Outdoor module testing and comparison of photovoltaic technologies
NASA Astrophysics Data System (ADS)
Fabick, L. B.; Rifai, R.; Mitchell, K.; Woolston, T.; Canale, J.
A comparison of outdoor test results for several module technologies is presented. The technologies include thin-film silicon:hydrogen alloys (TFS), TFS modules with semitransparent conductor back contacts, and CuInSe2 module prototypes. A method for calculating open-circuit voltage and fill-factor temperature coefficients is proposed. The method relies on the acquisition of large statistical data samples to average effects due to varying insolation level.
Analyzing Real-World Light Duty Vehicle Efficiency Benefits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonder, Jeffrey; Wood, Eric; Chaney, Larry
Off-cycle technologies represent an important pathway to achieve real-world fuel savings, through which OEMs can potentially receive credit toward CAFE compliance. DOE national labs such as NREL are well positioned to provide objective input on these technologies using large, national data sets in conjunction with OEM- and technology-specific testing. This project demonstrates an approach that combines vehicle testing (dynamometer and on-road) with powertrain modeling and simulation over large, representative datasets to quantify real-world fuel economy. The approach can be applied to specific off-cycle technologies (engine encapsulation, start/stop, connected vehicle, etc.) in A/B comparisons to support calculation of realistic real-world impacts.more » Future work will focus on testing-based A/B technology comparisons that demonstrate the significance of this approach.« less
NASA Technical Reports Server (NTRS)
Callahan, Michael R.; Patel, Vipul; Pickering, Karen D.
2009-01-01
In 2009, the Cascade Distillation Subsystem (CDS) wastewater processor (Honeywell International, Torrance, CA) was assessed in the National Aeronautics and Space Administration (NASA) Exploration Life Support (ELS) distillation comparison test. The purpose of the test was to collect data to support down-selection and development of a primary distillation technology for application in a lunar outpost water recovery system. The CDS portion of the comparison test was conducted between May 6 and August 19, 2009. The system was challenged with two pretreated test solutions, each intended to represent a feasible wastewater generated in a surface habitat. The 30-day equivalent wastewater loading volume for a crew of four was processed for each wastewater solution. Test Solution 1 consisted of a mixed stream containing human-generated urine and humidity condensate. Test Solution 2 contained the addition of human-generated hygiene wastewater to the solution 1 waste stream components. Approximately 1500 kg of total wastewater was processed through the CDS during testing. Respective recoveries per solution were 93.4 +/- 0.7 and 90.3 +/- 0.5%. The average specific energy of the system was calculated to be less than 130 W-hr/kg. The following paper provides detailed information and data on the performance of the CDS as challenged per the ELS distillation comparison test.
NASA Technical Reports Server (NTRS)
Przekop, Adam; Jegley, Dawn C.; Rouse, Marshall; Lovejoy, Andrew E.
2016-01-01
This report documents the comparison of test measurements and predictive finite element analysis results for a hybrid wing body center section test article. The testing and analysis efforts were part of the Airframe Technology subproject within the NASA Environmentally Responsible Aviation project. Test results include full field displacement measurements obtained from digital image correlation systems and discrete strain measurements obtained using both unidirectional and rosette resistive gauges. Most significant results are presented for the critical five load cases exercised during the test. Final test to failure after inflicting severe damage to the test article is also documented. Overall, good comparison between predicted and actual behavior of the test article is found.
Engineering analysis of shortfall for new technologies. Analysis memorandum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-03-11
The engineering principles that govern the mpg performance of alternative technologies on the EPA test procedure and under in-use conditions are examined. The results can be used to interpret the shortfall of alternative technologies derived from statistical analyses. The analysis examines each of the four technologies in comparison to the conventional technology counterpart. Manual transmissions are compared to automatics, fuel injected S.I. engines to carburetted S.I. engines, front-wheel drive vehicles to rear-wheel drive vehicles and diesel engines to carburetted S.I. engines. The changes in shortfall of the four technologies in comparison to conventional technologies are explained through differences in responsesmore » to the factors.« less
NASA Technical Reports Server (NTRS)
Callahan, Michael R.; Patel, Vipul; Pickering, Karen D.
2010-01-01
In 2009, the Cascade Distillation Subsystem (CDS) wastewater processor (Honeywell International, Torrance, California) was assessed in the National Aeronautics and Space Administration (NASA) Exploration Life Support (ELS) distillation comparison test. The purpose of the test was to collect data to support down-selection and development of a primary distillation technology for application in a lunar outpost water recovery system. The CDS portion of the comparison test was conducted between May 6 and August 19, 2009. The system was challenged with two pretreated test solutions, each intended to represent a feasible wastewater generated in a surface habitat. The 30-day equivalent wastewater loading volume for a crew of four was intended to be processed for each wastewater solution. Test Solution 1 consisted of a mixed stream containing human-generated urine and humidity condensate. Test Solution 2 contained the addition of human-generated hygiene wastewater to the solution 1 waste stream components. Approximately 1500 kg of total wastewater was processed through the CDS during testing. Respective recoveries per solution were 93.4 +/- 0.7 and 90.3 +/- 0.5 percent. The average specific energy of the system during testing was calculated to be less than 120 W-hr/kg. The following paper provides detailed information and data on the performance of the CDS as challenged per the ELS distillation comparison test.
The effect of cushion-ram pulsation on hot stamping
NASA Astrophysics Data System (ADS)
Landgrebe, Dirk; Rautenstrauch, Anja; Kunke, Andreas; Polster, Stefan; Kriechenbauer, Sebastian; Mauermann, Reinhard
2016-10-01
Hot stamping is an important technology for manufacturing high-strength components. This technology offers the possibility to achieve significant weight reductions. In this study, cushion-ram pulsation (CRP), a new technology for hot stamping on servo-screw presses, was investigated and applied for hot stamping. Compared to a conventional process, the tests yielded a significantly higher drawing depth. In this paper, the CRP technology and the first test results with hot stamping were described in comparison to the conventional process.
Comparison of radar and infrared distance sensors for intelligent cruise control systems
NASA Astrophysics Data System (ADS)
Hoess, Alfred; Hosp, Werner; Rauner, Hans
1995-09-01
In this paper, infrared distance sensors are compared regarding technology, environmental, and practical aspects. Different methods for obtaining lateral resolution and covering the required detection range are presented for both sensor technologies. Possible positions for sensor installation at the test vehicle have been tested. Experimental results regarding cleaning devices and other environmental problems are presented. Finally, future aspects, e.g. speed over ground measurements or technological steps are discussed.
Detailed Modeling of Distillation Technologies for Closed-Loop Water Recovery Systems
NASA Technical Reports Server (NTRS)
Allada, Rama Kumar; Lange, Kevin E.; Anderson, Molly S.
2011-01-01
Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA?s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents efforts to develop chemical process simulations for three technologies: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system and the Wiped-Film Rotating Disk (WFRD) using the Aspen Custom Modeler and Aspen Plus process simulation tools. The paper discusses system design, modeling details, and modeling results for each technology and presents some comparisons between the model results and recent test data. Following these initial comparisons, some general conclusions and forward work are discussed.
ERIC Educational Resources Information Center
Berber, Aslihan; García Laborda, Jesús
2015-01-01
There are different opinions about using technology in the assessment field of education regarding computer-assisted assessments. People have some concerns such as its application, reliability and so on. It seems that those concerns may decrease with the developing technology in the following years since computer-based testing programs are…
Methodical aspects of text testing in a driving simulator.
Sundin, A; Patten, C J D; Bergmark, M; Hedberg, A; Iraeus, I-M; Pettersson, I
2012-01-01
A test with 30 test persons was conducted in a driving simulator. The test was a concept exploration and comparison of existing user interaction technologies for text message handling with focus on traffic safety and experience (technology familiarity and learning effects). Focus was put on methodical aspects how to measure and how to analyze the data. Results show difficulties with the eye tracking system (calibration etc.) per se, and also include the subsequent raw data preparation. The physical setup in the car where found important for the test completion.
Researchers at USEPA are testing and evaluating two commercial electrochemical technologies for the purification of rinse water and the recovery of copper and nickel from a variety of electroplating processes. One of the investigated technologies is based on the application of hi...
NASA Technical Reports Server (NTRS)
Berg, M. D.; Kim, H. S.; Friendlich, M. A.; Perez, C. E.; Seidlick, C. M.; LaBel, K. A.
2011-01-01
We present SEU test and analysis of the Microsemi ProASIC3 FPGA. SEU Probability models are incorporated for device evaluation. Included is a comparison to the RTAXS FPGA illustrating the effectiveness of the overall testing methodology.
Research of the application of the Low Power Wide Area Network in power grid
NASA Astrophysics Data System (ADS)
Wang, Hao; Sui, Hong; Li, Jia; Yao, Jian
2018-03-01
Low Power Wide Area Network (LPWAN) technologies developed rapidly in recent years, but these technologies have not make large-scale applications in different application scenarios of power grid. LoRa is a mainstream LPWAN technology. This paper makes a comparison test of the signal coverage of LoRa and other traditional wireless communication technologies in typical signal environment of power grid. Based on the test results, this paper gives an application suggestion of LoRa in power grid services, which can guide the planning and construction of the LPWAN in power grid.
Dynamic Modeling of Process Technologies for Closed-Loop Water Recovery Systems
NASA Technical Reports Server (NTRS)
Allada, Rama Kumar; Lange, Kevin; Anderson, Molly
2011-01-01
Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents dynamic simulations of chemical process for primary processor technologies including: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system, the Wiped-Film Rotating Disk (WFRD), and post-distillation water polishing processes such as the Volatiles Removal Assembly (VRA) that were developed using the Aspen Custom Modeler and Aspen Plus process simulation tools. The results expand upon previous work for water recovery technology models and emphasize dynamic process modeling and results. The paper discusses system design, modeling details, and model results for each technology and presents some comparisons between the model results and available test data. Following these initial comparisons, some general conclusions and forward work are discussed.
Development and Current Status of Skull-Image Superimposition - Methodology and Instrumentation.
Lan, Y
1992-12-01
This article presents a review of the literature and an evaluation on the development and application of skull-image superimposition technology - both instrumentation and methodology - contributed by a number of scholars since 1935. Along with a comparison of the methodologies involved in the two superimposition techniques - photographic and video - the author characterized the techniques in action and the recent advances in computer image superimposition processing technology. The major disadvantage of conventional approaches is its relying on subjective interpretation. Through painstaking comparison and analysis, computer image processing technology can make more conclusive identifications by direct testing and evaluating the various programmed indices. Copyright © 1992 Central Police University.
ERIC Educational Resources Information Center
Kim, Jiseon
2010-01-01
Classification testing has been widely used to make categorical decisions by determining whether an examinee has a certain degree of ability required by established standards. As computer technologies have developed, classification testing has become more computerized. Several approaches have been proposed and investigated in the context of…
ERIC Educational Resources Information Center
Ennis, Leslie Sturdivant; Gambrell, Elizabeth Anne
2010-01-01
The main objective of the study was to compare the utilization of weblog and podcast technology by undergraduate university faculty and Millennial college students. The study was conducted to test the hypothesis, formed from existing literature, that there might be a difference in the utilization of weblog and podcast technology between faculty…
1989-01-01
great; a correlation of r = -.33 for the overall sample versus r = -.48 for the high performance group. Thus, even though the moderator effect of...studies, even without the performance moderator, is a comparison of equals. 125 The inability to test the moderating effect of organization performance ...structure research. rhe absence of performance data in studies of technology and structure makes it impossible to test the moderating effect of performance
NASA Technical Reports Server (NTRS)
Lucy, M. H.; Buehrle, R. D.; Woolley, J. P.
1996-01-01
Functional shock, safety, overall system costs, and emergence of new technologies, have raised concerns regarding continued use of pyrotechnics on spacecraft. NASA Headquarters-Office of Chief Engineer requested Langley Research Center (LaRC) study pyrotechnic alternatives using non-explosive actuators (NEA's), and LARC participated with Lockheed Martin Missile and Space Co. (LMMSC)-Sunnyvale, CA in objectively evaluating applicability of some NEA mechanisms to reduce small spacecraft and booster separation event shock. Comparative tests were conducted on a structural simulator using five different separation nut mechanisms, consisting of three pyrotechnics from OEA-Aerospace and Hi-Shear Technology and two NEA's from G&H Technology and Lockheed Martin Astronautics (LMA)-Denver, CO. Multiple actuations were performed with preloads up to 7000 pounds, 7000 being the comparison standard. All devices except LMA's NEA rotary flywheel-nut concept were available units with no added provisions to attenuate shock. Accelerometer measurements were recorded, reviewed, processed into Shock Response Spectra (SRS), and comparisons performed. For the standard preload, pyrotechnics produced the most severe and the G&H NEA the least severe functional shock levels. Comparing all results, the LMA concept produced the lowest levels, with preload limited to approximately 4200 pounds. Testing this concept over a range of 3000 to 4200 pounds indicated no effect of preload on shock response levels. This report presents data from these tests and the comparative results.
Dynamic Modeling of Process Technologies for Closed-Loop Water Recovery Systems
NASA Technical Reports Server (NTRS)
Allada, Rama Kumar; Lange, Kevin E.; Anderson, Molly S.
2012-01-01
Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents dynamic simulations of chemical process for primary processor technologies including: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system, the Wiped-Film Rotating Disk (WFRD), and post-distillation water polishing processes such as the Volatiles Removal Assembly (VRA). These dynamic models were developed using the Aspen Custom Modeler (Registered TradeMark) and Aspen Plus(Registered TradeMark) process simulation tools. The results expand upon previous work for water recovery technology models and emphasize dynamic process modeling and results. The paper discusses system design, modeling details, and model results for each technology and presents some comparisons between the model results and available test data. Following these initial comparisons, some general conclusions and forward work are discussed.
A Cultural Comparison of Trust in eLearning Artifacts
ERIC Educational Resources Information Center
Simmons, Lakisha L.; Simmons, Chris B.; Hayek, Mario; Parks, Rachida; Mbarika, Victor W.
2012-01-01
A significant body of literature focuses on learning mediated by technology (eLearning). We conceptually develop and empirically test a model of trust antecedents with online undergraduate students. Contributing to the student eLearning success literature, we posit that eLearning students require the support of technologies and trust in those…
ERIC Educational Resources Information Center
Peeraer, Jef; Van Petegem, Peter
2012-01-01
This research describes the development and validation of an instrument to measure integration of Information and Communication Technology (ICT) in education. After literature research on definitions of integration of ICT in education, a comparison is made between the classical test theory and the item response modeling approach for the…
Cascade Distillation Subsystem Development: Progress Toward a Distillation Comparison Test
NASA Technical Reports Server (NTRS)
Callahan, M. R.; Lubman, A.; Pickering, Karen D.
2009-01-01
Recovery of potable water from wastewater is essential for the success of long-duration manned missions to the Moon and Mars. Honeywell International and a team from NASA Johnson Space Center (JSC) are developing a wastewater processing subsystem that is based on centrifugal vacuum distillation. The wastewater processor, referred to as the Cascade Distillation Subsystem (CDS), utilizes an innovative and efficient multistage thermodynamic process to produce purified water. The rotary centrifugal design of the system also provides gas/liquid phase separation and liquid transport under microgravity conditions. A five-stage subsystem unit has been designed, built, delivered and integrated into the NASA JSC Advanced Water Recovery Systems Development Facility for performance testing. A major test objective of the project is to demonstrate the advancement of the CDS technology from the breadboard level to a subsystem level unit. An initial round of CDS performance testing was completed in fiscal year (FY) 2008. Based on FY08 testing, the system is now in development to support an Exploration Life Support (ELS) Project distillation comparison test expected to begin in early 2009. As part of the project objectives planned for FY09, the system will be reconfigured to support the ELS comparison test. The CDS will then be challenged with a series of human-gene-rated waste streams representative of those anticipated for a lunar outpost. This paper provides a description of the CDS technology, a status of the current project activities, and data on the system s performance to date.
ERIC Educational Resources Information Center
Johnson, Genevieve M.
2015-01-01
First-year university students (n = 185) completed an online questionnaire that allowed comparison of those who reported studying on-campus with those who reported studying fully-online. Independent sample t-tests compared the means of students in the two study modes on demographics, frequency of use of digital technology and metacognitive…
2017-05-01
a quality program for the standardization of test methods to support comprehensive characterization and comparison of the physical and functional...1 2. MATERIALS AND METHODS ...4 2.8 SPR Methodology
SFDT-1 Camera Pointing and Sun-Exposure Analysis and Flight Performance
NASA Technical Reports Server (NTRS)
White, Joseph; Dutta, Soumyo; Striepe, Scott
2015-01-01
The Supersonic Flight Dynamics Test (SFDT) vehicle was developed to advance and test technologies of NASA's Low Density Supersonic Decelerator (LDSD) Technology Demonstration Mission. The first flight test (SFDT-1) occurred on June 28, 2014. In order to optimize the usefulness of the camera data, analysis was performed to optimize parachute visibility in the camera field of view during deployment and inflation and to determine the probability of sun-exposure issues with the cameras given the vehicle heading and launch time. This paper documents the analysis, results and comparison with flight video of SFDT-1.
Energy Efficient Engine: Combustor component performance program
NASA Technical Reports Server (NTRS)
Dubiel, D. J.
1986-01-01
The results of the Combustor Component Performance analysis as developed under the Energy Efficient Engine (EEE) program are presented. This study was conducted to demonstrate the aerothermal and environmental goals established for the EEE program and to identify areas where refinements might be made to meet future combustor requirements. In this study, a full annular combustor test rig was used to establish emission levels and combustor performance for comparison with those indicated by the supporting technology program. In addition, a combustor sector test rig was employed to examine differences in emissions and liner temperatures obtained during the full annular performance and supporting technology tests.
Comparisons of NDT Methods to Inspect Cork and Cork filled Epoxy Bands
NASA Technical Reports Server (NTRS)
Lingbloom, Mike
2007-01-01
Sheet cork and cork filled epoxy provide external insulation for the Reusable Solid Rocket Motor (RSRM) on the Nation's Space Transportation System (STS). Interest in the reliability of the external insulation bonds has increased since the Columbia incident. A non-destructive test (NDT) method that will provide the best inspection for these bonds has been under evaluation. Electronic Shearography has been selected as the primary NDT method for inspection of these bond lines in the RSRM production flow. ATK Launch Systems Group has purchased an electronic shearography system that includes a vacuum chamber that is used for evaluation of test parts and custom vacuum windows for inspection of full-scale motors. Although the electronic shearography technology has been selected as the primary method for inspection of the external bonds, other technologies that exist continue to be investigated. The NASA/Marshall Space Flight Center (MSFC) NDT department has inspected several samples for comparison with electronic shearography with various inspections systems in their laboratory. The systems that were evaluated are X-ray backscatter, terahertz imaging, and microwave imaging. The samples tested have some programmed flaws as well as some flaws that occurred naturally during the sample making process. These samples provide sufficient flaw variation for the evaluation of the different inspection systems. This paper will describe and compare the basic functionality, test method and test results including dissection for each inspection technology.
Lopane, Giovanna; Mellone, Sabato; Corzani, Mattia; Chiari, Lorenzo; Cortelli, Pietro; Calandra-Buonaura, Giovanna; Contin, Manuela
2018-06-01
We aimed to assess the intrasubject reproducibility of a technology-based levodopa (LD) therapeutic monitoring protocol administered in supervised versus unsupervised conditions in patients with Parkinson's disease (PD). The study design was pilot, intrasubject, single center, open and prospective. Twenty patients were recruited. Patients performed a standardized monitoring protocol instrumented by an ad hoc embedded platform after their usual first morning LD dose in two different randomized ambulatory sessions: one under a physician's supervision, the other self-administered. The protocol is made up of serial motor and non-motor tests, including alternate finger tapping, Timed Up and Go test, and measurement of blood pressure. Primary motor outcomes included comparisons of intrasubject LD subacute motor response patterns over the 3-h test in the two experimental conditions. Secondary outcomes were the number of intrasession serial test repetitions due to technical or handling errors and patients' satisfaction with the unsupervised LD monitoring protocol. Intrasubject LD motor response patterns were concordant between the two study sessions in all patients but one. Platform handling problems averaged 4% of total planned serial tests for both sessions. Ninety-five percent of patients were satisfied with the self-administered LD monitoring protocol. To our knowledge, this study is the first to explore the potential of unsupervised technology-based objective motor and non-motor tasks to monitor subacute LD dosing effects in PD patients. The results are promising for future telemedicine applications.
NASA Astrophysics Data System (ADS)
Snaith, Henry J.; Hacke, Peter
2018-06-01
Photovoltaic modules are expected to operate in the field for more than 25 years, so reliability assessment is critical for the commercialization of new photovoltaic technologies. In early development stages, understanding and addressing the device degradation mechanisms are the priorities. However, any technology targeting large-scale deployment must eventually pass industry-standard qualification tests and undergo reliability testing to validate the module lifetime. In this Perspective, we review the methodologies used to assess the reliability of established photovoltaics technologies and to develop standardized qualification tests. We present the stress factors and stress levels for degradation mechanisms currently identified in pre-commercial perovskite devices, along with engineering concepts for mitigation of those degradation modes. Recommendations for complete and transparent reporting of stability tests are given, to facilitate future inter-laboratory comparisons and to further the understanding of field-relevant degradation mechanisms, which will benefit the development of accelerated stress tests.
Janaszczyk, Agnieszka; Bogusz-Czerniewicz, Marta
2011-01-01
Radiation technology is a discipline of medical science which deals with diagnostics, imaging and radiotherapy, that is treatment by ionizing radiation. To present and compare the existing curricula of radiation technology in selected EU countries. The research work done for the purpose of the comparative analysis was based on the methods of diagnostic test and document analysis. The comparison of curricula in selected countries, namely Austria, France, the Netherlands and Poland, showed that admission criteria to radiation technology courses are varied and depend on regulations of respective Ministries of Health. The most restrictive conditions, including written tests in biology, chemistry and physics, and psychometric test, are those in France. Contents of basic and specialist subject groups are very similar in all the countries. The difference is in the number of ECT points assigned to particular subjects and the number of course hours offered. The longest practical training is provided in the Netherlands and the shortest one in Poland. The duration of studies in the Netherlands is 4 years, while in Poland it is 3 years. Austria is the only country to offer extra practical training in quality management. Graduates in the compared EU countries have similar level of qualifications in the fields of operation of radiological equipment, radiotherapy, nuclear medicine, foreign language and specialist terminology in the field of medical and physical sciences, general knowledge of medical and physical sciences, and detailed knowledge of radiation technology.
Effect of technological advances on cochlear implant performance in adults.
Lenarz, Minoo; Joseph, Gert; Sönmez, Hasibe; Büchner, Andreas; Lenarz, Thomas
2011-12-01
To evaluate the effect of technological advances in the past 20 years on the hearing performance of a large cohort of adult cochlear implant (CI) patients. Individual, retrospective, cohort study. According to technological developments in electrode design and speech-processing strategies, we defined five virtual intervals on the time scale between 1984 and 2008. A cohort of 1,005 postlingually deafened adults was selected for this study, and their hearing performance with a CI was evaluated retrospectively according to these five technological intervals. The test battery was composed of four standard German speech tests: Freiburger monosyllabic test, speech tracking test, Hochmair-Schulz-Moser (HSM) sentence test in quiet, and HSM sentence test in 10 dB noise. The direct comparison of the speech perception in postlingually deafened adults, who were implanted during different technological periods, reveals an obvious improvement in the speech perception in patients who benefited from the recent electrode designs and speech-processing strategies. The major influence of technological advances on CI performance seems to be on speech perception in noise. Better speech perception in noisy surroundings is strong proof for demonstrating the success rate of new electrode designs and speech-processing strategies. Standard (internationally comparable) speech tests in noise should become an obligatory part of the postoperative test battery for adult CI patients. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.
Developing Sustainable Life Support System Concepts
NASA Technical Reports Server (NTRS)
Thomas, Evan A.
2010-01-01
Sustainable spacecraft life support concepts may allow the development of more reliable technologies for long duration space missions. Currently, life support technologies at different levels of development are not well evaluated against each other, and evaluation methods do not account for long term reliability and sustainability of the hardware. This paper presents point-of-departure sustainability evaluation criteria for life support systems, that may allow more robust technology development, testing and comparison. An example sustainable water recovery system concept is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander Fridman
2005-06-01
This DOE project DE-FC36-04GO14052 ''Plasma Pilot Plant Test for Treating VOC Emissions from Wood Products Plants'' was conducted by Drexel University in cooperation with Georgia-Pacific (G-P) and Kurchatov Institute (KI). The objective of this project was to test the Plasma Pilot Plant capabilities in wood industry. The final goal of the project was to replace the current state-of-the-art, regenerative thermal oxidation (RTO) technology by Low-Temperature Plasma Technology (LTPT) in paper and wood industry for Volatile Organic Components (VOC) destruction in High Volume Low Concentration (HVLC) vent emissions. MetPro Corporation joined the team as an industrial partner from the environmental controlmore » business and a potential leader for commercialization. Concurrent Technology Corporation (CTC) has a separate contract with DOE for this technology evaluation. They prepared questionnaires for comparison of this technology and RTO, and made this comparison. These data are presented in this report along with the description of the technology itself. Experiments with the pilot plant were performed with average plasma power up to 3.6 kW. Different design of the laboratory and pilot plant pulsed coronas, as well as different analytical methods revealed many new peculiarities of the VOC abatement process. The work reported herein describes the experimental results for the VOCs removal efficiency with respect to energy consumption, residence time, water effect and initial concentration.« less
A Preliminary Assessment of Phase Separator Ground-Based and Reduced-Gravity Testing for ALS Systems
NASA Technical Reports Server (NTRS)
Hall, Nancy Rabel
2006-01-01
A viewgraph presentation of phase separator ground-based and reduced-gravity testing for Advanced Life Support (ALS) systems is shown. The topics include: 1) Multiphase Flow Technology Program; 2) Types of Separators; 3) MOBI Phase Separators; 4) Experiment set-up; and 5) Preliminary comparison/results.
An Analysis of Competencies for Managing Science and Technology Programs
2008-03-19
competency modeling through a two-year task force commissioned by the Society for Industrial and Organizational Psychology (Shippmann and others, 2000:704...positions—specifically within Research and Development (R&D) programs. If so, the final investigative question tests whether those differences are...statistics are used to analyze the comparisons through hypothesis testing and t- tests relevant to the research investigative questions. These
NASA Astrophysics Data System (ADS)
Škoda, Václav; Vanda, Jan; Uxa, Štěpán
2017-11-01
Several sets of mirror samples with multilayer system Ta2O5/SiO2 on silver metal layer were manufactured using either PVD or IAD coating technology. Both BK7 and fused silica substrates were used for preparation of samples. Laserinduced- damage-threshold (LIDT) of metal-dielectric mirrors was tested using a laser apparatus working at 1030 nm wavelength, in ns and ps pulse length domains in S-on-1 test mode. The measured damage threshold values at 45 deg angle of incidence and P-polarization were compared for different pulse length, substrate materials and coating technology.
Design and Testing of CO 2 Compression Using Supersonic Shock Wave Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koopman, Aaron
This report summarizes work performed by Ramgen and subcontractors in pursuit of the design and construction of a 10 MW supersonic CO2 compressor and supporting facility. The compressor will demonstrate application of Ramgen’s supersonic compression technology at an industrial scale using CO2 in a closed-loop. The report includes details of early feasibility studies, CFD validation and comparison to experimental data, static test experimental results, compressor and facility design and analyses, and development of aerodynamic tools. A summary of Ramgen's ISC Engine program activity is also included. This program will demonstrate the adaptation of Ramgen's supersonic compression and advanced vortex combustionmore » technology to result in a highly efficient and cost effective alternative to traditional gas turbine engines. The build out of a 1.5 MW test facility to support the engine and associated subcomponent test program is summarized.« less
NASA Astrophysics Data System (ADS)
Gao, Jerry Z.; Zhu, Eugene; Shim, Simon
2003-01-01
With the increasing applications of the Web in e-commerce, advertising, and publication, new technologies are needed to improve Web graphics technology due to the current limitation of technology. The SVG (Scalable Vector Graphics) technology is a new revolutionary solution to overcome the existing problems in the current web technology. It provides precise and high-resolution web graphics using plain text format commands. It sets a new standard for web graphic format to allow us to present complicated graphics with rich test fonts and colors, high printing quality, and dynamic layout capabilities. This paper provides a tutorial overview about SVG technology and its essential features, capability, and advantages. The reports a comparison studies between SVG and other web graphics technologies.
