Regional Test Centers | Photovoltaic Research | NREL
Regional Test Centers Regional Test Centers Five Regional Test Centers (RTCs), established by the the bankability of new photovoltaic (PV) technologies. Photo of the Regional Test Centers The DOE Regional Test Centers help to validate PV technologies in a range of different climates. Pictured here is
DOT National Transportation Integrated Search
2015-06-01
FRA Task Order 314 upgraded the Positive Train Control (PTC) Test Bed at the Transportation Technology Center to support : testing of PTC systems, components, and related equipment associated with the Advanced Civil Speed Enforcement System : (ACSES)...
The Greenhouse Gas (GHG) Technology Verification Center is one of 12 independently operated verification centers established by the U.S. Environmental Protection Agency. The Center provides third-party performance data to stakeholders interested in environmetnal technologies tha...
DOT National Transportation Integrated Search
2000-05-24
A full-scale impact test was performed November 16, 1999, at the Federal Railroad Administration's Transportation Technology Center, Pueblo, Colorado, by Transportation Technology Center, Inc., a subsidiary of the Association of American Railroads. T...
Single passenger rail car impact test. Volume III, Test procedures, instrumentation and data.
DOT National Transportation Integrated Search
2000-01-12
A full-scale impact test was performed November 16, 1999, at the Federal Railroad Administrations Transportation : Technology Center, Pueblo, Colorado, by Transportation Technology Center, Inc., a subsidiary of the Association of : American Railro...
Status of the transportation technology center - 2015 : final report.
DOT National Transportation Integrated Search
2016-03-01
The Transportation Technology Center (TTC) is a Federally owned, privately operated test facility in Colorado. It has over 50 : miles of test track arranged in different configurations for testing all aspects of vehicle-track interaction. Maximum tes...
Langley aerospace test highlights, 1989
NASA Technical Reports Server (NTRS)
1990-01-01
The role of the NASA Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and spaceflight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests that were performed during calendar year 1989 in the NASA Langley Research Center test facilities are highlighted. Both the broad range of the research and technology activities at the NASA Langley Research Center are illustrated along with the contributions of this work toward maintaining United States leadership in aeronautics and space research. Other highlights of Langley research and technology for 1989 are described in Research and Technology 1989 - Langley Research Center.
NASA Stennis Space Center Test Technology Branch Activities
NASA Technical Reports Server (NTRS)
Solano, Wanda M.
2000-01-01
This paper provides a short history of NASA Stennis Space Center's Test Technology Laboratory and briefly describes the variety of engine test technology activities and developmental project initiatives. Theoretical rocket exhaust plume modeling, acoustic monitoring and analysis, hand held fire imaging, heat flux radiometry, thermal imaging and exhaust plume spectroscopy are all examples of current and past test activities that are briefly described. In addition, recent efforts and visions focused on accomodating second, third, and fourth generation flight vehicle engine test requirements are discussed.
DOT National Transportation Integrated Search
2016-01-01
In 2012, the Virginia Department of Transportation (VDOT) contracted with the National Center for Asphalt Technology (NCAT) to install, instrument, and monitor three pavement test sections at the NCAT Test Track during the 2012-2014 track cycle. The ...
Technology Development Center at NICT
NASA Technical Reports Server (NTRS)
Takefuji, Kazuhiro; Ujihara, Hideki
2013-01-01
The National Institute of Information and Communications Technology (NICT) is developing and testing VLBI technologies and conducts observations with this new equipment. This report gives an overview of the Technology Development Center (TDC) at NICT and summarizes recent activities.
NASA Technical Reports Server (NTRS)
Hensarling, Paula L.
2007-01-01
The John C. Stennis Space Center (SSC) is located in Southern Mississippi near the Mississippi-Louisiana state line. SSC is chartered as the National Aeronautics and Space Administration (NASA) Center of Excellence for large space transportation propulsion system testing. This charter has led to many unique test facilities, capabilities and advanced technologies provided through the supporting infrastructure. SSC has conducted projects in support of such diverse activities as liquid, and hybrid rocket testing and development; material development; non-intrusive plume diagnostics; plume tracking; commercial remote sensing; test technology and more. On May 30, 1996 NASA designated SSC the lead center for rocket propulsion testing, giving the center total responsibility for conducting and/or managing all NASA rocket engine testing. Test services are now available not only for NASA but also for the Department of Defense, other government agencies, academia, and industry. This handbook was developed to provide a summary of the capabilities that exist within SSC. It is intended as a primary resource document, which will provide the reader with the top-level capabilities and characteristics of the numerous test facilities, test support facilities, laboratories, and services. Due to the nature of continually evolving programs and test technologies, descriptions of the Center's current capabilities are provided. Periodic updates and revisions of this document will be made to maintain its completeness and accuracy.
E-4 Test Facility Design Status
NASA Technical Reports Server (NTRS)
Ryan, Harry; Canady, Randy; Sewell, Dale; Rahman, Shamim; Gilbrech, Rick
2001-01-01
Combined-cycle propulsion technology is a strong candidate for meeting NASA space transportation goals. Extensive ground testing of integrated air-breathing/rocket system (e.g., components, subsystems and engine systems) across all propulsion operational modes (e.g., ramjet, scramjet) will be needed to demonstrate this propulsion technology. Ground testing will occur at various test centers based on each center's expertise. Testing at the NASA John C. Stennis Space Center will be primarily concentrated on combined-cycle power pack and engine systems at sea level conditions at a dedicated test facility, E-4. This paper highlights the status of the SSC E-4 test Facility design.
Langley aerospace test highlights, 1985
NASA Technical Reports Server (NTRS)
1986-01-01
The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Significant tests which were performed during calendar year 1985 in Langley test facilities, are highlighted. Both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research, are illustrated. Other highlights of Langley research and technology for 1985 are described in Research and Technology-1985 Annual Report of the Langley Research Center.
Fatigue Test Design: Scenarios for Biaxial Fatigue Testing of a 60-Meter Wind Turbine Blade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Post, Nathan
Current practice in commercial certification of wind turbine blades is to perform separate flap and lead-lag fatigue tests. The National Renewable Energy Laboratory has been researching and evaluating biaxial fatigue testing techniques and demonstrating various options, typically on smaller-scale test articles at the National Wind Technology Center. This report evaluates some of these biaxial fatigue options in the context of application to a multimegawatt blade certification test program at the Wind Technology Testing Center in Charlestown, Massachusetts.
Poco Graphite Mirror Metrology Report
NASA Technical Reports Server (NTRS)
Kester, Thomas J.
2005-01-01
Recently a lightweight mirror technology was tested at Marshall Space Flight Center's Space Optic Manufacturing Technology Center (MSFC, SOMTC). The mirror is a Poco Graphite CVD Si clad SiC substrate. It was tested for cryogenic (cryo) survivability to 20deg Kelvin in SOMTC's X-ray Calibration and Cryogenic Test Facility. The surface figure of the mirror was measured before and after cry0 cycling. The test technique and results are discussed.
Advanced technologies for Mission Control Centers
NASA Technical Reports Server (NTRS)
Dalton, John T.; Hughes, Peter M.
1991-01-01
Advance technologies for Mission Control Centers are presented in the form of the viewgraphs. The following subject areas are covered: technology needs; current technology efforts at GSFC (human-machine interface development, object oriented software development, expert systems, knowledge-based software engineering environments, and high performance VLSI telemetry systems); and test beds.
NASA Technical Reports Server (NTRS)
Kegley, Jeff; Burdine, Robert V. (Technical Monitor)
2002-01-01
A new cryogenic optical testing capability exists at Marshall Space Flight Center's Space Optics Manufacturing Technology Center (SOMTC). SOMTC has been performing optical wavefront testing at cryogenic temperatures since 1999 in the X-ray Cryogenic Test Facility's (XRCF's) large vacuum chamber. Recently the cryogenic optical testing capability has been extended to a smaller vacuum chamber. This smaller horizontal cylindrical vacuum chamber has been outfitted with a helium-cooled liner that can be connected to the facility's helium refrigeration system bringing the existing kilowatt of refrigeration capacity to bear on a 1 meter diameter x 2 meter long test envelope. Cryogenic environments to less than 20 Kelvin are now possible in only a few hours. SOMTC's existing instruments (the Instantaneous Phase-shifting Interferometer (IPI) from ADE Phase-Shift Technologies and the PhaseCam from 4D Vision Technologies) view the optic under test through a 150 mm clear aperture BK-7 window. Since activation and chamber characterization tests in September 2001, the new chamber has been used to perform a cryogenic (less than 30 Kelvin) optical test of a 22.5 cm diameter x 127 cm radius of curvature Si02 mirror, a cryogenic survival (less than 30 Kelvin) test of an adhesive, and a cryogenic cycle (less than 20 Kelvin) test of a ULE mirror. A vibration survey has also been performed on the test chamber. Chamber specifications and performance data, vibration environment data, and limited test results will be presented.
NASA Technical Reports Server (NTRS)
Kegley, Jeff; Stahl, H. Philip (Technical Monitor)
2002-01-01
A new cryogenic optical testing capability exists at Marshall Space Flight Center's Space Optics Manufacturing Technology Center (SOMTC). SOMTC has been performing optical wavefront testing at cryogenic temperatures since 1999 in the X-ray Cryogenic Test Facility's (XRCF's) large vacuum chamber. Recently the cryogenic optical testing capability has been extended to a smaller vacuum chamber. This smaller horizontal cylindrical vacuum chamber has been outfitted with a helium-cooled liner that can be connected to the facility's helium refrigeration system bringing the existing kilowatt of refrigeration capacity to bear on a 1 meter diameter x 2 meter long test envelope. Cryogenic environments to less than 20 Kelvin are now possible in only a few hours. SOMTC's existing instruments (the Instantaneous Phase-shifting Interferometer (IPI) from ADE Phase-Shift Technologies and the PhaseCam from 4D Vision Technologies) view the optic under test through a 150 mm clear aperture BK-7 window. Since activation and chamber characterization tests in September 2001, the new chamber has been used to perform a cryogenic (less than 30 Kelvin) optical test of a 22.5 cm diameter x 127 cm radius of curvature SiO2 mirror, a cryogenic survival (less than 30 Kelvin) test of an adhesive, and a cryogenic cycle (less than 20 Kelvin) test of a ULE mirror. A vibration survey has also been performed on the test chamber. Chamber specifications and performance data, vibration environment data, and limited test results will be presented.
SSME testing technology at the John C. Stennis Space Center
NASA Technical Reports Server (NTRS)
Kynard, Mike; Dill, Glenn
1991-01-01
An effective capability for testing the Space Shuttle Main Engine is described. The test complex utilizes a number of sophisticated test stands, test support facilities, and control centers to conduct development testing and flight acceptance testing at both nominal and off-nominal conditions.
Computer graphic of Lockheed Martin Venturestar Reusable Launch Vehicle (RLV) releasing a satellite
NASA Technical Reports Server (NTRS)
1997-01-01
This is an artist's conception of the NASA/Lockheed Martin Single-Stage-To-Orbit (SSTO) Reusable Launch Vehicle (RLV) releasing a satellite into orbit around the earth. NASA's Dryden Flight Research Center, Edwards, California, was to play a key role in the development and flight testing of the X-33, which is a technology demonstrator vehicle for the RLV. The RLV technology program was a cooperative agreement between NASA and industry. The goal of the RLV technology program was to enable significant reductions in the cost of access to space, and to promote the creation and delivery of new space services and other activities that were to improve U.S. economic competitiveness. NASA Headquarter's Office of Space Access and Technology oversaw the RLV program, which was being managed by the RLV Office at NASA's Marshall Space Flight Center, located in Huntsville, Alabama. Responsibilities of other NASA Centers included: Johnson Space Center, Houston, Texas, guidance navigation and control technology, manned space systems, and health technology; Ames Research Center, Mountain View, CA., thermal protection system testing; Langley Research Center, Langley, Virginia, wind tunnel testing and aerodynamic analysis; and Kennedy Space Center, Florida, RLV operations and health management. Lockheed Martin's industry partners in the X-33 program are: Astronautics, Inc., Denver, Colorado, and Huntsville, Alabama; Engineering & Science Services, Houston, Texas; Manned Space Systems, New Orleans, LA; Sanders, Nashua, NH; and Space Operations, Titusville, Florida. Other industry partners are: Rocketdyne, Canoga Park, California; Allied Signal Aerospace, Teterboro, NJ; Rohr, Inc., Chula Vista, California; and Sverdrup Inc., St. Louis, Missouri.
The U.S. EPA has created the Environmental Technology Verification (ETV) Program. ETV seeks to provide high-quality, peer-reviewed data on technology performance. The Air Pollution Control Technology (APCT) Verification Center, a center under the ETV Program, is operated by Res...
Advancing Sensor Technology for Aerospace Propulsion
NASA Technical Reports Server (NTRS)
Figueroa, Fernando; Mercer, Carolyn R.
2002-01-01
NASA's Stennis Space Center (SSC) and Glenn Research Center (GRC) participate in the development of technologies for propulsion testing and propulsion applications in air and space transportation. Future transportation systems and the test facilities needed to develop and sustain them are becoming increasingly complex. Sensor technology is a fundamental pillar that makes possible development of complex systems that must operate in automatic mode (closed loop systems), or even in assisted-autonomous mode (highly self-sufficient systems such as planetary exploration spacecraft). Hence, a great deal of effort is dedicated to develop new sensors and related technologies to be used in research facilities, test facilities, and in vehicles and equipment. This paper describes sensor technologies being developed and in use at SSC and GRC, including new technologies in integrated health management involving sensors, components, processes, and vehicles.
The National Carbon Capture Center at the Power Systems Development Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2014-12-30
The National Carbon Capture Center (NCCC) at the Power Systems Development Facility supports the Department of Energy (DOE) goal of promoting the United States’ energy security through reliable, clean, and affordable energy produced from coal. Work at the NCCC supports the development of new power technologies and the continued operation of conventional power plants under CO 2 emission constraints. The NCCC includes adaptable slipstreams that allow technology development of CO 2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research atmore » the NCCC can effectively evaluate technologies at various levels of maturity and accelerate their development path to commercialization. During its first contract period, from October 1, 2008, through December 30, 2014, the NCCC designed, constructed, and began operation of the Post-Combustion Carbon Capture Center (PC4). Testing of CO 2 capture technologies commenced in 2011, and through the end of the contract period, more than 25,000 hours of testing had been achieved, supporting a variety of technology developers. Technologies tested included advanced solvents, enzymes, membranes, sorbents, and associated systems. The NCCC continued operation of the existing gasification facilities, which have been in operation since 1996, to support the advancement of technologies for next-generation gasification processes and pre-combustion CO 2 capture. The gasification process operated for 13 test runs, supporting over 30,000 hours combined of both gasification and pre-combustion technology developer testing. Throughout the contract period, the NCCC incorporated numerous modifications to the facilities to accommodate technology developers and increase test capabilities. Preparations for further testing were ongoing to continue advancement of the most promising technologies for future power generation processes.« less
The Air Pollution Control Technology Verification Center has selected general ventilation air cleaners as a technology area. The Generic Verification Protocol for Biological and Aerosol Testing of General Ventilation Air Cleaners is on the Environmental Technology Verification we...
NASA Technical Reports Server (NTRS)
Gradl, Paul
2016-01-01
NASA Marshall Space Flight Center (MSFC) has been advancing dynamic optical measurement systems, primarily Digital Image Correlation, for extreme environment rocket engine test applications. The Digital Image Correlation (DIC) technology is used to track local and full field deformations, displacement vectors and local and global strain measurements. This technology has been evaluated at MSFC through lab testing to full scale hotfire engine testing of the J-2X Upper Stage engine at Stennis Space Center. It has been shown to provide reliable measurement data and has replaced many traditional measurement techniques for NASA applications. NASA and AMRDEC have recently signed agreements for NASA to train and transition the technology to applications for missile and helicopter testing. This presentation will provide an overview and progression of the technology, various testing applications at NASA MSFC, overview of Army-NASA test collaborations and application lessons learned about Digital Image Correlation.
National Wind Tecnology Center Provides Dual Axis Resonant Blade Testing
Felker, Fort
2018-01-16
NREL's Structural Testing Laboratory at the National Wind Technology Center (NWTC) provides experimental laboratories, computer facilities for analytical work, space for assembling components and turbines for atmospheric testing as well as office space for industry researchers. Fort Felker, center director at the NWTC, discusses NREL's state-of-the-art structural testing capabilities and shows a flapwise and edgewise blade test in progress.
National Wind Tecnology Center Provides Dual Axis Resonant Blade Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felker, Fort
2013-11-13
NREL's Structural Testing Laboratory at the National Wind Technology Center (NWTC) provides experimental laboratories, computer facilities for analytical work, space for assembling components and turbines for atmospheric testing as well as office space for industry researchers. Fort Felker, center director at the NWTC, discusses NREL's state-of-the-art structural testing capabilities and shows a flapwise and edgewise blade test in progress.
Performance evaluation of candidate space suit elements for the next generation orbital EMU
NASA Technical Reports Server (NTRS)
West, Philip R.; Trausch, Stephanie V.
1992-01-01
The AX-5 all metallic, multibearing technologies developed at the Ames Research Center and the Mk III fabric and metallic technologies developed at the Johnson Space Center were evaluated using the current Space Shuttle space suit technologies as a baseline. Manned evaluations were performed in the Weightless Environment Training Facility and KC-135 zero-gravity aircraft. Joint torque, range, cycle life, and environmental protection characteristics were analyzed during unmanned tests. Both numerical results and test subject comments on performance are presented.
Research and technology annual report, FY 1990
NASA Technical Reports Server (NTRS)
1990-01-01
Given here is the annual report of the John C. Stennis Space Center (SSC), a NASA center responsible for testing NASA's large propulsion systems, developing supporting test technologies, conducting research in a variety of earth science disciplines, and facilitating the commercial uses of NASA-developed technologies. Described here are activities of the Earth Sciences Research Program, the Technology Development Program, commercial programs, the Technology Utilization Program, and the Information Systems Program. Work is described in such areas as forest ecosystems, land-sea interface, wetland biochemical flux, thermal imaging of crops, gas detectors, plume analysis, synthetic aperture radar, forest resource management, applications engineering, and the Earth Observations Commercial Applications Program.
VERIFICATION TESTING OF AIR POLLUTION CONTROL TECHNOLOGY QUALITY MANAGEMENT PLAN
This document is the basis for quality assurance for the Air Pollution Control Technology Verification Center (APCT Center) operated under the U.S. Environmental Protection Agency (EPA). It describes the policies, organizational structure, responsibilities, procedures, and qualit...
Impact Testing of a Stirling Converter's Linear Alternator
NASA Technical Reports Server (NTRS)
Suarez, Vicente J.; Goodnight, Thomas W.; Hughes, William O.; Samorezov, Sergey
2002-01-01
The U.S. Department of Energy (DOE), in conjunction with the NASA John H. Glenn Research Center and Stirling Technology Company, are currently developing a Stirling convertor for a Stirling Radioisotope Generator (SRG). NASA Headquarters and DOE have identified the SRG for potential use as an advanced spacecraft power system for future NASA deep-space and Mars surface missions. Low-level dynamic impact tests were conducted at NASA Glenn Research Center's Structural Dynamics Laboratory as part of the development of this technology. The purpose of this test was to identify dynamic structural characteristics of the Stirling Technology Demonstration Convertor (TDC). This paper addresses the test setup, procedure, and results of the impact testing conducted on the Stirling TDC in May 2001.
Impact testing of a Stirling convertor's linear alternator
NASA Astrophysics Data System (ADS)
Suárez, Vicente J.; Goodnight, Thomas W.; Hughes, William O.; Samorezov, Sergey
2002-01-01
The U.S. Department of Energy (DOE), in conjunction with NASA John H. Glenn Research Center and Stirling Technology Company, are currently developing a Stirling convertor for a Stirling Radioisotope Generator (SRG). NASA Headquarters and DOE have identified the SRG for potential use as an advanced spacecraft power system for future NASA deep-space and Mars surface missions. Low-level dynamic impact tests were conducted at NASA Glenn Research Center's Structural Dynamics Laboratory as part of the development of this technology. The purpose of this test was to identify dynamic structural characteristics of the Stirling Technology Demonstration Convertor (TDC). This paper addresses the test setup, procedure and results of the impact testing conducted on the Stirling TDC in May 2001. .
Implementation of Wireless and Intelligent Sensor Technologies in the Propulsion Test Environment
NASA Technical Reports Server (NTRS)
Solano, Wanda M.; Junell, Justin C.; Shumard, Kenneth
2003-01-01
From the first Saturn V rocket booster (S-II-T) testing in 1966 and the routine Space Shuttle Main Engine (SSME) testing beginning in 1975, to more recent test programs such as the X-33 Aerospike Engine, the Integrated Powerhead Development (IPD) program, and the Hybrid Sounding Rocket (HYSR), Stennis Space Center (SSC) continues to be a premier location for conducting large-scale propulsion testing. Central to each test program is the capability for sensor systems to deliver reliable measurements and high quality data, while also providing a means to monitor the test stand area to the highest degree of safety and sustainability. As part of an on-going effort to enhance the testing capabilities of Stennis Space Center, the Test Technology and Development group is developing and applying a number of wireless and intelligent sensor technologies in ways that are new to the test existing test environment.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-10
... Whitney A Subsidiary of United Technologies Corporation Far Group and Experimental Test Group East... Technologies Corporation, FAR Group and Experimental Test Group, supplies/supports and operates as an extension... Test Group. The amended notice applicable to TA-W-75,152 is hereby issued as follows: ``All workers of...
NASA Technical Reports Server (NTRS)
Hebert, Phillip W., Sr.
2008-01-01
May 2007, NASA's Constellation Program selected John C Stennis Space Center (SSC) near Waveland Mississippi as the site to construct an altitude test facility for the developmental and qualification testing of the Ares1 upper stage (US) engine. Test requirements born out of the Ares1 US propulsion system design necessitate exceptional Data Acquisition System (DAS) design solutions that support facility and propellant systems conditioning, test operations control and test data analysis. This paper reviews the new A3 Altitude Test Facility's DAS design requirements for real-time deterministic digital data, DAS technology enhancements, system trades, technology validation activities, and the current status of this system's new architecture. Also to be discussed will be current network technologies to improve data transfer.
The 1988 Goddard Space Flight Center Battery Workshop
NASA Technical Reports Server (NTRS)
Yi, Thomas Y. (Editor)
1993-01-01
This document contains the proceedings of the 21st annual Battery Workshop held at Goddard Space Flight Center, Greenbelt, Maryland on November 1-3, 1988. The Workshop attendees included manufacturers, users, and government representatives interested in the latest developments in battery technology as they relate to high reliability operations and aerospace use. The subjects covered included battery testing methodologies and criteria, life testing of nickel-cadmium cells, testing and operation of nickel-hydrogen batteries in low earth orbit, and nickel-hydrogen technology issues and concerns.
Computer graphic of Lockheed Martin X-33 Reusable Launch Vehicle (RLV) mounted on NASA 747 ferry air
NASA Technical Reports Server (NTRS)
1997-01-01
This is an artist's conception of the NASA/Lockheed Martin X-33 Advanced Technology Demonstrator being carried on the back of the 747 Shuttle Carrier Aircraft. This was a concept for moving the X-33 from its landing site back to NASA's Dryden Flight Research Center, Edwards, California. The X-33 was a technology demonstrator vehicle for the Reusable Launch Vehicle (RLV). The RLV technology program was a cooperative agreement between NASA and industry. The goal of the RLV technology program was to enable significant reductions in the cost of access to space, and to promote the creation and delivery of new space services and other activities that will improve U.S. economic competitiveness. NASA Headquarter's Office of Space Access and Technology oversaw the RLV program, which was being managed by the RLV Office at NASA's Marshall Space Flight Center, located in Huntsville, Alabama. Responsibilities of other NASA Centers included: Johnson Space Center, Houston, Texas, guidance navigation and control technology, manned space systems, and health technology; Ames Research Center, Mountain View, CA., thermal protection system testing; Langley Research Center, Langley, Virginia, wind tunnel testing and aerodynamic analysis; and Kennedy Space Center, Florida, RLV operations and health management. Lockheed Martin's industry partners in the X-33 program are: Astronautics, Inc., Denver, Colorado, and Huntsville, Alabama; Engineering & Science Services, Houston, Texas; Manned Space Systems, New Orleans, LA; Sanders, Nashua, NH; and Space Operations, Titusville, Florida. Other industry partners are: Rocketdyne, Canoga Park, California; Allied Signal Aerospace, Teterboro, NJ; Rohr, Inc., Chula Vista, California; and Sverdrup Inc., St. Louis, Missouri.
Habitat Demonstration Unit Project Leadership and Management Strategies
NASA Technical Reports Server (NTRS)
Kennedy, Kriss J.
2011-01-01
This paper gives an overview of the National Aeronautics and Space Administration (NASA) led multi-center Habitat Demonstration Unit (HDU) project leadership and management strategies. The HDU project team constructed and tested an analog prototype lunar surface habitat/laboratory called the Pressurized Excursion Module (PEM) during 2010. The prototype unit subsystems were integrated in a short amount of time, utilizing a tiger team approach that brought together over 20 habitation-related technologies and innovations from a variety of NASA centers. This paper describes the leadership and management strategies as well as lessons learned pertaining to leading and managing a multi-center diverse team in a rapid prototype environment. The PEM configuration went from a paper design to an operational surface habitat demonstration unit in less than 12 months. The HDU project is part of the strategic plan from the Exploration Systems Mission Directorate (ESMD) Directorate Integration Office (DIO) and the Exploration Mission Systems Office (EMSO) to test destination elements in analog environments. The 2011 HDU-Deep Space Habitat (DSH) configuration will build upon the PEM work, and emphasize validity of crew operations (remote working and living), EVA operations, mission operations, logistics operations, and science operations that might be required in a deep space context for Near Earth Object (NEO) exploration mission architectures. The 2011 HDU-DSH will be field-tested during the 2011 Desert Research and Technologies Studies (DRaTS) field tests. The HDU project is a "technology-pull" project that integrates technologies and innovations from multiple NASA centers. This project will repurpose the HDU 2010 demo unit that was field tested in the 2010 DRaTS, adding habitation functionality to the prototype unit. This paper will describe the strategy of establishing a multi-center project management team that put in place the key multi-center leadership skills and disciplines to enable a successful tiger team approach. Advocacy was established with key stakeholders and NASA Headquarters (HQ) by defining a strategic vision, mission, goals and objectives for the project and team. As a technology-pull testbed capability the HDU project was able to collaborate and leverage the Exploration Technology Development Program (ETDP) and individual NASA center investments which capitalized on their respective center core competencies and skills. This approach enable the leveraging of over $7.5m of value to create an operational habitat demonstration unit 2010 PEM configuration.
BAGHOUSE FILTRATION PRODUCTS VERIFICATION TESTING, HOW IT BENEFITS THE BOILER BAGHOUSE OPERATOR
The paper describes the Environmental Technology Verification (ETV) Program for baghouse filtration products developed by the Air Pollution Control Technology Verification Center, one of six Centers under the ETV Program, and discusses how it benefits boiler baghouse operators. A...
TECHNOLOGY EVALUATION REPORT CEREX ENVIRONMENTAL SERVICES UV HOUND POINT SAMPLE AIR MONITOR
The USEPA's National Homeland Security Research Center (NHSRC) Technology Testing and Evaluation Program (TTEP) is carrying out performance tests on homeland security technologies. Under TTEP, Battelle evaluated the performance of the Cerex UV Hound point sample air monitor in de...
NASA Technical Reports Server (NTRS)
Zernic, Michael J.
2001-01-01
Communications technologies are being developed to address safety issues during aviation travel. Some of these technologies enable the aircraft to be in constant bidirectional communications with necessary systems, people, and other aircraft that are not currently in place today. Networking technologies, wireless datalinks, and advanced avionics techniques are areas of particular importance that the NASA Glenn Research Center has contributed. Glenn, in conjunction with the NASA Ames Research Center, NASA Dryden Flight Research Center, and NASA Langley Research Center, is investigating methods and applications that would utilize these communications technologies. In mid-June 2000, the flight readiness of the network and communications technologies were demonstrated via a simulated aircraft. A van simulating an aircraft was equipped with advanced phased-array antennas (Advanced Communications/Air Traffic Management (AC/ATM) Advanced Air Transportation Technologies (AATT) project) that used commercial Ku-band satellite communications to connect Glenn, Dryden, and Ames in a combined system ground test. This test simulated air-ground bidirectional transport of real-time digital audio, text, and video data via a hybrid network configuration that demonstrated the flight readiness of the network and communications technologies. Specifically, a Controller Pilot Data Link Communications application was used with other applications to demonstrate a multiprotocol capability via Internet-protocol encapsulated ATN (Aeronautical Telecommunications Network) data packets. The significance of this combined ground test is its contribution to the Aero Information Technology Base Program Level I milestone (Software Technology investment area) of a real-time data link for the National Airspace System. The objective of this milestone was to address multiprotocol technology applicable for real-time data links between aircraft, a satellite, and the ground as well as the ability to distribute flight data with multilevel priorities among several sites.
Engine Validation of Noise and Emission Reduction Technology Phase I
NASA Technical Reports Server (NTRS)
Weir, Don (Editor)
2008-01-01
This final report has been prepared by Honeywell Aerospace, Phoenix, Arizona, a unit of Honeywell International, Inc., documenting work performed during the period December 2004 through August 2007 for the NASA Glenn Research Center, Cleveland, Ohio, under the Revolutionary Aero-Space Engine Research (RASER) Program, Contract No. NAS3-01136, Task Order 8, Engine Validation of Noise and Emission Reduction Technology Phase I. The NASA Task Manager was Dr. Joe Grady of the NASA Glenn Research Center. The NASA Contract Officer was Mr. Albert Spence of the NASA Glenn Research Center. This report is for a test program in which NASA funded engine validations of integrated technologies that reduce aircraft engine noise. These technologies address the reduction of engine fan and jet noise, and noise associated with propulsion/airframe integration. The results of these tests will be used by NASA to identify the engineering tradeoffs associated with the technologies that are needed to enable advanced engine systems to meet stringent goals for the reduction of noise. The objectives of this program are to (1) conduct system engineering and integration efforts to define the engine test-bed configuration; (2) develop selected noise reduction technologies to a technical maturity sufficient to enable engine testing and validation of those technologies in the FY06-07 time frame; (3) conduct engine tests designed to gain insight into the sources, mechanisms and characteristics of noise in the engines; and (4) establish baseline engine noise measurements for subsequent use in the evaluation of noise reduction.
1999-04-20
NASA's Space Optics Manufacturing Technology Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century, including the long-term goal of imaging Earth-like planets in distant solar systems. A segmented array of mirrors was designed by the Space Optics Manufacturing Technology Center for the solar concentrator test stand at the Marshall Space Flight Center (MSFC) for powering solar thermal propulsion engines. Each hexagon mirror has a spherical surface to approximate a parabolic concentrator when combined into the entire 18-foot diameter array. The aluminum mirrors were polished with a diamond turning machine that creates a glass-like reflective finish on metal. The precision fabrication machinery at the Space Optics Manufacturing Technology Center at MSFC can polish specialized optical elements to a world class quality of smoothness. This image shows optics physicist, Vince Huegele, examining one of the 144-segment hexagonal mirrors of the 18-foot diameter array at the MSFC solar concentrator test stand.
1999-04-20
NASA's Space Optics Manufacturing Technology Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century, including the long-term goal of imaging Earth-like planets in distant solar systems. A segmented array of mirrors was designed by the Space Optics Manufacturing Technology Center for solar the concentrator test stand at the Marshall Space Flight Center (MSFC) for powering solar thermal propulsion engines. Each hexagon mirror has a spherical surface to approximate a parabolic concentrator when combined into the entire 18-foot diameter array. The aluminum mirrors were polished with a diamond turning machine, that creates a glass-like reflective finish on metal. The precision fabrication machinery at the Space Optics Manufacturing Technology Center at MSFC can polish specialized optical elements to a world class quality of smoothness. This image shows optics physicist, Vince Huegele, examining one of the 144-segment hexagonal mirrors of the 18-foot diameter array at the MSFC solar concentrator test stand.
Project Morpheus: Lessons Learned in Lander Technology Development
NASA Technical Reports Server (NTRS)
Olansen, Jon B.; Munday, Stephen R.; Mitchell, Jennifer D.
2013-01-01
NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing, that is designed to serve as a testbed for advanced spacecraft technologies. The lander vehicle, propelled by a LOX/Methane engine and sized to carry a 500kg payload to the lunar surface, provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. Designed, developed, manufactured and operated in-house by engineers at Johnson Space Center, the initial flight test campaign began on-site at JSC less than one year after project start. After two years of testing, including two major upgrade periods, and recovery from a test crash that caused the loss of a vehicle, flight testing will evolve to executing autonomous flights simulating a 500m lunar approach trajectory, hazard avoidance maneuvers, and precision landing, incorporating the Autonomous Landing and Hazard Avoidance (ALHAT) sensor suite. These free-flights are conducted at a simulated planetary landscape built at Kennedy Space Center's Shuttle Landing Facility. The Morpheus Project represents a departure from recent NASA programs and projects that traditionally require longer development lifecycles and testing at remote, dedicated testing facilities. This paper expands on the project perspective that technologies offer promise, but capabilities offer solutions. It documents the integrated testing campaign, the infrastructure and testing facilities, and the technologies being evaluated in this testbed. The paper also describes the fast pace of the project, rapid prototyping, frequent testing, and lessons learned during this departure from the traditional engineering development process at NASA's Johnson Space Center.
DOT National Transportation Integrated Search
2016-08-01
The Federal Railroad Administration (FRA), Transportation Technology Center, Inc. (TTCI), and rail industry participants have : performed probability of detection (POD) assessments to evaluate nondestructive testing (NDT) technologies, which are : pr...
Development of a Test Facility for Air Revitalization Technology Evaluation
NASA Technical Reports Server (NTRS)
Lu, Sao-Dung; Lin, Amy; Campbell, Melissa; Smith, Frederick; Curley, Su
2007-01-01
Development of new air revitalization system (ARS) technology can initially be performed in a subscale laboratory environment, but in order to advance the maturity level, the technology must be tested in an end-to-end integrated environment. The Air Revitalization Technology Evaluation Facility (ARTEF) at the NASA Johnson Space Center serves as a ground test bed for evaluating emerging ARS technologies in an environment representative of spacecraft atmospheres. At the center of the ARTEF is a hypobaric chamber which serves as a sealed atmospheric chamber for closed loop testing. A Human Metabolic Simulator (HMS) was custom-built to simulate the consumption of oxygen, and production of carbon dioxide, moisture and heat of up to eight persons. A multitude of gas analyzers and dew point sensors are used to monitor the chamber atmosphere upstream and downstream of a test article. A robust vacuum system is needed to simulate the vacuum of space. A reliable data acquisition and control system is required to connect all the subsystems together. This paper presents the capabilities of the integrated test facility and some of the issues encountered during the integration.
NASA Technical Reports Server (NTRS)
Aydelott, J. C.; Rudland, R. S.
1985-01-01
The NASA Lewis Research Center is responsible for the planning and execution of a scientific program which will provide advance in space cryogenic fluid management technology. A number of future space missions were identified that require or could benefit from this technology. These fluid management technology needs were prioritized and a shuttle attached reuseable test bed, the cryogenic fluid management facility (CFMF), is being designed to provide the experimental data necessary for the technology development effort.
Geothermal switch heater installation, testing and monitoring : phases 1 & 2.
DOT National Transportation Integrated Search
2016-07-01
Transportation Technology Center, Inc. (TTCI), Norfolk Southern (NS), and John A. Volpe National Transportation Systems Center (Volpe) completed Phases 1 and 2 of a project on a working prototype geothermal switch heating system designed to test the ...
Process Engineering Technology Center Initiative
NASA Technical Reports Server (NTRS)
Centeno, Martha A.
2001-01-01
NASA's Kennedy Space Center (KSC) is developing as a world-class Spaceport Technology Center (STC). From a process engineering (PE) perspective, the facilities used for flight hardware processing at KSC are NASA's premier factories. The products of these factories are safe, successful shuttle and expendable vehicle launches carrying state-of-the-art payloads. PE is devoted to process design, process management, and process improvement, rather than product design. PE also emphasizes the relationships of workers with systems and processes. Thus, it is difficult to speak of having a laboratory for PE at KSC because the entire facility is practically a laboratory when observed from a macro level perspective. However, it becomes necessary, at times, to show and display how KSC has benefited from PE and how KSC has contributed to the development of PE; hence, it has been proposed that a Process Engineering Technology Center (PETC) be developed to offer a place with a centralized focus on PE projects, and a place where KSC's PE capabilities can be showcased, and a venue where new Process Engineering technologies can be investigated and tested. Graphics for showcasing PE capabilities have been designed, and two initial test beds for PE technology research have been identified. Specifically, one test bed will look into the use of wearable computers with head mounted displays to deliver work instructions; the other test bed will look into developing simulation models that can be assembled into one to create a hierarchical model.
Process Engineering Technology Center Initiative
NASA Technical Reports Server (NTRS)
Centeno, Martha A.
2002-01-01
NASA's Kennedy Space Center (KSC) is developing as a world-class Spaceport Technology Center (STC). From a process engineering (PE) perspective, the facilities used for flight hardware processing at KSC are NASA's premier factories. The products of these factories are safe, successful shuttle and expendable vehicle launches carrying state-of-the-art payloads. PE is devoted to process design, process management, and process improvement, rather than product design. PE also emphasizes the relationships of workers with systems and processes. Thus, it is difficult to speak of having a laboratory for PE at K.S.C. because the entire facility is practically a laboratory when observed from a macro level perspective. However, it becomes necessary, at times, to show and display how K.S.C. has benefited from PE and how K.S.C. has contributed to the development of PE; hence, it has been proposed that a Process Engineering Technology Center (PETC) be developed to offer a place with a centralized focus on PE projects, and a place where K.S.C.'s PE capabilities can be showcased, and a venue where new Process Engineering technologies can be investigated and tested. Graphics for showcasing PE capabilities have been designed, and two initial test beds for PE technology research have been identified. Specifically, one test bed will look into the use of wearable computers with head mounted displays to deliver work instructions; the other test bed will look into developing simulation models that can be assembled into one to create a hierarchical model.
Battery development and testing at ESA
NASA Technical Reports Server (NTRS)
Verniolle, Jean
1987-01-01
The principal activities of the Energy Storage Section of the Space Research and Technology Center (ESTEC) of the European Space Agency are presented. Nickel-hydrogen and fuel cell systems development are reported. The European Space Battery Test Center (ESBTC) facilities are briefly described along with the current test programs and results obtained.
Development and Implementation of NASA's Lead Center for Rocket Propulsion Testing
NASA Technical Reports Server (NTRS)
Dawson, Michael C.
2001-01-01
With the new millennium, NASA's John C. Stennis Space Center (SSC) continues to develop and refine its role as rocket test service provider for NASA and the Nation. As Lead Center for Rocket Propulsion Testing (LCRPT), significant progress has been made under SSC's leadership to consolidate and streamline NASA's rocket test infrastructure and make this vital capability truly world class. NASA's Rocket Propulsion Test (RPT) capability consists of 32 test positions with a replacement value in excess of $2B. It is dispersed at Marshall Space Flight Center (MSFC), Johnson Space Center (JSC)-White Sands Test Facility (WSTF), Glenn Research Center (GRC)-Plum Brook (PB), and SSC and is sized appropriately to minimize duplication and infrastructure costs. The LCRPT also provides a single integrated point of entry into NASA's rocket test services. The RPT capability is managed through the Rocket Propulsion Test Management Board (RPTMB), chaired by SSC with representatives from each center identified above. The Board is highly active, meeting weekly, and is key to providing responsive test services for ongoing operational and developmental NASA and commercial programs including Shuttle, Evolved Expendable Launch Vehicle, and 2nd and 3rd Generation Reusable Launch Vehicles. The relationship between SSC, the test provider, and the hardware developers, like MSFC, is critical to the implementation of the LCRPT. Much effort has been expended to develop and refine these relationships with SSC customers. These efforts have met with success and will continue to be a high priority to SSC for the future. To data in the exercise of its role, the LCRPT has made 22 test assignments and saved or avoided approximately $51M. The LCRPT directly manages approximately $30M annually in test infrastructure costs including facility maintenance and upgrades, direct test support, and test technology development. This annual budges supports rocket propulsion test programs which have an annual budget in excess of $150M. As the LCRPT continues to develop, customer responsiveness and lower cost test services will be major themes. In that light, SSC is embarking on major test technology development activities ensuring long range goals of safer, more responsive, and more cost effective test services are realized. The LCRPT is also focusing on the testing requirements for advanced propulsion systems. This future planning is key to defining and fielding the ability to test these new technologies in support of the hardware developers.
Strategic Defense Initiative Demonstration/Validation Program: Environmental Assessments Summary
1987-08-01
TECHNOLOGY TESTS BY FACILITY TECHNOLOGY FACILITY BSTS SSTS GSTS SBI ERIS BM/C 3 Alabama Advanced Research Center A,S,C * California Edwards Air Force Base...Alabama - Advanced Research Center o California - Edwards Air Force Base o Florida - Eglin Air Force Base Kennedy Space Center o Maryland - Harry Diamond...BSTS SSTS GSTS SBI ERIS BM/C 3 Alabama Advanced Research Center A,S,C * California Edwards Air Force Base C Vandenberg Air Force Base/ F (1) F (2) F( 2
NASA Technical Reports Server (NTRS)
Kennedy, Kriss J.; Toup, Larry; Gill, Tracy; Tri, Terry; Howe, Scott; Smitherman, David
2011-01-01
This paper gives an overview of the National Aeronautics and Space Administration (NASA) led multi-center Habitat Demonstration Unit (HDU) project leadership and management strategies being used by the NASA HDU team for a rapid prototyping project. The HDU project team constructed and tested an analog prototype lunar surface habitat/laboratory called the Pressurized Excursion Module (PEM) during 2010. The prototype unit subsystems were integrated in a short amount of time, utilizing a tiger team rapid prototyping approach that brought together over 20 habitation-related technologies and innovations from a variety of NASA centers. This paper describes the leadership and management strategies as well as lessons learned pertaining to leading and managing a multi-center diverse team in a rapid prototype environment. The PEM configuration went from a paper design to an operational surface habitat demonstration unit in less than 12 months. The HDU project is part of the strategic plan from the Exploration Systems Mission Directorate (ESMD) Directorate Integration Office (DIO) and the Exploration Mission Systems Office (EMSO) to test destination elements in analog environments. The 2011 HDU-Deep Space Habitat (DSH) configuration will build upon the PEM work, and emphasize validity of crew operations (remote working and living), EVA operations, mission operations, logistics operations, and science operations that might be required in a deep space context for Near Earth Object (NEO) exploration mission architectures. The 2011 HDU-DSH will be field-tested during the 2011 Desert Research and Technologies Studies (DRaTS) field tests. The HDU project is a "technology-pull" project that integrates technologies and innovations from multiple NASA centers. This project will repurpose the HDU 2010 demo unit that was field tested in the 2010 DRaTS, adding habitation functionality to the prototype unit. This paper will describe the strategy of establishing a multi-center project management team that put in place the key multi-center leadership skills and disciplines to enable a successful tiger team approach. Advocacy was established with key stakeholders and NASA Headquarters (HQ) by defining a strategic vision, mission, goals and objectives for the project and team. As a technology-pull testbed capability the HDU project was able to collaborate and leverage the Exploration Technology Development Program (ETDP) and individual NASA center investments which capitalized on their respective center core competencies and skills. This approach enable the leveraging of over $7.5m of value to create an operational habitat demonstration unit 2010 PEM configuration.
NASA Marshall Space Flight Center Barrel-Shaped Asymmetrical Capacitor
NASA Technical Reports Server (NTRS)
Campbell, J. W.; Carruth, M. R.; Edwards, D. L.; Finchum, A.; Maxwell, G.; Nabors, S.; Smalley, L.; Huston, D.; Ila, D.; Zimmerman, R.
