renewable Energy Laboratory (NREL) would help. To foster research integration, NREL has established four research teams with significant industry participation. In the 11 months since the research team formation, a close interaction among the a-Si PV industry, universities, and NREL has been achieved and has resulted in mission-directed research.

  12. NREL/industry interaction: Amorphous silicon alloy research team formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luft, W.

    1994-06-30

    The low material cost and proven manufacturability of amorphous silicon (a-Si) alloy photovoltaic technology make it ideally suited for large-scale terrestrial applications. The present efficiency of a-Si alloy modules is, however, much lower than the 15% stable efficiency that would lead to [ital significant] penetration of the electric utility bulk-power market. The slow progress in achieving high stabilized a-Si alloy module efficiencies may in part be attributed to the fact that only in the last few years did we emphasize stable efficiencies. A mission-focused integrated effort among the a-Si PV industry, universities, and the National Renewable Energy Laboratory (NREL) wouldmore » help. To foster research integration, NREL has established four research teams with significant industry participation. In the 11 months since the research team formation, a close interaction among the a-Si PV industry, universities, and NREL has been achieved and has resulted in mission-directed research.« less

  13. When a drip becomes a flood: Lessons learned from Target Corporation's first large-scale business disruption.

    PubMed

    Hirsch, Kimberly D; Strawser, Bryan E

    Business continuity practitioners routinely determine which teams in their companies are critical and undertake extensive and rigorous planning processes. But what happens when a business is faced with an unanticipated long-term disruption that primarily affects non-critical teams? How can a company use the essential principles of business continuity and crisis management in order to respond? This paper explores a 2013 business disruption experienced by Target Corporation at one of its headquarters locations caused by a leak in the water line for an ice machine. Challenges encountered and reviewed include supporting non-critical teams, leadership of a multi-week business disruption and how remote work technologies have changed traditional continuity alternative workspace solution planning. Lessons learned from this activation are presented with implications for business continuity and emergency management planning that are applicable to any industry.

  14. Improving the Army’s Next Effort in Technology Forecasting

    DTIC Science & Technology

    2010-09-01

    Health Maintenance— ability to make the robotic system more robust and to provide maintenance capabilities for self -monitoring, diagnostics, and...exhibit a verity of responses, including self -sensing and self - healing activities.43 A team of chemists and materials scientists led by the Moore...ultimately lead to i) applications in vehicles, including self -repairing armor, rubber , and coatings resistant to chemical agents, ii) aerospace

  15. Development and Validation of a Shear Punch Test Fixture

    DTIC Science & Technology

    2013-08-01

    composites (MMC) manufactured by friction stir processing (FSP) that are being developed as part of a Technology Investment Fund (TIF) project, as the...leading a team of government departments and academics to develop a friction stir processing (FSP) based procedure to create metal matrix composite... friction stir process to fabricate surface metal matrix composites in aluminum alloys for potential application in light armoured vehicles. The

  16. 15 CFR 270.105 - Duties of a Team.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 1 2014-01-01 2014-01-01 false Duties of a Team. 270.105 Section 270... OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Establishment and Deployment of Teams § 270.105 Duties of a Team. (a) A Team's Lead...

  17. 15 CFR 270.105 - Duties of a Team.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 1 2012-01-01 2012-01-01 false Duties of a Team. 270.105 Section 270... OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Establishment and Deployment of Teams § 270.105 Duties of a Team. (a) A Team's Lead...

  18. 15 CFR 270.105 - Duties of a Team.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 1 2013-01-01 2013-01-01 false Duties of a Team. 270.105 Section 270... OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Establishment and Deployment of Teams § 270.105 Duties of a Team. (a) A Team's Lead...

  19. 15 CFR 270.105 - Duties of a Team.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Duties of a Team. 270.105 Section 270... OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Establishment and Deployment of Teams § 270.105 Duties of a Team. (a) A Team's Lead...

  20. 15 CFR 270.105 - Duties of a Team.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 1 2011-01-01 2011-01-01 false Duties of a Team. 270.105 Section 270... OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Establishment and Deployment of Teams § 270.105 Duties of a Team. (a) A Team's Lead...

  1. 78 FR 52560 - Hurricane Sandy Rebuilding Task Force-Rebuild-by-Design; Announcement of Selection of Design Teams

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-23

    ... launch Rebuild by Design and select the 10 teams. NEA has a history of supporting and facilitating design... design teams selected are the following: Interboro Partners with the New Jersey Institute of Technology.... Massachusetts Institute of Technology Center for Advanced Urbanism and the Dutch Delta Collaborative by ZUS...

  2. Exercising Trust to Power Technology.

    ERIC Educational Resources Information Center

    Winkler, Carol Ann K.

    1998-01-01

    Recounts the Nerinx Hall High School New Frontiers team's apprehension in the 1992 New Frontiers for Catholic Schools workshop, convened to write technology plans for Catholic schools. Describes faculty and student success in incorporating new multimedia technology into the curriculum, after the team developed a plan for the school. (VWC)

  3. 15 CFR 716.4 - Scope and conduct of inspections.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... is the responsibility of the Host Team Leader. (3) ITAR-controlled technology. ITAR-controlled technology shall not be divulged to the Inspection Team without U.S. Government authorization (such technology includes, but is not limited to technical data related to Schedule 1 chemicals or Schedule 2...

  4. Multiagent pursuit-evasion games: Algorithms and experiments

    NASA Astrophysics Data System (ADS)

    Kim, Hyounjin

    Deployment of intelligent agents has been made possible through advances in control software, microprocessors, sensor/actuator technology, communication technology, and artificial intelligence. Intelligent agents now play important roles in many applications where human operation is too dangerous or inefficient. There is little doubt that the world of the future will be filled with intelligent robotic agents employed to autonomously perform tasks, or embedded in systems all around us, extending our capabilities to perceive, reason and act, and replacing human efforts. There are numerous real-world applications in which a single autonomous agent is not suitable and multiple agents are required. However, after years of active research in multi-agent systems, current technology is still far from achieving many of these real-world applications. Here, we consider the problem of deploying a team of unmanned ground vehicles (UGV) and unmanned aerial vehicles (UAV) to pursue a second team of UGV evaders while concurrently building a map in an unknown environment. This pursuit-evasion game encompasses many of the challenging issues that arise in operations using intelligent multi-agent systems. We cast the problem in a probabilistic game theoretic framework and consider two computationally feasible pursuit policies: greedy and global-max. We also formulate this probabilistic pursuit-evasion game as a partially observable Markov decision process and employ a policy search algorithm to obtain a good pursuit policy from a restricted class of policies. The estimated value of this policy is guaranteed to be uniformly close to the optimal value in the given policy class under mild conditions. To implement this scenario on real UAVs and UGVs, we propose a distributed hierarchical hybrid system architecture which emphasizes the autonomy of each agent yet allows for coordinated team efforts. We then describe our implementation on a fleet of UGVs and UAVs, detailing components such as high level pursuit policy computation, inter-agent communication, navigation, sensing, and regulation. We present both simulation and experimental results on real pursuit-evasion games between our fleet of UAVs and UGVs and evaluate the pursuit policies, relating expected capture times to the speed and intelligence of the evaders and the sensing capabilities of the pursuers. The architecture and algorithmsis described in this dissertation are general enough to be applied to many real-world applications.

  5. Robotic Waterjet System

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA needed a way to safely strip old paint and thermal protection material from reusable components from the Space Shuttle; to meet this requirement, Marshall Space Flight Center teamed with United Technologies' USBI Company and developed a stripping system based on hydroblasting. United Technology spun off a new company, Waterjet Systems, to commercialize and market the technology. The resulting ARMS (Automated Robotic Maintenance Systems), employ waterblasts at 55,000 pounds per square inch controlled by target-sensitive robots. The systems are used on aircraft and engine parts, and the newest application is on ships, where it not only strips but catches the ensuing wastewater. This innovation results in faster, cheaper stripping with less clean-up and reduced environmental impact.

  6. Computer-mediated interdisciplinary teams: theory and reality.

    PubMed

    Vroman, Kerryellen; Kovacich, Joann

    2002-05-01

    The benefit of experience, tempered with the wisdom of hindsight and 5 years of text-based, asynchronous, computer-mediated, interdisciplinary team communications, provides the energy, insights and data shared in this article. Through the theoretical lens of group dynamics and the epistemology of interdisciplinary teaming, we analyze the interactions of a virtual interdisciplinary team to provide an understanding and appreciation of collaborative interdisciplinary communication in the context of interactive technologies. Whilst interactive technologies may require new patterns of language similar to that of learning a foreign language, what is communicated in the interdisciplinary team process does not change. Most important is the recognition that virtual teams, similar to their face-to-face counterparts, undergo the same challenges of interdisciplinary teaming and group developmental processes of formation: forming, storming, norming, performing, and transforming. After examining these dynamics of communication and collaboration in the context of the virtual team, the article concludes with guidelines facilitating interdisciplinary team computer-mediated communication.

  7. Surface contamination analysis technology team overview

    NASA Technical Reports Server (NTRS)

    Burns, H. Dewitt

    1995-01-01

    A team was established which consisted of representatives from NASA (Marshall Space Flight Center and Langley Research Center), Thiokol Corporation, the University of Alabama in Huntsville, AC Engineering, SAIC, Martin Marietta, and Aerojet. The team's purpose was to bring together the appropriate personnel to determine what surface inspection techniques were applicable to multiprogram bonding surface cleanliness inspection. In order to identify appropriate techniques and their sensitivity to various contaminant families, calibration standards were developed. Producing standards included development of consistent low level contamination application techniques. Oxidation was also considered for effect on inspection equipment response. Ellipsometry was used for oxidation characterization. Verification testing was then accomplished to show that selected inspection techniques could detect subject contaminants at levels found to be detrimental to critical bond systems of interest. Once feasibility of identified techniques was shown, selected techniques and instrumentation could then be incorporated into a multipurpose inspection head and integrated with a robot for critical surface inspection. Inspection techniques currently being evaluated include optically stimulated electron emission (OSEE); near infrared (NIR) spectroscopy utilizing fiber optics; Fourier transform infrared (FTIR) spectroscopy; and ultraviolet (UV) fluorescence. Current plans are to demonstrate an integrated system in MSFC's Productivity Enhancement Complex within five years from initiation of this effort in 1992 assuming appropriate funding levels are maintained. This paper gives an overview of work accomplished by the team and future plans.

  8. SDF technology in location and navigation procedures: a survey of applications

    NASA Astrophysics Data System (ADS)

    Kelner, Jan M.; Ziółkowski, Cezary

    2017-04-01

    The basis for development the Doppler location method, also called the signal Doppler frequency (SDF) method or technology is the analytical solution of the wave equation for a mobile source. This paper presents an overview of the simulations, numerical analysis and empirical studies of the possibilities and the range of SDF method applications. In the paper, the various applications from numerous publications are collected and described. They mainly focus on the use of SDF method in: emitter positioning, electronic warfare, crisis management, search and rescue, navigation. The developed method is characterized by an innovative, unique property among other location methods, because it allows the simultaneous location of the many radio emitters. Moreover, this is the first method based on the Doppler effect, which allows positioning of transmitters, using a single mobile platform. In the paper, the results of the using SDF method by the other teams are also presented.

  9. Online Experiential Education for Technological Entrepreneurs

    ERIC Educational Resources Information Center

    Ermolovich, Thomas R.

    2011-01-01

    Technological Entrepreneurship is both an art and a science. As such, the education of a technological entrepreneur requires both an academic and an experiential component. One form of experiential education is creating real new ventures with student teams. When these ventures are created in an online modality, students work in virtual teams and…

  10. Virtual Team Effectiveness: An Empirical Examination of the Use of Communication Technologies on Trust and Virtual Team Performance

    ERIC Educational Resources Information Center

    Thomas, Valerie Brown

    2010-01-01

    Ubiquitous technology and agile organizational structures have enabled a strategic response to increasingly competitive, complex, and unpredictable challenges faced by many organizations. Using cyberinfrastructure, which is primarily the network of information, computers, communication technologies, and people, traditional organizations have…

  11. Project HealthDesign: enhancing action through information.

    PubMed

    Brennan, Patricia Flatley; Casper, Gail; Downs, Stephen; Aulahk, Veenu

    2009-01-01

    Project HealthDesign is a country-wide initiative in the United States designed to stimulate innovation in personal health records (PHRs). Nine grantee teams engaged in an 18-month long design and prototyping process. Two teams addressed the needs of children and adolescents; three created novel approaches to help adults prevent or manage metabolic syndrome; three groups employed interface innovations to assist patients with chronic care management and one team devised a novel calendaring system to assist patients undergoing complex medical/surgical treatments to integrate care processes into their daily lives. These projects not only included development and testing of novel personal health records applications, but also served as the starting point to specify and implement a common technical core platform. The project advanced PHR development in two key ways: intensive user-centered design and a development architecture that separates applications of PHRs from the infrastructure that supports them. The initiative also allowed systematic investigation of significant ethical, legal and social issues, including how privacy considerations are changed when information technology innovations are used in the home and the rebalancing of the authority structure of health care decision making when patient-centered approaches guide the design of PHRs.

  12. 15 CFR 270.103 - Publication in the Federal Register.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Establishment and Deployment of Teams § 270.103 Publication in the... of each Team. ...

  13. 15 CFR 270.103 - Publication in the Federal Register.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Establishment and Deployment of Teams § 270.103 Publication in the... of each Team. ...

  14. 15 CFR 270.103 - Publication in the Federal Register.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Establishment and Deployment of Teams § 270.103 Publication in the... of each Team. ...

  15. 15 CFR 270.103 - Publication in the Federal Register.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Establishment and Deployment of Teams § 270.103 Publication in the... of each Team. ...

  16. 15 CFR 270.103 - Publication in the Federal Register.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Establishment and Deployment of Teams § 270.103 Publication in the... of each Team. ...

  17. A Conceptual Measurement Model for eHealth Readiness: a Team Based Perspective

    PubMed Central

    Phillips, James; Poon, Simon K.; Yu, Dan; Lam, Mary; Hines, Monique; Brunner, Melissa; Power, Emma; Keep, Melanie; Shaw, Tim; Togher, Leanne

    2017-01-01

    Despite the shift towards collaborative healthcare and the increase in the use of eHealth technologies, there does not currently exist a model for the measurement of eHealth readiness in interdisciplinary healthcare teams. This research aims to address this gap in the literature through the development of a three phase methodology incorporating qualitative and quantitative methods. We propose a conceptual measurement model consisting of operationalized themes affecting readiness across four factors: (i) Organizational Capabilities, (ii) Team Capabilities, (iii) Patient Capabilities, and (iv) Technology Capabilities. The creation of this model will allow for the measurement of the readiness of interdisciplinary healthcare teams to use eHealth technologies to improve patient outcomes. PMID:29854207

  18. Globe Teachers Guide and Photographic Data on the Web

    NASA Technical Reports Server (NTRS)

    Kowal, Dan

    2004-01-01

    The task of managing the GLOBE Online Teacher s Guide during this time period focused on transforming the technology behind the delivery system of this document. The web application transformed from a flat file retrieval system to a dynamic database access approach. The new methodology utilizes Java Server Pages (JSP) on the front-end and an Oracle relational database on the backend. This new approach allows users of the web site, mainly teachers, to access content efficiently by grade level and/or by investigation or educational concept area. Moreover, teachers can gain easier access to data sheets and lab and field guides. The new online guide also included updated content for all GLOBE protocols. The GLOBE web management team was given documentation for maintaining the new application. Instructions for modifying the JSP templates and managing database content were included in this document. It was delivered to the team by the end of October, 2003. The National Geophysical Data Center (NGDC) continued to manage the school study site photos on the GLOBE website. 333 study site photo images were added to the GLOBE database and posted on the web during this same time period for 64 schools. Documentation for processing study site photos was also delivered to the new GLOBE web management team. Lastly, assistance was provided in transferring reference applications such as the Cloud and LandSat quizzes and Earth Systems Online Poster from NGDC servers to GLOBE servers along with documentation for maintaining these applications.