Battery Test Manual For 48 Volt Mild Hybrid Electric Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Lee Kenneth
2017-03-01
This manual details the U.S. Advanced Battery Consortium and U.S. Department of Energy Vehicle Technologies Program goals, test methods, and analysis techniques for a 48 Volt Mild Hybrid Electric Vehicle system. The test methods are outlined stating with characterization tests, followed by life tests. The final section details standardized analysis techniques for 48 V systems that allow for the comparison of different programs that use this manual. An example test plan is included, along with guidance to filling in gap table numbers.
Structural Analysis and Test Comparison of a 20-Meter Inflation-Deployed Solar Sail
NASA Technical Reports Server (NTRS)
Sleight, David W.; Mann, Troy; Lichodziejewski, David; Derbes, Billy
2006-01-01
Under the direction of the NASA In-Space Propulsion Technology Office, the team of L Garde, NASA Jet Propulsion Laboratory, Ball Aerospace, and NASA Langley Research Center has been developing a scalable solar sail configuration to address NASA s future space propulsion needs. Prior to a flight experiment of a full-scale solar sail, a comprehensive test program was implemented to advance the technology readiness level of the solar sail design. These tests consisted of solar sail component, subsystem, and sub-scale system ground tests that simulated the aspects of the space environment such as vacuum and thermal conditions. In July 2005, a 20-m four-quadrant solar sail system test article was tested in the NASA Glenn Research Center s Space Power Facility to measure its static and dynamic structural responses. Key to the maturation of solar sail technology is the development of validated finite element analysis (FEA) models that can be used for design and analysis of solar sails. A major objective of the program was to utilize the test data to validate the FEA models simulating the solar sail ground tests. The FEA software, ABAQUS, was used to perform the structural analyses to simulate the ground tests performed on the 20-m solar sail test article. This paper presents the details of the FEA modeling, the structural analyses simulating the ground tests, and a comparison of the pretest and post-test analysis predictions with the ground test results for the 20-m solar sail system test article. The structural responses that are compared in the paper include load-deflection curves and natural frequencies for the beam structural assembly and static shape, natural frequencies, and mode shapes for the solar sail membrane. The analysis predictions were in reasonable agreement with the test data. Factors that precluded better correlation of the analyses and the tests were unmeasured initial conditions in the test set-up.
ERIC Educational Resources Information Center
Ludlow, John B.; Platin, Enrique
2000-01-01
Compared self-guided slide/tape (ST) and Web page (WP) instruction in normal radiographic anatomy of periapical and panoramic images using objective test performance and subjective preferences of 74 freshman dental students. Test performance was not different between image types or presentation technologies, but students preferred WP for…
NASA Astrophysics Data System (ADS)
Vevers, A.; Kromanis, A.; Gerins, E.; Ozolins, J.
2018-04-01
The casting technology is one of the oldest production technologies in the world but in the recent years metal additive manufacturing also known as metal 3D printing has been evolving with huge steps. Both technologies have capabilities to produce parts with internal holes and at first glance surface roughness is similar for both technologies, which means that for precise dimensions parts have to be machined in places where precise fit is necessary. Benchmark tests have been made to find out if parts which are produced with metal additive manufacturing can be used to replace parts which are produced with casting technology. Most of the comparative tests have been made with GJS-400-15 grade which is one of the most popular cast iron grades. To compare mechanical properties samples have been produced using additive manufacturing and tested for tensile strength, hardness, surface roughness and microstructure and then the results have been compared with the samples produced with casting technology. In addition, both technologies have been compared in terms of the production time and production costs to see if additive manufacturing is competitive with the casting technology. The original paper has been written in the Latvian language as part of the Master Thesis within the framework of the production technology study programme at Riga Technical University.
A Comparison of Methods for Assessing Space Suit Joint Ranges of Motion
NASA Technical Reports Server (NTRS)
Aitchison, Lindsay T.
2012-01-01
Through the Advanced Exploration Systems (AES) Program, NASA is attempting to use the vast collection of space suit mobility data from 50 years worth of space suit testing to build predictive analysis tools to aid in early architecture decisions for future missions and exploration programs. However, the design engineers must first understand if and how data generated by different methodologies can be compared directly and used in an essentially interchangeable manner. To address this question, the isolated joint range of motion data from two different test series were compared. Both data sets were generated from participants wearing the Mark III Space Suit Technology Demonstrator (MK-III), Waist Entry I-suit (WEI), and minimal clothing. Additionally the two tests shared a common test subject that allowed for within subject comparisons of the methods that greatly reduced the number of variables in play. The tests varied in their methodologies: the Space Suit Comparative Technologies Evaluation used 2-D photogrammetry to analyze isolated ranges of motion while the Constellation space suit benchmarking and requirements development used 3-D motion capture to evaluate both isolated and functional joint ranges of motion. The isolated data from both test series were compared graphically, as percent differences, and by simple statistical analysis. The results indicated that while the methods generate results that are statistically the same (significance level p= 0.01), the differences are significant enough in the practical sense to make direct comparisons ill advised. The concluding recommendations propose direction for how to bridge the data gaps and address future mobility data collection to allow for backward compatibility.
R&D Plan for Army Applications of AI/Robotics.
1982-05-01
Research, Development, and Acquisition (Army) OCE--Office, Chief of Engineers HTTG--High Technology Test Group DNA--Defense Nuclear Agency Contractors...comparison, include both trailer and van-mounted tools and * testing equipment that are generally of sufficient weight and bulk to be mounted and used on a...interactive diagnosis and corrective maintenance information for surface-to-surface missile launching systems beyond the capability of automet’. test equipment
Glider Ground Effect Investigation
1989-05-01
Up Down Airfoil Eppler NACA 63 2A615 13:556 603 12:750 Surface Material Polished Polished Aluminum 13:556 Fiber- 12:750 Glass Airfoil Man Thickness...5. Eppler , Richard. "Some New Airfoils ." Science and Technology of Low Speed and Motorless Vehicles. NASA, Mar 29-30, 1979. 6. Hoerner, Dr. Sighard... 61 5.2 Flight Profile Development Test Matrix . . .. 74 5.3 Profile Development Test Results ......... 76 5.4 Test Aircraft Comparison
Ceramic Matrix Composite Vane Subelement Burst Testing
NASA Technical Reports Server (NTRS)
Brewer, David N.; Verrilli, Michael; Calomino, Anthony
2006-01-01
Burst tests were performed on Ceramic Matrix Composite (CMC) vane specimens, manufactured by two vendors, under the Ultra Efficient Engine Technology (UEET) project. Burst specimens were machined from the ends of 76mm long vane sub-elements blanks and from High Pressure Burner Rig (HPBR) tested specimens. The results of burst tests will be used to compare virgin specimens with specimens that have had an Environmental Barrier Coating (EBC) applied, both HPBR tested and untested, as well as a comparison between vendors.
Flat panel display test and evaluation: procedures, standards, and facilities
NASA Astrophysics Data System (ADS)
Jackson, Timothy W.; Daniels, Reginald; Hopper, Darrel G.
1997-07-01
This paper addresses flat panel display test and evaluation via a discussion of procedures, standards and facilities. Procedures need to be carefully developed and documented to ensure that test accomplished in separate laboratories produce comparable results. The tests themselves must not be a source of inconsistency in test results when such comparisons are made in the course of procurements or new technology prototype evaluations. Standards are necessary to expedite the transition of the new display technologies into applications and to lower the costs of custom parts applied across disparate applications. The flat panel display industry is in the course of ascertaining and formulating such standards as they are of value to designers, manufacturers, marketers and users of civil and military products and equipment. Additionally, in order to inform the DoD and industry, the test and evaluation facilities of the Air Force Research Laboratory Displays Branch are described. These facilities are available to support procurements involving flat panel displays and to examine new technology prototypes. Finally, other government display testing facilities within the Navy and the Army are described.
COMPARISON OF COMPARATIVE GENOMIC HYBRIDIZATIONS TECHNOLOGIES ACROSS MICROARRAY PLATFORMS
Comparative Genomic Hybridization (CGH) measures DNA copy number differences between a reference genome and a test genome. The DNA samples are differentially labeled and hybridized to an immobilized substrate. In early CGH experiments, the DNA targets were hybridized to metaphase...
Case Comparisons: An Efficient Way of Learning Radiology.
Kok, Ellen M; de Bruin, Anique B H; Leppink, Jimmie; van Merriënboer, Jeroen J G; Robben, Simon G F
2015-10-01
Radiologists commonly use comparison films to improve their differential diagnosis. Educational literature suggests that this technique might also be used to bolster the process of learning to interpret radiographs. We investigated the effectiveness of three comparison techniques in medical students, whom we invited to compare cases of the same disease (same-disease comparison), cases of different diseases (different-disease comparison), disease images with normal images (disease/normal comparison), and identical images (no comparison/control condition). Furthermore, we used eye-tracking technology to investigate which elements of the two cases were compared by the students. We randomly assigned 84 medical students to one of four conditions and had them study different diseases on chest radiographs, while their eye movements were being measured. Thereafter, participants took two tests that measured diagnostic performance and their ability to locate diseases, respectively. Students studied most efficiently in the same-disease and different-disease comparison conditions: test 1, F(3, 68) = 3.31, P = .025, ηp(2) = 0.128; test 2, F(3, 65) = 2.88, P = .043, ηp(2) = 0.117. We found that comparisons were effected in 91% of all trials (except for the control condition). Comparisons between normal anatomy were particularly common (45.8%) in all conditions. Comparing cases can be an efficient way of learning to interpret radiographs, especially when the comparison technique used is specifically tailored to the learning goal. Eye tracking provided insight into the comparison process, by showing that few comparisons were made between abnormalities, for example. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.
Measures and Predictors of Educational Growth with Four Years of College. AIR Forum 1980 Paper.
ERIC Educational Resources Information Center
Dumont, Richard G.; Troelstrup, Richard L.
Use of the American College Testing (ACT) Program assessment battery for the measurement of student growth at a regional state university is described. A stratified random sample of 112 seniors at Tennessee Technological University was given the residual form of the ACT Assessment battery for comparison with their pre-college ACT test performance.…
Wolf, Heinz; Stauffer, Tony; Chen, Shu-Chen Y; Lee, Yoojin; Forster, Ronald; Ludzinski, Miron; Kamat, Madhav; Mulhall, Brian; Guazzo, Dana Morton
2009-01-01
Part 1 of this series demonstrated that a container closure integrity test performed according to ASTM F2338-09 Standard Test Method for Nondestructive Detection of Leaks in Packages by Vacuum Decay Method using a VeriPac 325/LV vacuum decay leak tester by Packaging Technologies & Inspection, LLC (PTI) is capable of detecting leaks > or = 5.0 microm (nominal diameter) in rigid, nonporous package systems, such as prefilled glass syringes. The current study compared USP, Ph.Eur. and ISO dye ingress integrity test methods to PTI's vacuum decay technology for the detection of these same 5-, 10-, and 15-microm laser-drilled hole defects in 1-mL glass prefilled syringes. The study was performed at three test sites using several inspectors and a variety of inspection conditions. No standard dye ingress method was found to reliably identify all holed syringes. Modifications to these standard dye tests' challenge conditions increased the potential for dye ingress, and adjustments to the visual inspection environment improved dye ingress detection. However, the risk of false positive test results with dye ingress tests remained. In contrast, the nondestructive vacuum decay leak test method reliably identified syringes with holes > or = 5.0 microm.
High Alpha Technology Program (HATP) ground test to flight comparisons
NASA Technical Reports Server (NTRS)
Hall, R. M.; Banks, D. W.; Fisher, David F.; Ghaffari, F.; Murri, D. G.; Ross, J. C.; Lanser, Wendy R.
1994-01-01
This status paper reviews the experimental ground test program of the High Alpha Technology Program (HATP). The reasons for conducting this ground test program had their origins during the 1970's when several difficulties were experienced during the development programs of both the F-18 and F-16. A careful assessment of ground test to flight correlations appeared to be important for reestablishing a high degree of confidence in our ground test methodology. The current paper will then focus on one aspect of the HATP program that is intended to improve the correlation between ground test and flight, high-alpha gritting. The importance of this work arises from the sensitivity of configurations with smooth-sided forebodies to Reynolds number. After giving examples of the effects of Reynolds number, the paper will highlight efforts at forebody gritting. Finally, the paper will conclude by summarizing the charter of the HATP Experimental Aerodynamics Working Group and future experimental testing plans.
Test target for characterizing 3D resolution of optical coherence tomography
NASA Astrophysics Data System (ADS)
Hu, Zhixiong; Hao, Bingtao; Liu, Wenli; Hong, Baoyu; Li, Jiao
2014-12-01
Optical coherence tomography (OCT) is a non-invasive 3D imaging technology which has been applied or investigated in many diagnostic fields including ophthalmology, dermatology, dentistry, cardiovasology, endoscopy, brain imaging and so on. Optical resolution is an important characteristic that can describe the quality and utility of an image acquiring system. We employ 3D printing technology to design and fabricate a test target for characterizing 3D resolution of optical coherence tomography. The test target which mimics USAF 1951 test chart was produced with photopolymer. By measuring the 3D test target, axial resolution as well as lateral resolution of a spectral domain OCT system was evaluated. For comparison, conventional microscope and surface profiler were employed to characterize the 3D test targets. The results demonstrate that the 3D resolution test targets have the potential of qualitatively and quantitatively validating the performance of OCT systems.
A comparison of optical gradation analysis devices to current test methods--phase 2.
DOT National Transportation Integrated Search
2012-04-01
Optical devices are being developed to deliver accurate size and shape of aggregate particles with, less labor, less consistency error, : and greater reliability. This study was initiated to review the existing technology, and generate basic data to ...
NASA Astrophysics Data System (ADS)
Ribes-Pleguezuelo, Pol; Inza, Andoni Moral; Basset, Marta Gilaberte; Rodríguez, Pablo; Rodríguez, Gemma; Laudisio, Marco; Galan, Miguel; Hornaff, Marcel; Beckert, Erik; Eberhardt, Ramona; Tünnermann, Andreas
2016-11-01
A miniaturized diode-pumped solid-state laser (DPSSL) designed as part of the Raman laser spectrometer (RLS) instrument for the European Space Agency (ESA) Exomars mission 2020 is assembled and tested for the mission purpose and requirements. Two different processes were tried for the laser assembling: one based on adhesives, following traditional laser manufacturing processes; another based on a low-stress and organic-free soldering technique called solderjet bumping technology. The manufactured devices were tested for the processes validation by passing mechanical, thermal cycles, radiation, and optical functional tests. The comparison analysis showed a device improvement in terms of reliability of the optical performances from the soldered to the assembled by adhesive-based means.
Steenhaut, Kevin; Lapage, Koen; Bové, Thierry; De Hert, Stefan; Moerman, Annelies
2017-12-01
An increasing number of NIRS devices are used to provide measurements of peripheral tissue oxygen saturation (S t O 2 ). The aim of the present study is to test the hypothesis that despite technological differences between devices, similar trend values will be obtained during a vascular occlusion test. The devices compared are NIRO-200NX, which measures S t O 2 and oxyhemoglobin by spatially resolved spectroscopy and the Beer-Lambert law, respectively, and INVOS 5100C and Foresight Elite, which both measure S t O 2 with the Beer-Lambert law, enhanced with the spatial resolution technique. Forty consenting adults scheduled for CABG surgery were recruited. The respective sensors of the three NIRS devices were applied over the brachioradial muscle. Before induction of anesthesia, 3 min of ischemia were induced by inflating a blood pressure cuff at the upper arm, whereafter cuff pressure was rapidly released. Tissue oxygenation measurements included baseline, minimum and maximum values, desaturation and resaturation slopes, and rise time. Comparisons between devices were performed with the Kruskal-Wallis test with post hoc Mann-Whitney pairwise comparisons. Agreement was evaluated using Bland-Altman plots. Oxyhemoglobin measured with NIRO responded faster than the other NIRS technologies to changes in peripheral tissue oxygenation (20 vs. 27-40 s, p ≤ 0.01). When comparing INVOS with Foresight, oxygenation changes were prompter (upslope 311 [92-523]%/min vs. 114[65-199]%/min, p ≤ 0.01) and more pronounced (minimum value 36 [21-48] vs. 45 [40-51]%, p ≤ 0.01) with INVOS. Significant differences in tissue oxygen saturation measurements were observed, both within the same device as between different devices using the same measurement technology.
ERIC Educational Resources Information Center
Harrison, Colin; Lunzer, Eric A.; Tymms, Peter; Fitz-Gibbon, Carol Taylor; Restorick, Jane
2004-01-01
This paper reports a previously unpublished comparative analysis of data from the ImpaCT2 study investigating the relationship between students' performance in England on national tests and their reported use of information technology (particularly networked technology) for school work, at three age levels (11, 14 and 16), in English, Maths and…
Gas turbine critical research and advanced technology (CRT) support project
NASA Technical Reports Server (NTRS)
Furman, E. R.; Anderson, D. N.; Gedwill, M. A.; Lowell, C. E.; Schultz, D. F.
1982-01-01
The technical progress to provide a critical technology base for utility gas turbine systems capable of burning coal-derived fuels is summarized. Project tasks include the following: (1) combustion - to investigate the combustion of coal-derived fuels and the conversion of fuel-bound nitrogen to NOx; (2) materials - to understand and prevent the hot corrosion of turbine hot section materials; and (3) system studies - to integrate and guide the technological efforts. Technical accomplishments include: an extension of flame tube combustion testing of propane - Toluene Fuel Mixtures to vary H2 content from 9 to 18 percent by weight and the comparison of results with that predicted from a NASA Lewis General Chemical Kinetics Computer Code; the design and fabrication of combustor sector test section to test current and advanced combustor concepts; Testing of Catalytic combustors with residual and coal-derived liquid fuels; testing of high strength super alloys to evaluate their resistance to potential fuel impurities using doped clean fuels and coal-derived liquids; and the testing and evaluation of thermal barrier coatings and bond coatings on conventional turbine materials.
NASA Astrophysics Data System (ADS)
Zanarini, Alessandro
2018-01-01
The progress of optical systems gives nowadays at disposal on lightweight structures complex dynamic measurements and modal tests, each with its own advantages, drawbacks and preferred usage domains. It is thus more easy than before to obtain highly spatially defined vibration patterns for many applications in vibration engineering, testing and general product development. The potential of three completely different technologies is here benchmarked on a common test rig and advanced applications. SLDV, dynamic ESPI and hi-speed DIC are here first deployed in a complex and unique test on the estimation of FRFs with high spatial accuracy from a thin vibrating plate. The latter exhibits a broad band dynamics and high modal density in the common frequency domain where the techniques can find an operative intersection. A peculiar point-wise comparison is here addressed by means of discrete geometry transforms to put all the three technologies on trial at each physical point of the surface. Full field measurement technologies cannot estimate only displacement fields on a refined grid, but can exploit the spatial consistency of the results through neighbouring locations by means of numerical differentiation operators in the spatial domain to obtain rotational degrees of freedom and superficial dynamic strain distributions, with enhanced quality, compared to other technologies in literature. Approaching the task with the aid of superior quality receptance maps from the three different full field gears, this work calculates and compares rotational and dynamic strain FRFs. Dynamic stress FRFs can be modelled directly from the latter, by means of a constitutive model, avoiding the costly and time-consuming steps of building and tuning a numerical dynamic model of a flexible component or a structure in real life conditions. Once dynamic stress FRFs are obtained, spectral fatigue approaches can try to predict the life of a component in many excitation conditions. Different spectral shaping of the excitation can easily be used to enhance the comparison in the framework of any of the spectral approaches for fatigue life calculations, highlighting benefits and drawbacks of a direct experimental approach to failure and risk assessment in structural dynamics when dealing with complex patterns in real-life testing. Are optical measurements and spatially dense datasets really effective in advanced model updating of lightweight structures with complex structural dynamics? The noise shown in the raw signal of some experiments may pose issues in proficiently exploiting the added data in a fruitful model updating procedure. Model updating results are here compared between scanning and native full field technologies, with comments and details on the test rig, on the advantages and drawbacks of the approaches. The identification of EMA models highlights the increasing quality of shapes that can be obtained from native full field high resolution gears, against that (some time unexpectedly poor) of SLDV tested.
Modelling Simulation and Comparison of Refractory Corrosion at RHI's Technology Center
NASA Astrophysics Data System (ADS)
Gregurek, Dean; Ressler, Angelika; Franzkowiak, Anna; Spanring, Alfred
In order to determine the most suitable refractory products and improve the lining lifetime for the diverse furnaces used in the nonferrous metal industry, corrosion tests are performed at RHF's Technology Center. The practical facilities include the cup test, induction furnace, rotary kiln, and drip slag test described in this paper, which enable a comprehensive understanding of the chemo-thermal brick wear on a pilot scale. The corrosion trials are performed with actual slags generated during operations at a customer's plant. To determine the highest influencing wear parameter, every single test is combined with a detailed mineralogical investigation and thermochemical calculations performed using FactSage. Based on the results, tailored refractory solutions for the nonferrous metal industry can be provided in combination with trials conducted at the customer's site.
Performance assessment of solid state actuators through a common procedure and comparison criteria
NASA Astrophysics Data System (ADS)
Reithler, Livier; Guedra-Degeorges, Didier
1998-07-01
The design of systems based on smart structure technologies for active shape and vibration control and high precision positioning requires a good knowledge of the behavior of the active materials (electrostrictive and piezoelectric ceramics and polymers, magnetostrictive and shape memory alloys...) and of commercially available actuators. Extensive theoretical studies have been made on the behavior of active materials during the past decades but there are only a few developments on experimental comparisons between different kinds of commercially available actuators. The purpose of this study is to find out the pertinent parameters for the design of such systems, to set up a common static test procedure for all types of actuators and to define comparison criteria in terms of output force and displacement, mechanical and electrical energy, mass and dimensions. After having define the pertinent parameters of the characterization and having described the resulting testing procedure, test results are presented for different types of actuators based on piezoceramics and magnetostrictive alloys. The performances of each actuator are compared through both the test results and the announced characteristics: to perform this comparison absolute and relative criteria are chosen considering aeronautical and space applications.
Wang, Zhenjun; Zeng, Jing; Song, Hao; Li, Feng
2017-05-01
Near-well ultrasonic processing technology attracts more attention due to its simple operation, high adaptability, low cost and no pollution to the formation. Although this technology has been investigated in detail through laboratory experiments and field tests, systematic and intensive researches are absent for certain major aspects, such as whether ultrasonic excitation is better than chemical agent for any plugs removal; whether ultrasound-chemical combination plug removal technology has the best plugs removal effect. In this paper, the comparison of removing drilling fluid plug, paraffin deposition plug, polymer plug and inorganic scale plug using ultrasonic excitation, chemical agent and ultrasound-chemical combination plug removal technology is investigated. Results show that the initial core permeability and ultrasonic frequency play a significant role in plug removal. Ultrasonic excitation and chemical agent have different impact on different plugs. The comparison results show that the effect of removing any plugs using ultrasound-chemicals composite plug removal technology is obviously better than that using ultrasonic excitation or chemical agent alone. Such conclusion proves that ultrasonic excitation and chemical agent can cause synergetic effects. Copyright © 2016 Elsevier B.V. All rights reserved.
Nuclear Thermal Propulsion Technology - Summary of FY 1991 Interagency Panel Planning
NASA Technical Reports Server (NTRS)
Clark, John S.; Mcdaniel, Patrick; Howe, Steven; Stanley, Marland
1991-01-01
An Interagency (NASA/DOE/DOD) technical panel has been working in 1991 to evaluate nuclear thermal propulsion (NTP) concepts on a consistent basis, and to continue technology development project planning for a joint project in nuclear propulsion for Space Exploration Initiative (SEI). This paper summarizes the efforts of the panel to date and summarizes the technology plans defined for NTP. Concepts were categorized based on probable technology readiness data, and innovative 'proof-of-concept' tests and analyses were defined. While further studies will be required to provide a consistent comparison of all of the NTP concepts, the current status of the studies is presented.
1945-02-06
North American P-51B 'Mustang' fighter in flight over bay area. The P-51 with its new laminar-flow wing sections developed by NACA was the first airplane selected for testing of airplane drag in flight and wind tunnel comparison NOTE: used in NASA Publication; Flight Research at Ames: 57 Years of Development and Validation of Aeronautical Technology' Transonic Model Testing fig. 9 NASA SP-1998-3300
Vehicle test report: South Coast technology electric conversion of a Volkswagen Rabbit
NASA Technical Reports Server (NTRS)
Price, T. W.; Shain, T. W.; Bryant, J. A.
1981-01-01
The South Coast Technology Volkswagen Rabbit, was tested at the Jet Propulsion Laboratory's (JPL) dynamometer facility and at JPL's Edwards Test Station (ETS). The tests were performed to characterize certain parameters of the South Coast Rabbit and to provide baseline data that will be used for the comparison of near term batteries that are to be incorporated into the vehicle. The vehicle tests were concentrated on the electrical drive system; i.e., the batteries, controller, and motor. The tests included coastdowns to characterize the road load, maximum effort acceleration, and range evaluation for both cyclic and constant speed conditions. A qualitative evaluation of the vehicle was made by comparing its constant speed range performance with those vehicles described in the document 'state of the Art assessment of Electric and Hybrid Vehicles'. The Rabbit performance was near to the best of the 1977 vehicles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menlove, Howard Olsen; Henzlova, Daniela
This informal report presents the measurement data and information to document the performance of the advanced Precision Data Technology, Inc. (PDT) sealed cell boron-10 plate neutron detector that makes use of the advanced coating materials and procedures. In 2015, PDT changed the boron coating materials and application procedures to significantly increase the efficiency of their basic corrugated plate detector performance. A prototype sealed cell unit was supplied to LANL for testing and comparison with prior detector cells. Also, LANL had reference detector slabs from the original neutron collar (UNCL) and the new Antech UNCL with the removable 3He tubes. Themore » comparison data is presented in this report.« less
First Human Testing of the Orion Atmosphere Revitalization Technology
NASA Technical Reports Server (NTRS)
Lin, Amy; Sweterlitsch, Jeffrey
2009-01-01
An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). In two previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of the technology in a representative environment with simulated human metabolic loads. The next step in developmental testing at JSC was to replace the simulated humans with real humans; this testing was conducted in the spring of 2008. This first instance of human testing of a new Orion ARS technology included several cases in a sealed Orion-equivalent free volume and three cases using emergency breathing masks connected directly to the ARS loop. Significant test results presented in this paper include comparisons between the standard metabolic rates for CO2 and water vapor production published in Orion requirements documents and real-world rate ranges observed with human test subjects. Also included are qualitative assessments of process flow rate and closed-loop pressure-cycling tolerability while using the emergency masks. Recommendations for modifications to the Orion ARS design and operation, based on the test results, conclude the paper.
First Human Testing of the Orion Atmosphere Revitalization Technology
NASA Technical Reports Server (NTRS)
Lin, Amy; Sweterlitsch, Jeffrey
2008-01-01
An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). In two previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of the technology in a representative environment with simulated human metabolic loads. The next step in developmental testing at JSC was to replace the simulated humans with real humans; this testing was conducted in the spring of 2008. This first instance of human testing of a new Orion ARS technology included several cases in a sealed Orione-quivalent free volume and three cases using emergency breathing masks connected directly to the ARS loop. Significant test results presented in this paper include comparisons between the standard metabolic rates for CO2 and water vapor production published in Orion requirements documents and real-world rate ranges observed with human test subjects. Also included are qualitative assessments of process flow rate and closed-loop pressure-cycling tolerability while using the emergency masks. Recommendations for modifications to the Orion ARS design and operation, based on the test results, conclude the paper.
A head-to-head comparison of hydrogen peroxide vapor and aerosol room decontamination systems.
Holmdahl, T; Lanbeck, P; Wullt, M; Walder, M H
2011-09-01
New technologies have emerged in recent years for the disinfection of hospital rooms and equipment that may not be disinfected adequately using conventional methods. There are several hydrogen peroxide-based area decontamination technologies on the market, but no head-to-head studies have been performed. We conducted a head-to-head in vitro comparison of a hydrogen peroxide vapor (HPV) system (Bioquell) and an aerosolized hydrogen peroxide (aHP) system (Sterinis). The tests were conducted in a purpose-built 136-m(3) test room. One HPV generator and 2 aHP machines were used, following recommendations of the manufacturers. Three repeated tests were performed for each system. The microbiological efficacy of the 2 systems was tested using 6-log Tyvek-pouched Geobacillus stearothermophilus biological indicators (BIs). The indicators were placed at 20 locations in the first test and 14 locations in the subsequent 2 tests for each system. All BIs were inactivated for the 3 HPV tests, compared with only 10% in the first aHP test and 79% in the other 2 aHP tests. The peak hydrogen peroxide concentration was 338 ppm for HPV and 160 ppm for aHP. The total cycle time (including aeration) was 3 and 3.5 hours for the 3 HPV tests and the 3 aHP tests, respectively. Monitoring around the perimeter of the enclosure with a handheld sensor during tests of both systems did not identify leakage. One HPV generator was more effective than 2 aHP machines for the inactivation of G. stearothermophilus BIs, and cycle times were faster for the HPV system.