2004-01-01
The NASA Barrel-Shaped Asymmetrical Capacitor (NACAP) has been extensively tested at NASA Marshall Space Flight Center and the National Space Science and Technology Center. Trichel pulse emission was first discovered here. The NACAP is a magnetohydrodynamic device for electric propulsion. In air it requires no onboard propellant nor any moving parts. No performance was observed in hard vacuum. The next step shall be optimizing the technology for future applications.
HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY
DOE Office of Scientific and Technical Information (OSTI.GOV)
M.A. Ebadian
1999-07-31
FIU-HCET personnel visited the Special Technologies Laboratory (STL) for discussions with the Principal Investigator (PI) of Laser Induced Fluorescence Imaging (LIFI) and for training in LIFI. Mr. Peter Gibbons, Tanks Retrieval Technology Integration Manager, visited FIU-HCET on July 20, 1999. Mr. Gibbons inspected the pipeline unplugging experimental facility at the HCET testing field. The detailed test bed construction, testing plan, and plugging material specifications were discussed.
Overview of free-piston Stirling technology at the NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Slaby, J. G.
1985-01-01
An overview of the National Aeronautics and Space Administration (NASA) Lewis Research Center (Lewis) free-piston Stirling engine activities is presented. These activities include: (1) a generic free-piston Stirling technology project being conducted to develop technologies synergistic to both space power and terrestrial heat pump applications in a cooperative, cost-shared effort with the Department of Energy (DOE/Oak Ridge National Laboratory (ONRL)), and (2) a free-piston Stirling space-power technology demonstration project as part of the SP-100 program being conducted in support of the Department of Defense (DOD), DOE, and NASA/Lewis. The generic technology effort includes extensive parametric testing of a 1 kw free-piston Stirling engine (RE-1000), development and validation of a free-piston Stirling performance computer code, and fabrication and initial testing of an hydraulic output modification for the RE-1000 engine. The space power technology effort, under SP-100, addresses the status of the 25 kWe Space Power Demonstrator Engine (SPDE) including early test results.
User-centered design and usability testing of an innovative health-related quality of life module.
Nagykaldi, Z J; Jordan, M; Quitoriano, J; Ciro, C A; Mold, J W
2014-01-01
Various computerized health risk appraisals (HRAs) are available, but few of them assess health-related quality of life (HRQoL) in a goal-directed framework. This study describes the user-centered development and usability testing of an innovative HRQoL module that extends a validated HRA tool in primary care settings. Systematic user-centered design, usability testing, and qualitative methods were used to develop the HRQoL module in primary care practices. Twenty two patients and 5 clinicians participated in two rounds of interactive technology think-out-loud sessions (TOLs) and semi-structured interviews (SSIs) to iteratively develop a four-step, computerized process that collects information on patient goals for meaningful life activities and current level of disability and presents a personalized and prioritized list of preventive recommendations linked to online resources. Analysis of TOLs and SSIs generated 5 categories and 11 sub-categories related to facilitators and barriers to usability and human-technology interaction. The categories included: Understanding the Purpose, Usability, Perceived Value, Literacy, and Participant Motivation. Some categories were inter-connected. The technology was continually and iteratively improved between sessions until saturation of positive feedback was achieved in 4 categories (addressing motivation will require more research). Usability of all screen units of the module was improved substantially. Clinician feedback emphasized the importance of the module's ability to translate the patient-centered HRQoL Report into actionable items for clinicians to facilitate shared decision-making. Complete integration of the HRQoL module into the existing HRA will require further development and testing. Systematic application of user-centered design and human factors principles in technology development and testing may significantly improve the usability and clinical value of health information systems. This more sophisticated approach helped us translate complex clinical concepts, goal-setting steps, and decision-support processes into an accepted and value-added technology.
The USEPA's National Homeland Security Research Center (NHSRC)Technology Testing and Evaluation Program (TTEP) is carrying out performance tests on homeland security technologies. Under TTEP, Battelle recently evaluated the performance of the Science Applications International Co...
The 1987 Goddard Space Flight Center Battery Workshop
NASA Technical Reports Server (NTRS)
Morrow, George (Editor); Yi, Thomas Y. (Editor)
1993-01-01
This document contains the proceedings of the 20th annual Battery Workshop held at Goddard Space Flight Center, Greenbelt, Maryland on November 4-5, 1987. The workshop attendees included manufacturers, users, and government representatives interested in the latest developments in battery technology as they relate to high reliability operations and aerospace use. The subjects covered included lithium cell technology and safety improvements, nickel-cadmium electrode technology along with associated modifications, flight experience and life testing of nickel-cadmium cells, and nickel-hydrogen applications and technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The National Renewable Energy Laboratory's (NREL) controllable grid interface (CGI) test system at the National Wind Technology Center (NWTC) is one of two user facilities at NREL capable of testing and analyzing the integration of megawatt-scale renewable energy systems. The CGI specializes in testing of multimegawatt-scale wind and photovoltaic (PV) technologies as well as energy storage devices, transformers, control and protection equipment at medium-voltage levels, allowing the determination of the grid impacts of the tested technology.
Langley aeronautics and space test highlights, 1984
NASA Technical Reports Server (NTRS)
1984-01-01
The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during calendar year 1984 in Langley test facilities are highlighted. The broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.
Testing a potential national strategy for cost-effective medical technology
NASA Astrophysics Data System (ADS)
Fitch, J. Patrick
1995-10-01
The Center for Healthcare Technologies at Lawrence Livermore National Laboratory is a partnership among government, industry, and universities that focuses on improving healthcare through development of cost-effective technology. With the guidance of healthcare providers, medical institutions, and medical instrument manufacturers, technology can be harnessed to reduce healthcare costs. The partnership is a miniature test case for a potential national strategy for development and adoption of technology specifically to reduce costs.
The 1986 Goddard Space Flight Center Battery Workshop
NASA Technical Reports Server (NTRS)
Morrow, George W. (Editor); Yi, Thomas Y. (Editor)
1987-01-01
The subjects covered include: lithium cell technology and safety improvements; nickel-cadmium separator and electrode technology along with associated modifications; flight experience and life testing of nickel-cadmium cell; and nickel-hydrogen applications and technology.
Space technology test facilities at the NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Gross, Anthony R.; Rodrigues, Annette T.
1990-01-01
The major space research and technology test facilities at the NASA Ames Research Center are divided into five categories: General Purpose, Life Support, Computer-Based Simulation, High Energy, and the Space Exploraton Test Facilities. The paper discusses selected facilities within each of the five categories and discusses some of the major programs in which these facilities have been involved. Special attention is given to the 20-G Man-Rated Centrifuge, the Human Research Facility, the Plant Crop Growth Facility, the Numerical Aerodynamic Simulation Facility, the Arc-Jet Complex and Hypersonic Test Facility, the Infrared Detector and Cryogenic Test Facility, and the Mars Wind Tunnel. Each facility is described along with its objectives, test parameter ranges, and major current programs and applications.
Station Astronaut Drives Rover from Space During Telerobotics Test (Reporter Pkg for Web)
2013-07-26
During a technology demonstration test, an astronaut onboard the International Space Station will remotely control a rover at NASA's Ames Research Center, Moffett Field, Calif. The test is designed to identify the technology and skills needed to remotely operate rovers on the surface of the moon, Mars or an asteroid.
NASA Examines Technology To Fold Aircraft Wings In Flight
2018-01-17
NASA conducts a flight test series to investigate the ability of an innovative technology to fold the outer portions of wings in flight as part of the Spanwise Adaptive Wing project, or SAW. Flight tests took place at NASA Armstrong Flight Research Center in California, using a subscale UAV called Prototype Technology-Evaluation Research Aircraft, or PTERA, provided by Area-I. NASA Glenn Research Center in Cleveland developed the alloy material, and worked with Boeing Research & Technology to integrate the material into an actuator. The alloy is triggered by temperature to move the outer portions of wings up or down in flight. The ability to fold wings to the ideal position of various flight conditions may produce several aerodynamic benefits for both subsonic and supersonic aircraft.
EPA has created the Environmental Technology Verification Program to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. The Air Pollution Control Technology Verification Center, a cente...
2001-08-06
The test of twin Linear Aerospike XRS-2200 engines, originally built for the X-33 program, was performed on August 6, 2001 at NASA's Sternis Space Center, Mississippi. The engines were fired for the planned 90 seconds and reached a planned maximum power of 85 percent. NASA's Second Generation Reusable Launch Vehicle Program , also known as the Space Launch Initiative (SLI), is making advances in propulsion technology with this third and final successful engine hot fire, designed to test electro-mechanical actuators. Information learned from this hot fire test series about new electro-mechanical actuator technology, which controls the flow of propellants in rocket engines, could provide key advancements for the propulsion systems for future spacecraft. The Second Generation Reusable Launch Vehicle Program, led by NASA's Marshall Space Flight Center in Huntsville, Alabama, is a technology development program designed to increase safety and reliability while reducing costs for space travel. The X-33 program was cancelled in March 2001.
ERIC Educational Resources Information Center
Johanson, Joyce; Clark, Letha; Daytner, Katrina; Robinson, Linda
2009-01-01
Accessing Curriculum through Technology Tools (ACTTT), a model development project, was developed and tested by staff of the Center for Best Practices in Early Childhood (the Center), a research and development unit within the College of Education and Human Services at Western Illinois University. The major goal of ACTTT was to develop,…
Verification Testing of Air Pollution Control Technology Quality Management Plan Revision 2.3
The Air Pollution Control Technology Verification Center was established in 1995 as part of the EPA’s Environmental Technology Verification Program to accelerate the development and commercialization of improved environmental technologies’ performance.
QuEST: Qualifying Environmentally Sustainable Technologies
NASA Technical Reports Server (NTRS)
Lewis, Pattie
2012-01-01
Articles in this issue inlude: (1) Foundation of Technology Evaluation for Environmental Risk Mitigation Principal Center (TEERM) Technology Evaluation is Testing and Qualification, (2) Materials Management and Substitution Efforts, (3 Recycling and Pollution Control Efforts, and (4) Remediation Efforts
The Habitat Demonstration Unit Project Overview
NASA Technical Reports Server (NTRS)
Kennedy, Kriss J.; Grill, Tracy R.; Tri, Terry O.; Howe, Alan S.
2010-01-01
This paper will describe an overview of the National Aeronautics and Space Administration (NASA) led multi-center Habitat Demonstration Unit (HDU) Project. The HDU project is a "technology-pull" project that integrates technologies and innovations from numerous NASA centers. This project will be used to investigate and validate surface architectures, operations concepts, and requirements definition of various habitation concepts. The first habitation configuration this project will build and test is the Pressurized Excursion Module (PEM). This habitat configuration - the PEM - is based on the Constellation Architecture Scenario 12.1 concept of a vertically oriented habitat module. The HDU project will be tested as part of the 2010 Desert Research and Technologies Simulations (D-RATS) test objectives. The purpose of this project is to develop, integrate, test, and evaluate a habitat configuration in the context of the mission architectures and surface operation concepts. A multi-center approach will be leveraged to build, integrate, and test the PEM through a shared collaborative effort of multiple NASA centers. The HDU project is part of the strategic plan from the Exploration Systems Mission Directorate (ESMD) Directorate Integration Office (DIO) and the Lunar Surface Systems Project Office (LSSPO) to test surface elements in a surface analog environment. The 2010 analog field test will include two Lunar Electric Rovers (LER) and the PEM among other surface demonstration elements. This paper will describe the overall objectives, its various habitat configurations, strategic plan, and technology integration as it pertains to the 2010 and 2011 field analog tests. To accomplish the development of the PEM from conception in June 2009 to rollout for operations in July 2010, the HDU project team is using a set of design standards to define the interfaces between the various systems of PEM and to the payloads, such as the Geology Lab, that those systems will support. Scheduled activities such as early fit-checks and the utilization of a habitat avionics test bed prior to equipment installation into PEM are planned to facilitate the integration process.
HDU Deep Space Habitat (DSH) Overview
NASA Technical Reports Server (NTRS)
Kennedy, Kriss J.
2011-01-01
This paper gives an overview of the National Aeronautics and Space Administration (NASA) led multi-center Habitat Demonstration Unit (HDU) project Deep Space Habitat (DSH) analog that will be field-tested during the 2011 Desert Research and Technologies Studies (D-RATS) field tests. The HDU project is a technology pull project that integrates technologies and innovations from multiple NASA centers. This project will repurpose the HDU Pressurized Excursion Module (PEM) that was field tested in the 2010 D-RATS, adding habitation functionality to the prototype unit. The 2010 configuration of the HDU-PEM consisted of a lunar surface laboratory module that was used to bring over 20 habitation-related technologies together in a single platform that could be tested as an advanced habitation analog in the context of mission architectures and surface operations. The 2011 HDU-DSH configuration will build upon the PEM work, and emphasize validity of crew operations (habitation and living, etc), EVA operations, mission operations, logistics operations, and science operations that might be required in a deep space context for Near Earth Object (NEO) exploration mission architectures. The HDU project consists of a multi-center team brought together in a skunkworks approach to quickly build and validate hardware in analog environments. The HDU project is part of the strategic plan from the Exploration Systems Mission Directorate (ESMD) Directorate Integration Office (DIO) and the Exploration Mission Systems Office (EMSO) to test destination elements in analog environments. The 2011 analog field test will include Multi Mission Space Exploration Vehicles (MMSEV) and the DSH among other demonstration elements to be brought together in a mission architecture context. This paper will describe overall objectives, various habitat configurations, strategic plan, and technology integration as it pertains to the 2011 field tests.
DOT National Transportation Integrated Search
2009-07-31
The Federal Railroad Administration sponsored a full-scale train-to-train crash energy management (CEM) technology test that was conducted on March 23, 2006, at the Transportation Technology Center in Pueblo, Colorado. The Volpe National Transportati...
The 1985 Goddard Space Flight Center Battery Workshop
NASA Technical Reports Server (NTRS)
Morrow, G. (Editor)
1986-01-01
The subjects covered include: advanced energy storage, lithium cell technology, nickel-cadmium design evaluation and component testing, simulated orbital cycling and flight experience, and nickel-hydrogen technology.
Technology advancements for the U.S. manned Space Station - An overview
NASA Technical Reports Server (NTRS)
Simon, William E.
1987-01-01
The structure and methodology of the Johnson Space Center (JSC) advanced development program is described. An overview of the program is given, and the technology transfer process to other disciplines is described. The test bed and flight experiment programs are described, as is the technology assessment which was performed at the end of the Phase B program. The technology program within each discipline is summarized, and the coordination and integration of the JSC program with the activities of other NASA centers and with work package contractors are discussed.
Testing of Twin Linear Aerospike XRS-2200 Engine
NASA Technical Reports Server (NTRS)
2001-01-01
The test of twin Linear Aerospike XRS-2200 engines, originally built for the X-33 program, was performed on August 6, 2001 at NASA's Sternis Space Center, Mississippi. The engines were fired for the planned 90 seconds and reached a planned maximum power of 85 percent. NASA's Second Generation Reusable Launch Vehicle Program , also known as the Space Launch Initiative (SLI), is making advances in propulsion technology with this third and final successful engine hot fire, designed to test electro-mechanical actuators. Information learned from this hot fire test series about new electro-mechanical actuator technology, which controls the flow of propellants in rocket engines, could provide key advancements for the propulsion systems for future spacecraft. The Second Generation Reusable Launch Vehicle Program, led by NASA's Marshall Space Flight Center in Huntsville, Alabama, is a technology development program designed to increase safety and reliability while reducing costs for space travel. The X-33 program was cancelled in March 2001.
Effect of structural mount dynamics on a pair of operating Stirling Convertors
NASA Astrophysics Data System (ADS)
Goodnight, Thomas W.; Suárez, Vicente J.; Hughes, William O.; Samorezov, Sergey
2002-01-01
The U.S. Department of Energy (DOE), in conjunction with NASA John H. Glenn Research Center and Stirling Technology Company, are currently developing a Stirling convertor for a Stirling Radioisotope Generator (SRG). NASA Headquarters and DOE have identified the SRG for potential use as an advanced spacecraft power system for future NASA deep-space and Mars surface missions. Low-level dynamic base-shake tests were conducted on a dynamic simulation of the structural mount for a pair of Operating Stirling Convertors. These tests were conducted at NASA Glenn Research Center's Structural Dynamics Laboratory as part of the development of this technology. The purpose of these tests was to identify the changes in transmissibility and the effect on structural dynamic response on a pair of operating Stirling Technology Demonstration Convertors (TDCs). This paper addresses the base-shake test, setup, procedure and results conducted on the Stirling TDC mount simulator in April 2001. .
Langley aerospace test highlights, 1988
NASA Technical Reports Server (NTRS)
1989-01-01
The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during calendar year 1988 in Langley test facilities, a number of which are unique in the world are highlighted. Both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.
1998-09-16
A team of engineers at Marshall Space Flight Center (MSFC) has designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket that produces lower thrust but has better thrust efficiency than the chemical combustion engines. This segmented array of mirrors is the solar concentrator test stand at MSFC for firing the thermal propulsion engines. The 144 mirrors are combined to form an 18-foot diameter array concentrator. The mirror segments are aluminum hexagons that have the reflective surface cut into it by a diamond turning machine, which is developed by MSFC Space Optics Manufacturing Technology Center.
US DOE Regional Test Centers Program - 2016 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stein, Joshua
The US Department of Energy’s Regional Test Center (RTC) program provides outdoor validation and bankability data for innovative solar technologies at five sites across the US representing a range of climate conditions. Data helps get new technologies to market faster and improves US industry competitiveness. Managed by Sandia National Laboratories and the National Renewable Energy Laboratory (NREL), the RTC program partners with US manufacturers of photovoltaic (PV) technologies, including modules, inverters, and balance-of-system equipment. The study is collaborative, with manufacturers (also known as RTC industry partners) and the national labs working together on a system design and validation strategy thatmore » meets a clearly defined set of performance and reliability objectives.« less
Status of Hydrodynamic Technology as Related to Model Tests of High- Speed Marine Vehicles
1981-07-01
Pennsylvania State University, State College, Pennsylvania, U.S.A. *Bulgarian Ship Hydrodynamics Centre, Varna, Bulgaria Canal de Experiencias Hidrodinamicas...DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER ’h "Bethesda, Maryland 20084 STATUS OF HYDRODYNAMIC TECHNOLOGY AS RELATED TO MODEL TESTS...34Status of Hydrodynamic Technology as related to Model Tests of High Speed Marine Vehicles" documenting the complete findings of the 16th ITTC’s
Desert Research and Technology Studies 2008 Report
NASA Technical Reports Server (NTRS)
Romig, Barbara; Kosmo, Joseph; Gernhardt, Michael; Abercromby, Andrew
2009-01-01
During the last two weeks of October 2008, the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) Advanced Extravehicular Activity (AEVA) team led the field test portion of the 2008 Desert Research and Technology Studies (D-RATS) near Flagstaff, AZ. The Desert RATS field test activity is the year-long culmination of various individual science and advanced engineering discipline areas technology and operations development efforts into a coordinated field test demonstration under representative (analog) planetary surface terrain conditions. The 2008 Desert RATS was the eleventh RATS field test and was the most focused and successful test to date with participants from six NASA field centers, three research organizations, one university, and one other government agency. The main test objective was to collect Unpressurized Rover (UPR) and Lunar Electric Rover (LER) engineering performance and human factors metrics while under extended periods of representative mission-based scenario test operations involving long drive distances, night-time driving, Extravehicular Activity (EVA) operations, and overnight campover periods. The test was extremely successful with all teams meeting the primary test objective. This paper summarizes Desert RATS 2008 test hardware, detailed test objectives, test operations, and test results.
Free-piston Stirling component test power converter test results and potential Stirling applications
NASA Technical Reports Server (NTRS)
Dochat, G. R.
1992-01-01
As the principal contractor to NASA-Lewis Research Center, Mechanical Technology Incorporated is under contract to develop free-piston Stirling power converters in the context of the competitive multiyear Space Stirling Technology Program. The first generation Stirling power converter, the component test power converter (CTPC) initiated cold end testing in 1991, with hot testing scheduled for summer of 1992. This paper reviews the test progress of the CTPC and discusses the potential of Stirling technology for various potential missions at given point designs of 250 watts, 2500 watts, and 25,000 watts.
NASA Technical Reports Server (NTRS)
Jankovsky, Robert; Elliott, Fred
2000-01-01
It is the goal of this activity to develop 50 kW class Hall thruster technology in support of cost and time critical mission applications such as orbit insertion. NASA Marshall Space Flight Center is tasked to develop technologies that enable cost and travel time reduction of interorbital transportation. Therefore, a key challenge is development of moderate specific impulse (2000-3000 s), high thrust-to-power electric propulsion. NASA Glenn Research Center is responsible for development of a Hall propulsion system to meet these needs. First-phase, sub-scale Hall engine development completed. A 10 kW engine designed, fabricated, and tested. Performance demonstrated >2400 s, >500 mN thrust over 1000 hours of operation documented.
1981-01-01
A Space Shuttle Main Engine undergoes test-firing at the National Space Technology Laboratories (now the Sternis Space Center) in Mississippi. The Marshall Space Flight Center had management responsibility of Space Shuttle propulsion elements, including the Main Engines.
Quiet Supersonic Technology (QueSST)
2017-03-02
Mechanical technician Dan Pitts prepares a scale model of Lockheed Martin's Quiet Supersonic Technology (QueSST) X-plane preliminary design for its first high-speed wind tunnel tests at NASA's Glenn Research Center.
John C. Stennis Space Center: Partnerships for ISHM Technology Development and Applications
NASA Technical Reports Server (NTRS)
Figueroa, Jorge F.; Schmalzel, John; Turowski, Mark; Morris, John; Smith, Harvey
2008-01-01
This poster shows the partners that work with NASA's Stennis Space Center's NASA Test Operations Group in development of Integrated Systems Health Management (ISHM) applications for various programs. The partners are from universities, other US government agencies, private firms and other NASA Centers.
Under EPA's Environmental Technology Verification Program, Research Triangle Institute (RTI) will operate the Air Pollution Control Technology Center to verify the filtration efficiency and bioaerosol inactivation efficiency of heating, ventilation and air conditioning air cleane...
technologies and operational practices which increase fuel efficiency and reduce emissions from goods movement . EPA provides partners with performance benchmarking tools, fleet management best practices, technology is working with partners to test and verify advanced technologies and operational practices that save
Verification testing of the Aquasource UF unit ws conducted over two test periods at the Aqua2000 Research Center in San Diego, CA. The first test period, from 3/5 - 4/19/99, represented winter/spring conditons. The second test period, from 8/25 - 9/28/99, represented summer/fall...
Marshall Space Flight Center ECLSS technology activities
NASA Technical Reports Server (NTRS)
Wieland, Paul
1990-01-01
Viewgraphs on Environmental Control and Life Support System (ECLSS) technology activities are presented. Topics covered include: analytical development; ECLSS modeling approach; example of water reclamation modeling needs; and hardware development and testing.
2014-10-07
NIKI WERKHEISER - 3D PRINTING ZERO-G PROJECT MANAGER, DISCUSSES 3D PRINTING TECHNOLOGY WITH DR. ELLEN OCHOA.1401414 THE ISS NOW HAS A 3D PRINTER, WHICH THE TECHNOLOGY WAS TESTED AT THE MARSHALL SPACE FLIGHT CENTER
NASA Technical Reports Server (NTRS)
Hang, Richard
2015-01-01
The presentation will overview NASA Armstrong Flight Research Centers flight test capabilities, which can provide various means for flight testing of passive and active wireless sensor systems, also, it will address the needs of the wireless data acquisition solutions for the centers flight instrumentation issues such as additional weight caused by added instrumentation wire bundles, connectors, wire cables routing, moving components, etc., that the Passive Wireless Sensor Technology Workshop may help. The presentation shows the constraints and requirements that the wireless sensor systems will face in the flight test applications.
Development, fabrication, and testing of locomotive crashworthy components
DOT National Transportation Integrated Search
2014-12-02
The Federal Railroad Administration (FRA) and the John A. Volpe National Transportation Systems Center (Volpe Center) are continuing to evaluate new technologies for increasing the safety of passengers and operators in rail equipment. In recognition ...
Missouri S&T hydrogen transportation test bed equipment & construction.
DOT National Transportation Integrated Search
2010-08-01
Investments through the National University Transportation Center at Missouri University of Science and Technology have really scored on the Centers mission areas and particularly Transition-state fuel vehicle infrastructure leading to a hydrogen ...
Quellmalz, Edys S; Pellegrino, James W
2009-01-02
Large-scale testing of educational outcomes benefits already from technological applications that address logistics such as development, administration, and scoring of tests, as well as reporting of results. Innovative applications of technology also provide rich, authentic tasks that challenge the sorts of integrated knowledge, critical thinking, and problem solving seldom well addressed in paper-based tests. Such tasks can be used on both large-scale and classroom-based assessments. Balanced assessment systems can be developed that integrate curriculum-embedded, benchmark, and summative assessments across classroom, district, state, national, and international levels. We discuss here the potential of technology to launch a new era of integrated, learning-centered assessment systems.
The 1979 Goddard Space Flight Center Battery Workshop
NASA Technical Reports Server (NTRS)
Halpert, G. (Editor)
1980-01-01
Papers discussing the latest results of testing, analysis, and development of the sealed nickel cadmium cell system are presented. Metal hydrogen and lithium cell technology and applications are also discussed. The purpose of the workshop was to share flight and test experience, stimulate discussion on problem areas, and to review the latest technology improvements.
Desert Research and Technology Study 2003 Trip Report/ICES Paper
NASA Technical Reports Server (NTRS)
Ross, Amy; Kosmo, Joseph J.; Janoiko, Barbara; Eppler, Dean
2004-01-01
The Advanced Extra-vehicular Activity (EVA) team of the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) Crew and Thermal Systems Division (CTSD) participated in the Desert Research and Technology Study (RATS) in September 2003, at Meteor Crater, AZ. The Desert RATS is an integrated remote field site te t with team members from several NASA centers (Johnson Space Center; Glenn and Ames Research Centers) and universities (Bowling Green State University, University of Cincinnati, Massachusetts Institute of Technology) participating. Each week of the two-week field test had a primary focus. The primary test hardware for the first week was the I-Gravity Lunar Rover Training Vehicle, or Grover, which was on loan to NASA from the United States Geological Survey (USGS) Astrogeology Research Program. The 2003 Grover driving test results serve as a rover performance characterization baseline for the Science, Crew, Operation and Utility Testbed (SCOUT) project team, which will be designing and fabricating a next generation roving vehicle prototype in Fiscal Year (FY) 2004. The second week of testing focused on EVA geologic traverses that utilized a geologic sample field analysis science trailer and also focused on human-robotic interaction between the suited subjects and the EVA Robotic Assistant (ERA). This paper will review the Advanced EVA team's role in the context of the overall Desert RATS, as well as the EVA team results and lessons learned. For information regarding other test participants' results, the authors can refer interested parties to the test reports produced by those Desert RATS teams.
National space test centers - Lewis Research Center Facilities
NASA Technical Reports Server (NTRS)
Roskilly, Ronald R.
1990-01-01
The Lewis Research Center, NASA, presently has a number of test facilities that constitute a significant national space test resource. It is expected this capability will continue to find wide application in work involving this country's future in space. Testing from basic research to applied technology, to systems development, to ground support will be performed, supporting such activities as Space Station Freedom, the Space Exploration Initiative, Mission to Planet Earth, and many others. The major space test facilities at both Cleveland and Lewis' Plum Brook Station are described. Primary emphasis is on space propulsion facilities; other facilities of importance in space power and microgravity are also included.
Shallow Water UXO Technology Demonstration Site, Scoring Record No. 4 (CTC, FEREX DLG-GPS), MAG)
2008-04-01
Detection and Discrimination Demonstration of a Fluxgate Vertical Gradient Magnetometer at the Aberdeen Shallow Water Test Site. Submitted in...TECHNOLOGY TYPE/PLATFORM: FEREX DLG-GPS MAGNETOMETER SYSTEM PREPARED BY: U.S. ARMY ABERDEEN TEST CENTER ABERDEEN PROVING GROUND, MD 21005...efforts of Concurrent Technologies Corporation (CTC) to detect and discriminate inert unexploded ordnance (UXO) using a FEREX DLG- magnetometer with a
Final Technical Report: Hawaii Energy and Environmental Technologies Initiative 2009 (HEET)
2016-05-25
environment. A second objective under this subtask was to install, test and evaluate small wind turbine technologies to determine the relative... wind turbines adjacent to, and connected with the test platforms located at the Crissy Field Center in the Presidio of San Francisco, a proven wind ...resource for collection of comparative wind energy data. Vertical axis technology, turbines manufactured by Venco Power, Windspire Energy and
Langley aeronautics and space test highlights, 1983
NASA Technical Reports Server (NTRS)
1984-01-01
The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during calendar year 1983 in Langley test facilities, a number of which are unique in the world are highlighted. Both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.
Langley aerospace test highlights - 1986
NASA Technical Reports Server (NTRS)
1987-01-01
The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. This report highlights some of the significant tests which were performed during calendar year 1986 in Langley test facilities, a number of which are unique in the world. The report illustrates both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research.
Integrated System Health Management (ISHM) Technology Demonstration Project Final Report
NASA Technical Reports Server (NTRS)
Mackey, Ryan; Iverson, David; Pisanich, Greg; Toberman, Mike; Hicks, Ken
2006-01-01
Integrated System Health Management (ISHM) is an essential capability that will be required to enable upcoming explorations mission systems such as the Crew Exploration Vehicle (CEV) and Crew Launch Vehicle (CLV), as well as NASA aeronautics missions. However, the lack of flight experience and available test platforms have held back the infusion by NASA Ames Research Center (ARC) and the Jet Propulsion Laboratory (JPL) of ISHM technologies into future space and aeronautical missions. To address this problem, a pioneer project was conceived to use a high-performance aircraft as a low-cost proxy to develop, mature, and verify the effectiveness of candidate ISHM technologies. Given the similarities between spacecraft and aircraft, an F/A-18 currently stationed at Dryden Flight Research Center (DFRC) was chosen as a suitable host platform for the test bed. This report describes how the test bed was conceived, how the technologies were integrated on to the aircraft, and how these technologies were matured during the project. It also describes the lessons learned during the project and a forward path for continued work.
NASA Technical Reports Server (NTRS)
Zeitlin, Nancy; Mueller, Robert; Muscatello, Anthony
2015-01-01
Integrate In Situ Resource Utilization (ISRU) sub-systems and examine advanced capabilities and technologies to verify Mars 2024 Forward architecture precursor pathfinder options: Integrated spacecraft/surface infrastructure fluid architecture: propulsion, power, life support center dot Power system feed and propellant scavenging from propulsion system center dot High quality oxygen for life support and EVA Fluid/cryogenic zero-loss transfer and long-term storage center dot Rapid depot-to-rover/spacecraft center dot Slow ISRU plant-to-ascent vehicle Integration of ISRU consumable production center dot Oxygen only from Mars atmosphere carbon dioxide center dot Oxygen, fuel, water, from extraterrestrial soil/regolith Test bed to evaluate long duration life, operations, maintenance on hardware, sensors, and autonomy
An Emerging Technology Curriculum. Education for Technology Employment Project. Final Report.
ERIC Educational Resources Information Center
Harms, Dan; And Others
Individualized, competency-based curriculum materials were developed for a course on Principles of Technology, Units 1-6. New and updated curriculum materials in Drafting and Electronics and the Principles of Technology units were pilot tested in area vocational center settings in Illinois. A computer maintenance program was also developed but not…
Chen, Yingyao; Qian, Xu; Tang, Zhiliu; Banta, H David; Hu, Fangfang; Cao, Jianwen; Huang, Jiayan; Wang, Qian; Lv, Jun; Ying, Xianghua; Chen, Jie
2004-01-01
The purpose of this study is to describe the situation with the distribution and utilization of prenatal diagnosis technology in China, to identify some important barriers to prenatal diagnosis use, and to suggest changes to improve the present situation. The study uses cross-sectional surveys to capture quantitative data from both providers and consumers. Qualitative information based on focus group discussions is also presented. A mail survey of the provincial Bureaus of Health (BOHs) reveals that sixteen provincial prenatal diagnosis centers and twelve city level centers were accredited by the BOHs by July of 2001. These centers were located in thirteen provinces, of thirty in all of China. Of 147 selected institutions surveyed separately, 90.5 percent offer ultrasound examination, 72.1 percent provide pathogen tests (mainly Toxoplasma, rubella virus, cytomegalovirus, and herpes simplex or TORCH), 57.1 percent do biochemical tests, 21.8 percent have genetic counseling, 13.6 percent do karyotype testing, 7.5 percent do enzymology testing, and 5.4 percent carry out molecular genetic testing. Chromosome diseases, congenital diseases, and several gene diseases are the target diseases. According to qualitative data, macromanagement for prenatal diagnosis, supplier provision of tests, and population demand are the main influences on prenatal diagnosis use. From the quantitative and qualitative analysis, it is clear that the technology of prenatal diagnosis is not diffusing well throughout China and is apparently not appropriately used. The situation of prenatal diagnosis has implications for policy-makers, including identification of priorities, regulation of prenatal diagnosis, strategic planning, development of guidelines based on health technology assessment, and consumer orientation.
Verification testing of the Hydranautics HYDRA Cap(TM) Ultrafiltration Membrane System (Hydranautics UF unit) was conducted over two test periods at the Aqua 2000 Research Center in San Diego, CA. The first test period, from 8/3/99-9/13/99, represented summer/fall conditions. The...
Positive train control test bed interoperability upgrades.
DOT National Transportation Integrated Search
2013-02-01
Transportation Technology Center, Inc. (TTCI) upgraded the Positive Train Control (PTC) Test Bed to support additional PTC testing configurations under Federal Railroad Administration (FRA) Task Order 270. The scope of work provided additional PTC Co...
Crippling load test of Budd Pioneer Car 244, test 3.
DOT National Transportation Integrated Search
2013-04-01
This report summarizes Test 3, a crippling load test on Budd Pioneer Car 244, conducted on June 28, 2011. Before the crippling load test, Transportation Technology Center, Inc., conducted two 800,000-pound (lb) quasi-static tests on Car 244 in accord...
Development, fabrication and testing of locomotive crashworthy components : base effort.
DOT National Transportation Integrated Search
2014-12-01
The Federal Railroad Administration (FRA) and the John A. Volpe National Transportation Systems Center (Volpe Center) are continuing to evaluate new technologies for increasing the safety of passengers and operators in rail equipment. In recognition ...
NASA Technical Reports Server (NTRS)
Nelson, Karl W.; McArthur, J. Craig (Technical Monitor)
2001-01-01
The focus of the NASA / Marshall Space Flight Center (MSFC) Advanced Reusable Technologies (ART) project is to advance and develop Rocket-Based Combined-Cycle (RBCC) technologies. The ART project began in 1996 as part of the Advanced Space Transportation Program (ASTP). The project is composed of several activities including RBCC engine ground testing, tool development, vehicle / mission studies, and component testing / development. The major contractors involved in the ART project are Aerojet and Rocketdyne. A large database of RBCC ground test data was generated for the air-augmented rocket (AAR), ramjet, scramjet, and ascent rocket modes of operation for both the Aerojet and Rocketdyne concepts. Transition between consecutive modes was also demonstrated as well as trajectory simulation. The Rocketdyne freejet tests were conducted at GASL in the Flight Acceleration Simulation Test (FAST) facility. During a single test, the FAST facility is capable of simulating both the enthalpy and aerodynamic conditions over a range of Mach numbers in a flight trajectory. Aerojet performed freejet testing in the Pebble Bed facility at GASL as well as direct-connect testing at GASL. Aerojet also performed sea-level static (SLS) testing at the Aerojet A-Zone facility in Sacramento, CA. Several flight-type flowpath components were developed under the ART project. Aerojet designed and fabricated ceramic scramjet injectors. The structural design of the injectors will be tested in a simulated scramjet environment where thermal effects and performance will be assessed. Rocketdyne will be replacing the cooled combustor in the A5 rig with a flight-weight combustor that is near completion. Aerojet's formed duct panel is currently being fabricated and will be tested in the SLS rig in Aerojet's A-Zone facility. Aerojet has already successfully tested a cooled cowl panel in the same facility. In addition to MSFC, other NASA centers have contributed to the ART project as well. Inlet testing and parametrics were performed at NASA / Glenn Research Center (GRC) and NASA / Langley Research Center (LaRC) for both the Aerojet and Rocketdyne concepts. LaRC conducted an Air-Breathing Launch Vehicle (ABLV) study for several vehicle concepts with RBCC propulsion systems. LaRC is also performing a CFD analysis of the ramjet mode for both flowpaths based on GASL test conditions. A study was performed in 1999 to investigate the feasibility of performing an RBCC flight test on the NASA / Dryden Flight Research Center (DFRC) SR-71 aircraft. Academia involvement in the ART project includes parametric RBCC flowpath testing by Pennsylvania State University (PSU). In addition to thrust and wall static pressure measurements, PSU is also using laser diagnostics to analyze the flowfield in the test rig. MSFC is performing CFD analysis of the PSU rig at select test conditions for model baseline and validation. Also, Georgia Institute of Technology (GT) conducted a vision vehicle study using the Aerojet RBCC concept. Overall, the ART project has been very successful in advancing RBCC technology. Along the way, several major milestones were achieved and "firsts" accomplished. For example, under the ART project, the first dynamic trajectory simulation testing was performed and the Rocketdyne engine A5 logged over one hour of accumulated test time. The next logical step is to develop and demonstrate a flight-weight RBCC engine system.
Dynamic Capability of an Operating Stirling Convertor
NASA Technical Reports Server (NTRS)
Goodnight, Thomas W.; Hughes, William O.; McNelis, Mark E.
2000-01-01
The NASA John H. Glenn Research Center and the US Department of Energy are currently developing a Stirling convertor for use as an advanced spacecraft power system for future NASA deep-space missions. NASA Headquarters has recently identified the Stirling technology generator for potential use as the spacecraft power system for two of NASA's new missions, the Europa Orbiter and the Solar Probe missions (planned for launch in 2006 and 2007 respectively). As part of the development of this power system, a Stirling Technology Demonstration Convertor was vibration tested at NASA John H. Glenn Research Center to verify its survivability and capability of withstanding the harsh dynamic environment typically seen by the spacecraft when it is launched by an expendable launch vehicle. The Technology Demonstration Convertor was fully operational (producing power) during the random vibration testing. The output power of the convertor and other convertor performance indicators were measured during the testing, and these results are discussed in this paper. Numerous accelerometers and force gauges also were used to provide information on the dynamic characteristics of the Technology Demonstration Convertor and as an indication of any possible damage due to the vibration. These measurements will also be discussed in this paper. The vibration testing of the Stirling Technology Demonstration Convertor was extremely successful. The Technology Demonstration Convertor survived all its vibration testing with no structural damage or functional performance degradation. As a result of this testing, the Stirling convertor's capability to withstand vibration has been demonstrated, enabling its usage in future spacecraft power systems.
Locomotive crash energy management test plans
DOT National Transportation Integrated Search
2015-03-23
The Office of Research, Development, and Technology of the Federal Railroad Administration (FRA) and the Volpe Center are continuing to evaluate new technologies for increasing the safety of passengers and operators in rail equipment. The results of ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanislowski, Joshua; Tolbert, Scott; Curran, Tyler
2012-04-30
The Energy & Environmental Research Center (EERC) has continued the work of the National Center for Hydrogen Technology® (NCHT®) Program Year 6 Task 1.12 project to expose hydrogen separation membranes to coal-derived syngas. In this follow-on project, the EERC has exposed two membranes to coal-derived syngas produced in the pilot-scale transport reactor development unit (TRDU). Western Research Institute (WRI), with funding from the State of Wyoming Clean Coal Technology Program and the North Dakota Industrial Commission, contracted with the EERC to conduct testing of WRI’s coal-upgrading/gasification technology for subbituminous and lignite coals in the EERC’s TRDU. This gasifier fires nominallymore » 200–500 lb/hour of fuel and is the pilot-scale version of the full-scale gasifier currently being constructed in Kemper County, Mississippi. A slipstream of the syngas was used to demonstrate warm-gas cleanup and hydrogen separation using membrane technology. Two membranes were exposed to coal-derived syngas, and the impact of coal-derived impurities was evaluated. This report summarizes the performance of WRI’s patent-pending coalupgrading/ gasification technology in the EERC’s TRDU and presents the results of the warm-gas cleanup and hydrogen separation tests. Overall, the WRI coal-upgrading/gasification technology was shown to produce a syngas significantly lower in CO2 content and significantly higher in CO content than syngas produced from the raw fuels. Warm-gas cleanup technologies were shown to be capable of reducing sulfur in the syngas to 1 ppm. Each of the membranes tested was able to produce at least 2 lb/day of hydrogen from coal-derived syngas.« less
An Overview of NASA's In-Space Cryogenic Propellant Management Technologies
NASA Technical Reports Server (NTRS)
Tucker, Stephen; Hastings, Leon; Haynes, Davy (Technical Monitor)
2001-01-01
Future mission planning within NASA continues to include cryogenic propellants for in space transportation, with mission durations ranging from days to years. Between 1995 and the present, NASA has pursued a diversified program of ground-based testing to prepare the various technologies associated with in-space cryogenic fluid management (CFM) for implementation. CFM technology areas being addressed include passive insulation, zero gravity pressure control, zero gravity mass gauging, capillary liquid acquisition devices, and zero boiloff storage. NASA CFM technologies are planned, coordinated, and implemented through the Cryogenic Technology Working Group which is comprised of representatives from the various NASA Centers as well as the National Institute of Standards and Technologies (NIST) and, on selected occasions, the Air Force. An overview of the NASA program and Marshall Space Flight Center (MSFC) roles, accomplishments, and near-term activities are presented herein. Basic CFM technology areas being addressed include passive insulation, zero gravity pressure control, zero gravity mass gauging, capillary liquid acquisition devices, and zero boiloff storage. Recent MSFC accomplishments include: the large scale demonstration of a high performance variable density multilayer insulation (MLI) that reduced the boiloff by about half that of standard MLI; utilization of a foam substrate under MLI to eliminate the need for a helium purge bag system; demonstrations of both spray-bar and axial-jet mixer concepts for zero gravity pressure control; and sub-scale testing that verified an optical sensor concept for measuring liquid hydrogen mass in zero gravity. In response to missions requiring cryogenic propellant storage durations on the order of years, a cooperative effort by NASA's Ames Research Center, Glenn Research Center, and MSFC has been implemented to develop and demonstrate zero boiloff concepts for in-space storage of cryogenic propellants. An MSFC contribution to this cooperative effort is a large-scale demonstration of the integrated operation of passive insulation, destratification/pressure control, and cryocooler (commercial unit) subsystems to achieve zero boiloff storage of liquid hydrogen. Testing is expected during the Summer of 2001.
Modelling Simulation and Comparison of Refractory Corrosion at RHI's Technology Center
NASA Astrophysics Data System (ADS)
Gregurek, Dean; Ressler, Angelika; Franzkowiak, Anna; Spanring, Alfred
In order to determine the most suitable refractory products and improve the lining lifetime for the diverse furnaces used in the nonferrous metal industry, corrosion tests are performed at RHF's Technology Center. The practical facilities include the cup test, induction furnace, rotary kiln, and drip slag test described in this paper, which enable a comprehensive understanding of the chemo-thermal brick wear on a pilot scale. The corrosion trials are performed with actual slags generated during operations at a customer's plant. To determine the highest influencing wear parameter, every single test is combined with a detailed mineralogical investigation and thermochemical calculations performed using FactSage. Based on the results, tailored refractory solutions for the nonferrous metal industry can be provided in combination with trials conducted at the customer's site.