  19. Nutrient and Sediment Reductions from Algal Flow-Way Technologies: Recommendations to the Chesapeake Bay Program's Water Quality Goal Implementation Team from the Algal Flow-Way Technologies BMP Expert Panel

    USDA-ARS?s Scientific Manuscript database

    The Chesapeake Stormwater Network hosted a workshop on July, 2012 to discuss the potential nutrient reductions from emerging stormwater technologies including algal flow-way technologies (AFTs). Workshop participants recommended the Chesapeake Bay Program’s Water Quality Goal Implementation Team(WQ...

  20. Team Problem Solving Strategies with a Survey of These Methods Used by Faculty Members in Engineering Technology

    ERIC Educational Resources Information Center

    Marcus, Michael L.; Winters, Dixie L.

    2004-01-01

    Students from science, engineering, and technology programs should be able to work together as members of project teams to find solutions to technical problems. The exercise in this paper describes the methods actually used by a project team from a Biomedical Instrumentation Corporation in which scientists, technicians, and engineers from various…

  1. Piloting a Dispersed and Inter-Professional Lesson Study Using Technology to Link Team Members at a Distance

    ERIC Educational Resources Information Center

    Koutsouris, George; Norwich, Brahm; Fujita, Taro; Ralph, Thomas; Adlam, Anna; Milton, Fraser

    2017-01-01

    This article presents an evaluation of distance technology used in a novel Lesson Study (LS) approach involving a dispersed LS team for inter-professional purposes. A typical LS model with only school teachers as team members was modified by including university-based lecturers with the school-based teachers, using video-conferencing and online…

  2. Virtual Team Meetings: Reflections on a Class Exercise Exploring Technology Choice

    ERIC Educational Resources Information Center

    Bull Schaefer, Rebecca A.; Erskine, Laura

    2012-01-01

    Students find that choosing the appropriate technology for a virtual team meeting is not as simple as it first appears. The authors describe a class exercise used to demonstrate the benefits and drawbacks of using virtual team meetings by requiring students to replace a face-to-face meeting with a virtual meeting. The exercise challenged students'…

  3. What's Next in Complex Networks? Capturing the Concept of Attacking Play in Invasive Team Sports.

    PubMed

    Ramos, João; Lopes, Rui J; Araújo, Duarte

    2018-01-01

    The evolution of performance analysis within sports sciences is tied to technology development and practitioner demands. However, how individual and collective patterns self-organize and interact in invasive team sports remains elusive. Social network analysis has been recently proposed to resolve some aspects of this problem, and has proven successful in capturing collective features resulting from the interactions between team members as well as a powerful communication tool. Despite these advances, some fundamental team sports concepts such as an attacking play have not been properly captured by the more common applications of social network analysis to team sports performance. In this article, we propose a novel approach to team sports performance centered on sport concepts, namely that of an attacking play. Network theory and tools including temporal and bipartite or multilayered networks were used to capture this concept. We put forward eight questions directly related to team performance to discuss how common pitfalls in the use of network tools for capturing sports concepts can be avoided. Some answers are advanced in an attempt to be more precise in the description of team dynamics and to uncover other metrics directly applied to sport concepts, such as the structure and dynamics of attacking plays. Finally, we propose that, at this stage of knowledge, it may be advantageous to build up from fundamental sport concepts toward complex network theory and tools, and not the other way around.

  4. Water for electricity in India: A multi-model study of future challenges and linkages to climate change mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srinivasan, Shweta; Kholod, Nazar; Chaturvedi, Vaibhav

    This paper provides projections of water withdrawals and consumption for electricity generation in India through 2050. Based on the results from five energy-economic modeling teams, the paper explores the implications of economic growth, power plant cooling policies, and electricity CO2 emissions reductions on water withdrawals and consumption. To isolate modeling differences, the five teams used harmonized assumptions regarding economic and population growth, the distribution of power plants by cooling technologies, and withdrawals and consumption intensities. The results demonstrate the different but potentially complementary implications of cooling technology policies and efforts to reduce CO2 emissions. The application of closed-loop cooling technologiesmore » substantially reduces water withdrawals but increases consumption. The water implications of CO2 emissions reductions, depend critically on the approach to these reductions. Focusing on wind and solar power reduces consumption and withdrawals; a focus on nuclear power increases both; and a focus on hydroelectric power could increase consumptive losses through evaporation.« less

  5. Hollow Retroreflectors Offer Solid Benefits

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A technician who lead a successful team of scientists, engineers, and other technicians in the design, fabrication, and characterization of cryogenic retroreflectors for the NASA Cassini/Composite Infrared Spectrometer (CIRS) mission to Saturn, developed a hollow retroreflector technology while working at NASA Goddard Space Flight Center. With 16 years of NASA experience, the technician teamed up with another NASA colleague and formed PROSystems, Inc., of Sharpsburg, Maryland, to provide the optics community with an alternative source for precision hollow retroreflectors. The company's hollow retroreflectors are front surface glass substrates assembled to provide many advantages over existing hollow retroreflectors and solid glass retroreflectors. Previous to this new technology, some companies chose not to use hollow retroreflectors due to large seam widths and loss of signal. The "tongue and groove" facet design of PROSystems's retroreflector allows for an extremely small seam width of .001 inches. Feedback from users is very positive regarding this characteristic. Most of PROSystems's primary customers mount the hollow retroreflectors in chrome steel balls for laser tracker targets in applications such as automobile manufacturing and spacecraft assembly.

  6. Encouraging Data Use in the Classroom-DLESE Workshop Evaluation Results

    NASA Astrophysics Data System (ADS)

    Lynds, S. E.; Buhr, S. M.; Ledley, T. S.

    2005-12-01

    For the last two years, the Data Services Team of the Digital Library for Earth Systems Education (DLESE) has offered annual workshops, bringing scientists, technology specialists, and education professionals together to develop ways of using scientific data in education. Teams comprised of representatives from each of five professional roles (scientist, curriculum developer, data provider, teacher, tool developer) worked on developing online educational units of the Earth Exploration Toolbook (EET--http://serc.carleton.edu/eet/). Workshop evaluation projects elicited a large amount of feedback from participants at both workshops. Consistently, the attendees most highly valued the opportunity to network with those of other professional roles and to collaborate on a real-world education project. Technology and science specialists emphasized their desire for a greater understanding of practical applications for scientific data in the classroom and what educators need for successful curricula. The evaluation project also revealed similarities in the limitations that many attendees reported in using online data. Technological barriers such as data format, bandwidth limitations, and proprietary data were all mentioned by participants regardless of professional role. This talk will discuss the barriers to and advantages of collaborations between scientists, technology specialists, and educators and the potential for this format to result in data-rich curriculum elements.

  7. Final Technical Report. Project Boeing SGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Thomas E.

    Boeing and its partner, PJM Interconnection, teamed to bring advanced “defense-grade” technologies for cyber security to the US regional power grid through demonstration in PJM’s energy management environment. Under this cooperative project with the Department of Energy, Boeing and PJM have developed and demonstrated a host of technologies specifically tailored to the needs of PJM and the electric sector as a whole. The team has demonstrated to the energy industry a combination of processes, techniques and technologies that have been successfully implemented in the commercial, defense, and intelligence communities to identify, mitigate and continuously monitor the cyber security of criticalmore » systems. Guided by the results of a Cyber Security Risk-Based Assessment completed in Phase I, the Boeing-PJM team has completed multiple iterations through the Phase II Development and Phase III Deployment phases. Multiple cyber security solutions have been completed across a variety of controls including: Application Security, Enhanced Malware Detection, Security Incident and Event Management (SIEM) Optimization, Continuous Vulnerability Monitoring, SCADA Monitoring/Intrusion Detection, Operational Resiliency, Cyber Range simulations and hands on cyber security personnel training. All of the developed and demonstrated solutions are suitable for replication across the electric sector and/or the energy sector as a whole. Benefits identified include; Improved malware and intrusion detection capability on critical SCADA networks including behavioral-based alerts resulting in improved zero-day threat protection; Improved Security Incident and Event Management system resulting in better threat visibility, thus increasing the likelihood of detecting a serious event; Improved malware detection and zero-day threat response capability; Improved ability to systematically evaluate and secure in house and vendor sourced software applications; Improved ability to continuously monitor and maintain secure configuration of network devices resulting in reduced vulnerabilities for potential exploitation; Improved overall cyber security situational awareness through the integration of multiple discrete security technologies into a single cyber security reporting console; Improved ability to maintain the resiliency of critical systems in the face of a targeted cyber attack of other significant event; Improved ability to model complex networks for penetration testing and advanced training of cyber security personnel« less

  8. Challenges to effective crisis management: using information and communication technologies to coordinate emergency medical services and emergency department teams.

    PubMed

    Reddy, Madhu C; Paul, Sharoda A; Abraham, Joanna; McNeese, Michael; DeFlitch, Christopher; Yen, John

    2009-04-01

    The purpose of this study is to identify the major challenges to coordination between emergency department (ED) teams and emergency medical services (EMS) teams. We conducted a series of focus groups involving both ED and EMS team members using a crisis scenario as the basis of the focus group discussion. We also collected organizational workflow data. We identified three major challenges to coordination between ED and EMS teams including ineffectiveness of current information and communication technologies, lack of common ground, and breakdowns in information flow. The three challenges highlight the importance of designing systems from socio-technical perspective. In particular, these inter-team coordination systems must support socio-technical issues such as awareness, context, and workflow between the two teams.

  9. Firefly: embracing future web technologies

    NASA Astrophysics Data System (ADS)

    Roby, W.; Wu, X.; Goldina, T.; Joliet, E.; Ly, L.; Mi, W.; Wang, C.; Zhang, Lijun; Ciardi, D.; Dubois-Felsmann, G.

    2016-07-01

    At IPAC/Caltech, we have developed the Firefly web archive and visualization system. Used in production for the last eight years in many missions, Firefly gives the scientist significant capabilities to study data. Firefly provided the first completely web based FITS viewer as well as a growing set of tabular and plotting visualizers. Further, it will be used for the science user interface of the LSST telescope which goes online in 2021. Firefly must meet the needs of archive access and visualization for the 2021 LSST telescope and must serve astronomers beyond the year 2030. Recently, our team has faced the fact that the technology behind Firefly software was becoming obsolete. We were searching for ways to utilize the current breakthroughs in maintaining stability, testability, speed, and reliability of large web applications, which Firefly exemplifies. In the last year, we have ported the Firefly to cutting edge web technologies. Embarking on this massive overhaul is no small feat to say the least. Choosing the technologies that will maintain a forward trajectory in a future development project is always hard and often overwhelming. When a team must port 150,000 lines of code for a production-level product there is little room to make poor choices. This paper will give an overview of the most modern web technologies and lessons learned in our conversion from GWT based system to React/Redux based system.

  10. Including natural systems into the system engineering process: benefits to spaceflight and beyond

    NASA Astrophysics Data System (ADS)

    Studor, George

    2014-03-01

    How did we get to the point where we don't have time to be inspired by the wonders of Nature? Our office walls, homes and city streets are so plain that even when we do escape to a retreat with nature all around us, we may be blind to its magnificence. Yet there are many who have applied what can be known of natural systems (NS) to create practical solutions, but often definite applications for them are lacking. Mimicry of natural systems is not only more possible than ever before, but the education and research programs in many major universities are churning out graduates with a real appreciation for Nature's complex integrated systems. What if these skills and perspectives were employed in the teams of systems engineers and the technology developers that support them to help the teams think "outside-the-box" of manmade inventions? If systems engineers (SE) and technology developers regularly asked the question, "what can we learn from Nature that will help us?" as a part of their processes, they would discover another set of potential solutions. Biomimicry and knowledge of natural systems is exploding. What does this mean for systems engineering and technology? Some disciplines such as robotics and medical devices must consider nature constantly. Perhaps it's time for all technology developers and systems engineers to perceive natural systems experts as potential providers of the technologies they need.

  11. Fault Tolerance in ZigBee Wireless Sensor Networks

    NASA Technical Reports Server (NTRS)

    Alena, Richard; Gilstrap, Ray; Baldwin, Jarren; Stone, Thom; Wilson, Pete

    2011-01-01

    Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network standard are finding increasing use in the home automation and emerging smart energy markets. The network and application layers, based on the ZigBee 2007 PRO Standard, provide a convenient framework for component-based software that supports customer solutions from multiple vendors. This technology is supported by System-on-a-Chip solutions, resulting in extremely small and low-power nodes. The Wireless Connections in Space Project addresses the aerospace flight domain for both flight-critical and non-critical avionics. WSNs provide the inherent fault tolerance required for aerospace applications utilizing such technology. The team from Ames Research Center has developed techniques for assessing the fault tolerance of ZigBee WSNs challenged by radio frequency (RF) interference or WSN node failure.

  12. NASA Applied Sciences' DEVELOP Program Fosters the Next Generation of Earth Remote Sensing Scientists

    NASA Technical Reports Server (NTRS)

    Childs, Lauren M.; Brozen, Madeline W.; Gleason, Jonathan L.; Silcox, Tracey L.; Rea, Mimi; Holley, Sharon D.; Renneboog, Nathan; Underwood, Lauren W.; Ross, Kenton W.

    2009-01-01

    Satellite remote sensing technology and the science associated with the evaluation of the resulting data are constantly evolving. To meet the growing needs related to this industry, a team of personnel that understands the fundamental science as well as the scientific applications related to remote sensing is essential. Therefore, the workforce that will excel in this field requires individuals who not only have a strong academic background, but who also have practical hands-on experience with remotely sensed data, and have developed knowledge of its real-world applications. NASA's DEVELOP Program has played an integral role in fulfilling this need. DEVELOP is a NASA Science Mission Directorate Applied Sciences training and development program that extends the benefits of NASA Earth science research and technology to society.

  13. Overview of NASA Iodine Hall Thruster Propulsion System Development

    NASA Technical Reports Server (NTRS)

    Smith, Timothy D.; Kamhawi, Hani; Hickman, Tyler; Haag, Thomas; Dankanich, John; Polzin, Kurt; Byrne, Lawrence; Szabo, James

    2016-01-01

    NASA is continuing to invest in advancing Hall thruster technologies for implementation in commercial and government missions. The most recent focus has been on increasing the power level for large-scale exploration applications. However, there has also been a similar push to examine applications of electric propulsion for small spacecraft in the range of 300 kg or less. There have been several recent iodine Hall propulsion system development activities performed by the team of the NASA Glenn Research Center, the NASA Marshall Space Flight Center, and Busek Co. Inc. In particular, the work focused on qualification of the Busek 200-W BHT-200-I and development of the 600-W BHT-600-I systems. This paper discusses the current status of iodine Hall propulsion system developments along with supporting technology development efforts.