Behavioral technology and its application to fire toxicology research
NASA Technical Reports Server (NTRS)
Russo, D. M.
1978-01-01
The application of behavioral technology to the toxicity testing of pyrolysis/combustion (P/C) products is discussed and two categories of behavioral tests commonly employed in fire toxicology programs are reviewed. Data are presented from a comparison of carbon monoxide (CO) induced incapacitation in rats performing in a rotating wheel or under a Sidmon free-operant schedule of shock avoidance. Rats performing in the rotating wheel were behaviorally incapacitated at CO concentrations and carboxyhemoglobin levels significantly lower than those which incapacitated operant avoidance animals. It is concluded that different measures of behavioral incapacitation may vary since incapacitation is a function of the particular toxic mechanism at work and the behavioral requirements of the specific task employed in the test procedure.
Sodium-sulfur Cell Technology Flight Experiment (SSCT)
NASA Technical Reports Server (NTRS)
Halbach, Carl R.
1992-01-01
The sodium-sulfur battery is emerging as a prime high-temperature energy storage technology for space flight applications. A Na-S cell demonstration is planned for a 1995-96 NASA Space Shuttle flight which focuses on the microgravity effects on individual cells. The experiment is not optimized for battery performance as such. Rather, it maximizes the variety of operating conditions which the Na-S cell is capable of in a relatively short 5-day flight. The demonstration is designed to reveal the effects of microgravity by comparison with ground test control cells experiencing identical test conditions but with gravity. Specifically, limitations of transport dynamics and associated cell performance characteristics should be revealed. The Na-S Cell Technology Flight Experiment consists of three separate experiments designed to determine cell operating characteristics, detailed electrode kinetics and reactant distributions.
Naked-eye fingerprinting of single nucleotide polymorphisms on psoriasis patients
NASA Astrophysics Data System (ADS)
Valentini, Paola; Marsella, Alessandra; Tarantino, Paolo; Mauro, Salvatore; Baglietto, Silvia; Congedo, Maurizio; Paolo Pompa, Pier
2016-05-01
We report a low-cost test, based on gold nanoparticles, for the colorimetric (naked-eye) fingerprinting of a panel of single nucleotide polymorphisms (SNPs), relevant for the personalized therapy of psoriasis. Such pharmacogenomic tests are not routinely performed on psoriasis patients, due to the high cost of standard technologies. We demonstrated high sensitivity and specificity of our colorimetric test by validating it on a cohort of 30 patients, through a double-blind comparison with two state-of-the-art instrumental techniques, namely reverse dot blotting and sequencing, finding 100% agreement. This test offers high parallelization capabilities and can be easily generalized to other SNPs of clinical relevance, finding broad utility in diagnostics and pharmacogenomics.We report a low-cost test, based on gold nanoparticles, for the colorimetric (naked-eye) fingerprinting of a panel of single nucleotide polymorphisms (SNPs), relevant for the personalized therapy of psoriasis. Such pharmacogenomic tests are not routinely performed on psoriasis patients, due to the high cost of standard technologies. We demonstrated high sensitivity and specificity of our colorimetric test by validating it on a cohort of 30 patients, through a double-blind comparison with two state-of-the-art instrumental techniques, namely reverse dot blotting and sequencing, finding 100% agreement. This test offers high parallelization capabilities and can be easily generalized to other SNPs of clinical relevance, finding broad utility in diagnostics and pharmacogenomics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02200f
A semiconductor bridge ignited hot gas piston ejector
NASA Technical Reports Server (NTRS)
Grubelich, M. C.; Bickes, Robert W., Jr.
1993-01-01
The topics are presented in viewgraph form and include the following: semiconductor bridge technology (SCB); SCB philosophy; technology transfer; simplified sketch of SCB; SCB processing; SCB design; SCB test assembly; 5 mJ SCB burst based on a polaroid photograph; micro-convective heat transfer hypothesis; SCB fire set; comparison of SCB and hot-wire actuators; satellite firing sets; logic fire set; SCB smart component; SCB smart firing set; semiconductor design considerations; and the adjustable actuator system.
NASA Technical Reports Server (NTRS)
Van Norman, John W.; Dyakonov, Artem; Schoenenberger, Mark; Davis, Jody; Muppidi, Suman; Tang, Chun; Bose, Deepak; Mobley, Brandon; Clark, Ian
2015-01-01
An overview of pre-flight aerodynamic models for the Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) campaign is presented, with comparisons to reconstructed flight data and discussion of model updates. The SFDT campaign objective is to test Supersonic Inflatable Aerodynamic Decelerator (SIAD) and large supersonic parachute technologies at high altitude Earth conditions relevant to entry, descent, and landing (EDL) at Mars. Nominal SIAD test conditions are attained by lifting a test vehicle (TV) to 36 km altitude with a large helium balloon, then accelerating the TV to Mach 4 and and 53 km altitude with a solid rocket motor. The first flight test (SFDT-1) delivered a 6 meter diameter robotic mission class decelerator (SIAD-R) to several seconds of flight on June 28, 2014, and was successful in demonstrating the SFDT flight system concept and SIAD-R. The trajectory was off-nominal, however, lofting to over 8 km higher than predicted in flight simulations. Comparisons between reconstructed flight data and aerodynamic models show that SIAD-R aerodynamic performance was in good agreement with pre-flight predictions. Similar comparisons of powered ascent phase aerodynamics show that the pre-flight model overpredicted TV pitch stability, leading to underprediction of trajectory peak altitude. Comparisons between pre-flight aerodynamic models and reconstructed flight data are shown, and changes to aerodynamic models using improved fidelity and knowledge gained from SFDT-1 are discussed.
Advanced Nacelle Acoustic Lining Concepts Development
NASA Technical Reports Server (NTRS)
Bielak, G.; Gallman, J.; Kunze, R.; Murray, P.; Premo, J.; Kosanchick, M.; Hersh, A.; Celano, J.; Walker, B.; Yu, J.;
2002-01-01
The work reported in this document consisted of six distinct liner technology development subtasks: 1) Analysis of Model Scale ADP Fan Duct Lining Data (Boeing): An evaluation of an AST Milestone experiment to demonstrate 1995 liner technology superiority relative to that of 1992 was performed on 1:5.9 scale model fan rig (Advanced Ducted Propeller) test data acquired in the NASA Glenn 9 x 15 foot wind tunnel. The goal of 50% improvement was deemed satisfied. 2) Bias Flow Liner Investigation (Boeing, VCES): The ability to control liner impedance by low velocity bias flow through liner was demonstrated. An impedance prediction model to include bias flow was developed. 3) Grazing Flow Impedance Testing (Boeing): Grazing flow impedance tests were conducted for comparison with results achieved at four different laboratories. 4) Micro-Perforate Acoustic Liner Technology (BFG, HAE, NG): Proof of concept testing of a "linear liner." 5) Extended Reaction Liners (Boeing, NG): Bandwidth improvements for non-locally reacting liner were investigated with porous honeycomb core test liners. 6) Development of a Hybrid Active/Passive Lining Concept (HAE): Synergism between active and passive attenuation of noise radiated by a model inlet was demonstrated.
QuEST: Qualifying Environmentally Sustainable Technologies. Volume 2
NASA Technical Reports Server (NTRS)
Brown, Christina (Editor)
2007-01-01
TEERM focuses its validation efforts on technologies that have shown promise in laboratory testing, but lack testing under realistic or field environment. Mature technologies have advantages over those that are still in the developmental stage such as being more likely to be transitioned into a working environment. One way TEERM begins to evaluate the suitability of technologies is through Technology Readiness Levels (TRLs). TRLs are a systematic metric/measurement system that supports assessments of the maturity of a particular technology and the consistent comparison of maturity between different types of technology. TEERM generally works on demonstrating/validating alternatives that fall within TRLs 5-9. In instances where a mature technology does not exist for a particular Agency application, TEERM works with technology development groups and programs such as NASA's Innovative Partnerships Program (IPP). The IPP's purpose is to identify and document available technologies in light of NASA's needs, evaluate and prioritize those technologies, and reach out to find new partners. All TEERM projects involve multiple partners. Partnering reduces duplication of effort that otherwise might occur if individuals worked their problems alone. Partnering also helps reduce individual contributors' shares of the total cost of technology validation. Through collaboration and financial commitment from project stakeholders and third-party sources, it is possible to fully fund expensive demonstration/validation efforts.
Barriers to comparing the usability of electronic health records.
Ratwani, Raj M; Hettinger, A Zachary; Fairbanks, Rollin J
2017-04-01
Despite the widespread adoption of electronic health records (EHRs), usability of many EHRs continues to be suboptimal, with some vendors failing to meet usability standards, resulting in clinician frustration and patient safety hazards. In an effort to increase EHR vendor competition on usability, recommendations have been made and legislation drafted to develop comparison tools that would allow purchasers to better understand the usability of EHR products prior to purchase. Usability comparison can be based on EHR vendor design and development processes, vendor usability testing as part of the Office of the National Coordinator for Health Information Technology certification program, and usability of implemented products. Barriers exist within the current certified health technology program that prevent effective comparison of usability during each of these stages. We describe the importance of providing purchasers with improved information about EHR usability, barriers to making usability comparisons, and solutions to overcome these barriers. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Haystack Observatory VLBI Correlator
NASA Technical Reports Server (NTRS)
Titus, Mike; Cappallo, Roger; Corey, Brian; Dudevoir, Kevin; Niell, Arthur; Whitney, Alan
2013-01-01
This report summarizes the activities of the Haystack Correlator during 2012. Highlights include finding a solution to the DiFX InfiniBand timeout problem and other DiFX software development, conducting a DBE comparison test following the First International VLBI Technology Workshop, conducting a Mark IV and DiFX correlator comparison, more broadband delay experiments, more u- VLBI Galactic Center observations, and conversion of RDV session processing to the Mark IV/HOPS path. Non-real-time e-VLBI transfers and engineering support of other correlators continued.
Technology development status at McDonnell Douglas
NASA Technical Reports Server (NTRS)
Rowe, W. T.
1981-01-01
The significant technology items of the Concorde and the conceptual MCD baseline advanced supersonic transport are compared. The four major improvements are in the areas of range performance, structures (materials), aerodynamics, and in community noise. Presentation charts show aerodynamic efficiency; the reoptimized wing; low scale lift/drag ratio; control systems; structural modeling and analysis; weight and cost comparisons for superplasticity diffusion bonded titanium sandwich structures and for aluminum brazed titanium honeycomb structures; operating cost reduction; suppressor nozzles; noise reduction and range; the bicone inlet; a market summary; environmental issues; high priority items; the titanium wing and fuselage test components; and technology validation.
Evaluation of Repair Efficiency in Structures Made of Fibrous Polymer Composite Materials
NASA Astrophysics Data System (ADS)
Anoshkin, A. N.; Vil'deman, V. E.; Lobanov, D. S.; Chikhachev, A. I.
2014-07-01
Full-scale experimental investigations into the residual strength of structurally similar elements of acoustical panels after a local repair of defects, such as through breakdown, were conducted. Local repairs without using the vacuum technology were carried out. The technology of repair consists in removing and layer-bylayer replacing the damaged layers of material with repaired ones. For comparison, undamaged and repaired sandwich panel specimens were tested in tension and compression. The specimens were produced by serial technology from a VPS-33 fiberglass prepreg. Their deformation and fracture mechanisms are analyzed, and their loading diagrams are obtained.
Analysis and correlation of the test data from an advanced technology rotor system
NASA Technical Reports Server (NTRS)
Jepson, D.; Moffitt, R.; Hilzinger, K.; Bissell, J.
1983-01-01
Comparisons were made of the performance and blade vibratory loads characteristics for an advanced rotor system as predicted by analysis and as measured in a 1/5 scale model wind tunnel test, a full scale model wind tunnel test and flight test. The accuracy with which the various tools available at the various stages in the design/development process (analysis, model test etc.) could predict final characteristics as measured on the aircraft was determined. The accuracy of the analyses in predicting the effects of systematic tip planform variations investigated in the full scale wind tunnel test was evaluated.
Vulcain engine tests prove reliability
NASA Astrophysics Data System (ADS)
Covault, Craig
1994-04-01
The development of the oxygen/hydrogen Vulcain first-stage engine for the Ariane 5 involves more than 30 European companies and $1.19-billion. These companies are using existing technology to produce a low-cost system with high thrust and reliability. This article describes ground test of this engine, and provides a comparison of the Vulcain's capabilities with the capabilities of other systems. A list of key Vulcain team members is also given.
Comparison of attitudes of non-science major students toward science and technology
NASA Astrophysics Data System (ADS)
Wick, Donald Gary
This study examines the attitudes of non-science major students who were enrolled in General Education Required (GER) science courses at three diverse Iowa post-secondary educational institutions: The University of Iowa, Cornell College, and Kirkwood Community College. The information was gathered using a survey instrument with the test subjects responding with a five-part Likert-scale to a series of statements regarding: (1) reasons for taking the science course, (2) views and attitudes toward science, and (3) the nature and implications of science and technology. The initial data gathered was analyzed using either chi-squared, analysis of variance (ANOVA), and/or Bonferroni tests. Responses to grouped statements were used to generate population indices related to: (1) experience, (2) attitude, (3) experimentation, and (4) technology. These indices were analyzed for statistically significant differences using Tukey's Studentized (HSD) and Tukey-Krammer tests. Statistically significant differences were found in the response means for some individual statements. When a population index was calculated for each school using the grouped responses related to attitude, experience, science/technology, multiple comparison testing determined significant differences with regards to attitude, experiences, and science/technology. No significant differences were found between the schools for the population index regarding experimentation. Demographic information gathered concerning the nature of the student populations included: (1) declared major, (2) classification, (3) previous number of science courses, (4) gender, and (5) use of computers for the science course. Analysis of demographic data also revealed statistically significant differences. The differences found in this study provide additional quantitative data to characterize the non-science major student. Recommendations based on this data are: (1) The University of Iowa strive for smaller GER class sizes and reevaluate current pedagogy, (2) Kirkwood Community College make class material more relevant and place more emphasis on research, (3) Cornell College utilize full professors in the non-major course and incorporate more technology, and (4) all reevaluate the science GERs course pedagogy, retain the science GERs, maintain the current number of GER science course choices, and, finally, reevaluate any GER science course credit reciprocity.
Battery testing at Argonne National Laboratory
NASA Astrophysics Data System (ADS)
Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.
Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis & Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during FY-92 on both single cells and multi-cell modules that encompass six battery technologies (Na/S, Li/FeS, Ni/Metal-Hydride, Ni/Zn, Ni/Cd, Ni/Fe). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most promising R&D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R&D programs, a comparison of battery technologies, and basic data for modeling.
The challenges of integrating instrumentation with inflatable aerodynamic decelerators
NASA Astrophysics Data System (ADS)
Swanson, Gregory T.; Cassell, Alan M.; Hughes, Stephen J.; Johnson, R. Keith; Calomino, Anthony M.
New Entry, Decent, and Landing (EDL) technologies are being explored to facilitate the landing of high mass vehicles. Current EDL technologies are limited due to mass and volume constraints dictated by launch vehicle fairings. Therefore, past and present technologies are now being considered to provide a mass and volume efficient solution, including Inflatable Aerodynamic Decelerators (IADs). To better define the instrumentation challenges posed by IAD technology development, a survey was conducted to identify valuable measurements for ground and flight testing of the flexible materials and structures used in their design. From this survey many sensing technologies and systems were explored specific to the stacked torus IAD, resulting in a down-selection to the most viable prospects. The majority of these systems, including wireless data acquisition, were then rapid prototyped and evaluated during component level testing to determine the best integration techniques specific to a 3m and 6m diameter stacked toroid IAD. Each sensing system was then integrated in support of the Hypersonic Inflatable Aerodynamic Decelerator ground test campaign. In this paper these IAD instrumentation systems are described along with their challenges in comparison to traditional rigid aeroshell systems. Requirements resulting from the survey are listed and instrumentation integration techniques and data acquisition are discussed.
Scientific Reasoning Abilities of Nonscience Majors in Physics-Based Courses
ERIC Educational Resources Information Center
Moore, J. Christopher; Rubbo, Louis J.
2012-01-01
We have found that non-STEM (science, technology, engineering, and mathematics) majors taking either a conceptual physics or astronomy course at two regional comprehensive institutions score significantly lower preinstruction on the Lawson's Classroom Test of Scientific Reasoning (LCTSR) in comparison to national average STEM majors. Based on…
Delivering Training Assessments in a Soldier-Centered Learning Environment: Year Two
2015-12-01
reduces the efficiency of the CAT (e.g., Kingsbury & Zara ; 1991; Weiss, 2004). 27 EXPERIMENT 3: THE EFFECTS OF PERIODIC TESTING DURING...on Technology in Education, 45 (1), 61-82. Kingsbury, C. G., & Zara , A. R. (1991). A comparison of procedures for content-sensitive item
Evaluating Diagnostic Point-of-Care Tests in Resource-Limited Settings
Drain, Paul K; Hyle, Emily P; Noubary, Farzad; Freedberg, Kenneth A; Wilson, Douglas; Bishai, William; Rodriguez, William; Bassett, Ingrid V
2014-01-01
Diagnostic point-of-care (POC) testing is intended to minimize the time to obtain a test result, thereby allowing clinicians and patients to make an expeditious clinical decision. As POC tests expand into resource-limited settings (RLS), the benefits must outweigh the costs. To optimize POC testing in RLS, diagnostic POC tests need rigorous evaluations focused on relevant clinical outcomes and operational costs, which differ from evaluations of conventional diagnostic tests. Here, we reviewed published studies on POC testing in RLS, and found no clearly defined metric for the clinical utility of POC testing. Therefore, we propose a framework for evaluating POC tests, and suggest and define the term “test efficacy” to describe a diagnostic test’s capacity to support a clinical decision within its operational context. We also proposed revised criteria for an ideal diagnostic POC test in resource-limited settings. Through systematic evaluations, comparisons between centralized diagnostic testing and novel POC technologies can be more formalized, and health officials can better determine which POC technologies represent valuable additions to their clinical programs. PMID:24332389
NASA Astrophysics Data System (ADS)
Demerjian, K. L.
2002-12-01
In the summer of 2001, an intensive field measurement campaign was carried out in Queens, NY as part of the PM2.5 Technology Assessment and Characterization Study in New York (PMTACS-NY) to characterize the physical and chemical composition of particulate matter and related precursors utilizing conventional and advanced instrumentation technologies. The measurement program, involving a team of scientists from federal, state, university and private sector organizations, was designed to provide detailed time resolved chemical and physical characterization of the urban PM2.5/co-pollutant complex in relation to the regional environment. A summary of the chemical and meteorological data defining specific events during the field intensive is presented as are results addressing specific hypothesis designed around PMTACS-NY program objectives. These include initial findings and conclusions related to 1) performance testing and evaluation of emerging measurement technologies and comparison with EPA mandated PM federal reference methods currently operational as part of the New York State and national PM2.5 monitoring network; 2) emissions characterization of CNG, standard diesel and CRT (Continuously Regenerating Technology) diesel retrofit powered vehicles; and 3) compositional comparisons of urban and regional PM2.5.
Specular gloss scales comparison between the SIMT and the NIST
NASA Astrophysics Data System (ADS)
Yin, Dejin; Li, Tiecheng; Huang, Biyong; Cheng, Weihai; Lin, Fangsheng
2016-09-01
Specular gloss is the fraction of light reflected in the specular direction for specified incident and receptor apertures, it is the perception by an observer of the mirror-like appearance of a surface. The measurement of specular gloss consists of comparing the luminous reflectance from a test sample to that from a calibrated gloss standard which generally is a polished piece of black glass, under the same experimental conditions. Gloss is a dimensionless quantity whose accurate determination requires standardized experimental conditions such as spectral distribution of the incident beam of light, incident and viewing angles, and a gloss standard. The Shanghai Institute of Measurement and Testing Technology (SIMT) provides test service to calibrate gloss reference standards. This facility is built around a reference goniophotometer, containing an instrument that measures flux as a function of angles of illumination or observation and a primary gloss standard, which is a piece of three wedges of highly polished, high-quality optical glass. The system has an overall (k=2) uncertainty of 0.5 Gloss Unit(GU). The service offers calibration measurements of working gloss standards at the geometries of 20°, 60°, and 85°, in compliance with the ISO 2813 and the ASTM D523 documentary standards. This article describes a bilateral comparison of specular gloss scales between SIMT and the National Institute of Standards and Technology (NIST) that has been performed. The results of this comparison show agreement within the combined uncertainties for the measurement of specular gloss of highly polished black glass.
Diagnostic methods for CW laser damage testing
NASA Astrophysics Data System (ADS)
Stewart, Alan F.; Shah, Rashmi S.
2004-06-01
High performance optical coatings are an enabling technology for many applications - navigation systems, telecom, fusion, advanced measurement systems of many types as well as directed energy weapons. The results of recent testing of superior optical coatings conducted at high flux levels will be presented. The diagnostics used in this type of nondestructive testing and the analysis of the data demonstrates the evolution of test methodology. Comparison of performance data under load to the predictions of thermal and optical models shows excellent agreement. These tests serve to anchor the models and validate the performance of the materials and coatings.
Verification technology of remote sensing camera satellite imaging simulation based on ray tracing
NASA Astrophysics Data System (ADS)
Gu, Qiongqiong; Chen, Xiaomei; Yang, Deyun
2017-08-01
Remote sensing satellite camera imaging simulation technology is broadly used to evaluate the satellite imaging quality and to test the data application system. But the simulation precision is hard to examine. In this paper, we propose an experimental simulation verification method, which is based on the test parameter variation comparison. According to the simulation model based on ray-tracing, the experiment is to verify the model precision by changing the types of devices, which are corresponding the parameters of the model. The experimental results show that the similarity between the imaging model based on ray tracing and the experimental image is 91.4%, which can simulate the remote sensing satellite imaging system very well.
Flight Test Evaluation of a Nonlinear Hub Spring on a UH-1H Helicopter.
1981-04-01
APPLIED TECHNOLOGY LABORATORY POSITION STATEMENT This report documents the engineering analysis, development , arnd flight test of a non- linger hub...order to develop a design criteria to ensure that mast loads can be sustained during in-flight flapping stop contact. In addition, a comparison of the...LIST OF ILLUSTRATIONS Figure Page 1 Rotor blade-element aerodynamic coefficients used in ARHF01 .................................. 18 2 Rotor model on
Review of the transmissions of the Soviet helicopters
NASA Technical Reports Server (NTRS)
Chaiko, Lev I.
1990-01-01
A review of the following aspects of Soviet helicopter transmissions is presented: transmitted power, weight, reduction ratio, RPM, design configuration, comparison of different type of manufacturing methods, and a description of the materials and technologies applied to critical transmission components. Included are mechanical diagrams of the gearboxes of the Soviet helicopters and test stands for testing gearbox and main shaft. The quality of Soviet helicopter transmissions and their Western counterparts are assessed and compared.
Lightning protection guidelines and test data for adhesively bonded aircraft structures
NASA Technical Reports Server (NTRS)
Pryzby, J. E.; Plumer, J. A.
1984-01-01
The highly competitive marketplace and increasing cost of energy has motivated manufacturers of general aviation aircraft to utilize composite materials and metal-to-metal bonding in place of conventional fasteners and rivets to reduce weight, obtain smoother outside surfaces and reduce drag. The purpose of this program is protection of these new structures from hazardous lightning effects. The program began with a survey of advance-technology materials and fabrication methods under consideration for future designs. Sub-element specimens were subjected to simulated lightning voltages and currents. Measurements of bond line voltages, electrical sparking, and mechanical strength degradation were made to comprise a data base of electrical properties for new technology materials and basic structural configurations. The second hase of the program involved tests on full scale wing structures which contained integral fuel tanks and which were representative of examples of new technology structures and fuel systems. The purpose of these tests was to provide a comparison between full scale structural measurements and those obtained from the sub-element specimens.
O'Brien, C; Charman, W N
2006-05-01
After a preliminary investigation of the effects of tool feed rate and spindle speed on the surface roughness of unhydrated, lathe-cut polymacon surfaces, a laboratory and clinical comparison was made between lenses with identical parameters except that the lathe-cut posterior surface was left unpolished in the "test" lenses and was polished in the "control" lenses. The lenses had moulded anterior surfaces. Laboratory comparisons included surface roughness, lens power and its uniformity across the surface. Double-blind clinical trials over 4-hour (27 subjects) and 1-month (10 subjects) periods, involved one eye of each subject wearing a "test" lens and the other, a "control" lens. No clinically significant differences were found between the results for the test and control lenses. It is concluded that today's lathing technology makes a final polishing stage unnecessary.
Subjective evaluation of next-generation video compression algorithms: a case study
NASA Astrophysics Data System (ADS)
De Simone, Francesca; Goldmann, Lutz; Lee, Jong-Seok; Ebrahimi, Touradj; Baroncini, Vittorio
2010-08-01
This paper describes the details and the results of the subjective quality evaluation performed at EPFL, as a contribution to the effort of the Joint Collaborative Team on Video Coding (JCT-VC) for the definition of the next-generation video coding standard. The performance of 27 coding technologies have been evaluated with respect to two H.264/MPEG-4 AVC anchors, considering high definition (HD) test material. The test campaign involved a total of 494 naive observers and took place over a period of four weeks. While similar tests have been conducted as part of the standardization process of previous video coding technologies, the test campaign described in this paper is by far the most extensive in the history of video coding standardization. The obtained subjective quality scores show high consistency and support an accurate comparison of the performance of the different coding solutions.
Solidification/stabilization (S/S) technology is widely used in the treatment of hazardous waste and contaminated soil in the US. In a project sponsored by the US Navy and the USEPA, treatability test data were compiled into a data base listing contaminant concentration and matri...
Effective Secondary Science Programs: A Best-Evidence Synthesis
ERIC Educational Resources Information Center
Cheung, Alan; Slavin, Robert E.; Lake, Cynthia; Kim, Elizabeth
2016-01-01
Despite widespread recognition among policy makers, educational leaders, and the nation as a whole of the importance of science, engineering, and technology as drivers of the future of the country and society, the science achievement of America's students is mediocre at best, in comparison to that of international peers. On the 2012 PISA tests in…
Full Scale Alternative Catalyst Testing for Bosch Reactor Optimization
NASA Technical Reports Server (NTRS)
Barton, Katherine; Abney, Morgan B.
2011-01-01
Current air revitalization technology onboard the International Space Station (ISS) cannot provide complete closure of the oxygen and hydrogen loops. This makes re-supply necessary, which is possible for missions in low Earth orbit (LEO) like the ISS, but unviable for long term space missions outside LEO. In comparison, Bosch technology reduces carbon dioxide with hydrogen, traditionally over a steel wool catalyst, to create water and solid carbon. The Bosch product water can then be fed to the oxygen generation assembly to produce oxygen for crew members and hydrogen necessary to reduce more carbon dioxide. Bosch technology can achieve complete oxygen loop closure, but has many undesirable factors that result in a high energy, mass, and volume system. Finding a different catalyst with an equal reaction rate at lower temperatures with less catalyst mass and longer lifespan would make a Bosch flight system more feasible. Developmental testing of alternative catalysts for the Bosch has been performed using the Horizontal Bosch Test Stand. Nickel foam, nickel shavings, and cobalt shavings were tested at 500 C and compared to the original catalyst, steel wool. This paper presents data and analysis on the performance of each catalyst tested at comparable temperatures and recycle flow rates.
2008-09-01
values for nuclear explosions at the Semipalatinsk Test Site (STS) will be inferred in the same way they were for NTS. Comparisons between K values...K > ~3 in Poisson media. Most Nevada Test Site (NTS) observations support ~1 < K < 3, and as such the new model predicts lower Ms compared to the...explosions at the two test sites and for two different containment rules are summarized in Table 1 below. F1 is found to be positive for NTS, as we
Design assessment of a 150 kWt CFBC Test Unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batu, A.; Selcuk, N.; Kulah, G.