A Summary fo Solar Sail Technology Developments and Proposed Demonstration Missions
NASA Technical Reports Server (NTRS)
Garner, Charles; Diedrich, Benjamin; Leipold, Manfred
1999-01-01
NASA's drive to reduce mission costs and accept the risk of incorporating innovative, high payoff technologies into it's missions while simultaneously undertaking ever more difficult missions has sparked a greatly renewed interest in solar sails. From virtually no technology or flight mission studies activity three years ago solar sails are now included in NOAA, NASA, DOD, DLR, ESA and ESTEC technology development programs and technology roadmaps. NASA programs include activities at Langley Research Center, Jet Propulsion Laboratory, Marshall Space Flight Center, Goddard Space Flight Center, and the NASA Institute for Advanced Concepts; NOAA has received funding for a proposed solar sail mission; DLR is designing and fabricating a 20-m laboratory model sail, there are four demonstration missions under study at industry, NASA, DOD and Europe, two new text books on solar sailing were recently published and one new test book is planned. This paper summarizes these on-going developments in solar sails.
NASA Technical Reports Server (NTRS)
1990-01-01
The Land's agricultural research team is testing new ways to sustain life in space as a research participant with Kennedy Space Center's Controlled Ecological Life Support System (CELSS). The Land, sponsored by Kraft General Foods, is an entertainment, research, and education facility at EPCOT Center, part of Walt Disney World. The cooperative effort is simultaneously a research and development program, a technology demonstration that provides the public to see high technology at work and an area of potential spinoff: the CELSS work may generate Earth use technology beneficial to the hydroponic (soilless growing) vegetable production industries of the world.
Ford Carleton, Penny; Parrish, John A.; Collins, John M.; Crocker, J. Benjamin; Dixon, Ronald F.; Edgman-Levitan, Susan; Lewandrowski, Kent B.; Stahl, James E.; Klapperich, Catherine; Cabodi, Mario; Gaydos, Charlotte A.; Rompalo, Anne M.; Manabe, Yukari; Wang, Tza-Huei; Rothman, Richard; Geddes, Chris D.; Widdice, Lea; Jackman, Joany; Mathura, Rishi A.; Lash, Tiffani Bailey
2016-01-01
To advance the development of point-of-care technology (POCT), the National Institute of Biomedical Imaging and Bioengineering established the POCT Research Network (POCTRN), comprised of Centers that emphasize multidisciplinary partnerships and close facilitation to move technologies from an early stage of development into clinical testing and patient use. This paper describes the POCTRN and the three currently funded Centers as examples of academic-based organizations that support collaborations across disciplines, institutions, and geographic regions to successfully drive innovative solutions from concept to patient care. PMID:27730014
What do we mean by Human-Centered Design of Life-Critical Systems?
Boy, Guy A
2012-01-01
Human-centered design is not a new approach to design. Aerospace is a good example of a life-critical systems domain where participatory design was fully integrated, involving experimental test pilots and design engineers as well as many other actors of the aerospace engineering community. This paper provides six topics that are currently part of the requirements of the Ph.D. Program in Human-Centered Design of the Florida Institute of Technology (FIT.) This Human-Centered Design program offers principles, methods and tools that support human-centered sustainable products such as mission or process control environments, cockpits and hospital operating rooms. It supports education and training of design thinkers who are natural leaders, and understand complex relationships among technology, organizations and people. We all need to understand what we want to do with technology, how we should organize ourselves to a better life and finally find out whom we are and have become. Human-centered design is being developed for all these reasons and issues.
Ballast degradation characterized through triaxial test : research results.
DOT National Transportation Integrated Search
2016-06-01
Transportation Technology Center, Inc. (TTCI) : has supported the development of a large-scale : triaxial test device (Figure 1) for testing ballast : size aggregate materials at the University of : Illinois at Urbana-Champaign (UIUC). This new : tes...
NASA Earth-to-Orbit Engineering Design Challenges: Thermal Protection Systems
ERIC Educational Resources Information Center
National Aeronautics and Space Administration (NASA), 2010
2010-01-01
National Aeronautics and Space Administration (NASA) Engineers at Marshall Space Flight Center, Dryden Flight Research Center, and their partners at other NASA centers and in private industry are currently developing X-33, a prototype to test technologies for the next generation of space transportation. This single-stage-to-orbit reusable launch…
Recent Cycle Time Reduction at Langley Research Center
NASA Technical Reports Server (NTRS)
Kegelman, Jerome T.
2000-01-01
The NASA Langley Research Center (LaRC) has been engaged in an effort to reduce wind tunnel test cycle time in support of Agency goals and to satisfy the wind tunnel testing needs of the commercial and military aerospace communities. LaRC has established the Wind Tunnel Enterprise (WTE), with goals of reducing wind tunnel test cycle time by an order of magnitude by 2002, and by two orders of magnitude by 2010. The WTE also plans to meet customer expectations for schedule integrity, as well as data accuracy and quality assurance. The WTE has made progress towards these goals over the last year with a focused effort on technological developments balanced by attention to process improvements. This paper presents a summary of several of the WTE activities over the last year that are related to test cycle time reductions at the Center. Reducing wind tunnel test cycle time, defined here as the time between the freezing of loft lines and delivery of test data, requires that the relationship between high productivity and data quality assurance be considered. The efforts have focused on all of the drivers for test cycle time reduction, including process centered improvements, facility upgrades, technological improvements to enhance facility readiness and productivity, as well as advanced measurement techniques. The application of internet tools and computer modeling of facilities to allow a virtual presence of the customer team is also presented.
Full-Scale Dynamic Testing of Locomotive Crashworthy Components.
DOT National Transportation Integrated Search
2015-10-01
The Office of Research, Development, and Technology of the Federal Railroad Administration (FRA) and the Volpe Center are evaluating new occupant protection technologies to increase the safety of passengers and operators in rail equipment. In view of...
Information Technology Support for Clinical Genetic Testing within an Academic Medical Center.
Aronson, Samuel; Mahanta, Lisa; Ros, Lei Lei; Clark, Eugene; Babb, Lawrence; Oates, Michael; Rehm, Heidi; Lebo, Matthew
2016-01-20
Academic medical centers require many interconnected systems to fully support genetic testing processes. We provide an overview of the end-to-end support that has been established surrounding a genetic testing laboratory within our environment, including both laboratory and clinician facing infrastructure. We explain key functions that we have found useful in the supporting systems. We also consider ways that this infrastructure could be enhanced to enable deeper assessment of genetic test results in both the laboratory and clinic.
Partnership Opportunities with AFRC for Wireless Systems Flight Testing
NASA Technical Reports Server (NTRS)
Hang, Richard
2015-01-01
The presentation will overview the flight test capabilities at NASA Armstrong Flight Research Center (AFRC), to open up partnership collaboration opportunities for Wireless Community to conduct flight testing of aerospace wireless technologies. Also, it will brief the current activities on wireless sensor system at AFRC through SBIR (Small Business Innovation Research) proposals, and it will show the current areas of interest on wireless technologies that AFRC would like collaborate with Wireless Community to further and testing.
Research and technology highlights, 1992
NASA Technical Reports Server (NTRS)
1993-01-01
The mission of the NASA Langley Research Center is to increase the knowledge and capability of the United States in a full range of aeronautics disciplines and in selected space disciplines. This mission will be accomplished by performing innovative research relevant to national needs and Agency goals, transferring technology to users in a timely manner, and providing development support to other United States Government agencies, industry, and other NASA centers. Highlights of the major accomplishments and applications that have been made by Langley researchers and by our university and industry colleagues during the past year are presented. The highlights illustrate both the broad range of research and technology (R&T) activities supported by NASA Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research. Some of the Center's most important research and testing facilities are also described.
Composite Cryotank Technologies and Demonstration
NASA Technical Reports Server (NTRS)
Vickers, John
2015-01-01
NASA is exploring advanced composite materials and processes to reduce the overall cost and weight of liquid hydrogen (LH2) cryotanks while maintaining the reliability of existing metallic designs. The fundamental goal of the composite cryotank project was to provide new and innovative technologies that enable human space exploration to destinations beyond low-Earth orbit such as the Moon, near-Earth asteroids, and Mars. In September 2011, NASA awarded Boeing the contract to design, manufacture, and test two lightweight composite cryogenic propellant tanks. The all-composite tanks shown iare fabricated with an automated fiber placement machine using a prepreg system of IM7 carbon fiber/CYCOM 5320-1 epoxy resin. This is a resin system developed for out-of-autoclave applications. Switching from metallic to composite construction holds the potential to dramatically increase the performance capabilities of future space systems through a dramatic reduction in weight. Composite Cryotank Technologies and Demonstration testing was an agency-wide effort with NASA Marshall Space Flight Center (MSFC) leading project management, manufacturing, and test; Glenn Research Center leading the materials; and Langley Research Center leading the structures effort for this project. Significant contributions from NASA loads/stress personnel contributed to the understanding of thermal/mechanical strain response while undergoing testing at cryogenic temperatures. The project finalized in September 2014.
Summary of NASA Lewis Research Center solar heating and cooling and wind energy programs
NASA Technical Reports Server (NTRS)
Vernon, R. W.
1975-01-01
Plans for the construction and operation of a solar heating and cooling system in conjunction with a office building being constructed at Langley Research Center, are discussed. Supporting research and technology includes: testing of solar collectors with a solar simulator, outdoor testing of collectors, property measurements of selective and nonselective coatings for solar collectors, and a solar model-systems test loop. The areas of a wind energy program that are being conducted include: design and operation of a 100-kW experimental wind generator, industry-designed and user-operated wind generators in the range of 50 to 3000 kW, and supporting research and technology for large wind energy systems. An overview of these activities is provided.
Voice Over Internet Protocol (VoIP) in a Control Center Environment
NASA Technical Reports Server (NTRS)
Pirani, Joseph; Calvelage, Steven
2010-01-01
The technology of transmitting voice over data networks has been available for over 10 years. Mass market VoIP services for consumers to make and receive standard telephone calls over broadband Internet networks have grown in the last 5 years. While operational costs are less with VoIP implementations as opposed to time division multiplexing (TDM) based voice switches, is it still advantageous to convert a mission control center s voice system to this newer technology? Marshall Space Flight Center (MSFC) Huntsville Operations Support Center (HOSC) has converted its mission voice services to a commercial product that utilizes VoIP technology. Results from this testing, design, and installation have shown unique considerations that must be addressed before user operations. There are many factors to consider for a control center voice design. Technology advantages and disadvantages were investigated as they refer to cost. There were integration concerns which could lead to complex failure scenarios but simpler integration for the mission infrastructure. MSFC HOSC will benefit from this voice conversion with less product replacement cost, less operations cost and a more integrated mission services environment.
Research and technology highlights, 1993
NASA Technical Reports Server (NTRS)
1994-01-01
This report contains highlights of the major accomplishments and applications that have been made by Langley researchers and by our university and industry colleagues during the past year. The highlights illustrate both the broad range of the research and technology activities supported by NASA Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research. This report also describes some of the Center's most important research and testing facilities.
Technology transfer and evaluation for Space Station telerobotics
NASA Technical Reports Server (NTRS)
Price, Charles R.; Stokes, Lebarian; Diftler, Myron A.
1994-01-01
The international space station (SS) must take advantage of advanced telerobotics in order to maximize productivity and safety and to reduce maintenance costs. The Automation and Robotics Division at the NASA Lyndon B. Johnson Space Center (JSC) has designed, developed, and constructed the Automated Robotics Maintenance of Space Station (ARMSS) facility for the purpose of transferring and evaluating robotic technology that will reduce SS operation costs. Additionally, JSC had developed a process for expediting the transfer of technology from NASA research centers and evaluating these technologies in SS applications. Software and hardware system developed at the research centers and NASA sponsored universities are currently being transferred to JSC and integrated into the ARMSS for flight crew personnel testing. These technologies will be assessed relative to the SS baseline, and, after refinements, those technologies that provide significant performance improvements will be recommended as upgrades to the SS. Proximity sensors, vision algorithms, and manipulator controllers are among the systems scheduled for evaluation.
A case history of technology transfer
NASA Technical Reports Server (NTRS)
1981-01-01
A sequence of events, occurring over the last 25 years, are described that chronicle the evolution of ion-bombardment electric propulsion technology. Emphasis is placed on the latter phases of this evolution, where special efforts were made to pave the way toward the use of this technology in operational space flight systems. These efforts consisted of a planned program to focus the technology toward its end applications and an organized process that was followed to transfer the technology from the research-technology NASA Center to the user-development NASA Center and its industry team. Major milestones in this evolution, which are described, include the development of thruster technology across a large size range, the successful completion of two space electric rocket tests, SERT I and SERT II, development of power-processing technology for electric propulsion, completion of a program to make the technology ready for flight system development, and finally the technology transfer events.
NASA Technical Reports Server (NTRS)
Tomes, Kristin; Long, David; Carter, Layne; Flynn, Michael
2007-01-01
The Vapor Phase Catalytic Ammonia. Removal (VPCAR) technology has been previously discussed as a viable option for. the Exploration Water Recovery System. This technology integrates a phase change process with catalytic oxidation in the vapor phase to produce potable water from exploration mission wastewaters. A developmental prototype VPCAR was designed, built and tested under funding provided by a National Research. Announcement (NRA) project. The core technology, a Wiped Film Rotating Device (WFRD) was provided by Water Reuse Technologies under the NRA, whereas Hamilton Sundstrand Space Systems International performed the hardware integration and acceptance test. of the system. Personnel at the-Ames Research Center performed initial systems test of the VPCAR using ersatz solutions. To assess the viability of this hardware for Exploration. Life Support (ELS) applications, the hardware has been modified and tested at the MSFC ECLS Test facility. This paper summarizes the hardware modifications and test results and provides an assessment of this technology for the ELS application.
NASA Technical Reports Server (NTRS)
Moon, James
2004-01-01
My name is James Moon and I am a senor at Tennessee State University where my major is Aeronautical and Industrial Technology with a concentration in industrial electronics. I am currently serving my internship in the Engineering and Technical Services Directorate at the Glenn Research Center (GRC). The Engineering and Technical Service Directorate provides the services and infrastructure for the Glenn Research Center to take research concepts to reality. They provide a full range of integrated services including engineering, advanced prototyping and testing, facility management, and information technology for NASA, industry, and academia. Engineering and Technical Services contains the core knowledge in Information Technology (IT). This includes data systems and analysis, inter and intranet based systems design and data security. Including the design and development of embedded real-time sohare applications for flight and supporting ground systems, Engineering and Technical Services provide a wide range of IT services and products specific to the Glenn Research Center research and engineering community.
Overview of the Solar Dynamic Ground Test Demonstration Program at the NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.
1995-01-01
The Solar Dynamic (SD) Ground Test Demonstration (GTD) program demonstrates the availability of SD technologies in a simulated space environment at the NASA Lewis Research Center (LERC) vacuum facility. Data from the SD GTD program will be provided to the joint U.S. and Russian team which is currently designing a 2 kW SD flight demonstration power system. This SD technology has the potential as a future power source for the International Space Station. This paper reviews the goals and status of the SD GTD program. A description of the SD GTD system includes key design features of the system, subsystems and components.
NASA Technical Reports Server (NTRS)
2000-01-01
For the past 42 years, NASA has made special efforts to ensure the widest possible dissemination of its research and technology developments. We share the wealth of technology developed for our missions with the nation's industries to contribute to US economic strength and quality of life. For the past 27 years, this publication has provided you with over 1,200 examples of products and services developed as a direct result of commercial partnerships between NASA and the business community. Examples have covered products from fire retardant materials and air pollution monitors to non-invasive cardiac monitors and sensors for environmental control. In the Technology Transfer and Outreach section of Spinoff 2000, we highlight the activities of our Ames Research Center's Commercial Technology Office (CTO). Their efforts to facilitate and support technology commercialization are representative of the CTO at each field center. Increased activities to accelerate the dissemination of technologies, speed up the process of patent licensing, quicken the release of software for beta testing, support and manage incubators, and hasten the collaboration with commercial and academic organizations will continue to maximize the earliest potential commercial utilization of NASA's new inventions and technologies. Spinoff 2000 is organized into three sections: (1) Aerospace and Development highlights major research and development efforts currently carried out at the 10 NASA field centers; (2) Commercial Benefits-Spinoffs describes commercially available products and services resulting from the transfer of NASA technology; and (3) Technology Transfer and Outreach features this year's center spotlight, NASA's Ames Research Center, and its commercialization efforts, as well as the mechanisms in place nationwide to assist US industry in obtaining, transferring, and applying NASA technology, expertise, and assistance.
NASA Technical Reports Server (NTRS)
Sass, J. P.; Raines, N. G.; Farner, B. R.; Ryan, H. M.
2004-01-01
The Integrated Powerhead Demonstrator (IPD) is a 250K lbf (1.1 MN) thrust cryogenic hydrogen/oxygen engine technology demonstrator that utilizes a full flow staged combustion engine cycle. The Integrated Powerhead Demonstrator (IPD) is part of NASA's Next Generation Launch Technology (NGLT) program, which seeks to provide safe, dependable, cost-cutting technologies for future space launch systems. The project also is part of the Department of Defense's Integrated High Payoff Rocket Propulsion Technology (IHPRPT) program, which seeks to increase the performance and capability of today s state-of-the-art rocket propulsion systems while decreasing costs associated with military and commercial access to space. The primary industry participants include Boeing-Rocketdyne and GenCorp Aerojet. The intended full flow engine cycle is a key component in achieving all of the aforementioned goals. The IPD Program achieved a major milestone with the successful completion of the IPD Oxidizer Turbopump (OTP) cold-flow test project at the NASA John C. Stennis Space Center (SSC) E-1 test facility in November 2001. A total of 11 IPD OTP cold-flow tests were completed. Following an overview of the NASA SSC E-1 test facility, this paper addresses the facility aspects pertaining to the activation and the cold-flow testing of the IPD OTP. In addition, some of the facility challenges encountered during the test project are addressed.
1992-05-01
and systems for developing , testing, and operating the system. A new, lightweight cable de- used this evolving technology base in the ensuing years...Funding Numbers. Development , Testing, and Operation of a Large Suspended Ocean Contrac Measurement Structure for Deep-Ocean Use Program Element No...Research L.aboratory Report Number. Ocean Acoutics and Technology Directorate PR 91:132:253 Stennis Space Center, MS 39529-5004 9. Sponsoring
Adachi, Kaori
2014-03-01
At the Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, we have been making an effort to establish a genetic testing facility that can provide the same screening procedures conducted worldwide. Direct Sequencing of PCR products is the main method to detect point mutations, small deletions and insertions. Multiplex Ligation-dependent Probe Amplification (MLPA) was used to detect large deletions or insertions. Expansion of the repeat was analyzed for triplet repeat diseases. Original primers were constructed for 41 diseases when the reported primers failed to amplify the gene. Prediction of functional effects of human nsSNPs (PolyPhen) was used for evaluation of novel mutations. From January 2000 to September 2013, a total of 1,006 DNA samples were subjected to genetic testing in the Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University. The hospitals that requested genetic testing were located in 43 prefectures in Japan and in 11 foreign countries. The genetic testing covered 62 diseases, and mutations were detected in 287 out of 1,006 with an average mutation detection rate of 24.7%. There were 77 samples for prenatal diagnosis. The number of samples has rapidly increased since 2010. In 2013, the next-generation sequencers were introduced in our facility and are expected to provide more comprehensive genetic testing in the near future. Nowadays, genetic testing is a popular and powerful tool for diagnosis of many genetic diseases. Our genetic testing should be further expanded in the future.
Proton-Exchange-Membrane Fuel Cell Powerplants Developed and Tested for Exploration Missions
NASA Technical Reports Server (NTRS)
Hoberecht, Mark A.; Pham, Nang T.
2005-01-01
Proton-exchange-membrane fuel cell (PEMFC) technology has received major attention for terrestrial applications, such as the automotive and residential markets, for the past 20 years. This attention has significantly advanced the maturity of the technology, resulting in ever more compact, efficient, reliable, and inexpensive PEMFC designs. In comparison to the terrestrial operating environment, the space operating environment is much more demanding. Microgravity to high-gravity loads and the need to use pure oxygen (rather than air) as the fuel cell oxidizer place more stringent demands on PEMFC technology. NASA and its partners from industry are leveraging terrestrial PEMFC advancements by conducting parallel space technology development for future exploration missions. A team from the NASA Glenn Research Center, NASA Johnson Space Center, and NASA Kennedy Space Center recently completed the first phase of a PEMFC powerplant development effort for exploration missions. The industry partners for this phase of the development effort were ElectroChem, Inc., and Teledyne Energy Systems, Inc. Under contract to Glenn, both of these industry partners successfully designed, fabricated, and tested a breadboard PEMFC powerplant in the 1- to 5-kW power range. These powerplants were based on existing company-proprietary fuel cell stack designs, combined with off-the-shelf components, which formed the balance of the powerplant design. Subsequent to the contractor development efforts, both powerplants were independently tested at Johnson to verify operational and performance characteristics, and to determine suitability for further technology development in the second phase of the NASA-led effort. Following the independent NASA testing, Teledyne Energy Systems, Inc., was selected to develop an engineering model PEMFC powerplant. This effort was initiated by the 2nd Generation Reusable Launch Vehicle (RLV) Program Office in 2001; it transitioned to the Next Generation Launch Technologies (NGLT) Program Office in 2003. The effort is now being funded by the Exploration Program Office. We plan to summarize the results from the ongoing engineering model PEMFC powerplant development in a future Research & Technology article.
Proton-Exchange-Membrane Fuel Cell Powerplants Developed and Tested for Exploration Missions
NASA Astrophysics Data System (ADS)
Hoberecht, Mark A.; Pham, Nang T.
2005-06-01
Proton-exchange-membrane fuel cell (PEMFC) technology has received major attention for terrestrial applications, such as the automotive and residential markets, for the past 20 years. This attention has significantly advanced the maturity of the technology, resulting in ever more compact, efficient, reliable, and inexpensive PEMFC designs. In comparison to the terrestrial operating environment, the space operating environment is much more demanding. Microgravity to high-gravity loads and the need to use pure oxygen (rather than air) as the fuel cell oxidizer place more stringent demands on PEMFC technology. NASA and its partners from industry are leveraging terrestrial PEMFC advancements by conducting parallel space technology development for future exploration missions. A team from the NASA Glenn Research Center, NASA Johnson Space Center, and NASA Kennedy Space Center recently completed the first phase of a PEMFC powerplant development effort for exploration missions. The industry partners for this phase of the development effort were ElectroChem, Inc., and Teledyne Energy Systems, Inc. Under contract to Glenn, both of these industry partners successfully designed, fabricated, and tested a breadboard PEMFC powerplant in the 1- to 5-kW power range. These powerplants were based on existing company-proprietary fuel cell stack designs, combined with off-the-shelf components, which formed the balance of the powerplant design. Subsequent to the contractor development efforts, both powerplants were independently tested at Johnson to verify operational and performance characteristics, and to determine suitability for further technology development in the second phase of the NASA-led effort. Following the independent NASA testing, Teledyne Energy Systems, Inc., was selected to develop an engineering model PEMFC powerplant. This effort was initiated by the 2nd Generation Reusable Launch Vehicle (RLV) Program Office in 2001; it transitioned to the Next Generation Launch Technologies (NGLT) Program Office in 2003. The effort is now being funded by the Exploration Program Office. We plan to summarize the results from the ongoing engineering model PEMFC powerplant development in a future Research & Technology article.
Railroad tank car nondestructive methods evaluation.
DOT National Transportation Integrated Search
2002-01-01
An evaluation of nondestructive testing (NDT) methods, authorized for use in replacing the current hydrostatic pressure test for qualification or re-qualification of railroad tank cars, has been performed by the Transportation Technology Center, Inc....
Laser Spot Center Detection and Comparison Test
NASA Astrophysics Data System (ADS)
Zhu, Jun; Xu, Zhengjie; Fu, Deli; Hu, Cong
2018-04-01
High efficiency and precision of the pot center detection are the foundations of avionics instrument navigation and optics measurement basis for many applications. It has noticeable impact on overall system performance. Among them, laser spot detection is very important in the optical measurement technology. In order to improve the low accuracy of the spot center position, the algorithm is improved on the basis of the circle fitting. The pretreatment is used by circle fitting, and the improved adaptive denoising filter for TV repair technology can effectively improves the accuracy of the spot center position. At the same time, the pretreatment and de-noising can effectively reduce the influence of Gaussian white noise, which enhances the anti-jamming capability.
NASA Stennis Space Center integrated system health management test bed and development capabilities
NASA Astrophysics Data System (ADS)
Figueroa, Fernando; Holland, Randy; Coote, David
2006-05-01
Integrated System Health Management (ISHM) capability for rocket propulsion testing is rapidly evolving and promises substantial reduction in time and cost of propulsion systems development, with substantially reduced operational costs and evolutionary improvements in launch system operational robustness. NASA Stennis Space Center (SSC), along with partners that includes NASA, contractor, and academia; is investigating and developing technologies to enable ISHM capability in SSC's rocket engine test stands (RETS). This will enable validation and experience capture over a broad range of rocket propulsion systems of varying complexity. This paper describes key components that constitute necessary ingredients to make possible implementation of credible ISHM capability in RETS, other NASA ground test and operations facilities, and ultimately spacecraft and space platforms and systems: (1) core technologies for ISHM, (2) RETS as ISHM testbeds, and (3) RETS systems models.
National Wind Technology Center Dynamic 5-Megawatt Dynamometer
Felker, Fort
2018-06-06
The National Wind Technology Center (NWTC) offers wind industry engineers a unique opportunity to conduct a wide range of tests. Its custom-designed dynamometers can test wind turbine systems from 1 kilowatt (kW) to 5 megawatts (MW). The NWTC's new dynamometer facility simulates operating field conditions to assess the reliability and performance of wind turbine prototypes and commercial machines, thereby reducing deployment time, failures, and maintenance or replacement costs. Funded by the U.S. Department of Energy with American Recovery and Reinvestment Act (ARRA) funds, the 5-MW dynamometer will provide the ability to test wind turbine drivetrains and connect those drivetrains directly to the electricity grid or through a controllable grid interface (CGI). The CGI tests the low-voltage ride-through capability of a drivetrain as well as its response to faults and other abnormal grid conditions.
Design and Construction of a Hydroturbine Test Facility
NASA Astrophysics Data System (ADS)
Ayli, Ece; Kavurmaci, Berat; Cetinturk, Huseyin; Kaplan, Alper; Celebioglu, Kutay; Aradag, Selin; Tascioglu, Yigit; ETU Hydro Research Center Team
2014-11-01
Hydropower is one of the clean, renewable, flexible and efficient energy resources. Most of the developing countries invest on this cost-effective energy source. Hydroturbines for hydroelectric power plants are tailor-made. Each turbine is designed and constructed according to the properties, namely the head and flow rate values of the specific water source. Therefore, a center (ETU Hydro-Center for Hydro Energy Research) for the design, manufacturing and performance tests of hydraulic turbines is established at TOBB University of Economics and Technology to promote research in this area. CFD aided hydraulic and structural design, geometry optimization, manufacturing and performance tests of hydraulic turbines are the areas of expertise of this center. In this paper, technical details of the design and construction of this one of a kind test facility in Turkey, is explained. All the necessary standards of IEC (International Electrotechnical Commission) are met since the test facility will act as a certificated test center for hydraulic turbines.
2016-08-03
Inside a control building at NASA's Kennedy Space Center in Florida, Adam Swinger, cryogenic research engineer in the Exploration Research and Technology Directorate, communicates with team members during a test of the Ground Operations Demo Unit for liquid hydrogen. The system includes a 33,000 gallon liquid hydrogen storage tank with an internal cold heat exchanger supplied from a cryogenic refrigerator. The primary goal of the testing is to achieve a liquid hydrogen zero boil-off capability. The system was designed, installed and tested by a team of civil servants and contractors from the center's Cryogenic Test Laboratory, with support from engineers at NASA's Glenn Research Center in Cleveland and Stennis Space Center in Mississippi. It may be applicable for use by the Ground Systems Development and Operations Program at Launch Pad 39B.
Acoustic detection of roller bearing defects. Phase II, Field test.
DOT National Transportation Integrated Search
2000-08-01
The Transportation Technology Center, Inc. (TTCI), a subsidiary of the Association of American Railroads (AAR) Research and Test Department, conducted a series of simulated revenue service tests with a train of eight cars containing wheel sets with s...
Passenger rail two-car impact test. Volume 2 : summary of occupant protection program
DOT National Transportation Integrated Search
2002-01-01
Two full-scale impact tests of rail cars fitted with seat/occupant experiments were conducted at the Federal Railroad Administrations Transportation Technology Center located in Pueblo, Colorado. The first test was conducted on November 16, 1999, ...
DOT National Transportation Integrated Search
2013-05-31
The U. S. Department of Transportations (U.S. DOT) Research and Innovative Technology Administrations (RITA) John A. Volpe National Transportation Systems Center (Volpe Center), under the direction of the U.S. DOT Federal Railroad Administratio...
ASM Student Technology and Career Night
NASA Technical Reports Server (NTRS)
Hamilton, Jeff
2005-01-01
This viewgraph presentation presents a general overview of Marshall Space Flight Center (MSFC) for students who are perspective MSFC employees. The presentation includes an organizational chart and a summary of MSFC activities, as well as photographs and descriptions of some of the center's test facilities.
IARC - Illinois Accelerator Research Center | Pilot Program
Toggle navigation Pilot Program Agenda Directions Registration Illinois Accelerator Research Center National Laboratory present Accelerator Stewardship Test Facility Pilot Program Use accelerator technology , energy and environment. With this pilot program, the DOE Office of Science National Laboratories are
ERIC Educational Resources Information Center
Williams, Michelle; Linn, Marcia C.; Hollowell, Gail P.
2008-01-01
The Technology-Enhanced Learning in Science (TELS) center, a National Science Foundation-funded Center for Learning and Teaching, offers research-tested science modules for students in grades 6-12 (Linn et al. 2006). These free, online modules engage students in scientific inquiry through collaborative activities that include online…
DOT National Transportation Integrated Search
2012-12-31
The United States Department of Transportations (U.S. DOT) Research and Innovative Technology Administrations (RITA) John A. Volpe National Transportation Systems Center (Volpe Center), under the direction of the U.S. DOT Federal Railroad Admin...
2007-07-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, an Ares I x-test involves the upper stage separating from the first stage. This particular test was conducted at the NASA Langley Research Center in July 2007. (Highest resolution available)
Composite Sandwich Technologies Lighten Components
NASA Technical Reports Server (NTRS)
2010-01-01
Leveraging its private resources with several Small Business Innovation Research (SBIR) contracts with both NASA and the U.S. Department of Defense, WebCore Technologies LLC, of Miamisburg, Ohio, developed a fiber-reinforced foam sandwich panel it calls TYCOR that can be used for a wide variety of industrial and consumer applications. Testing at Glenn Research Center?s Ballistic Impact Facility demonstrated that the technology was able to exhibit excellent damage localization and stiffness during impact. The patented and trademarked material has found use in many demanding applications, including marine, ground transportation, mobile shelters, bridges, and most notably, wind turbines.
Capability of the Gas Analysis and Testing Laboratory at the NASA Johnson Space Center
NASA Technical Reports Server (NTRS)
Broerman, Craig; Jimenez, Javier; Sweterlitsch, Jeff
2012-01-01
The Gas Analysis and Testing Laboratory is an integral part of the testing performed at the NASA Johnson Space Center. The Gas Analysis and Testing Laboratory is a high performance laboratory providing real time analytical instruments to support manned and unmanned testing. The lab utilizes precision gas chromatographs, gas analyzers and spectrophotometers to support the technology development programs within the NASA community. The Gas Analysis and Testing Laboratory works with a wide variety of customers and provides engineering support for user-specified applications in compressed gas, chemical analysis, general and research laboratory.
Capability of the Gas Analysis and Testing Laboratory at the NASA Johnson Space Center
NASA Technical Reports Server (NTRS)
Broerman, Craig; Jimenez, Javier; Sweterlitsch, Jeff
2011-01-01
The Gas Analysis and Testing Laboratory is an integral part of the testing performed at the NASA Johnson Space Center. The Gas Analysis and Testing Laboratory is a high performance laboratory providing real time analytical instruments to support manned and unmanned testing. The lab utilizes precision gas chromatographs, gas analyzers and spectrophotometers to support the technology development programs within the NASA community. The Gas Analysis and Testing Laboratory works with a wide variety of customers and provides engineering support for user-specified applications in compressed gas, chemical analysis, general and research laboratory
Electric Propulsion Platforms at DFRC
NASA Technical Reports Server (NTRS)
Baraaclough, Jonathan
2009-01-01
NASA Dryden Flight Research Center is a world-class flight research facility located at Edwards AFB, CA. With access to a 44 sq. mile dry lakebed and 350 testable days per year, it is the ideal location for flight research. DFRC has been undertaking aircraft research for approximately six decades including the famous X-aircraft (X-1 through X-48) and many science and exploration platforms. As part of this impressive heritage, DFRC has garnered more hours of full-sized electric aircraft testing than any other facility in the US, and possibly the world. Throughout the 80 s and 90 s Dryden was the home of the Pathfinder, Pathfinder Plus, and Helios prototype solar-electric aircraft. As part of the ERAST program, these electric aircraft achieved a world record 97,000 feet altitude for propeller-driven aircraft. As a result of these programs, Dryden s staff has collected thousands of man-hours of electric aircraft research and testing. In order to better answer the needs of the US in providing aircraft technologies with lower fuel consumption, lower toxic emissions (NOx, CO, VOCs, etc.), lower greenhouse gas (GHG) emissions, and lower noise emissions, NASA has engaged in cross-discipline research under the Aeronautics Research Mission Directorate (ARMD). As a part of this overall effort, Mark Moore of LaRC has initiated a cross-NASA-center electric propulsion working group (EPWG) to focus on electric propulsion technologies as applied to aircraft. Electric propulsion technologies are ideally suited to overcome all of the obstacles mentioned above, and are at a sufficiently advanced state of development component-wise to warrant serious R&D and testing (TRL 3+). The EPWG includes participation from NASA Langley Research Center (LaRC), Glenn Research Center (GRC), Ames Research Center (ARC), and Dryden Flight Research Center (DFRC). Each of the center participants provides their own unique expertise to support the overall goal of advancing the state-of-the-art in aircraft electric propulsion technologies. DFRC will leverage its vast experience in flight test to assist in the integration and flight test phases of any electric propulsion program. DFRC s core competencies, that have particular relevance to the goals of the EPWG, include flight research planning and execution and providing aircraft test beds for researching and testing electric propulsion concepts and equipment. There are three flight regimes that the EPWG is focusing on: subsonic small GA and UAV, subsonic transport class, and supersonic. DFRC proposes two classes of test bed aircraft, to answer the early- and mid-phase testing requirements of all flight regimes the EPWG is concerned with. First, a highly efficient PIK motor glider will be used to test concepts and equipment associated with the subsonic GA and UAV aircraft regime (N+1). Second, a small fleet of subscale remotely-piloted aircraft test beds, similar to the X48B Blended Wing Body aircraft tested at Dryden, will be developed to answer the unique testing requirements of the subsonic GA and UAV, subsonic transport and possibly the supersonic class of aircraft (N+2, N+3). These aircraft can be tested in either serial stages or concurrent stages, depending on the actual test requirements and program schedules. Both classes of test bed aircraft are described below.
Summary of NASA-Lewis Research Center solar heating and cooling and wind energy programs
NASA Technical Reports Server (NTRS)
Vernon, R. W.
1975-01-01
NASA is planning to construct and operate a solar heating and cooling system in conjunction with a new office building being constructed at Langley Research Center. The technology support for this project will be provided by a solar energy program underway at NASA's Lewis Research Center. The solar program at Lewis includes: testing of solar collectors with a solar simulator, outdoor testing of collectors, property measurements of selective and nonselective coatings for solar collectors, and a solar model-systems test loop. NASA-Lewis has been assisting the National Science Foundation and now the Energy Research and Development Administration in planning and executing a national wind energy program. The areas of the wind energy program that are being conducted by Lewis include: design and operation of a 100 kW experimental wind generator, industry-designed and user-operated wind generators in the range of 50 to 3000 kW, and supporting research and technology for large wind energy systems. An overview of these activities is provided.
1990-08-29
Multiple lightning bolts struck the Technology Test Bed, formerly the S-IC Static Test Stand, at the Marshall Space Flight Center (MSFC) during a thunderstorm. This spectacular image of lightning was photographed by MSFC photographer Dernis Olive on August 29, 1990.
Acoustic detection of railcar roller bearing defects. Phase I, Laboratory test.
DOT National Transportation Integrated Search
2003-06-01
A series of tests were performed at the Bearing Test Facility at the Transportation Technology Center, Inc. (TTCI) in Pueblo, Colorado, to gather acoustic and acceleration emissions for a number of roller bearing defect types designated by the rail i...
Accelerated Performance Testing on the 2006 NCAT Pavement Test Track
DOT National Transportation Integrated Search
2009-12-01
The original National Center for Asphalt Technology (NCAT) Pavement Test Track was built in 2000 in Opelika, Alabama where it has served as a state-of-the-art, full-scale, closed-loop accelerated loading facility. The construction, operation, and res...
Train-to-train impact test : occupant protection experiments
DOT National Transportation Integrated Search
2002-11-17
This paper describes the results of the occupant protection experiments included as part of the train-to-train impact test conducted at the Transportation Technology Center in Pueblo, Colorado on January 31, 2002. In this test, a cab car-led train, i...
Historical Contributions to Vertical Flight at the NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Hodges, William T.; Gorton, Susan A.; Jackson, Karen E.
2016-01-01
The NASA Langley Research Center has had a long and distinguished history in powered lift technology development. This research has formed the foundation of knowledge for the powered lift community worldwide. From aerodynamics to structures, aeromechanics, powered lift, acoustics, materials, stability & control, structural dynamics and human factors, Langley has made significant contributions to the advancement of vertical lift technologies. This research has encompassed basic phenomenological studies through subscale laboratory testing, analytical tool development, applied demonstrations and full scale flight-testing. Since the dedication of Langley in 1920, it has contributed to the understanding, design, analysis, and flight test development of experimental and production V/STOL configurations. This paper will chronicle significant areas of research through the decades from 1920 to 2015 with historical photographs and references.
Advanced Monopropellant Thruster Technology Tested
NASA Technical Reports Server (NTRS)
Reed, Brian D.
2000-01-01
A new family of environmentally friendly, low-freezing-point, high-density monopropellants is being developed under a NASA Glenn technology program. New monopropellant technology would greatly benefit a range of small (<100 kg) satellites and spacecraft missions. These monopropellants are mixtures of hydroxylammonium nitrate (HAN), fuel, and water. Primex Aerospace Company, under contract to the NASA Glenn Research Center at Lewis Field, tested a 1-lbf thruster using a HAN-based monopropellant formulation. Over 8000 sec of total test time was accumulated on a single thruster using the blowdown duty cycle typical of state-of-the-art monopropellant systems.
1960-01-01
Marshall Space Flight Center (MSFC) workers hoist a dynamic test version of the S-IVB stage, the Saturn IB launch vehicle's second stage, into the Center's Dynamic Test Stand on January 18, 1965. MSFC Test Laboratory persornel assembled a complete Saturn IB to test the launch vehicle's structural soundness. Developed by the MSFC as an interim vehicle in MSFC's "building block" approach to the Saturn rocket development, the Saturn IB utilized Saturn I technology to further develop and refine the larger boosters and the Apollo spacecraft capabilities required for the manned lunar missions.
1965-01-01
Marshall Space Flight Center (MSFC) workers lower S-IB-200D, a dynamic test version of the Saturn IB launch vehicle's first stage (S-IB stage), into the Center's Dynamic Test Stand on January 12, 1965. Test Laboratory persornel assembled a complete Saturn IB to test the structural soundness of the launch vehicle. Developed by the MSFC as an interim vehicle in MSFC's "building block" approach to Saturn rocket development, the Saturn IB utilized Saturn I technology to further develop and refine large boosters and the Apollo spacecraft capabilities required for the manned lunar missions.
Research and Development in Support of the Navy Technology Center for Safety and Survivability
1990-10-26
Patterson AFB, OH. W. E.; Naegeli , D. W.; Valtierra, M. L. An Alternate Test Proce-Black, B. H, M.S. Thesis, Southeastern Massachusetts University, dure to...Cuellar, Jr., J. P.; Dodge, L. G.; Likos, W. E.; Naegeli , D. W.; Valtierra, M. L. "An Alternative Test Procedure to Qualify Fuels for Navy Aircraft...Likos, W.E., Naegeli , D.W., Valtierra, M.L.; "An Alternative Test Proure to Qualify Fuels for Navy Aircraft," Final Report, Naval Air Propulsion Center
OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristie Cooper; Gary Pickrell; Anbo Wang
2003-04-01
This report summarizes technical progress over the fourth year of the ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'' program, funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. During the reporting period, research efforts under the program were focused on the development and evaluation of the fiber optic flow sensor system, and field testing in Tulsa, OK and the second field test of the pressure and temperature sensors in Coalinga, CA. The feasibilitymore » of a self-compensating fiber optic flow sensor based on a cantilever beam and interferometer for real-time flow rate measurements in the fluid filled pipes of oil field was clearly demonstrated. In addition, field testing of the pressure and temperature sensors deployed downhole continued. These accomplishments are summarized here: (1) Theoretical analysis and simulations were performed to ensure performance of the design. (2) The sensor fabrication and packaging techniques were investigated and improved. (3) Prototype flow sensors were fabricated based on the fabrication experience of hundreds of test sensors. (4) A lab-scale flow testing system was constructed and used for sensor evaluation. (5) Field-testing was performed in both the indoor and outdoor flow testing facility at the University of Tulsa, OK. (6) Testing of a multimode white light pressure and temperature sensor system continued at the oil site of Chevron/Texaco Company (Coalinga CA).« less
HYDRA, a new tool for mechanical testing
NASA Technical Reports Server (NTRS)
Brinkmann, P. W.
1994-01-01
The introduction outlines the verification concept for programs of the European Space Agency (ESA). The role of the Agency in coordinating the activities of major European space test centers is summarized. Major test facilities of the environmental test center at ESTEC, the Space Research and Technology Center of ESA, are shown and their specific characteristics are highlighted with special emphasis on the 6-degree-of-freedom (6-DOF) hydraulic shaker. The specified performance characteristics for sine and transient tests are presented. Results of single-axis hardware tests and 6-DOF computer simulations are included. Efforts employed to protect payloads against accidental damage in case of malfunctions of the facility are listed. Finally the operational advantages of the facility, as well as the possible use of the HYDRA control system design for future applications are indicated.
Profile of Roche's Ariosa Harmony prenatal test.
Bevilacqua, Elisa; Resta, Serena; Carlin, Andrew; Kang, Xin; Cos Sanchez, Teresa; de Marchin, Jérôme; Jani, Jacques C
2018-06-18
Roche's Ariosa Harmony TM Prenatal Test, a noninvasive cfDNA (cell-free DNA) method for major trisomies has been available since January-2013 at the authors unit and tests were sent to California. From July-2017 onwards, prenatal cfDNA has been reimbursed in Belgium for all pregnancies, however since then samples are sent to a local technology transfer center. Little data are available on patient's profile and choices towards cfDNA and on the performance of local technology transfer centers. Areas covered: The profiles and choices of women regarding this test were evaluated. Further, the performance of cfDNA at the local center was compared to the one in California. The results showed that women from the Netherlands, as compared to Belgium, were more likely to undergo cfDNA testing for maternal request and would be less likely to undergo karyotyping if cfDNA were unavailable, and therefore are better candidates for cfDNA testing, when this is used as first-line screening. The local test failure rate was nearly twice that of the main laboratory in California, however when repeated, the success rate was quite high. Expert commentary: The findings highlight the importance of conducting these types of studies, before decisions about clinical implementation are made by national governments and ministries of health.