  14. Analyzing petabytes of data with Hadoop

    ScienceCinema

    Hammerbacher, Jeff

    2018-05-14

    The open source Apache Hadoop project provides a powerful suite of tools for storing and analyzing petabytes of data using commodity hardware. After several years of production use inside of web companies like Yahoo! and Facebook and nearly a year of commercial support and development by Cloudera, the technology is spreading rapidly through other disciplines, from financial services and government to life sciences and high energy physics. The talk will motivate the design of Hadoop and discuss some key implementation details in depth. It will also cover the major subprojects in the Hadoop ecosystem, go over some example applications, highlight best practices for deploying Hadoop in your environment, discuss plans for the future of the technology, and provide pointers to the many resources available for learning more. In addition to providing more information about the Hadoop platform, a major goal of this talk is to begin a dialogue with the ATLAS research team on how the tools commonly used in their environment compare to Hadoop, and how Hadoop could improve better to serve the high energy physics community. Short Biography: Jeff Hammerbacher is Vice President of Products and Chief Scientist at Cloudera. Jeff was an Entrepreneur in Residence at Accel Partners immediately prior to founding Cloudera. Before Accel, he conceived, built, and led the Data team at Facebook. The Data team was responsible for driving many of the applications of statistics and machine learning at Facebook, as well as building out the infrastructure to support these tasks for massive data sets. The team produced two open source projects: Hive, a system for offline analysis built above Hadoop, and Cassandra, a structured storage system on a P2P network. Before joining Facebook, Jeff was a quantitative analyst on Wall Street. Jeff earned his Bachelor's Degree in Mathematics from Harvard University and recently served as contributing editor to the book "Beautiful Data", published by O'Reilly in July 2009.

  15. Analyzing petabytes of data with Hadoop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammerbacher, Jeff

    The open source Apache Hadoop project provides a powerful suite of tools for storing and analyzing petabytes of data using commodity hardware. After several years of production use inside of web companies like Yahoo! and Facebook and nearly a year of commercial support and development by Cloudera, the technology is spreading rapidly through other disciplines, from financial services and government to life sciences and high energy physics. The talk will motivate the design of Hadoop and discuss some key implementation details in depth. It will also cover the major subprojects in the Hadoop ecosystem, go over some example applications, highlightmore » best practices for deploying Hadoop in your environment, discuss plans for the future of the technology, and provide pointers to the many resources available for learning more. In addition to providing more information about the Hadoop platform, a major goal of this talk is to begin a dialogue with the ATLAS research team on how the tools commonly used in their environment compare to Hadoop, and how Hadoop could improve better to serve the high energy physics community. Short Biography: Jeff Hammerbacher is Vice President of Products and Chief Scientist at Cloudera. Jeff was an Entrepreneur in Residence at Accel Partners immediately prior to founding Cloudera. Before Accel, he conceived, built, and led the Data team at Facebook. The Data team was responsible for driving many of the applications of statistics and machine learning at Facebook, as well as building out the infrastructure to support these tasks for massive data sets. The team produced two open source projects: Hive, a system for offline analysis built above Hadoop, and Cassandra, a structured storage system on a P2P network. Before joining Facebook, Jeff was a quantitative analyst on Wall Street. Jeff earned his Bachelor's Degree in Mathematics from Harvard University and recently served as contributing editor to the book "Beautiful Data", published by O'Reilly in July 2009.« less

  16. High Current Density, Long Life Cathodes for High Power RF Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ives, Robert Lawrence; Collins, George; Falce, Lou

    2014-01-22

    This program was tasked with improving the quality and expanding applications for Controlled Porosity Reservoir (CPR) cathodes. Calabazas Creek Research, Inc. (CCR) initially developed CPR cathodes on a DOE-funded SBIR program to improve cathodes for magnetron injection guns. Subsequent funding was received from the Defense Advanced Research Projects Agency. The program developed design requirements for implementation of the technology into high current density cathodes for high frequency applications. During Phase I of this program, CCR was awarded the prestigious 2011 R&D100 award for this technology. Subsequently, the technology was presented at numerous technical conferences. A patent was issued for themore » technology in 2009. These cathodes are now marketed by Semicon Associates, Inc. in Lexington, KY. They are the world’s largest producer of cathodes for vacuum electron devices. During this program, CCR teamed with Semicon Associates, Inc. and Ron Witherspoon, Inc. to improve the fabrication processes and expand applications for the cathodes. Specific fabrications issues included the quality of the wire winding that provides the basic structure and the sintering to bond the wires into a robust, cohesive structure. The program also developed improved techniques for integrating the resulting material into cathodes for electron guns.« less

  17. Lithium-Ion Batteries for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Surampudi, S.; Halpert, G.; Marsh, R. A.; James, R.

    1999-01-01

    This presentation reviews: (1) the goals and objectives, (2) the NASA and Airforce requirements, (3) the potential near term missions, (4) management approach, (5) the technical approach and (6) the program road map. The objectives of the program include: (1) develop high specific energy and long life lithium ion cells and smart batteries for aerospace and defense applications, (2) establish domestic production sources, and to demonstrate technological readiness for various missions. The management approach is to encourage the teaming of universities, R&D organizations, and battery manufacturing companies, to build on existing commercial and government technology, and to develop two sources for manufacturing cells and batteries. The technological approach includes: (1) develop advanced electrode materials and electrolytes to achieve improved low temperature performance and long cycle life, (2) optimize cell design to improve specific energy, cycle life and safety, (3) establish manufacturing processes to ensure predictable performance, (4) establish manufacturing processes to ensure predictable performance, (5) develop aerospace lithium ion cells in various AH sizes and voltages, (6) develop electronics for smart battery management, (7) develop a performance database required for various applications, and (8) demonstrate technology readiness for the various missions. Charts which review the requirements for the Li-ion battery development program are presented.

  18. Telemetry Monitoring and Display Using LabVIEW

    NASA Technical Reports Server (NTRS)

    Wells, George; Baroth, Edmund C.

    1993-01-01

    The Measurement Technology Center of the Instrumentation Section configures automated data acquisition systems to meet the diverse needs of JPL's experimental research community. These systems are based on personal computers or workstations (Apple, IBM/Compatible, Hewlett-Packard, and Sun Microsystems) and often include integrated data analysis, visualization and experiment control functions in addition to data acquisition capabilities. These integrated systems may include sensors, signal conditioning, data acquisition interface cards, software, and a user interface. Graphical programming is used to simplify configuration of such systems. Employment of a graphical programming language is the most important factor in enabling the implementation of data acquisition, analysis, display and visualization systems at low cost. Other important factors are the use of commercial software packages and off-the-shelf data acquisition hardware where possible. Understanding the experimenter's needs is also critical. An interactive approach to user interface construction and training of operators is also important. One application was created as a result of a competative effort between a graphical programming language team and a text-based C language programming team to verify the advantages of using a graphical programming language approach. With approximately eight weeks of funding over a period of three months, the text-based programming team accomplished about 10% of the basic requirements, while the Macintosh/LabVIEW team accomplished about 150%, having gone beyond the original requirements to simulate a telemetry stream and provide utility programs. This application verified that using graphical programming can significantly reduce software development time. As a result of this initial effort, additional follow-on work was awarded to the graphical programming team.

  19. Firing Room Remote Application Software Development & Swamp Works Laboratory Robot Software Development

    NASA Technical Reports Server (NTRS)

    Garcia, Janette

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is creating a way to send humans beyond low Earth orbit, and later to Mars. Kennedy Space Center (KSC) is working to make this possible by developing a Spaceport Command and Control System (SCCS) which will allow the launch of Space Launch System (SLS). This paper's focus is on the work performed by the author in her first and second part of the internship as a remote application software developer. During the first part of her internship, the author worked on the SCCS's software application layer by assisting multiple ground subsystems teams including Launch Accessories (LACC) and Environmental Control System (ECS) on the design, development, integration, and testing of remote control software applications. Then, on the second part of the internship, the author worked on the development of robot software at the Swamp Works Laboratory which is a research and technology development group which focuses on inventing new technology to help future In-Situ Resource Utilization (ISRU) missions.

  20. Technology as Teammate: Examining the Role of External Cognition in Support of Team Cognitive Processes

    PubMed Central

    Fiore, Stephen M.; Wiltshire, Travis J.

    2016-01-01

    In this paper we advance team theory by describing how cognition occurs across the distribution of members and the artifacts and technology that support their efforts. We draw from complementary theorizing coming out of cognitive engineering and cognitive science that views forms of cognition as external and extended and integrate this with theorizing on macrocognition in teams. Two frameworks are described that provide the groundwork for advancing theory and aid in the development of more precise measures for understanding team cognition via focus on artifacts and the technologies supporting their development and use. This includes distinctions between teamwork and taskwork and the notion of general and specific competencies from the organizational sciences along with the concepts of offloading and scaffolding from the cognitive sciences. This paper contributes to the team cognition literature along multiple lines. First, it aids theory development by synthesizing a broad set of perspectives on the varied forms of cognition emerging in complex collaborative contexts. Second, it supports research by providing diagnostic guidelines to study how artifacts are related to team cognition. Finally, it supports information systems designers by more precisely describing how to conceptualize team-supporting technology and artifacts. As such, it provides a means to more richly understand process and performance as it occurs within sociotechnical systems. Our overarching objective is to show how team cognition can both be more clearly conceptualized and more precisely measured by integrating theory from cognitive engineering and the cognitive and organizational sciences. PMID:27774074

  1. Technology as Teammate: Examining the Role of External Cognition in Support of Team Cognitive Processes.

    PubMed

    Fiore, Stephen M; Wiltshire, Travis J

    2016-01-01

    In this paper we advance team theory by describing how cognition occurs across the distribution of members and the artifacts and technology that support their efforts. We draw from complementary theorizing coming out of cognitive engineering and cognitive science that views forms of cognition as external and extended and integrate this with theorizing on macrocognition in teams. Two frameworks are described that provide the groundwork for advancing theory and aid in the development of more precise measures for understanding team cognition via focus on artifacts and the technologies supporting their development and use. This includes distinctions between teamwork and taskwork and the notion of general and specific competencies from the organizational sciences along with the concepts of offloading and scaffolding from the cognitive sciences. This paper contributes to the team cognition literature along multiple lines. First, it aids theory development by synthesizing a broad set of perspectives on the varied forms of cognition emerging in complex collaborative contexts. Second, it supports research by providing diagnostic guidelines to study how artifacts are related to team cognition. Finally, it supports information systems designers by more precisely describing how to conceptualize team-supporting technology and artifacts. As such, it provides a means to more richly understand process and performance as it occurs within sociotechnical systems. Our overarching objective is to show how team cognition can both be more clearly conceptualized and more precisely measured by integrating theory from cognitive engineering and the cognitive and organizational sciences.

  2. Enabling Science and Technology Research Teams: A Breadmaking Metaphor

    ERIC Educational Resources Information Center

    Pennington, Deana

    2010-01-01

    Anyone who has been involved with a cross-disciplinary team that combines scientists and information technology specialists knows just how tough it can be to move these efforts forward. Decades of experience point to the transformative potential of technology-enabled science efforts, and the success stories offer hope for future efforts. But for…

  3. Mathematics Education & Digital Technologies: Facing the Challenge of Networking European Research Teams

    ERIC Educational Resources Information Center

    Bottino, Rosa Maria; Kynigos, Chronis

    2009-01-01

    This paper introduces the "IJCML" Special Issue dedicated to digital technologies and mathematics education and, in particular, to the work performed by the European Research Team TELMA (Technology Enhanced Learning in Mathematics). TELMA was one of the initiatives of the Kaleidoscope Network of Excellence established by the European…

  4. Tech Team: Student Technology Assistants in the Elementary & Middle School.

    ERIC Educational Resources Information Center

    Peto, Erica; Onishi, Esther; Irish, Barbara

    A step-by-step manual of worksheets, templates, forms and examples, this comprehensive handbook is designed for librarians, classroom teachers, and technology specialists who are interested in training students to be technology aides. The "Tech Team" program not only systematically outlines how one organizes and manages a support program, but…

  5. ARC-1976-AC76-0632

    NASA Image and Video Library

    1976-04-01

    Cessna 402B (NASA-719) on the Ramp. An integrated digital flight management, guidance and navigation system was developed by an industry team from Honeywell and King Radio under the direction of George Callas and Dallas Denery and demonstrated on a Cessna 402B for general aviation applications. Note: Used in publication in Flight Research at Ames; 57 Years of Development and Validation of Aeronautical Technology NASA SP-1998-3300 fig. 86 - ref. 90

  6. Manufacturing process applications team (MATeam). [NASA/industry relations

    NASA Technical Reports Server (NTRS)

    Bangs, E. R.

    1978-01-01

    Forty additional statements were added to the list of 150 problem/opportunity statements identifying possibilities for transfer of NASA technology to various manufacturing industries. Selected statements that are considered to have a high potential for transfer in the 1978 program year are presented in the form of goals and milestones. The transfer of a flux used in the stud welding of aluminum is reported. Candidate RTOP programs are identified.

  7. Nickel-hydrogen batteries from Intelsat 5 to space station

    NASA Technical Reports Server (NTRS)

    Vanommering, G.; Applewhite, A. Z.

    1986-01-01

    The heritage of the Ni-H2 technology that makes the space station application feasible is discussed. It also describes a design for a potential space station Ni-H2 battery system. Specific design values presented here were developed by Ford Aerospace as part of the Rocketdyne team effort on the Phase B Definition and Preliminary Design of the Space Station Power System in support of NASA Lewis Research Center.

  8. KENNEDY SPACE CENTER, FLA. - Research team members work with acoustic cable during underwater acoustic research being conducted in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.

    NASA Image and Video Library

    2003-08-18

    KENNEDY SPACE CENTER, FLA. - Research team members work with acoustic cable during underwater acoustic research being conducted in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.

  9. Assessing advantages and barriers to telemedicine adoption in the practice setting: A MyCareTeam(TM) exemplar.

    PubMed

    L'Esperance, Shaun T; Perry, Donna J

    2016-06-01

    Telemedicine is an evolving field that holds great potential to improve patient outcomes. The National Organization of Nurse Practitioner Faculties core competencies now require all nurse practitioners (NPs) to be competent utilizing telemedicine to address various patient and healthcare system needs. While telemedicine offers advantages to patient care, adoption of new technologies can be challenging. An assessment of perceived advantages and barriers to MyCareTeam, an online diabetes management system, was conducted at an adult diabetes clinic. Two survey questionnaires were developed based on the Diffusion of Innovations (DOI) theory. The surveys were administered to patients in the clinic waiting room and sent to all clinical staff via an e-mail link. The findings of this project suggested a novel way to classify patients with regard to their use of the technology with implications for practice. Recommendations include outreach to enhance knowledge and awareness of MyCareTeam, reinforcing the full scope of the system, and improved technical support. DOI theory is a framework that may be utilized by NPs as a tool for assessing advantages and barriers to telemedicine applications in the practice setting in order to identify strategies to promote adoption and use. ©2015 American Association of Nurse Practitioners.

  10. Analysis of Software Development Methodologies to Build Safety Software Applications for the SATEX-II: A Mexican Experimental Satellite

    NASA Astrophysics Data System (ADS)

    Aguilar Cisneros, Jorge; Vargas Martinez, Hector; Pedroza Melendez, Alejandro; Alonso Arevalo, Miguel

    2013-09-01

    Mexico is a country where the experience to build software for satellite applications is beginning. This is a delicate situation because in the near future we will need to develop software for the SATEX-II (Mexican Experimental Satellite). SATEX- II is a SOMECyTA's project (the Mexican Society of Aerospace Science and Technology). We have experienced applying software development methodologies, like TSP (Team Software Process) and SCRUM in other areas. Then, we analyzed these methodologies and we concluded: these can be applied to develop software for the SATEX-II, also, we supported these methodologies with SSP-05-0 Standard in particular with ESA PSS-05-11. Our analysis was focusing on main characteristics of each methodology and how these methodologies could be used with the ESA PSS 05-0 Standards. Our outcomes, in general, may be used by teams who need to build small satellites, but, in particular, these are going to be used when we will build the on board software applications for the SATEX-II.