2010-04-15
For clean and efficient energy generation from coal, the most suitable technology known to date is 'Fluidized Bed Combustion' technology. Applications of circulating fluidized bed (CFB) combustion technology have been steadily increasing in both capacity and number over the past decade. Designs of these units have been based on the combustion tests carried out in pilot scale facilities to determine the combustion and desulfurization characteristics of coal and limestone reserves in CFB conditions. Similarly, utilization of Turkish lignites in CFB boilers necessitates adaptation of CFB combustion technology to these resources. However, the design of these test units are not basedmore » on firing coals with high ash, volatile matter and sulfur contents like Turkish lignites. For this purpose, a 150 kWt CFB combustor test unit is designed and constructed in Chemical Engineering Department of Middle East Technical University, based on the extensive experience acquired at the existing 0.3 MWt Bubbling Atmospheric Fluidized Bed Combustor (AFBC) Test Rig. Following the commissioning tests, a combustion test is carried out for investigation of combustion characteristics of Can lignite in CFB conditions and for assessment of the design of test unit. Comparison of the design outputs with experimental results reveals that most of the predictions and assumptions have acceptable agreement with the operating conditions. In conclusion, the performance of 150 kWt CFBC Test Unit is found to be satisfactory to be utilized for the long term research studies on combustion and desulfurization characteristics of indigenous lignite reserves in circulating fluidized bed combustors. (author)« less
Results of advanced battery technology evaluations for electric vehicle applications
NASA Astrophysics Data System (ADS)
Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.
1992-10-01
Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis and Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during 1991-1992 on both single cells and multi-cell modules that encompass eight battery technologies (Na/S, Li/MS (M=metal), Ni/MH, Ni/Cd, Ni/Zn, Ni/Fe, Zn/Br, and Pb-acid). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most-promising R&D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R&D programs, a comparison of battery technologies, and basic data for modeling.
Dobnik, David; Demšar, Tina; Huber, Ingrid; Gerdes, Lars; Broeders, Sylvia; Roosens, Nancy; Debode, Frederic; Berben, Gilbert; Žel, Jana
2018-01-01
Digital PCR (dPCR), as a new technology in the field of genetically modified (GM) organism (GMO) testing, enables determination of absolute target copy numbers. The purpose of our study was to test the transferability of methods designed for quantitative PCR (qPCR) to dPCR and to carry out an inter-laboratory comparison of the performance of two different dPCR platforms when determining the absolute GM copy numbers and GM copy number ratio in reference materials certified for GM content in mass fraction. Overall results in terms of measured GM% were within acceptable variation limits for both tested dPCR systems. However, the determined absolute copy numbers for individual genes or events showed higher variability between laboratories in one third of the cases, most possibly due to variability in the technical work, droplet size variability, and analysis of the raw data. GMO quantification with dPCR and qPCR was comparable. As methods originally designed for qPCR performed well in dPCR systems, already validated qPCR assays can most generally be used for dPCR technology with the purpose of GMO detection. Graphical abstract The output of three different PCR-based platforms was assessed in an inter-laboratory comparison.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, P. A.; van Wingerden, J. W.; Wright, A. D.
2011-12-01
This paper presents the structure of an ongoing controller comparison experiment at NREL's National Wind Technology Center; the design process for the two controllers compared in this phase of the experiment, and initial comparison results obtained in field-testing. The intention of the study is to demonstrate the advantage of using modern multivariable methods for designing control systems for wind turbines versus conventional approaches. We will demonstrate the advantages through field-test results from experimental turbines located at the NWTC. At least two controllers are being developed side-by-side to meet an incrementally increasing number of turbine load-reduction objectives. The first, a multiplemore » single-input, single-output (m-SISO) approach, uses separately developed decoupled and classicially tuned controllers, which is, to the best of our knowledge, common practice in the wind industry. The remaining controllers are developed using state-space multiple-input and multiple-output (MIMO) techniques to explicity account for coupling between loops and to optimize given known frequency structures of the turbine and disturbance. In this first publication from the study, we present the structure of the ongoing controller comparison experiment, the design process for the two controllers compared in this phase, and initial comparison results obtained in field-testing.« less
Constellation Overview: Ares V Solar System Science Workshop
NASA Technical Reports Server (NTRS)
Horack, John M.
2008-01-01
Presentation topics include: what is NASA's mission, why the Moon next, options for Moon landings, NASA's exploration roadmap, building on a foundation of proven technologies - launch vehicle comparisons, Ares nationwide team, Ares I elements, vehicle integration accomplishments, Aires I-X test flight, Ares I-X accomplishments, Orion crew exploration vehicle, Altair lunar lander, and Ares V elements.
ERIC Educational Resources Information Center
Maza, Paul Sadiri
2010-01-01
In recent years, technological advances such as computers have been employed in teaching gross anatomy at all levels of education, even in professional schools such as medical and veterinary medical colleges. Benefits of computer based instructional tools for gross anatomy include the convenience of not having to physically view or dissect a…
ERIC Educational Resources Information Center
Nissim, Yonit; Weissblueth, Eyal; Scott-Webber, Lennie; Amar, Shimon
2016-01-01
We investigated the effect of an innovative technology-supported learning environment on pre-service student teachers' motivation and 21st century skills. Students and instructors filled-in the Active Learning Post Occupancy Evaluation (AL-POE) questionnaire. Analysis included tests for individual items and a comparison of the overall mean,…
ERIC Educational Resources Information Center
Temple, V.; Drummond, C.; Valiquette, S.; Jozsvai, E.
2010-01-01
Background: Video conferencing (VC) technology has great potential to increase accessibility to healthcare services for those living in rural or underserved communities. Previous studies have had some success in validating a small number of psychological tests for VC administration; however, VC has not been investigated for use with persons with…
ERIC Educational Resources Information Center
Frantz, Kyle J.; Demetrikopoulos, Melissa K.; Britner, Shari L.; Carruth, Laura L.; Williams, Brian A.; Pecore, John L.; DeHaan, Robert L.; Goode, Christopher T.
2017-01-01
Undergraduate research experiences confer benefits on students bound for science, technology, engineering, and mathematics (STEM) careers, but the low number of research professionals available to serve as mentors often limits access to research. Within the context of our summer research program (BRAIN), we tested the hypothesis that a team-based…
Development of a Risk-Based Comparison Methodology of Carbon Capture Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engel, David W.; Dalton, Angela C.; Dale, Crystal
2014-06-01
Given the varying degrees of maturity among existing carbon capture (CC) technology alternatives, an understanding of the inherent technical and financial risk and uncertainty associated with these competing technologies is requisite to the success of carbon capture as a viable solution to the greenhouse gas emission challenge. The availability of tools and capabilities to conduct rigorous, risk–based technology comparisons is thus highly desirable for directing valuable resources toward the technology option(s) with a high return on investment, superior carbon capture performance, and minimum risk. To address this research need, we introduce a novel risk-based technology comparison method supported by anmore » integrated multi-domain risk model set to estimate risks related to technological maturity, technical performance, and profitability. Through a comparison between solid sorbent and liquid solvent systems, we illustrate the feasibility of estimating risk and quantifying uncertainty in a single domain (modular analytical capability) as well as across multiple risk dimensions (coupled analytical capability) for comparison. This method brings technological maturity and performance to bear on profitability projections, and carries risk and uncertainty modeling across domains via inter-model sharing of parameters, distributions, and input/output. The integration of the models facilitates multidimensional technology comparisons within a common probabilistic risk analysis framework. This approach and model set can equip potential technology adopters with the necessary computational capabilities to make risk-informed decisions about CC technology investment. The method and modeling effort can also be extended to other industries where robust tools and analytical capabilities are currently lacking for evaluating nascent technologies.« less
NASA Technical Reports Server (NTRS)
Baker, L. R.; Sulyma, P. R.; Tevepaugh, J. A.; Penny, M. M.
1976-01-01
Since exhaust plumes affect vehicle base environment (pressure and heat loads) and the orbiter vehicle aerodynamic control surface effectiveness, an intensive program involving detailed analytical and experimental investigations of the exhaust plume/vehicle interaction was undertaken as a pertinent part of the overall space shuttle development program. The program, called the Plume Technology program, has as its objective the determination of the criteria for simulating rocket engine (in particular, space shuttle propulsion system) plume-induced aerodynamic effects in a wind tunnel environment. The comprehensive experimental program was conducted using test facilities at NASA's Marshall Space Flight Center and Ames Research Center. A post-test examination of some of the experimental results obtained from NASA-MSFC's 14 x 14-inch trisonic wind tunnel is presented. A description is given of the test facility, simulant gas supply system, nozzle hardware, test procedure and test matrix. Analysis of exhaust plume flow fields and comparison of analytical and experimental exhaust plume data are presented.
A Super-Resolution Algorithm for Enhancement of FLASH LIDAR Data: Flight Test Results
NASA Technical Reports Server (NTRS)
Bulyshev, Alexander; Amzajerdian, Farzin; Roback, Eric; Reisse Robert
2014-01-01
This paper describes the results of a 3D super-resolution algorithm applied to the range data obtained from a recent Flash Lidar helicopter flight test. The flight test was conducted by the NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) project over a simulated lunar terrain facility at NASA Kennedy Space Center. ALHAT is developing the technology for safe autonomous landing on the surface of celestial bodies: Moon, Mars, asteroids. One of the test objectives was to verify the ability of 3D super-resolution technique to generate high resolution digital elevation models (DEMs) and to determine time resolved relative positions and orientations of the vehicle. 3D super-resolution algorithm was developed earlier and tested in computational modeling, and laboratory experiments, and in a few dynamic experiments using a moving truck. Prior to the helicopter flight test campaign, a 100mX100m hazard field was constructed having most of the relevant extraterrestrial hazard: slopes, rocks, and craters with different sizes. Data were collected during the flight and then processed by the super-resolution code. The detailed DEM of the hazard field was constructed using independent measurement to be used for comparison. ALHAT navigation system data were used to verify abilities of super-resolution method to provide accurate relative navigation information. Namely, the 6 degree of freedom state vector of the instrument as a function of time was restored from super-resolution data. The results of comparisons show that the super-resolution method can construct high quality DEMs and allows for identifying hazards like rocks and craters within the accordance of ALHAT requirements.
A super-resolution algorithm for enhancement of flash lidar data: flight test results
NASA Astrophysics Data System (ADS)
Bulyshev, Alexander; Amzajerdian, Farzin; Roback, Eric; Reisse, Robert
2013-03-01
This paper describes the results of a 3D super-resolution algorithm applied to the range data obtained from a recent Flash Lidar helicopter flight test. The flight test was conducted by the NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) project over a simulated lunar terrain facility at NASA Kennedy Space Center. ALHAT is developing the technology for safe autonomous landing on the surface of celestial bodies: Moon, Mars, asteroids. One of the test objectives was to verify the ability of 3D super-resolution technique to generate high resolution digital elevation models (DEMs) and to determine time resolved relative positions and orientations of the vehicle. 3D super-resolution algorithm was developed earlier and tested in computational modeling, and laboratory experiments, and in a few dynamic experiments using a moving truck. Prior to the helicopter flight test campaign, a 100mX100m hazard field was constructed having most of the relevant extraterrestrial hazard: slopes, rocks, and craters with different sizes. Data were collected during the flight and then processed by the super-resolution code. The detailed DEM of the hazard field was constructed using independent measurement to be used for comparison. ALHAT navigation system data were used to verify abilities of super-resolution method to provide accurate relative navigation information. Namely, the 6 degree of freedom state vector of the instrument as a function of time was restored from super-resolution data. The results of comparisons show that the super-resolution method can construct high quality DEMs and allows for identifying hazards like rocks and craters within the accordance of ALHAT requirements.
Development of low cost custom hybrid microcircuit technology
NASA Technical Reports Server (NTRS)
Perkins, K. L.; Licari, J. J.
1981-01-01
Selected potentially low cost, alternate packaging and interconnection techniques were developed and implemented in the manufacture of specific NASA/MSFC hardware, and the actual cost savings achieved by their use. The hardware chosen as the test bed for this evaluation ws the hybrids and modules manufactured by Rockwell International fo the MSFC Flight Accelerometer Safety Cut-Off System (FASCOS). Three potentially low cost packaging and interconnection alternates were selected for evaluation. This study was performed in three phases: hardware fabrication and testing, cost comparison, and reliability evaluation.
Powdered Magnesium-Carbon Dioxide Rocket Combustion Technology for In Situ Mars Propulsion
NASA Technical Reports Server (NTRS)
Foote, J. P.; Litchford, R. J.
2007-01-01
Powdered magnesium (Mg) carbon dioxide (CO2) combustion is examined as a potential in situ propellant combination for Mars propulsion. Although this particular combination has relatively low performance in comparison to traditional bipropellants, it remains attractive as a potential basis for future martian mobility systems, since it could be partially or wholly manufactured from indigenous planetary resources. As a means of achieving high mobility during long-duration Mars exploration missions, the poorer performing in situ combination can, in fact, become a superior alternative to conventional storable propellants, which would need to be entirely transported from Earth. Thus, the engineering aspects of powdered metal combustion devices are discussed including transport/injection of compacted powder, ignition, combustion efficiency, combustion stability, dilution effects, lean burn limits, and slag formation issues. It is suggested that these technological issues could be effectively addressed through a multiphase research and development effort beginning with basic feasibility tests using an existing dump configured atmospheric pressure burner. Follow-on phases would involve the development and testing of a pressurized research combustor and technology demonstration tests of a prototypical rocket configuration.
Application of additive laser technologies in the gas turbine blades design process
NASA Astrophysics Data System (ADS)
Shevchenko, I. V.; Rogalev, A. N.; Osipov, S. K.; Bychkov, N. M.; Komarov, I. I.
2017-11-01
An emergence of modern innovative technologies requires delivering new and modernization existing design and production processes. It is especially relevant for designing the high-temperature turbines of gas turbine engines, development of which is characterized by a transition to higher parameters of working medium in order to improve their efficient performance. A design technique for gas turbine blades based on predictive verification of thermal and hydraulic models of their cooling systems by testing of a blade prototype fabricated using the selective laser melting technology was presented in this article. Technique was proven at the time of development of the first stage blade cooling system for the high-pressure turbine. An experimental procedure for verification of a thermal model of the blades with convective cooling systems based on the comparison of heat-flux density obtained from the numerical simulation data and results of tests in a liquid-metal thermostat was developed. The techniques makes it possible to obtain an experimentally tested blade version and to exclude its experimental adjustment after the start of mass production.
NASA Astrophysics Data System (ADS)
Silvernail, Nathan L.
This research was carried out in collaboration with the United Launch Alliance (ULA), to advance an innovative Centaur-based on-orbit propellant storage and transfer system that takes advantage of rotational settling to simplify Fluid Management (FM), specifically enabling settled fluid transfer between two tanks and settled pressure control. This research consists of two specific objectives: (1) technique and process validation and (2) computational model development. In order to raise the Technology Readiness Level (TRL) of this technology, the corresponding FM techniques and processes must be validated in a series of experimental tests, including: laboratory/ground testing, microgravity flight testing, suborbital flight testing, and orbital testing. Researchers from Embry-Riddle Aeronautical University (ERAU) have joined with the Massachusetts Institute of Technology (MIT) Synchronized Position Hold Engage and Reorient Experimental Satellites (SPHERES) team to develop a prototype FM system for operations aboard the International Space Station (ISS). Testing of the integrated system in a representative environment will raise the FM system to TRL 6. The tests will demonstrate the FM system and provide unique data pertaining to the vehicle's rotational dynamics while undergoing fluid transfer operations. These data sets provide insight into the behavior and physical tendencies of the on-orbit refueling system. Furthermore, they provide a baseline for comparison against the data produced by various computational models; thus verifying the accuracy of the models output and validating the modeling approach. Once these preliminary models have been validated, the parameters defined by them will provide the basis of development for accurate simulations of full scale, on-orbit systems. The completion of this project and the models being developed will accelerate the commercialization of on-orbit propellant storage and transfer technologies as well as all in-space technologies that utilize or will utilize similar FM techniques and processes.
Comparison of Exams for Active Learning Technologies vs. Traditional Lectures
NASA Astrophysics Data System (ADS)
Hornstra, Andrew; Djordjevic, Branislav; Dworzecka, Maria
2017-01-01
George Mason University has first semester (PHYS-160) and second semester (PHYS-260) physics course which consist of two sections. One is a traditional lecture style format (TRAD) and the other is a newer format which is a take on the ``flipped'' classroom. This newer style is referred to as Active Learning with Technologies (ALT). This course style has been in place for several years and has been studied before within George Mason University for final grade differences. These studies suggested that the ALT sections performed better, but grade weighting consistency, test time, and test content were not strictly controlled. The purpose of this study is to cross-examine the performance of students in these different class formats during Fall 2016 (PHYS-260) and Spring 2015 (PHYS-160) on very nearly identical exams over identical test times while controlling for almost every variable.
Near-field measurement facility plans at Lewis Research Center
NASA Technical Reports Server (NTRS)
Sharp, R. G.
1983-01-01
The direction of future antenna technology will be toward antennas which are large, both physically and electrically, will operate at frequencies up to 60 GHz, and are non-reciprocal and complex, implementing multiple-beam and scanning beam concepts and monolithic semiconductor devices and techniques. The acquisition of accurate antenna performance measurements is a critical part of the advanced antenna research program and represents a substantial antenna measurement technology challenge, considering the special characteristics of future spacecraft communications antennas. Comparison of various antenna testing techniques and their relative advantages and disadvantages shows that the near-field approach is necessary to meet immediate and long-term testing requirements. The LeRC facilities, the 22 ft x 22 ft horizontal antenna boresight planar scanner and the 60 ft x 60 ft vertical antenna boresight plant scanner (with a 60 GHz frequency and D/lamdba = 3000 electrical size capabilities), will meet future program testing requirements.
Digital antimicrobial susceptibility testing using the MilliDrop technology.
Jiang, L; Boitard, L; Broyer, P; Chareire, A-C; Bourne-Branchu, P; Mahé, P; Tournoud, M; Franceschi, C; Zambardi, G; Baudry, J; Bibette, J
2016-03-01
We present the MilliDrop Analyzer (MDA), a droplet-based millifluidic system for digital antimicrobial susceptibility testing (D-AST), which enables us to determine minimum inhibitory concentrations (MICs) precisely and accurately. The MilliDrop technology was validated by using resazurin for fluorescence readout, for comparison with standard methodology, and for conducting reproducibility studies. In this first assessment, the susceptibility of a reference Gram-negative strain Escherichia coli ATCC 25922 to gentamicin, chloramphenicol, and nalidixic acid were tested by the MDA, VITEK®2, and broth microdilution as a reference standard. We measured the susceptibility of clinically relevant Gram-positive strains of Staphylococcus aureus to vancomycin, including vancomycin-intermediate S. aureus (VISA), heterogeneous vancomycin-intermediate S. aureus (hVISA), and vancomycin-susceptible S. aureus (VSSA) strains. The MDA provided results which were much more accurate than those of VITEK®2 and standard broth microdilution. The enhanced accuracy enabled us to reliably discriminate between VSSA and hVISA strains.
NASA Astrophysics Data System (ADS)
Belyaev, N.; Cherry, M. L.; Doronin, S. A.; Filippov, K.; Fusco, P.; Konovalov, S.; Krasnopevtsev, D.; Kramarenko, V.; Loparco, F.; Mazziotta, M. N.; Ponomarenko, D.; Pyatiizbyantseva, D.; Radomskii, R.; Rembser, C.; Romaniouk, A.; Savchenko, A.; Shulga, E.; Smirnov, S.; Smirnov, Yu; Sosnovtsev, V.; Spinelli, P.; Teterin, P.; Tikhomirov, V.; Vorobev, K.; Zhukov, K.
2017-12-01
Measurements of hadron production in the TeV energy range are one of the tasks of the future studies at the Large Hadron Collider (LHC). The main goal of these experiments is a study of the fundamental QCD processes at this energy range, which is very important not only for probing of the Standard Model but also for ultrahigh-energy cosmic particle physics. One of the key elements of these experiments measurements are hadron identification. The only detector technology which has a potential ability to separate hadrons in this energy range is Transition Radiation Detector (TRD) technology. TRD prototype based on straw proportional chambers combined with a specially assembled radiator has been tested at the CERN SPS accelerator beam. The test beam results and comparison with detailed Monte Carlo simulations are presented here.
Kalman, Lisa V.; Lubin, Ira M.; Barker, Shannon; du Sart, Desiree; Elles, Rob; Grody, Wayne W.; Pazzagli, Mario; Richards, Sue; Schrijver, Iris; Zehnbauer, Barbara
2015-01-01
Context Participation in proficiency testing (PT) or external quality assessment (EQA) programs allows the assessment and comparison of test performance among different clinical laboratories and technologies. In addition to the approximately 2300 tests for individual genetic disorders, recent advances in technology have enabled the development of clinical tests which quickly and economically analyze the entire human genome. New PT/EQA approaches are needed to ensure the continued quality of these complex tests. Objective To review the availability and scope of PT/EQA for molecular genetic testing for inherited conditions in Europe, Australasia and the United States; to evaluate the successes and demonstrated value of available PT/EQA programs; and to examine the challenges to the provision of comprehensive PT/EQA posed by new laboratory practices and methodologies. Data Sources The available literature on this topic was reviewed and supplemented with personal experiences of several PT/EQA providers. Conclusions PT/EQA schemes are available for common genetic disorders tested in many clinical laboratories, but are not available for most genetic tests offered by only one or a few laboratories. Provision of broad, method-based PT schemes, such as DNA sequencing, would allow assessment of a large number of tests for which formal PT is not currently available. Participation in PT/EQA improves the quality of testing by identifying inaccuracies that laboratories can trace to errors in the testing process. Areas of research and development to ensure that PT/EQA programs can meet the needs of new and evolving genetic tests and technologies are identified and discussed. PMID:23808472
NASA Astrophysics Data System (ADS)
Tarigan, Johannes; Meka, Randi; Nursyamsi
2018-03-01
Fiber Reinforcement Polymer has been used as a material technology since the 1970s in Europe. Fiber Reinforcement Polymer can reinforce the structure externally, and used in many types of buildings like beams, columns, and slabs. It has high tensile strength. Fiber Reinforcement Polymer also has high rigidity and strength. The profile of Fiber Reinforcement Polymer is thin and light, installation is simple to conduct. One of Fiber Reinforcement Polymer material is Carbon Fiber Reinforcement Polymer and Glass Fiber Reinforcement Polymer. These materials is tested when it is installed on concrete cylinders, to obtain the comparison of compressive strength CFRP and GFRP. The dimension of concrete is diameter of 15 cm and height of 30 cm. It is amounted to 15 and divided into three groups. The test is performed until it collapsed to obtain maximum load. The results of research using CFRP and GFRP have shown the significant enhancement in compressive strength. CFRP can increase the compressive strength of 26.89%, and GFRP of 14.89%. For the comparison of two materials, CFRP is more strengthening than GFRP regarding increasing compressive strength. The usage of CFRP and GFRP can increase the loading capacity.
Link, Manuela; Schmid, Christina; Pleus, Stefan; Baumstark, Annette; Rittmeyer, Delia; Haug, Cornelia; Freckmann, Guido
2015-04-14
The standard ISO (International Organization for Standardization) 15197 is widely accepted for the accuracy evaluation of systems for self-monitoring of blood glucose (SMBG). Accuracy evaluation was performed for 4 SMBG systems (Accu-Chek Aviva, ContourXT, GlucoCheck XL, GlucoMen LX PLUS) with 3 test strip lots each. To investigate a possible impact of the comparison method on system accuracy data, 2 different established methods were used. The evaluation was performed in a standardized manner following test procedures described in ISO 15197:2003 (section 7.3). System accuracy was assessed by applying ISO 15197:2003 and in addition ISO 15197:2013 criteria (section 6.3.3). For each system, comparison measurements were performed with a glucose oxidase (YSI 2300 STAT Plus glucose analyzer) and a hexokinase (cobas c111) method. All 4 systems fulfilled the accuracy requirements of ISO 15197:2003 with the tested lots. More stringent accuracy criteria of ISO 15197:2013 were fulfilled by 3 systems (Accu-Chek Aviva, ContourXT, GlucoMen LX PLUS) when compared to the manufacturer's comparison method and by 2 systems (Accu-Chek Aviva, ContourXT) when compared to the alternative comparison method. All systems showed lot-to-lot variability to a certain degree; 2 systems (Accu-Chek Aviva, ContourXT), however, showed only minimal differences in relative bias between the 3 evaluated lots. In this study, all 4 systems complied with the evaluated test strip lots with accuracy criteria of ISO 15197:2003. Applying ISO 15197:2013 accuracy limits, differences in the accuracy of the tested systems were observed, also demonstrating that the applied comparison method/system and the lot-to-lot variability can have a decisive influence on accuracy data obtained for a SMBG system. © 2015 Diabetes Technology Society.
A Comparison of Technology Education Programs in Eight Asia-Pacific Countries.
ERIC Educational Resources Information Center
Lee, Lung-Sheng
To improve technology education in Taiwan and promote understanding of international technology education, technology education programs in Australia, Japan, Korea, Mainland China, Malaysia, New Zealand, the Philippines, and Taiwan were compared. A four-stage comparative approach (description, interpretation, juxtaposition, comparison) was used.…
The Advancing State of AF-M315E Technology
NASA Technical Reports Server (NTRS)
Masse, Robert; Spores, Ronald A.; McLean, Chris
2014-01-01
The culmination of twenty years of applied research in hydroxyl ammonium nitrate (HAN)-based monopropellants, the NASA Space Technology mission Directorate's (STMD) Green Propellant Infusion Mission (GPIM) will achieve the first on-orbit demonstration of an operational AF-M315E green propellant propulsion system by the end of 2015. Following an contextual overview of the completed flight design of the GPIM propellant storage and feed system, results of first operation of a flight-representative heavyweight 20-N engineering model thruster (to be conducted in mid-2014) are presented with performance comparisons to prior lab model (heavyweight) test articles.
Temple, V; Drummond, C; Valiquette, S; Jozsvai, E
2010-06-01
Video conferencing (VC) technology has great potential to increase accessibility to healthcare services for those living in rural or underserved communities. Previous studies have had some success in validating a small number of psychological tests for VC administration; however, VC has not been investigated for use with persons with intellectual disabilities (ID). A comparison of test results for two well known and widely used assessment instruments was undertaken to establish if scores for VC administration would differ significantly from in-person assessments. Nineteen individuals with ID aged 23-63 were assessed once in-person and once over VC using the Wechsler Abbreviated Scale of Intelligence (WASI) and the Beery-Buktenica Test of Visual-Motor Integration (VMI). Highly similar results were found for test scores. Full-scale IQ on the WASI and standard scores for the VMI were found to be very stable across the two administration conditions, with a mean difference of less than one IQ point/standard score. Video conferencing administration does not appear to alter test results significantly for overall score on a brief intelligence test or a test of visual-motor integration.
The current status of microscopical hair comparisons.
Rowe, W F
2001-12-08
Although the microscopical comparison of human hairs has been accepted in courts of law for over a century, recent advances in DNA technology have called this type of forensic examination into question. In a number of cases, post-conviction DNA testing has exonerated defendants who were convicted in part on the results of microscopical hair comparisons. A federal judge has held a Daubert hearing on the microscopical comparison of human hairs and has concluded that this type of examination does not meet the criteria for admission of scientific evidence in federal courts. A review of the available scientific literature on microscopical hair comparisons (including studies conducted by the Royal Canadian Mounted Police and the Federal Bureau of Investigation) leads to three conclusions: (1) microscopical comparisons of human hairs can yield scientifically defensible conclusions that can contribute to criminal investigations and criminal prosecutions, (2) the reliability of microscopical hair comparisons is strongly affected by the training of the forensic hair examiner, (3) forensic hair examiners cannot offer estimates of the probability of a match of a questioned hair with a hair from a randomly selected person. In order for microscopical hair examinations to survive challenges under the U.S. Supreme Court's Daubert decision, hair microscopists must be better trained and undergo frequent proficiency testing. More research on the error rates of microscopical hair comparisons should be undertaken, and guidelines for the permissible interpretations of such comparisons should be established. Until these issues have been addressed and satisfactorily resolved, microscopical hair comparisons should be regarded by law enforcement agencies and courts of law as merely presumptive in nature, and all microscopical hair comparisons should be confirmed by nuclear DNA profiling or mitochondrial DNA sequencing.