Using a medical simulation center as an electronic health record usability laboratory
Landman, Adam B; Redden, Lisa; Neri, Pamela; Poole, Stephen; Horsky, Jan; Raja, Ali S; Pozner, Charles N; Schiff, Gordon; Poon, Eric G
2014-01-01
Usability testing is increasingly being recognized as a way to increase the usability and safety of health information technology (HIT). Medical simulation centers can serve as testing environments for HIT usability studies. We integrated the quality assurance version of our emergency department (ED) electronic health record (EHR) into our medical simulation center and piloted a clinical care scenario in which emergency medicine resident physicians evaluated a simulated ED patient and documented electronically using the ED EHR. Meticulous planning and close collaboration with expert simulation staff was important for designing test scenarios, pilot testing, and running the sessions. Similarly, working with information systems teams was important for integration of the EHR. Electronic tools are needed to facilitate entry of fictitious clinical results while the simulation scenario is unfolding. EHRs can be successfully integrated into existing simulation centers, which may provide realistic environments for usability testing, training, and evaluation of human–computer interactions. PMID:24249778
Update on results of SPRE testing at NASA Lewis
NASA Technical Reports Server (NTRS)
Cairelli, James E.; Swec, Diane M.; Wong, Wayne A.; Doeberling, Thomas J.; Madi, Frank J.
1991-01-01
The Space Power Research Engine (SPRE), a free-piston Stirling engine with a linear alternator, is being tested at NASA Lewis Research Center as part of the Civilian Space Technology Initiative (CSTI) as a candidate for high capacity space power. Results are presented from recent SPRE tests designed to investigated the effects of variation in the displacer seal clearance and piston centering port area on engine performance and dynamics. The impact of these variations on PV power and efficiency are presented. Comparisons of the displacer seal clearance tests results with HFAST code predictions show good agreement for PV power, but show poor agreement for PV efficiency. Correlations are presented relating the piston midstroke position to the dynamic Delta P across the piston and the centering port area. Test results indicate that a modest improvement in PV power and efficiency may be realized with a reduction in piston centering port area.
Update on results of SPRE testing at NASA Lewis
NASA Technical Reports Server (NTRS)
Cairelli, James E.; Swec, Diane M.; Wong, Wayne A.; Doeberling, Thomas J.; Madi, Frank J.
1991-01-01
The Space Power Research Engine (SPRE), a free-piston Stirling engine with a linear alternator, is being tested at NASA Lewis Research Center as part of the Civilian Space Technology Initiative (CSTI) as a candidate for high capacity space power. Results are presented from recent SPRE tests designed to investigate the effects of variation in the displacer seal clearance and piston centering port area on engine performance and dynamics. The effects of these variations on PV power and efficiency are presented. Comparisons of the displacer seal clearance test results with HFAST code predictions show good agreement for PV power but poor agreement for PV efficiency. Correlations are presented relating the piston mid-stroke position to the dynamic Delta P across the piston and the centering port area. Test results indicate that a modest improvement in PV power and efficiency may be realized with a reduction in piston centering port area.
STDAC: Solar thermal design assistance center annual report fiscal year 1994
NASA Astrophysics Data System (ADS)
The Solar Thermal Design Assistance Center (STDAC) at Sandia is a resource provided by the DOE Solar Thermal Program. The STDAC's major objective is to accelerate the use of solar thermal systems by providing direct technical assistance to users in industry, government, and foreign countries; cooperating with industry to test, evaluate, and develop renewable energy systems and components; and educating public and private professionals, administrators, and decision makers. This FY94 report highlights the activities and accomplishments of the STDAC. In 1994, the STDAC continued to provide significant direct technical assistance to domestic and international organizations in industry, government, and education, Applying solar thermal technology to solve energy problems is a vital element of direct technical assistance. The STDAC provides information on the status of new, existing, and developing solar technologies; helps users screen applications; predicts the performance of components and systems; and incorporates the experience of Sandia's solar energy personnel and facilities to provide expert guidance. The STDAC directly enhances the US solar industry's ability to successfully bring improved systems to the marketplace. By collaborating with Sandia's Photovoltaic Design Assistance Center and the National Renewable Energy Laboratory the STDAC is able to offer each customer complete service in applying solar thermal technology. At the National Solar Thermal Test Facility the STDAC tests and evaluates new and innovative solar thermal technologies. Evaluations are conducted in dose cooperation with manufacturers, and the results are used to improve the product and/or quantify its performance characteristics. Manufacturers, in turn, benefit from the improved design, economic performance, and operation of their solar thermal technology. The STDAC provides cost sharing and in-kind service to manufacturers in the development and improvement of solar technology.
Northwest National Marine Renewable Energy Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batten, Belinda; Polagye, Brian
In 2008, the US Department of Energy’s (DOE) Wind and Water Power Program issued a funding opportunity announcement to establish university-led National Marine Renewable Energy Centers. Oregon State University and the University of Washington combined their capabilities in wave and tidal energy to establish the Northwest National Marine Renewable Energy Center, or NNMREC. NNMREC’s scope included research and testing in the following topic areas: • Advanced Wave Forecasting Technologies; • Device and Array Optimization; • Integrated and Standardized Test Facility Development; • Investigate the Compatibility of Marine Energy Technologies with Environment, Fisheries and other Marine Resources; • Increased Reliability andmore » Survivability of Marine Energy Systems; • Collaboration/Optimization with Marine Renewable and Other Renewable Energy Resources. To support the last topic, the National Renewable Energy Laboratory (NREL) was brought onto the team, particularly to assist with testing protocols, grid integration, and testing instrumentation. NNMREC’s mission is to facilitate the development of marine energy technology, to inform regulatory and policy decisions, and to close key gaps in scientific understanding with a focus on workforce development. In this, NNMREC achieves DOE’s goals and objectives and remains aligned with the research and educational mission of universities. In 2012, DOE provided NNMREC an opportunity to propose an additional effort to begin work on a utility scale, grid connected wave energy test facility. That project, initially referred to as the Pacific Marine Energy Center, is now referred to as the Pacific Marine Energy Center South Energy Test Site (PMEC-SETS) and involves work directly toward establishing the facility, which will be in Newport Oregon, as well as supporting instrumentation for wave energy converter testing. This report contains a breakdown per subtask of the funded project. Under each subtask, the following are presented and discussed where appropriate: the initial objective or hypothesis; an overview of accomplishments and approaches used; any problems encountered or departures from planned methodology over the life of the project; impacts of the problems or rescoping of the project; how accomplishments compared with original project goals; and deliverables under the subtasks. Products and models developed under the award are also included.« less
Detailed modeling of the train-to-train impact test : rail passenger equipment impact tests
DOT National Transportation Integrated Search
2007-07-01
This report describes the results of a finite element-based analysis of the train-to-train impact test conducted at the Federal Railroad Administrations Transportation Technology Center in Pueblo, CO, on January 31, 2002. The ABAQUS/Explicit dynam...
Limited Round Robin Asphalt Content Test Using Troxler Furnace
DOT National Transportation Integrated Search
1999-11-01
The Asphalt Content by Ignition test can be used to determine the asphalt content of a hot mix asphalt (HMA). This test, developed by the National Center for Asphalt Technology (NCAT), burns the asphalt binder from a mix and thus allows the determina...
Passenger rail train-to-train impact test. Volume 1 : overview and selected results
DOT National Transportation Integrated Search
2003-07-01
This report describes the results of the train-to-train impact test conducted at the Federal Railroad Administration's Transportation Technology Center in Pueblo, Colorado on January 31, 2002. In this test, a cab car-led train, initially moving at 30...
Train-to-train impact test : analysis of structural measurements
DOT National Transportation Integrated Search
2002-11-17
This paper describes the results of the train-to-train impact test conducted at the Transportation Technology Center in Pueblo, Colorado on January 31, 2002. In this test, a cab car-led train, initially moving at 30 mph, collided with a standing loco...
NASA Technical Reports Server (NTRS)
1995-01-01
The Attitude Adjuster is a system for weight repositioning corresponding to a SCUBA diver's changing positions. Compact tubes on the diver's air tank permit controlled movement of lead balls within the Adjuster, automatically repositioning when the diver changes position. Manufactured by Think Tank Technologies, the system is light and small, reducing drag and energy requirements and contributing to lower air consumption. The Mid-Continent Technology Transfer Center helped the company with both technical and business information and arranged for the testing at Marshall Space Flight Center's Weightlessness Environmental Training Facility for astronauts.
Blunt Impact Tests of Retired Passenger Locomotive Fuel Tanks
DOT National Transportation Integrated Search
2017-08-01
The Transportation Technology Center, Inc. conducted impact tests on three locomotive fuel tanks as part of the Federal Railroad Administrations locomotive fuel tank crashworthiness improvement program. Three fuel tanks, two from EMD F40PH locomot...
Rail-car impact tests with steel coil : car crush
DOT National Transportation Integrated Search
2003-04-22
Two grade-crossing impact tests were conducted in June 2002 at the Federal Railroad Administration's (FRA's) Transportation Technology Center in Pueblo, Colorado as part of the FRA's research into passenger equipment crashworthiness. In both of these...
Blunt impact tests of retired passenger locomotive fuel tanks
DOT National Transportation Integrated Search
2017-08-01
The Transportation Technology Center, Inc. conducted impact tests on three locomotive fuel tanks as part of the Federal Railroad Administrations locomotive fuel tank crashworthiness improvement program. Three fuel tanks, two from EMD F40PH locomot...
Test and Analysis of an Inflatable Parabolic Dish Antenna
NASA Technical Reports Server (NTRS)
Gaspar, james L.; Sreekantamurthy, Tham; Mann, Troy; Behun, Vaughn; Romanofsky, Robert; Lambert, Kevin; Pearson, James
2006-01-01
NASA is developing ultra-lightweight structures technology for large communication antennas for application to space missions. With these goals in mind, SRS Technologies has been funded by NASA Glenn Research Center (GRC) to undertake the development of a subscale ultra-thin membrane inflatable antenna for deep-space applications. One of the research goals is to develop approaches for prediction of the radio frequency and structural characteristics of inflatable and rigidizable membrane antenna structures. GRC has teamed with NASA Langley Research Center (LaRC) to evaluate inflatable and rigidizable antenna concepts for potential space missions. GRC has completed tests to evaluate RF performance, while LaRC completed structural tests and analysis to evaluate the static shape and structural dynamic responses of a laboratory model of a 0.3 meter antenna. This paper presents the details of the tests and analysis completed to evaluate the radio frequency and structural characteristics of the antenna.
NASA Technical Reports Server (NTRS)
Przekop, Adam; Jegley, Dawn C.; Rouse, Marshall; Lovejoy, Andrew E.
2016-01-01
This report documents the comparison of test measurements and predictive finite element analysis results for a hybrid wing body center section test article. The testing and analysis efforts were part of the Airframe Technology subproject within the NASA Environmentally Responsible Aviation project. Test results include full field displacement measurements obtained from digital image correlation systems and discrete strain measurements obtained using both unidirectional and rosette resistive gauges. Most significant results are presented for the critical five load cases exercised during the test. Final test to failure after inflicting severe damage to the test article is also documented. Overall, good comparison between predicted and actual behavior of the test article is found.
Pushing the Boundaries of Technology, Education, and Design.
ERIC Educational Resources Information Center
Schneider, Jay W.
2000-01-01
Examines Sinclair Community College's (Dayton, OH) development of their 75,000 sq.ft. Center for Interactive Learning where the limits of technology in education can be experimented with, explored, and tested. Design planning, building function, design features, and furniture and finishes are discussed. (GR)
ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT--BAGHOUSE FILTRATION PRODUCTS, W.L. GORE ASSOC., INC.
The U.S. Environmental Protection Agency Air Pollution Control Technology (APCT) Verification Center evaluates the performance of baghouse filtration products used primarily to control PM2.5 emissions. This verification statement summarizes the test results for W.L. Gore & Assoc....
2018-01-11
Josie Burnett, director or Exploration Research and Technology Programs, speaks to Kennedy Space Center employees about plans for the coming year. The event took place in the Lunar Theater at the Kennedy Space Center Visitor Complex’s Apollo Saturn V Center. The year will be highlighted with NASA's partners preparing test flights for crewed missions to the International Space Station as part of the agency's Commercial Crew Program and six launches by the Launch Services Program. Exploration Ground Systems will be completing facilities to support the Space Launch System rocket and Orion spacecraft. Exploration Research and Technology Programs will continue to provide supplies to the space station launched as part of the Commercial Resupply Services effort.
DeVoe, Jennifer; Angier, Heather; Likumahuwa, Sonja; Hall, Jennifer; Nelson, Christine; Dickerson, Kay; Keller, Sara; Burdick, Tim; Cohen, Deborah
2014-01-01
Lack of health insurance negatively impacts children's health. Despite federal initiatives to expand children's coverage and accelerate state outreach efforts, millions of US children remain uninsured or experience frequent gaps in coverage. Most current efforts to enroll and retain eligible children in public insurance programs take place outside of the health care system. This study is a partnership between patients' families, medical informaticists, federally qualified health center (FQHC) staff, and researchers to build and test information technology tools to help FQHCs reach uninsured children and those at risk for losing coverage.
2014-11-21
NASA invited social media members Nov. 18 and 19 to the agency’s Armstrong Flight Research Center for a two-day event highlighting the ways NASA is with you when you fly. The NASA social gave participants an exclusive look at the latest tools and technologies being developed to improve the efficiency, safety and adaptability of air transportation. Also, Next ISS crew trains, 3D printer installed in space, Asteroid capture technology test, Journey to Mars media day and more!
Design and Build of Reactor Simulator for Fission Surface Power Technology Demonstrator Unit
NASA Technical Reports Server (NTRS)
Godfroy, Thomas; Dickens, Ricky; Houts, Michael; Pearson, Boise; Webster, Kenny; Gibson, Marc; Qualls, Lou; Poston, Dave; Werner, Jim; Radel, Ross
2011-01-01
The Nuclear Systems Team at NASA Marshall Space Flight Center (MSFC) focuses on technology development for state of the art capability in non-nuclear testing of nuclear system and Space Nuclear Power for fission reactor systems for lunar and Mars surface power generation as well as radioisotope power systems for both spacecraft and surface applications. Currently being designed and developed is a reactor simulator (RxSim) for incorporation into the Technology Demonstrator Unit (TDU) for the Fission Surface Power System (FSPS) Program, which is supported by multiple national laboratories and NASA centers. The ultimate purpose of the RxSim is to provide heated NaK to a pair of Stirling engines in the TDU. The RxSim includes many different systems, components, and instrumentation that have been developed at MSFC while working with pumped NaK systems and in partnership with the national laboratories and NASA centers. The main components of the RxSim are a core, a pump, a heat exchanger (to mimic the thermal load of the Stirling engines), and a flow meter for tests at MSFC. When tested at NASA Glenn Research Center (GRC) the heat exchanger will be replaced with a Stirling power conversion engine. Additional components include storage reservoirs, expansion volumes, overflow catch tanks, safety and support hardware, instrumentation (temperature, pressure, flow) for data collection, and power supplies. This paper will discuss the design and current build status of the RxSim for delivery to GRC in early 2012.
Verification Tools Secure Online Shopping, Banking
NASA Technical Reports Server (NTRS)
2010-01-01
Just like rover or rocket technology sent into space, the software that controls these technologies must be extensively tested to ensure reliability and effectiveness. Ames Research Center invented the open-source Java Pathfinder (JPF) toolset for the deep testing of Java-based programs. Fujitsu Labs of America Inc., based in Sunnyvale, California, improved the capabilities of the JPF Symbolic Pathfinder tool, establishing the tool as a means of thoroughly testing the functionality and security of Web-based Java applications such as those used for Internet shopping and banking.
Rapid thermal cycling of new technology solar array blanket coupons
NASA Technical Reports Server (NTRS)
Scheiman, David A.; Smith, Bryan K.; Kurland, Richard M.; Mesch, Hans G.
1990-01-01
NASA Lewis Research Center is conducting thermal cycle testing of a new solar array blanket technologies. These technologies include test coupons for Space Station Freedom (SSF) and the advanced photovoltaic solar array (APSA). The objective of this testing is to demonstrate the durability or operational lifetime of the solar array interconnect design and blanket technology within a low earth orbit (LEO) or geosynchronous earth orbit (GEO) thermal cycling environment. Both the SSF and the APSA array survived all rapid thermal cycling with little or no degradation in peak performance. This testing includes an equivalent of 15 years in LEO for SSF test coupons and 30 years of GEO plus ten years of LEO for the APSA test coupon. It is concluded that both the parallel gap welding of the SSF interconnects and the soldering of the APSA interconnects are adequately designed to handle the thermal stresses of space environment temperature extremes.
Performance Qualification Test of the ISS Water Processor Assembly (WPA) Expendables
NASA Technical Reports Server (NTRS)
Carter, Layne; Tabb, David; Tatara, James D.; Mason, Richard K.
2005-01-01
The Water Processor Assembly (WPA) for use on the International Space Station (ISS) includes various technologies for the treatment of waste water. These technologies include filtration, ion exchange, adsorption, catalytic oxidation, and iodination. The WPA hardware implementing portions of these technologies, including the Particulate Filter, Multifiltration Bed, Ion Exchange Bed, and Microbial Check Valve, was recently qualified for chemical performance at the Marshall Space Flight Center. Waste water representing the quality of that produced on the ISS was generated by test subjects and processed by the WPA. Water quality analysis and instrumentation data was acquired throughout the test to monitor hardware performance. This paper documents operation of the test and the assessment of the hardware performance.
Center for Research and Development in Teaching.
ERIC Educational Resources Information Center
Bush, Robert N.; Gage, N.L.
1968-01-01
The major portion of this report summarizes prior research at the Stanford Center for Research and Development in Teaching within the framework of three domains of variables: the behavioral or directly observable variables; the personological or those inferred from tests; and those institutional variables which affect the social, technological,…
The EPA's National Risk Management Research Laboratory (NRMRL) and its verification organization partner, Battelle, operate the Advanced Monitoring Systems (AMS) Center under ETV. The AMS Center recently evaluated the performance of the Abraxis Ecologenia Ethynylestradiol (EE2) ...
3 CFR - Medicare Demonstration To Test Medical Homes in Federally Qualified Health Centers
Code of Federal Regulations, 2010 CFR
2010-01-01
... health information technology and electronic health records. One of the key benefits health centers... improvement, access to care, communication with patients, and care management and coordination. These... any right or benefit, substantive or procedural, enforceable at law or in equity by any party against...
Issues in Education: Last Stand for Teacher Education
ERIC Educational Resources Information Center
Fischetti, John C.
2013-01-01
In this brief article, the author argues that if society defines schools as testing centers instead of learning centers where young people go to watch adults work, then teacher education programs are replaceable. Online technologies allow for the transmittal of information without the need for traditional classroom settings. However, if schools…
2011-06-28
Tom Nicolaides, an aerospace technologist in the Engineering & Test Directorate at Stennis Space Center, looks on as 2011 Astro STARS participants take turns gazing at the sun through a special telescope. The sun-gazing activity was part of the Astro STARS (Spaceflight, Technology, Astronomy & Robotics at Stennis) camp for 13-to-15-year-olds June 27 - July 1. The weeklong science and technology camp is held each year onsite at the rocket engine test facility.
NASA Technical Reports Server (NTRS)
Cotton, Will; Liechty, John
2015-01-01
This paper describes a testing methodology undertaken on the Facilities Development and Operations Contract (FDOC) by Lockheed Martin. The methodology was defined with the intent of reducing project schedule time to enable NASA's Johnson Space Center (JSC) to be able to deliver the Mission Control Center (MCC) 21 project as quickly as possible. 21 represents the 21st century where NASA JSC is updating its control center with new technology and operational concepts in order to support NASA customers wanting to use control center assets to support space vehicle operations. In collaboration with the NASA customer, a new test concept was conceived early during MCC21 project planning with the goal of reducing project delivery time. One enabler that could help reduce delivery time was testing. Within the project, testing was performed by two entities, software development responsible for subsystem testing and system test responsible for system integration testing. The MCC21 project took a deliberate review of testing to determine how it could be performed differently to realize an overall reduction in test time to support the goal of a more rapid project delivery.
Dryden Flight Research Center Overview
NASA Technical Reports Server (NTRS)
Meyer, Robert R., Jr.
2007-01-01
This viewgraph document presents a overview of the Dryden Flight Research Center's facilities. Dryden's mission is to advancing technology and science through flight. The mission elements are: perform flight research and technology integration to revolutionize aviation and pioneer aerospace technology, validate space exploration concepts, conduct airborne remote sensing and science observations, and support operations of the Space Shuttle and the ISS for NASA and the Nation. It reviews some of the recent research projects that Dryden has been involved in, such as autonomous aerial refueling, the"Quiet Spike" demonstration on supersonic F-15, intelligent flight controls, high angle of attack research on blended wing body configuration, and Orion launch abort tests.
Enabling UAS Research at the NASA EAV Laboratory
NASA Technical Reports Server (NTRS)
Ippolito, Corey A.
2015-01-01
The Exploration Aerial Vehicles (EAV) Laboratory at NASA Ames Research Center leads research into intelligent autonomy and advanced control systems, bridging the gap between simulation and full-scale technology through flight test experimentation on unmanned sub-scale test vehicles.
Field Investigation of a Strengthened Timber Trestle Railroad Bridge
DOT National Transportation Integrated Search
2003-06-01
A three-span, open-deck timber trestle railroad bridge had been previously field load tested. The prior testing program was done in cooperation with the Transportation Technology Center, Inc. a subsidiary of the Association of American Railroads. The...
EPAs National Center for Computational Toxicology is developing methods that apply computational chemistry, high-throughput screening (HTS) and genomic technologies to predict potential toxicity and prioritize the use of limited testing resources.
Airbreathing Hypersonic Technology Vision Vehicles and Development Dreams
NASA Technical Reports Server (NTRS)
McClinton, C. R.; Hunt, J. L.; Ricketts, R. H.; Reukauf, P.; Peddie, C. L.
1999-01-01
Significant advancements in hypersonic airbreathing vehicle technology have been made in the country's research centers and industry over the past 40 years. Some of that technology is being validated with the X-43 flight tests. This paper presents an overview of hypersonic airbreathing technology status within the US, and a hypersonic technology development plan. This plan builds on the nation's large investment in hypersonics. This affordable, incremental plan focuses technology development on hypersonic systems, which could be operating by the 2020's.
2017-09-19
Researchers at NASA's Langley Research Center in Hampton, Virginia, installed a 15-percent scale model of the Quiet Supersonic Technology (QueSST) preliminary design of a Low-Boom Flight Demonstration (LBFD) aircraft in the 14- by- 22-Foot Subsonic Tunnel. Data from six weeks of wind tunnel tests will characterize the design's low-speed aerodynamic performance. The testing will build on work done earlier this year at NASA's Glenn Research Center in Cleveland, Ohio.
NASA Technical Reports Server (NTRS)
Reily, Cary; Kegely, Jeff; Burdine, Robert (Technical Monitor)
2001-01-01
The Space Optics Manufacturing Technology Center's X-ray Calibration Facility has been recently modified to test Next Generation Space Telescope (NGST) developmental mirrors at cryogenic temperatures (35 degrees Kelvin) while maintaining capability for performance testing of x-ray optics and detectors. The facility's current cryo-optical testing capability and potential modifications for future support of NGST will be presented.
2000-12-08
The X-40 sub-scale technology demonstrator is suspended under a U.S. Army CH-47 Chinook cargo helicopter during a captive-carry test flight at NASA's Dryden Flight Research Center, Edwards, California. The captive carry flights are designed to verify the X-40's navigation and control systems, rigging angles for its sling, and stability and control of the helicopter while carrying the X-40 on a tether. Following a series of captive-carry flights, the X-40 made free flights from a launch altitude of about 15,000 feet above ground, gliding to a fully autonomous landing. The X-40 is an unpowered 82 percent scale version of the X-37, a Boeing-developed spaceplane designed to demonstrate various advanced technologies for development of future lower-cost access to space vehicles.
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.
2015-01-01
This document is intended to enable the more effective transition of NASA Glenn Research Center (GRC) SBIR technologies funded by the Small Business Innovation Research (SBIR) program as well as its companion, the Small Business Technology Transfer (STTR) program into NASA Aeronautics Research Mission Directorate (ARMD) projects. Primarily, it is intended to help NASA program and project managers find useful technologies that have undergone extensive research and development (RRD), through Phase II of the SBIR program; however, it can also assist non-NASA agencies and commercial companies in this process. aviation safety, unmanned aircraft, ground and flight test technique, low emissions, quiet performance, rotorcraft
NASA Astrophysics Data System (ADS)
Wan, Junwei; Chen, Hongyan; Zhao, Jing
2017-08-01
According to the requirements of real-time, reliability and safety for aerospace experiment, the single center cloud computing technology application verification platform is constructed. At the IAAS level, the feasibility of the cloud computing technology be applied to the field of aerospace experiment is tested and verified. Based on the analysis of the test results, a preliminary conclusion is obtained: Cloud computing platform can be applied to the aerospace experiment computing intensive business. For I/O intensive business, it is recommended to use the traditional physical machine.
Composites Manufacturing Education and Technology Facility Expedites Manufacturing Innovation
DOE Office of Scientific and Technical Information (OSTI.GOV)
The Composites Manufacturing Education and Technology facility (CoMET) at the National Wind Technology Center at the National Renewable Energy Laboratory (NREL) paves the way for innovative wind turbine components and accelerated manufacturing. Available for use by industry partners and university researchers, the 10,000-square-foot facility expands NREL's composite manufacturing research capabilities by enabling researchers to design, prototype, and test composite wind turbine blades and other components -- and then manufacture them onsite. Designed to work in conjunction with NREL's design, analysis, and structural testing capabilities, the CoMET facility expedites manufacturing innovation.
NASA Technical Reports Server (NTRS)
Tri, Terry O.; Thompson, Clifford D.
1992-01-01
Future NASA manned missions to the moon and Mars will require development of robust regenerative life support system technologies which offer high reliability and minimal resupply. To support the development of such systems, early ground-based test facilities will be required to demonstrate integrated, long-duration performance of candidate regenerative air revitalization, water recovery, and thermal management systems. The advanced life support Systems Integration Research Facility (SIRF) is one such test facility currently being developed at NASA's Johnson Space Center. The SIRF, when completed, will accommodate unmanned and subsequently manned integrated testing of advanced regenerative life support technologies at ambient and reduced atmospheric pressures. This paper provides an overview of the SIRF project, a top-level description of test facilities to support the project, conceptual illustrations of integrated test article configurations for each of the three SIRF systems, and a phased project schedule denoting projected activities and milestones through the next several years.
IADC Vulnerability Report, IT32-13
NASA Technical Reports Server (NTRS)
Christiansen, E. L.; Miller, J. E.; Hyde, Jimx
2016-01-01
This section provides hypervelocity impact test data for two types of batteries: Lithium-Ion (Li-Ion) and Nickel Hydrogen (Ni-H2) batteries. The impact tests were directed by the NASA Johnson Space Center Hypervelocity Impact Technology (HVIT) group in Houston Texas, and were performed at the NASA White Sands Test Facility (WSTF).
DOT National Transportation Integrated Search
2000-03-01
On November 16, 1999, at the Transportation Technology Center in Pueblo, Colorado, a test was conducted of a single rail passenger car colliding with a fixed wall at 35 mph. The car was instrumented to measure (1) the deformations of critical structu...
2018-04-09
The first optical quality testing on a full window stack that is ready for installation in the docking hatch of NASA's Orion spacecraft is underway inside a laboratory in the Neil Armstrong Operations and Checkout Building at the agency's Kennedy Space Center in Florida. The test is being performed by a team from the center's Exploration Research and Technology Programs. The data from the tests will help improve the requirements for manufacturing tolerances on Orion's windows and verify how the window should perform in space. Orion is being prepared for its first integrated uncrewed flight atop NASA's Space Launch System rocket on Exploration Mission-1.
Langley aerospace test highlights, 1990
NASA Technical Reports Server (NTRS)
1991-01-01
The role of NASA-Langley is to perform basic and applied research necessary for the advancement of aeronautics and spaceflight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests are highlighted which were performed during 1990 in the NASA-Langley test facilities, a number of which are unique in the world. Both the broad range of the research and technology activities at NASA-Langley and the contributions of this work toward maintaining U.S. leadership in aeronautics and space research are illustrated. Other highlights of Langley research and technology for 1990 are described in Research and Technology 1990 Langley Research Center.
Green Monopropellant Status at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Burnside, Christopher G.; Pierce, Charles W.; Pedersen, Kevin W.
2016-01-01
NASA Marshall Space Flight Center is continuing investigations into the use of green monopropellants as a replacement for hydrazine in spacecraft propulsion systems. Work to date has been to push technology development through multiple activities designed to understand the capabilities of these technologies. Future work will begin to transition to mission pull as these technologies are mature while still keeping a solid goal of pushing technology development as opportunities become available. The AF-M315E activities began with hot-fire demonstration testing of a 1N monopropellant thruster in FY 14 and FY15. Following successful completion of the preliminary campaign, changes to the test stand to accommodate propellant conditioning capability and better control of propellant operations was incorporated to make testing more streamlined. The goal is to conduct hot-fire testing with warm and cold propellants using the existing feed system and original thruster design. Following the 1N testing, a NASA owned 100 mN thruster will be hot-fire tested in the same facility to show feasibility of scaling to smaller thrusters for cubesat applications. The end goal is to conduct a hot-fire test of an integrated cubesat propulsion system using an SLM printed propellant tank, an MSFC designed propulsion system electronic controller and the 100 mN thruster. In addition to the AF-M315E testing, MSFC is pursuing hot-fire testing with LMP-103S. Following our successful hot-fire testing of the 22N thruster in April 2015, a test campaign was proposed for a 440N LMP-103S thruster with Orbital ATK and Plasma Processes. This activity was funded through the Space Technology Mission Directorate (STMD) ACO funding call in the last quarter of CY15. Under the same funding source a test activity with Busek and Glenn Research Center for testing of 5N AF-M315E thrusters was proposed and awarded. Both activities are in-work with expected completion of hot-fire testing by the end of FY17. MSFC is continuing to coordinate with the AF and academia on understanding the chemical reactions that occur in AF-M315E. An on-going investigation of the catalyst bed species using Raman Spectroscopy through the NASA Technology Research Fellowship Program (NSTRF) is looking for ways to minimize the amount of computation required by understanding the intermediate species created in the catalyst bed. The MSFC team is also working with commercial partners through Cooperative Agreement Notices (CAN's). Partnerships with commercial and academia include work in non-catalytic ignition of AF-M315, spark ignition of hybrid cubesat systems, printed SLM tanks, and dual-mode (electric and chemical) propulsion systems is continuing.
Acoustic detection of rail car roller bearing defects. Phase III, System evaluation test.
DOT National Transportation Integrated Search
2003-08-01
In July 1999, Transportation Technology Center, Inc. (TTCI), a subsidiary of the Association of American Railroads (AAR), conducted a system evaluation test as part of the Federal Railroad Administrations (FRA) Improved Freight Car Roller Bearing ...
2006-07-12
The Integrated Powerhead Demonstration engine was fired at 100 percent power for the first time July 12, 2006 at NASA Stennis Space Center's E Test Complex. The IPD, which can generate about 250,000 pounds of thrust, is a reusable engine system whose technologies could one day help Americans return to the moon, and travel to Mars and beyond. The IPD engine has been designed, developed and tested through the combined efforts of Pratt & Whitney Rocketdyne and Aerojet, under the direction of the Air Force Research Laboratory and NASA's Marshall Space Flight Center.
Baghouses are air pollution control devices used to control particulate emissions from stationary sources and are among the technologies evaluated by the APCT Center. Baghouses and their accompanying filter media have long been one of the leading particulate control techniques fo...
Baghouses are air pollution control devices used to control particulate emissions from stationary sources and are among the technologies evaluated by the APCT Center. Baghouses and their accompanying filter media have long been one of the leading particulate control techniques fo...
2011-2012 Dryden Center Innovation Fund End of the Year Report: Altitude-Compensating Rocket Nozzles
NASA Technical Reports Server (NTRS)
Jones, Daniel S.; Bui, Trong T.
2012-01-01
This report highlights one of the many successful projects at the NASA Dryden Flight Research Center that was approved for FY12 funding under the Center Innovation Fund. This project was focused on advancing the technology readiness level of one specific type of altitude-compensating nozzle: the dual-bell rocket nozzle. When considering a rocket's performance over its entire integrated trajectory, the dual-bell nozzle has been predicted to achieve a higher total impulse over the conventional bell nozzle, which is expected to result in a greater capability of payload mass to low-Earth orbit. Although the dual-bell rocket nozzle has been thoroughly studied for several decades, this nozzle has still not been adequately tested in a relevant flight-like environment. This report provides highlights and top-level details on the FY12 feasibility effort to advance this promising technology through flight test, a collaborative effort which leverages NASA Marshall's dual-bell nozzle research and development with Dryden's expertise in propulsion-focused flight testing. To accomplish this goal, the NASA F-15B is proposed as the testbed for the initial flight-test campaign to advance this greatly needed capability.
Development Status of the Fission Power System Technology Demonstration Unit
NASA Technical Reports Server (NTRS)
Briggs, Maxwell H.; Gibson, Marc A.; Geng, Steven M.; Pearson, Jon Boise; Godfoy, Thomas
2012-01-01
This paper summarizes the progress that has been made in the development of the Fission Power System Technology Demonstration Unit (TDU). The reactor simulator core and Annular Linear Induction Pump have been fabricated and assembled into a test loop at the NASA Marshall Space Flight Center. A 12 kWe Power Conversion Unit (PCU) is being developed consisting of two 6 kWe free-piston Stirling engines. The two 6 kWe engines have been fabricated by Sunpower Inc. and are currently being tested separately prior to integration into the PCU. The Facility Cooling System (FCS) used to reject convertor waste heat has been assembled and tested at the NASA Glenn Research Center (GRC). The structural elements, including a Buildup Assembly Platform (BAP) and Upper Truss Structure (UTS) have been fabricated, and will be used to test cold-end components in thermal vacuum prior to TDU testing. Once all components have been fully tested at the subsystem level, they will be assembled into an end-to-end system and tested in thermal vacuum at GRC.
NASA Technical Reports Server (NTRS)
Baker, L. R.; Sulyma, P. R.; Tevepaugh, J. A.; Penny, M. M.
1976-01-01
Since exhaust plumes affect vehicle base environment (pressure and heat loads) and the orbiter vehicle aerodynamic control surface effectiveness, an intensive program involving detailed analytical and experimental investigations of the exhaust plume/vehicle interaction was undertaken as a pertinent part of the overall space shuttle development program. The program, called the Plume Technology program, has as its objective the determination of the criteria for simulating rocket engine (in particular, space shuttle propulsion system) plume-induced aerodynamic effects in a wind tunnel environment. The comprehensive experimental program was conducted using test facilities at NASA's Marshall Space Flight Center and Ames Research Center. A post-test examination of some of the experimental results obtained from NASA-MSFC's 14 x 14-inch trisonic wind tunnel is presented. A description is given of the test facility, simulant gas supply system, nozzle hardware, test procedure and test matrix. Analysis of exhaust plume flow fields and comparison of analytical and experimental exhaust plume data are presented.
Development Status of the Fission Power System Technology Demonstration Unit
NASA Technical Reports Server (NTRS)
Briggs, Maxwell H.; Gibson, Marc A.; Geng, Steven M; Pearson, Jon Boise; Godfroy, Thomas
2012-01-01
This paper summarizes the progress that has been made in the development of the Fission Power System Technology Demonstration Unit (TDU). The reactor simulator core and Annular Linear Induction Pump have been fabricated and assembled into a test loop at the NASA Marshall Space Flight Center. A 12 kWe Power Conversion Unit (PCU) is being developed consisting of two 6 kWe free-piston Stirling engines. The two 6 kWe engines have been fabricated by Sunpower Inc. and are currently being tested separately prior to integration into the PCU. The Facility Cooling System (FCS) used to reject convertor waste heat has been assembled and tested at the NASA Glenn Research Center (GRC). The structural elements, including a Buildup Assembly Platform (BAP) and Upper Truss Structure (UTS) have been fabricated, and will be used to test cold-end components in thermal vacuum prior to TDU testing. Once all components have been fully tested at the subsystem level, they will be assembled into an end-to-end system and tested in thermal vacuum at NASA GRC.
The rehabilitation engineering research center for the advancement of cognitive technologies.
Heyn, Patricia Cristine; Cassidy, Joy Lucille; Bodine, Cathy
2015-02-01
Barring few exceptions, allied health professionals, engineers, manufacturers of assistive technologies (ATs), and consumer product manufacturers have developed few technologies for individuals with cognitive impairments (CIs). In 2004, the National Institute on Disability Rehabilitation Research (NIDRR) recognized the need to support research in this emergent field. They funded the first Rehabilitation Engineering Research Center for the Advancement of Cognitive Technologies (RERC-ACT). The RERC-ACT has since designed and evaluated existing and emerging technologies through rigorous research, improving upon existing AT devices, and creating new technologies for individuals with CIs. The RERC-ACT has contributed to the development and testing of AT products that assist persons with CIs to actively engage in tasks of daily living at home, school, work, and in the community. This article highlights the RERC-ACT's engineering development and research projects and discusses how current research may impact the quality of life for an aging population. © The Author(s) 2014.
NASA Technical Reports Server (NTRS)
Alhorn, D. C.; Howard, D. E.; Smith, D. A.
2005-01-01
The Advanced Sensor Concepts project was conducted under the Center Director's Discretionary Fund at the Marshall Space Flight Center. Its objective was to advance the technology originally developed for the Glovebox Integrated Microgravity Isolation Technology project. The objective of this effort was to develop and test several new motion sensors. To date, the investigators have invented seven new technologies during this endeavor and have conceived several others. The innovative basic sensor technology is an absolute position sensor. It employs only two active components, and it is simple, inexpensive, reliable, repeatable, lightweight, and relatively unobtrusive. Two sensors can be utilized in the same physical space to achieve redundancy. The sensor has micrometer positional accuracy and can be configured as a two- or three-dimensional sensor. The sensor technology has the potential to pioneer a new class of linear and rotary sensors. This sensor is the enabling technology for autonomous assembly of modular structures in space and on extraterrestrial locations.
NASA Technical Reports Server (NTRS)
Lewis, Pattie
2007-01-01
Headquarters National Aeronautics and Space Administration (NASA) chartered the NASA Acquisition Pollution Prevention (AP2) Office to coordinate agency activities affecting pollution prevention issues identified during system and component acquisition and sustainment processes. The primary objectives of the AP2 Office are to: (1) Reduce or eliminate the use of hazardous materials or hazardous processes at manufacturing, remanufacturing, and sustainment locations. (2) Avoid duplication of effort in actions required to reduce or eliminate hazardous materials through joint center cooperation and technology sharing. The objective of this project was to qualify candidate alternative Low-Emission Surface Preparation/Depainting Technologies for Structural Steel applications at NASA facilities. This project compares the surface preparation/depainting performance of the proposed alternatives to existing surface preparation/depainting systems or standards. This Joint Test Report (JTR) contains the results of testing as per the outlines of the Joint Test Protocol (JTP), Joint Test Protocol for Validation of Alternative Low-Emission Surface Preparation/Depainting Technologies for Structural Steel, and the Field Test Plan (FTP), Field Evaluations Test Plan for Validation of Alternative Low-Emission Surface Preparation/Depainting Technologies for Structural Steel, for critical requirements and tests necessary to qualify alternatives for coating removal systems. These tests were derived from engineering, performance, and operational impact (supportability) requirements defined by a consensus of government and industry participants. This JTR documents the results of the testing as well as any test modifications made during the execution of the project. This JTR is made available as a reference for future pollution prevention endeavors by other NASA Centers, the Department of Defense and commercial users to minimize duplication of effort. The current coating removal processes identified herein are for polyurethane, epoxy and other paint systems applied by conventional wet-spray processes. A table summarizes the target hazardous materials, processes and materials, applications, affected programs, and candidate substrates.
Scaled Composites' Proteus aircraft and an F/A-18 Hornet from NASA's Dryden Flight Research Center d
NASA Technical Reports Server (NTRS)
2002-01-01
Scaled Composites' Proteus aircraft and an F/A-18 Hornet from NASA's Dryden Flight Research Center during a low-level flyby at Las Cruces Airport in New Mexico. The unique Proteus aircraft served as a test bed for NASA-sponsored flight tests designed to validate collision-avoidance technologies proposed for uninhabited aircraft. The tests, flown over southern New Mexico in March, 2002, used the Proteus as a surrogate uninhabited aerial vehicle (UAV) while three other aircraft flew toward the Proteus from various angles on simulated collision courses. Radio-based 'detect, see and avoid' equipment on the Proteus successfully detected the other aircraft and relayed that information to a remote pilot on the ground at Las Cruces Airport. The pilot then transmitted commands to the Proteus to maneuver it away from the potential collisions. The flight demonstration, sponsored by NASA Dryden Flight Research Center, New Mexico State University, Scaled Composites, the U.S. Navy and Modern Technology Solutions, Inc., were intended to demonstrate that UAVs can be flown safely and compatibly in the same skies as piloted aircraft.
Test and Demonstration Assets of New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This document was developed by the Arrowhead Center of New Mexico State University as part of the National Security Preparedness Project (NSPP), funded by a DOE/NNSA grant. The NSPP has three primary components: business incubation, workforce development, and technology demonstration and validation. The document contains a survey of test and demonstration assets in New Mexico available for external users such as small businesses with security technologies under development. Demonstration and validation of national security technologies created by incubator sources, as well as other sources, are critical phases of technology development. The NSPP will support the utilization of an integrated demonstrationmore » and validation environment.« less
The 1977 Goddard Space Flight Center Battery Workshop
NASA Technical Reports Server (NTRS)
1977-01-01
The papers presented were derived from transcripts taken at the Tenth Annual Battery Workshop held at the Goddard Space Flight Center, November 15-17, 1977. The Workshop was attended by manufacturers, users, and government representatives interested in the latest results of testing, analysis, and development of the sealed nickel cadmium cell system. The purpose of the Workshop was to share flight and test experience, stimulate discussion on problem areas, and to review the latest technology improvements.
NASA Technical Reports Server (NTRS)
Mitchell, Jennifer D.; Cryan, Scott P.; Baker, Kenneth; Martin, Toby; Goode, Robert; Key, Kevin W.; Manning, Thomas; Chien, Chiun-Hong
2008-01-01
The Exploration Systems Architecture defines missions that require rendezvous, proximity operations, and docking (RPOD) of two spacecraft both in Low Earth Orbit (LEO) and in Low Lunar Orbit (LLO). Uncrewed spacecraft must perform automated and/or autonomous rendezvous, proximity operations and docking operations (commonly known as Automated Rendezvous and Docking, AR&D). The crewed versions may also perform AR&D, possibly with a different level of automation and/or autonomy, and must also provide the crew with relative navigation information for manual piloting. The capabilities of the RPOD sensors are critical to the success of the Constellation Program; this is carried as one of the CEV Project top risks. The Exploration Technology Development Program (ETDP) AR&D Sensor Technology Project seeks to reduce this risk by increasing technology maturation of selected relative navigation sensor technologies through testing and simulation. One of the project activities is a series of "pathfinder" testing and simulation activities to integrate relative navigation sensors with the Johnson Space Center Six-Degree-of-Freedom Test System (SDTS). The SDTS will be the primary testing location for the Orion spacecraft s Low Impact Docking System (LIDS). Project team members have integrated the Orion simulation with the SDTS computer system so that real-time closed loop testing can be performed with relative navigation sensors and the docking system in the loop during docking and undocking scenarios. Two relative navigation sensors are being used as part of a "pathfinder" activity in order to pave the way for future testing with the actual Orion sensors. This paper describes the test configuration and test results.
NASA Technical Reports Server (NTRS)
Sass, J. P.; Raines, N. G.; Ryan, H. M.