  11. Aerokats and Rover

    NASA Astrophysics Data System (ADS)

    Bland, G.; Miles, T.; Nagchaudhuri, A.; Henry, A.; Coronado, P.; Smith, S.; Bydlowski, D.; Gaines, J.; Hartman, C.

    2015-12-01

    Two novel tools are being developed for team-based environmental and science observations suitable for use in Middle School through Undergraduate settings. Partnerships with NASA's Goddard Space Flight Center are critical for this work, and the concepts and practices are aimed at providing affordable and easy-to-field hardware to the classroom. The Advanced Earth Research Observation Kites and Atmospheric and Terrestrial Sensors (AEROKATS) system brings affordable and easy-to-field remote sensing and in-situ measurements within reach for local-scale Earth observations and data gathering. Using commercial kites, a wide variety of sensors, and a new NASA technology, AEROKATS offers a quick-to-learn method to gather airborne remote sensing and in-situ data for classroom analysis. The Remotely Operated Vehicle for Education and Research (ROVER) project introduces team building for mission operations and research, using modern technologies for exploring aquatic environments. ROVER projects use hobby-type radio control hardware and common in-water instrumentation, to highlight the numerous roles and responsibilities needed in real-world research missions, such as technology, operations, and science disciplines. NASA GSFC's partnerships have enabled the fielding of several AEROKATS and ROVER prototypes, and results suggest application of these methods is feasible and engaging.

  12. Laser Programs, the first 25 years, 1972-1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, E.M.

    1998-03-04

    Welcome to Laser Programs. I am pleased that you can share in the excitement of 25 years of history since we began as a small program of 125 people to our current status as a world premier laser and applied science research team of over 1700 members. It is fitting that this program, which was founded on the dream of developing inertial confinement fusion technology, should celebrate this anniversary the same year that the ground is broken for the National Ignition Facility (NIF). Also at the same time, we are feeling the excitement of moving forward the Atomic Vapor Lasermore » Isotope Separation (AVLIS) technology toward private sector use and developing many alternate scientific applications and technologies derived from our core programs. It is through the hard work of many dedicated scientists, engineers, technicians, and administrative team members that we have been able to accomplish the remarkable internationally recognized achievements highlighted here. I hope this brochure will help you enjoy the opportunity to share in the celebration and pride of our scientific accomplishments; state-of-the-art facilities; and diligent, dedicated people that together make our Laser Programs and Lawrence Livermore National Laboratory the best in the world.« less

  13. 2013 R&D 100 Award: New tech could mean more power for fiber lasers

    ScienceCinema

    Dawson, Jay

    2018-01-16

    An LLNL team of six physicists has developed a new technology that is a stepping stone to enable some of the limitations on high-power fiber lasers to be overcome. Their technology, dubbed "Efficient Mode-Converters for High-Power Fiber Amplifiers," allows the power of fiber lasers to be increased while maintaining high beam quality. Currently, fiber lasers are used in machining, on factory floors and in a number of defense applications and can produce tens of kilowatts of power.The conventional fiber laser design features a circular core and has fundamental limitations that make it impractical to allow higher laser power unless the core area is increased. LLNL researchers have pioneered a design to increase the laser's core area along the axis of the ribbon fiber. Their design makes it difficult to use a conventional laser beam, so the LLNL team converted the beam into a profile that propagates into the ribbon fiber and is converted back once it is amplified. The use of this LLNL technology will permit the construction of higher power lasers for lower costs and increase the power of fiber lasers from tens of kilowatts of power to about 100 kilowatts and potentially even higher.

  14. Mount Sinai leverages smartphone technology, aiming to boost care, coordination of ED patients while also trimming costs.

    PubMed

    2015-05-01

    Mount Sinai Hospital in New York, NY, is using smartphone technology to enhance follow-up calls to senior patients who have visited the ED, and to help provide acute-level care to select patients in their own homes. Investigators are hoping to show that these approaches can improve care and coordination while trimming costs, and they expect that patients will approve of these new approaches as well. While senior patients are still in the ED, nurse coordinators will work with them to load a HIPAA-compliant application to their smartphones so they can conduct face-to-face follow-up calls that meet HIPAA standards. Nurses say the face-to-face communications enhance their ability to assess how patients are doing following their ED visit. The hospital is also testing a program that enables some ED patients who meet inpatient criteria to receive this care in the home setting through the use of a mobile acute care team (MACT). In the case of emergencies, the MACT team relies on community paramedics who will visit the patients' homes and provide care under the direction of MACT physicians who are linked in to these visits via smartphone technology.

  15. Advanced processing for high-bandwidth sensor systems

    NASA Astrophysics Data System (ADS)

    Szymanski, John J.; Blain, Phil C.; Bloch, Jeffrey J.; Brislawn, Christopher M.; Brumby, Steven P.; Cafferty, Maureen M.; Dunham, Mark E.; Frigo, Janette R.; Gokhale, Maya; Harvey, Neal R.; Kenyon, Garrett; Kim, Won-Ha; Layne, J.; Lavenier, Dominique D.; McCabe, Kevin P.; Mitchell, Melanie; Moore, Kurt R.; Perkins, Simon J.; Porter, Reid B.; Robinson, S.; Salazar, Alfonso; Theiler, James P.; Young, Aaron C.

    2000-11-01

    Compute performance and algorithm design are key problems of image processing and scientific computing in general. For example, imaging spectrometers are capable of producing data in hundreds of spectral bands with millions of pixels. These data sets show great promise for remote sensing applications, but require new and computationally intensive processing. The goal of the Deployable Adaptive Processing Systems (DAPS) project at Los Alamos National Laboratory is to develop advanced processing hardware and algorithms for high-bandwidth sensor applications. The project has produced electronics for processing multi- and hyper-spectral sensor data, as well as LIDAR data, while employing processing elements using a variety of technologies. The project team is currently working on reconfigurable computing technology and advanced feature extraction techniques, with an emphasis on their application to image and RF signal processing. This paper presents reconfigurable computing technology and advanced feature extraction algorithm work and their application to multi- and hyperspectral image processing. Related projects on genetic algorithms as applied to image processing will be introduced, as will the collaboration between the DAPS project and the DARPA Adaptive Computing Systems program. Further details are presented in other talks during this conference and in other conferences taking place during this symposium.

  16. Systematic development of technical textiles

    NASA Astrophysics Data System (ADS)

    Beer, M.; Schrank, V.; Gloy, Y.-S.; Gries, T.

    2016-07-01

    Technical textiles are used in various fields of applications, ranging from small scale (e.g. medical applications) to large scale products (e.g. aerospace applications). The development of new products is often complex and time consuming, due to multiple interacting parameters. These interacting parameters are production process related and also a result of the textile structure and used material. A huge number of iteration steps are necessary to adjust the process parameter to finalize the new fabric structure. A design method is developed to support the systematic development of technical textiles and to reduce iteration steps. The design method is subdivided into six steps, starting from the identification of the requirements. The fabric characteristics vary depending on the field of application. If possible, benchmarks are tested. A suitable fabric production technology needs to be selected. The aim of the method is to support a development team within the technology selection without restricting the textile developer. After a suitable technology is selected, the transformation and correlation between input and output parameters follows. This generates the information for the production of the structure. Afterwards, the first prototype can be produced and tested. The resulting characteristics are compared with the initial product requirements.

  17. Ambient Pressure Test Rig Developed for Testing Oil-Free Bearings in Alternate Gases and Variable Pressures

    NASA Technical Reports Server (NTRS)

    Bauman, Steven W.

    1990-01-01

    The Oil-Free Turbomachinery research team at the NASA Glenn Research Center is conducting research to develop turbomachinery systems that utilize high-speed, high temperature foil (air) bearings that do not require an oil lubrication system. Such systems combine the most advanced foil bearings from industry with NASA-developed hightemperature solid-lubricant technology. New applications are being pursued, such as Oil- Free turbochargers, auxiliary power units, and turbine propulsion systems for aircraft. An Oil-Free business jet engine, for example, would be simpler, lighter, more reliable, and less costly to purchase and maintain than current engines. Another application is NASA's Prometheus mission, where gas bearings will be required for the closed-cycle turbine based power-conversion system of a nuclear power generator for deep space. To support these applications, Glenn's Oil-Free Turbomachinery research team developed the Ambient Pressure Test Rig. Using this facility, researchers can load and heat a bearing and evaluate its performance with reduced air pressure to simulate high altitude conditions. For the nuclear application, the test chamber can be purged with gases such as helium to study foil gas bearing operation in working fluids other than air.

  18. 15 CFR 270.104 - Size and composition of a Team.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 1 2012-01-01 2012-01-01 false Size and composition of a Team. 270... NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Establishment and Deployment of Teams § 270.104 Size and composition of...

  19. 15 CFR 270.104 - Size and composition of a Team.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 1 2013-01-01 2013-01-01 false Size and composition of a Team. 270... NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Establishment and Deployment of Teams § 270.104 Size and composition of...

  20. 15 CFR 270.104 - Size and composition of a Team.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 1 2011-01-01 2011-01-01 false Size and composition of a Team. 270... NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Establishment and Deployment of Teams § 270.104 Size and composition of...

  1. 15 CFR 270.104 - Size and composition of a Team.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 1 2014-01-01 2014-01-01 false Size and composition of a Team. 270... NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Establishment and Deployment of Teams § 270.104 Size and composition of...

  2. Simulating the multi-disciplinary care team approach: Enhancing student understanding of anatomy through an ultrasound-anchored interprofessional session.

    PubMed

    Luetmer, Marianne T; Cloud, Beth A; Youdas, James W; Pawlina, Wojciech; Lachman, Nirusha

    2018-01-01

    Quality of healthcare delivery is dependent on collaboration between professional disciplines. Integrating opportunities for interprofessional learning in health science education programs prepares future clinicians to function as effective members of a multi-disciplinary care team. This study aimed to create a modified team-based learning (TBL) environment utilizing ultrasound technology during an interprofessional learning activity to enhance musculoskeletal anatomy knowledge of first year medical (MD) and physical therapy (PT) students. An ultrasound demonstration of structures of the upper limb was incorporated into the gross anatomy courses for first-year MD (n = 53) and PT (n = 28) students. Immediately before the learning experience, all students took an individual readiness assurance test (iRAT) based on clinical concepts regarding the assigned study material. Students observed while a physical medicine and rehabilitation physician demonstrated the use of ultrasound as a diagnostic and procedural tool for the shoulder and elbow. Following the demonstration, students worked within interprofessional teams (n = 14 teams, 5-6 students per team) to review the related anatomy on dissected specimens. At the end of the session, students worked within interprofessional teams to complete a collaborative clinical case-based multiple choice post-test. Team scores were compared to the mean individual score within each team with the Wilcoxon signed-rank test. Students scored higher on the collaborative post-test (95.2 ±10.2%) than on the iRAT (66.1 ± 13.9% for MD students and 76.2 ±14.2% for PT students, P < 0.0001). Results suggest that this interprofessional team activity facilitated an improved understanding and clinical application of anatomy. Anat Sci Educ 11: 94-99. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.

  3. Green Liquid Monopropellant Thruster

    NASA Technical Reports Server (NTRS)

    Joshi, Prakash B.

    2015-01-01

    Physical Sciences, Inc. (PSI), and Orbital Technologies Corporation (ORBITEC) are developing a unique chemical propulsion system for next-generation NASA science spacecraft and missions. The system is compact, lightweight, and can operate with high reliability over extended periods of time and under a wide range of thermal environments. The system uses a new storable, low-toxicity liquid monopropellant as its working fluid. In Phase I, the team demonstrated experimentally the critical ignition and combustion processes for the propellant and used the data to develop thruster design concepts. In Phase II, the team developed and demonstrated in the laboratory a proof-of-concept prototype thruster. A Phase III project is envisioned to develop a full-scale protoflight propulsion system applicable to a class of NASA missions.

  4. Introducing Current Technologies

    NASA Technical Reports Server (NTRS)

    Mitchell, Tiffany

    1995-01-01

    The objective of the study was a continuation of the 'technology push' activities that the Technology Transfer Team conducts at this time. It was my responsibility to research current technologies at Langley Research Center and find a commercial market for these technologies in the private industry. After locating a market for the technologies, a mailing package was put together which informed the companies of the benefits of NASA Langley's technologies. The mailing package included articles written about the technology, patent material, abstracts from technical papers, and one-pagers which were used at the Technology Opportunities Showcase (TOPS) exhibitions. The companies were encouraged to consult key team members for further information on the technologies.

  5. Small transport aircraft technology

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1983-01-01

    Information on commuter airline trends and aircraft developments is provided to upgrade the preliminary findings of a NASA-formed small transport aircraft technology (STAT) team, established to determine whether the agency's research and development programs could help commuter aircraft manufacturers solve technical problems related to passenger acceptance and use of 19- to 50-passenger aircraft. The results and conclusions of the full set of completed STAT studies are presented. These studies were performed by five airplane manufacturers, five engine manufacturers, and two propeller manufacturers. Those portions of NASA's overall aeronautics research and development programs which are applicable to commuter aircraft design are summarized. Areas of technology that might beneficially be expanded or initiated to aid the US commuter aircraft manufacturers in the evolution of improved aircraft for the market are suggested.

  6. Centralized Research Recruitment—Evolving a Local Clinical Research Recruitment Web Application to Better Meet User Needs

    PubMed Central

    Dwyer‐White, Molly; Doshi, Aalap; Hill, Mary; Pienta, Kenneth J.

    2011-01-01

    Abstract  Recruiting volunteers into clinical research remains a significant challenge for many clinical research study teams, thus the Michigan Institute for Clinical and Health Research (MICHR) at the University of Michigan developed UMClinicalStudies (http://www.UMClinicalStudies.org)—a Web application that links the community to a single gateway for clinical research. UMClinicalStudies (formerly named “Engage”) is an integral piece of MICHR’s efforts to increase clinical research participation in order to advance medical discoveries. Despite the initial success of the application, barriers to research participation remain, including the applications accessibility for potential research volunteers and study team members. In response, new initiatives were instigated to identify user needs, in order to broaden the ability to simultaneously assist researchers in recruitment activities, while also aiding potential volunteers in the exploration of and participation in clinical research opportunities. To do this, improvements to the interface and functionality were identified and implemented for both the public and the research audiences through extensive system analysis, and through the application of human computer interactivity processes, resulting in significant improvements in usability and ultimately research volunteerism, indicating that utilizing such technology is pivotal in reaching broader audiences for clinical trial participation. Clin Trans Sci 2011; Volume 4: 363–368 PMID:22029810

  7. Development, Qualification and Integration of the Optical Fiber Array Assemblies for the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Switzer, Robert; Chuska, Richard; LaRocca, Frank; Thomas, William Joe; Macmurphy, Shawn

    2008-01-01

    The NASA Goddard Fiber Optics Team in the Electrical Engineering Division of the Applied Engineering and Technology Directorate, designed, developed and integrated the space flight optical fiber array hardware for the Lunar Reconnaissance Orbiter (LRO). The two new assemblies that were designed and manufacturing at GSFC for the LRO exist in configurations that are unique in the world for the application of ranging and LIDAR. Described here is an account of the journey and the lessons learned from design to integration for the Lunar Orbiter Laser Altimeter and the Laser Ranging Application on the LRO.