Lawrence Livermore National Laboratory ULTRA-350 Test Bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopkins, D J; Wulff, T A; Carlisle, K
2001-04-10
LLNL has many in-house designed high precision machine tools. Some of these tools include the Large Optics Diamond Turning Machine (LODTM) [1], Diamond Turning Machine No.3 (DTM-3) and two Precision Engineering Research Lathes (PERL-1 and PERL-11). These machines have accuracy in the sub-micron range and in most cases position resolution in the couple of nanometers range. All of these machines are built with similar underlying technologies. The machines use capstan drive technology, laser interferometer position feedback, tachometer velocity feedback, permanent magnet (PM) brush motors and analog velocity and position loop servo compensation [2]. The machine controller does not perform anymore » servo compensation it simply computes the differences between the commanded position and the actual position (the following error) and sends this to a D/A for the analog servo position loop. LLNL is designing a new high precision diamond turning machine. The machine is called the ULTRA 350 [3]. In contrast to many of the proven technologies discussed above, the plan for the new machine is to use brushless linear motors, high precision linear scales, machine controller motor commutation and digital servo compensation for the velocity and position loops. Although none of these technologies are new and have been in use in industry, applications of these technologies to high precision diamond turning is limited. To minimize the risks of these technologies in the new machine design, LLNL has established a test bed to evaluate these technologies for application in high precision diamond turning. The test bed is primarily composed of commercially available components. This includes the slide with opposed hydrostatic bearings, the oil system, the brushless PM linear motor, the two-phase input three-phase output linear motor amplifier and the system controller. The linear scales are not yet commercially available but use a common electronic output format. As of this writing, the final verdict for the use of these technologies is still out but the first part of the work has been completed with promising results. The goal of this part of the work was to close a servo position loop around a slide incorporating these technologies and to measure the performance. This paper discusses the tests that were setup for system evaluation and the results of the measurements made. Some very promising results include; slide positioning to nanometer level and slow speed slide direction reversal at less than 100nm/min with no observed discontinuities. This is very important for machine contouring in diamond turning. As a point of reference, at 100 nm/min it would take the slide almost 7 years to complete the full designed travel of 350 mm. This speed has been demonstrated without the use of a velocity sensor. The velocity is derived from the position sensor. With what has been learned on the test bed, the paper finishes with a brief comparison of the old and new technologies. The emphasis of this comparison will be on the servo performance as illustrated with bode plot diagrams.« less
Lawrence Livermore National Laboratory ULTRA-350 Test Bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopkins, D J; Wulff, T A; Carlisle, K
2001-04-10
LLNL has many in-house designed high precision machine tools. Some of these tools include the Large Optics Diamond Turning Machine (LODTM) [1], Diamond Turning Machine No.3 (DTM-3) and two Precision Engineering Research Lathes (PERL-I and PERL-II). These machines have accuracy in the sub-micron range and in most cases position resolution in the couple of nanometers range. All of these machines are built with similar underlying technologies. The machines use capstan drive technology, laser interferometer position feedback, tachometer velocity feedback, permanent magnet (PM) brush motors and analog velocity and position loop servo compensation [2]. The machine controller does not perform anymore » servo compensation it simply computes the differences between the commanded position and the actual position (the following error) and sends this to a D/A for the analog servo position loop. LLNL is designing a new high precision diamond turning machine. The machine is called the ULTRA 350 [3]. In contrast to many of the proven technologies discussed above, the plan for the new machine is to use brushless linear motors, high precision linear scales, machine controller motor commutation and digital servo compensation for the velocity and position loops. Although none of these technologies are new and have been in use in industry, applications of these technologies to high precision diamond turning is limited. To minimize the risks of these technologies in the new machine design, LLNL has established a test bed to evaluate these technologies for application in high precision diamond turning. The test bed is primarily composed of commercially available components. This includes the slide with opposed hydrostatic bearings, the oil system, the brushless PM linear motor, the two-phase input three-phase output linear motor amplifier and the system controller. The linear scales are not yet commercially available but use a common electronic output format. As of this writing, the final verdict for the use of these technologies is still out but the first part of the work has been completed with promising results. The goal of this part of the work was to close a servo position loop around a slide incorporating these technologies and to measure the performance. This paper discusses the tests that were setup for system evaluation and the results of the measurements made. Some very promising results include; slide positioning to nanometer level and slow speed slide direction reversal at less than 100nm/min with no observed discontinuities. This is very important for machine contouring in diamond turning. As a point of reference, at 100 nm/min it would take the slide almost 7 years to complete the full designed travel of 350 mm. This speed has been demonstrated without the use of a velocity sensor. The velocity is derived from the position sensor. With what has been learned on the test bed, the paper finishes with a brief comparison of the old and new technologies. The emphasis of this comparison will be on the servo performance as illustrated with bode plot diagrams.« less
Schweitzer, Wolf; Thali, Michael J; Egger, David
2018-01-03
Prosthetic arm research predominantly focuses on "bionic" but not body-powered arms. However, any research orientation along user needs requires sufficiently precise workplace specifications and sufficiently hard testing. Forensic medicine is a demanding environment, also physically, also for non-disabled people, on several dimensions (e.g., distances, weights, size, temperature, time). As unilateral below elbow amputee user, the first author is in a unique position to provide direct comparison of a "bionic" myoelectric iLimb Revolution (Touch Bionics) and a customized body-powered arm which contains a number of new developments initiated or developed by the user: (1) quick lock steel wrist unit; (2) cable mount modification; (3) cast shape modeled shoulder anchor; (4) suspension with a soft double layer liner (Ohio Willowwood) and tube gauze (Molnlycke) combination. The iLimb is mounted on an epoxy socket; a lanyard fixed liner (Ohio Willowwood) contains magnetic electrodes (Liberating Technologies). An on the job usage of five years was supplemented with dedicated and focused intensive two-week use tests at work for both systems. The side-by-side comparison showed that the customized body-powered arm provides reliable, comfortable, effective, powerful as well as subtle service with minimal maintenance; most notably, grip reliability, grip force regulation, grip performance, center of balance, component wear down, sweat/temperature independence and skin state are good whereas the iLimb system exhibited a number of relevant serious constraints. Research and development of functional prostheses may want to focus on body-powered technology as it already performs on manually demanding and heavy jobs whereas eliminating myoelectric technology's constraints seems out of reach. Relevant testing could be developed to help expediting this. This is relevant as Swiss disability insurance specifically supports prostheses that enable actual work integration. Myoelectric and cosmetic arm improvement may benefit from a less forgiving focus on perfecting anthropomorphic appearance.
Flori, Pierre; Delaunay, Edouard; Guillerme, Cécile; Charaoui, Sana; Raberin, Hélène; Hafid, Jamal; L'Ollivier, Coralie
2017-01-01
ABSTRACT A study comparing the ICT (immunochromatography technology) Toxoplasma IgG and IgM rapid diagnostic test (LDBio Diagnostics, France) with a fully automated system, Architect, was performed on samples from university hospitals of Marseille and Saint-Etienne. A total of 767 prospective sera and 235 selected sera were collected. The panels were selected to test various IgG and IgM parameters. The reference technique, Toxoplasma IgGII Western blot analysis (LDBio Diagnostics), was used to confirm the IgG results, and commercial kits Platelia Toxo IgM (Bio-Rad) and Toxo-ISAgA (bioMérieux) were used in Saint-Etienne and Marseille, respectively, as the IgM reference techniques. Sensitivity and specificity of the ICT and the Architect IgG assays were compared using a prospective panel. Sensitivity was 100% for the ICT test and 92.1% for Architect (cutoff at 1.6 IU/ml). The low-IgG-titer serum results confirmed that ICT sensitivity was superior to that of Architect. Specificity was 98.7% (ICT) and 99.8% (Architect IgG). The ICT test is also useful for detecting IgM without IgG and is both sensitive (100%) and specific (100%), as it can distinguish nonspecific IgM from specific Toxoplasma IgM. In comparison, IgM sensitivity and specificity on Architect are 96.1% and 99.6%, respectively (cutoff at 0.5 arbitrary units [AU]/ml). To conclude, this new test overcomes the limitations of automated screening techniques, which are not sensitive enough for IgG and lack specificity for IgM (rare IgM false-positive cases). PMID:28954897
Aircraft Operations Classification System
NASA Technical Reports Server (NTRS)
Harlow, Charles; Zhu, Weihong
2001-01-01
Accurate data is important in the aviation planning process. In this project we consider systems for measuring aircraft activity at airports. This would include determining the type of aircraft such as jet, helicopter, single engine, and multiengine propeller. Some of the issues involved in deploying technologies for monitoring aircraft operations are cost, reliability, and accuracy. In addition, the system must be field portable and acceptable at airports. A comparison of technologies was conducted and it was decided that an aircraft monitoring system should be based upon acoustic technology. A multimedia relational database was established for the study. The information contained in the database consists of airport information, runway information, acoustic records, photographic records, a description of the event (takeoff, landing), aircraft type, and environmental information. We extracted features from the time signal and the frequency content of the signal. A multi-layer feed-forward neural network was chosen as the classifier. Training and testing results were obtained. We were able to obtain classification results of over 90 percent for training and testing for takeoff events.
Automatic Collision Avoidance Technology (ACAT)
NASA Technical Reports Server (NTRS)
Swihart, Donald E.; Skoog, Mark A.
2007-01-01
This document represents two views of the Automatic Collision Avoidance Technology (ACAT). One viewgraph presentation reviews the development and system design of Automatic Collision Avoidance Technology (ACAT). Two types of ACAT exist: Automatic Ground Collision Avoidance (AGCAS) and Automatic Air Collision Avoidance (AACAS). The AGCAS Uses Digital Terrain Elevation Data (DTED) for mapping functions, and uses Navigation data to place aircraft on map. It then scans DTED in front of and around aircraft and uses future aircraft trajectory (5g) to provide automatic flyup maneuver when required. The AACAS uses data link to determine position and closing rate. It contains several canned maneuvers to avoid collision. Automatic maneuvers can occur at last instant and both aircraft maneuver when using data link. The system can use sensor in place of data link. The second viewgraph presentation reviews the development of a flight test and an evaluation of the test. A review of the operation and comparison of the AGCAS and a pilot's performance are given. The same review is given for the AACAS is given.
Considerations in the development of circulating tumor cell technology for clinical use
2012-01-01
This manuscript summarizes current thinking on the value and promise of evolving circulating tumor cell (CTC) technologies for cancer patient diagnosis, prognosis, and response to therapy, as well as accelerating oncologic drug development. Moving forward requires the application of the classic steps in biomarker development–analytical and clinical validation and clinical qualification for specific contexts of use. To that end, this review describes methods for interactive comparisons of proprietary new technologies, clinical trial designs, a clinical validation qualification strategy, and an approach for effectively carrying out this work through a public-private partnership that includes test developers, drug developers, clinical trialists, the US Food & Drug Administration (FDA) and the US National Cancer Institute (NCI). PMID:22747748
NIST-NRC Comparison of Total Immersion Liquid-in-Glass Thermometers
NASA Astrophysics Data System (ADS)
Hill, K. D.; Gee, D. J.; Cross, C. D.; Strouse, G. F.
2009-02-01
The use of liquid-in-glass (LIG) thermometers is described in many documentary standards in the fields of environmental testing, material testing, and material transfer. Many national metrology institutes, including the National Institute of Standards and Technology (NIST) and the National Research Council of Canada (NRC), list calibration services for these thermometers among the Calibration Measurement Capabilities of Appendix C of the BIPM Key Comparison Database. NIST and NRC arranged a bilateral comparison of a set of total-immersion ASTM-type LIG thermometers to validate their uncertainty claims. Two each of ASTM thermometer types 62C through 69C were calibrated at NIST and at NRC at four temperatures distributed over the range appropriate to each thermometer, in addition to the ice point. Collectively, the thermometers span a temperature range of - 38 °C to 305 °C. In total, 160 measurements (80 pairs) comprise the comparison data set. Pair-wise differences ( T NIST- T NRC) were formed for each thermometer at each temperature. For 8 of the 80 pairs (10 %), the differences exceed the k = 2 combined uncertainties. These results support the claimed capabilities of NIST and NRC for the calibration of LIG thermometers.
Comparison study and thoron interference test of different radon monitors.
Sumesh, C G; Kumar, A Vinod; Tripathi, R M; Puranik, V D
2013-03-01
A comparison study and thoron interference test for different continuous radon monitors were carried out. The comparison study includes three passive diffusion monitors [one pulse ionisation chamber based-Alpha Guard and two silicon semi-conductor based-Radon Scout Plus (RSP)] and one silicon semi-conductor-based active radon thoron discriminating monitor--RAD 7. Radon emanation standard, supplied by National Institute of Science and Technology, has been utilised for the comparison study to qualify the calibration of the continuous radon monitors. All the instruments showed good agreement with the estimated radon concentration using (226)Ra/(222)Rn emanation standard. It was found that the active radon monitoring system is having a higher initial response towards the transient radon concentration than the passive radon monitors studied. The instruments measuring radon concentration without energy discrimination are likely to have some sensitivity towards the thoron concentration. Thus, thoron interference study was carried out in the above monitors. Nine percent interference in measured radon concentration in the Alpha Guard monitor and 4 % interference in the semi-conductor-based RSP monitors was observed. Study indicates that the interference of thoron in radon monitors depends on the area of diffusion of gas, volume of detection and sensitivity factor.
Performance and life evaluation of advanced battery technologies for electric vehicle applications
NASA Astrophysics Data System (ADS)
Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.
Advanced battery technology evaluations are performed under simulated electric vehicle (EV) operating conditions at the Argonne Analysis and Diagnostic Laboratory (ADL). The ADL provides a common basis for both performance characterization and life evaluation with unbiased application of tests and analyses. This paper summarizes the performance characterizations and life evaluations conducted in 1990 on nine single cells and fifteen 3- to 360-cell modules that encompass six technologies: (Na/S, Zn/Br, Ni/Fe, Ni/Cd, Ni-metal hydride, and lead-acid). These evaluations were performed for the Department of Energy and Electric Power Research Institute. The results provide battery users, developers, and program managers an interim measure of the progress being made in battery R and D programs, a comparison of battery technologies, and a source of basic data for modelling and continuing R and D.
NASA Astrophysics Data System (ADS)
Lee, Hyunju; Longhurst, Max; Campbell, Todd
2017-07-01
This research investigated teacher learning and teacher beliefs in a two-year technology professional development (TPD) for teachers and its impact on their student achievement in science in the western part of the United States. Middle-school science teachers participated in TPD focused on information communication technologies (ICTs) and their applications in science inquiry pedagogy. Three self-reporting teacher instruments were used alongside their student achievement scores on the end-of-year state-science-test. The teacher self-reporting measures investigated technological literacy, ICT capabilities, and pedagogical beliefs about science inquiry pedagogy. Data were collected every year, and descriptive statistics, t-tests, and Pearson's correlations were used for analysis. We found teachers' technological skills and ICT capabilities increasing over time with significant gains each year. Additionally, teachers' pedagogical beliefs changed to become more science inquiry oriented over time; however, the gains were not significant until after the second year of TPD. Comparisons of teacher learning and belief measures with student achievement revealed that the students' performance was correlated to teachers' pedagogical beliefs about science inquiry, but not to their technological skills nor to their ICT capabilities. This research suggests that pedagogical considerations should be foregrounded in TPD and that this may require more longitudinal TPD to ensure that technology integration in science instruction is consequential to student learning.
Foliage Penetration Radar: History and Developed Technology
1974-05-01
26 M-FOPEN Antenna Mast with Delta- Loop Antennas 44 27 AB-577/GRC Antenna Mast Used to Extend the Range of the Man-Portable Radar 45 28 Base Station...Ground Control Unit 47 29 Base Station Tov.er with Delta- Loop Antennas 48 30 Test Configuration for the AN/fPS-5 Comparison Test and Tactical Exercise...00 UNDERGROW 1H TRANSMTTTING ANTENN . HEIG IT: 2 m 5(6- 13 m ) \\\\7 \\ Seo \\................ $A1 U, -< o\\ 31 I~ ~ A ,M\\;’ I10 31 ’•...GJ, FIGURE 3
NASA Technical Reports Server (NTRS)
Nicks, Oran W.; Korkan, Kenneth D.
1991-01-01
Two reports on student activities to determine the properties of a new laminar airfoil which were delivered at a conference on soaring technology are presented. The papers discuss a wind tunnel investigation and analysis of the SM701 airfoil and verification of the SM701 airfoil aerodynamic charcteristics utilizing theoretical techniques. The papers are based on a combination of analytical design, hands-on model fabrication, wind tunnel calibration and testing, data acquisition and analysis, and comparison of test results and theory.
Comparison of measurement methods for capacitive tactile sensors and their implementation
NASA Astrophysics Data System (ADS)
Tarapata, Grzegorz; Sienkiewicz, Rafał
2015-09-01
This paper presents a review of ideas and implementations of measurement methods utilized for capacity measurements in tactile sensors. The paper describes technical method, charge amplification method, generation and as well integration method. Three selected methods were implemented in dedicated measurement system and utilised for capacitance measurements of ourselves made tactile sensors. The tactile sensors tested in this work were fully fabricated with the inkjet printing technology. The tests result were presented and summarised. The charge amplification method (CDC) was selected as the best method for the measurement of the tactile sensors.
Borghini, Gianluca; Aricò, Pietro; Di Flumeri, Gianluca; Salinari, Serenella; Colosimo, Alfredo; Bonelli, Stefano; Napoletano, Linda; Ferreira, Ana; Babiloni, Fabio
2015-01-01
In this study, we investigated the possibility to evaluate the impact of different avionic technologies on the mental workload of helicopter's pilots by measuring their brain activity with the EEG during a series of simulated missions carried out at AgustaWestland facilities in Yeovil (UK). The tested avionic technologies were: i) Head-Up Display (HUD); ii) Head-Mounted Display (HMD); iii) Full Conformal symbology (FC); iv) Flight Guidance (FG) symbology; v) Synthetic Vision System (SVS); and vi) Radar Obstacles (RO) detection system. It has been already demonstrated that in cognitive tasks, when the cerebral workload increases the EEG power spectral density (PSD) in theta band over frontal areas increases, and the EEG PSD in alpha band decreases over parietal areas. A mental workload index (MWL) has been here defined as the ratio between the frontal theta and parietal alpha EEG PSD values. Such index has been used for testing and comparing the different avionic technologies. Results suggested that the HUD provided a significant (p<;.05) workload reduction across all the flight scenarios with respect to the other technologies. In addition, the simultaneous use of FC and FG technologies (FC+FG) produced a significant decrement of the workload (p<;.01) with respect to the use of only the FC. Moreover, the use of the SVS technology provided on Head Down Display (HDD) with the simultaneous use of FC+FG and the RO seemed to produce a lower cerebral workload when compared with the use of only the FC. Interestingly, the workload estimation by means of subjective measures, provided by pilots through a NASA-TLX questionnaire, did not provide any significant differences among the different flight scenarios. These results suggested that the proposed MWL cognitive neurometrics could be used as a reliable measure of the user's mental workload, being a valid indicator for the comparison and the test of different avionic technologies.
Manufacturing Methods and Technology Project Summary Reports
1984-06-01
was selected as the composite material. This selection was based upon the following advantages in comparison to aluminum: 0 Stiffness to weight...closer to titanium than aluminum. Other composite candidate materials considered ( glass , Kevlar and metal matrix) did not offer all of these...of the bearing support ring, and the attachment of the bearing support ring to the composite gimbal base plate. A thermal test structure, which
B.Z. Yang; R.D. Seale; R. Shmulsky; J. Dahlen; X. Wang
2017-01-01
The identification of strength-reducing characteristics that impact modulus of rupture (MOR) is a key differentiation between lumber grades. Because global design values for MOR are at the fifth percentile level and in-grade lumber can be highly variable, it is important that nondestructive evaluation technology be used to better discern the potential wood strength. In...
ERIC Educational Resources Information Center
Yu, Chong Ho
2012-01-01
Many American authors expressed their concern that US competitiveness in science, technology, engineering, and mathematics (STEM) is losing ground. Using the Trends in International Mathematics and Science Study (TIMSS) 2007 data, this study investigated how academic self-concept and instrumental motivation influence science test performance among…
On-Chip Hardware for Cell Monitoring: Contact Imaging and Notch Filtering
2005-07-07
a polymer carrier. Spectrophotometer chosen and purchased for testing optical filters and materials. Characterization and comparison of fabricated...reproducibility of behavior. Multi-level SU8 process developed. Optimization of actuator for closing vial lids and development of lid sealing technology is...bending angles characterized as a function of temperature in NaDBS solution. " Photopatternable polymers are a viable interim packaging solution; through
NASA Technical Reports Server (NTRS)
Feria, V. Alfonso; Lam, Jonathan; Van Buren, Dave
2006-01-01
This paper presents the studies carried out to determine the source of the surface distortions on the M1 mirror as well as comparison and model validation during testing. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
Stirling Convertor Performance Mapping Test Results for Future Radioisotope Power Systems
NASA Astrophysics Data System (ADS)
Qiu, Songgang; Peterson, Allen A.; Faultersack, Franklyn D.; Redinger, Darin L.; Augenblick, John E.
2004-02-01
Long-life radioisotope-fueled generators based on free-piston Stirling convertors are an energy-conversion solution for future space applications. The high efficiency of Stirling machines makes them more attractive than the thermoelectric generators currently used in space. Stirling Technology Company (STC) has been performance-testing its Stirling generators to provide data for potential system integration contractors. This paper describes the most recent test results from the STC RemoteGen™ 55 W-class Stirling generators (RG-55). Comparisons are made between the new data and previous Stirling thermodynamic simulation models. Performance-mapping tests are presented including variations in: internal charge pressure, cold end temperature, hot end temperature, alternator temperature, input power, and variation of control voltage.
Mutation Testing for Effective Verification of Digital Components of Physical Systems
NASA Astrophysics Data System (ADS)
Kushik, N. G.; Evtushenko, N. V.; Torgaev, S. N.
2015-12-01
Digital components of modern physical systems are often designed applying circuitry solutions based on the field programmable gate array technology (FPGA). Such (embedded) digital components should be carefully tested. In this paper, an approach for the verification of digital physical system components based on mutation testing is proposed. The reference description of the behavior of a digital component in the hardware description language (HDL) is mutated by introducing into it the most probable errors and, unlike mutants in high-level programming languages, the corresponding test case is effectively derived based on a comparison of special scalable representations of the specification and the constructed mutant using various logic synthesis and verification systems.
Dubey, Anju; Sonker, Atul; Chaudhary, Rajendra K
2015-01-01
Antibody titration is traditionally performed using a conventional test tube (CTT) method, which is subjected to interlaboratory variations because of a lack of standardization and reproducibility. The aim of this study is to compare newer methods such as get column technology (GCT) and erythrocyte magnetized technology (EMT) for antibody titration in terms of accuracy and precision. Patient serum samples that contained immunoglobin G (IgG) red blood cell (RBC) alloantibodies of a single specificity for Rh or K anitgens were identified during routine transfusion service testing and stored. Titration and scoring were performed separately by and stored. Titration and scoring were performed separately by different laboratory personnel on CTT, GCT, and EMT. Testing was performed a total of three times on each sample. Results were analyzed for accuracy and precision. A total of 50 samples were tested. Only 20 percent of samples tested with GCT shoed titers identical to CTT, whereas 48 percent of samples tested with EMT showed titers identical to CTT. Overall, the mean of th titer difference from CTT was higher using GCT (+0.31) compared with that using EMT (+0.13). Precision shown by CTT was 30 percent, EMT was 76 percent, and GCT was 92 percent on repeat testing. GCT showed higher titer values in comparison with CTT but was found to be the most precise. EMT titers were comparable to CTT, and its precision was intermediate. Further studies to validate this method are required.
Design and Development Comparison of Rapid Cycle Amine 1.0, 2.0, and 3.0
NASA Technical Reports Server (NTRS)
Chullen, Cinda; Campbell, Colin; Papale, William; Murray, Sean; Wichowski, Robert; Conger, Bruce; McMillin, Summer
2016-01-01
The development of the Rapid Cycle Amine (RCA) swing-bed technology for carbon dioxide (CO2) removal has been in progress since favorable results were published in 1996. Shortly thereafter, a prototype was designed, developed, and tested successfully and delivered to Johnson Space Center in 1999. An improved prototype (RCA 1.0) was delivered to NASA in 2006 and sized for the extravehicular activity (EVA). The RCA swing-bed technology is a regenerative system which employs two alternating solid-amine sorbent beds to remove CO2 and water. The two-bed design employs a chemisorption process whereby the beds alternate between adsorption and desorption. This process provides for an efficient RCA operation that enables one bed to be in adsorb (uptake) mode, while the other is in the desorb (regeneration) mode. The RCA has progressed through several iterations of technology readiness levels. Test articles have now been designed, developed, and tested for the advanced space suit portable life support system (PLSS) including RCA 1.0, RCA 2.0, and RCA 3.0. The RCA 3.0 was the most recent RCA fabrication and was delivered to NASA-JSC in June 2015. The RCA 1.0 test article was designed with a pneumatically actuated linear motion spool valve. The RCA 2.0 and 3.0 test articles were designed with a valve assembly which allows for switching between uptake and regeneration modes while minimizing gas volume losses to the vacuum source. RCA 2.0 and 3.0 also include an embedded controller design to control RCA operation and provide the capability of interfacing with various sensors and other ventilation loop components. The RCA technology is low power, small, and has fulfilled all test requirements levied upon the technology during development testing thus far. This paper will provide an overview of the design and development of RCA 1.0, 2.0 and 3.0 including detail differences between the design specifications of each. Nomenclature.
Design and Development Comparison of Rapid Cycle Amine 1.0, 2.0, and 3.0
NASA Technical Reports Server (NTRS)
Chullen, Cinda; Campbell, Colin; Papale, William; Murray, Sean; Wichowski, Robert; Conger, Bruce; McMillin, Summer
2016-01-01
The development of the Rapid Cycle Amine (RCA) swing-bed technology for carbon dioxide (CO2) removal has been in progress since favorable results were published in 1996. Shortly thereafter, a prototype was designed, developed, and tested successfully and delivered to Johnson Space Center in 1999. An improved prototype was delivered to NASA in 2006 and was notated as RCA 1.0 and sized for the extravehicular activity (EVA). The new RCA swing-bed technology is a regenerative system which employs two alternating solid-amine sorbent beds to remove CO2 and water. The two- bed design employs a chemisorption process whereby the beds alternate between adsorbtion and desorbsion. This process provides for an efficient operation of the RCA so that while one bed is in adsorb (uptake) mode, the other is in the desorb (regeneration) mode. The RCA has now progressed through several iterations of technology readiness levels. Test articles have now been designed, developed, and tested for the advanced space suit portable life support system (PLSS) including RCA 1.0, RCA 2.0, and RCA 3.0. The RCA 3.0 was the most recent RCA fabrication and was delivered to NASA-JSC in June 2015. The RCA 1.0 test article was designed with a pneumatically actuated linear motion spool valve. The RCA 2.0 and 3.0 test articles were designed with a valve assembly which allows for switching between uptake and regeneration modes while minimizing gas volume losses to the vacuum source. RCA 2.0 and 3.0 also include an embedded controller design to control RCA operation and provide the capability of interfacing with various sensors and other ventilation loop components. The RCA technology is low power, small, and has fulfilled all test requirements levied upon the technology during development testing thus far. This paper will provide an overreview of the design and development of RCA 1.0, 2.0 and 3.0 including detail differences between the design specifications of each.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uzochukwu, G.A.
1997-12-31
Nuclear and commercial non-nuclear technologies that have the potential of meeting the environmental restoration, decontamination and decommissioning, and high-level waste management objectives are being assessed and evaluated. A detailed comparison of innovative technologies available will be performed to determine the safest and most economical technology for meeting these objectives. Information derived from this effort will be matched with the multi-objectives of the environmental restoration, decontamination and decommissioning, and high-level waste management effort to ensure that the best, most economical, and the safest technologies are used in decision making at USDOE-SRS. Technology-related variables will be developed and the resulting data formattedmore » and computerized for multimedia systems. The multimedia system will be made available to technology developers and evaluators to ensure that the best, most economical, and the safest technologies are used in decision making at USDOE-SRS. Technology-related variables will be developed and the resulting data formatted and computerized for multimedia systems. The multimedia system will be made available to technology developers and evaluators to ensure that the safest and most economical technologies are developed for use at SRS and other DOE sites.« less
NASA Technical Reports Server (NTRS)
Galofaro, Joel T.; Vayner, Boris V.