2004-01-01
The Integrated Powerhead Demonstrator (IPD) is a 250K lbf (1.1 MN) thrust cryogenic hydrogen/oxygen engine technology demonstrator that utilizes a full flow staged combustion engine cycle. The Integrated Powerhead Demonstrator (IPD) is part of NASA's Next Generation Launch Technology (NGLT) program, which seeks to provide safe, dependable, cost-cutting technologies for future space launch systems. The project also is part of the Department of Defense's Integrated High Payoff Rocket Propulsion Technology (IHPRPT) program, which seeks to increase the performance and capability of today s state-of-the-art rocket propulsion systems while decreasing costs associated with military and commercial access to space. The primary industry participants include Boeing-Rocketdyne and GenCorp Aerojet. The intended full flow engine cycle is a key component in achieving all of the aforementioned goals. The IPD Program recently achieved a major milestone with the successful completion of the IPD Oxidizer Turbopump (OTP) hot-fire test project at the NASA John C. Stennis Space Center (SSC) E-1 test facility in June 2003. A total of nine IPD Workhorse Preburner tests were completed, and subsequently 12 IPD OTP hot-fire tests were completed. The next phase of development involves IPD integrated engine system testing also at the NASA SSC E-1 test facility scheduled to begin in late 2004. Following an overview of the NASA SSC E-1 test facility, this paper addresses the facility aspects pertaining to the activation and testing of the IPD Workhorse Preburner and the IPD Oxidizer Turbopump. In addition, some of the facility challenges encountered during the test project shall be addressed.
1981-05-21
The Dryden C-140 JetStar during testing of advanced propfan designs. Dryden conducted flight research in 1981-1982 on several designs. The technology was developed under the direction of the Lewis Research Center (today the Glenn Research Center, Cleveland, OH) under the Advanced Turboprop Program. Under that program, Langley Research Center in Virginia oversaw work on accoustics and noise reduction. These efforts were intended to develop a high-speed and fuel-efficient turboprop system.
2007-09-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, the first stage reentry 1/2% model is undergoing pressure measurements inside the wind tunnel testing facility at MSFC. (Highest resolution available)
Kennedy Space Center's Partnership with Graftel Incorporated
NASA Technical Reports Server (NTRS)
Dunn, Carol Anne
2010-01-01
NASA Kennedy Space Center (KSC) has recently partnered with Graftel Incorporated under an exclusive license agreement for the manufacture and sale of the Smart Current Signature Sensor. The Smart Current Signature Sensor and software were designed and developed to be utilized on any application using solenoid valves. The system monitors the electrical and mechanical health of solenoids by comparing the electrical current profile of each solenoid actuation to a typical current profile and reporting deviation from its learned behavior. The objective of this partnership with Graftel is for them to develop the technology into a hand-held testing device for their customer base in the Nuclear Power Industry. The device will be used to perform diagnostic testing on electromechanical valves used in Nuclear Power plants. Initially, Graftel plans to have working units within the first year of license in order to show customers and allow them to put purchase requests into their next year's budget. The subject technology under discussion was commercialized by the Kennedy Space Center Technology Programs and Partnerships Office, which patented the technology and licensed it to Graftel, Inc., a company providing support, instrumentation, and calibration services to the nuclear community and private sector for over 10 years. For the nuclear power industry, Graftel designs, manufacturers, and calibrates a full line of testing instrumentation. Grafters smart sensors have been in use in the United States since 1993 and have proved to decrease set-up time and test durations. The project was funded by Non-Destructive Engineering, and it is felt that this technology will have more emphasis on future vehicles. Graftel plans to market the Current Signature Sensor to the Electric Utility industry. Graftel currently supplies product and services to the Nuclear Power Industry in the United States as well as internationally. Product and services sold are used in non-destructive testing for valves, penetrations and other applications. Graftel also supplies testing services to an industrial customer base. The customer base includes 90 percent of the U.S. Nuclear plants and plants in Brazil, Europe, and Asia. Graftel works internationally with two representative groups and employees and has ten people at the principle location and a group of contract engineers around the country.
Facilities | Photovoltaic Research | NREL
Centers (RTCs) The Department of Energy Regional Test Centers for solar technologies serve to validate PV development to provide foundational support for the photovoltaic (PV) industry and PV users. Photo of the Solar Research Energy Facility. Solar Energy Research Facility (SERF) The SERF houses various
The EPA's National Risk Management Research Laboratory (NRMRL) and its verification organization partner, Battelle, operate the Advanced Monitoring Systems (AMS) Center under ETV. The AMS Center recently evaluated the performance of the Abraxis 17(beta)-estradiol (E2) magnetic p...
Ares I Upper Stage Pressure Tests in Wind Tunnel
NASA Technical Reports Server (NTRS)
2007-01-01
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, the first stage reentry 1/2% model is undergoing pressure measurements inside the wind tunnel testing facility at MSFC. (Highest resolution available)
2007-08-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts confidence testing of a manufactured aluminum panel that will fabricate the Ares I upper stage barrel. In this test, bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
Expanding the Role of an Earth Science Data System: The GHRC Innovations Lab
NASA Astrophysics Data System (ADS)
Conover, H.; Ramachandran, R.; Smith, T.; Kulkarni, A.; Maskey, M.; He, M.; Keiser, K.; Graves, S. J.
2013-12-01
The Global Hydrology Resource Center is a NASA Earth Science Distributed Active Archive Center (DAAC), managed in partnership by the Earth Science Department at NASA's Marshall Space Flight Center and the University of Alabama in Huntsville's Information Technology and Systems Center. Established in 1991, the GHRC processes, archives and distributes global lightning data from space, airborne and ground based observations from hurricane science field campaigns and Global Precipitation Mission (GPM) ground validation experiments, and satellite passive microwave products. GHRC's close association with the University provides a path for technology infusion from the research center into the data center. The ITSC has a long history of designing and operating science data and information systems. In addition to the GHRC and related data management projects, the ITSC also conducts multidisciplinary research in many facets of information technology. The coupling of ITSC research with the operational GHRC Data Center has enabled the development of new technologies that directly impact the ability of researchers worldwide to apply Earth science data to their specific domains of interest. The GHRC Innovations Lab will provide a showcase for emerging geoinformatics technologies resulting from NASA-sponsored research at the ITSC. Research products to be deployed in the Innovations Lab include: * Data Albums - curated collections of information related to a specific science topic or event with links to relevant data files from different sources. * Data Prospecting - combines automated data mining techniques with user interaction to provide for quick exploration of large volumes of data. * Provenance Browser - provides for graphical exploration of data lineage and related contextual information. In the Innovations Lab, these technologies can be targeted to GHRC data sets, and tuned to address GHRC user interests. As technologies are tested and matured in the Innovations Lab, the most promising will be selected for incorporation into the GHRC's online tool suite.
NASA Dryden's UAS Service Capabilities
NASA Technical Reports Server (NTRS)
Bauer, Jeff
2007-01-01
The vision of NASA s Dryden Flight Research Center is to "fly what others only imagine." Its mission is to advance technology and science through flight. Objectives supporting the mission include performing flight research and technology integration to revolutionize aviation and pioneer aerospace technology, validating space exploration concepts, conducting airborne remote sensing and science missions, and supporting operations of the Space Shuttle and the International Space Station. A significant focus of effort in recent years has been on Unmanned Aircraft Systems (UAS), both in support of the Airborne Science Program and as research vehicles to advance the state of the art in UAS. Additionally, the Center has used its piloted aircraft in support of UAS technology development. In order to facilitate greater access to the UAS expertise that exists at the Center, that expertise has been organized around three major capabilities. The first is access to high-altitude, long-endurance UAS. The second is the establishment of a test range for small UAS. The third is safety case assessment support.
Hypersonic engine seal development at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.
1994-01-01
NASA Lewis Research Center is developing advanced seal concepts and sealing technology for advanced combined cycle ramjet/scramjet engines being designed for the National Aerospace Plane (NASP). Technologies are being developed for both the dynamic seals that seal the sliding interfaces between articulating engine panels and sidewalls, and for the static seals that seal the heat exchanger to back-up structure interfaces. This viewgraph presentation provides an overview of the candidate engine seal concepts, seal material assessments, and unique test facilities used to assess the leakage and thermal performance of the seal concepts.
The 1991 research and technology report, Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Soffen, Gerald (Editor); Ottenstein, Howard (Editor); Montgomery, Harry (Editor); Truszkowski, Walter (Editor); Frost, Kenneth (Editor); Sullivan, Walter (Editor); Boyle, Charles (Editor)
1991-01-01
The 1991 Research and Technology Report for Goddard Space Flight Center is presented. Research covered areas such as (1) earth sciences including upper atmosphere, lower atmosphere, oceans, hydrology, and global studies; (2) space sciences including solar studies, planetary studies, Astro-1, gamma ray investigations, and astrophysics; (3) flight projects; (4) engineering including robotics, mechanical engineering, electronics, imaging and optics, thermal and cryogenic studies, and balloons; and (5) ground systems, networks, and communications including data and networks, TDRSS, mission planning and scheduling, and software development and test.
Hypersonic engine seal development at NASA Lewis Research Center
NASA Astrophysics Data System (ADS)
Steinetz, Bruce M.
1994-07-01
NASA Lewis Research Center is developing advanced seal concepts and sealing technology for advanced combined cycle ramjet/scramjet engines being designed for the National Aerospace Plane (NASP). Technologies are being developed for both the dynamic seals that seal the sliding interfaces between articulating engine panels and sidewalls, and for the static seals that seal the heat exchanger to back-up structure interfaces. This viewgraph presentation provides an overview of the candidate engine seal concepts, seal material assessments, and unique test facilities used to assess the leakage and thermal performance of the seal concepts.
Code of Federal Regulations, 2012 CFR
2012-01-01
... the operation of PMCs. The Centers have responsibilities for assembling, testing, releasing, and providing for the commercial production and use of plant materials and plant materials technology for...
Code of Federal Regulations, 2011 CFR
2011-01-01
... the operation of PMCs. The Centers have responsibilities for assembling, testing, releasing, and providing for the commercial production and use of plant materials and plant materials technology for...
Code of Federal Regulations, 2014 CFR
2014-01-01
... the operation of PMCs. The Centers have responsibilities for assembling, testing, releasing, and providing for the commercial production and use of plant materials and plant materials technology for...
Code of Federal Regulations, 2013 CFR
2013-01-01
... the operation of PMCs. The Centers have responsibilities for assembling, testing, releasing, and providing for the commercial production and use of plant materials and plant materials technology for...
NASA Technical Reports Server (NTRS)
Fisher, Mark F.; King, Richard F.; Chenevert, Donald J.
1998-01-01
The need for low cost access to space has initiated the development of low cost liquid rocket engine and propulsion system hardware at the Marshall Space Flight Center. This hardware will be tested at the Stennis Space Center's B-2 test stand. This stand has been reactivated for the testing of the Marshall designed Fastrac engine and the Propulsion Test Article. The RP-1 and LOX engine is a turbopump fed gas generator rocket with an ablative nozzle which has a thrust of 60,000 lbf. The Propulsion Test Article (PTA) is a test bed for low cost propulsion system hardware including a composite RP-I tank, flight feedlines and pressurization system, stacked in a booster configuration. The PTA is located near the center line of the B-2 test stand, firing vertically into the water cooled flame deflector. A new second position on the B-2 test stand has been designed and built for the horizontal testing of the Fastrac engine in direct support of the X-34 launch vehicle. The design and integration of these test facilities as well as the coordination which was required between the two Centers is described and lessons learned are provided. The construction of the horizontal test position is discussed in detail. The activation of these facilities is examined and the major test milestones are described.
A Family Medicine Health Technology Strategy for Achieving the Triple Aim for US Health Care.
Phillips, Robert L; Bazemore, Andrew W; DeVoe, Jennifer E; Weida, Thomas J; Krist, Alex H; Dulin, Michael F; Biagioli, Frances E
2015-09-01
Health information technology (health IT) and health technology, more broadly, offer tremendous promise for connecting, synthesizing, and sharing information critical to improving health care delivery, reducing health system costs, and achieving personal and community health. While efforts to spur adoption of electronic health records (EHRs) among US practices and hospitals have been highly successful, aspirations for effective data exchanges and translation of data into measureable improvements in health outcomes remain largely unrealized. There are shining examples of health enhancement through new technologies, and the discipline of family medicine is well poised to take advantage of these innovations to improve patient and population health. The Future of Family Medicine led to important family medicine health IT initiatives over the past decade. For example, the American Academy of Family Physicians (AAFP) Center for Health Information Technology and the Robert Graham Center provided important leadership for informing health IT policy and standard-setting, such as the Centers for Medicare and Medicaid Services EHR incentives programs (often referred to as "meaningful use."). As we move forward, there is a need for a new and more comprehensive family medicine strategy for technology. To inform the Family Medicine for America's Health (FMAHealth) initiative, this paper explores strategies and tactics that family medicine could pursue to improve the utility of technology for primary care and to help primary care become a leader in rapid development, testing, and implementation of new technologies. These strategies were also designed with a broader stakeholder audience in mind, intending to reach beyond the work being done by FMAHealth. Specific suggestions include: a shared primary care health IT center, meaningful primary care quality measures and capacity to assess/report them, increased primary care technology research, a national family medicine registry, enhancement of family physicians' technology leadership, and championing patient-centered technology functionality.
Passenger car crippling end-load test and analyses
DOT National Transportation Integrated Search
2017-09-01
The Transportation Technology Center, Inc. (TTCI) performed a series of full-scale tests and a finite element analysis (FEA) in a case study that may become a model for manufacturers seeking to use the waiver process of Tier I crashworthiness and occ...
Testing of wide-gap welds at eastern mega site.
DOT National Transportation Integrated Search
2013-08-01
In 2005, Transportation Technology Center, Inc. (TTCI) and Norfolk Southern Railway (NS) began a test of wide-gap welds (WGWs) at the eastern mega site near Bluefield, WV. : WGWs enable the repair of weld or railhead defects with a single weld instea...
Technology demonstrator program for Space Station Environmental Control Life Support System
NASA Technical Reports Server (NTRS)
Adams, Alan M.; Platt, Gordon K.; Claunch, William C.; Humphries, William R.
1987-01-01
The main objectives and requirements of the NASA/Marshall Space Flight Center Technology Demonstration Program are discussed. The program consists of a comparative test and a 90-day manned system test to evaluate an Environmental Control and Life Support System (ECLSS). In the comparative test phase, 14 types of subsystems which perform oxygen and water reclamation functions are to be examined in terms of performance maintenance/service requirements, reliability, and safety. The manned chamber testing phase involves a four person crew using a partial ECLSS for 90 days. The schedule for the program and the program hardware requirements are described.
Diagnostic Tests and Procedures
... Daily Conferences Fellowships and Residencies School of Perfusion Technology Education Resources Library & Learning Resource Center CME Resources THI Journal THI Cardiac Society Save the Date: International Symposium on Cardiovascular Regenerative ...
Projection technologies for imaging sensor calibration, characterization, and HWIL testing at AEDC
NASA Astrophysics Data System (ADS)
Lowry, H. S.; Breeden, M. F.; Crider, D. H.; Steely, S. L.; Nicholson, R. A.; Labello, J. M.
2010-04-01
The characterization, calibration, and mission simulation testing of imaging sensors require continual involvement in the development and evaluation of radiometric projection technologies. Arnold Engineering Development Center (AEDC) uses these technologies to perform hardware-in-the-loop (HWIL) testing with high-fidelity complex scene projection technologies that involve sophisticated radiometric source calibration systems to validate sensor mission performance. Testing with the National Institute of Standards and Technology (NIST) Ballistic Missile Defense Organization (BMDO) transfer radiometer (BXR) and Missile Defense Agency (MDA) transfer radiometer (MDXR) offers improved radiometric and temporal fidelity in this cold-background environment. The development of hardware and test methodologies to accommodate wide field of view (WFOV), polarimetric, and multi/hyperspectral imaging systems is being pursued to support a variety of program needs such as space situational awareness (SSA). Test techniques for the acquisition of data needed for scene generation models (solar/lunar exclusion, radiation effects, etc.) are also needed and are being sought. The extension of HWIL testing to the 7V Chamber requires the upgrade of the current satellite emulation scene generation system. This paper provides an overview of pertinent technologies being investigated and implemented at AEDC.
2012-08-01
CAPE CANAVERAL, Fla. - At the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, field at the north end of the Shuttle Landing Facility, or SLF, at NASA’s Kennedy Space Center in Florida, members of the media view the hazard field and speak with Morpheus managers. At far left, in the white shirt is Jon Olansen, Johnson Space Center Project Morpheus Manager. At left, in the blue shirt is Chirold Epp, JSC project manager for ALHAT. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
2012-08-01
CAPE CANAVERAL, Fla. - At the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, field at the north end of the Shuttle Landing Facility, or SLF, at NASA’s Kennedy Space Center in Florida, members of the media view the hazard field and speak with Morpheus managers. In the white shirt is Jon Olansen, Johnson Space Center Project Morpheus Manager. Behind Olansen is Gregory Gaddis, Kennedy Project Morpheus/ALHAT site manager. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert C. O'Brien; Steven K. Cook; Nathan D. Jerred
Nuclear power and propulsion has been considered for space applications since the 1950s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors / rocket engines in the Rover/NERVA programs1. The Aerojet Corporation was the prime contractor for the NERVA program. Modern changes in environmental laws present challenges for the redevelopment of the nuclear rocket. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel composition that is significantly different from those of the NERVA project can be engineered; this may be needed to ensure public support and compliance with safetymore » requirements. The Center for Space Nuclear Research (CSNR) is pursuing a number of technologies, modeling and testing processes to further the development of safe, practical and affordable nuclear thermal propulsion systems.« less
Hybrid Propulsion Demonstration Program 250K Hybrid Motor
NASA Technical Reports Server (NTRS)
Story, George; Zoladz, Tom; Arves, Joe; Kearney, Darren; Abel, Terry; Park, O.
2003-01-01
The Hybrid Propulsion Demonstration Program (HPDP) program was formed to mature hybrid propulsion technology to a readiness level sufficient to enable commercialization for various space launch applications. The goal of the HPDP was to develop and test a 250,000 pound vacuum thrust hybrid booster in order to demonstrate hybrid propulsion technology and enable manufacturing of large hybrid boosters for current and future space launch vehicles. The HPDP has successfully conducted four tests of the 250,000 pound thrust hybrid rocket motor at NASA's Stennis Space Center. This paper documents the test series.
X-33 Injector Ignition Single Cell Test
NASA Technical Reports Server (NTRS)
1997-01-01
The X-33 injector ignition single cell was tested at the Marshall Space Flight Center test stand 116. The X-33 was a sub-scale technology demonstrator prototype of a Reusable Launch Vehicle (RLV) manufactured and named by Lockheed Martin as the Venture Star. The goal of the program was to demonstrate the technologies needed for a full size, single-stage-to-orbit RLV, thus enabling private industry to build and operate the RLV in the first decade of the 21st century. The X-33 program was cancelled in 2001.
[Optimization of education for laparoendoscopic technologies in Ukraine].
Lesovoĭ, V N; Savenkov, V I; Tomin, M S
2014-09-01
International experience of training of surgeons, including urologists, in laparoendoscopic technologies, was analyzed. Practical course "The Fundamentals of aparoscopic Surgery" (FLS) and the European program of education for basic laparoscopic urologic skills (E-BLUS), which are used in specialized centers, constitute a standard programs of development of basic endosurgical skills. Such centers in Ukraine are absent. The project of complex system of a simulating education, testing and certification of surgeons, who are trained in endovideosurgical technologies, is proposed. While performing surveying of Ukrainian surgeons there were revealed the problems in a process of their education and introduction of highly technological methods: insufficient equipment with modern apparatuses, absence of a standardized pro- gram of education. The staged program of education was elaborated, taking into account progressive international experience and adopted to our environment and con ditions.
DOT National Transportation Integrated Search
2000-03-01
A test in which a single rail passenger car was crashed into a fixed wall at 35 mph was conducted at the Transportation Technology Center on November 16, 1999. The car was instrumented to measure (1) the deformations of critical structural elements, ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Driscoll, Frederick R.
The University of Washington (UW) - Northwest National Marine Renewable Energy Center (UW-NNMREC) and the National Renewable Energy Laboratory (NREL) will collaborate to advance research and development (R&D) of Marine Hydrokinetic (MHK) renewable energy technology, specifically renewable energy captured from ocean tidal currents. UW-NNMREC is endeavoring to establish infrastructure, capabilities and tools to support in-water testing of marine energy technology. NREL is leveraging its experience and capabilities in field testing of wind systems to develop protocols and instrumentation to advance field testing of MHK systems. Under this work, UW-NNMREC and NREL will work together to develop a common instrumentation systemmore » and testing methodologies, standards and protocols. UW-NNMREC is also establishing simulation capabilities for MHK turbine and turbine arrays. NREL has extensive experience in wind turbine array modeling and is developing several computer based numerical simulation capabilities for MHK systems. Under this CRADA, UW-NNMREC and NREL will work together to augment single device and array modeling codes. As part of this effort UW NNMREC will also work with NREL to run simulations on NREL's high performance computer system.« less
Safety and Function Test Report for the Viryd CS8 Wind Turbine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roadman, J.; Murphy, M.; van Dam, J.
2013-10-01
This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. Several turbines were selected for testing at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) as a part of the Small Wind Turbine Independent Testing project. Safety and function testing is one of up to five tests that may be performed on the turbines. Other tests include duration, power performance, acoustic noise, and power quality. Viryd Technologies, Inc.more » of Austin, Texas, was the recipient of the DOE grant and provided the turbine for testing.« less
NASA Precision Landing Technologies Completes Initial Flight Tests on Vertical Testbed Rocket
2017-04-19
This 2-minute, 40-second video shows how over the past 5 weeks, NASA and Masten Space Systems teams have prepared for and conducted sub-orbital rocket flight tests of next-generation lander navigation technology through the CoOperative Blending of Autonomous Landing Technologies (COBALT) project. The COBALT payload was integrated onto Masten’s rocket, Xodiac. The Xodiac vehicle used the Global Positioning System (GPS) for navigation during this first campaign, which was intentional to verify and refine COBALT system performance. The joint teams conducted numerous ground verification tests, made modifications in the process, practiced and refined operations’ procedures, conducted three tether tests, and have now flown two successful free flights. This successful, collaborative campaign has provided the COBALT and Xodiac teams with the valuable performance data needed to refine the systems and prepare them for the second flight test campaign this summer when the COBALT system will navigate the Xodiac rocket to a precision landing. The technologies within COBALT provide a spacecraft with knowledge during entry, descent, and landing that enables it to precisely navigate and softly land close to surface locations that have been previously too risky to target with current capabilities. The technologies will enable future exploration destinations on Mars, the moon, Europa, and other planets and moons. The two primary navigation components within COBALT include the Langley Research Center’s Navigation Doppler Lidar, which provides ultra-precise velocity and line-of-sight range measurements, and Jet Propulsion Laboratory’s Lander Vision System (LVS), which provides navigation estimates relative to an existing surface map. The integrated system is being flight tested onboard a Masten suborbital rocket vehicle called Xodiac. The COBALT project is led by the Johnson Space Center, with funding provided through the Game Changing Development, Flight Opportunities program, and Advanced Exploration Systems programs. Based at NASA’s Armstrong Flight Research Center in Edwards, CA, the Flight Opportunities program funds technology development flight tests on commercial suborbital space providers of which Masten is a vendor. The program has previously tested the LVS on the Masten rocket and validated the technology for the Mars 2020 rover.
Development of Bonded Joint Technology for a Rigidizable-Inflatable Deployable Truss
NASA Technical Reports Server (NTRS)
Smeltzer, Stanley S., III
2006-01-01
Microwave and Synthetic Aperture Radar antenna systems have been developed as instrument systems using truss structures as their primary support and deployment mechanism for over a decade. NASA Langley Research Center has been investigating fabrication, modular assembly, and deployment methods of lightweight rigidizable/inflatable linear truss structures during that time for large spacecraft systems. The primary goal of the research at Langley Research Center is to advance these existing state-of-the-art joining and deployment concepts to achieve prototype system performance in a relevant space environment. During 2005, the development, fabrication, and testing of a 6.7 meter multi-bay, deployable linear truss was conducted at Langley Research Center to demonstrate functional and precision metrics of a rigidizable/inflatable truss structure. The present paper is intended to summarize aspects of bonded joint technology developed for the 6.7 meter deployable linear truss structure while providing a brief overview of the entire truss fabrication, assembly, and deployment methodology. A description of the basic joint design, surface preparation investigations, and experimental joint testing of component joint test articles will be described. Specifically, the performance of two room temperature adhesives were investigated to obtain qualitative data related to tube folding testing and quantitative data related to tensile shear strength testing. It was determined from the testing that a polyurethane-based adhesive best met the rigidizable/inflatable truss project requirements.
Verification testing of the ORCA Water Technologies KemLoop 1000 Coagulation and Filtration Water Treatment System for arsenic removal was conducted at the St. Louis Center located in Washtenaw County, Michigan, from March 23 through April 6, 2005. The source water was groundwate...
Side impact test and analyses of a DOT-111 tank car : final report.
DOT National Transportation Integrated Search
2015-10-01
Transportation Technology Center, Inc. conducted a side impact test on a DOT-111 tank car to evaluate the performance of the : tank car under dynamic impact conditions and to provide data for the verification and refinement of a computational model. ...
CONTROL TECHNOLOGIES: PILOT- & FULL-SCALE TESTS
Two different project are to be supported in FY03. The first project is being conducted by the North Dakota Energy and Environmental Research Center (ND-EERC). This project consists of tests on coal-fired utility boilers to determine the effects of SCR catalysts and ammonia in...
The Advanced Technology Development Center (ATDC)
NASA Technical Reports Server (NTRS)
Clements, G. R.; Willcoxon, R. (Technical Monitor)
2001-01-01
NASA is building the Advanced Technology Development Center (ATDC) to provide a 'national resource' for the research, development, demonstration, testing, and qualification of Spaceport and Range Technologies. The ATDC will be located at Space Launch Complex 20 (SLC-20) at Cape Canaveral Air Force Station (CCAFS) in Florida. SLC-20 currently provides a processing and launch capability for small-scale rockets; this capability will be augmented with additional ATDC facilities to provide a comprehensive and integrated in situ environment. Examples of Spaceport Technologies that will be supported by ATDC infrastructure include densified cryogenic systems, intelligent automated umbilicals, integrated vehicle health management systems, next-generation safety systems, and advanced range systems. The ATDC can be thought of as a prototype spaceport where industry, government, and academia, in partnership, can work together to improve safety of future space initiatives. The ATDC is being deployed in five separate phases. Major ATDC facilities will include a Liquid Oxygen Area; a Liquid Hydrogen Area, a Liquid Nitrogen Area, and a multipurpose Launch Mount; 'Iron Rocket' Test Demonstrator; a Processing Facility with a Checkout and Control System; and Future Infrastructure Developments. Initial ATDC development will be completed in 2006.
Zhdanko, I M; Pisarev, A A; Vorona, A A; Lapa, V V; Khomenko, M N
2015-01-01
The article discloses postulates of theoretical concepts that make the methodological basis for addressing the real-world aviation medicine challenges of humanizing aviator's environment, labor content and means, and health and performance maintenance. Under consideration are focal fundamental and practical issues arising with the technological progress in aviation and dealt with at the AF CRI Research Test Center of Aerospace Medicine and Military Ergonomics.
Asteroid Redirect Mission Update
2017-12-08
Dr. Holdren (center) operates a robotic arm within the Robotic Operations Center (ROC) as roboticist Justin Brannan (left) describes the ROC’s simulation capabilities. Christyl Johnson, Deputy Center Director for Technology and Research Investments at Goddard (right), observes the demonstration. Within the ROC's black walls, NASA is testing technologies and operational procedures for science and exploration missions, including the Restore-L satellite servicing mission and the Asteroid Redirect Mission. More info: Asteroid Redirect Mission Update – On Sept. 14, 2016, NASA provided an update on the Asteroid Redirect Mission (ARM) and how it contributes to the agency’s journey to Mars and protection of Earth. The presentation took place in the Robotic Operations Center at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Assistant to the President for Science and Technology Dr. John P. Holdren, NASA Administrator Charles Bolden and NASA’s ARM Program Director, Dr. Michele Gates discussed the latest update regarding the mission. They explained the mission’s scientific and technological benefits and how ARM will demonstrate technology for defending Earth from potentially hazardous asteroids. The briefing aired live on NASA TV and the agency’s website. For more information about ARM go to www.nasa.gov/arm. Credit: NASA/Goddard/Debbie Mccallum NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Development of Guidelines for In-Situ Repair of SLS-Class Composite Flight Hardware
NASA Technical Reports Server (NTRS)
Weber, Thomas P., Jr.; Cox, Sarah B.
2018-01-01
The purpose of composite repair development at KSC (John F. Kennedy Space Center) is to provide support to the CTE (Composite Technology for Exploration) project. This is a multi-space center effort with the goal of developing bonded joint technology for SLS (Space Launch System) -scale composite hardware. At KSC, effective and efficient repair processes need to be developed to allow for any potential damage to composite components during transport or launch preparation. The focus of the composite repair development internship during the spring of 2018 was on the documentation of repair processes and requirements for process controls based on techniques developed through hands-on work with composite test panels. Three composite test panels were fabricated for the purpose of repair and surface preparation testing. The first panel included a bonded doubler and was fabricated to be damaged and repaired. The second and third panels were both fabricated to be cut into lap-shear samples to test the strength of bond of different surface preparation techniques. Additionally, jointed composite test panels were impacted at MSFC (Marshall Space Flight Center) and analyzed for damage patterns. The observations after the impact tests guided the repair procedure at KSC to focus on three repair methods. With a finalized repair plan in place, future work will include the strength testing of different surface preparation techniques, demonstration of repair methods, and repair of jointed composite test panels being impacted at MSFC.
National Wind Technology Center sitewide, Golden, CO: Environmental assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-11-01
The National Renewable Energy Laboratory (NREL), the nation`s primary solar and renewable energy research laboratory, proposes to expand its wind technology research and development program activities at its National Wind Technology Center (NWTC) near Golden, Colorado. NWTC is an existing wind energy research facility operated by NREL for the US Department of Energy (DOE). Proposed activities include the construction and reuse of buildings and facilities, installation of up to 20 wind turbine test sites, improvements in infrastructure, and subsequent research activities, technology testing, and site operations. In addition to wind turbine test activities, NWTC may be used to support othermore » NREL program activities and small-scale demonstration projects. This document assesses potential consequences to resources within the physical, biological, and human environment, including potential impacts to: air quality, geology and soils, water resources, biological resources, cultural and historic resources, socioeconomic resources, land use, visual resources, noise environment, hazardous materials and waste management, and health and safety conditions. Comment letters were received from several agencies in response to the scoping and predecisional draft reviews. The comments have been incorporated as appropriate into the document with full text of the letters contained in the Appendices. Additionally, information from the Rocky Flats Environmental Technology Site on going sitewide assessment of potential environmental impacts has been reviewed and discussed by representatives of both parties and incorporated into the document as appropriate.« less
NASA Technical Reports Server (NTRS)
Young, L. A.; Derby, M. R.; Demblewski, R.; Navarrete, J.
2002-01-01
This paper details ongoing work at NASA Ames Research Center as to experimental investigations and demonstrations related to rotary-wing technologies that might be applied to flight in the atmosphere of Mars. Such Mars rotorcraft would provide a 'three-dimensional mobility' to the exploration of the Red Planet. Preliminary results from isolated rotor testing in Mars-representative atmospheric densities, as well as progress towards coaxial test stand development are discussed. Additionally, work towards the development and use of surrogate flight vehicles -- in the terrestrial environment -- to demonstrate key technologies is also summarized.
NASA Technical Reports Server (NTRS)
1992-01-01
The overall goal of the Tuskegee University Center for Food Production, Processing and Waste Management in Controlled Ecological Life Support Systems (CELSS) is to provide tested information and technologies applicable to bioregenerative food production systems for life support on long-term manned space mission. Specifically, the center is developing information, computer simulated models, methodologies and technology for sweetpotato and peanut biomass production and processing, inclusive of waste management and recycling of these crops selected by NASA for CELSS. The Center is organized into interdisciplinary teams of life scientists and engineers that work together on specific objectives and long-term goals. Integral to the goal of the Center is the development of both basic and applied research information and the training of young scientists and engineers, especially underrepresented minorities that will increase the professional pool in these disciplines and contribute to the advancement of space sciences and exploration.
Software Sharing Enables Smarter Content Management
NASA Technical Reports Server (NTRS)
2007-01-01
In 2004, NASA established a technology partnership with Xerox Corporation to develop high-tech knowledge management systems while providing new tools and applications that support the Vision for Space Exploration. In return, NASA provides research and development assistance to Xerox to progress its product line. The first result of the technology partnership was a new system called the NX Knowledge Network (based on Xerox DocuShare CPX). Created specifically for NASA's purposes, this system combines Netmark-practical database content management software created by the Intelligent Systems Division of NASA's Ames Research Center-with complementary software from Xerox's global research centers and DocuShare. NX Knowledge Network was tested at the NASA Astrobiology Institute, and is widely used for document management at Ames, Langley Research Center, within the Mission Operations Directorate at Johnson Space Center, and at the Jet Propulsion Laboratory, for mission-related tasks.
Photocatalytic Solutions Create Self-Cleaning Surfaces
NASA Technical Reports Server (NTRS)
2013-01-01
A Stennis Space Center researcher investigating the effectiveness of photocatalytic materials for keeping the Center's buildings free of grime turned to a solution created by PURETi Inc. of New York City. Testing proved successful, and NASA and the company now share a Dual Use Technology partnership. PURETi's coatings keep surfaces clean and purify surrounding air, eliminating pollution, odors, and microbes.
The 1980 Goddard Space Flight Center Battery Workshop
NASA Technical Reports Server (NTRS)
Halpert, G.
1981-01-01
Several aspects of lithium primary cell technology are discussed with respect to aerospace application. Particular attention is given to the statistical analysis of battery data and accelerated testing.
NASA Technical Reports Server (NTRS)
Schifer, Nicholas A.; Oriti, Salvatore M.
2013-01-01
The NASA Glenn Research Center (GRC) has been testing 100 We class, free-piston Stirling convertors for potential use in Stirling Radioisotope Power Systems (RPS) for space science and exploration missions. Free-piston Stirling convertors are capable of achieving a 38% conversion efficiency, making Stirling attractive for meeting future power system needs in light of the shrinking U.S. plutonium fuel supply. Convertors currently on test include four Stirling Technology Demonstration Convertors (TDCs), manufactured by the Stirling Technology Company (STC), and six Advanced Stirling Convertors (ASCs), manufactured by Sunpower, Inc. Total hours of operation is greater than 514,000 hours (59 years). Several tests have been initiated to demonstrate the functionality of Stirling convertors for space applications, including: in-air extended operation, thermal vacuum extended operation. Other tests have also been conducted to characterize Stirling performance in anticipated mission scenarios. Data collected during testing has been used to support life and reliability estimates, drive design changes and improve quality, and plan for expected mission scenarios. This paper will provide a summary of convertors tested at NASA GRC and discuss lessons learned through extended testing.
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-13
CAPE CANAVERAL, Fla. – A Huey helicopter tests hazard avoidance instrumentation at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks using the instrument. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Photo credit: NASA/Jim Grossmann
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-04
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Jim Grossmann
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-04
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Jim Grossmann
2012-12-04
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a technician tests hazard avoidance instrumentation recently installed on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Jim Grossmann
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-04
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Jim Grossmann
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batten, Belinda; Polagye, Brian; LiVecchi, Al
In 2008, the US Department of Energy’s (DOE) Wind and Water Power Program issued a funding opportunity announcement to establish university-led National Marine Renewable Energy Centers. Oregon State University and the University of Washington combined their capabilities in wave and tidal energy to establish the Northwest National Marine Renewable Energy Center, or NNMREC. NNMREC’s scope included research and testing in the following topic areas: • Advanced Wave Forecasting Technologies; • Device and Array Optimization; • Integrated and Standardized Test Facility Development; • Investigate the Compatibility of Marine Energy Technologies with Environment, Fisheries and other Marine Resources; • Increased Reliability andmore » Survivability of Marine Energy Systems; • Collaboration/Optimization with Marine Renewable and Other Renewable Energy Resources. To support the last topic, the National Renewable Energy Laboratory (NREL) was brought onto the team, particularly to assist with testing protocols, grid integration, and testing instrumentation. NNMREC’s mission is to facilitate the development of marine energy technology, to inform regulatory and policy decisions, and to close key gaps in scientific understanding with a focus on workforce development. In this, NNMREC achieves DOE’s goals and objectives and remains aligned with the research and educational mission of universities. In 2012, DOE provided NNMREC an opportunity to propose an additional effort to begin work on a utility scale, grid connected wave energy test facility. That project, initially referred to as the Pacific Marine Energy Center, is now referred to as the Pacific Marine Energy Center South Energy Test Site (PMEC-SETS) and involves work directly toward establishing the facility, which will be in Newport Oregon, as well as supporting instrumentation for wave energy converter testing. This report contains a breakdown per subtask of the funded project. Under each subtask, the following are presented and discussed where appropriate: the initial objective or hypothesis; an overview of accomplishments and approaches used; any problems encountered or departures from planned methodology over the life of the project; impacts of the problems or rescoping of the project; how accomplishments compared with original project goals; and deliverables under the subtasks. Products and models developed under the award are also included.« less
Klamath Falls: High-Power Acoustic Well Stimulation Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, Brian
Acoustic well stimulation (AWS) technology uses high-power sonic waves from specific frequency spectra in an attempt to stimulate production in a damaged or low-production wellbore. AWS technology is one of the most promising technologies in the oil and gas industry, but it has proven difficult for the industry to develop an effective downhole prototype. This collaboration between Klamath Falls Inc. and the Rocky Mountain Oilfield Testing Center (RMOTC) included a series of tests using high-power ultrasonic tools to stimulate oil and gas production. Phase I testing was designed and implemented to verify tool functionality, power requirements, and capacity of high-powermore » AWS tools. The purpose of Phase II testing was to validate the production response of wells with marginal production rates to AWS stimulation and to capture and identify any changes in the downhole environment after tool deployment. This final report presents methodology and results.« less
COBALT Flight Demonstrations Fuse Technologies
2017-06-07
This 5-minute, 50-second video shows how the CoOperative Blending of Autonomous Landing Technologies (COBALT) system pairs new landing sensor technologies that promise to yield the highest precision navigation solution ever tested for NASA space landing applications. The technologies included a navigation doppler lidar (NDL), which provides ultra-precise velocity and line-of-sight range measurements, and the Lander Vision System (LVS), which provides terrain-relative navigation. Through flight campaigns conducted in March and April 2017 aboard Masten Space Systems' Xodiac, a rocket-powered vertical takeoff, vertical landing (VTVL) platform, the COBALT system was flight tested to collect sensor performance data for NDL and LVS and to check the integration and communication between COBALT and the rocket. The flight tests provided excellent performance data for both sensors, as well as valuable information on the integrated performance with the rocket that will be used for subsequent COBALT modifications prior to follow-on flight tests. Based at NASA’s Armstrong Flight Research Center in Edwards, CA, the Flight Opportunities program funds technology development flight tests on commercial suborbital space providers of which Masten is a vendor. The program has previously tested the LVS on the Masten rocket and validated the technology for the Mars 2020 rover.
NASA Glenn Research Center Support of the ASRG Project
NASA Technical Reports Server (NTRS)
Wilson, Scott D.; Wong, Wayne A.
2014-01-01
A high efficiency radioisotope power system is being developed for long-duration NASA space science missions. The U.S. Department of Energy (DOE) managed a flight contract with Lockheed Martin Space Systems Company (LMSSC) to build Advanced Stirling Radioisotope Generators (ASRGs), with support from NASA Glenn Research Center (GRC). Sunpower Inc. held two parallel contracts to produce Advanced Stirling Convertors (ASCs), one with DOELockheed Martin to produce ASC-F flight units, and one with GRC for the production of ASC-E3 engineering unit pathfinders that are built to the flight design. In support of those contracts, GRC provided testing, materials expertise, government furnished equipment, inspections, and related data products to DOELockheed Martin and Sunpower. The technical support includes material evaluations, component tests, convertor characterization, and technology transfer. Material evaluations and component tests have been performed on various ASC components in order to assess potential life-limiting mechanisms and provide data for reliability models. Convertor level tests have been used to characterize performance under operating conditions that are representative of various mission conditions. Technology transfers enhanced contractor capabilities for specialized production processes and tests. Despite termination of flight ASRG contract, NASA continues to develop the high efficiency ASC conversion technology under the ASC-E3 contract. This paper describes key government furnished services performed for ASRG and future tests used to provide data for ongoing reliability assessments.
NASA Technical Reports Server (NTRS)
Kegelman, Jerome T.
1998-01-01
The advantage of managing organizations to minimize product development cycle time has been well established. This paper provides an overview of the wind tunnel testing cycle time reduction activities at Langley Research Center (LaRC) and gives the status of several improvements in the wind tunnel productivity and cost reductions that have resulted from these activities. Processes have been examined and optimized. Metric data from monitoring processes provides guidance for investments in advanced technologies. The most promising technologies under implementation today include the use of formally designed experiments, a diverse array of quick disconnect technology and the judicious use of advanced electronic and information technologies.
Side impact test and analysis of a DOT-112 tank car.
DOT National Transportation Integrated Search
2016-12-01
As part of a program to improve transportation safety for tank cars, Transportation Technology Center, Inc. (TTCI) has conducted a side impact test on a DOT-112 tank car to evaluate the performance of the DOT-112 under dynamic impact conditions and t...
Channel Wall Nozzle Hot-fire Tests
2018-03-16
A subscale channel wall nozzle is hot-fire tested in November 2017 at NASA's Marshall Space Flight Center. The nozzle was fabricated using three separate, state-of-the-art, advanced manufacturing technologies including a new process called Laser Wire Direct Closeout that was co-developed and advanced at Marshall.
30 CFR 7.3 - Application procedures and requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 7.3 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY General § 7.3 Application... Center, 765 Technology Drive, Triadelphia, WV 26059. (b) Fees. Fees calculated in accordance with part 5...
30 CFR 7.3 - Application procedures and requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 7.3 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY General § 7.3 Application... Center, 765 Technology Drive, Triadelphia, WV 26059. (b) Fees. Fees calculated in accordance with part 5...
30 CFR 7.3 - Application procedures and requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Section 7.3 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY General § 7.3 Application... Center, 765 Technology Drive, Triadelphia, WV 26059. (b) Fees. Fees calculated in accordance with part 5...
30 CFR 7.3 - Application procedures and requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Section 7.3 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY General § 7.3 Application... Center, 765 Technology Drive, Triadelphia, WV 26059. (b) Fees. Fees calculated in accordance with part 5...
Application of Molecular Adsorber Coatings in Chamber A for the James Webb Space Telescope
NASA Technical Reports Server (NTRS)
Abraham, Nithin S.
2017-01-01
As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground-based space applications, in particular, for vacuum chamber environments. This presentation describes the application of the MAC technology for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap outgassed contaminants, specifically silicone-based diffusion pump oil, from within JSCs cryogenic optical vacuum chamber test facility called Chamber A. This presentation summarizes the background, fabrication, installation, chemical analysis test results, and future plans for the MAC technology, which was effectively used to protect the JWST test equipment from vacuum chamber contamination. As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground-based space applications, in particular, for vacuum chamber environments. This presentation describes the application of the MAC technology for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap outgassed contaminants, specifically silicone-based diffusion pump oil, from within JSCs cryogenic optical vacuum chamber test facility called Chamber A. This presentation summarizes the background, fabrication, installation, chemical analysis test results, and future plans for the MAC technology, which was effectively used to protect the JWST test equipment from vacuum chamber contamination.
Testing Planetary Rovers: Technologies, Perspectives, and Lessons Learned
NASA Technical Reports Server (NTRS)
Thomas, Hans; Lau, Sonie (Technical Monitor)
1998-01-01
Rovers are a vital component of NASA's strategy for manned and unmanned exploration of space. For the past five years, the Intelligent Mechanisms Group at the NASA Ames Research Center has conducted a vigorous program of field testing of rovers from both technology and science team productivity perspective. In this talk, I will give an overview of the the last two years of the test program, focusing on tests conducted in the Painted Desert of Arizona, the Atacama desert in Chile, and on IMG participation in the Mars Pathfinder mission. An overview of autonomy, manipulation, and user interface technologies developed in response to these missions will be presented, and lesson's learned in these missions and their impact on future flight missions will be presented. I will close with some perspectives on how the testing program has affected current rover systems.