  8. Regenerative Fuel Cell System Testbed Program for Government and Commercial Applications

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA Lewis Research Center's Electrochemical Technology Branch has led a multiagency effort to design, fabricate, and operate a regenerative fuel cell (RFC) system testbed. Key objectives of this program are to evaluate, characterize, and demonstrate fully integrated RFC's for space, military, and commercial applications. The Lewis-led team is implementing the program through a unique international coalition that encompasses both Government and industry participants. Construction of the 25-kW RFC testbed at the NASA facility at Edwards Air Force Base was completed in January 1995, and the system has been operational since that time.

  9. Recruiting and retaining mental health professionals to rural communities: an interdisciplinary course in Appalachia.

    PubMed

    Meyer, Deborah; Hamel-Lambert, Jane; Tice, Carolyn; Safran, Steven; Bolon, Douglas; Rose-Grippa, Kathleen

    2005-01-01

    Faculty from 5 disciplines (health administration, nursing, psychology, social work, and special education) collaborated to develop and teach a distance-learning course designed to encourage undergraduate and graduate students to seek mental health services employment in rural areas and to provide the skills, experience, and knowledge necessary for successful rural practice. The primary objectives of the course, developed after thorough review of the rural retention and recruitment literature, were to (1) enhance interdisciplinary team skills, (2) employ technology as a tool for mental health practitioners, and (3) enhance student understanding of Appalachian culture and rural mental health. Didactic instruction emphasized Appalachian culture, rural mental health, teamwork and communication, professional ethics, and technology. Students were introduced to videoconferencing, asynchronous and synchronous communication, and Internet search tools. Working in teams of 3 or 4, students grappled with professional and cultural issues plus team process as they worked through a hypothetical case of a sexually abused youngster. The course required participants to engage in a nontraditional manner by immersing students in Web-based teams. Student evaluations suggested that teaching facts or "content" about rural mental health and Appalachian culture was much easier than the "process" of using new technologies or working in teams. Given that the delivery of mental health care demands collaboration and teamwork and that rural practice relies increasingly more on the use of technology, our experience suggests that more team-based, technology-driven courses are needed to better prepare students for clinical practice.

  10. Predictors of Team Work Satisfaction

    ERIC Educational Resources Information Center

    Hamlyn-Harris, James H.; Hurst, Barbara J.; von Baggo, Karola; Bayley, Anthony J.

    2006-01-01

    The ability to work in teams is an attribute highly valued by employers of information technology (IT) graduates. For IT students to effectively engage in team work tasks, the process of working in teams should be satisfying for the students. This work explored whether university students who were involved in compulsory team work were satisfied…

  11. Learning Lessons from the X-37 Project

    NASA Technical Reports Server (NTRS)

    Turner, Susan; Spanyer, Karen

    2005-01-01

    The X-37 was planned as an automated vehicle capable of flight-testing new aerospace technologies in combined environments that are beyond the capability of existing ground or flight platforms. Flight demonstration with the X-37 architecture and configuration in relevant environments was planned to reduce the risk of developing launch vehicle technologies for sustainable, affordable exploration and other aerospace applications. Current plans are for the X-37 Approach and Landing Test Vehicle (ALTV) to be atmospheric tested in 2005 from Scaled Composite's White Knight carrier aircraft at up to 40,000 feet over California's Mojave Spaceport, with and turnaround maintenance performed. The fight Operations Control Center will conduct the mission, using a streamlined operations concept. Taxi-tow and captive-carry tests will be conducted prior to the atmospheric-test series. Sponsored by the Defense Advanced Research Projects Agency (DARPA) with NASA participation, technical objectives are to: (1) mature Computed Air Data System/Remote Pressure Sensor technology, (2) manage energy during Terminal Area Energy Management/Heading Alignment Cone maneuvers, and (3) validate the aerodatabase. The X-37 Project began in 1999 under a cooperative agreement as an element of NASA's Future X Program and transitioned to a NASA Research Announcement under the Space Launch Initiative. In mid-2004, NASA transferred ownership to DARPA, with its heritage of performing high-risk, high-payoff research and development. NASA contributes technical expertise, including risk analysis and system integration. The Boeing Company is the prime contractor, with nationwide suppliers. This recent partnership exemplifies the synergy attainable when NASA Centers, other Government agencies, and industry work together toward a common goal - contributing to the knowledge base for U.S. exploration and other aerospace endeavors. The X-37 team represents a range of space transportation disciplines - from engineering to management. Some members have been with the project since its inception. All have gained priceless experience during the design, manufacturing, and testing of the ALTV, as well as through developing advanced orbital flight technologies, such as state-of-the-art Thermal Protection Systems and hot structures. Throughout this process, the X-37 Project team captures lessons that are directly applicable to other such efforts. The upcoming ALTV flights offer another dimension of data and first-hand experience that will prove invaluable to those designing new generations of reusable spacecraft. And ongoing technology developments will expand the aerospace knowledge base. Delivering prototype hardware is always a risky proposition. During the course of the X-37 effort, the team has experienced many challenging opportunities, delivering significant accomplishments and learning numerous lessons in the process. The ability to manage the risk landscape is key to overcoming obstacles, especially technical hurdles that are encountered in progressing hardware from design to flight. The approach to managing risk under this partnership is evolving but, in general, the team allocates resources to reduce the likelihood of severe-consequence risks, thus maximizing mission success and ensuring that the X-37 Project delivers value to its stakeholders. As the team sharpens its focus on operations, it continues to contribute knowledge to those who would undertake high-risk, high-payoff research and development and provides valuable experience to implement the exploration vision.

  12. A Research on Development of The Multi-mode Flood Forecasting System Version Management

    NASA Astrophysics Data System (ADS)

    Shen, J.-C.; Chang, C. H.; Lien, H. C.; Wu, S. J.; Horng, M. J.

    2009-04-01

    With the global economy and technological development, the degree of urbanization and population density relative to raise. At the same time, a natural buffer space and resources year after year, the situation has been weakened, not only lead to potential environmental disasters, more and more serious, disaster caused by the economy, loss of natural environment at all levels has been expanded. In view of this, the active participation of all countries in the world cross-sectoral integration of disaster prevention technology research and development, in addition, the specialized field of disaster prevention technology, science and technology development, network integration technology, high-speed data transmission and information to support the establishment of mechanisms for disaster management The decision-making and cross-border global disaster information network building and other related technologies, has become the international anti-disaster science and technology development trends, this trend. Naturally a few years in Taiwan, people's lives and property losses caused by many problems related to natural disaster prevention and disaster prevention and the establishment of applications has become a very important. For FEWS_Taiwan, flood warning system developed by the Delft Hydraulics and introduced the Water Resources Agency (WRA), it provides those functionalities for users to modify contents to add the basins, regions, data sources, models and etc. Despite this advantage, version differences due to different users or different teams yet bring about the difficulties on synchronization and integration.At the same time in different research teams will also add different modes of meteorological and hydrological data. From the government perspective of WRA, the need to plan standard operation procedures for system integration demands that the effort for version control due to version differences must be cost down or yet canceled out. As for FEWS_Taiwan, this paper proposed the feasible avenues and solutions to smoothly integrate different configurations from different teams. In the current system has been completed by 20 of Taiwan's main rivers in the building of the basic structure of the flood forecasting. And regular updating of the relevant parameters, using the new survey results, in order to have a better flood forecasting results.

  13. 15 CFR 270.100 - General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Establishment and Deployment of Teams § 270.100 General. (a) Based on prior NIST experience, NIST expects that the Director will establish and deploy a Team to conduct an investigation at a...

  14. 15 CFR 270.101 - Preliminary reconnaissance.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Establishment and Deployment of Teams § 270.101 Preliminary reconnaissance. (a) To... the site of a building failure. The Director may establish and deploy a Team to conduct the...

  15. 15 CFR 270.100 - General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Establishment and Deployment of Teams § 270.100 General. (a) Based on prior NIST experience, NIST expects that the Director will establish and deploy a Team to conduct an investigation at a...

  16. 15 CFR 270.101 - Preliminary reconnaissance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Establishment and Deployment of Teams § 270.101 Preliminary reconnaissance. (a) To... the site of a building failure. The Director may establish and deploy a Team to conduct the...

  17. 15 CFR 270.101 - Preliminary reconnaissance.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Establishment and Deployment of Teams § 270.101 Preliminary reconnaissance. (a) To... the site of a building failure. The Director may establish and deploy a Team to conduct the...

  18. 15 CFR 270.100 - General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Establishment and Deployment of Teams § 270.100 General. (a) Based on prior NIST experience, NIST expects that the Director will establish and deploy a Team to conduct an investigation at a...

  19. 15 CFR 270.100 - General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Establishment and Deployment of Teams § 270.100 General. (a) Based on prior NIST experience, NIST expects that the Director will establish and deploy a Team to conduct an investigation at a...

  20. 15 CFR 270.101 - Preliminary reconnaissance.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Establishment and Deployment of Teams § 270.101 Preliminary reconnaissance. (a) To... the site of a building failure. The Director may establish and deploy a Team to conduct the...

  1. 15 CFR 270.101 - Preliminary reconnaissance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Establishment and Deployment of Teams § 270.101 Preliminary reconnaissance. (a) To... the site of a building failure. The Director may establish and deploy a Team to conduct the...

  2. 15 CFR 270.100 - General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Establishment and Deployment of Teams § 270.100 General. (a) Based on prior NIST experience, NIST expects that the Director will establish and deploy a Team to conduct an investigation at a...

  3. Warp-X: A new exascale computing platform for beam–plasma simulations

    DOE PAGES

    Vay, J. -L.; Almgren, A.; Bell, J.; ...

    2018-01-31

    Turning the current experimental plasma accelerator state-of-the-art from a promising technology into mainstream scientific tools depends critically on high-performance, high-fidelity modeling of complex processes that develop over a wide range of space and time scales. As part of the U.S. Department of Energy's Exascale Computing Project, a team from Lawrence Berkeley National Laboratory, in collaboration with teams from SLAC National Accelerator Laboratory and Lawrence Livermore National Laboratory, is developing a new plasma accelerator simulation tool that will harness the power of future exascale supercomputers for high-performance modeling of plasma accelerators. We present the various components of the codes such asmore » the new Particle-In-Cell Scalable Application Resource (PICSAR) and the redesigned adaptive mesh refinement library AMReX, which are combined with redesigned elements of the Warp code, in the new WarpX software. Lastly, the code structure, status, early examples of applications and plans are discussed.« less

  4. Warp-X: A new exascale computing platform for beam–plasma simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vay, J. -L.; Almgren, A.; Bell, J.

    Turning the current experimental plasma accelerator state-of-the-art from a promising technology into mainstream scientific tools depends critically on high-performance, high-fidelity modeling of complex processes that develop over a wide range of space and time scales. As part of the U.S. Department of Energy's Exascale Computing Project, a team from Lawrence Berkeley National Laboratory, in collaboration with teams from SLAC National Accelerator Laboratory and Lawrence Livermore National Laboratory, is developing a new plasma accelerator simulation tool that will harness the power of future exascale supercomputers for high-performance modeling of plasma accelerators. We present the various components of the codes such asmore » the new Particle-In-Cell Scalable Application Resource (PICSAR) and the redesigned adaptive mesh refinement library AMReX, which are combined with redesigned elements of the Warp code, in the new WarpX software. Lastly, the code structure, status, early examples of applications and plans are discussed.« less

  5. Implementation of Phased Array Antenna Technology Providing a Wireless Local Area Network to Enhance Port Security and Maritime Interdiction Operations

    DTIC Science & Technology

    2009-09-01

    boarding team, COTS, WLAN, smart antenna, OpenVPN application, wireless base station, OFDM, latency, point-to-point wireless link. 16. PRICE CODE 17...16 c. SSL/TLS .................................17 2. OpenVPN ......................................17 III. EXPERIMENT METHODOLOGY...network frame at Layer 2 has already been secured by encryption at a higher level. 2. OpenVPN OpenVPN is open source software that provides a VPN

  6. National Rehabilitation Hospital Assistive Technology Research Center

    DTIC Science & Technology

    1997-11-01

    Individuals to be included are those who had a recent stroke, are judged not to be at high risk for having potential medical side - effects of taking the...detecting and characterizing concussion; investigation of the cognitive effects of ginkgo on stroke patients; application and evaluation of virtual reality... effectiveness of the video game based therapy. Proposed Work and Outcomes for Year 4: For year 4, the research team proposes to complete a pilot test of a

  7. Incredibly Versatile Microbial Fuel Cells Innovative Ideas at HES-SO Valais-Wallis for Solving Topical Problems.

    PubMed

    Heinzelmann, Elsbeth

    2016-01-01

    At HES-SO Valais-Wallis, Prof. Fabian Fischer is specialized in microbial fuel cells for novel applications that meet the challenge of producing renewable energies. He and his team possess a unique expertise in bioelectric energy vector generation, phosphate extraction (CHIMIA 2015, 69, 296) and the testing of antimicrobial surfaces. Let's take a look behind the scenes of the Institute of Life Technologies in Sion.

  8. A virtual team group process.

    PubMed

    Bell, Marnie; Robertson, Della; Weeks, Marlene; Yu, Deborah

    2002-01-01

    Virtual teams are a phenomenon of the Information Era and their existence in health care is anticipated to increase with technology enhancements such as telehealth and groupware. The mobilization and support of high performing virtual teams are important for leading knowledge-based health professionals in the 21st century. Using an adapted McGrath group development model, the four staged maturation process of a virtual team consisting of four masters students is explored in this paper. The team's development is analyzed addressing the interaction of technology with social and task dynamics. Throughout the project, leadership competencies of value to the group that emerged were demonstrated and incorporated into the development of a leadership competency assessment instrument. The demonstration of these competencies illustrated how they were valued and internalized by the group. In learning about the work of this virtual team, the reader will gain understanding of how leadership impacts virtual team performance.

  9. Towards a Rigorous Assessment of Systems Biology Models: The DREAM3 Challenges

    PubMed Central

    Prill, Robert J.; Marbach, Daniel; Saez-Rodriguez, Julio; Sorger, Peter K.; Alexopoulos, Leonidas G.; Xue, Xiaowei; Clarke, Neil D.; Altan-Bonnet, Gregoire; Stolovitzky, Gustavo

    2010-01-01

    Background Systems biology has embraced computational modeling in response to the quantitative nature and increasing scale of contemporary data sets. The onslaught of data is accelerating as molecular profiling technology evolves. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) is a community effort to catalyze discussion about the design, application, and assessment of systems biology models through annual reverse-engineering challenges. Methodology and Principal Findings We describe our assessments of the four challenges associated with the third DREAM conference which came to be known as the DREAM3 challenges: signaling cascade identification, signaling response prediction, gene expression prediction, and the DREAM3 in silico network challenge. The challenges, based on anonymized data sets, tested participants in network inference and prediction of measurements. Forty teams submitted 413 predicted networks and measurement test sets. Overall, a handful of best-performer teams were identified, while a majority of teams made predictions that were equivalent to random. Counterintuitively, combining the predictions of multiple teams (including the weaker teams) can in some cases improve predictive power beyond that of any single method. Conclusions DREAM provides valuable feedback to practitioners of systems biology modeling. Lessons learned from the predictions of the community provide much-needed context for interpreting claims of efficacy of algorithms described in the scientific literature. PMID:20186320

  10. Teacher Design in Teams as a Professional Development Arrangement for Developing Technology Integration Knowledge and Skills of Science Teachers in Tanzania

    ERIC Educational Resources Information Center

    Kafyulilo, Ayoub; Fisser, Petra; Voogt, Joke

    2016-01-01

    This study investigated the impact of teacher design teams as a professional development arrangement for developing technology integration knowledge and skills among in-service science teachers. The study was conducted at a secondary school in Tanzania, where 12 in-service science teachers participated in a workshop about technology integration in…

  11. Emerging Sealing Technologies Development

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Under this Cooperative Agreement, the objective was to investigate several emerging sealing technologies of interest to the Mechanical Components Branch of National Aeronautics and Space Administration Glenn Research Center at Lewis Field (NASA GRC). The majority of the work conducted was to support the development of Solid Oxide Fuel Cells for application to aeronautic auxiliary power units, though technical investigations of interest to other groups and projects were also conducted. In general, accomplishments and results were periodically reported to the NASA Technical Monitor, the NASA GRC Seal Team staff, and NASA GRC project management. Several technical reports, journal articles, and presentations were given internally to NASA GRC and to the external public.