2006-01-01
Plasma ground testing results, conducted at the Glenn Research Center (GRC) National Plasma Interaction (N-PI) Facility, are presented for a number of thin-film photovoltaic cells. The cells represent a mix of promising new technologies identified by the Air Force Research Laboratory (AFRL) under the CYGNUS Space Science Technology Experiment (SSTE-4) Program. The current ground tests are aimed at characterizing the performance and survivability of thin film technologies in the harsh low earth orbital space environment where they will be flown. Measurements of parasitic current loss, charging/dielectric breakdown of cover-slide coatings and arcing threshold tests are performed for each individual cell. These measurements are followed by a series of experiments designed to test for catastrophic arc failure mechanisms. A special type of power supply, called a solar array simulator (SAS) with adjustable voltage and current limits on the supply s output, is employed to bias two adjacent cells at a predetermined voltage and current. The bias voltage is incrementally ramped up until a sustained arc results. Sustained arcs are precursors to catastrophic arc failure where the arc current rises to a maximum value for long timescales often ranging between 30 to 100 sec times. Normal arcs by comparison, are short lived events with a timescale between 10 to 30 sec. Sustained arcs lead to pyrolization with extreme cell damage and have been shown to cause the loss of entire array strings in solar arrays. The collected data will be used to evaluate the suitability of thin-film photovoltaic technologies for future space operations.
Silent Aircraft Initiative Concept Risk Assessment
NASA Technical Reports Server (NTRS)
Nickol, Craig L.
2008-01-01
A risk assessment of the Silent Aircraft Initiative's SAX-40 concept design for extremely low noise has been performed. A NASA team developed a list of 27 risk items, and evaluated the level of risk for each item in terms of the likelihood that the risk would occur and the consequences of the occurrence. The following risk items were identified as high risk, meaning that the combination of likelihood and consequence put them into the top one-fourth of the risk matrix: structures and weight prediction; boundary-layer ingestion (BLI) and inlet design; variable-area exhaust and thrust vectoring; displaced-threshold and continuous descent approach (CDA) operational concepts; cost; human factors; and overall noise performance. Several advanced-technology baseline concepts were created to serve as a basis for comparison to the SAX-40 concept. These comparisons indicate that the SAX-40 would have significantly greater research, development, test, and engineering (RDT&E) and production costs than a conventional aircraft with similar technology levels. Therefore, the cost of obtaining the extremely low noise capability that has been estimated for the SAX-40 is significant. The SAX-40 concept design proved successful in focusing attention toward low noise technologies and in raising public awareness of the issue.
Advances in membrane technology for the NASA redox energy storage system
NASA Technical Reports Server (NTRS)
Ling, J. S.; Charleston, J.
1980-01-01
Anion exchange membranes used in the system serve as a charge transferring medium as well as a reactant separator and are the key enabling component in this storage technology. Each membrane formulation undergoes a series of screening tests for area-resistivity, static (non-flow) diffusion rate determination, and performance in Redox systems. The CDIL series of membranes has, by virtue of its chemical stability and high ion exchange capacity, demonstrated superior properties in the redox environment. Additional resistivity results at several acid and iron solution concentrations, iron diffusion rates, and time dependent iron fouling of the various membrane formulations are presented in comparison to past standard formulations.
Comparison of Fingerprint and Iris Biometric Authentication for Control of Digital Signatures
Zuckerman, Alan E.; Moon, Kenneth A.; Eaddy, Kenneth
2002-01-01
Biometric authentication systems can be used to control digital signature of medical documents. This pilot study evaluated the use of two different fingerprint technologies and one iris technology to control creation of digital signatures on a central server using public private key pairs stored on the server. Documents and signatures were stored in XML for portability. Key pairs and authentication certificates were generated during biometric enrollment. Usability and user acceptance were guarded and limitations of biometric systems prevented use of the system with all test subjects. The system detected alternations in the data content and provided future signer re-authentication for non-repudiation.
NASA Astrophysics Data System (ADS)
Lai, T.; Biggie, R.; Brooks, A.; Potter, B. G.; Simmons-Potter, K.
2015-09-01
Lifecycle degradation testing of photovoltaic (PV) modules in accelerated-degradation chambers can enable the prediction both of PV performance lifetimes and of return-on-investment for installations of PV systems. With degradation results strongly dependent on chamber test parameters, the validity of such studies relative to fielded, installed PV systems must be determined. In the present work, accelerated aging of a 250 W polycrystalline silicon module is compared to real-time performance degradation in a similar polycrystalline-silicon, fielded, PV technology that has been operating since October 2013. Investigation of environmental aging effects are performed in a full-scale, industrial-standard environmental chamber equipped with single-sun irradiance capability providing illumination uniformity of 98% over a 2 x 1.6 m area. Time-dependent, photovoltaic performance (J-V) is evaluated over a recurring, compressed night-day cycle providing representative local daily solar insolation for the southwestern United States, followed by dark (night) cycling. This cycle is synchronized with thermal and humidity environmental variations that are designed to mimic, as closely as possible, test-yard conditions specific to a 12 month weather profile for a fielded system in Tucson, AZ. Results confirm the impact of environmental conditions on the module long-term performance. While the effects of temperature de-rating can be clearly seen in the data, removal of these effects enables the clear interpretation of module efficiency degradation with time and environmental exposure. With the temperature-dependent effect removed, the normalized efficiency is computed and compared to performance results from another panel of similar technology that has previously experienced identical climate changes in the test yard. Analysis of relative PV module efficiency degradation for the chamber-tested system shows good comparison to the field-tested system with ~2.5% degradation following an equivalent year of testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burton, Jonathan L.
Sylvatex is a green nano-chemistry company that has developed a platform technology utilizing renewable, non-toxic inputs to create a stable nanoparticle that can be used in multiple applications. Their mission is to increase the use of renewables globally, to empower a cleaner and healthier future. The main application is a fuel technology product - MicroX - that utilizes proprietary knowledge to scale low-cost, cleaner-burning renewable diesel fuel and additives by using a co-location commercial model. The aspects of this project will include testing of two Sylvatex MicroX fuels on an engine dynamometer platform. Industry standard ultra-low sulfur diesel (ULSD) B3more » fuel and a ULSD B20 will both be used for comparison of the Sylvatex fuels (U.S. standard diesel fuel at the pump contains an average of approximately 3% biodiesel; this is why B3 would be used as a baseline comparison). Sylvatex is currently using a prototype formulation (MicroX 1) that applies a high cost surfactant. An experimental formulation (MicroX 2) that uses lower cost materials is under development. The MicroX 1 will be blended at a 10% level into the B3 ULSD fuel and the MicroX 2 will be blended at a 10% level into both the B3 and the B20 ULSD fuels for study on the engine dynamometer test platform. All fuel blends will be tested over the FTP transient engine test cycle and a steady state ramped modal engine test cycle. Each test cycle will be performed a minimum of 3 times for each fuel. Tailpipe and/or engine out gaseous exhaust emissions (CO2, CO, NOx, THC, O2,), engine out PM emissions, and brake-specific fuel consumption rates will be evaluated for all test cycles.« less
Assessment of a satellite power system and six alternative technologies
NASA Technical Reports Server (NTRS)
Wolsko, T.; Whitfield, R.; Samsa, M.; Habegger, L. S.; Levine, E.; Tanzman, E.
1981-01-01
The satellite power system is assessed in comparison to six alternative technologies. The alternatives are: central-station terrestrial photovoltaic systems, conventional coal-fired power plants, coal-gasification/combined-cycle power plants, light water reactor power plants, liquid-metal fast-breeder reactors, and fusion. The comparison is made regarding issues of cost and performance, health and safety, environmental effects, resources, socio-economic factors, and institutional issues. The criteria for selecting the issues and the alternative technologies are given, and the methodology of the comparison is discussed. Brief descriptions of each of the technologies considered are included.
Verification of combined thermal-hydraulic and heat conduction analysis code FLOWNET/TRUMP
NASA Astrophysics Data System (ADS)
Maruyama, Soh; Fujimoto, Nozomu; Kiso, Yoshihiro; Murakami, Tomoyuki; Sudo, Yukio
1988-09-01
This report presents the verification results of the combined thermal-hydraulic and heat conduction analysis code, FLOWNET/TRUMP which has been utilized for the core thermal hydraulic design, especially for the analysis of flow distribution among fuel block coolant channels, the determination of thermal boundary conditions for fuel block stress analysis and the estimation of fuel temperature in the case of fuel block coolant channel blockage accident in the design of the High Temperature Engineering Test Reactor(HTTR), which the Japan Atomic Energy Research Institute has been planning to construct in order to establish basic technologies for future advanced very high temperature gas-cooled reactors and to be served as an irradiation test reactor for promotion of innovative high temperature new frontier technologies. The verification of the code was done through the comparison between the analytical results and experimental results of the Helium Engineering Demonstration Loop Multi-channel Test Section(HENDEL T(sub 1-M)) with simulated fuel rods and fuel blocks.
The Case for Laboratory Developed Procedures
Sabatini, Linda M.; Tsongalis, Gregory J.; Caliendo, Angela M.; Olsen, Randall J.; Ashwood, Edward R.; Bale, Sherri; Benirschke, Robert; Carlow, Dean; Funke, Birgit H.; Grody, Wayne W.; Hayden, Randall T.; Hegde, Madhuri; Lyon, Elaine; Pessin, Melissa; Press, Richard D.; Thomson, Richard B.
2017-01-01
An explosion of knowledge and technology is revolutionizing medicine and patient care. Novel testing must be brought to the clinic with safety and accuracy, but also in a timely and cost-effective manner, so that patients can benefit and laboratories can offer testing consistent with current guidelines. Under the oversight provided by the Clinical Laboratory Improvement Amendments, laboratories have been able to develop and optimize laboratory procedures for use in-house. Quality improvement programs, interlaboratory comparisons, and the ability of laboratories to adjust assays as needed to improve results, utilize new sample types, or incorporate new mutations, information, or technologies are positive aspects of Clinical Laboratory Improvement Amendments oversight of laboratory-developed procedures. Laboratories have a long history of successful service to patients operating under Clinical Laboratory Improvement Amendments. A series of detailed clinical examples illustrating the quality and positive impact of laboratory-developed procedures on patient care is provided. These examples also demonstrate how Clinical Laboratory Improvement Amendments oversight ensures accurate, reliable, and reproducible testing in clinical laboratories. PMID:28815200
Pfützner, Andreas
2013-01-01
The article by Brzag and coauthors in this issue of Journal of Diabetes Science and Technology reports a competitive accuracy performance study for a branded meter in comparison with six low-cost meters currently available in the United States. It highlights several important topics: (1) the need for more stringent post-marketing requirements for blood glucose meters after launch and (2) low-cost meters use older technologies and their manufacturers do not usually seriously invest in new technology or constant quality assurance efforts. This may explain the study results, which show superior performance of the branded meter. Finally, the article pinpoints to the "quality versus price" dilemma faced by the prescribing physician and their patients in daily routine, which may be additionally aggravated by budget constraints and prescription rules in reimbursed markets. © 2013 Diabetes Technology Society.
Communications systems technology assessment study. Volume 2: Results
NASA Technical Reports Server (NTRS)
Kelley, R. L.; Khatri, R. K.; Kiesling, J. D.; Weiss, J. A.
1977-01-01
The cost and technology characteristics are examined for providing special satellite services at UHF, 2.5 GHz, and 14/12 GHz. Considered are primarily health, educational, informational and emergency disaster type services. The total cost of each configuration including space segment, earth station, installation operation and maintenance was optimized to reduce the user's total annual cost and establish preferred equipment performance parameters. Technology expected to be available between now and 1985 is identified and comparisons made between selected alternatives. A key element of the study is a survey of earth station equipment updating past work in the field, providing new insight into technology, and evaluating production and test methods that can reduce costs in large production runs. Various satellite configurations were examined. The cost impact of rain attenuation at Ku-band was evaluated. The factors affecting the ultimate capacity achievable with the available orbital arc and available bandwidth were analyzed.
Comparison of Fiber Optic Strain Demodulation Implementations
NASA Technical Reports Server (NTRS)
Quach, Cuong C.; Vazquez, Sixto L.
2005-01-01
NASA Langley Research Center is developing instrumentation based upon principles of Optical Frequency-Domain Reflectometry (OFDR) for the provision of large-scale, dense distribution of strain sensors using fiber optics embedded with Bragg gratings. Fiber Optic Bragg Grating technology enables the distribution of thousands of sensors immune to moisture and electromagnetic interference with negligible weight penalty. At Langley, this technology provides a key component for research and development relevant to comprehensive aerospace vehicle structural health monitoring. A prototype system is under development that includes hardware and software necessary for the acquisition of data from an optical network and conversion of the data into strain measurements. This report documents the steps taken to verify the software that implements the algorithm for calculating the fiber strain. Brief descriptions of the strain measurement system and the test article are given. The scope of this report is the verification of software implementations as compared to a reference model. The algorithm will be detailed along with comparison results.
2003-12-16
mass recovery results achieved by applying CDEF technology are shown in comparison with those of a (theoretical) pump-and-treat system without CD...results achieved by applying CDEF technology are shown in comparison with those of a (theoretical) pump-and-treat system without CD present. ESTCP...The TCE mass recovery results achieved by applying CDEF technology are shown in comparison with those of a (theoretical) pump-and-treat system
NASA Technical Reports Server (NTRS)
Mohamadinejad, H.; Knox, J. C.; Smith, James E.
1999-01-01
The importance of the wall effect on packed beds in the adsorption and desorption of carbon dioxide, nitrogen, and water on molecular sieve 5A of 0.127 cm in radius is examined experimentally and with one-dimensional computer simulations. Experimental results are presented for a 22.5-cm long by 4.5-cm diameter cylindrical column with concentration measurements taken at various radial locations. The set of partial differential equations are solved using finite differences and Newman's method. Comparison of test data with the axial-dispersed, non-isothermal, linear driving force model suggests that a two-dimensional model (submitted to Separation Science and Technology) is required for accurate simulation of the average column breakthrough concentration. Additional comparisons of test data with the model provided information on the interactive effects of carrier gas coadsorption with CO2, as well as CO2-H2O interactions.
Multifocal visual evoked potentials for early glaucoma detection.
Weizer, Jennifer S; Musch, David C; Niziol, Leslie M; Khan, Naheed W
2012-07-01
To compare multifocal visual evoked potentials (mfVEP) with other detection methods in early open-angle glaucoma. Ten patients with suspected glaucoma and 5 with early open-angle glaucoma underwent mfVEP, standard automated perimetry (SAP), short-wave automated perimetry, frequency-doubling technology perimetry, and nerve fiber layer optical coherence tomography. Nineteen healthy control subjects underwent mfVEP and SAP for comparison. Comparisons between groups involving continuous variables were made using independent t tests; for categorical variables, Fisher's exact test was used. Monocular mfVEP cluster defects were associated with an increased SAP pattern standard deviation (P = .0195). Visual fields that showed interocular mfVEP cluster defects were more likely to also show superior quadrant nerve fiber layer thinning by OCT (P = .0152). Multifocal visual evoked potential cluster defects are associated with a functional and an anatomic measure that both relate to glaucomatous optic neuropathy. Copyright 2012, SLACK Incorporated.
B.Z. Yang; R.D. Seale; R. Shmulsky; J. Dahlen; Xiping Wang
2015-01-01
Modulus of elasticity (MOE, or E) is one of the main quality indicators in structural lumber stress grading systems. Due to a relatively high amount of variability in contemporary sawn lumber, it is important that nondestructive evaluation technology be utilized to better discern high-E-value pieces from low-E-value pieces. The research described in this study is from...
ERIC Educational Resources Information Center
Manpower Administration (DOL), Washington, DC. Job Corps.
An advanced General Education Program has been designed to prepare an individual with the information, concepts, and general knowledge required to successfully pass the American Council on Education's High School General Education Development (GED) Test. The Advanced General Education Program provides comprehensive self-instruction in each of the…
The Validity of Selection and Classification Procedures for Predicting Job Performance.
1987-04-01
lacholual or pulley Issues. They cemmunicate Me resulls of special analyses, Iantrim rp or phses of a teak, ad hasm quick macton werk. Paperm r reviw ...51 I. Alternative Selection Procedures ................. 56 J. Meta-Analyses of Validities ............. 58 K . Meta-Analytic Comparisons of...Aptitude Test Battery GM General Maintenance GS General Science GVN Cognitive Ability HS&T Health, Social and Technology K Motor Coordination KFM
Proton-Exchange-Membrane Fuel Cell Powerplants Developed and Tested for Exploration Missions
NASA Technical Reports Server (NTRS)
Hoberecht, Mark A.; Pham, Nang T.
2005-01-01
Proton-exchange-membrane fuel cell (PEMFC) technology has received major attention for terrestrial applications, such as the automotive and residential markets, for the past 20 years. This attention has significantly advanced the maturity of the technology, resulting in ever more compact, efficient, reliable, and inexpensive PEMFC designs. In comparison to the terrestrial operating environment, the space operating environment is much more demanding. Microgravity to high-gravity loads and the need to use pure oxygen (rather than air) as the fuel cell oxidizer place more stringent demands on PEMFC technology. NASA and its partners from industry are leveraging terrestrial PEMFC advancements by conducting parallel space technology development for future exploration missions. A team from the NASA Glenn Research Center, NASA Johnson Space Center, and NASA Kennedy Space Center recently completed the first phase of a PEMFC powerplant development effort for exploration missions. The industry partners for this phase of the development effort were ElectroChem, Inc., and Teledyne Energy Systems, Inc. Under contract to Glenn, both of these industry partners successfully designed, fabricated, and tested a breadboard PEMFC powerplant in the 1- to 5-kW power range. These powerplants were based on existing company-proprietary fuel cell stack designs, combined with off-the-shelf components, which formed the balance of the powerplant design. Subsequent to the contractor development efforts, both powerplants were independently tested at Johnson to verify operational and performance characteristics, and to determine suitability for further technology development in the second phase of the NASA-led effort. Following the independent NASA testing, Teledyne Energy Systems, Inc., was selected to develop an engineering model PEMFC powerplant. This effort was initiated by the 2nd Generation Reusable Launch Vehicle (RLV) Program Office in 2001; it transitioned to the Next Generation Launch Technologies (NGLT) Program Office in 2003. The effort is now being funded by the Exploration Program Office. We plan to summarize the results from the ongoing engineering model PEMFC powerplant development in a future Research & Technology article.
Proton-Exchange-Membrane Fuel Cell Powerplants Developed and Tested for Exploration Missions
NASA Astrophysics Data System (ADS)
Hoberecht, Mark A.; Pham, Nang T.
2005-06-01
Proton-exchange-membrane fuel cell (PEMFC) technology has received major attention for terrestrial applications, such as the automotive and residential markets, for the past 20 years. This attention has significantly advanced the maturity of the technology, resulting in ever more compact, efficient, reliable, and inexpensive PEMFC designs. In comparison to the terrestrial operating environment, the space operating environment is much more demanding. Microgravity to high-gravity loads and the need to use pure oxygen (rather than air) as the fuel cell oxidizer place more stringent demands on PEMFC technology. NASA and its partners from industry are leveraging terrestrial PEMFC advancements by conducting parallel space technology development for future exploration missions. A team from the NASA Glenn Research Center, NASA Johnson Space Center, and NASA Kennedy Space Center recently completed the first phase of a PEMFC powerplant development effort for exploration missions. The industry partners for this phase of the development effort were ElectroChem, Inc., and Teledyne Energy Systems, Inc. Under contract to Glenn, both of these industry partners successfully designed, fabricated, and tested a breadboard PEMFC powerplant in the 1- to 5-kW power range. These powerplants were based on existing company-proprietary fuel cell stack designs, combined with off-the-shelf components, which formed the balance of the powerplant design. Subsequent to the contractor development efforts, both powerplants were independently tested at Johnson to verify operational and performance characteristics, and to determine suitability for further technology development in the second phase of the NASA-led effort. Following the independent NASA testing, Teledyne Energy Systems, Inc., was selected to develop an engineering model PEMFC powerplant. This effort was initiated by the 2nd Generation Reusable Launch Vehicle (RLV) Program Office in 2001; it transitioned to the Next Generation Launch Technologies (NGLT) Program Office in 2003. The effort is now being funded by the Exploration Program Office. We plan to summarize the results from the ongoing engineering model PEMFC powerplant development in a future Research & Technology article.
NASA Astrophysics Data System (ADS)
Yagotintsev, K.; Nijhuis, A.
2018-07-01
Two prototype Nb3Sn cable-in-conduit conductors conductors were designed and manufactured for the toroidal field (TF) magnet system of the envisaged European DEMO fusion reactor. The AC loss, contact resistance and mechanical properties of two sample conductors were tested in the Twente Cryogenic Cable Press under cyclic load up to 30 000 cycles. Though both conductors were designed to operate at 82 kA in a background magnetic field of 13.6 T, they reflect different approaches with respect to the magnet winding pack assembly. The first approach is based on react and wind technology while the second is the more common wind and react technology. Each conductor was tested first for AC loss in virgin condition without handling. The impact of Lorentz load during magnet operation was simulated using the cable press. In the press each conductor specimen was subjected to transverse cyclic load up to 30 000 cycles in liquid helium bath at 4.2 K. Here a summary of results for AC loss, contact resistance, conductor deformation, mechanical heat production and conductor stiffness evolution during cycling of the load is presented. Both conductors showed similar mechanical behaviour but quite different AC loss. In comparison with previously tested ITER TF conductors, both DEMO TF conductors possess very low contact resistance resulting in high coupling loss. At the same time, load cycling has limited impact on properties of DEMO TF conductors in comparison with ITER TF conductors.
ERIC Educational Resources Information Center
Turgut, Yildiz
2017-01-01
In view of the rapid advancement of technology, technological pedagogical content knowledge (TPACK) has been extensively studied. However, research on technological pedagogical content knowledge (TPACK) in teaching English appear to be scarce and addressed either pre-service or in-service teachers, but not their comparison. Additionally, although…
Variation in Lithic Technological Strategies among the Neanderthals of Gibraltar
Shipton, Ceri; Clarkson, Christopher; Bernal, Marco Antonio; Boivin, Nicole; Finlayson, Clive; Finlayson, Geraldine; Fa, Darren; Pacheco, Francisco Giles; Petraglia, Michael
2013-01-01
The evidence for Neanderthal lithic technology is reviewed and summarized for four caves on The Rock of Gibraltar: Vanguard, Beefsteak, Ibex and Gorham’s. Some of the observed patterns in technology are statistically tested including raw material selection, platform preparation, and the use of formal and expedient technological schemas. The main parameters of technological variation are examined through detailed analysis of the Gibraltar cores and comparison with samples from the classic Mousterian sites of Le Moustier and Tabun C. The Gibraltar Mousterian, including the youngest assemblage from Layer IV of Gorham’s Cave, spans the typical Middle Palaeolithic range of variation from radial Levallois to unidirectional and multi-platform flaking schemas, with characteristic emphasis on the former. A diachronic pattern of change in the Gorham’s Cave sequence is documented, with the younger assemblages utilising more localized raw material and less formal flaking procedures. We attribute this change to a reduction in residential mobility as the climate deteriorated during Marine Isotope Stage 3 and the Neanderthal population contracted into a refugium. PMID:23762312
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, P. A.; Van Wingerden, J. W.; Wright, A. D.
2012-01-01
In this paper we present results from an ongoing controller comparison study at the National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC). The intention of the study is to demonstrate the advantage of using modern multivariable methods for designing control systems for wind turbines versus conventional approaches. We will demonstrate the advantages through field-test results from experimental turbines located at the NWTC. At least two controllers are being developed side-by-side to meet an incrementally increasing number of turbine load-reduction objectives. The first, a multiple single-input, single-output (m-SISO) approach, uses separately developed decoupled and classicially tuned controllers, which is,more » to the best of our knowledge, common practice in the wind industry. The remaining controllers are developed using state-space multiple-input and multiple-output (MIMO) techniques to explicity account for coupling between loops and to optimize given known frequency structures of the turbine and disturbance. In this first publication from the study, we present the structure of the ongoing controller comparison experiment, the design process for the two controllers compared in this phase, and initial comparison results obtained in field-testing.« less
Artes, Paul H; Hutchison, Donna M; Nicolela, Marcelo T; LeBlanc, Raymond P; Chauhan, Balwantray C
2005-07-01
To compare test results from second-generation Frequency-Doubling Technology perimetry (FDT2, Humphrey Matrix; Carl-Zeiss Meditec, Dublin, CA) and standard automated perimetry (SAP) in patients with glaucoma. Specifically, to examine the relationship between visual field sensitivity and test-retest variability and to compare total and pattern deviation probability maps between both techniques. Fifteen patients with glaucoma who had early to moderately advanced visual field loss with SAP (mean MD, -4.0 dB; range, +0.2 to -16.1) were enrolled in the study. Patients attended three sessions. During each session, one eye was examined twice with FDT2 (24-2 threshold test) and twice with SAP (Swedish Interactive Threshold Algorithm [SITA] Standard 24-2 test), in random order. We compared threshold values between FDT2 and SAP at test locations with similar visual field coordinates. Test-retest variability, established in terms of test-retest intervals and standard deviations (SDs), was investigated as a function of visual field sensitivity (estimated by baseline threshold and mean threshold, respectively). The magnitude of visual field defects apparent in total and pattern deviation probability maps were compared between both techniques by ordinal scoring. The global visual field indices mean deviation (MD) and pattern standard deviation (PSD) of FDT2 and SAP correlated highly (r > 0.8; P < 0.001). At test locations with high sensitivity (>25 dB with SAP), threshold estimates from FDT2 and SAP exhibited a close, linear relationship, with a slope of approximately 2.0. However, at test locations with lower sensitivity, the relationship was much weaker and ceased to be linear. In comparison with FDT2, SAP showed a slightly larger proportion of test locations with absolute defects (3.0% vs. 2.2% with SAP and FDT2, respectively, P < 0.001). Whereas SAP showed a significant increase in test-retest variability at test locations with lower sensitivity (P < 0.001), there was no relationship between variability and sensitivity with FDT2 (P = 0.46). In comparison with SAP, FDT2 exhibited narrower test-retest intervals at test locations with lower sensitivity (SAP thresholds <25 dB). A comparison of the total and pattern deviation maps between both techniques showed that the total deviation analyses of FDT2 may slightly underestimate the visual field loss apparent with SAP. However, the pattern-deviation maps of both instruments agreed well with each other. The test-retest variability of FDT2 is uniform over the measurement range of the instrument. These properties may provide advantages for the monitoring of patients with glaucoma that should be investigated in longitudinal studies.
Design and Test of Pseudorandom Number Generator Using a Star Network of Lorenz Oscillators
NASA Astrophysics Data System (ADS)
Cho, Kenichiro; Miyano, Takaya
We have recently developed a chaos-based stream cipher based on augmented Lorenz equations as a star network of Lorenz subsystems. In our method, the augmented Lorenz equations are used as a pseudorandom number generator. In this study, we propose a new method based on the augmented Lorenz equations for generating binary pseudorandom numbers and evaluate its security using the statistical tests of SP800-22 published by the National Institute for Standards and Technology in comparison with the performances of other chaotic dynamical models used as binary pseudorandom number generators. We further propose a faster version of the proposed method and evaluate its security using the statistical tests of TestU01 published by L’Ecuyer and Simard.
Vibration Performance Comparison Study on Current Fiber Optic Connector Technologies
NASA Technical Reports Server (NTRS)
Ott, Melanie N.; Thomes Jr., William J.; LaRocca, Frank V.; Switzer, Robert C.; Chuska, Rick F.; Macmurphy, Shawn L.
2008-01-01
Fiber optic cables are increasingly being used in harsh environments where they are subjected to vibration. Understanding the degradation in performance under these conditions is essential for integration of the fibers into the given application. System constraints oftentimes require fiber optic connectors so subsystems can be removed or assembled as needed. In the present work, various types of fiber optic connectors were monitored in-situ during vibration testing to examine the transient change in optical transmission and the steady-state variation following the event. Inspection of the fiber endfaces and connectors was performed at chosen intervals throughout the testing.
The Correlation Radiometer - A New Application in MM-Wave Total Power Radiometry
NASA Technical Reports Server (NTRS)
Gaier, Todd; Tanner, Alan; Kangaslahti, Pekka; Lim, Boon
2013-01-01
We describe the design and performance of a 180 GHz correlation radiometer suitable for remote sensing. The radiometer provides continuous comparisons between a the observed signal and a reference load to provide stable radiometric baselines. The radiometer was assembled and tested using parts from the GeoSTAR-II instrument and is fully compatible with operation in a synthetic aperture radiometer or as a standalone technology for use in microwave sounding and imaging. This new radiometer was tested over several days easily demonstrating the required 6 hour stability requirement for observations of mean brightness temperature for a geostationary instrument.
Technical performance of lactate biosensors and a test-strip device during labour.