NASA Technical Reports Server (NTRS)
McGowan, Anna-Maria Rivas; Wilkie, W. Keats; Moses, Robert W.; Lake, Renee C.; Florance, Jennifer Pinkerton; Wieseman, Carol D.; Reaves, Mercedes C.; Taleghani, Barmac K.; Mirick, Paul H.; Wilbur, Mathew L.
1997-01-01
An overview of smart structures research currently underway at the NASA Langley Research Center in the areas of aeroservoelasticity and structural dynamics is presented. Analytical and experimental results, plans, potential technology pay-offs, and challenges are discussed. The goal of this research is to develop the enabling technologies to actively and passively control aircraft and rotorcraft vibration and loads using smart devices. These enabling technologies and related research efforts include developing experimentally-validated finite element and aeroservoelastic modeling techniques; conducting bench experimental tests to assess feasibility and understand system trade-offs; and conducting large-scale wind tunnel tests to demonstrate system performance. The key aeroservoelastic applications of this research include: active twist control of rotor blades using interdigitated electrode piezoelectric composites and active control of flutter, and gust and buffeting responses using discrete piezoelectric patches. In addition, NASA Langley is an active participant in the DARPA/Air Force Research Laboratory/NASA/Northrop Grumman Smart Wing program which is assessing aerodynamic performance benefits using smart materials.
Aerocapture Technology Developments from NASA's In-Space Propulsion Technology Program
NASA Technical Reports Server (NTRS)
Munk, Michelle M.; Moon, Steven A.
2007-01-01
This paper will explain the investment strategy, the role of detailed systems analysis, and the hardware and modeling developments that have resulted from the past 5 years of work under NASA's In-Space Propulsion Program (ISPT) Aerocapture investment area. The organizations that have been funded by ISPT over that time period received awards from a 2002 NASA Research Announcement. They are: Lockheed Martin Space Systems, Applied Research Associates, Inc., Ball Aerospace, NASA's Ames Research Center, and NASA's Langley Research Center. Their accomplishments include improved understanding of entry aerothermal environments, particularly at Titan, demonstration of aerocapture guidance algorithm robustness at multiple bodies, manufacture and test of a 2-meter Carbon-Carbon "hot structure," development and test of evolutionary, high-temperature structural systems with efficient ablative materials, and development of aerothermal sensors that will fly on the Mars Science Laboratory in 2009. Due in large part to this sustained ISPT support for Aerocapture, the technology is ready to be validated in flight.
Wireless Instrumentation Systems for Flight Testing at NASA AFRC
NASA Technical Reports Server (NTRS)
Hang, Richard
2017-01-01
NASA Armstrong Flight Research Center is revolutionizing its traditional wired instrumentation systems with wireless technologies. This effort faces many technical challenges, such as spectrum compliance, time synchronization, power distribution and airworthiness. This presentation summarizes NASA AFRC's flight test capabilities with current conventional instrumentation methodology and highlights the technical challenges of wireless systems used for flight test research applications.
Thermal Testing of a Stacked Core Mirror for UV Applications
NASA Technical Reports Server (NTRS)
Matthews, Gary; Kirk, Charles S.; Maffett, Steven; Hanson, Craig; Eng, Ron; Stahl, H. Philip
2013-01-01
The ASTRO2010 Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. Under Science and Technology funding, NASA's Marshall Space Flight Center and ITT Exelis have developed a more cost effective process to make 4m monolithic spaceflight UV quality, low areal density, thermally and dynamically stable primary mirrors. A proof of concept mirror was built and tested down to 250K which would allow imaging out to 2.5 microns. This mirror was thermally tested at the Marshall Spaceflight Center to understand the thermal changes between the processing temperature of 293K and the potential low end of the operational temperature of 250K. Isothermal testing results and front plate gradient results have been evaluated and compared to analysis predictions. Measurement of gravity effects on surface figure will be compared to analytical predictions. Future testing of a larger Pathfinder mirror will also be discussed.
2007-01-26
Pratt & Whitney Rocketdyne's Jeff Hansell, right, explains functions of a space shuttle main engine to Pearl River Community College Aviation Maintenance Technology Program students. Christopher Bryon, left, of Bay St. Louis, Ret Tolar of Kiln, Dan Holston of Baxterville and Billy Zugg of Long Beach took a recent tour of the SSME Processing Facility and the E-1 Test Complex at Stennis Space Center in South Mississippi. The students attend class adjacent to the Stennis International Airport tarmac in Kiln, where they get hands-on experience. PRCC's program prepares students to be responsible for the inspection, repair and maintenance of technologically advanced aircraft. A contractor to NASA, Pratt & Whitney Rocketdyne in Canoga Park, Calif., manufactures the space shuttle main engine and its high-pressure turbo pumps. SSC was established in the 1960s to test the huge engines for the Saturn V moon rockets. Now 40 years later, the center tests every main engine for the space shuttle, and is America's largest rocket engine test complex. SSC will soon begin testing the rocket engines that will power spacecraft carrying Americans back to the moon and on to Mars.
NASA Technical Reports Server (NTRS)
2007-01-01
Pratt & Whitney Rocketdyne's Jeff Hansell, right, explains functions of a space shuttle main engine to Pearl River Community College Aviation Maintenance Technology Program students. Christopher Bryon, left, of Bay St. Louis, Ret Tolar of Kiln, Dan Holston of Baxterville and Billy Zugg of Long Beach took a recent tour of the SSME Processing Facility and the E-1 Test Complex at Stennis Space Center in South Mississippi. The students attend class adjacent to the Stennis International Airport tarmac in Kiln, where they get hands-on experience. PRCC's program prepares students to be responsible for the inspection, repair and maintenance of technologically advanced aircraft. A contractor to NASA, Pratt & Whitney Rocketdyne in Canoga Park, Calif., manufactures the space shuttle main engine and its high-pressure turbo pumps. SSC was established in the 1960s to test the huge engines for the Saturn V moon rockets. Now 40 years later, the center tests every main engine for the space shuttle, and is America's largest rocket engine test complex. SSC will soon begin testing the rocket engines that will power spacecraft carrying Americans back to the moon and on to Mars.
Rocket Engine Plume Diagnostics at Stennis Space Center
NASA Technical Reports Server (NTRS)
Tejwani, Gopal D.; Langford, Lester A.; VanDyke, David B.; McVay, Gregory P.; Thurman, Charles C.
2003-01-01
The Stennis Space Center has been at the forefront of development and application of exhaust plume spectroscopy to rocket engine health monitoring since 1989. Various spectroscopic techniques, such as emission, absorption, FTIR, LIF, and CARS, have been considered for application at the engine test stands. By far the most successful technology h a been exhaust plume emission spectroscopy. In particular, its application to the Space Shuttle Main Engine (SSME) ground test health monitoring has been invaluable in various engine testing and development activities at SSC since 1989. On several occasions, plume diagnostic methods have successfully detected a problem with one or more components of an engine long before any other sensor indicated a problem. More often, they provide corroboration for a failure mode, if any occurred during an engine test. This paper gives a brief overview of our instrumentation and computational systems for rocket engine plume diagnostics at SSC. Some examples of successful application of exhaust plume spectroscopy (emission as well as absorption) to the SSME testing are presented. Our on-going plume diagnostics technology development projects and future requirements are discussed.
Lean Development with the Morpheus Simulation Software
NASA Technical Reports Server (NTRS)
Brogley, Aaron C.
2013-01-01
The Morpheus project is an autonomous robotic testbed currently in development at NASA's Johnson Space Center (JSC) with support from other centers. Its primary objectives are to test new 'green' fuel propulsion systems and to demonstrate the capability of the Autonomous Lander Hazard Avoidance Technology (ALHAT) sensor, provided by the Jet Propulsion Laboratory (JPL) on a lunar landing trajectory. If successful, these technologies and lessons learned from the Morpheus testing cycle may be incorporated into a landing descent vehicle used on the moon, an asteroid, or Mars. In an effort to reduce development costs and cycle time, the project employs lean development engineering practices in its development of flight and simulation software. The Morpheus simulation makes use of existing software packages where possible to reduce the development time. The development and testing of flight software occurs primarily through the frequent test operation of the vehicle and incrementally increasing the scope of the test. With rapid development cycles, risk of loss of the vehicle and loss of the mission are possible, but efficient progress in development would not be possible without that risk.
Development of Supersonic Vehicle for Demonstration of a Precooled Turbojet Engine
NASA Astrophysics Data System (ADS)
Sawai, Shujiro; Fujita, Kazuhisa; Kobayashi, Hiroaki; Sakai, Shin'ichiro; Bando, Nobutaka; Kadooka, Shouhei; Tsuboi, Nobuyuki; Miyaji, Koji; Uchiyama, Taku; Hashimoto, Tatsuaki
JAXA is developing Mach 5 hypersonic turbojet engine technology that can be applied in a future hypersonic transport. Now, Jet Engine Technology Research Center of JAXA conducts the experimental study using a 1 / 10 scale-model engine. In parallel to engine development activities, a new supersonic flight-testing vehicle for the hypersonic turbojet engine is under development since 2004. In this paper, the system configuration of the flight-testing vehicle is outlined and development status is reported.
Lewis Research Center battery overview
NASA Technical Reports Server (NTRS)
Odonnell, Patricia
1993-01-01
The topics covered are presented in viewgraph form and include the following: the Advanced Communications Technology Satellite; the Space Station Freedom (SSF) photovoltaic power module division; Ni/H2 battery and cell design; individual pressure vessel (IPV) nickel-hydrogen cell testing SSF support; the LeRC Electrochemical Technology Branch; improved design IPV nickel-hydrogen cells; advanced technology for IPV nickel-hydrogen flight cells; a lightweight nickel-hydrogen cell; bipolar nickel-hydrogen battery development and technology; aerospace nickel-metal hydride cells; the NASA Sodium-Sulfur Cell Technology Flight Experiment; and the lithium-carbon dioxide battery thermodynamic model.
Cold-end Subsystem Testing for the Fission Power System Technology Demonstration Unit
NASA Technical Reports Server (NTRS)
Briggs, Maxwell; Gibson, Marc; Ellis, David; Sanzi, James
2013-01-01
The Fission Power System (FPS) Technology Demonstration Unit (TDU) consists of a pumped sodium-potassium (NaK) loop that provides heat to a Stirling Power Conversion Unit (PCU), which converts some of that heat into electricity and rejects the waste heat to a pumped water loop. Each of the TDU subsystems is being tested independently prior to full system testing at the NASA Glenn Research Center. The pumped NaK loop is being tested at NASA Marshall Space Flight Center; the Stirling PCU and electrical controller are being tested by Sunpower Inc.; and the pumped water loop is being tested at Glenn. This paper describes cold-end subsystem setup and testing at Glenn. The TDU cold end has been assembled in Vacuum Facility 6 (VF 6) at Glenn, the same chamber that will be used for TDU testing. Cold-end testing in VF 6 will demonstrate functionality; validated cold-end fill, drain, and emergency backup systems; and generated pump performance and system pressure drop data used to validate models. In addition, a low-cost proof-of concept radiator has been built and tested at Glenn, validating the design and demonstrating the feasibility of using low-cost metal radiators as an alternative to high-cost composite radiators in an end-to-end TDU test.
Cold-End Subsystem Testing for the Fission Power System Technology Demonstration Unit
NASA Technical Reports Server (NTRS)
Briggs, Mazwell; Gibson, Marc; Ellis, David; Sanzi, James
2013-01-01
The Fission Power System (FPS) Technology Demonstration Unit (TDU) consists of a pumped sodiumpotassium (NaK) loop that provides heat to a Stirling Power Conversion Unit (PCU), which converts some of that heat into electricity and rejects the waste heat to a pumped water loop. Each of the TDU subsystems is being tested independently prior to full system testing at the NASA Glenn Research Center. The pumped NaK loop is being tested at NASA Marshall Space Flight Center; the Stirling PCU and electrical controller are being tested by Sunpower Inc.; and the pumped water loop is being tested at Glenn. This paper describes cold-end subsystem setup and testing at Glenn. The TDU cold end has been assembled in Vacuum Facility 6 (VF 6) at Glenn, the same chamber that will be used for TDU testing. Cold-end testing in VF 6 will demonstrate functionality; validated coldend fill, drain, and emergency backup systems; and generated pump performance and system pressure drop data used to validate models. In addition, a low-cost proof-of concept radiator has been built and tested at Glenn, validating the design and demonstrating the feasibility of using low-cost metal radiators as an alternative to highcost composite radiators in an end-to-end TDU test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helland, B.; Summers, B.G.
1996-09-01
As the classroom paradigm shifts from being teacher-centered to being learner-centered, student assessments are evolving from typical paper and pencil testing to other methods of evaluation. Students should be probed for understanding, reasoning, and critical thinking abilities rather than their ability to return memorized facts. The assessment of the Department of Energy`s pilot program, Adventures in Supercomputing (AiS), offers one example of assessment techniques developed for learner-centered curricula. This assessment has employed a variety of methods to collect student data. Methods of assessment used were traditional testing, performance testing, interviews, short questionnaires via email, and student presentations of projects. Themore » data obtained from these sources have been analyzed by a professional assessment team at the Center for Children and Technology. The results have been used to improve the AiS curriculum and establish the quality of the overall AiS program. This paper will discuss the various methods of assessment used and the results.« less
Accelerated Adoption of Advanced Health Information Technology in Beacon Community Health Centers.
Jones, Emily; Wittie, Michael
2015-01-01
To complement national and state-level HITECH Act programs, 17 Beacon communities were funded to fuel community-wide use of health information technology to improve quality. Health centers in Beacon communities received supplemental funding. This article explores the association between participation in the Beacon program and the adoption of electronic health records. Using the 2010-2012 Uniform Data System, trends in health information technology adoption among health centers located within and outside of Beacon communities were explored using differences in mean t tests and multivariate logistic regression. Electronic health record adoption was widespread and rapidly growing in all health centers, especially quality improvement functionalities: structured data capture, order and results management, and clinical decision support. Adoption lagged for functionalities supporting patient engagement, performance measurement, care coordination, and public health. The use of advanced functionalities such as care coordination grew faster in Beacon health centers, and Beacon health centers had 1.7 times higher odds of adopting health records with basic safety and quality functionalities in 2010-2012. Three factors likely underlie these findings: technical assistance, community-wide activation supporting health information exchange, and the layering of financial incentives. Additional technical assistance and community-wide activation is needed to support the use of functionalities that are currently lagging. © Copyright 2015 by the American Board of Family Medicine.
Design and Development of a 200-kW Turbo-Electric Distributed Propulsion Testbed
NASA Technical Reports Server (NTRS)
Papathakis, Kurt V.
2017-01-01
There a few NASA funded electric and hybrid electric projects from different NASA Centers, including the NASA Armstrong Flight Research Center (AFRC) (Edwards, California). Each project identifies a specific technology gap that is currently inhibiting the growth and proliferation of relevant technologies in commercial aviation. This paper describes the design and development of a turbo-electric distributed propulsion (TeDP) hardware-in-the-loop (HIL) simulation bench, which is a test bed for discovering turbo-electric control, distributed electric control, power management control, and integration competencies while providing risk mitigation for future turbo-electric flying demonstrators.
2007-08-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts a manufactured aluminum panel that will be used to fabricate the Ares I upper stage barrel, undergoing a confidence panel test. In this test, the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California.
2007-08-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image, depicts a manufactured aluminum panel, that will be used to fabricate the Ares I upper stage barrel, undergoing a confidence panel test. In this test, the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
2007-08-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts a manufactured aluminum panel, that will fabricate the Ares I upper stage barrel, undergoing a confidence panel test. In this test, the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
2006-08-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts a manufactured aluminum panel, that will fabricate the Ares I upper stage barrel, undergoing a confidence panel test. In this test, bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
2006-08-08
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts a manufactured aluminum panel that will be used to fabricate the Ares I upper stage barrel, undergoing a confidence panel test. In this test, the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
2007-08-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, processes for upper stage barrel fabrication are talking place. Aluminum panels are manufacturing process demonstration articles that will undergo testing until perfected. The panels are built by AMRO Manufacturing located in El Monte, California. (Largest resolution available)
2007-08-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts the manufacturing of aluminum panels that will be used to form the Ares I barrel. The panels are manufacturing process demonstration articles that will undergo testing until perfected. The panels are built by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
2007-08-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts a manufactured panel that will be used for the Ares I upper stage barrel fabrication. The aluminum panels are manufacturing process demonstration articles that will undergo testing until perfected. The panels are built by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
NASA Technical Reports Server (NTRS)
Wolford, David S.; Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies, William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; McNatt, Jeremiah S.
2015-01-01
Measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. NASA Glenn Research Center (GRC) is in the process of measuring several solar cells in a supplemental experiment on NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Mission's (RRM) Task Board 4 (TB4). Four industry and government partners have provided advanced PV devices for measurement and orbital environment testing. The experiment will be on-orbit for approximately 18 months. It is completely self-contained and will provide its own power and internal data storage. Several new cell technologies including four- junction (4J) Inverted Metamorphic Multijunction (IMM) cells will be evaluated and the results compared to ground-based measurements.
ERIC Educational Resources Information Center
Blanzy, James J.; Sucher, Joseph E.
Michigan's Macomb Community College's institutional assessment model involves using technology to collect and disseminate data on student learning in order to facilitate continuous improvement and adaptation. The first element of this five-part model is the mandatory testing, orientation, and placement of incoming students. Using placement test…
Baghouses are air pollution control devices used to control particulate emissions from stationary sources and are among the technologies evaluated by the APCT Center. Baghouses and their accompanying filter media have long been one of the leading particulate control techniques fo...
Armstrong Flight Research Center Research Technology and Engineering 2017
NASA Technical Reports Server (NTRS)
Voracek, David F. (Editor)
2018-01-01
I am delighted to present this report of accomplishments at NASA's Armstrong Flight Research Center. Our dedicated innovators possess a wealth of performance, safety, and technical capabilities spanning a wide variety of research areas involving aircraft, electronic sensors, instrumentation, environmental and earth science, celestial observations, and much more. They not only perform tasks necessary to safely and successfully accomplish Armstrong's flight research and test missions but also support NASA missions across the entire Agency. Armstrong's project teams have successfully accomplished many of the nation's most complex flight research projects by crafting creative solutions that advance emerging technologies from concept development and experimental formulation to final testing. We are developing and refining technologies for ultra-efficient aircraft, electric propulsion vehicles, a low boom flight demonstrator, air launch systems, and experimental x-planes, to name a few. Additionally, with our unique location and airborne research laboratories, we are testing and validating new research concepts. Summaries of each project highlighting key results and benefits of the effort are provided in the following pages. Technology areas for the projects include electric propulsion, vehicle efficiency, supersonics, space and hypersonics, autonomous systems, flight and ground experimental test technologies, and much more. Additional technical information is available in the appendix, as well as contact information for the Principal Investigator of each project. I am proud of the work we do here at Armstrong and am pleased to share these details with you. We welcome opportunities for partnership and collaboration, so please contact us to learn more about these cutting-edge innovations and how they might align with your needs.
2012-08-01
CAPE CANAVERAL, Fla. - At the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, field at the north end of the Shuttle Landing Facility, or SLF, at NASA’s Kennedy Space Center in Florida, members of the media view the hazard field and speak with Morpheus managers. At left, in the blue shirt is Gregory Gaddis, Kennedy Project Morpheus/ALHAT site manager. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
The verification test will be conducted under the auspices of the U.S. Environmental Protection Agency (EPA) through the Environmental Technology Verification (ETV) Program. It will be performed by Battelle, which is managing the ETV Advanced Monitoring Systems (AMS) Center throu...
Space directorate research and technology accomplishments for fiscal year 1987
NASA Technical Reports Server (NTRS)
Avery, Don E.
1988-01-01
The major accomplishments and test highlights of the Space Directorate of NASA Langley Research Center for FY87 are presented. Accomplishments and test highlights are listed by Division and Branch. This information should be useful in coordinating programs with government organizations, universities, and industry in areas of mutual interest.
42 CFR 84.308 - Additional testing.
Code of Federal Regulations, 2013 CFR
2013-10-01
... §§ 84.304 through 84.307. These units will be evaluated for fire and explosion hazards using the tests....S.C. 552(a) and 1 CFR Part 51. All approved material is available for inspection at NIOSH, National Personal Protection Technology Laboratory (NPPTL), Bruceton Research Center, 626 Cochrans Mill Road...
42 CFR 84.308 - Additional testing.
Code of Federal Regulations, 2014 CFR
2014-10-01
... §§ 84.304 through 84.307. These units will be evaluated for fire and explosion hazards using the tests....S.C. 552(a) and 1 CFR Part 51. All approved material is available for inspection at NIOSH, National Personal Protection Technology Laboratory (NPPTL), Bruceton Research Center, 626 Cochrans Mill Road...
42 CFR 84.308 - Additional testing.
Code of Federal Regulations, 2012 CFR
2012-10-01
... §§ 84.304 through 84.307. These units will be evaluated for fire and explosion hazards using the tests....S.C. 552(a) and 1 CFR Part 51. All approved material is available for inspection at NIOSH, National Personal Protection Technology Laboratory (NPPTL), Bruceton Research Center, 626 Cochrans Mill Road...
Cobalt: Development and Maturation of GN&C Technologies for Precision Landing
NASA Technical Reports Server (NTRS)
Carson, John M.; Restrepo, Carolina; Seubert, Carl; Amzajerdian, Farzin
2016-01-01
The CoOperative Blending of Autonomous Landing Technologies (COBALT) instrument is a terrestrial test platform for development and maturation of guidance, navigation and control (GN&C) technologies for precision landing. The project is developing a third-generation Langley Research Center (LaRC) navigation doppler lidar (NDL) for ultra-precise velocity and range measurements, which will be integrated and tested with the Jet Propulsion Laboratory (JPL) lander vision system (LVS) for terrain relative navigation (TRN) position estimates. These technologies together provide precise navigation knowledge that is critical for a controlled and precise touchdown. The COBALT hardware will be integrated in 2017 into the GN&C subsystem of the Xodiac rocket-propulsive vertical test bed (VTB) developed by Masten Space Systems, and two terrestrial flight campaigns will be conducted: one open-loop (i.e., passive) and one closed-loop (i.e., active).
Langley aerospace test highlights, 1987
NASA Technical Reports Server (NTRS)
1988-01-01
The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during the calender year 1987 in Langley test facilites are illustrated. Both the broad range of the research and technology activities at Langley and the contributions of this work toward maintaining the U.S. leadership in aeronautic and space research are illustrated.
NASA Technical Reports Server (NTRS)
Cook, J.; Dumbacher, D.; Ise, M.; Singer, C.
1990-01-01
A modified space shuttle main engine (SSME), which primarily includes an enlarged throat main combustion chamber with the acoustic cavities removed and a main injector with the stability control baffles removed, was tested. This one-of-a-kind engine's design changes are being evaluated for potential incorporation in the shuttle flight program in the mid-1990's. Engine testing was initiated on September 15, 1988 and has accumulated 1,915 seconds and 19 starts. Testing is being conducted to characterize the engine system performance, combustion stability with the baffle-less injector, and both low pressure oxidizer turbopump (LPOTP) and high pressure oxidizer turbopump (HPOTP) for suction performance. These test results are summarized and compared with the SSME flight configuration data base. Testing of this new generation SSME is the first product from the technology test bed (TTB). Figure test plans for the TTB include the highly instrumented flight configuration SSME and advanced liquid propulsion technology items.
Development of the Special Operations Combat Management System
1999-08-01
Distribution Unlimited Prepared for U. S. Army Soldier and Biological Chemical Command Soldier Systems Center Natick, Massachusetts 01760-5020 19990826 022...Army Soldier and Biological Chemical Command, Soldier Systems Center, ATTN: AMSSB-RSS-D(N) (H. Girolamo), Natick, MA 01760-5020 14. ABSTRACT The...system design, integration and test. American Megatrends Inc. provided the motherboard circuit design, layout and production. Tactical Technologies Inc
ERIC Educational Resources Information Center
Harvey, Francis A.
This paper describes the evolution and development of an intelligent information system, i.e., a knowledge base for steel structures being undertaken as part of the Technical Information Center for Steel Structures at Lehigh University's Center of Advanced Technology for Large Structural Systems (ATLSS). The initial development of the Technical…
NREL-Prime Next-Generation Drivetrain Dynamometer Test Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, Jonathan; Erdman, Bill; Blodgett, Douglas
2016-08-01
Advances in wind turbine drivetrain technologies are necessary to improve reliability and reduce the cost of energy for land-based and offshore wind turbines. The NREL-Prime Next-Generation Drivetrain team developed a geared, medium-speed drivetrain that is lighter, more reliable and more efficient than existing designs. One of the objectives of Phase II of the project was to complete the detailed design, fabrication, and dynamometer testing of a 750 kilowatt (kW) drivetrain that includes the key gearbox innovations designed by Romax Technology and power converter innovations designed by DNV Kema Renewables. The purpose of this document is to summarize these tests completedmore » in NREL's National Wind Technology Center 2.5 megawatt (MW) dynamometer.« less
In-situ resource utilization activities at the NASA Space Engineering Research Center
NASA Technical Reports Server (NTRS)
Ramohalli, Kumar
1992-01-01
The paper describes theoretical and experimental research activities at the NASA Space Engineering Research Center aimed at realizing significant cost savings in space missions through the use of locally available resources. The fundamental strategy involves idea generation, scientific screening, feasibility demonstrations, small-scale process plant design, extensive testing, scale-up to realistic production rates, associated controls, and 'packaging', while maintaining sufficient flexibility to respond to national needs in terms of specific applications. Aside from training, the principal activities at the Center include development of a quantitative figure-of-merit to quickly assess the overall mission impact of individual components that constantly change with advancing technologies, extensive tests on a single-cell test bed to produce oxygen from carbon dioxide, and the use of this spent stream to produce methane.
NASA Technical Reports Server (NTRS)
Meneghelli, Barry J.; Notardonato, William; Fesmire, James E.
2016-01-01
The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for the energy-efficient use of cryogenics on Earth and in space.
NASA Technical Reports Server (NTRS)
Demange, Jeffrey J.; Taylor, Shawn C.; Dunlap, Patrick H.; Steinetz, Bruce M.; Finkbeiner, Joshua R.; Proctor, Margaret P.
2014-01-01
The NASA Glenn Research Center (GRC), partnering with the University of Toledo, has a long history of developing and testing seal technologies for high-temperature applications. The GRC Seals Team has conducted research and development on high-temperature seal technologies for applications including advanced propulsion systems, thermal protection systems (airframe and control surface thermal seals), high-temperature preloading technologies, and other extreme-environment seal applications. The team has supported several high-profile projects over the past 30 years and has partnered with numerous organizations, including other government entities, academic institutions, and private organizations. Some of these projects have included the National Aerospace Space Plane (NASP), Space Shuttle Space Transport System (STS), the Multi-Purpose Crew Vehicle (MPCV), and the Dream Chaser Space Transportation System, as well as several high-speed vehicle programs for other government organizations. As part of the support for these programs, NASA GRC has developed unique seal-specific test facilities that permit evaluations and screening exercises in relevant environments. The team has also embarked on developing high-temperature preloaders to help maintain seal functionality in extreme environments. This paper highlights several propulsion-related projects that the NASA GRC Seals Team has supported over the past several years and will provide an overview of existing testing capabilities
Distributed collaborative environments for virtual capability-based planning
NASA Astrophysics Data System (ADS)
McQuay, William K.
2003-09-01
Distributed collaboration is an emerging technology that will significantly change how decisions are made in the 21st century. Collaboration involves two or more geographically dispersed individuals working together to share and exchange data, information, knowledge, and actions. The marriage of information, collaboration, and simulation technologies provides the decision maker with a collaborative virtual environment for planning and decision support. This paper reviews research that is focusing on the applying open standards agent-based framework with integrated modeling and simulation to a new Air Force initiative in capability-based planning and the ability to implement it in a distributed virtual environment. Virtual Capability Planning effort will provide decision-quality knowledge for Air Force resource allocation and investment planning including examining proposed capabilities and cost of alternative approaches, the impact of technologies, identification of primary risk drivers, and creation of executable acquisition strategies. The transformed Air Force business processes are enabled by iterative use of constructive and virtual modeling, simulation, and analysis together with information technology. These tools are applied collaboratively via a technical framework by all the affected stakeholders - warfighter, laboratory, product center, logistics center, test center, and primary contractor.
Overview and Summary of Advanced UVOIR Mirror Technology Development (AMTD) Project
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2014-01-01
ASTRO2010 Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. AMTD is a multiyear effort to develop, demonstrate and mature critical technologies to TRL-6 by 2018 so that a viable flight mission can be proposed to the 2020 Decadal Review. AMTD builds on the state of art (SOA) defined by over 30 years of monolithic & segmented ground & space-telescope mirror technology to mature six key technologies: center dotLarge-Aperture, Low Areal Density, High Stiffness Mirror Substrates: Both (4 to 8 m) monolithic and (8 to 16 m) segmented telescopes require larger and stiffer mirrors. center dotSupport System: Large-aperture mirrors require large support systems to ensure that they survive launch, deploy on orbit, and maintain a stable, undistorted shape. center dotMid/High Spatial Frequency Figure Error: Very smooth mirror is critical for producing high-quality point spread function (PSF) for high contrast imaging. center dotSegment Edges: The quality of segment edges impacts PSF for high-contrast imaging applications, contributes to stray light noise, and affects total collecting aperture. center dotSegment to Segment Gap Phasing: Segment phasing is critical for producing high-quality temporally-stable PSF. center dotIntegrated Model Validation: On-orbit performance is driven by mechanical & thermal stability. Compliance cannot be 100% tested, but relies on modeling. Because we cannot predict the future, AMTD is pursuing multiple design paths to provide the science community with options to enable either large aperture monolithic or segmented mirrors with clear engineering metrics traceable to science requirements
NASA Technical Reports Server (NTRS)
Epp, Chirold D.; Robertson, Edward A.; Ruthishauser, David K.
2013-01-01
The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project was chartered to develop and mature to a Technology Readiness Level (TRL) of six an autonomous system combining guidance, navigation and control with real-time terrain sensing and recognition functions for crewed, cargo, and robotic planetary landing vehicles. The ALHAT System must be capable of identifying and avoiding surface hazards to enable a safe and accurate landing to within tens of meters of designated and certified landing sites anywhere on a planetary surface under any lighting conditions. This is accomplished with the core sensing functions of the ALHAT system: Terrain Relative Navigation (TRN), Hazard Detection and Avoidance (HDA), and Hazard Relative Navigation (HRN). The NASA plan for the ALHAT technology is to perform the TRL6 closed loop demonstration on the Morpheus Vertical Test Bed (VTB). The first Morpheus vehicle was lost in August of 2012 during free-flight testing at Kennedy Space Center (KSC), so the decision was made to perform a helicopter test of the integrated ALHAT System with the Morpheus avionics over the ALHAT planetary hazard field at KSC. The KSC helicopter tests included flight profiles approximating planetary approaches, with the entire ALHAT system interfaced with all appropriate Morpheus subsystems and operated in real-time. During these helicopter flights, the ALHAT system imaged the simulated lunar terrain constructed in FY2012 to support ALHAT/Morpheus testing at KSC. To the best of our knowledge, this represents the highest fidelity testing of a system of this kind to date. During this helicopter testing, two new Morpheus landers were under construction at the Johnson Space Center to support the objective of an integrated ALHAT/Morpheus free-flight demonstration. This paper provides an overview of this helicopter flight test activity, including results and lessons learned, and also provides an overview of recent integrated testing of ALHAT on the second Morpheus vehicle.
NASA Technical Reports Server (NTRS)
Rutishauser, David; Epp, Chirold; Robertson, Edward
2013-01-01
The Autonomous Landing Hazard Avoidance Technology (ALHAT) Project was chartered to develop and mature to a Technology Readiness Level (TRL) of six an autonomous system combining guidance, navigation and control with real-time terrain sensing and recognition functions for crewed, cargo, and robotic planetary landing vehicles. The ALHAT System must be capable of identifying and avoiding surface hazards to enable a safe and accurate landing to within tens of meters of designated and certified landing sites anywhere on a planetary surface under any lighting conditions. This is accomplished with the core sensing functions of the ALHAT system: Terrain Relative Navigation (TRN), Hazard Detection and Avoidance (HDA), and Hazard Relative Navigation (HRN). The NASA plan for the ALHAT technology is to perform the TRL6 closed loop demonstration on the Morpheus Vertical Test Bed (VTB). The first Morpheus vehicle was lost in August of 2012 during free-flight testing at Kennedy Space Center (KSC), so the decision was made to perform a helicopter test of the integrated ALHAT System with the Morpheus avionics over the ALHAT planetary hazard field at KSC. The KSC helicopter tests included flight profiles approximating planetary approaches, with the entire ALHAT system interfaced with all appropriate Morpheus subsystems and operated in real-time. During these helicopter flights, the ALHAT system imaged the simulated lunar terrain constructed in FY2012 to support ALHAT/Morpheus testing at KSC. To the best of our knowledge, this represents the highest fidelity testing of a system of this kind to date. During this helicopter testing, two new Morpheus landers were under construction at the Johnson Space Center to support the objective of an integrated ALHAT/Morpheus free-flight demonstration. This paper provides an overview of this helicopter flight test activity, including results and lessons learned, and also provides an overview of recent integrated testing of ALHAT on the second Morpheus vehicle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartke, T.C.
Under the US Department of Energy's Underground-Coal-Conversion program, four field tests were completed in 1979 and preparations were begun in 1980 for two additional field tests to be operated in 1981. The Laramie Energy Technology Center (LETC) and Sandia National Laboratories (SNL) completed Hanna IV, an air gasification test in Wyoming subbituminous coal. The Morgantown Energy Technology Center (METC) completed Pricetown 1, an air gasification test in West Virginia bituminous coal. Lawrence Livermore National Laboratory (LLNL) completed Hoe Creek 3, a steam-oxygen gasification test in Wyoming subbituminous coal. Gulf Research and Development Co. completed Steeply Dipping Beds (SDB) Test 1,more » primarily an air gasification test in Wyoming subbituminous coal and the first SDB test in the US. In 1980, Gulf R and D Co. began preparation of SDB Test 2, scheduled for operation in the fall of 1981. The DOE project teams at LETC, METC, LLNL, and SNL, in association with the Washington Irrigation and Development Co. (WIDCo), Washington Water Power (WWP), and the State of Washington, are preparing a field test site in the Centralia-Chehalis coal district of Washington. A series of large coal block tests will be completed prior to the field test, scheduled for operation in 1982 or 1983. This field test will utilize a directionally drilled link and steam-oxygen gasification system. This paper summarizes the results of the four recently completed field tests and the plans for additional tests.« less
Legacy and Emergence of Spaceport Technology Development at the Kennedy Space Center
NASA Technical Reports Server (NTRS)
Starr, Stanley; Voska, Ned (Technical Monitor)
2003-01-01
Kennedy Space Center (KSC) has a long and successful legacy in the checkout and launch of missiles and space vehicles. These operations have become significantly more complex, and their evolution has driven the need for many technology developments. Unanticipated events have also underscored the need for a local, highly responsive technology development and testing capability. This evolution is briefly described, as well as the increasing level of technology capability at KSC. The importance of these technologies in achieving past national space goals suggests that the accomplishment of low-cost and reliable access to space will depend critically upon KSC's future success in developing spaceport technologies. This paper concludes with a description KSC's current organizational approach and major thrust areas in technology development. The first phase of our historical review focuses on the development and testing of field- deployable short- and intermediate-range ballistic missiles (1953 to 1958). These vehicles are later pressed into service as space launchers. The second phase involves the development of large space lift vehicles culminating in the Saturn V launches (1959 to 1975). The third phase addresses the development and operations of the partially reusable launch vehicle, Space Shuttle (1976 to 2000). In the current era, KSC is teaming with the U.S. Air Force (AF), industry, academia, and other partners to identify and develop Spaceport and Range Technologies necessary to achieve national space goals of lower-cost and higher-reliability space flight.
2000-12-08
The X-40 sub-scale technology demonstrator and its U.S. Army CH-47 Chinook helicopter mothership fly over a dry lakebed runway during a captive-carry test flight from NASA's Dryden Flight Research Center, Edwards, California. The X-40 is attached to a sling which is suspended from the CH-47 by a 110-foot-long cable during the tests, while a small parachute trails behind to provide stability. The captive carry flights are designed to verify the X-40's navigation and control systems, rigging angles for its sling, and stability and control of the helicopter while carrying the X-40 on a tether. Following a series of captive-carry flights, the X-40 made free flights from a launch altitude of about 15,000 feet above ground, gliding to a fully autonomous landing. The X-40 is an unpowered 82 percent scale version of the X-37, a Boeing-developed spaceplane designed to demonstrate various advanced technologies for development of future lower-cost access to space vehicles.
Energy Efficient Cryogenics on Earth and in Space
NASA Technical Reports Server (NTRS)
Fesmire, James E.
2012-01-01
The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for energy-efficient cryogenics on Earth and in space.
Code of Federal Regulations, 2014 CFR
2014-07-01
... TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES... and Certification Center, 765 Technology Drive, Triadelphia, WV 26059. (b) Proposed modifications...
NASA Technical Reports Server (NTRS)
Dennehy, Cornelius J.; VanZwieten, Tannen S.; Hanson, Curtis E.; Wall, John H.; Miller, Chris J.; Gilligan, Eric T.; Orr, Jeb S.
2014-01-01
The Marshall Space Flight Center (MSFC) Flight Mechanics and Analysis Division developed an adaptive augmenting control (AAC) algorithm for launch vehicles that improves robustness and performance on an as-needed basis by adapting a classical control algorithm to unexpected environments or variations in vehicle dynamics. This was baselined as part of the Space Launch System (SLS) flight control system. The NASA Engineering and Safety Center (NESC) was asked to partner with the SLS Program and the Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP) to flight test the AAC algorithm on a manned aircraft that can achieve a high level of dynamic similarity to a launch vehicle and raise the technology readiness of the algorithm early in the program. This document reports the outcome of the NESC assessment.
NASA Technical Reports Server (NTRS)
1989-01-01
The story of research and technology at NASA Lewis Research Center's Structures Division is presented. The job and designs of the Structures Division needed for flight propulsion is described including structural mechanics, structural dynamics, fatigue, and fracture. The video briefly explains why properties of metals used in structural mechanics need to be tested. Examples of tests and simulations used in structural dynamics (bodies in motion) are briefly described. Destructive and non-destructive fatigue/fracture analysis is also described. The arc sprayed monotape (a composite material) is explained, as are the programs in which monotape plays a roll. Finally, the National Aero-Space Plane (NASP or x-30) is introduced, including the material development and metal matrix as well as how NASP will reduce costs for NASA.
Design and Build of Reactor Simulator for Fission Surface Power Technology Demonstrator Unit
NASA Astrophysics Data System (ADS)
Godfroy, T.; Dickens, R.; Houts, M.; Pearson, B.; Webster, K.; Gibson, M.; Qualls, L.; Poston, D.; Werner, J.; Radel, R.
The Nuclear Systems Team at Marshall Space Flight Center (MSFC) focuses on technology development for state of the art capability in non-nuclear testing of nuclear system and Space Nuclear Power for fission reactor systems for lunar and mars surface power generation as well as radioisotope power systems for both spacecraft and surface applications. Currently being designed and developed is a reactor simulator (RxSim) for incorporation into the Technology Demonstrator Unit (TDU) for the Fission Surface Power System (FSPS) Program which is supported by multiple national laboratories and NASA centers. The ultimate purpose of the RxSim is to provide heated NaK to a pair of Stirling engines in the TDU. The RxSim includes many different systems, components, and instrumentation that have been developed at MSFC while working with pumped NaK systems and in partnership with the national laboratories and NASA centers. The main components of the RxSim are a core, a pump, a heat exchanger (to mimic the thermal load of the Stirling engines), and a flow meter when being tested at MSFC. When tested at GRC the heat exchanger will be replaced with a Stirling power conversion engine. Additional components include storage reservoirs, expansion volumes, overflow catch tanks, safety and support hardware, instrumenta- tion (temperature, pressure, flow) data collection, and power supplies. This paper will discuss the design and current build status of the RxSim for delivery to GRC in early 2012.
20 Meter Solar Sail Analysis and Correlation
NASA Technical Reports Server (NTRS)
Taleghani, B. K.; Lively, P. S.; Banik, J.; Murphy, D. M.; Trautt, T. A.
2005-01-01
This paper describes finite element analyses and correlation studies to predict deformations and vibration modes/frequencies of a 20-meter solar sail system developed by ATK Space Systems. Under the programmatic leadership of NASA Marshall Space Flight Center's In-Space Propulsion activity, the 20-meter solar sail program objectives were to verify the design, to assess structural responses of the sail system, to implement lessons learned from a previous 10-meter quadrant system analysis and test program, and to mature solar sail technology to a technology readiness level (TRL) of 5. For this 20 meter sail system, static and ground vibration tests were conducted in NASA Glenn Research Center's 100 meter diameter vacuum chamber at Plum Brook station. Prior to testing, a preliminary analysis was performed to evaluate test conditions and to determine sensor and actuator locations. After testing was completed, an analysis of each test configuration was performed. Post-test model refinements included updated properties to account for the mass of sensors, wiring, and other components used for testing. This paper describes the development of finite element models (FEM) for sail membranes and masts in each of four quadrants at both the component and system levels, as well as an optimization procedure for the static test/analyses correlation.
User-centered virtual environment assessment and design for cognitive rehabilitation applications
NASA Astrophysics Data System (ADS)
Fidopiastis, Cali Michael
Virtual environment (VE) design for cognitive rehabilitation necessitates a new methodology to ensure the validity of the resulting rehabilitation assessment. We propose that benchmarking the VE system technology utilizing a user-centered approach should precede the VE construction. Further, user performance baselines should be measured throughout testing as a control for adaptive effects that may confound the metrics chosen to evaluate the rehabilitation treatment. To support these claims we present data obtained from two modules of a user-centered head-mounted display (HMD) assessment battery, specifically resolution visual acuity and stereoacuity. Resolution visual acuity and stereoacuity assessments provide information about the image quality achieved by an HMD based upon its unique system parameters. When applying a user-centered approach, we were able to quantify limitations in the VE system components (e.g., low microdisplay resolution) and separately point to user characteristics (e.g., changes in dark focus) that may introduce error in the evaluation of VE based rehabilitation protocols. Based on these results, we provide guidelines for calibrating and benchmarking HMDs. In addition, we discuss potential extensions of the assessment to address higher level usability issues. We intend to test the proposed framework within the Human Experience Modeler (HEM), a testbed created at the University of Central Florida to evaluate technologies that may enhance cognitive rehabilitation effectiveness. Preliminary results of a feasibility pilot study conducted with a memory impaired participant showed that the HEM provides the control and repeatability needed to conduct such technology comparisons. Further, the HEM affords the opportunity to integrate new brain imaging technologies (i.e., functional Near Infrared Imaging) to evaluate brain plasticity associated with VE based cognitive rehabilitation.
2016-05-12
NASA’s Ikhana remotely piloted aircraft (front-right) is situated near NASA Armstrong Flight Research Center’s Hangar 4802 after an Unmanned Aircraft Systems Integration into the National Airspace System Flight Test Series 4 flight, along with five flight “intruders.” These intruders, which include NASA’s TG-14 (front-left), T-34C (front-center), B-200 King Air (back-left), Gulfstream-III (back-center) and a Honeywell C-90 King Air (back-right), fly within a pre-determined distance to Ikhana to test Detect-and-Avoid technology during research flights.