  12. Role of CFD in propulsion design - Government perspective

    NASA Technical Reports Server (NTRS)

    Schutzenhofer, L. A.; Mcconnaughey, H. V.; Mcconnaughey, P. K.

    1990-01-01

    Various aspects of computational fluid dynamics (CFD), as it relates to design applications in rocket propulsion activities from the government perspective, are discussed. Specific examples are given that demonstrate the application of CFD to support hardware development activities, such as Space Shuttle Main Engine flight issues, and the associated teaming strategy used for solving such problems. In addition, select examples that delineate the motivation, methods of approach, goals and key milestones for several space flight progams are cited. An approach is described toward applying CFD in the design environment from the government perspective. A discussion of benchmark validation, advanced technology hardware concepts, accomplishments, needs, future applications, and near-term expectations from the flight-center perspective is presented.

  13. 76 FR 64326 - National Construction Safety Team Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-18

    ... Team Advisory Committee Meeting AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of open meeting. SUMMARY: The National Construction Safety Team (NCST) Advisory... INFORMATION: The Committee was established pursuant to Section 11 of the National Construction Safety Team Act...

  14. 78 FR 58521 - National Construction Safety Team Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ... Team Advisory Committee Meeting AGENCY: National Institute of Standards and Technology, Department of Commerce ACTION: Notice of open meeting. SUMMARY: The National Construction Safety Team (NCST) Advisory... service, and their knowledge of issues affecting teams established under the NCST Act. The Committee...

  15. 78 FR 67120 - National Construction Safety Team Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... Team Advisory Committee Meeting AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of open meeting. SUMMARY: The National Construction Safety Team (NCST) Advisory... professional service, and their knowledge of issues affecting teams established under the NCST Act. The...

  16. HiSentinel: A Stratospheric Airship

    NASA Astrophysics Data System (ADS)

    Smith, I.; Lew, T.; Perry, W.; Smith, M.

    On December 4 2005 a team led by Southwest Research Institute SwRI successfully demonstrated powered flight of the HiSentinel stratospheric airship at an altitude of 74 000 feet The development team of Aerostar International the Air Force Research Laboratory AFRL and SwRI launched the airship from Roswell N M for a five-hour technology demonstration flight The 146-foot-long airship carried a 60-pound equipment pod and propulsion system when it became only the second airship in history to achieve powered flight in the stratosphere Designed for launch from remote sites these airships do not require large hangars or special facilities Unlike most stratospheric airship concepts HiSentinel is launched flaccid with the hull only partially inflated with helium As the airship rises the helium expands until it completely inflates the hull to the rigid aerodynamic shape required for operation A description of previous Team development results of the test flight plans for future development and applicability to future science missions will be presented

  17. [Palliativer medicine in surgery].

    PubMed

    Gutiérrez Samperio, César; Ruiz Canizales, Raúl; Arellano Rodríguez, Salvador; Romero Zepeda, Hilda; Hall, Robert T; García Camino, Bernardo

    The concepts and background of palliative medicine, the patient-health team relationship and the right of the patients to receive palliative care, its application in surgery, the criterion defining the terminally ill, proportionate and disproportionate measures, where it is applied and what this consists of, drugs and procedures used, who should administrate them and for how long, the requirements for advanc directives and avoidance of therapeutic obstinacy, were reviewed. It describes and reflects their ethical and legal bases. It describes the main changes to the law in México in 2009 and 2012. It concludes that palliative medicine is not against scientific and technological progress, but promotes its appropriate use with respect to the will and dignity of the patient. It should be applied by a multidisciplinary team, who accompany the patient throughout the progression of their condition, strengthening the doctor's and health team's relationship with the patients and their families. Copyright © 2016 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  18. Health hackathons: theatre or substance? A survey assessment of outcomes from healthcare-focused hackathons in three countries.

    PubMed

    Olson, Kristian R; Walsh, Madeline; Garg, Priya; Steel, Alexis; Mehta, Sahil; Data, Santorino; Petersen, Rebecca; Guarino, Anthony J; Bailey, Elizabeth; Bangsberg, David R

    2017-02-01

    Healthcare-focused hackathons are 48-hour platforms intended to accelerate novel medical technology. However, debate exists about how much they contribute to medical technology innovation. The Consortium for Affordable Medical Technologies (CAMTech) has developed a three-pronged model to maximise their effectiveness. To gauge the success of this model, we examined follow-up outcomes. Outcomes of 12 hackathons from 2012 to 2015 in India, Uganda and the USA were measured using emailed surveys. To minimise response bias, non-responding teams were coded as having made no progress. 331 individuals provided information on 196 of 356 projects (55.1% response rate), with no difference in responses from teams participating in different countries (Cramer's V=0.09, p=0.17). 30.3% of projects had made progress after a mean of 12.2 months. 88 (24.7%) teams had initiated pilot testing, with 42 (11.8%) piloting with care providers and 24 (6.7%) with patients. Overall, 97 teams (8.1 per hackathon) drafted business plans, 22 (1.8 per hackathon) had filed patents on their innovations and 15 (1.3 per hackathon) had formed new companies. Teams raised US$64.08 million in funding (average US$5.34 million per hackathon; median award size of $1800). In addition, 108 teams (30.3%) reported at least one member working on additional technologies with people they met at a hackathon. Individual confidence to address medical technology challenges was significantly increased after attending (t(1282)=192.77, p 0.001). CAMTech healthcare hackathons lead to consistent output with respect to medical technology innovation, including clinical trials, business plan development, securing investment capital/funding and new company formation.

  19. Health hackathons: theatre or substance? A survey assessment of outcomes from healthcare-focused hackathons in three countries

    PubMed Central

    Walsh, Madeline; Garg, Priya; Steel, Alexis; Mehta, Sahil; Data, Santorino; Petersen, Rebecca; Guarino, Anthony J; Bailey, Elizabeth; Bangsberg, David R

    2017-01-01

    Background Healthcare-focused hackathons are 48-hour platforms intended to accelerate novel medical technology. However, debate exists about how much they contribute to medical technology innovation. The Consortium for Affordable Medical Technologies (CAMTech) has developed a three-pronged model to maximise their effectiveness. To gauge the success of this model, we examined follow-up outcomes. Methods Outcomes of 12 hackathons from 2012 to 2015 in India, Uganda and the USA were measured using emailed surveys. To minimise response bias, non-responding teams were coded as having made no progress. Results 331 individuals provided information on 196 of 356 projects (55.1% response rate), with no difference in responses from teams participating in different countries (Cramer's V=0.09, p=0.17). 30.3% of projects had made progress after a mean of 12.2 months. 88 (24.7%) teams had initiated pilot testing, with 42 (11.8%) piloting with care providers and 24 (6.7%) with patients. Overall, 97 teams (8.1 per hackathon) drafted business plans, 22 (1.8 per hackathon) had filed patents on their innovations and 15 (1.3 per hackathon) had formed new companies. Teams raised US$64.08 million in funding (average US$5.34 million per hackathon; median award size of $1800). In addition, 108 teams (30.3%) reported at least one member working on additional technologies with people they met at a hackathon. Individual confidence to address medical technology challenges was significantly increased after attending (t(1282)=192.77, p 0.001). Conclusion CAMTech healthcare hackathons lead to consistent output with respect to medical technology innovation, including clinical trials, business plan development, securing investment capital/funding and new company formation. PMID:28250965

  20. Continuous outreach activities performed by a student project team of undergraduates and their program topics in optics and photonics

    NASA Astrophysics Data System (ADS)

    Hasegawa, Makoto; Tokumitsu, Seika

    2016-09-01

    The out-of-curriculum project team "Rika-Kobo", organized by undergraduate students, has been actively engaged in a variety of continuous outreach activities in the fields of science and technology including optics and photonics. The targets of their activities cover wide ranges of generations from kids to parents and elderly people, with aiming to promote their interests in various fields of science and technologies. This is an out-of-curriculum project team with about 30 to 40 undergraduate students in several grades and majors. The total number of their activities per year tends to reach 80 to 90 in recent years. Typical activities to be performed by the project team include science classes in elementary and/or secondary schools, science classes at other educational facilities such as science museums, and experiment demonstrations at science events. Popular topics cover wide ranges from explanations and demonstrations of nature phenomena, such as rainbow colors, blue sky, sunset color, to demonstration experiments related to engineering applications, such as polarization of light, LEDs, and optical communications. Experimental topics in optics and photonics are especially popular to the audiences. Those activities are very effective to enhance interests of the audiences in learning related knowledges, irrespective of their generations. Those activities are also helpful for the student members to achieve and/or renew scientific knowledges. In addition, each of the activities provides the student members with effective and advantageous Project-Based-Learning (PBL) style experiences including manufacturing experiences, which are advantageous to cultivate their engineering skills.

  1. NASA Virtual Institutes: International Bridges for Space Exploration

    NASA Technical Reports Server (NTRS)

    Schmidt, Gregory K.

    2016-01-01

    NASA created the first virtual institute, the NASA Astrobiology Institute (NAI), in 2009 with an aim toward bringing together geographically disparate and multidisciplinary teams toward the goal of answering broad questions in the then-new discipline of astrobiology. With the success of the virtual institute model, NASA then created the NASA Lunar Science Institute (NLSI) in 2008 to address questions of science and human exploration of the Moon, and then the NASA Aeronautics Research Institute (NARI) in 2012 which addresses key questions in the development of aeronautics technologies. With the broadening of NASA's human exploration targets to include Near Earth Asteroids and the moons of Mars as well as the Moon, the NLSI morphed into the Solar System Exploration Research Virtual Institute (SSERVI) in 2012. SSERVI funds domestic research teams to address broad questions at the intersection of science and human exploration, with the underlying principle that science enables human exploration, and human exploration enables science. Nine domestic teams were funded in 2014 for a five-year period to address a variety of different topics, and nine international partners (with more to come) also work with the U.S. teams on a variety of topics of mutual interest. The result is a robust and productive research infrastructure that is not only scientifically productive but can respond to strategic topics of domestic and international interest, and which develops a new generation of researchers. This is all accomplished with the aid of virtual collaboration technologies which enable scientific research at a distance. The virtual institute model is widely applicable to a range of space science and exploration problems.

  2. Developing high-performance cross-functional teams: Understanding motivations, functional loyalties, and teaming fundamentals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, M.A.

    1996-08-01

    Teamwork is the key to the future of effective technology management. Today`s technologies and markets have become too complex for individuals to work alone. Global competition, limited resources, cost consciousness, and time pressures have forced organizations and project managers to encourage teamwork. Many of these teams will be cross-functional teams that can draw on a multitude of talents and knowledge. To develop high-performing cross-functional teams, managers must understand motivations, functional loyalties, and the different backgrounds of the individual team members. To develop a better understanding of these issues, managers can learn from experience and from literature on teams and teamingmore » concepts. When studying the literature to learn about cross-functional teaming, managers will find many good theoretical concepts, but when put into practice, these concepts have varying effects. This issue of varying effectiveness is what drives the research for this paper. The teaming concepts were studied to confirm or modify current understanding. The literature was compared with a {open_quotes}ground truth{close_quotes}, a survey of the reality of teaming practices, to examine the teaming concepts that the literature finds to be critical to the success of teams. These results are compared to existing teams to determine if such techniques apply in real-world cases.« less

  3. Exploring interpersonal behavior and team sensemaking during health information technology implementation.

    PubMed

    Kitzmiller, Rebecca R; McDaniel, Reuben R; Johnson, Constance M; Lind, E Allan; Anderson, Ruth A

    2013-01-01

    We examine how interpersonal behavior and social interaction influence team sensemaking and subsequent team actions during a hospital-based health information technology (HIT) implementation project. Over the course of 18 months, we directly observed the interpersonal interactions of HIT implementation teams using a sensemaking lens. We identified three voice-promoting strategies enacted by team leaders that fostered team member voice and sensemaking; communicating a vision; connecting goals to team member values; and seeking team member input. However, infrequent leader expressions of anger quickly undermined team sensemaking, halting dialog essential to problem solving. By seeking team member opinions, team leaders overcame the negative effects of anger. Leaders must enact voice-promoting behaviors and use them throughout a team's engagement. Further, training teams in how to use conflict to achieve greater innovation may improve sensemaking essential to project risk mitigation. Health care work processes are complex; teams involved in implementing improvements must be prepared to deal with conflicting, contentious issues, which will arise during change. Therefore, team conflict training may be essential to sustaining sensemaking. Future research should seek to identify team interactions that foster sensemaking, especially when topics are difficult or unwelcome, then determine the association between staff sensemaking and the impact on HIT implementation outcomes. We are among the first to focus on project teams tasked with HIT implementation. This research extends our understanding of how leaders' behaviors might facilitate or impeded speaking up among project teams in health care settings.

  4. Capabilities of the Materials Contamination Team at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Burns, Howard; Albyn, Keith; Edwards, David; Boothe, Richard; Finchum, Charles; Finckenor, Miria

    2003-01-01

    The Materials Contamination Team at the Marshall Space Flight Center (MSFC) has been recognized for its contributions supporting the National Aeronautics and Space Administration (NASA) spacecraft development programs. These programs include the Reusable Solid Rocket Motor (RSRM), Chandra X-Ray Observatory, and the International Space Station (ISS). The Environmental Effects Group, with the Materials Contamination Team and the Space Environmental Effects Team has been an integral part of NASA's success by the testing, evaluation, and qualification of materials, hardware, and processes. This paper focuses on the capabilities of the Materials Contamination Team. The Materials Contamination Team's realm of responsibility includes establishing contamination control during all phases of hardware development, including design, manufacturing, assembly, test, transportation, launch site processing, on-orbit exposure, return, and refurbishment. The team continues its mission of reducing the risk of equipment failure due to molecular or particulate contamination. Contamination is a concern in the Space Shuttle with sensitive bond-lines and reactive fluid (liquid oxygen) compatibility as well as for spacecraft with sensitive optics, such as Hubble Space Telescope and Chandra X-ray Observatory. The Materials Contamination Team has a variety of facilities and instrumentation capable of contaminant detection, identification, and monitoring. The team addresses material applications dealing with environments, including production facilities, clean rooms, and on-orbit exposure. The optically stimulated electron emission (OSEE) system, the Ultraviolet (UV) fluorescence (UVF) surface contamination detection, and the Surface Optics Corporation 400 (SOC 400) portable hand-held Fourier Transform Infrared (FTIR) spectrometer are state-of-the-art tools for in-process molecular contamination detection. The team of engineers and technicians also develop contamination calibration standards and evaluate new surface cleanliness inspection technologies. The team utilizes facilities for on-orbit simulation testing of materials for outgassing and molecular film deposition characteristics in the presence of space environmental effects, such as Atomic Oxygen (AO) and UV radiation exposure. The Materials Contamination Team maintains databases for process materials as well as outgassing and optical compatibility test results for specific environments.