Luttkus, A K; Fotopoulou, C; Sehouli, J; Stupin, J; Dudenhausen, J W
2010-04-01
Lactate in fetal blood has a high diagnostic power to detect fetal compromise due to hypoxia, as lactate allows an estimation of duration and intensity of metabolic acidemia. Biosensor technology allows an instantaneous diagnosis of fetal compromise in the delivery room. The goal of the current investigation is to define the preanalytical and analytical biases of this technology under routine conditions in a labour ward in comparison to test-strip technology, which allows measurement of lactate alone. Three lactate biosensors (RapidLab 865, Siemens Medical Solutions Diagnostics, Bad Nauheim, Germany; Radiometer ABL625 and ABL 700, Radiometer Copenhagen, Denmark) and one test-strip device (Lactate Pro, Oxford Instruments, UK) were evaluated regarding precision in serial and repetitive measurements in over 1350 samples of fetal whole blood. The coefficient of variation (CV) and the standard deviation (SD) were calculated. The average value of all three biosensors was defined as an artificial reference value (refval). Blood tonometry was performed in order to test the quality of respiratory parameters and to simulate conditions of fetal hypoxia (pO (2): 10 and 20 mmHg). The precision of serial measurements of all biosensors indicated a coefficient of variation (CV) between 1.55 and 3.16% with an SD from 0.042 to 0.053 mmol/L. The test-strip device (Lactate Pro) mounted to 0.117 mmol/L and 3.99% (SD, CV). When compared to our reference value (refval) ABL 625 showed the closest correlation of -0.1%, while Siemens RapidLab 865 showed an overestimation of +8.9%, ABL700 an underestimation of -6.2% and Lactate Pro of -3.7%. For routine use all tested biosensors show sufficient precision. The test-strip device shows a slightly higher standard deviation. A direct comparison of measured lactate values from the various devices needs to be interpreted with caution as each method detects different lactate concentrations. Furthermore, the 40 min process of tonometry led to an increase of SD and coefficient of variation in all devices. This results in the important preanalytical finding that the precision of replicated measurements worsens significantly with time. The clinician should be aware of the type of analyser used and of preanalytical biases before making clinical decisions on the basis of lactate values.
NASA Astrophysics Data System (ADS)
Kaewunruen, Sakdirat
2015-04-01
Inevitably, rail squats and studs are continuing to be a serious problem for railway organisations around the world in the 21st century. They are typically classified as the growth of any cracks that have grown longitudinally through the subsurface and some of the cracks propagating to the bottom of rails transversely, and have branched from initial longitudinal cracks with a depression of rail surface. The horizontal crack, which results in a depression of rail surface, induces increased maintenance level, more frequent monitoring, compromised rail testing (as the crack shields the signal echoes), and possible broken rails. This paper presents field investigations using a magnetised-rail testing device developed by MRX Technologies to identify and prioritise the rail squats. Most of the in situ squats were found on the high rail of the transition (variable-radius curved track), which is associated with rolling contact fatigue (RCF). This investigation highlights the field performance of the MRX's surface crack detection technology in comparison with the traditional ultrasonic method and detailed walking inspection. Visually, it was found in the field that the size of the RCF squats varies from very small to moderate. The predicted crack data were obtained by scanning the magnitised rails. The comparison of the actual crack depths (ultrasonic) and the predicted crack depths (MRX device) shows: • A possible correlation for small RCF/ squat cracks. • Poor interpretation of larger defects and welds. The field assessment also suggests some practical issues required for further development, including the detection of rail spalling, deep transverse crack, welding, and so on.
A Comparison of Student Spatial Abilities Across STEM Fields
NASA Astrophysics Data System (ADS)
Loftis, Thad; Cid, Xiimena; Lopez, Ramon
2011-10-01
It has been shown that STEM (Science, Technology, Engineering, and Mathematics) students have higher spatial abilities than students in the liberal arts or humanities. In order to track the change in spatial abilities within a group, studies in physics have examined topics in kinematics, chemistry has examined topics on molecular diagrams, mathematics has examined topics related to geometry, and engineering has developed courses specifically targeting students' spatial abilities. It is understood that students in STEM fields improve their spatial abilities while taking STEM courses, but very few studies have done comparisons amongst the different STEM fields. I will be presenting data comparing different STEM students' spatial ability, assessed using the Mental Rotation Test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Vijay; Denton, David; SHarma, Pradeep
The key objective for this project was to evaluate the potential to achieve substantial reductions in the production cost of H 2-rich syngas via coal gasification with near-zero emissions due to the cumulative and synergistic benefits realized when multiple advanced technologies are integrated into the overall conversion process. In this project, Aerojet Rocketdyne’s (AR’s) advanced gasification technology (currently being offered as R-GAS™) and RTI International’s (RTI’s) advanced warm syngas cleanup technologies were evaluated via a number of comparative techno-economic case studies. AR’s advanced gasification technology consists of a dry solids pump and a compact gasifier system. Based on the uniquemore » design of this gasifier, it has been shown to reduce the capital cost of the gasification block by between 40 and 50%. At the start of this project, actual experimental work had been demonstrated through pilot plant systems for both the gasifier and dry solids pump. RTI’s advanced warm syngas cleanup technologies consist primarily of RTI’s Warm Gas Desulfurization Process (WDP) technology, which effectively allows decoupling of the sulfur and CO 2 removal allowing for more flexibility in the selection of the CO 2 removal technology, plus associated advanced technologies for direct sulfur recovery and water gas shift (WGS). WDP has been demonstrated at pre-commercial scale using an activated amine carbon dioxide recovery process which would not have been possible if a majority of the sulfur had not been removed from the syngas by WDP. This pre-commercial demonstration of RTI’s advanced warm syngas cleanup system was conducted in parallel to the activities on this project. The technical data and cost information from this pre-commercial demonstration were extensively used in this project during the techno-economic analysis. With this project, both of RTI’s advanced WGS technologies were investigated. Because RT’s advanced fixed-bed WGS (AFWGS) process was successfully implemented in the WDP pre-commercial demonstration test mentioned above, this technology was used as part of RTI’s advanced warm syngas technology package for the techno-economic analyses for this project. RTI’s advanced transport-reactor-based WGS (ATWGS) process was still conceptual at the start of this project, but one of the tasks for this project was to evaluate the technical feasibility of this technology. In each of the three application-based comparison studies conducted as part of this project, the reference case was based on an existing Department of Energy National Energy Technology Laboratory (DOE/NETL) system study. Each of these references cases used existing commercial technology and the system resulted in > 90% carbon capture. In the comparison studies for the use of the hydrogen-rich syngas generated in either an Integrated Gasification Combined Cycle (IGCC) or a Coal-to-Methanol (CTM) plant, the comparison cases consisted of the reference case, a case with the integration of each individual advanced technology (either AR or RTI), and finally a case with the integration of all the advanced technologies (AR and RTI combined). In the Coal-to-Liquids (CTL) comparison study, the comparison study consisted of only three cases, which included a reference case, a case with just RTI’s advanced syngas cleaning technology, and a case with AR’s and RTI’s advanced technologies. The results from these comparison studies showed that the integration of the advanced technologies did result in substantial benefits, and by far the greatest benefits were achieved for cases integrating all the advanced technologies. For the IGCC study, the fully integrated case resulted in a 1.4% net efficiency improvement, an 18% reduction in capital cost per kW of capacity, a 12% reduction in the operating cost per kWh, and a 75–79% reduction in sulfur emissions. For the CTM case, the fully integrated plant resulted in a 22% reduction in capital cost, a 13% reduction in operating costs, a > 99% net reduction in sulfur emissions, and a reduction of 13–15% in CO 2 emissions. Because the capital cost represents over 60% of the methanol Required Selling Price (RSP), the significant reduction in the capital cost for the advanced technology case resulted in an 18% reduction in methanol RSP. For the CTL case, the fully integrated plant resulted in a 16% reduction in capital cost, which represented a 13% reduction in diesel RSP. Finally, the technical feasibility analysis of RTI’s ATWGS process demonstrated that a fluid-bed catalyst with sufficient attrition resistance and WGS activity could be made and that the process achieved about a 24% reduction in capital cost compared to a conventional fixed-bed commercial process.« less
Zarkovic, Andrea; Mora, Justin; McKelvie, James; Gamble, Greg
2007-12-01
The aim of the study was to establish the correlation between visual filed loss as shown by second-generation Frequency Doubling Technology (Humphrey Matrix) and Standard Automated Perimetry (Humphrey Field Analyser) in patients with glaucoma. Also, compared were the test duration and reliability. Forty right eyes from glaucoma patients from a private ophthalmology practice were included in this prospective study. All participants had tests within an 8-month period. Pattern deviation plots and mean deviation were compared to establish the correlation between the two perimetry tests. Overall correlation and correlation between hemifields, quadrants and individual test locations were assessed. Humphrey Field Analyser tests were slightly more reliable (37/40 vs. 34/40 for Matrix)) but overall of longer duration. There was good correlation (0.69) between mean deviations. Superior hemifields and superonasal quadrants had the highest correlation (0.88 [95% CI 0.79, 0.94]). Correlation between individual points was independent of distance from the macula. Generally, the Matrix and Humphrey Field Analyser perimetry correlate well; however, each machine utilizes a different method of analysing data and thus the direct comparison should be made with caution.
Effect of storage and LEO cycling on manufacturing technology IPV nickel-hydrogen cells
NASA Technical Reports Server (NTRS)
Smithrick, John J.
1987-01-01
Yardney Manufacturing Technology (MANTECH) 50 A-hr space weight individual pressure vessel nickel-hydrogen cells were evaluated. This consisted of investigating: the effect of storage and charge/discharge cycling on cell performance. For the storage test the cells were precharged with hydrogen, by the manufacturer, to a pressure of 14.5 psia. After undergoing activation and acceptance tests, the cells were discharged at C/10 rate (5A) to 0.1 V or less. The terminals were then shorted. The cells were shipped to NASA Lewis Research Center where they were stored at room temperature in the shorted condition for 1 year. After storage, the acceptance tests were repeated at NASA Lewis. A comparison of test results indicate no significant degradation in electrical performance due to 1 year storage. For the cycle life test the regime was a 90 minute low earth orbit at deep depths of discharge (80 and 60 percent). At the 80 percent DOD the three cells failed on the average at cycle 741. Failure for this test was defined to occur when the cell voltage degraded to 1 V prior to completion of the 35 min discharge. The DOD was reduced to 60 percent. The cycle life test was continued.
Tree Testing of Hierarchical Menu Structures for Health Applications
Le, Thai; Chaudhuri, Shomir; Chung, Jane; Thompson, Hilaire J; Demiris, George
2014-01-01
To address the need for greater evidence-based evaluation of Health Information Technology (HIT) systems we introduce a method of usability testing termed tree testing. In a tree test, participants are presented with an abstract hierarchical tree of the system taxonomy and asked to navigate through the tree in completing representative tasks. We apply tree testing to a commercially available health application, demonstrating a use case and providing a comparison with more traditional in-person usability testing methods. Online tree tests (N=54) and in-person usability tests (N=15) were conducted from August to September 2013. Tree testing provided a method to quantitatively evaluate the information structure of a system using various navigational metrics including completion time, task accuracy, and path length. The results of the analyses compared favorably to the results seen from the traditional usability test. Tree testing provides a flexible, evidence-based approach for researchers to evaluate the information structure of HITs. In addition, remote tree testing provides a quick, flexible, and high volume method of acquiring feedback in a structured format that allows for quantitative comparisons. With the diverse nature and often large quantities of health information available, addressing issues of terminology and concept classifications during the early development process of a health information system will improve navigation through the system and save future resources. Tree testing is a usability method that can be used to quickly and easily assess information hierarchy of health information systems. PMID:24582924
Innovative Networking Concepts Tested on the Advanced Communications Technology Satellite
NASA Technical Reports Server (NTRS)
Friedman, Daniel; Gupta, Sonjai; Zhang, Chuanguo; Ephremides, Anthony
1996-01-01
This paper describes a program of experiments conducted over the advanced communications technology satellite (ACTS) and the associated TI-VSAT (very small aperture terminal). The experiments were motivated by the commercial potential of low-cost receive only satellite terminals that can operate in a hybrid network environment, and by the desire to demonstrate frame relay technology over satellite networks. The first experiment tested highly adaptive methods of satellite bandwidth allocation in an integrated voice-data service environment. The second involved comparison of forward error correction (FEC) and automatic repeat request (ARQ) methods of error control for satellite communication with emphasis on the advantage that a hybrid architecture provides, especially in the case of multicasts. Finally, the third experiment demonstrated hybrid access to databases and compared the performance of internetworking protocols for interconnecting local area networks (LANs) via satellite. A custom unit termed frame relay access switch (FRACS) was developed by COMSAT Laboratories for these experiments; the preparation and conduct of these experiments involved a total of 20 people from the University of Maryland, the University of Colorado and COMSAT Laboratories, from late 1992 until 1995.
Beraud, L; Gervasoni, K; Freydiere, A M; Descours, G; Ranc, A G; Vandenesch, F; Lina, G; Gaia, V; Jarraud, S
2015-09-01
The Sofia Legionella Fluorescence Immunoassay (FIA; Quidel) is a recently introduced rapid immunochromatographic diagnostic test for Legionnaires' disease using immunofluorescence technology designed to enhance its sensitivity. The aim of this study was to evaluate its performance for the detection of urinary antigens for Legionella pneumophila serogroup 1 in two National Reference Centers for Legionella. The sensitivity and specificity of the Sofia Legionella FIA test were determined in concentrated and nonconcentrated urine samples, before and after boiling, in comparison with the BinaxNOW® Legionella Urinary Antigen Card (UAC; Alere). Compared with BinaxNOW® Legionella UAC, the sensitivity of the Sofia Legionella test was slightly higher in nonconcentrated urine samples and was identical in concentrated urine samples. The specificity of the Sofia Legionella FIA test was highly reduced by the concentration of urine samples. In nonconcentrated samples, a lack of specificity was observed in 2.3 % of samples, all of them resolved by heat treatment. The Sofia Legionella FIA is a sensitive test for detecting Legionella urinary antigens with no previous urine concentration. However, all positive samples have to be re-tested after boiling to reach a high specificity. The reading is automatized on the Sofia analyzer, which can be connected to laboratory information systems, facilitating accurate and rapid reporting of results.
Pervasive healthcare as a scientific discipline.
Bardram, J E
2008-01-01
The OECD countries are facing a set of core challenges; an increasing elderly population; increasing number of chronic and lifestyle-related diseases; expanding scope of what medicine can do; and increasing lack of medical professionals. Pervasive healthcare asks how pervasive computing technology can be designed to meet these challenges. The objective of this paper is to discuss 'pervasive healthcare' as a research field and tries to establish how novel and distinct it is, compared to related work within biomedical engineering, medical informatics, and ubiquitous computing. The paper presents the research questions, approach, technologies, and methods of pervasive healthcare and discusses these in comparison to those of other related scientific disciplines. A set of central research themes are presented; monitoring and body sensor networks; pervasive assistive technologies; pervasive computing for hospitals; and preventive and persuasive technologies. Two projects illustrate the kind of research being done in pervasive healthcare. The first project is targeted at home-based monitoring of hypertension; the second project is designing context-aware technologies for hospitals. Both projects approach the healthcare challenges in a new way, apply a new type of research method, and come up with new kinds of technological solutions. 'Clinical proof-of-concept' is recommended as a new method for pervasive healthcare research; the method helps design and test pervasive healthcare technologies, and in ascertaining their clinical potential before large-scale clinical tests are needed. The paper concludes that pervasive healthcare as a research field and agenda is novel; it is addressing new emerging research questions, represents a novel approach, designs new types of technologies, and applies a new kind of research method.
NASA's lithium cell technology program
NASA Technical Reports Server (NTRS)
Juvinall, G. L.
1978-01-01
Briefly outlined are the activities of the various research centers involved in the NASA program. Graphs are presented for: (1) the initial results on SOCl2 decomposition rate; (2) effect of rate on output of Li-SOCl2 cells; (3) comparison of high and low rate Li-SOCl2 cells; and (4) effect of temperature on output of Li-SOCl2 cells. Abusive test results and a description of secondary lithium cells are also presented.
Mark D. Nelson; Ronald E. McRoberts; Veronica C. Lessard
2005-01-01
Our objective was to test one application of remote sensing technology for complementing forest resource assessments by comparing a variety of existing satellite image-derived land cover maps with national inventory-derived estimates of United States forest land area. National Resources Inventory (NRI) 1997 estimates of non-Federal forest land area differed by 7.5...
1951-10-24
Flight evaluation and comparison of a NACA submerged inlet and a scoop inlet on the North American YF-93A (AF48-317 NACA-139). The YF-93A's were the first aircraft to use flush NACA engine inlets. aircraft to use flush NACA engine inlets. Note: Used in publication in Flight Research at Ames; 57 Years of Development and Validation of Aeronautical Technology NASA SP-1998-3300 and Memoirs of a Flight Test Engineer NASA SP-2001-4525
Comparison of NASTRAN analysis with ground vibration results of UH-60A NASA/AEFA test configuration
NASA Technical Reports Server (NTRS)
Idosor, Florentino; Seible, Frieder
1990-01-01
Preceding program flight tests, a ground vibration test and modal test analysis of a UH-60A Black Hawk helicopter was conducted by Sikorsky Aircraft to complement the UH-60A test plan and NASA/ARMY Modern Technology Rotor Airloads Program. The 'NASA/AEFA' shake test configuration was tested for modal frequencies and shapes and compared with its NASTRAN finite element model counterpart to give correlative results. Based upon previous findings, significant differences in modal data existed and were attributed to assumptions regarding the influence of secondary structure contributions in the preliminary NASTRAN modeling. An analysis of an updated finite element model including several secondary structural additions has confirmed that the inclusion of specific secondary components produces a significant effect on modal frequency and free-response shapes and improves correlations at lower frequencies with shake test data.
A New Real - Time Fault Detection Methodology for Systems Under Test. Phase 1
NASA Technical Reports Server (NTRS)
Johnson, Roger W.; Jayaram, Sanjay; Hull, Richard A.
1998-01-01
The purpose of this research is focussed on the identification/demonstration of critical technology innovations that will be applied to various applications viz. Detection of automated machine Health Monitoring (BM, real-time data analysis and control of Systems Under Test (SUT). This new innovation using a High Fidelity Dynamic Model-based Simulation (BFDMS) approach will be used to implement a real-time monitoring, Test and Evaluation (T&E) methodology including the transient behavior of the system under test. The unique element of this process control technique is the use of high fidelity, computer generated dynamic models to replicate the behavior of actual Systems Under Test (SUT). It will provide a dynamic simulation capability that becomes the reference truth model, from which comparisons are made with the actual raw/conditioned data from the test elements.
Orbit transfer rocket engine technology program enhanced heat transfer combustor technology
NASA Technical Reports Server (NTRS)
Brown, William S.
1991-01-01
In order to increase the performance of a high performance, advanced expander-cycle engine combustor, higher chamber pressures are required. In order to increase chamber pressure, more heat energy is required to be transferred to the combustor coolant circuit fluid which drives the turbomachinery. This requirement was fulfilled by increasing the area exposed to the hot-gas by using combustor ribs. A previous technology task conducted 2-d hot air and cold flow tests to determine an optimum rib height and configuration. In task C.5 a combustor calorimeter was fabricated with the optimum rib configuration, 0.040 in. high ribs, in order to determine their enhancing capability. A secondary objective was to determine the effects of mixture ratio changers on the enhancement during hot-fire testing. The program used the Rocketdyne Integrated Component Evaluator (ICE) reconfigured into a thrust chamber only mode. The test results were extrapolated to give a projected enhancement from the ribs for a 16 in. long cylindrical combustor at 15 Klb nominal thrust level. The hot-gas wall ribs resulted in a 58 percent increase in heat transfer. When projected to a full size 15K combustor, it becomes a 46 percent increase. The results of those tests, a comparison with previous 2-d results, the effects of mixture ratio and combustion gas flow on the ribs and the potential ramifications for expander cycle combustors are detailed.
Characterization and comparison of emissions from rudimentary waste disposal technologies
Results from 2011 simulation of burn pit emissions and air curtain incinerator emissions, recent developments in methods for open air sampling, comparison of waste energy technologies, current SERDP programs in this area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Signe K.; Purohit, Sumit; Boyd, Lauren W.
The Geothermal Technologies Office Code Comparison Study (GTO-CCS) aims to support the DOE Geothermal Technologies Office in organizing and executing a model comparison activity. This project is directed at testing, diagnosing differences, and demonstrating modeling capabilities of a worldwide collection of numerical simulators for evaluating geothermal technologies. Teams of researchers are collaborating in this code comparison effort, and it is important to be able to share results in a forum where technical discussions can easily take place without requiring teams to travel to a common location. Pacific Northwest National Laboratory has developed an open-source, flexible framework called Velo that providesmore » a knowledge management infrastructure and tools to support modeling and simulation for a variety of types of projects in a number of scientific domains. GTO-Velo is a customized version of the Velo Framework that is being used as the collaborative tool in support of the GTO-CCS project. Velo is designed around a novel integration of a collaborative Web-based environment and a scalable enterprise Content Management System (CMS). The underlying framework provides a flexible and unstructured data storage system that allows for easy upload of files that can be in any format. Data files are organized in hierarchical folders and each folder and each file has a corresponding wiki page for metadata. The user interacts with Velo through a web browser based wiki technology, providing the benefit of familiarity and ease of use. High-level folders have been defined in GTO-Velo for the benchmark problem descriptions, descriptions of simulator/code capabilities, a project notebook, and folders for participating teams. Each team has a subfolder with write access limited only to the team members, where they can upload their simulation results. The GTO-CCS participants are charged with defining the benchmark problems for the study, and as each GTO-CCS Benchmark problem is defined, the problem creator can provide a description using a template on the metadata page corresponding to the benchmark problem folder. Project documents, references and videos of the weekly online meetings are shared via GTO-Velo. A results comparison tool allows users to plot their uploaded simulation results on the fly, along with those of other teams, to facilitate weekly discussions of the benchmark problem results being generated by the teams. GTO-Velo is an invaluable tool providing the project coordinators and team members with a framework for collaboration among geographically dispersed organizations.« less
A new specimen management system using RFID technology.
Shim, Hun; Uh, Young; Lee, Seung Hwan; Yoon, Young Ro
2011-12-01
The specimen management system with barcode needs to be improved in order to solve inherent problems in work performance. This study describes the application of Radio Frequency Identification (RFID) which is the solution for the problems associated with specimen labeling and management. A new specimen management system and architecture with RFID technology for clinical laboratory was designed. The suggested system was tested in various conditions such as durability to temperature and aspect of effective utilization of new work flow under a virtual hospital clinical laboratory environment. This system demonstrates its potential application in clinical laboratories for improving work flow and specimen management. The suggested specimen management system with RFID technology has advantages in comparison to the traditional specimen management system with barcode in the aspect of mass specimen processing, robust durability of temperature, humidity changes, and effective specimen tracking.
Comparison of Requirements for Composite Structures for Aircraft and Space Applications
NASA Technical Reports Server (NTRS)
Raju, Ivatury S.; Elliott, Kenny B.; Hampton, Roy W.; Knight, Norman F., Jr.; Aggarwal, Pravin; Engelstad, Stephen P.; Chang, James B.
2010-01-01
In this paper, the aircraft and space vehicle requirements for composite structures are compared. It is a valuable exercise to study composite structural design approaches used in the airframe industry, and to adopt methodology that is applicable for space vehicles. The missions, environments, analysis methods, analysis validation approaches, testing programs, build quantities, inspection, and maintenance procedures used by the airframe industry, in general, are not transferable to spaceflight hardware. Therefore, while the application of composite design approaches from other industries is appealing, many aspects cannot be directly utilized. Nevertheless, experiences and research for composite aircraft structures may be of use in unexpected arenas as space exploration technology develops, and so continued technology exchanges are encouraged.
A testpart for interdisciplinary analyses in micro production engineering
Möhring, H. -C.; Kersting, P.; Carmignato, S.; ...
2015-04-26
In 2011, a round robin test was initiated within the group of CIRP Research Affiliates. The aim was to establish a platform for linking interdisciplinary research in order to share the expertise and experiences of participants all over the world. This paper introduces a testpart which has been designed to allow an analysis of different manufacturing technologies, simulation methods, machinery and metrology as well as process and production planning aspects. Current investigations are presented focusing on the machining and additive processes to produce the geometry, simulation approaches, machine analysis, and a comparison of measuring technologies. Challenges and limitations regarding themore » manufacturing and evaluation of the testpart features by the applied methods are discussed.« less
Laser Spot Center Detection and Comparison Test
NASA Astrophysics Data System (ADS)
Zhu, Jun; Xu, Zhengjie; Fu, Deli; Hu, Cong
2018-04-01
High efficiency and precision of the pot center detection are the foundations of avionics instrument navigation and optics measurement basis for many applications. It has noticeable impact on overall system performance. Among them, laser spot detection is very important in the optical measurement technology. In order to improve the low accuracy of the spot center position, the algorithm is improved on the basis of the circle fitting. The pretreatment is used by circle fitting, and the improved adaptive denoising filter for TV repair technology can effectively improves the accuracy of the spot center position. At the same time, the pretreatment and de-noising can effectively reduce the influence of Gaussian white noise, which enhances the anti-jamming capability.
A comparison of advanced overlay technologies
NASA Astrophysics Data System (ADS)
Dasari, Prasad; Smith, Nigel; Goelzer, Gary; Liu, Zhuan; Li, Jie; Tan, Asher; Koh, Chin Hwee
2010-03-01
The extension of optical lithography to 22nm and beyond by Double Patterning Technology is often challenged by CDU and overlay control. With reduced overlay measurement error budgets in the sub-nm range, relying on traditional Total Measurement Uncertainty (TMU) estimates alone is no longer sufficient. In this paper we will report scatterometry overlay measurements data from a set of twelve test wafers, using four different target designs. The TMU of these measurements is under 0.4nm, within the process control requirements for the 22nm node. Comparing the measurement differences between DBO targets (using empirical and model based analysis) and with image-based overlay data indicates the presence of systematic and random measurement errors that exceeds the TMU estimate.
Kocabeyoglu, Sibel; Uzun, Salih; Mocan, Mehmet Cem; Bozkurt, Banu; Irkec, Murat; Orhan, Mehmet
2013-10-01
The aim of this study was to compare the visual field test results in healthy children obtained via the Humphrey matrix 24-2 threshold program and standard automated perimetry (SAP) using the Swedish interactive threshold algorithm (SITA)-Standard 24-2 test. This prospective study included 55 healthy children without ocular or systemic disorders who underwent both SAP and frequency doubling technology (FDT) perimetry visual field testing. Visual field test reliability indices, test duration, global indices (mean deviation [MD], and pattern standard deviation [PSD]) were compared between the 2 tests using the Wilcoxon signed-rank test and paired t-test. The performance of the Humphrey field analyzer (HFA) 24-2 SITA-standard and frequency-doubling technology Matrix 24-2 tests between genders were compared with Mann-Whitney U-test. Fifty-five healthy children with a mean age of 12.2 ± 1.9 years (range from 8 years to 16 years) were included in this prospective study. The test durations of SAP and FDT were similar (5.2 ± 0.5 and 5.1 ± 0.2 min, respectively, P = 0.651). MD and the PSD values obtained via FDT Matrix were significantly higher than those obtained via SAP (P < 0.001), and fixation losses and false negative errors were significantly less with SAP (P < 0.05). A weak positive correlation between the two tests in terms of MD (r = 0.352, P = 0.008) and PSD (r = 0.329, P = 0.014) was observed. Children were able to complete both the visual test algorithms successfully within 6 min. However, SAP testing appears to be associated with less depression of the visual field indices of healthy children. FDT Matrix and SAP should not be used interchangeably in the follow-up of children.
NASA Technical Reports Server (NTRS)
Lowell, C. E.; Deadmore, D. L.; Whittenberger, J. D.
1982-01-01
Several oxide dispersion strengthened (ODS) alloys have been tested for cyclic, long-term, high gas-velocity resistance to oxidation at 1100 C and hot corrosion at 900 C. Both nominally Ni-16Cr-4Al and Fe-20Cr-4.5Al ODS alloys were subjected up to about 2500 cycles, where each cycle consisted of 1 hr in a hot, Mach 0.3 combusted gas stream followed by a 3-min quench in an ambient temperature, Mach 0.3 air blast. For comparison to existing technology, a coated superalloy was simultaneously tested. The ODS iron alloy exhibited clearly superior behavior, surviving 3800 oxidation and 2300 hot corrosion cycles essentially unscathed. While the ODS nickel alloys exhibited adequate oxidation resistance, the long-term hot corrosion resistance could be marginal, since the best life for such alloys under these conditions was only about 1100 cycles. However, the hot corrosion resistance of the ODS Ni-base alloys is excellent in comparison to that of traditional superalloys.