Preparing for Orion Recovery Test on This Week @NASA - August 1, 2014
2014-08-01
NASA and the U.S. Navy were busy recently – preparing for tests scheduled off the coast of San Diego, California. Crews will run through the procedures to recover NASA's Orion spacecraft from the ocean, following its water landing from deep space missions. Kennedy Space Center, Johnson Space Center, and Lockheed Martin Space Operations are all involved in the recovery effort. Also, Mars 2020 rover and beyond, Opportunity: 25 miles and counting, Updated K-Rex rover, Automated Transfer Vehicle launch and NASA Technology Days!
High Stability Engine Control (HISTEC) Flight Test Results
NASA Technical Reports Server (NTRS)
Southwick, Robert D.; Gallops, George W.; Kerr, Laura J.; Kielb, Robert P.; Welsh, Mark G.; DeLaat, John C.; Orme, John S.
1998-01-01
The High Stability Engine Control (HISTEC) Program, managed and funded by the NASA Lewis Research Center, is a cooperative effort between NASA and Pratt & Whitney (P&W). The program objective is to develop and flight demonstrate an advanced high stability integrated engine control system that uses real-time, measurement-based estimation of inlet pressure distortion to enhance engine stability. Flight testing was performed using the NASA Advanced Controls Technologies for Integrated Vehicles (ACTIVE) F-15 aircraft at the NASA Dryden Flight Research Center. The flight test configuration, details of the research objectives, and the flight test matrix to achieve those objectives are presented. Flight test results are discussed that show the design approach can accurately estimate distortion and perform real-time control actions for engine accommodation.
Large-Scale Cryogenic Testing of Launch Vehicle Ground Systems at the Kennedy Space Center
NASA Technical Reports Server (NTRS)
Ernst, E. W.; Sass, J. P.; Lobemeyer, D. A.; Sojourner, S. J.; Hatfield, W. H.; Rewinkel, D. A.
2007-01-01
The development of a new launch vehicle to support NASA's future exploration plans requires significant redesign and upgrade of Kennedy Space Center's (KSC) launch pad and ground support equipment systems. In many cases, specialized test equipment and systems will be required to certify the function of the new system designs under simulated operational conditions, including propellant loading. This paper provides an overview of the cryogenic test infrastructure that is in place at KSC to conduct development and qualification testing that ranges from the component level to the integrated-system level. An overview of the major cryogenic test facilities will be provided, along with a detailed explanation of the technology focus area for each facility
Development and Testing of Mechanism Technology for Space Exploration in Extreme Environments
NASA Technical Reports Server (NTRS)
Tyler, Tony R.; Levanas, Greg; Mojarradi, Mohammad M.; Abel, Phillip B.
2011-01-01
The NASA Jet Propulsion Lab (JPL), Glenn Research Center (GRC), Langley Research Center (LaRC), and Aeroflex, Inc. have partnered to develop and test actuator hardware that will survive the stringent environment of the moon, and which can also be leveraged for other challenging space exploration missions. Prototype actuators have been built and tested in a unique low temperature test bed with motor interface temperatures as low as 14 degrees Kelvin. Several years of work have resulted in specialized electro-mechanical hardware to survive extreme space exploration environments, a test program that verifies and finds limitations of the designs at extreme temperatures, and a growing knowledge base that can be leveraged by future space exploration missions.
In toxicology the development and application of in vitro alternatives to reduce or replace animal testing, or to lessen the distress and discomfort of laboratory animals, is a rapidly developing trend. owever, at present there is no formal administrative process to organize, coo...
Stennis personnel participate in test program
NASA Technical Reports Server (NTRS)
2008-01-01
Fernando Figueroa (left), an aerospace technologist at Stennis, and John Schmatzel (center), a professor on loan from Rowan University in Glassboro, N.J., joined Ray Wang, president of Mobitrum Corp., in Silver Springs, Md., to test a virtual sensor instrument in development. The test was performed as part of NASA's Facilitated Access to the Space Environment for Technology Development and Training program.
Verification testing of the ReCip® RTS-500 System was conducted over a 12-month period at the Massachusetts Alternative Septic System Test Center (MASSTC) located on Otis Air National Guard Base in Bourne, Massachusetts. A nine-week startup period preceded the verification test t...
Stennis personnel participate in test program
2008-09-09
Fernando Figueroa (left), an aerospace technologist at Stennis, and John Schmatzel (center), a professor on loan from Rowan University in Glassboro, N.J., joined Ray Wang, president of Mobitrum Corp., in Silver Springs, Md., to test a virtual sensor instrument in development. The test was performed as part of NASA's Facilitated Access to the Space Environment for Technology Development and Training program.
Allegany Ballistics Lab: sensor test target system
NASA Astrophysics Data System (ADS)
Eaton, Deran S.
2011-06-01
Leveraging the Naval Surface Warfare Center, Indian Head Division's historical experience in weapon simulation, Naval Sea Systems Command commissioned development of a remote-controlled, digitally programmable Sensor Test Target as part of a modern, outdoor hardware-in-the-loop test system for ordnance-related guidance, navigation and control systems. The overall Target system design invokes a sciences-based, "design of automated experiments" approach meant to close the logistical distance between sensor engineering and developmental T&E in outdoor conditions over useful real world distances. This enables operating modes that employ broad spectrum electromagnetic energy in many a desired combination, variably generated using a Jet Engine Simulator, a multispectral infrared emitter array, optically enhanced incandescent Flare Simulators, Emitter/Detector mounts, and an RF corner reflector kit. As assembled, the recently tested Sensor Test Target prototype being presented can capably provide a full array of useful RF and infrared target source simulations for RDT&E use with developmental and existing sensors. Certain Target technologies are patent pending, with potential spinoffs in aviation, metallurgy and biofuels processing, while others are variations on well-established technology. The Sensor Test Target System is planned for extended installation at Allegany Ballistics Laboratory (Rocket Center, WV).
2012-08-09
CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida, the Morpheus prototype lander begins to lift off of the ground during a free-flight test. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. Morpheus was manufactured and assembled at JSC and Armadillo Aerospace. Morpheus is large enough to carry 1,100 pounds of cargo to the moon – for example, a humanoid robot, a small rover, or a small laboratory to convert moon dust into oxygen. The primary focus of the test is to demonstrate an integrated propulsion and guidance, navigation and control system that can fly a lunar descent profile to exercise the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, safe landing sensors and closed-loop flight control. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA
Applied high-speed imaging for the icing research program at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Slater, Howard; Owens, Jay; Shin, Jaiwon
1992-01-01
The Icing Research Tunnel at NASA Lewis Research Center provides scientists a scaled, controlled environment to simulate natural icing events. The closed-loop, low speed, refrigerated wind tunnel offers the experimental capability to test for icing certification requirements, analytical model validation and calibration techniques, cloud physics instrumentation refinement, advanced ice protection systems, and rotorcraft icing methodology development. The test procedures for these objectives all require a high degree of visual documentation, both in real-time data acquisition and post-test image processing. Information is provided to scientific, technical, and industrial imaging specialists as well as to research personnel about the high-speed and conventional imaging systems will be on the recent ice protection technology program. Various imaging examples for some of the tests are presented. Additional imaging examples are available from the NASA Lewis Research Center's Photographic and Printing Branch.
Applied high-speed imaging for the icing research program at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Slater, Howard; Owens, Jay; Shin, Jaiwon
1991-01-01
The Icing Research Tunnel at NASA Lewis Research Center provides scientists a scaled, controlled environment to simulate natural icing events. The closed-loop, low speed, refrigerated wind tunnel offers the experimental capability to test for icing certification requirements, analytical model validation and calibration techniques, cloud physics instrumentation refinement, advanced ice protection systems, and rotorcraft icing methodology development. The test procedures for these objectives all require a high degree of visual documentation, both in real-time data acquisition and post-test image processing. Information is provided to scientific, technical, and industrial imaging specialists as well as to research personnel about the high-speed and conventional imaging systems will be on the recent ice protection technology program. Various imaging examples for some of the tests are presented. Additional imaging examples are available from the NASA Lewis Research Center's Photographic and Printing Branch.
The NASA-Lewis/ERDA Solar Heating and Cooling Technology Program
NASA Technical Reports Server (NTRS)
Couch, J. P.; Bloomfield, H. S.
1975-01-01
The NASA Lewis Research Center plans to carry out a major role in the ERDA Solar Heating and Cooling Program. This role would be to create and test the enabling technology for future solar heating, cooling, and combined heating/cooling systems. The major objectives of the project are to achieve reduction in solar energy system costs, while maintaining adequate performance, reliability, life, and maintenance characteristics. The project approach is to move progressively through component, subsystem, and then system technology advancement phases in parallel with continuing manufacturing cost assessment studies. This approach will be accomplished principally by contract with industry to develop advanced components and subsystems. This advanced hardware will be tested to establish 'technology readiness' both under controlled laboratory conditions and under real sun conditions.
Green Propulsion Auxiliary Power Unit Demonstration at MSFC
NASA Technical Reports Server (NTRS)
Robinson, Joel W.
2014-01-01
In 2012, the National Aeronautics & Space Administration (NASA) Space Technology Mission Directorate (STMD) began the process of building an integrated technology roadmap, including both technology pull and technology push strategies. Technology Area 1 (TA-01)1 for Launch Propulsion Systems is one of fourteen TAs that provide recommendations for the overall technology investment strategy and prioritization of NASA's space technology activities. Identified within TA-01 was the need for a green propulsion auxiliary power unit (APU) for hydraulic power by 2015. Engineers led by the author at the Marshall Space Flight Center (MSFC) have been evaluating green propellant alternatives and have begun the development of an APU test bed to demonstrate the feasibility of use. NASA has residual APU assets remaining from the retired Space Shuttle Program. Likewise, the F-16 Falcon fighter jet also uses an Emergency Power Unit (EPU) that has similar characteristics to the NASA hardware. Both EPU and APU components have been acquired for testing at MSFC. This paper will summarize the status of the testing efforts of green propellant from the Air Force Research Laboratory (AFRL) propellant AFM315E based on hydroxyl ammonium nitrate (HAN) with these test assets.
NASA Technical Reports Server (NTRS)
O'Donnell, James R.; Hsu, Oscar C.; Maghami, Peirman G.; Markley, F. Landis
2006-01-01
As originally proposed, the Space Technology-7 Disturbance Reduction System (DRS) project, managed out of the Jet Propulsion Laboratory, was designed to validate technologies required for future missions such as the Laser Interferometer Space Antenna (LISA). The two technologies to be demonstrated by DRS were Gravitational Reference Sensors (GRSs) and Colloidal MicroNewton Thrusters (CMNTs). Control algorithms being designed by the Dynamic Control System (DCS) team at the Goddard Space Flight Center would control the spacecraft so that it flew about a freely-floating GRS test mass, keeping it centered within its housing. For programmatic reasons, the GRSs were descoped from DRS. The primary goals of the new mission are to validate the performance of the CMNTs and to demonstrate precise spacecraft position control. DRS will fly as a part of the European Space Agency (ESA) LISA Pathfinder (LPF) spacecraft along with a similar ESA experiment, the LISA Technology Package (LTP). With no GRS, the DCS attitude and drag-free control systems make use of the sensor being developed by ESA as a part of the LTP. The control system is designed to maintain the spacecraft s position with respect to the test mass, to within 10 nm/the square root of Hz over the DRS science frequency band of 1 to 30 mHz.
Free-piston Stirling component test power converter
NASA Technical Reports Server (NTRS)
Dochat, George; Dhar, Manmohan
1991-01-01
The National Aeronautics and Space Administration (NASA) has been evaluating free-piston Stirling power converters (FPSPCs) for use on a wide variety of space missions. They provide high reliability, long life, and efficient operation and can be coupled with all potential heat sources, various heat input and heat rejection systems, and various power management and distribution systems. FPSPCs can compete favorably with alternative power conversion systems over a range of hundreds of watts to megawatts. Mechanical Technology Incorporated (MTI) is developing FPSPC technology under contract to NASA Lewis Research Center and will demonstrate this technology in two full-scale power converters operating at space temperature conditions. The testing of the first of these, the component test power converter (CTPC), was initiated in Spring 1991 to evaluate mechanical operation at space operating temperatures. The CTPC design, hardware fabrication, and initial test results are reviewed.
Mars Technologies Spawn Durable Wind Turbines
NASA Technical Reports Server (NTRS)
2014-01-01
To develop and test wind power technology for use on Mars, Ames Research Center turned to Northern Power Systems (NPS), based in Barre, Vermont. Ames awarded NPS an SBIR contract so the company could enhance their turbine’s function. Today, over 200 NASA-derived Northern Power 100s are in operation on Earth and have reduced carbon emissions by 50,000 tons annually.
NASA Technical Reports Server (NTRS)
2001-01-01
X-40A Free Flight #5. The unpowered X-40A, an 85 percent scale risk reduction version of the proposed X-37, proved the capability of an autonomous flight control and landing system in a series of glide flights at NASA's Dryden Flight Research Center in California. NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the X-37 project. At Dryden, the X-40A underwent a series of ground and air tests to reduce possible risks to the larger X-37, including drop tests from a helicopter to check guidance and navigation systems planned for use in the X-37. The X-37 is designed to demonstrate technologies in the orbital and reentry environments for next-generation reusable launch vehicles that will increase both safety and reliability, while reducing launch costs from $10,000 per pound to $1,000 per pound. The X-37, carried into orbit by the Space Shuttle, is planned to fly two orbital missions to test reusable launch vehicle technologies.
NASA Technical Reports Server (NTRS)
Rabelo, Luis C.
2002-01-01
This is a report of my activities as a NASA Fellow during the summer of 2002 at the NASA Kennedy Space Center (KSC). The core of these activities is the assigned project: the Virtual Test Bed (VTB) from the Spaceport Engineering and Technology Directorate. The VTB Project has its foundations in the NASA Ames Research Center (ARC) Intelligent Launch & Range Operations program. The objective of the VTB project is to develop a new and unique collaborative computing environment where simulation models can be hosted and integrated in a seamless fashion. This collaborative computing environment will be used to build a Virtual Range as well as a Virtual Spaceport. This project will work as a technology pipeline to research, develop, test and validate R&D efforts against real time operations without interfering with the actual operations or consuming the operational personnel s time. This report will also focus on the systems issues required to conceptualize and provide form to a systems architecture capable of handling the different demands.
NASA Technical Reports Server (NTRS)
Bomben, Craig R.; Smolka, James W.; Bosworth, John T.; Silliams-Hayes, Peggy S.; Burken, John J.; Larson, Richard R.; Buschbacher, Mark J.; Maliska, Heather A.
2006-01-01
The Intelligent Flight Control System (IFCS) project at the NASA Dryden Flight Research Center, Edwards AFB, CA, has been investigating the use of neural network based adaptive control on a unique NF-15B test aircraft. The IFCS neural network is a software processor that stores measured aircraft response information to dynamically alter flight control gains. In 2006, the neural network was engaged and allowed to learn in real time to dynamically alter the aircraft handling qualities characteristics in the presence of actual aerodynamic failure conditions injected into the aircraft through the flight control system. The use of neural network and similar adaptive technologies in the design of highly fault and damage tolerant flight control systems shows promise in making future aircraft far more survivable than current technology allows. This paper will present the results of the IFCS flight test program conducted at the NASA Dryden Flight Research Center in 2006, with emphasis on challenges encountered and lessons learned.
The Space Technology-7 Disturbance Reduction Systems
NASA Technical Reports Server (NTRS)
ODonnell, James R., Jr.; Hsu, Oscar C.; Hanson, John; Hruby, Vlad
2004-01-01
The Space Technology 7 Disturbance Reduction System (DRS) is an in-space technology demonstration designed to validate technologies that are required for future missions such as the Laser Interferometer Space Antenna (LISA) and the Micro-Arcsecond X-ray Imaging Mission (MAXIM). The primary sensors that will be used by DRS are two Gravitational Reference Sensors (GRSs) being developed by Stanford University. DRS will control the spacecraft so that it flies about one of the freely-floating Gravitational Reference Sensor test masses, keeping it centered within its housing. The other GRS serves as a cross-reference for the first as well as being used as a reference for .the spacecraft s attitude control. Colloidal MicroNewton Thrusters being developed by the Busek Co. will be used to control the spacecraft's position and attitude using a six degree-of-freedom Dynamic Control System being developed by Goddard Space Flight Center. A laser interferometer being built by the Jet Propulsion Laboratory will be used to help validate the results of the experiment. The DRS will be launched in 2008 on the European Space Agency (ESA) LISA Pathfinder spacecraft along with a similar ESA experiment, the LISA Test Package.
Reduced Pressure Cabin Testing of the Orion Atmosphere Revitalization Technology
NASA Technical Reports Server (NTRS)
Button, Amy B.; Sweterlitsch, Jeffrey J.
2013-01-01
An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by United Technologies Corp. Aerospace Systems (UTAS, formerly Hamilton Sundstrand) and baselined for the Atmosphere Revitalization System for moderate duration missions of the Orion Multipurpose Crew Vehicle (MPCV). In previous years at this conference, reports were presented on extensive Johnson Space Center testing of this technology in a sea-level pressure environment with simulated and actual human metabolic loads in both open and closed-loop configurations. In 2011, the technology was tested in an open cabin-loop configuration at ambient and two sub-ambient pressures to compare the performance of the system to the results of previous tests at ambient pressure. The testing used a human metabolic simulator with a different type of water vapor generation than previously used, which added some unique challenges in the data analysis. This paper summarizes the results of: baseline and some matrix testing at all three cabin pressures, increased vacuum regeneration line pressure testing with a high metabolic load, a set of tests studying CO2 and water vapor co-adsorption effects relative to model-predicted performance, and validation tests of flight project computer model predictions with specific operating conditions.
NASA Research Center Contributions to Space Shuttle Return to Flight (SSRTF)
NASA Technical Reports Server (NTRS)
Cockrell, Charles E., Jr.; Barnes, Robert S.; Belvin, Harry L.; Allmen, John; Otero, Angel
2005-01-01
Contributions provided by the NASA Research Centers to key Space Shuttle return-to-flight milestones, with an emphasis on debris and Thermal Protection System (TPS) damage characterization, are described herein. Several CAIB recommendations and Space Shuttle Program directives deal with the mitigation of external tank foam insulation as a debris source, including material characterization as well as potential design changes, and an understanding of Orbiter TPS material characteristics, damage scenarios, and repair options. Ames, Glenn, and Langley Research Centers have performed analytic studies, conducted experimental testing, and developed new technologies, analysis tools, and hardware to contribute to each of these recommendations. For the External Tank (ET), these include studies of spray-on foam insulation (SOFI), investigations of potential design changes, and applications of advanced non-destructive evaluation (NDE) technologies to understand ET TPS shedding during liftoff and ascent. The end-to-end debris assessment included transport analysis to determine the probabilities of impact for various debris sources. For the Orbiter, methods were developed, and validated through experimental testing, to determine thresholds for potential damage of Orbiter TPS components. Analysis tools were developed and validated for on-orbit TPS damage assessments, especially in the area of aerothermal environments. Advanced NDE technologies were also applied to the Orbiter TPS components, including sensor technologies to detect wing leading edge impacts during liftoff and ascent. Work is continuing to develop certified TPS repair options and to develop improved methodologies for reinforced carbon-carbon (RCC) damage progression to assist in on-orbit repair decision philosophy.
NASA Technical Reports Server (NTRS)
Abraham, Nithin S.; Hasegawa, Mark M.; Wooldridge, Eve M.; Henderson-Nelson, Kelly A.
2016-01-01
As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground based space applications, in particular, for vacuum chamber environments. This paper describes the recent use of the MAC technology during Pathfinder testing of the Optical Ground Support Equipment (OGSE) for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap persistent outgassed contaminants, specifically silicone based diffusion pump oil, from within JSC's cryogenic optical vacuum chamber test facility called Chamber A. This paper summarizes the sample fabrication, installation, laboratory testing, post-test chemical analysis results, and future plans for the MAC technology, which was effectively used to protect the JWST test equipment from vacuum chamber contamination.
NASA Astrophysics Data System (ADS)
Abraham, Nithin S.; Hasegawa, Mark M.; Wooldridge, Eve M.; Henderson-Nelson, Kelly A.
2016-09-01
As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground based space applications, in particular, for vacuum chamber environments. This paper describes the recent use of the MAC technology during Pathfinder testing of the Optical Ground Support Equipment (OGSE) for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap persistent outgassed contaminants, specifically silicone based diffusion pump oil, from within JSC's cryogenic optical vacuum chamber test facility called Chamber A. This paper summarizes the sample fabrication, installation, laboratory testing, post-test chemical analysis results, and future plans for the MAC technology, which was effectively used to protect the JWST test equipment from vacuum chamber contamination.
2015-09-03
THE GAS GENERATOR TO AN F-1 ENGINE, THE MOST POWERFUL ROCKET ENGINE EVER BUILT, IS TEST-FIRED AT NASA'S MARSHALL SPACE FLIGHT CENTER IN HUNTSVILLE, ALABAMA, ON SEPT. 3. ALTHOUGH THE ENGINE WAS ORIGINALLY BUILT TO POWER THE SATURN V ROCKETS DURING AMERICA'S MISSIONS TO THE MOON, THIS TEST ARTICLE HAD NEW PARTS CREATED USING ADDITIVE MANUFACTURING, OR 3-D PRINTING, TO TEST THE VIABILITY OF THE TECHNOLOGY FOR BUILDING NEW ENGINE DESIGNS.
Laboratory and Field Evaluation of In-Place Asphalt Recycling Technologies for Small Airfield Repair
2013-06-01
Mariely Mejías-Santiago and William D. Carruth Geotechnical and Structures Laboratory US Army Engineer Research and Development Center 3909 Halls...24. Pavement structure at Test Site 1. ....................................................................................... 28 Figure 25. Pavement... structure at ERDC test site. ................................................................................ 30 Figure 26. Heatwurx HWX-30 electric
National Wind Technology Center Video (Text Version) | NREL
blades of wind turbines and the National Renewable Energy Laboratory logo. It then cuts to images of able to do the testing." (Voiceover) To create energy, the wind turns the blades, which rotate the testing." Inside the Industrial User Facility, wind turbine blades are shaken and flexed. (Voiceover
Educational Technology Program.
ERIC Educational Resources Information Center
Frick, Frederick C.
Recent work on the development and testing of various components of the Lincoln Training System (LTS) is reported. Plans were further developed for the testing of the LTS-1 terminal at the Keeler Technical Training Center in order to prove that this type of terminal can function as the main medium of teaching in a self-paced training environment.…
CRADA opportunities in pressurized combustion research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maloney, D J; Norton, T S; Casleton, K H
1995-06-01
The Morgantown Energy Technology Center recently began operation of a Low Emissions Combustor Test and Research (LECTR) Facility. This facility was built to support the development of Advanced Gas Turbine Systems (ATS) by providing test facilities and engineering support to METC customers through the ATS University-Industry Consortium and through CRADA participation with industrial partners.
National Technology Center and photonics
NASA Astrophysics Data System (ADS)
Vlannes, Nickolas P.
1992-05-01
A National Technology Center is proposed in order to meet the international challenges to the economy and security of the United States. This center would be tasked with the acquisition, analysis, assessment, and dissemination of worldwide scientific and technical information and data; technology transfer to the United States; and research and development in information and library sciences and technology. The National Technology Center would form a national network linking centers of excellence and expertise, and maintain a national technology library. With these functions, the National Technology Center has inherent requirements for technologies based on photonics, and will further motivate developments in this field.
Morpheus: Advancing Technologies for Human Exploration
NASA Technical Reports Server (NTRS)
Olansen, Jon B.; Munday, Stephen R.; Mitchell, Jennifer D.; Baine, Michael
2012-01-01
NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing. Designed to serve as a vertical testbed (VTB) for advanced spacecraft technologies, the vehicle provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. This allows individual technologies to mature into capabilities that can be incorporated into human exploration missions. The Morpheus vehicle is propelled by a LOX/Methane engine and sized to carry a payload of 1100 lb to the lunar surface. In addition to VTB vehicles, the Project s major elements include ground support systems and an operations facility. Initial testing will demonstrate technologies used to perform autonomous hazard avoidance and precision landing on a lunar or other planetary surface. The Morpheus vehicle successfully performed a set of integrated vehicle test flights including hot-fire and tethered hover tests, leading up to un-tethered free-flights. The initial phase of this development and testing campaign is being conducted on-site at the Johnson Space Center (JSC), with the first fully integrated vehicle firing its engine less than one year after project initiation. Designed, developed, manufactured and operated in-house by engineers at JSC, the Morpheus Project represents an unprecedented departure from recent NASA programs that traditionally require longer, more expensive development lifecycles and testing at remote, dedicated testing facilities. Morpheus testing includes three major types of integrated tests. A hot-fire (HF) is a static vehicle test of the LOX/Methane propulsion system. Tether tests (TT) have the vehicle suspended above the ground using a crane, which allows testing of the propulsion and integrated Guidance, Navigation, and Control (GN&C) in hovering flight without the risk of a vehicle departure or crash. Morpheus free-flights (FF) test the complete Morpheus system without the additional safeguards provided during tether. A variety of free-flight trajectories are planned to incrementally build up to a fully functional Morpheus lander capable of flying planetary landing trajectories. In FY12, these tests will culminate with autonomous flights simulating a 1 km lunar approach trajectory, hazard avoidance maneuvers and precision landing in a prepared hazard field at the Kennedy Space Center (KSC). This paper describes Morpheus integrated testing campaign, infrastructure, and facilities, and the payloads being incorporated on the vehicle. The Project s fast pace, rapid prototyping, frequent testing, and lessons learned depart from traditional engineering development at JSC. The Morpheus team employs lean, agile development with a guiding belief that technologies offer promise, but capabilities offer solutions, achievable without astronomical costs and timelines.
National Center for Combating Terrorism Strategic Plan, September 2003
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bechtel Nevada
2003-09-01
National Center for Combating Terrorism Strategic Plan is to document the mission, vision, and goals for success; define the build plan; and describe initiatives that support the U.S. Department of Homeland Security, U.S. Department of Defense, U.S. Department of Energy, U.S. Department of Justice, intelligence community, National Governors Association, and other organizations or departments with combating terrorism training, testing, and technology responsibilities.
1. Photographic copy of fire alarm plan for Control and ...
1. Photographic copy of fire alarm plan for Control and Recording Center Building 4221/E-22, showing layout of rooms. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering 'Edwards Test Station, Fire Alarm Plan, Bldg. E-22,' drawing no. EFA/11-1, December 15, 1961. - Jet Propulsion Laboratory Edwards Facility, Control & Recording Center, Edwards Air Force Base, Boron, Kern County, CA
NASA Technical Reports Server (NTRS)
Margiotta, Danielle V.; McKittrick, Kristin R.; Straka, Sharon A.; Jones, Craig B.
2012-01-01
The passive Lotus dust mitigation coating currently being developed at NASA's Goddard Space Flight Center (GSFC), was selected by the Habitation Demonstration Unit Deep Space Habitat (HDU-DSH) for participation in the 2011 Desert Research and Technology Studies (D-RaTS). Based on the unique surface architecture of the Lotus leaf, the nano-engineered Lotus coating seeks to replicate these structures on space flight and habitation surfaces. By decreasing both the surface energy and area for particle attachment, the Lotus coating greatly diminishes dust accumulation on surfaces. This is a problem that can be encountered on lunar, Martian, and asteroid missions. Two different application methods of this coating were tested in summer 2011 at the D-RaTS site: the wet chemistry applied version and combustion chemical vapor deposition (CCVD) applied version. These Lotus coatings, along with two common thermal control coatings, were combined with the active dust mitigation electrodynamic shield (EDS) technology developed at Kennedy Space Center (KSC). The EDS technology uses an electrified grid to remove dust particles from the surface of a Kapton (Trademark) substrate. The Lotus coating and thermal control coatings were applied to these Kapton (Trademark) substrates for testing. The combination of these two innovations was theorized to be an applicable countermeasure for addressing dust accumulation during long-duration human space exploration. This theory was tested and characterized prior to, during, and after D-RaTS exposure.
30 CFR 19.13 - Instructions for handling future changes in lamp design.
Code of Federal Regulations, 2010 CFR
2010-07-01
... LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC CAP LAMPS § 19.13 Instructions for..., Approval and Certification Center, 765 Technology Drive, Triadelphia, WV 26059, requesting an extension of...
30 CFR 19.13 - Instructions for handling future changes in lamp design.
Code of Federal Regulations, 2014 CFR
2014-07-01
... LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC CAP LAMPS § 19.13 Instructions for..., Approval and Certification Center, 765 Technology Drive, Triadelphia, WV 26059, requesting an extension of...
30 CFR 19.13 - Instructions for handling future changes in lamp design.
Code of Federal Regulations, 2012 CFR
2012-07-01
... LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC CAP LAMPS § 19.13 Instructions for..., Approval and Certification Center, 765 Technology Drive, Triadelphia, WV 26059, requesting an extension of...
30 CFR 19.13 - Instructions for handling future changes in lamp design.
Code of Federal Regulations, 2011 CFR
2011-07-01
... LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC CAP LAMPS § 19.13 Instructions for..., Approval and Certification Center, 765 Technology Drive, Triadelphia, WV 26059, requesting an extension of...
30 CFR 19.13 - Instructions for handling future changes in lamp design.
Code of Federal Regulations, 2013 CFR
2013-07-01
... LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC CAP LAMPS § 19.13 Instructions for..., Approval and Certification Center, 765 Technology Drive, Triadelphia, WV 26059, requesting an extension of...
Integration and testing of a multistack automated cone machine
DOT National Transportation Integrated Search
2004-06-01
The Advanced Highway Maintenance and Construction Technology (AHMCT) Research Center has been developing robotic equipment and machinery for highway maintenance and construction operations. It is a cooperative venture between the University of Califo...
National Fuel Cell Technology Evaluation Center | Hydrogen and Fuel Cells |
NREL National Fuel Cell Technology Evaluation Center National Fuel Cell Technology Evaluation Center The National Fuel Cell Technology Evaluation Center (NFCTEC) at NREL's Energy Systems Integration Cell Technology Evaluation Center to process and analyze data for a variety of hydrogen and fuel cell
Exploration Life Support Technology Development for Lunar Missions
NASA Technical Reports Server (NTRS)
Ewert, Michael K.; Barta, Daniel J.; McQuillan, Jeffrey
2009-01-01
Exploration Life Support (ELS) is one of NASA's Exploration Technology Development Projects. ELS plans, coordinates and implements the development of new life support technologies for human exploration missions as outlined in NASA's Vision for Space Exploration. ELS technology development currently supports three major projects of the Constellation Program - the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems. ELS content includes Air Revitalization Systems (ARS), Water Recovery Systems (WRS), Waste Management Systems (WMS), Habitation Engineering, Systems Integration, Modeling and Analysis (SIMA), and Validation and Testing. The primary goal of the ELS project is to provide different technology options to Constellation which fill gaps or provide substantial improvements over the state-of-the-art in life support systems. Since the Constellation missions are so challenging, mass, power, and volume must be reduced from Space Shuttle and Space Station technologies. Systems engineering analysis also optimizes the overall architecture by considering all interfaces with the life support system and potential for reduction or reuse of resources. For long duration missions, technologies which aid in closure of air and water loops with increased reliability are essential as well as techniques to minimize or deal with waste. The ELS project utilizes in-house efforts at five NASA centers, aerospace industry contracts, Small Business Innovative Research contracts and other means to develop advanced life support technologies. Testing, analysis and reduced gravity flight experiments are also conducted at the NASA field centers. This paper gives a current status of technologies under development by ELS and relates them to the Constellation customers who will eventually use them.
Intelligent Mobile Technologies
NASA Technical Reports Server (NTRS)
Alena, Rick; Gilbaugh, Bruce; Glass, Brian; Swanson, Keith (Technical Monitor)
2000-01-01
Testing involves commercial radio equipment approved for export and use in Canada. Testing was conducted in the Canadian High Arctic, where hilly terrain provided the worst-case testing. SFU and Canadian governmental agencies made significant technical contributions. The only technical data related to radio testing was exchanged with SFU. Test protocols are standard radio tests performed by communication technicians worldwide. The Joint Fields Operations objectives included the following: (1) to provide Internet communications services for field science work and mobile exploration systems; (2) to evaluate the range and throughput of three different medium-range radio link technologies for providing coverage of the crater area; and (3) to demonstrate collaborative software such as NetMeeting with multi-point video for exchange of scientific information between remote node and base-base camp and science centers as part of communications testing.
NASA Technical Reports Server (NTRS)
Beltran, Luis R.; Griffin, Thomas A.
2004-01-01
The U.S. Army Vehicle Technology Directorate at the NASA Glenn Research Center has been directed by their parent command, the U.S. Army Research Laboratory (ARL), to demonstrate active stall technology in a turboshaft engine as the next step in transitioning this technology to the Army and aerospace industry. Therefore, the Vehicle Technology Directorate requested the reactivation of Glenn's Engine Components Research Lab, Cell 2B, (ECRL 2B). They wanted to test a T700 engine that had been used previously for turboshaft engine research as a partnership between the Army and NASA on small turbine engine research. ECRL 2B had been placed in standby mode in 1997. Glenn's Testing Division initiated reactivation in May 2002 to support the new research effort, and they completed reactivation and improvements in September 2003.
Cryogenic fluid management program at MSFC
NASA Technical Reports Server (NTRS)
Schmidt, G. R.; Hastings, L. J.
1990-01-01
Cryogenic fluid management (CFM) is an important aspect in the design and operation of spacecraft propellant systems. Consequently, it represents a key technology in the development of future vehicles for orbital transfer, lunar transit and manned interplanetary (i.e., Mars) missions. Because of Marshall Space Flight Center's (MSFC's) leading role in the definition of such vehicles, the center is currently managing and conducting a variety of tests to support development of this technology. The purpose of this paper is to summarize these activities and present their status within the context of CFM technology requirements. The first section reviews MSFC's role, identifies the major emphases and thrusts of its program, and presents the overall schedule. The final part comprises the bulk of the report, and describes at length the objectives, approach and status of each project.
Mid-Atlantic Technology Applications Center. Quarters 1-4
NASA Technical Reports Server (NTRS)
1997-01-01
Mid-atlantic Technology Application Center (MTAC) pursued a number of initiatives designed to enhance the strategic position of the Langley Research Center (LaRC) and NASA in industry. Among these was a closer association with the ISA, International Society for Measurement and Control. During 1997, MTAC placed articles regarding NASA-developed technologies in each In Tech magazine. The monthly magazine is sent to 46,000 sensors and instrumentation professionals. In addition, MTAC coordinated NASXs participation in the ISA Tech 97 Conference, securing $112,000 of free exhibit space, 1500 NASA sensors posters at no cost to NASA, and thousands of dollars of free publicity. MTAC was awarded a contract by ISA to operate its Technical Resource Center (TRC). The goal of this project is to determine what user needs are in order to identify opportunities for collaboration between NASA centers and companies. In addition, the TRC work will lay the groundwork for the Technology Development Consortium (TDC) proposed by MTAC. The purpose of the TDC is to: match current industry needs with NASA technologies available now, and to identify future needs of NASA and industry which may lead to dual use projects. The goal of these activities is twofold: to infuse NASA technologies into the sensors and instrumentation industry and to secure industry funds to support NASA technology development projects. The instrumentation and sensors industry is valued at $30 billion worldwide, with $12 billion in sales in the United States. The growth rate averages 13.5%, so that by the year 2000, the industry will produce products worth $49 billion. More than 80% of instruments, sensors and control systems are currently manufactured in the United States. NASA and the industry do not have a history of collaborative projects; MTAC's initiatives in this area are designed to foster working relationships between the two parties that will help maintain U.S. leadership in this field. Mid-atlantic Technology Applications Center (MTAC) continued to work on LaRC-SI and Thin Layer Unimorph Driver and Sensor activities. MTAC helped develop the "master license" concept and identified additional applications and potential clients. The goal of these activities was to increase the financial return to Langley Research Center, to ensure the diffusion of the technologies throughout the economy, and to attract partners for future NASA technology development efforts. In an attempt to market LaRC-SI and the Thin Layer Unimorph Driver and Sensor, MTAC developed and pioneered the use of the USRTTC Technology Commercialization Team. As a result, MTAC's sister RTTCs identified both applications and potential users for the two technologies. MTAC also benefitted from its affiliate network to locate companies throughout the region that were interested in the two technologies. MTAC is working with Allegheny Ludlum to monitor the progress of the installation and testing of ultrasonic equipment purchased as a result of Langley Research Center's assistance.
Kerosene-Fuel Engine Testing Under Way
2003-11-17
NASA Stennis Space Center engineers conducted a successful cold-flow test of an RS-84 engine component Sept. 24. The RS-84 is a reusable engine fueled by rocket propellant - a special blend of kerosene - designed to power future flight vehicles. Liquid oxygen was blown through the RS-84 subscale preburner to characterize the test facility's performance and the hardware's resistance. Engineers are now moving into the next phase, hot-fire testing, which is expected to continue into February 2004. The RS-84 engine prototype, developed by the Rocketdyne Propulsion and Power division of The Boeing Co. of Canoga Park, Calif., is one of two competing Rocket Engine Prototype technologies - a key element of NASA's Next Generation Launch Technology program.
Kerosene-Fuel Engine Testing Under Way
NASA Technical Reports Server (NTRS)
2003-01-01
NASA Stennis Space Center engineers conducted a successful cold-flow test of an RS-84 engine component Sept. 24. The RS-84 is a reusable engine fueled by rocket propellant - a special blend of kerosene - designed to power future flight vehicles. Liquid oxygen was blown through the RS-84 subscale preburner to characterize the test facility's performance and the hardware's resistance. Engineers are now moving into the next phase, hot-fire testing, which is expected to continue into February 2004. The RS-84 engine prototype, developed by the Rocketdyne Propulsion and Power division of The Boeing Co. of Canoga Park, Calif., is one of two competing Rocket Engine Prototype technologies - a key element of NASA's Next Generation Launch Technology program.
2007-09-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, the first stage reentry parachute drop test is conducted at the Yuma, Arizona proving ground. The parachute tests demonstrated a three-stage deployment sequence that included the use of an Orbiter drag chute to properly stage the unfurling of the main chute. The parachute recovery system for Orion will be similar to the system used for Apollo command module landings and include two drogue, three pilot, and three main parachutes. (Highest resolution available)
2006-09-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, the first stage reentry parachute drop test is conducted at the Yuma, Arizona proving ground. The parachute tests demonstrated a three-stage deployment sequence that included the use of an Orbiter drag chute to properly stage the unfurling of the main chute. The parachute recovery system for Orion will be similar to the system used for Apollo command module landings and include two drogue, three pilot, and three main parachutes. (Highest resolution available)
2007-09-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. The launch vehicle's first stage is a single, five-segment reusable solid rocket booster derived from the Space Shuttle Program's reusable solid rocket motor that burns a specially formulated and shaped solid propellant called polybutadiene acrylonitrile (PBAN). The second or upper stage will be propelled by a J-2X main engine fueled with liquid oxygen and liquid hydrogen. This HD video image depicts a test firing of a 40k subscale J2X injector at MSFC's test stand 115. (Highest resolution available)
2011-03-30
NASA cut the ribbon on a new cryogenics control center at John C. Stennis Space Center on March 30. The new facility is part of a project to strengthen Stennis facilities to withstand the impacts of future storms like hurricane Katrina in 2005. Participants in the ribbon-cutting included (l to r): Jason Zuckerman, director of project management for The McDonnel Group; Keith Brock, director of the NASA Project Directorate at Stennis; Stennis Deputy Director Rick Gilbrech; Steve Jackson, outgoing program manager of the Jacobs Technology NASA Test Operations Group; and Troy Frisbie, Cryo Control Center Construction project manager for NASA Center Operations at Stennis.
MCCx C3I Control Center Interface Emulator
NASA Technical Reports Server (NTRS)
Mireles, James R.
2010-01-01
This slide presentation reviews the project to develop and demonstrate alternate Information Technologies and systems for new Mission Control Centers that will reduce the cost of facility development, maintenance and operational costs and will enable more efficient cost and effective operations concepts for ground support operations. The development of a emulator for the Control Center capability will enable the facilities to conduct the simulation requiring interactivity with the Control Center when it is off line or unavailable, and it will support testing of C3I interfaces for both command and telemetry data exchange messages (DEMs).
The evaluation of OSTA's APT and ASVT programs
NASA Technical Reports Server (NTRS)
1981-01-01
The results of an evaluation of NASA's Applications Pilot Test (APT) and Applications System Verification and Transfer (AVST) Programs are presented. These programs sponsor cooperative projects between NASA and potential users of remote sensing (primarily LANDSAT) technology from federal and state government and the private sector. Fifteen specific projects, seven APT's and eight ASVT's, are examined as mechanisms for technology development, test, and transfer by comparing their results against stated objectives. Interviews with project managers from NASA field centers and user agency representatives provide the basis for project evaluation from NASA and user perspectives.
Applying Pressure Sensitive Paint Technology to Rotor Blades
NASA Technical Reports Server (NTRS)
Watkins, A. Neal; Leighty, Bradley D.; Lipford, William E.; Goodman, Kyle Z.; Crafton, Jim; Gregory, James W.
2014-01-01
This report will present details of a Pressure Sensitive Paint (PSP) system for measuring global surface pressures on rotorcrtaft blades in simulated forward flight at the 14- by 22-Foot Subsonic Tunnel at the NASA Langley Research Center. The basics of the PSP method will be discussed and the modifications that were needed to extend this technology for use on rotor blades. Results from a series of tests will also be presented as well as several areas of improvement that have been identified and are currently being developed for future testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, P.; Scholbrock, A.; Wright, A.
2014-11-01
Presented at the Nordic Wind Power Conference on November 5, 2014. This presentation describes field-test campaigns performed at the National Wind Technology Center in which lidar technology was used to improve the yaw alignment of the Controls Advanced Research Turbine (CART) 2 and CART3 wind turbines. The campaigns demonstrated that whether by learning a correction function to the nacelle vane, or by controlling yaw directly with the lidar signal, a significant improvement in power capture was demonstrated.
2007-08-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts friction stir welding used in manufacturing aluminum panels that will fabricate the Ares I upper stage barrel. The aluminum panels are subjected to confidence panel tests during which the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
2007-08-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts friction stir welding used in manufacturing aluminum panels that will fabricate the Ares I upper stage barrel. The panels are subjected to confidence tests in which the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
Stir Friction Welding Used in Ares I Upper Stage Fabrication
NASA Technical Reports Server (NTRS)
2007-01-01
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts friction stir welding used in manufacturing aluminum panels that will fabricate the Ares I upper stage barrel. The panels are subjected to confidence tests in which the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
Overview of NASA Lewis Research Center free-piston Stirling engine activities
NASA Technical Reports Server (NTRS)
Slaby, J. G.
1984-01-01
A generic free-piston Stirling technology project is being conducted to develop technologies generic to both space power and terrestrial heat pump applications in a cooperative, cost-shared effort. The generic technology effort includes extensive parametric testing of a 1 kW free-piston Stirling engine (RE-1000), development of a free-piston Stirling performance computer code, design and fabrication under contract of a hydraulic output modification for RE-1000 engine tests, and a 1000-hour endurance test, under contract, of a 3 kWe free-piston Stirling/alternator engine. A newly initiated space power technology feasibility demonstration effort addresses the capability of scaling a free-piston Stirling/alternator system to about 25 kWe; developing thermodynamic cycle efficiency or equal to 70 percent of Carnot at temperature ratios in the order of 1.5 to 2.0; achieving a power conversion unit specific weight of 6 kg/kWe; operating with noncontacting gas bearings; and dynamically balancing the system. Planned engine and component design and test efforts are described.