  5. Healthcare teams over the Internet: programming a certificate-based approach.

    PubMed

    Georgiadis, Christos K; Mavridis, Ioannis K; Pangalos, George I

    2003-07-01

    Healthcare environments are a representative case of collaborative environments since individuals (e.g. doctors) in many cases collaborate in order to provide care to patients in a more proficient way. At the same time modern healthcare institutions are increasingly interested in sharing access of their information resources in the networked environment. Healthcare applications over the Internet offer an attractive communication infrastructure at worldwide level but with a noticeably great factor of risk. Security has, therefore, become a major concern. However, although an adequate level of security can be relied upon digital certificates, if an appropriate security model is used, additional security considerations are needed in order to deal efficiently with the above team-work concerns. The already known Hybrid Access Control (HAC) security model supports and handles efficiently healthcare teams with active security capabilities and is capable to exploit the benefits of certificate technology. In this paper we present the way for encoding the appropriate authoritative information in various types of certificates, as well as the overall operational architecture of the implemented access control system for healthcare collaborative environments over the Internet. A pilot implementation of the proposed methodology in a major Greek hospital has shown the applicability of the proposals and the flexibility of the access control provided.

  6. Computerized Attendance Accounting and Emergency Assistance Communications: Viable Tools in Secondary School Administration

    NASA Technical Reports Server (NTRS)

    Roberts, Vasel W.

    1971-01-01

    In the late 1968, the Space Technology Application Office at the Jet Propulsion Laboratory (JPL) initiated a pilot study to determine whether technological aids could be developed that would help secondary school administrators cope with the volatile and chaotic situations that often accompany student activism, disorders, and riots. The study was conducted in cooperation with the Sacramento City Unified School District (SCUSD) and at the John F. Kennedy Senior High School (JFK) in Sacramento, California. The problems at JFK and in the SCUSD were identified and described to the JPL team by members of the Kennedy staff and personnel at various levels and departments within the school district. The JPL team of engineers restricted their scope to problems that appeared solvable, or at least partially solvable, through the use of technological systems. Thus far, two hardware systems have been developed for use in the school. The first, a personal emergency assistance communication system, has already been tested operationally at JFK and has met the objectives established for it. The second technological aid developed was a computerized attendance accounting system. This system has been fabricated, tested, and installed at JFK. Full-scale operational testing began in April 1971. While studies and hardware tests were in progress at JFK, contacts were made with several other schools in order that, insofar as practicable, hardware designs could allow for possible adaptation to schools other than JFK.

  7. KSC-2011-2264

    NASA Image and Video Library

    2011-03-11

    ORLANDO, Fla. – Team 3149 participates in the regional FIRST robotics competition at the University of Central Florida in Orlando. The team is made up of students from McKeel Academy of Technology in Lakeland, Fla. NASA is a sponsor of the team. Team 3149 finished eighth in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, among about 60 high school teams hoping to advance to the national robotics championship. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson

  8. KSC-2011-2265

    NASA Image and Video Library

    2011-03-11

    ORLANDO, Fla. – The Team 3149 robot participates in the regional FIRST robotics competition at the University of Central Florida in Orlando. The team is made up of students from McKeel Academy of Technology in Lakeland, Fla. NASA is a sponsor of the team. Team 3149 finished eighth in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, among about 60 high school teams hoping to advance to the national robotics championship. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson

  9. Impact of Process Protocol Design on Virtual Team Effectiveness

    ERIC Educational Resources Information Center

    Cordes, Christofer Sean

    2013-01-01

    This dissertation examined the influence of action process dimensions on team decision performance, and attitudes toward team work environment and procedures given different degrees of collaborative technology affordance. Process models were used to provide context for understanding team behavior in the experimental task, and clarify understanding…

  10. 77 FR 68103 - National Construction Safety Team Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-15

    ... Team Advisory Committee Meeting AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of open meeting. SUMMARY: The National Construction Safety Team (NCST) Advisory... affecting teams established under the NCST Act. The Committee will advise the Director of NIST on carrying...

  11. Computational Fluid Dynamics (CFD) Analysis for the Reduction of Impeller Discharge Flow Distortion

    NASA Technical Reports Server (NTRS)

    Garcia, R.; McConnaughey, P. K.; Eastland, A.

    1993-01-01

    The use of Computational Fluid Dynamics (CFD) in the design and analysis of high performance rocket engine pumps has increased in recent years. This increase has been aided by the activities of the Marshall Space Flight Center (MSFC) Pump Stage Technology Team (PSTT). The team's goals include assessing the accuracy and efficiency of several methodologies and then applying the appropriate methodology(s) to understand and improve the flow inside a pump. The PSTT's objectives, team membership, and past activities are discussed in Garcia1 and Garcia2. The PSTT is one of three teams that form the NASA/MSFC CFD Consortium for Applications in Propulsion Technology (McConnaughey3). The PSTT first applied CFD in the design of the baseline consortium impeller. This impeller was designed for the Space Transportation Main Engine's (STME) fuel turbopump. The STME fuel pump was designed with three impeller stages because a two-stage design was deemed to pose a high developmental risk. The PSTT used CFD to design an impeller whose performance allowed for a two-stage STME fuel pump design. The availability of this design would have lead to a reduction in parts, weight, and cost had the STME reached production. One sample of the baseline consortium impeller was manufactured and tested in a water rig. The test data showed that the impeller performance was as predicted and that a two-stage design for the STME fuel pump was possible with minimal risk. The test data also verified another CFD predicted characteristic of the design that was not desirable. The classical 'jet-wake' pattern at the impeller discharge was strengthened by two aspects of the design: by the high head coefficient necessary for the required pressure rise and by the relatively few impeller exit blades, 12, necessary to reduce manufacturing cost. This 'jet-wake pattern produces an unsteady loading on the diffuser vanes and has, in past rocket engine programs, lead to diffuser structural failure. In industrial applications, this problem is typically avoided by increasing the space between the impeller and the diffuser to allow the dissipation of this pattern and, hence, the reduction of diffuser vane unsteady loading. This approach leads to small performance losses and, more importantly in rocket engine applications, to significant increases in the pump's size and weight. This latter consideration typically makes this approach unacceptable in high performance rocket engines.

  12. A Virtual Mission Operations Center: Collaborative Environment

    NASA Technical Reports Server (NTRS)

    Medina, Barbara; Bussman, Marie; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    The Virtual Mission Operations Center - Collaborative Environment (VMOC-CE) intent is to have a central access point for all the resources used in a collaborative mission operations environment to assist mission operators in communicating on-site and off-site in the investigation and resolution of anomalies. It is a framework that as a minimum incorporates online chat, realtime file sharing and remote application sharing components in one central location. The use of a collaborative environment in mission operations opens up the possibilities for a central framework for other project members to access and interact with mission operations staff remotely. The goal of the Virtual Mission Operations Center (VMOC) Project is to identify, develop, and infuse technology to enable mission control by on-call personnel in geographically dispersed locations. In order to achieve this goal, the following capabilities are needed: Autonomous mission control systems Automated systems to contact on-call personnel Synthesis and presentation of mission control status and history information Desktop tools for data and situation analysis Secure mechanism for remote collaboration commanding Collaborative environment for remote cooperative work The VMOC-CE is a collaborative environment that facilitates remote cooperative work. It is an application instance of the Virtual System Design Environment (VSDE), developed by NASA Goddard Space Flight Center's (GSFC) Systems Engineering Services & Advanced Concepts (SESAC) Branch. The VSDE is a web-based portal that includes a knowledge repository and collaborative environment to serve science and engineering teams in product development. It is a "one stop shop" for product design, providing users real-time access to product development data, engineering and management tools, and relevant design specifications and resources through the Internet. The initial focus of the VSDE has been to serve teams working in the early portion of the system/product lifecycle - concept development, proposal preparation, and formulation. The VMOC-CE expands the application of the VSDE into the operations portion of the system lifecycle. It will enable meaningful and real-time collaboration regardless of the geographical distribution of project team members. Team members will be able to interact in satellite operations, specifically for resolving anomalies, through access to a desktop computer and the Internet. Mission Operations Management will be able to participate and monitor up to the minute status of anomalies or other mission operations issues. In this paper we present the VMOC-CE project, system capabilities, and technologies.

  13. A Mobile, Collaborative, Real Time Task List for Inpatient Environments

    PubMed Central

    Ho, T.; Pelletier, A.; Al Ayubi, S.; Bourgeois, F.

    2015-01-01

    Summary Background Inpatient teams commonly track their tasks using paper checklists that are not shared between team members. Team members frequently communicate redundantly in order to prevent errors. Methods We created a mobile, collaborative, real-time task list application on the iOS platform. The application listed tasks for each patient, allowed users to check them off as completed, and transmitted that information to all other team members. In this report, we qualitatively describe our experience designing and piloting the application with an inpatient pediatric ward team at an academic pediatric hospital. Results We successfully created the tasklist application, however team members showed limited usage. Conclusion Physicians described that they preferred the immediacy and familiarity of paper, and did not experience an efficiency benefit when using the electronic tasklist. PMID:26767063

  14. Teams begin their preparations for the FIRST competition

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Team 393 from Morristown, Ind., sets up its robot on a table to prepare it for the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition March 9-11 at the KSC Visitor Complex. KSC is co-sponsoring the team, The Bee Bots, from Morristown Junior and Senior High Schools. On the floor at right is team 386, known as Voltage: The South Brevard First Team. This team is made up of students from Eau Gallie, Satellite, Palm Bay, Melbourne, Bayside and Melbourne Central Catholic High Schools. They are sponsored by KSC as well as Harris Corp., Intersil Corp., Interface & Control Systems. Inc. and Rockwell Collins. Teams of high school students are testing the limits of their imagination using robots they have designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing at KSC, 16 are Florida teams co-sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusville.

  15. Accelerating the introduction of HTS products for a broad range of electric power and industrial applications

    NASA Astrophysics Data System (ADS)

    Eaton, Russell

    2002-01-01

    The Department of Energy (DOE), as part of its Superconductivity Program for Electric Systems, is successfully pursuing the development of electric power and industrial devices, incorporating significant high-temperature superconducting (HTS) components or subsystems, through its innovative Superconducting Partnership Initiative (SPI). The objective of the SPI is to accelerate the commercial introduction of the HTS products for a broad range of electric power and industrial applications. DOE's approach to accomplishing the SPI objective is to support cost shared projects carried out by industry led teams. DOE will fund projects to develop HTS devices that are either in (1) the research and development stage (Phase 1), (2) the pre-commercialization stage (Phase II), or (3) the commercial entry stage (Phase III). DOE's industry partners must contribute at least half a project's costs. These teams will include capabilities needed to develop the device as well as to develop the business plan for the commercial product introduction. DOE's partners consist of vertically integrated teams consisting of equipment manufacturers, HTS wire and coil suppliers, national laboratories, and end users, primarily utilities. These partners carry out the multi-year technology development efforts, consisting generally of design, construction, and testing of the HTS system. Finally, commercialization of HTS products will be discussed primarily in terms of benefits these products will have over competing products based upon conventional conductors and the critical need for affordable, practical HTS materials and conductors for these applications. .

  16. Optimizing substance detection by integration of canine-human team with machine technology

    NASA Astrophysics Data System (ADS)

    Prestrude, Al M.; Ternes, J. W.

    1994-02-01

    There are several promising methods and technologies for substance detection. The oldest of these methods is the trained detector or `sniffer' dog. We summarize what is known about the capabilities of dogs in substance detection and recommend comparative testing of the canine- human team with current technology to identify the optimum combination of methods to maximize the detection of explosives and contraband.

  17. Hydrogen Fuel Cell Performance as Telecommunications Backup Power in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, Jennifer; Saur, Genevieve; Sprik, Sam

    2015-03-01

    Working in collaboration with the U.S. Department of Energy (DOE) and industry project partners, the National Renewable Energy Laboratory (NREL) acts as the central data repository for the data collected from real-world operation of fuel cell backup power systems. With American Recovery and Reinvestment Act of 2009 (ARRA) co-funding awarded through DOE's Fuel Cell Technologies Office, more than 1,300 fuel cell units were deployed over a three-plus-year period in stationary, material handling equipment, auxiliary power, and backup power applications. This surpassed a Fuel Cell Technologies Office ARRA objective to spur commercialization of an early market technology by installing 1,000 fuelmore » cell units across several different applications, including backup power. By December 2013, 852 backup power units out of 1,330 fuel cell units deployed were providing backup service, mainly for telecommunications towers. For 136 of the fuel cell backup units, project participants provided detailed operational data to the National Fuel Cell Technology Evaluation Center for analysis by NREL's technology validation team. NREL analyzed operational data collected from these government co-funded demonstration projects to characterize key fuel cell backup power performance metrics, including reliability and operation trends, and to highlight the business case for using fuel cells in these early market applications. NREL's analyses include these critical metrics, along with deployment, U.S. grid outage statistics, and infrastructure operation.« less

  18. Creating widely accessible spatial interfaces: mobile VR for managing persistent pain.

    PubMed

    Schroeder, David; Korsakov, Fedor; Jolton, Joseph; Keefe, Francis J; Haley, Alex; Keefe, Daniel F

    2013-01-01

    Using widely accessible VR technologies, researchers have implemented a series of multimodal spatial interfaces and virtual environments. The results demonstrate the degree to which we can now use low-cost (for example, mobile-phone based) VR environments to create rich virtual experiences involving motion sensing, physiological inputs, stereoscopic imagery, sound, and haptic feedback. Adapting spatial interfaces to these new platforms can open up exciting application areas for VR. In this case, the application area was in-home VR therapy for patients suffering from persistent pain (for example, arthritis and cancer pain). For such therapy to be successful, a rich spatial interface and rich visual aesthetic are particularly important. So, an interdisciplinary team with expertise in technology, design, meditation, and the psychology of pain collaborated to iteratively develop and evaluate several prototype systems. The video at http://youtu.be/mMPE7itReds demonstrates how the sine wave fitting responds to walking motions, for a walking-in-place application.

  19. FIELD EVALUATION OF IN-SITU TREATMENTS TO REDUCE SOIL-LEAD BIOAVAILABILITY: INTRODUCTION & BACKGROUND

    EPA Science Inventory

    The In-place Inactivation and Natural Ecological Restoration Technologies (IINERT) Soil-Metals Action Team was established in 11/95 as one of several Action Teams under the USEPA Remediation Technologies Development Forum (RTDF). Its primary goal was to examine in situ remediatio...

  20. Teacher Teams and Computer Technology.

    ERIC Educational Resources Information Center

    Hecht, Jeffrey B.; Roberts, Nicole K.; Schoon, Perry L.; Fansler, Gigi

    This research used three groups in a quasi-experimental approach to assess the combined impact of teacher teaming and computer technology on student grade point averages (GPAs). Ninth-grade students' academic achievement in each of four different subject areas (algebra, biology, world cultures, and English) was studied. Two separate treatments…

  1. IS REMOVAL THE ONLY OPTION: IN SITU REMEDIATION OF METAL CONTAMINATED SOILS

    EPA Science Inventory

    The In-place Inactivation and Natural Ecological Restoration Technologies (IINERT) Soil-Metals Action Team was established in 11/95 as one of several Action Teams under the USEPA Remediation Technologies Development Forum (RTDF). Its primary goal was to examine in situ remediatio...

  2. Programs of 1993 Winning Teams: Pioneering Partners.

    ERIC Educational Resources Information Center

    1993

    Pioneering Partners for Educational Technology was created to enhance learning in K-12 classrooms by accelerating the use of educational technology. This document outlines the projects of the 1993 winning teams. The Illinois programs are: "A Travel Log Via Computer"; "Weatherization Audit Training for Teachers and Students";…

  3. Examining the Impact of Collaboration Technology Training Support on Virtual Team Collaboration Effectiveness

    ERIC Educational Resources Information Center

    Wright, Sharon L.

    2013-01-01

    Businesses and governmental agencies are increasingly reliant on virtual teams composed of team members in different location. However, such virtual teams face all the interpersonal challenges inherent in working in a group, plus additional challenges that are a consequence from communicating through electronic methods. Numerous technological…

  4. Interdisciplinary Team Training for Prospective Middle Grades Teachers.

    ERIC Educational Resources Information Center

    Warner, Mark

    2001-01-01

    Describes how face-to-face meetings, field trips, and Internet technology with team planning helped a teacher educator at Augusta State University in Georgia overcome barriers to preparing prospective middle school teachers as effective team members. Illustrates impact on small-group decision making, expectations for team functioning, and…

  5. 76 FR 72904 - National Construction Safety Team Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ... Team Advisory Committee Meeting AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of open meeting. SUMMARY: The National Construction Safety Team (NCST) Advisory... Team Act (15 U.S.C. 7301 et seq.). The NCST Advisory Committee is comprised of ten members, appointed...

  6. 77 FR 74828 - National Construction Safety Team Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-18

    ... Team Advisory Committee Meeting AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of open meeting. SUMMARY: The National Construction Safety Team (NCST) Advisory... Construction Safety Team Act (15 U.S.C. 7301 et seq.). The NCST Advisory Committee is comprised of ten members...

  7. Share (And Not) Share Alike: Improving Virtual Team Climate and Decision Performance

    ERIC Educational Resources Information Center

    Cordes, Sean

    2017-01-01

    Virtual teams face unique communication and collaboration challenges that impact climate development and performance. First, virtual teams rely on technology mediated communication which can constrain communication. Second, team members lack skill for adapting process to the virtual setting. A collaboration process structure was designed to…

  8. How Virtual Team Leaders Cope with Creativity Challenges

    ERIC Educational Resources Information Center

    Han, Soo Jeoung; Chae, Chungil; Macko, Patricia; Park, Woongbae; Beyerlein, Michael

    2017-01-01

    Purpose: As technology-mediated communication improves, many organizations increasingly use new types of collaborative online tools to promote team-based learning and performance. The purpose of this study is to explore how virtual team leaders cope with process challenges in developing a context for team creativity. Design/methodology/approach:…

  9. Liquid Hydrogen Fill

    NASA Image and Video Library

    2016-08-03

    Inside a control building at NASA's Kennedy Space Center in Florida, Adam Swinger, cryogenic research engineer in the Exploration Research and Technology Directorate, communicates with team members during a test of the Ground Operations Demo Unit for liquid hydrogen. The system includes a 33,000 gallon liquid hydrogen storage tank with an internal cold heat exchanger supplied from a cryogenic refrigerator. The primary goal of the testing is to achieve a liquid hydrogen zero boil-off capability. The system was designed, installed and tested by a team of civil servants and contractors from the center's Cryogenic Test Laboratory, with support from engineers at NASA's Glenn Research Center in Cleveland and Stennis Space Center in Mississippi. It may be applicable for use by the Ground Systems Development and Operations Program at Launch Pad 39B.

  10. Technology Readiness Level Assessment Process as Applied to NASA Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Leete, Stephen J.; Romero, Raul A.; Dempsey, James A.; Carey, John P.; Cline, Helmut P.; Lively, Carey F.

    2015-01-01

    Technology assessments of fourteen science instruments were conducted within NASA using the NASA Technology Readiness Level (TRL) Metric. The instruments were part of three NASA Earth Science Decadal Survey missions in pre-formulation. The Earth Systematic Missions Program (ESMP) Systems Engineering Working Group (SEWG), composed of members of three NASA Centers, provided a newly modified electronic workbook to be completed, with instructions. Each instrument development team performed an internal assessment of its technology status, prepared an overview of its instrument, and completed the workbook with the results of its assessment. A team from the ESMP SEWG met with each instrument team and provided feedback. The instrument teams then reported through the Program Scientist for their respective missions to NASA's Earth Science Division (ESD) on technology readiness, taking the SEWG input into account. The instruments were found to have a range of TRL from 4 to 7. Lessons Learned are presented; however, due to the competition-sensitive nature of the assessments, the results for specific missions are not presented. The assessments were generally successful, and produced useful results for the agency. The SEWG team identified a number of potential improvements to the process. Particular focus was on ensuring traceability to guiding NASA documents, including the NASA Systems Engineering Handbook. The TRL Workbook has been substantially modified, and the revised workbook is described.

  11. Optimizing Patient Surgical Management Using WhatsApp Application in the Italian Healthcare System.

    PubMed

    Nardo, Bruno; Cannistrà, Marco; Diaco, Vincenzo; Naso, Agostino; Novello, Matteo; Zullo, Alessandra; Ruggiero, Michele; Grande, Raffaele; Sacco, Rosario

    2016-09-01

    Smartphones changed the method by which doctors communicate with each other, offer modern functionalities sensitive to the context of use, and can represent a valuable ally in the healthcare system. Studies have shown that WhatsApp™ application can facilitate communication within the healthcare team and provide the attending physician a constant oversight of activities performed by junior team members. The aim of the study was to use WhatsApp between two distant surgical teams involved in a program of elective surgery to verify if it facilitates communication, enhances learning, and improves patient care preserving their privacy. We conducted a focused group of surgeons over a 28-month period (from March 2013 to July 2015), and from September 2014 to July 2015, a group of selected specialists communicated healthcare matters through the newly founded "WhatsApp Surgery Group." Each patient enrolled in the study signed a consent form to let the team communicate his/her clinical data using WhatsApp. Communication between team members, response times, and types of messages were evaluated. Forty six (n = 46) patients were enrolled in the study. A total of 1,053 images were used with an average of 78 images for each patient (range 41-143). 125 h of communication were recorded, generating 354 communication events. The expert surgeon had received the highest number of questions (P, 0.001), while the residents asked clinical questions (P, 0.001) and were the fastest responders to communications (P, 0.001). Our study investigated how two distant clinical teams may exploit such a communication system and quantifies both the direction and type of communication between surgeons. WhatsApp is a low cost, secure, and fast technology and it offers the opportunity to facilitate clinical and nonclinical communications, enhance learning, and improve patient care preserving their privacy.

  12. Energy Conservation Projects to Benefit the Railroad Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clifford Mirman; Promod Vohra

    The Energy Conservation Projects to benefit the railroad industry using the Norfolk Southern Company as a model for the railroad industry has five unique tasks which are in areas of importance within the rail industry, and specifically in the area of energy conservation. The NIU Engineering and Technology research team looked at five significant areas in which research and development work can provide unique solutions to the railroad industry in energy the conservation. (1) Alternate Fuels - An examination of various blends of bio-based diesel fuels for the railroad industry, using Norfolk Southern as a model for the industry. Themore » team determined that bio-diesel fuel is a suitable alternative to using straight diesel fuel, however, the cost and availability across the country varies to a great extent. (2) Utilization of fuel cells for locomotive power systems - While the application of the fuel cell has been successfully demonstrated in the passenger car, this is a very advanced topic for the railroad industry. There are many safety and power issues that the research team examined. (3) Thermal and emission reduction for current large scale diesel engines - The current locomotive system generates large amount of heat through engine cooling and heat dissipation when the traction motors are used to decelerate the train. The research team evaluated thermal management systems to efficiently deal with large thermal loads developed by the operating engines. (4) Use of Composite and Exotic Replacement Materials - Research team redesigned various components using new materials, coatings, and processes to provide the needed protection. Through design, analysis, and testing, new parts that can withstand the hostile environments were developed. (5) Tribology Applications - Identification of tribology issues in the Railroad industry which play a significant role in the improvement of energy usage. Research team analyzed and developed solutions which resulted in friction modification to improve energy efficiency.« less

  13. [Multidisciplinary development of robotic surgery in a University Tertiary Hospital: Organization and outcomes].

    PubMed

    Ortiz Oshiro, Elena; Ramos Carrasco, Angel; Moreno Sierra, Jesús; Pardo Martínez, Cristina; Galante Romo, Isabel; Bullón Sopelana, Fernando; Coronado Martín, Pluvio; Mansilla García, Iván; Escudero Mate, María; Vidart Aragón, José A; Silmi Moyano, Angel; Alvarez Fernández-Represa, Jesús

    2010-02-01

    Da Vinci system (Intuitive Surgical) is a surgical telemanipulator providing many technical advantages over conventional laparoscopic approach (3-D vision, ergonomics, highly precise movements, endowrist instrumentation...) and it is currently applied to several specialties throughout the world since 2000. The first Spanish public hospital incorporating this robotic technology was Hospital Clinico San Carlos (HCSC) in Madrid, in July 2006. We present the multidisciplinary organization and clinical, research and training outcomes of the Robotic Surgery Plan developed in the HCSC. Starting from joint management and joint scrub nurses team, General and Digestive Surgery, Urology and Gynaecology Departments were progressively incorporated into the Robotic Surgery Plan, with several procedures increasing in complexity. A number of intra and extra-hospital teaching and information activities were planned to report on the Robotic Surgery Plan. Between July 2006 and July 2008, 306 patients were operated on: 169 by General Surgery, 107 by Urology and 30 by Gynaecology teams. The outcomes showed feasibility and a short learning curve. The educational plan included residents and staff interested in robotic technology application. The structured and gradual incorporation of robotic surgery throughout the PCR-HCSC has made it easier to learn, to share designed infrastructure, to coordinate information activities and multidisciplinary collaboration. This preliminary experience has shown the efficiency of an adequate organization and motivated team. Copyright 2009 AEC. Published by Elsevier Espana. All rights reserved.

  14. MABEL at IPAC: managing address books and email lists at the Infrared Processing and Analysis Center

    NASA Astrophysics Data System (ADS)

    Crane, Megan; Brinkworth, Carolyn; Gelino, Dawn; O'Leary, Ellen

    2012-09-01

    The Infrared Processing and Analysis Center (IPAC), located on the campus of the California Institute of Technology, is NASA's multi-mission data center for infrared astrophysics. Some of IPAC's services include administering data analysis funding awards to the astronomical community, organizing conferences and workshops, and soliciting and selecting fellowship and observing proposals. As most of these services are repeated annually or biannually, it becomes necessary to maintain multiple lists of email contacts associated with each service. MABEL is a PHP/MySQL web database application designed to facilitate this process. It serves as an address book containing up-to-date contact information for thousands of recipients. Recipients may be assigned to any number of email lists categorized by IPAC project and team. Lists may be public (viewable by all project members) or private (viewable only by team members). MABEL can also be used to send HTML or plain-text emails to multiple lists at once and prevents duplicate emails to a single recipient. This work was performed at the California Institute of Technology under contract to the National Aeronautics and Space Administration.

  15. The communication in industrialised building system (IBS) construction project: Virtual environment

    NASA Astrophysics Data System (ADS)

    Pozin, Mohd Affendi Ahmad; Nawi, Mohd Nasrun Mohd

    2017-10-01

    Large portion of numbers team organization in the IBS construction sector is known are being fragmented. That is contributed from a segregation of construction activity thus create team working in virtually. Virtual team are the nature when teams are working in distributed area, across culture and time. Therefore, teams can be respond to the task without relocating to the site project and settle down a problem through information and communication technology (ICT). The emergence of virtual team are carry out by advancements in communication technologies as a medium to improve project team communication in project delivery process on IBS construction. Based on literature review from previous study and data collected from interviewing, this paper aim to identified communication challenges among project team members according to current project development practices in IBS construction project. Hence, in attempt to develop effective communication through the advantages of virtual team approach for IBS construction project. In order to ensure the data is gathered comprehensively and accurately, the data was collected from project managers by using semi structured interview method. It was found that virtual team approach could be enable competitive challenges on complexity in the construction project management process.

  16. The President Has No Clothes: The Case for Broader Application of Red Teaming within Homeland Security

    DTIC Science & Technology

    2010-06-01

    CLOTHES: THE CASE FOR BROADER APPLICATION OF RED TEAMING WITHIN HOMELAND SECURITY by A. Bentley Nettles June 2010 Thesis Advisor...Red Teaming Within Homeland Security 6. AUTHOR(S) A. Bentley Nettles 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...APPLICATION OF RED TEAMING WITHIN HOMELAND SECURITY A. Bentley Nettles Colonel, United States Army B.A., Texas A&M University, 1985 J.D. South

  17. Seven ways to make a hypertext project fail

    NASA Technical Reports Server (NTRS)

    Glushko, Robert J.

    1990-01-01

    Hypertext is an exciting concept, but designing and developing hypertext applications of practical scale is hard. To make a project feasible and successful 'hypertext engineers' must overcome the following problems: (1) developing realistic expectations in the face of hypertext hype; (2) assembling a multidisciplinary project team; (3) establishing and following design guidelines; (4) dealing with installed base constraints; (5) obtaining usable source files; (6) finding appropriate software technology and methods; and (7) overcoming legal uncertainties about intellectual property concerns.

  18. Development of a PMAD System for Flywheel Based Energy Storage System

    NASA Technical Reports Server (NTRS)

    Wolff, Fred

    2001-01-01

    We will discuss the following: (1) the Flywheel Energy Storage System (FESS) program objective; (2) benefits of flywheels for the International Space Station; (3) the FESS development team; (4) FESS electrical requirements; (5) FESS electrical architecture; and (6) electrical subsystem functionality. The objective of the FESS program is to demonstrate flywheel technologies operating together as a system and having improved performance characteristics over batteries in a low earth orbit energy storage application (such as the ISS).

  19. Toward DNA-based Security Circuitry: First Step - Random Number Generation.

    PubMed

    Bogard, Christy M; Arazi, Benjamin; Rouchka, Eric C

    2008-08-10

    DNA-based circuit design is an area of research in which traditional silicon-based technologies are replaced by naturally occurring phenomena taken from biochemistry and molecular biology. Our team investigates the implications of DNA-based circuit design in serving security applications. As an initial step we develop a random number generation circuitry. A novel prototype schema employs solid-phase synthesis of oligonucleotides for random construction of DNA sequences. Temporary storage and retrieval is achieved through plasmid vectors.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bates, Robert; McConnell, Elizabeth

    Machining methods across many industries generally require multiple operations to machine and process advanced materials, features with micron precision, and complex shapes. The resulting multiple machining platforms can significantly affect manufacturing cycle time and the precision of the final parts, with a resultant increase in cost and energy consumption. Ultrafast lasers represent a transformative and disruptive technology that removes material with micron precision and in a single step manufacturing process. Such precision results from athermal ablation without modification or damage to the remaining material which is the key differentiator between ultrafast laser technologies and traditional laser technologies or mechanical processes.more » Athermal ablation without modification or damage to the material eliminates post-processing or multiple manufacturing steps. Combined with the appropriate technology to control the motion of the work piece, ultrafast lasers are excellent candidates to provide breakthrough machining capability for difficult-to-machine materials. At the project onset in early 2012, the project team recognized that substantial effort was necessary to improve the application of ultrafast laser and precise motion control technologies (for micromachining difficult-to-machine materials) to further the aggregate throughput and yield improvements over conventional machining methods. The project described in this report advanced these leading-edge technologies thru the development and verification of two platforms: a hybrid enhanced laser chassis and a multi-application testbed.« less

Top