Desert Research and Technology Studies (RATS) 2007 Field Campaign Objectives and Results
NASA Technical Reports Server (NTRS)
Kosmo, Joseph; Romig, Barbara
2008-01-01
Desert "RATS" (Research and Technology Studies) is a combined, multi-discipline group of inter-NASA center scientists and engineers, net-working and collaborating with representatives of industry and academia, for the purpose of conducting planetary surface exploration-focused remote field exercises. These integrated testing exercises conducted under representative analog Lunar and Mars surface terrain conditions, provide NASA the capability to validate experimental prototype hardware and software systems as well as to evaluate and develop mission operational techniques in order to identify and establish technical requirements and identify potential technology "gaps" applicable for future planetary human exploration. The 2007 D-RATS field campaign test activities were initiated based on the major themes and objectives of a notional 5-year plan developed for conducting relative analog test activities in support of the engineering evaluation and assessment of various system architectural requirements, conceptual prototype support equipment and selected technologies necessary for the establishment of a lunar outpost. Specifically, the major objectives included measuring task efficiency during robot, human, and human-robot interactive tasks associated with lunar outpost site surveying and reconnaissance activities and deployment of a representative solar panel power and distribution system. In addition, technology demonstrations were conducted with a new Lithium-ion battery and autonomous software to coordinate multiple robot activities. Secondary objectives were evaluating airlock concept mockups and prototype removable space suit over-garment elements for dust mitigation, and upgrades to the prototype extravehicular activities (EVA) communication and information system. Dry run test activities, prior to testing at a designated remote field site location, were initially conducted at the Johnson Space Center (JSC) Remote Field Demonstration Test Site. This is a multi-acre external test site located at JSC and has detailed representative terrain features simulating both Lunar and Mars surface characteristics. Both the local JSC and remote field test sites have terrain conditions that are representative and characteristic of both the Moon and Mars, such as strewn rock and volcanic ash fields, craters, rolling plains, hills, gullies, slopes, and outcrops. The D-RATS 2007 field campaign, representing the completion of its tenth year of analog testing, was conducted at the large Cinder Lake volcanic ash bed area adjacent to Flagstaff, Arizona.
Communication Technology Satellite Portable Terminal
1977-03-21
This vehicle served as a mobile terminal for the Communications Technology Satellite. The Communications Technology Satellite was an experimental communications satellite launched in January 1976 by the National Aeronautics and Space Administration (NASA) and the Canadian Department of Communications. The satellite operated in a new frequency band reserved for broadcast satellites with transmitting power levels that were 10 to 20 times higher than those of contemporary satellites. Throughout 1977 and 1978 NASA allowed qualified groups to utilize the satellite from one of the three ground-based transmission centers. NASA’s Lewis Research Center in Cleveland, Ohio was NASA’s lead center on the project. Lewis was responsible for the control and coordination of all US experiments on the satellite. The center housed the satellite’s main control center which included eight parabolic reflector antennae ranging from 2 to 15 feet in diameter. Many of the satellite’s components had been tested in simulated space conditions at Lewis. The Lewis-designed vehicle seen here served as a field unit for transmitting and receiving wideband signals and narrowband voice. The vehicle permitted live television interviews, recording equipment, and cameras. An 8-foot diameter parabolic reflector was mounted on the roof. The interior of the vehicle had workstations, monitors, transmitting equipment, and a lounge area.
Eclipse project QF-106 and C-141A climbs out under tow on first tethered flight December 20, 1997
NASA Technical Reports Server (NTRS)
1997-01-01
TOW LAUNCH DEMONSTRATION - The Kelly Space & Technology (KST)/USAF/NASA Eclipse project's modified QF-106 climbs out under tow by a USAF C-141A on the project's first tethered flight on December 20, 1997. The successful 18-minute-long flight reached an altitude of 10,000 feet. NASA's Dryden Flight Research Center, Edwards, California, hosted the project, providing engineering and facility support as well as the project pilot. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.
Eclipse project QF-106 and C-141A takeoff on first tethered flight December 20, 1997
NASA Technical Reports Server (NTRS)
1997-01-01
TOW ROPE TAKEOFF - The Kelly Space & Technology (KST)/USAF Eclipse project's modified QF-106 and a USAF C-141A takeoff for the project's first tethered flight on December 20, 1997. The successful 18-minute-long flight reached an altitude of 10,000 feet. NASA's Dryden Flight Research Center, Edwards, California, hosted the project, providing engineering and facility support as well as the project pilot. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.
Eclipse project closeup of QF-106 under tow on takeoff on first flight December 20, 1997
NASA Technical Reports Server (NTRS)
1997-01-01
OFF THE GROUND - The Kelly Space & Technology (KST)/USAF/NASA Eclipse project's modified QF-106 lifts off under tow on the project's first tethered flight on December 20, 1997. The successful 18-minute-long flight reached an altitude of 10,000 feet. NASA's Dryden Flight Research Center, Edwards, California, hosted the project, providing engineering and facility support as well as the project pilot. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.
Eclipse project closeup of QF-106 under tow on first tethered flight December 20, 1997
NASA Technical Reports Server (NTRS)
1997-01-01
The Kelly Space and Technology (KST)/USAF/NASA Eclipse project's modified QF-106 is shown under tow on the project's first tethered flight on December 20, 1997. The successful 18-minute-long flight reached an altitude of 10,000 feet. NASA's Dryden Flight Research Center, Edwards, California, is hosting the project, providing engineering and facility support as well as the project pilot, Mark Stucky. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.
Large scale cryogenic fluid systems testing
NASA Technical Reports Server (NTRS)
1992-01-01
NASA Lewis Research Center's Cryogenic Fluid Systems Branch (CFSB) within the Space Propulsion Technology Division (SPTD) has the ultimate goal of enabling the long term storage and in-space fueling/resupply operations for spacecraft and reusable vehicles in support of space exploration. Using analytical modeling, ground based testing, and on-orbit experimentation, the CFSB is studying three primary categories of fluid technology: storage, supply, and transfer. The CFSB is also investigating fluid handling, advanced instrumentation, and tank structures and materials. Ground based testing of large-scale systems is done using liquid hydrogen as a test fluid at the Cryogenic Propellant Tank Facility (K-site) at Lewis' Plum Brook Station in Sandusky, Ohio. A general overview of tests involving liquid transfer, thermal control, pressure control, and pressurization is given.
Free Flight Rotorcraft Flight Test Vehicle Technology Development
NASA Technical Reports Server (NTRS)
Hodges, W. Todd; Walker, Gregory W.
1994-01-01
A rotary wing, unmanned air vehicle (UAV) is being developed as a research tool at the NASA Langley Research Center by the U.S. Army and NASA. This development program is intended to provide the rotorcraft research community an intermediate step between rotorcraft wind tunnel testing and full scale manned flight testing. The technologies under development for this vehicle are: adaptive electronic flight control systems incorporating artificial intelligence (AI) techniques, small-light weight sophisticated sensors, advanced telepresence-telerobotics systems and rotary wing UAV operational procedures. This paper briefly describes the system's requirements and the techniques used to integrate the various technologies to meet these requirements. The paper also discusses the status of the development effort. In addition to the original aeromechanics research mission, the technology development effort has generated a great deal of interest in the UAV community for related spin-off applications, as briefly described at the end of the paper. In some cases the technologies under development in the free flight program are critical to the ability to perform some applications.
Morpheus Lander Roll Control System and Wind Modeling
NASA Technical Reports Server (NTRS)
Gambone, Elisabeth A.
2014-01-01
The Morpheus prototype lander is a testbed capable of vertical takeoff and landing developed by NASA Johnson Space Center to assess advanced space technologies. Morpheus completed a series of flight tests at Kennedy Space Center to demonstrate autonomous landing and hazard avoidance for future exploration missions. As a prototype vehicle being tested in Earth's atmosphere, Morpheus requires a robust roll control system to counteract aerodynamic forces. This paper describes the control algorithm designed that commands jet firing and delay times based on roll orientation. Design, analysis, and testing are supported using a high fidelity, 6 degree-of-freedom simulation of vehicle dynamics. This paper also details the wind profiles generated using historical wind data, which are necessary to validate the roll control system in the simulation environment. In preparation for Morpheus testing, the wind model was expanded to create day-of-flight wind profiles based on data delivered by Kennedy Space Center. After the test campaign, a comparison of flight and simulation performance was completed to provide additional model validation.
NASA Technical Reports Server (NTRS)
Birmele, Michele
2012-01-01
The International Space Station (ISS) is a closed environment wih rotations of crew and equipment each introducing their own microbial flora making it necessary to monitor the air, surfaces, and water for microbial contamination. Current microbial monitoring includes labor and time intensive methods to enumerate total bacterial and fungal cells with limited characterization during in-flight testing. Although this culture-based method has been sufficient for monitoring the ISS, future long duration missions will need to perform more comprehensive characterization in-flight, since sample return and ground characterization may not be available. A workshop was held in 2011 at the Johnson Space Center to discuss alternative methodologies and technologies suitable for microbial monitoring for these longterm exploration missions where molecular-based methodologies, such as polymerase chain reaction (PCR), were recommended. In response, a multi-center (Marshall Space Flight Center, Johnson Space Center, Jet Propulsion Laboratory, and Kennedy Space Center) collaborative research effort was initiated to explore novel commercial-off-the-shelf hardware options for spaceflight environmental monitoring. The goal was to evaluate quantitative/semi-quantitative PCR approaches to space applications for low cost in-flight rapid identification of microorganisms affecting crew safety. The initial phase of this project identified commercially available platforms that could be minimally modified to perform nominally in microgravity followed by proof-of-concept testing on the highest qualifying candidates with a universally available test organism, Salmonella enterica. The platforms evaluated during proof-of-concept testing included the iCubate 2.0(TradeMark) (iCubate, Huntsville, AL), RAZOR EX (BioFire Diagnostics; Salt Lake City, Utah) and SmartCycler(TradeMark) (Cepheid; Sunnyvale, CA). The analysis identified two potential technologies (iCubate 2.0 and RAZOR EX) that were able to perform sample-to-answer testing with cell sample concentrations between SO to 400 cells. In addition, the commercial systems were evaluated for initial flight safety and readiness, sample concentration needs were reviewed, and a competitive procurement of commercially available platforms was initiated.
First International Workshop on Grid Simulator Testing of Wind Turbine
of Wind Turbine Drivetrains First International Workshop on Grid Simulator Testing of Wind Turbine Wind Turbine Drivetrains June 13-14, 2013, at the National Wind Technology Center near Boulder apparatuses involved in grid compliance testing of utility-scale wind turbine generators. This includes both
High-temperature Strain Sensor and Mounting Development
NASA Technical Reports Server (NTRS)
Williams, W. Dan; Lei, Jih-Fen; Reardon, Lawrence F.; Krake, Keith; Lemcoe, M. M.; Holmes, Harlan K.; Moore, Thomas C., Sr.
1996-01-01
This report describes Government Work Package Task 29 (GWP29), whose purpose was to develop advanced strain gage technology in support of the National Aerospace Plane (NASP) Program. The focus was on advanced resistance strain gages with a temperature range from room temperature to 2000 F (1095 C) and on methods for reliably attaching these gages to the various materials anticipated for use in the NASP program. Because the NASP program required first-cycle data, the installed gages were not prestabilized or heat treated on the test coupons before first-cycle data were recorded. NASA Lewis Research Center, the lead center for GWP29, continued its development of the palladium-chromium gage; NASA Langley Research Center investigated a new concept gage using Kanthal A1; and the NASA Dryden Flight Research Center chose the well-known BCL-3 iron-chromium-aluminum gage. Each center then tested all three gages. The parameters investigated were apparent strain, drift strain, and gage factor as a function of temperature, plus gage size and survival rate over the test period. Although a significant effort was made to minimize the differences in test equipment between the three test sites (e.g., the same hardware and software were used for final data processing), the center employed different data acquisition systems and furnace configurations so that some inherent differences may be evident in the final results.
Hot-Fire Testing of a 1N AF-M315E Thruster
NASA Technical Reports Server (NTRS)
Burnside, Christopher G.; Pedersen, Kevin; Pierce, Charles W.
2015-01-01
This hot-fire test continues NASA investigation of green propellant technologies for future missions. To show the potential for green propellants to replace some hydrazine systems in future spacecraft, NASA Marshall Space Flight Center (MSFC) is continuing to embark on hot-fire test campaigns with various green propellant blends. NASA completed a hot-fire test of a 1N AF-M315E monopropellant thruster at the Marshall Space Flight Center in the small altitude test stand located in building 4205. The thruster is a ground test article used for basic performance determination and catalyst studies. The purpose of the hot-fire testing was for performance determination of a 1N size thruster and form a baseline from which to study catalyst performance and life with follow-on testing to be conducted at a later date. The thruster performed as expected. The result of the hot-fire testing are presented in this paper and presentation.
Next-generation foundations for special trackwork phase III : final report.
DOT National Transportation Integrated Search
2016-05-01
Transportation Technology Center, Inc. (TTCI) conducted a series of tests, funded by the Federal Railroad Administration, which evaluated the potential beneficial effects of various configurations of high angle frogs and frog foundations on wheel-rai...
FASTRACK (TM): Parabolic and Suborbital Experiment Support Facility
NASA Technical Reports Server (NTRS)
Richards, Stephanie E. (Compiler); Levine, Howard G.; Romero, V.
2016-01-01
FASTRACK was developed by NASA Kennedy Space Center and Space Florida to provide capabilities to conduct frequent, affordable, and responsive flight opportunities for reduced gravity experiments, technology development, and hardware testing on suborbital vehicles and parabolic flights.
Probability of detection evaluation results for railroad tank cars : final report.
DOT National Transportation Integrated Search
2016-08-01
The Transportation Technology Center, Inc. (TTCI) used the approach developed for the National Aeronautics and Space : Association to determine the probability of detection (POD) for various nondestructive test (NDT) methods used during inspection : ...
Validation protocol for digital audio recorders used in aircraft-noise-certification testing
DOT National Transportation Integrated Search
2010-11-01
The U.S. Department of Transportation, Research and Innovative Technology Administra-tion, John A. Volpe National Transportation Systems Center, Environmental Measurement and Modeling Division (Volpe), is supporting the aircraft noise certification i...
Aerocapture Technology Development Overview
NASA Technical Reports Server (NTRS)
Munk, Michelle M.; Moon, Steven A.
2008-01-01
This paper will explain the investment strategy, the role of detailed systems analysis, and the hardware and modeling developments that have resulted from the past 5 years of work under NASA's In-Space Propulsion Program (ISPT) Aerocapture investment area. The organizations that have been funded by ISPT over that time period received awards from a 2002 NASA Research Announcement. They are: Lockheed Martin Space Systems, Applied Research Associates, Inc., Ball Aerospace, NASA s Ames Research Center, and NASA s Langley Research Center. Their accomplishments include improved understanding of entry aerothermal environments, particularly at Titan, demonstration of aerocapture guidance algorithm robustness at multiple bodies, manufacture and test of a 2-meter Carbon-Carbon "hot structure," development and test of evolutionary, high-temperature structural systems with efficient ablative materials, and development of aerothermal sensors that will fly on the Mars Science Laboratory in 2009. Due in large part to this sustained ISPT support for Aerocapture, the technology is ready to be validated in flight.
NASA Engineers Conduct Low Light Test on New Technology for NASA Webb Telescope
2014-09-02
NASA engineers inspect a new piece of technology developed for the James Webb Space Telescope, the micro shutter array, with a low light test at NASA's Goddard Space Flight Center in Greenbelt, Maryland. Developed at Goddard to allow Webb's Near Infrared Spectrograph to obtain spectra of more than 100 objects in the universe simultaneously, the micro shutter array uses thousands of tiny shutters to capture spectra from selected objects of interest in space and block out light from all other sources. Credit: NASA/Goddard/Chris Gunn NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
2018-04-09
Inside a laboratory in the Neil Armstrong Operations and Checkout Building at NASA's Kennedy Space Center in Florida, Mark Nurge, Ph.D., at left, a physicist in the Applied Physics Lab with the center's Exploration Research and Technology Programs, and Bence Bartha, Ph.D., a specialist in non-destructive testing with URS Federal Services, are performing the first optical quality testing on a full window stack that is ready for installation in the docking hatch of NASA's Orion spacecraft. The data from the tests will help improve the requirements for manufacturing tolerances on Orion's windows and verify how the window should perform in space. Orion is being prepared for its first integrated uncrewed flight atop NASA's Space Launch System rocket on Exploration Mission-1.
Demonstration of laser speckle system on burner liner cyclic rig
NASA Technical Reports Server (NTRS)
Stetson, K. A.
1986-01-01
A demonstration test was conducted to apply speckle photogrammetry to the measurement of strains on a sample of combustor liner material in a cyclic fatigue rig. A system for recording specklegrams was assembled and shipped to the NASA Lewis Research Center, where it was set up and operated during rig tests. Data in the form of recorded specklegrams were sent back to United Technologies Research Center for processing to extract strains. Difficulties were found in the form of warping and bowing of the sample during the tests which degraded the data. Steps were taken by NASA personnel to correct this problem and further tests were run. Final data processing indicated erratic patterns of strain on the burner liner sample.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, C.L.
2002-08-14
Under the Science and Technology Implementing Arrangement for Cooperation on Radioactive and Mixed Waste Management (JCCRM), the Department of Energy (DOE) is helping to transfer waste treatment technology to international atomic energy commissions. In 1996, as part of the JCCRM, DOE established a collaborative research agreement with Argentina's Comision Nacional de Energia Atomica (CNEA). A primary mission of the CNEA is to direct waste management activities for Argentina's nuclear industry.
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
The Machine Tool Advanced Skills Technology (MAST) consortium was formed to address the shortage of skilled workers for the machine tools and metals-related industries. Featuring six of the nation's leading advanced technology centers, the MAST consortium developed, tested, and disseminated industry-specific skill standards and model curricula for…
Phase 1 Development Testing of the Advanced Manufacturing Demonstrator Engine
NASA Technical Reports Server (NTRS)
Case, Nicholas L.; Eddleman, David E.; Calvert, Marty R.; Bullard, David B.; Martin, Michael A.; Wall, Thomas R.
2016-01-01
The Additive Manufacturing Development Breadboard Engine (BBE) is a pressure-fed liquid oxygen/pump-fed liquid hydrogen (LOX/LH2) expander cycle engine that was built and operated by NASA at Marshall Space Flight Center's East Test Area. The breadboard engine was conceived as a technology demonstrator for the additive manufacturing technologies for an advanced upper stage prototype engine. The components tested on the breadboard engine included an ablative chamber, injector, main fuel valve, turbine bypass valve, a main oxidizer valve, a mixer and the fuel turbopump. All parts minus the ablative chamber were additively manufactured. The BBE was successfully hot fire tested seven times. Data collected from the test series will be used for follow on demonstration tests with a liquid oxygen turbopump and a regeneratively cooled chamber and nozzle.
2017-02-01
enable high scalability and reconfigurability for inter-CPU/Memory communications with an increased number of communication channels in frequency ...interconnect technology (MRFI) to enable high scalability and re-configurability for inter-CPU/Memory communications with an increased number of communication ...testing in the University of California, Los Angeles (UCLA) Center for High Frequency Electronics, and Dr. Afshin Momtaz at Broadcom Corporation for
The verification test of the SeparmaticTM DE Pressure Type Filter System Model 12P-2 was conducted at the UNH Water Treatment Technology Assistance Center (WTTAC) in Durham, New Hampshire. The source water was finished water from the Arthur Rollins Treatment Plant that was pretr...
13. Photographic copy of site plan displaying Test Stand 'C' ...
13. Photographic copy of site plan displaying Test Stand 'C' (4217/E-18), Test Stand 'D' (4223/E-24), and Control and Recording Center (4221/E-22) with ancillary structures, and connecting roads and services. California Institute of Technology, Jet Propulsion Laboratory, Facilities Engineering and Construction Office 'Repairs to Test Stand 'C,' Edwards Test Station, Legend & Site Plan M-1,' drawing no. ESP/115, August 14, 1987. - Jet Propulsion Laboratory Edwards Facility, Test Stand C, Edwards Air Force Base, Boron, Kern County, CA
[Prospect of the Advanced Life Support Program Breadboard Project at Kennedy Space Center in USA].
Guo, S S; Ai, W D
2001-04-01
The Breadboard Project at Kennedy Space Center in NASA of USA was focused on the development of the bioregenerative life support components, crop plants for water, air, and food production and bioreactors for recycling of wastes. The keystone of the Breadboard Project was the Biomass Production Chamber (BPC), which was supported by 15 environmentally controlled chambers and several laboratory facilities holding a total area of 2150 m2. In supporting the Advanced Life Support Program (ALS Program), the Project utilizes these facilities for large-scale testing of components and development of required technologies for human-rated test-beds at Johnson Space Center in NASA, in order to enable a Lunar and a Mars mission finally.
NASA's Spaceliner 100 Investment Area Technology Activities
NASA Technical Reports Server (NTRS)
Hueter, Uwe; Lyles, Garry M. (Technical Monitor)
2001-01-01
NASA's has established long term goals for access-to-space. The third generation launch systems are to be fully reusable and operational around 2025. The goals for the third generation launch system are to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop space transportation technologies. Within ASTP, under the Spaceliner100 Investment Area, third generation technologies are being pursued in the areas of propulsion, airframes, integrated vehicle health management (IVHM), launch systems, and operations and range. The ASTP program will mature these technologies through ground system testing. Flight testing where required, will be advocated on a case by case basis.
National Center for Nuclear Security - NCNS
None
2018-01-16
As the United States embarks on a new era of nuclear arms control, the tools for treaty verification must be accurate and reliable, and must work at stand-off distances. The National Center for Nuclear Security, or NCNS, at the Nevada National Security Site, is poised to become the proving ground for these technologies. The center is a unique test bed for non-proliferation and arms control treaty verification technologies. The NNSS is an ideal location for these kinds of activities because of its multiple environments; its cadre of experienced nuclear personnel, and the artifacts of atmospheric and underground nuclear weapons explosions. The NCNS will provide future treaty negotiators with solid data on verification and inspection regimes and a realistic environment in which future treaty verification specialists can be trained. Work on warhead monitoring at the NCNS will also support future arms reduction treaties.
NASA Glenn Research Center Solar Cell Experiment Onboard the International Space Station
NASA Technical Reports Server (NTRS)
Myers, Matthew G.; Wolford, David S.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies , William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; Mcnatt, Jeremiah S.;
2016-01-01
Accurate air mass zero (AM0) measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. The NASA Glenn Research Center (GRC) has flown an experiment designed to measure the electrical performance of several solar cells onboard NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Missions (RRM) Task Board 4 (TB4) on the exterior of the International Space Station (ISS). Four industry and government partners provided advanced PV devices for measurement and orbital environment testing. The experiment was positioned on the exterior of the station for approximately eight months, and was completely self-contained, providing its own power and internal data storage. Several new cell technologies including four-junction (4J) Inverted Metamorphic Multi-junction (IMM) cells were evaluated and the results will be compared to ground-based measurement methods.
Using the NIATx Model to Implement User-Centered Design of Technology for Older Adults.
Gustafson, David H; Maus, Adam; Judkins, Julianne; Dinauer, Susan; Isham, Andrew; Johnson, Roberta; Landucci, Gina; Atwood, Amy K
2016-01-14
What models can effectively guide the creation of eHealth and mHealth technologies? This paper describes the use of the NIATx model as a framework for the user-centered design of a new technology for older adults. The NIATx model is a simple framework of process improvement based on the following principles derived from an analysis of decades of research from various industries about why some projects fail and others succeed: (1) Understand and involve the customer; (2) fix key problems; (3) pick an influential change leader; (4) get ideas from outside the field; (5) use rapid-cycle testing. This paper describes the use of these principles in technology development, the strengths and challenges of using this approach in this context, and lessons learned from the process. Overall, the NIATx model enabled us to produce a user-focused technology that the anecdotal evidence available so far suggests is engaging and useful to older adults. The first and fourth principles were especially important in developing the technology; the fourth proved the most challenging to use.
Using the NIATx Model to Implement User-Centered Design of Technology for Older Adults
Maus, Adam; Judkins, Julianne; Dinauer, Susan; Isham, Andrew; Johnson, Roberta; Landucci, Gina; Atwood, Amy K
2016-01-01
What models can effectively guide the creation of eHealth and mHealth technologies? This paper describes the use of the NIATx model as a framework for the user-centered design of a new technology for older adults. The NIATx model is a simple framework of process improvement based on the following principles derived from an analysis of decades of research from various industries about why some projects fail and others succeed: (1) Understand and involve the customer; (2) fix key problems; (3) pick an influential change leader; (4) get ideas from outside the field; (5) use rapid-cycle testing. This paper describes the use of these principles in technology development, the strengths and challenges of using this approach in this context, and lessons learned from the process. Overall, the NIATx model enabled us to produce a user-focused technology that the anecdotal evidence available so far suggests is engaging and useful to older adults. The first and fourth principles were especially important in developing the technology; the fourth proved the most challenging to use. PMID:27025985
Structural Analysis and Test Comparison of a 20-Meter Inflation-Deployed Solar Sail
NASA Technical Reports Server (NTRS)
Sleight, David W.; Mann, Troy; Lichodziejewski, David; Derbes, Billy
2006-01-01
Under the direction of the NASA In-Space Propulsion Technology Office, the team of L Garde, NASA Jet Propulsion Laboratory, Ball Aerospace, and NASA Langley Research Center has been developing a scalable solar sail configuration to address NASA s future space propulsion needs. Prior to a flight experiment of a full-scale solar sail, a comprehensive test program was implemented to advance the technology readiness level of the solar sail design. These tests consisted of solar sail component, subsystem, and sub-scale system ground tests that simulated the aspects of the space environment such as vacuum and thermal conditions. In July 2005, a 20-m four-quadrant solar sail system test article was tested in the NASA Glenn Research Center s Space Power Facility to measure its static and dynamic structural responses. Key to the maturation of solar sail technology is the development of validated finite element analysis (FEA) models that can be used for design and analysis of solar sails. A major objective of the program was to utilize the test data to validate the FEA models simulating the solar sail ground tests. The FEA software, ABAQUS, was used to perform the structural analyses to simulate the ground tests performed on the 20-m solar sail test article. This paper presents the details of the FEA modeling, the structural analyses simulating the ground tests, and a comparison of the pretest and post-test analysis predictions with the ground test results for the 20-m solar sail system test article. The structural responses that are compared in the paper include load-deflection curves and natural frequencies for the beam structural assembly and static shape, natural frequencies, and mode shapes for the solar sail membrane. The analysis predictions were in reasonable agreement with the test data. Factors that precluded better correlation of the analyses and the tests were unmeasured initial conditions in the test set-up.
ERIC Educational Resources Information Center
West, Alfred W.
This is the first in a series of documents developed by the National Training and Operational Technology Center describing operational control procedures for the activated sludge process used in wastewater treatment. Part I of this document deals with physical observations which should be performed during each routine control test. Part II…
ERIC Educational Resources Information Center
Berney, Mary F.
Plans for the field-testing and implementation of the Accreditation Plus Model (APM) for evaluation of teacher preparation programs are described. Field-testing is taking place in the Center for Teacher Education Evaluation at Tennessee Technological University (Cookeville). The APM is based on the professional judgment approach to program…
NASA Technical Reports Server (NTRS)
Thieme, Lanny G.; Schreiber, Jeffrey G.
2005-01-01
A high-efficiency, 110-We (watts electric) Stirling Radioisotope Generator (SRG110) for possible use on future NASA Space Science missions is being developed by the Department of Energy, Lockheed Martin, Stirling Technology Company (STC), and NASA Glenn Research Center (GRC). Potential mission use includes providing spacecraft onboard electric power for deep space missions and power for unmanned Mars rovers. GRC is conducting an in-house supporting technology project to assist in SRG110 development. One-, three-, and six-month heater head structural benchmark tests have been completed in support of a heater head life assessment. Testing is underway to evaluate the key epoxy bond of the permanent magnets to the linear alternator stator lamination stack. GRC has completed over 10,000 hours of extended duration testing of the Stirling convertors for the SRG110, and a three-year test of two Stirling convertors in a thermal vacuum environment will be starting shortly. GRC is also developing advanced technology for Stirling convertors, aimed at substantially improving the specific power and efficiency of the convertor and the overall generator. Sunpower, Inc. has begun the development of a lightweight Stirling convertor, under a NASA Research Announcement (NRA) award, that has the potential to double the system specific power to about 8 We/kg. GRC has performed random vibration testing of a lower-power version of this convertor to evaluate robustness for surviving launch vibrations. STC has also completed the initial design of a lightweight convertor. Status of the development of a multi-dimensional computational fluid dynamics code and high-temperature materials work on advanced superalloys, refractory metal alloys, and ceramics are also discussed.
1967-01-01
This photograph shows a test firing of the the Saturn V S-II (second) stage at the Mississippi Test Facility's (MTF) S-II test stand. When the Saturn V booster stage (S-IC) burns out and drops away, power for the Saturn will be provided by the 82-foot-long and 33-foot-diameter S-II stage. Developed by the Space Division of North American Aviation under the direction of the Marshall Space Flight Center, the stage utilized five J-2 engines, each producing 200,000 pounds of thrust. The engines used liquid oxygen and liquid hydrogen as propellants. Static test of ground test versions of the S-II stage were conducted at North American Aviation's Santa Susana, California test site. All flight stages were tested at the Mississippi Test Facility, Bay St. Louis, Mississippi. MTF was renamed to the National Space Technology Laboratory (NSTL) in 1974 and later to the Sternis Space Center in May 1988.
1967-01-01
This photograph shows a test firing of the the Saturn V S-II (second) stage at the Mississippi Test Facility's (MTF) S-II test stand. When the Saturn V booster stage (S-IC) burns out and drops away, power for the Saturn will be provided by the 82-foot-long and 33-foot-diameter S-II stage. Developed by the Space Division of North American Aviation under the direction of the Marshall Space Flight Center, the stage utilized five J-2 engines, each producing 200,000 pounds of thrust. The engine used liquid oxygen and liquid hydrogen as its propellants. Static test of ground test versions of the S-II stage were conducted at North American Aviation's Santa Susana, California test site. All flight stages were tested at the Mississippi Test Facility, Bay St. Louis, Mississippi. The MTF was renamed to the National Space Technology Laboratory (NSTL) in 1974 and later to the Sternis Space Center (SSC) in May 1988.
NASA Technical Reports Server (NTRS)
Oriti, Salvatore M.; Schifer, Nicholas A.
2010-01-01
In support of the Advanced Stirling Radioisotope Generator (ASRG) project and other potential applications, NASA Glenn Research Center (GRC) has initiated convertor technology development efforts in the areas of acoustic emission, electromagnetic field mitigation, thermoacoustic Stirling conversion, and multiple-cylinder alpha arrangements of Stirling machines. The acoustic emission measurement effort was developed as a health monitoring metric for several Stirling convertors undergoing life testing. While accelerometers have been used in the past to monitor dynamic signature, the acoustic sensors were chosen to monitor cycle events, such gas bearing operation. Several electromagnetic interference (EMI) experiments were performed on a pair of Advanced Stirling Convertors (ASC). These tests demonstrated that a simple bucking coil was capable of reducing the alternating current (ac) magnetic field below the ASRG system specification. The thermoacoustic Stirling concept eliminates the displacer typically found in Stirling machines by making use of the pressure oscillations of a traveling acoustic wave. A 100 W-class thermoacoustic Stirling prototype manufactured by Northrop Grumman Space and Technology was received and tested. Another thermoacoustic prototype designed and fabricated by Sunpower, Inc., will be tested in the near future. A four cylinder free piston alpha prototype convertor was received from Sunpower, Inc. and has been tested at GRC. This hardware was used as a proof of concept to validate thermodynamic models and demonstrate stable operation of multiple-cylinder free-piston Stirling conversion. This paper will discuss each of these activities and the results they produced.
The DFKI Competence Center for Ambient Assisted Living
NASA Astrophysics Data System (ADS)
Frey, Jochen; Stahl, Christoph; Röfer, Thomas; Krieg-Brückner, Bernd; Alexandersson, Jan
The DFKI Competence Center for Ambient Assisted Living (CCAAL) is a cross-project and cross-department virtual organization within the German Research Center for Artificial Intelligence coordinating and conducting research and development in the area of Ambient Assisted Living (AAL). Our demonstrators range from multimodal speech dialog systems to fully instrumented environments allowing the development of intelligent assistant systems, for instance an autonomous wheelchair, or the recognition and processing of everyday activities in a smart home. These innovative technologies are then tested, evaluated and demonstrated in DFKI's living labs.
ETV VR/VS Magee Scientific Model AE33 Aethalometer
The objective of the ETV AMS Center is to verify the performance characteristics of environmental monitoring technologies for air, water, and soil. This report provides results for the verification testing of the Magee Scientific Model AE33 Aethalometer.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF... U.S. Department of Labor, Mine Safety and Health Administration, Approval and Certification Center, 765 Technology Drive, Triadelphia, WV 26059, to discuss with qualified MSHA personnel proposed mobile...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF... U.S. Department of Labor, Mine Safety and Health Administration, Approval and Certification Center, 765 Technology Drive, Triadelphia, WV 26059, to discuss with qualified MSHA personnel proposed mobile...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF... U.S. Department of Labor, Mine Safety and Health Administration, Approval and Certification Center, 765 Technology Drive, Triadelphia, WV 26059, to discuss with qualified MSHA personnel proposed mobile...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF... U.S. Department of Labor, Mine Safety and Health Administration, Approval and Certification Center, 765 Technology Drive, Triadelphia, WV 26059, to discuss with qualified MSHA personnel proposed mobile...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF... U.S. Department of Labor, Mine Safety and Health Administration, Approval and Certification Center, 765 Technology Drive, Triadelphia, WV 26059, to discuss with qualified MSHA personnel proposed mobile...
UIUC concrete tie and fastener field testing at TTC.
DOT National Transportation Integrated Search
2014-07-01
In July 2012, the University of Illinois at Urbana-Champaign (UIUC) began an extensive : experimental program at the Transportation : Technology Center (TTC) in Pueblo, CO. The : field experimentation program was part of a : larger research program f...
Slab Track at Facility for Accelerated Service Testing: Performance and Serviceability
DOT National Transportation Integrated Search
2018-02-01
The Transportation Technology Center, Inc., with funding by the Portland Cement Association and the Federal Railroad Administration, documented the available records associated with the performance of the concrete slab track section in the High Tonna...
PROTOCOL FOR LABORATORY TESTING OF CRUDE-OIL BIOREMEDIATION PRODUCTS IN FRESHWATER CONDITIONS
In 1993, the Environmental Protection Agency, National Risk Management Research Laboratory (EPA, NRMRL), with the National Environmental Technology Application Center (NETAC), developed a protocol for evaluation of bioremediation products in marine environments. The marine proto...
Center/TRACON Automation System: Development and Evaluation in the Field
DOT National Transportation Integrated Search
1993-10-01
Technological advances are changing the way that advanced air traffic control : automation should be developed and assessed. Current standards and practices of : system development place field testing at the end of the development process. : While su...
Bridge Approach Remedies Implemented at Western Mega Site
DOT National Transportation Integrated Search
2017-09-01
As part of the heavy axle load (HAL) revenue service mega site testing program, the Transportation Technology Center, Inc. (TTCI) has worked closely with the Union Pacific Railroad (UP) to address bridge approach problems under HAL operations. The te...
Internship at NASA Kennedy Space Center's Cryogenic Test laboratory
NASA Technical Reports Server (NTRS)
Holland, Katherine
2013-01-01
NASA's Kennedy Space Center (KSC) is known for hosting all of the United States manned rocket launches as well as many unmanned launches at low inclinations. Even though the Space Shuttle recently retired, they are continuing to support unmanned launches and modifying manned launch facilities. Before a rocket can be launched, it has to go through months of preparation, called processing. Pieces of a rocket and its payload may come in from anywhere in the nation or even the world. The facilities all around the center help integrate the rocket and prepare it for launch. As NASA prepares for the Space Launch System, a rocket designed to take astronauts beyond Low Earth Orbit throughout the solar system, technology development is crucial for enhancing launch capabilities at the KSC. The Cryogenics Test Laboratory at Kennedy Space Center greatly contributes to cryogenic research and technology development. The engineers and technicians that work there come up with new ways to efficiently store and transfer liquid cryogens. NASA has a great need for this research and technology development as it deals with cryogenic liquid hydrogen and liquid oxygen for rocket fuel, as well as long term space flight applications. Additionally, in this new era of space exploration, the Cryogenics Test Laboratory works with the commercial sector. One technology development project is the Liquid Hydrogen (LH2) Ground Operations Demonstration Unit (GODU). LH2 GODU intends to demonstrate increased efficiency in storing and transferring liquid hydrogen during processing, loading, launch and spaceflight of a spacecraft. During the Shuttle Program, only 55% of hydrogen purchased was used by the Space Shuttle Main Engines. GODU's goal is to demonstrate that this percentage can be increased to 75%. Figure 2 shows the GODU layout when I concluded my internship. The site will include a 33,000 gallon hydrogen tank (shown in cyan) with a heat exchanger inside the hydrogen tank attached to a refrigerator capable of removing 850 Watts at 20 Kelvin (shown in green). The refrigerator and most of its supporting equipment will be kept in a standard shipping container (shown in pink). Currently, GODU is in the fabrication process and some of the large components have already been purchased.
NASA Technical Reports Server (NTRS)
McKinney, John; Wu, Chivey
1998-01-01
The NASA Dryden Flight Research Center (DFRC) Partnership Awards Grant to California State University, Los Angeles (CSULA) has two primary goals that help to achieve NASA objectives. The overall objectives of the NASA Partnership Awards are to create opportunities for joint University NASA/Government sponsored research and related activities. One of the goals of the grant is to have university faculty researchers participate and contribute to the development of NASA technology that supports NASA goals for research and development (R&D) in Aeronautics and Astronautics. The other goal is technology transfer in the other direction, where NASA developed technology is made available to the general public and more specifically, targeted to industries that can profit from utilization of government developed technology. This years NASA Dryden Partnership Awards grant to CSULA entitled, "Computer Simulation of Multi-Disciplinary Engineering Systems", has two major tasks that satisfy overall NASA objectives. The first task conducts basic and applied research that contributes to technology development at the Dryden Flight Research Center. The second part of the grant provides for dissemination of NASA developed technology, by using the teaching environment created in the CSULA classroom. The second task and how this is accomplished is the topic of this paper. The NASA STARS (Structural Analysis Routines) computer simulation program is used at the Dryden center to support flight testing of high-performance experimental aircraft and to conduct research and development of new and advanced Aerospace technology.
Fluid Flow Technology that Measures Up
NASA Technical Reports Server (NTRS)
2004-01-01
From 1994 to 1996, NASA s Marshall Space Flight Center conducted a Center Director's Discretionary Fund research effort to apply artificial intelligence technologies to the health management of plant equipment and space propulsion systems. Through this effort, NASA established a business relationship with Quality Monitoring and Control (QMC), of Kingwood, Texas, to provide hardware modeling and artificial intelligence tools. Very detailed and accurate Space Shuttle Main Engine (SSME) analysis and algorithms were jointly created, which identified several missing, critical instrumentation needs for adequately evaluating the engine health status. One of the missing instruments was a liquid oxygen (LOX) flow measurement. This instrument was missing since the original SSME included a LOX turbine flow meter that failed during a ground test, resulting in considerable damage for NASA. New balanced flow meter technology addresses this need with robust, safe, and accurate flow metering hardware.
NASA Technical Reports Server (NTRS)
Saiyed, Naseem H.
2000-01-01
Typical installed separate-flow exhaust nozzle system. The jet noise from modern turbofan engines is a major contributor to the overall noise from commercial aircraft. Many of these engines use separate nozzles for exhausting core and fan streams. As a part of NASA s Advanced Subsonic Technology (AST) program, the NASA Glenn Research Center at Lewis Field led an experimental investigation using model-scale nozzles in Glenn s Aero-Acoustic Propulsion Laboratory. The goal of the investigation was to develop technology for reducing the jet noise by 3 EPNdB. Teams of engineers from Glenn, the NASA Langley Research Center, Pratt & Whitney, United Technologies Research Corporation, the Boeing Company, GE Aircraft Engines, Allison Engine Company, and Aero Systems Engineering contributed to the planning and implementation of the test.
Human Exploration Missions - Maturing Technologies to Sustain Crews
NASA Technical Reports Server (NTRS)
Mukai, Chiaki; Koch, Bernhard; Reese, Terrence G.
2012-01-01
Human exploration missions beyond low earth orbit will be long duration with abort scenarios of days to months. Providing crews with the essentials of life such as clean air and potable water means recycling human metabolic wastes back to useful products. Individual technologies are under development for such things as CO2 scrubbing, recovery of O2 from CO2, turning waste water into potable water, and so on. But in order to fully evaluate and mature technologies fully they must be tested in a relevant, high-functionality environment; a systems environment where technologies are challenged with real human metabolic wastes. It is for this purpose that an integrated systems ground testing capability at the Johnson Space Center is being readied for testing. The relevant environment will include deep space habitat human accommodations, sealed atmosphere of 8 psi total pressure and 32% oxygen concentration, life support systems (food, air, water), communications, crew accommodations, medical, EVA, tools, etc. Testing periods will approximate those of the expected missions (such as a near Earth asteroid, Earth ]Moon L2 or L1, the moon, and Mars). This type of integrated testing is needed not only for research and technology development but later during the mission design, development, test, and evaluation phases of preparing for the mission.
Verification testing of the US Filter 3M10C membrane system was conducted over a 44-day test period at the Aqua 2000 Research Center in Chula Vista, California. The test period extended from July 24, 2002 to September 5, 2002. The source water was a blend of Colorado River and ...
Extracting Unidimensional Chains from Multidimensional Datasets: A Graph Theory Approach.
1980-02-01
Educational Technology, 1972, 13, 56-60. Cliff, N. Complete orders from incomplete data: Interactive ordering and tailored testing , Psychological Bulletin...Research Center Department or Psychology 1 Dr. Frederick M. Lord University of Leyden University of Illinois Educational Testing Service Boerhaavelaan...Forguson I Dr. Earl Hunt Department of Psychology The hnericin College Testing Program Dept. of Psychology University o f Houston P.O. Box 168 University of
Modal Survey Test of the SOTV 2X3 Meter Off-Axis Inflatable Concentrator
NASA Technical Reports Server (NTRS)
Engberg, Robert C.; Lassiter, John O.; McGee, Jennie K.
2000-01-01
NASA's Marshall Space Flight Center has had several projects involving inflatable space structures. Projects in solar thermal propulsion have had the most involvement, primarily inflatable concentrators. A flight project called Shooting Star Experiment initiated the first detailed design, analysis and testing effort involving an inflatable concentrator that supported a Fresnel lens. The lens was to concentrate the sun's rays to provide an extremely large heat transfer for an experimental solar propulsion engine. Since the conclusion of this experiment, research and development activities for solar propulsion at Marshall Space Flight Center have continued both in the solar propulsion engine technology as well as inflatable space structures. Experience gained in conducting modal survey tests of inflatable structures for the Shooting Star Experiment has been used by dynamic test engineers at Marshall Space Flight Center to conduct a modal survey test on a Solar Orbital Transfer Vehicle (SOTV) off-axis inflatable concentrator. This paper describes how both previously learned test methods and new test methods that address the unique test requirements for inflatable structures were used. Effects of the inherent nonlinear response of the inflatable concentrator on test methods and test results are noted as well. Nine analytical mode shapes were successfully correlated to test mode shapes. The paper concludes with several "lessons learned" applicable to future dynamics testing and shows how Marshall Space Flight Center has utilized traditional and new methods for modal survey testing of inflatable space structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huskey, A.; Bowen, A.; Jager, D.
This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers to wind energy expansion by providing independent testing results for small wind turbines (SWT). In total, five turbines were tested at the National Wind Technology Center (NWTC) as a part of this project. Safety and function testing is one of up to five tests performed on the turbines, including power performance, duration, noise, and power-quality tests. NWTC testing results provide manufacturers with reports that may be used to meet part of small wind turbine certificationmore » requirements. The test equipment includes a Mariah Windspire wind turbine mounted on a monopole tower. L&E Machine manufactured the turbine in the United States. The inverter was manufactured separately by Technology Driven Products in the United States. The system was installed by the NWTC site operations group with guidance and assistance from Mariah Power.« less