U.S. initiatives to strengthen forensic science & international standards in forensic DNA.
Butler, John M
2015-09-01
A number of initiatives are underway in the United States in response to the 2009 critique of forensic science by a National Academy of Sciences committee. This article provides a broad review of activities including efforts of the White House National Science and Technology Council Subcommittee on Forensic Science and a partnership between the Department of Justice (DOJ) and the National Institute of Standards and Technology (NIST) to create the National Commission on Forensic Science and the Organization of Scientific Area Committees. These initiatives are seeking to improve policies and practices of forensic science. Efforts to fund research activities and aid technology transition and training in forensic science are also covered. The second portion of the article reviews standards in place or in development around the world for forensic DNA. Documentary standards are used to help define written procedures to perform testing. Physical standards serve as reference materials for calibration and traceability purposes when testing is performed. Both documentary and physical standards enable reliable data comparison, and standard data formats and common markers or testing regions are crucial for effective data sharing. Core DNA markers provide a common framework and currency for constructing DNA databases with compatible data. Recent developments in expanding core DNA markers in Europe and the United States are discussed. Published by Elsevier Ireland Ltd.
U.S. initiatives to strengthen forensic science & international standards in forensic DNA
Butler, John M.
2015-01-01
A number of initiatives are underway in the United States in response to the 2009 critique of forensic science by a National Academy of Sciences committee. This article provides a broad review of activities including efforts of the White House National Science and Technology Council Subcommittee on Forensic Science and a partnership between the Department of Justice (DOJ) and the National Institute of Standards and Technology (NIST) to create the National Commission on Forensic Science and the Organization of Scientific Area Committees. These initiatives are seeking to improve policies and practices of forensic science. Efforts to fund research activities and aid technology transition and training in forensic science are also covered. The second portion of the article reviews standards in place or in development around the world for forensic DNA. Documentary standards are used to help define written procedures to perform testing. Physical standards serve as reference materials for calibration and traceability purposes when testing is performed. Both documentary and physical standards enable reliable data comparison, and standard data formats and common markers or testing regions are crucial for effective data sharing. Core DNA markers provide a common framework and currency for constructing DNA databases with compatible data. Recent developments in expanding core DNA markers in Europe and the United States are discussed. PMID:26164236
Baseline experimental investigation of an electrohydrodynamically assisted heat pipe
NASA Technical Reports Server (NTRS)
Duncan, A. B.
1995-01-01
The increases in power demand and associated thermal management requirements of future space programs such as potential Lunar/Mars missions will require enhancing the operating efficiencies of thermal management devices. Currently, the use of electrohydrodynamically (EHD) assisted thermal control devices is under consideration as a potential method of increasing thermal management system capacity. The objectives of the currently described investigation included completing build-up of the EHD-Assisted Heat Pipe Test bed, developing test procedures for an experimental evaluation of the unassisted heat pipe, developing an analytical model capable of predicting the performance limits of the unassisted heat pipe, and obtaining experimental data which would define the performance characteristics of the unassisted heat pipe. The information obtained in the currently proposed study will be used in order to provide extensive comparisons with the EHD-assisted performance observations to be obtained during the continuing investigation of EHD-Assisted heat transfer devices. Through comparisons of the baseline test bed data and the EHD assisted test bed data, accurate insight into the performance enhancing characteristics of EHD augmentation may be obtained. This may lead to optimization, development, and implementation of EHD technology for future space programs.
NASA Astrophysics Data System (ADS)
Sass, J. P.; Fesmire, J. E.; Nagy, Z. F.; Sojourner, S. J.; Morris, D. L.; Augustynowicz, S. D.
2008-03-01
A technology demonstration test project was conducted by the Cryogenics Test Laboratory at the Kennedy Space Center (KSC) to provide comparative thermal performance data for glass microspheres, referred to as bubbles, and perlite insulation for liquid hydrogen tank applications. Two identical 1/15th scale versions of the 3,200,000 liter spherical liquid hydrogen tanks at Launch Complex 39 at KSC were custom designed and built to serve as test articles for this test project. Evaporative (boil-off) calorimeter test protocols, including liquid nitrogen and liquid hydrogen, were established to provide tank test conditions characteristic of the large storage tanks that support the Space Shuttle launch operations. This paper provides comparative thermal performance test results for bubbles and perlite for a wide range of conditions. Thermal performance as a function of cryogenic commodity (nitrogen and hydrogen), vacuum pressure, insulation fill level, tank liquid level, and thermal cycles will be presented.
Schwarzer, Ruth; Siebert, Uwe
2009-07-01
The objectives of this study were (i) to develop a systematic framework for describing and comparing different features of health technology assessment (HTA) agencies, (ii) to identify and describe similarities and differences between the agencies, and (iii) to draw conclusions both for producers and users of HTA in research, policy, and practice. We performed a systematic literature search, added information from HTA agencies, and developed a conceptual framework comprising eight main domains: organization, scope, processes, methods, dissemination, decision, implementation, and impact. We grouped relevant items of these domains in an evidence table and chose five HTA agencies to test our framework: DAHTA@DIMDI, HAS, IQWiG, NICE, and SBU. Item and domain similarity was assessed using the percentage of identical characteristics in pairwise comparisons across agencies. RESULTS were interpreted across agencies by demonstrating similarities and differences. Based on 306 included documents, we identified 90 characteristics of eight main domains appropriate for our framework. After applying the framework to the five agencies, we were able to show 40 percent similarities in "dissemination," 38 percent in "scope," 35 percent in "organization," 29 percent in "methods," 26 percent in "processes," 23 percent in "impact," 19 percent in "decision," and 17 percent in "implementation." We found considerably more differences than similarities of HTA features across agencies and countries. Our framework and comparison provides insights and clarification into the need for harmonization. Our findings could serve as descriptive database facilitating communication between producers and users.
Children Can Learn New Facts Equally Well From Interactive Media Versus Face to Face Instruction
Kwok, Kristine; Ghrear, Siba; Li, Vivian; Haddock, Taeh; Coleman, Patrick; Birch, Susan A. J.
2016-01-01
Today’s children have more opportunities than ever before to learn from interactive technology, yet experimental research assessing the efficacy of children’s learning from interactive media in comparison to traditional learning approaches is still quite scarce. Moreover, little work has examined the efficacy of using touch-screen devices for research purposes. The current study compared children’s rate of learning factual information about animals during a face-to-face instruction from an adult female researcher versus an analogous instruction from an interactive device. Eighty-six children ages 4 through 8 years (64% male) completed the learning task in either the Face-to-Face condition (n = 43) or the Interactive Media condition (n = 43). In the Learning Phase of the experiment, which was presented as a game, children were taught novel facts about animals without being told that their memory of the facts would be tested. The facts were taught to the children either by an adult female researcher (Face-to-Face condition) or from a pre-recorded female voice represented by a cartoon Llama (Interactive Media condition). In the Testing Phase of the experiment that immediately followed, children’s memory for the taught facts was tested using a 4-option forced-choice paradigm. Children’s rate of learning was significantly above chance in both conditions and a comparison of the rates of learning across the two conditions revealed no significant differences. Learning significantly improved from age 4 to age 8, however, even the preschool-aged children performed significantly above chance, and their performance did not differ between conditions. These results suggest that, interactive media can be equally as effective as one-on-one instruction, at least under certain conditions. Moreover, these results offer support for the validity of using interactive technology to collect data for research purposes. We discuss the implications of these results for children’s learning from interactive media, parental attitudes about interactive technology, and research methods. PMID:27826263
Nesi, Jacqueline; Prinstein, Mitchell J
2015-11-01
This study examined specific technology-based behaviors (social comparison and interpersonal feedback-seeking) that may interact with offline individual characteristics to predict concurrent depressive symptoms among adolescents. A total of 619 students (57 % female; mean age 14.6) completed self-report questionnaires at 2 time points. Adolescents reported on levels of depressive symptoms at baseline, and 1 year later on depressive symptoms, frequency of technology use (cell phones, Facebook, and Instagram), excessive reassurance-seeking, and technology-based social comparison and feedback-seeking. Adolescents also completed sociometric nominations of popularity. Consistent with hypotheses, technology-based social comparison and feedback-seeking were associated with depressive symptoms. Popularity and gender served as moderators of this effect, such that the association was particularly strong among females and adolescents low in popularity. Associations were found above and beyond the effects of overall frequency of technology use, offline excessive reassurance-seeking, and prior depressive symptoms. Findings highlight the utility of examining the psychological implications of adolescents' technology use within the framework of existing interpersonal models of adolescent depression and suggest the importance of more nuanced approaches to the study of adolescents' media use.
2018-01-01
This study examined specific technology-based behaviors (social comparison and interpersonal feedback-seeking) that may interact with offline individual characteristics to predict concurrent depressive symptoms among adolescents. A total of 619 students (57 % female; mean age 14.6) completed self-report questionnaires at 2 time points. Adolescents reported on levels of depressive symptoms at baseline, and 1 year later on depressive symptoms, frequency of technology use (cell phones, Facebook, and Instagram), excessive reassurance-seeking, and technology-based social comparison and feedback-seeking. Adolescents also completed sociometric nominations of popularity. Consistent with hypotheses, technology-based social comparison and feedback-seeking were associated with depressive symptoms. Popularity and gender served as moderators of this effect, such that the association was particularly strong among females and adolescents low in popularity. Associations were found above and beyond the effects of overall frequency of technology use, offline excessive reassurance-seeking, and prior depressive symptoms. Findings highlight the utility of examining the psychological implications of adolescents’ technology use within the framework of existing interpersonal models of adolescent depression and suggest the importance of more nuanced approaches to the study of adolescents’ media use. PMID:25899879
Cascade Distiller System Performance Testing Interim Results
NASA Technical Reports Server (NTRS)
Callahan, Michael R.; Pensinger, Stuart; Sargusingh, Miriam J.
2014-01-01
The Cascade Distillation System (CDS) is a rotary distillation system with potential for greater reliability and lower energy costs than existing distillation systems. Based upon the results of the 2009 distillation comparison test (DCT) and recommendations of the expert panel, the Advanced Exploration Systems (AES) Water Recovery Project (WRP) project advanced the technology by increasing reliability of the system through redesign of bearing assemblies and improved rotor dynamics. In addition, the project improved the CDS power efficiency by optimizing the thermoelectric heat pump (TeHP) and heat exchanger design. Testing at the NASA-JSC Advanced Exploration System Water Laboratory (AES Water Lab) using a prototype Cascade Distillation Subsystem (CDS) wastewater processor (Honeywell d International, Torrance, Calif.) with test support equipment and control system developed by Johnson Space Center was performed to evaluate performance of the system with the upgrades as compared to previous system performance. The system was challenged with Solution 1 from the NASA Exploration Life Support (ELS) distillation comparison testing performed in 2009. Solution 1 consisted of a mixed stream containing human-generated urine and humidity condensate. A secondary objective of this testing is to evaluate the performance of the CDS as compared to the state of the art Distillation Assembly (DA) used in the ISS Urine Processor Assembly (UPA). This was done by challenging the system with ISS analog waste streams. This paper details the results of the AES WRP CDS performance testing.
NASA Technical Reports Server (NTRS)
Ruf, J. H.; Hagemann, G.; Immich, H.
2003-01-01
A three dimensional linear plug nozzle of area ratio 12.79 was designed by EADS Space Transportation (former Astrium Space Infrastructure). The nozzle was tested within the German National Technology Program 'LION' in a cold air wind tunnel by TU Dresden. The experimental hardware and test conditions are described. Experimental data was obtained for the nozzle without plug side wall fences at a nozzle pressure ratio of 116 and then with plug side wall fences at NPR 110. Schlieren images were recorded and axial profiles of plug wall static pressures were measured at several spanwise locations and on the plug base. Detailed CFD analysis was performed for these nozzle configurations at NPR 116 by NASA MSFC. The CFD exhibits good agreement with the experimental data. A detailed comparison of the CFD results and the experimental plug wall pressure data are given. Comparisons are made for both the without and with plug side wall fence configurations. Numerical results for density gradient are compared to experimental Schlieren images. Experimental nozzle thrust efficiencies are calculated based on the CFD results. The CFD results are used to illustrate the plug nozzle fluid dynamics. The effect of the plug side wall is emphasized.
Aerodynamic Models for the Low Density Supersonic Decelerator (LDSD) Test Vehicles
NASA Technical Reports Server (NTRS)
Van Norman, John W.; Dyakonov, Artem; Schoenenberger, Mark; Davis, Jody; Muppidi, Suman; Tang, Chun; Bose, Deepak; Mobley, Brandon; Clark, Ian
2016-01-01
An overview of aerodynamic models for the Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) campaign test vehicle is presented, with comparisons to reconstructed flight data and discussion of model updates. The SFDT campaign objective is to test Supersonic Inflatable Aerodynamic Decelerator (SIAD) and large supersonic parachute technologies at high altitude Earth conditions relevant to entry, descent, and landing (EDL) at Mars. Nominal SIAD test conditions are attained by lifting a test vehicle (TV) to 36 km altitude with a helium balloon, then accelerating the TV to Mach 4 and 53 km altitude with a solid rocket motor. Test flights conducted in June of 2014 (SFDT-1) and 2015 (SFDT-2) each successfully delivered a 6 meter diameter decelerator (SIAD-R) to test conditions and several seconds of flight, and were successful in demonstrating the SFDT flight system concept and SIAD-R technology. Aerodynamic models and uncertainties developed for the SFDT campaign are presented, including the methods used to generate them and their implementation within an aerodynamic database (ADB) routine for flight simulations. Pre- and post-flight aerodynamic models are compared against reconstructed flight data and model changes based upon knowledge gained from the flights are discussed. The pre-flight powered phase model is shown to have a significant contribution to off-nominal SFDT trajectory lofting, while coast and SIAD phase models behaved much as predicted.
Sheehan, B; Lee, Y; Rodriguez, M; Tiase, V; Schnall, R
2012-01-01
Mobile health (mHealth) is a growing field aimed at developing mobile information and communication technologies for healthcare. Adolescents are known for their ubiquitous use of mobile technologies in everyday life. However, the use of mHealth tools among adolescents is not well described. We examined the usability of four commonly used mobile devices (an iPhone, an Android with touchscreen keyboard, an Android with built-in keyboard, and an iPad) for accessing healthcare information among a group of urban-dwelling adolescents. Guided by the FITT (Fit between Individuals, Task, and Technology) framework, a thinkaloud protocol was combined with a questionnaire to describe usability on three dimensions: 1) task-technology fit; 2) individual-technology fit; and 3) individual-task fit. For task-technology fit, we compared the efficiency, and effectiveness of each of the devices tested and found that the iPhone was the most usable had the fewest errors and prompts and had the lowest mean overall task time For individual-task fit, we compared efficiency and learnability measures by website tasks and found no statistically significant effect on tasks steps, task time and number of errors. Following our comparison of success rates by website tasks, we compared the difference between two mobile applications which were used for diet tracking and found statistically significant effect on tasks steps, task time and number of errors. For individual-technology fit, interface quality was significantly different across devices indicating that this is an important factor to be considered in developing future mobile devices. All of our users were able to complete all of the tasks, however the time needed to complete the tasks was significantly different by mobile device and mHealth application. Future design of mobile technology and mHealth applications should place particular importance on interface quality.
Hospital-based expert model for health technology procurement planning in hospitals.
Miniati, R; Cecconi, G; Frosini, F; Dori, F; Regolini, J; Iadanza, E; Biffi Gentili, G
2014-01-01
Although in the last years technology innovation in healthcare brought big improvements in care level and patient quality of life, hospital complexity and management cost became higher. For this reason, necessity of planning for medical equipment procurement within hospitals is getting more and more important in order to sustainable provide appropriate technology for both routine activity and innovative procedures. In order to support hospital decision makers for technology procurement planning, an expert model was designed as reported in the following paper. It combines the most widely used approaches for technology evaluation by taking into consideration Health Technology Assessment (HTA) and Medical Equipment Replacement Model (MERM). The designing phases include a first definition of prioritization algorithms, then the weighting process through experts' interviews and a final step for the model validation that included both statistical testing and comparison with real decisions. In conclusion, the designed model was able to provide a semi-automated tool that through the use of multidisciplinary information is able to prioritize different requests of technology acquisition in hospitals. Validation outcomes improved the model accuracy and created different "user profiles" according to the specific needs of decision makers.
Education and the Asian Surge: A Comparison of the Education Systems in India and China
2008-01-01
countries similar to those that other researchers have faced. For instance, Bardhan (2003) notes that fewer reliability checks and internal consistency tests...with a critical mass to take advantage of the software outsourcing boom 2 According to UNESCO, although the definition of literacy may vary from one...need to be targeted. For instance, too much emphasis on the study of information technology to take advantage of the current outsourcing trends could
Numerical simulation of cavitating flows in shipbuilding
NASA Astrophysics Data System (ADS)
Bagaev, D.; Yegorov, S.; Lobachev, M.; Rudnichenko, A.; Taranov, A.
2018-05-01
The paper presents validation of numerical simulations of cavitating flows around different marine objects carried out at the Krylov State Research Centre (KSRC). Preliminary validation was done with reference to international test objects. The main part of the paper contains results of solving practical problems of ship propulsion design. The validation of numerical simulations by comparison with experimental data shows a good accuracy of the supercomputer technologies existing at Krylov State Research Centre for both hydrodynamic and cavitation characteristics prediction.
NASA Astrophysics Data System (ADS)
Iskanderova, Zelina; Kleiman, Jacob I.; Tennyson, Rod C.
2009-01-01
Space flight data, collected and published by NASA Glenn Research Center (GRC) team for a set of pristine polymeric materials selected, compiled, and tested in two LEO flight experiments at the International Space Station, as part of the "Materials International Space Station Experiment" (MISSE), has been used for comparison with previously developed atomic oxygen erosion predictive models. The same set of materials was used for a ground-based fast atomic beam (FAO) experimental erosion study at ITL/UTIAS, where the FAO exposure was performed mostly at a standard fluence of 2×1020 cm-2, with the results collected in a database for the development of a prototype of predictive software. A comparison of MISSE-1 flight data with two predictive correlations has shown good agreement, confirming the developed approach to polymers erosion resistance forecast that might be used also for newly developed or untested in space polymeric materials. A number of surface-modified thin film space polymers, treated by two ITL-developed and patented surface modification technologies, Implantox™ [5] and Photosil™ [6], have been also included in MISSE flight experiment. The results from those MISSE samples have shown full protection of AO-sensitive main space-related hydrocarbon polymers, such as Kapton HN, back-metalized Kapton H and Kapton E, and Mylar, when treated by Implantox™ surface modification technology and significant erosion resistance enhancement up to full protection by Photosil™ treatment.
Doozandeh, Azadeh; Irandoost, Farnoosh; Mirzajani, Ali; Yazdani, Shahin; Pakravan, Mohammad; Esfandiari, Hamed
2017-01-01
This study aimed to compare second-generation frequency-doubling technology (FDT) perimetry with standard automated perimetry (SAP) in mild glaucoma. Forty-seven eyes of 47 participants who had mild visual field defect by SAP were included in this study. All participants were examined using SITA 24-2 (SITA-SAP) and matrix 24-2 (Matrix-FDT). The correlations of global indices and the number of defects on pattern deviation (PD) plots were determined. Agreement between two sets regarding the stage of visual field damage was assessed. Pearson's correlation, intra-cluster comparison, paired t-test, and 95% limit of agreement were calculated. Although there was no significant difference between global indices, the agreement between the two devices regarding the global indices was weak (the limit of agreement for mean deviation was -6.08 to 6.08 and that for pattern standard deviation was -4.42 to 3.42). The agreement between SITA-SAP and Matrix-FDT regarding the Glaucoma Hemifield Test (GHT) and the number of defective points in each quadrant and staging of the visual field damage was also weak. Because the correlation between SITA-SAP and Matrix-FDT regarding global indices, GHT, number of defective points, and stage of the visual field damage in mild glaucoma is weak, Matrix-FDT cannot be used interchangeably with SITA-SAP in the early stages of glaucoma.
"Powdered Magnesium: Carbon Dioxide Combustion for Mars Propulsion"
NASA Technical Reports Server (NTRS)
Foote, John P.; Litchford, Ron J.
2005-01-01
Powdered magnesium - carbon dioxide combustion is examined as a potential in-situ propellant combination for Mars propulsion. Although this particular combination has relatively low performance in comparison to traditional bi-propellants, it remains attractive as a potential basis for future Martian mobility systems since it could be partially or wholly manufactured from indigenous planetary resources. As a means of achieving high mobility during long-duration Mars exploration missions, the poorer performing in-situ combination can, in fact, become a superior alternative to conventional storable propellants, which would need to be entirely transported from earth. Thus, the engineering aspects of powdered metal combustion devices are discussed including transport/injection of compacted powder, ignition, combustion efficiency, combustion stability, dilution effects, lean burn limits, and slag formation issues. It is suggested that these technological issues could be effectively addressed through a multi-phase research and development effort beginning with basic feasibility tests using an existing dump configured atmospheric pressure burner. Follow-on phases would involve the development and testing of a pressurized research combustor and technology demonstration tests of a prototypical rocket configuration.
Advanced Launch Technology Life Cycle Analysis Using the Architectural Comparison Tool (ACT)
NASA Technical Reports Server (NTRS)
McCleskey, Carey M.
2015-01-01
Life cycle technology impact comparisons for nanolauncher technology concepts were performed using an Affordability Comparison Tool (ACT) prototype. Examined are cost drivers and whether technology investments can dramatically affect the life cycle characteristics. Primary among the selected applications was the prospect of improving nanolauncher systems. As a result, findings and conclusions are documented for ways of creating more productive and affordable nanolauncher systems; e.g., an Express Lane-Flex Lane concept is forwarded, and the beneficial effect of incorporating advanced integrated avionics is explored. Also, a Functional Systems Breakdown Structure (F-SBS) was developed to derive consistent definitions of the flight and ground systems for both system performance and life cycle analysis. Further, a comprehensive catalog of ground segment functions was created.
NASA Technical Reports Server (NTRS)
Glaab, Louis J.; Kramer, Lynda J.; Arthur, Trey; Parrish, Russell V.; Barry, John S.
2003-01-01
Limited visibility is the single most critical factor affecting the safety and capacity of worldwide aviation operations. Synthetic Vision Systems (SVS) technology can solve this visibility problem with a visibility solution. These displays employ computer-generated terrain imagery to present 3D, perspective out-the-window scenes with sufficient information and realism to enable operations equivalent to those of a bright, clear day, regardless of weather conditions. To introduce SVS display technology into as many existing aircraft as possible, a retrofit approach was defined that employs existing HDD display capabilities for glass cockpits and HUD capabilities for the other aircraft. This retrofit approach was evaluated for typical nighttime airline operations at a major international airport. Overall, 6 evaluation pilots performed 75 research approaches, accumulating 18 hours flight time evaluating SVS display concepts that used the NASA LaRC's Boeing B-757-200 aircraft at Dallas/Fort Worth International Airport. Results from this flight test establish the SVS retrofit concept, regardless of display size, as viable for tested conditions. Future assessments need to extend evaluation of the approach to operations in an appropriate, terrain-challenged environment with daytime test conditions.
McCourt, Clare M; McArt, Darragh G; Mills, Ken; Catherwood, Mark A; Maxwell, Perry; Waugh, David J; Hamilton, Peter; O'Sullivan, Joe M; Salto-Tellez, Manuel
2013-01-01
Next Generation Sequencing (NGS) has the potential of becoming an important tool in clinical diagnosis and therapeutic decision-making in oncology owing to its enhanced sensitivity in DNA mutation detection, fast-turnaround of samples in comparison to current gold standard methods and the potential to sequence a large number of cancer-driving genes at the one time. We aim to test the diagnostic accuracy of current NGS technology in the analysis of mutations that represent current standard-of-care, and its reliability to generate concomitant information on other key genes in human oncogenesis. Thirteen clinical samples (8 lung adenocarcinomas, 3 colon carcinomas and 2 malignant melanomas) already genotyped for EGFR, KRAS and BRAF mutations by current standard-of-care methods (Sanger Sequencing and q-PCR), were analysed for detection of mutations in the same three genes using two NGS platforms and an additional 43 genes with one of these platforms. The results were analysed using closed platform-specific proprietary bioinformatics software as well as open third party applications. Our results indicate that the existing format of the NGS technology performed well in detecting the clinically relevant mutations stated above but may not be reliable for a broader unsupervised analysis of the wider genome in its current design. Our study represents a diagnostically lead validation of the major strengths and weaknesses of this technology before consideration for diagnostic use.
Gruenberg, Marcelo F; Campaner, Gustavo L; Sola, Carlos A; Ortolan, Eligio G
2004-10-15
This study retrospectively compared infection rates between adult patients after posterior spinal instrumentation procedures performed in a conventional versus an ultraclean air operating room. To evaluate if the use of ultraclean air technology could decrease the infection rate after posterior spinal arthrodesis with instrumentation. Postoperative wound infection after posterior arthrodesis remains a feared complication in spinal surgery. Although this frequent complication results in a significant problem, the employment of ultraclean air technology, as it is commonly used for arthroplasty, has not been reported as a possible alternative to reduce the infection rate after complex spine surgery. One hundred seventy-nine patients having posterior spinal fusion with instrumentation were divided into 2 groups: group I included 139 patients operated in a conventional operating room, and group II included 40 patients operated in a vertical laminar flow operating room. Patient selection was performed favoring ultraclean air technology for elective cases in which high infection risk was considered. A statistical analysis of the infection rate and its associated risk factors between both groups was assessed. We observed 18 wound infections in group I and 0 in group II. Comparison of infection rates using the chi-squared test showed a statistically significant difference (P <0.017). The use of ultraclean air technology reduced the infection rate after complex spinal procedures and appears to be an interesting alternative that still needs to be prospectively studied with a randomized protocol.
Application of a single-fluid model for the steam condensing flow prediction
NASA Astrophysics Data System (ADS)
Smołka, K.; Dykas, S.; Majkut, M.; Strozik, M.
2016-10-01
One of the results of many years of research conducted in the Institute of Power Engineering and Turbomachinery of the Silesian University of Technology are computational algorithms for modelling steam flows with a non-equilibrium condensation process. In parallel with theoretical and numerical research, works were also started on experimental testing of the steam condensing flow. This paper presents a comparison of calculations of a flow field modelled by means of a single-fluid model using both an in-house CFD code and the commercial Ansys CFX v16.2 software package. The calculation results are compared to inhouse experimental testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poirier, M.R.
2002-06-07
Personnel performed engineering-scale tests at the Filtration Research Engineering Demonstration (FRED) to determine crossflow filter performance with a 5.6 M sodium solution containing varying concentrations of sludge and sodium permanganate. The work represents another in a series of collaborative efforts between the University of South Carolina and the Savannah River Technology Center in support of the process development efforts for the Savannah River Site. The current tests investigated filter performance with slurry containing simulated Tank 40H Sludge and sodium permanganate at concentrations between 0.070 weight percent and 3.04 weight percent insoluble solids.
NASA Technical Reports Server (NTRS)
Doty, Wayne A.
1990-01-01
Development of Natural Laminar Flow (NLF) technology for application to general aviation-type aircraft has raised some question as to the adequacy of FAR Part 23 for certification of aircraft with significant NLF. A series of flight tests were conducted with a modified Cessna T210R to allow quantitative comparison of the aircraft's ability to meet certification requirements with significant NLF and with boundary layer transition fixed near the leading edge. There were no significant differences between the two conditions except an increasing in drag, which resulted in longer takeoff distances and reduced climb performance.
NASA Technical Reports Server (NTRS)
Costa, Guillermo J.; Arteaga, Ricardo A.
2011-01-01
A preliminary survey of existing separation assurance and collision avoidance advancements, technologies, and efforts has been conducted in order to develop a concept of operations for flight testing autonomous separation assurance at Dryden Flight Research Center. This effort was part of the Unmanned Aerial Systems in the National Airspace System project. The survey focused primarily on separation assurance projects validated through flight testing (including lessons learned), however current forays into the field were also examined. Comparisons between current Dryden flight and range assets were conducted using House of Quality matrices in order to allow project management to make determinations regarding asset utilization for future flight tests. This was conducted in order to establish a body of knowledge of the current collision avoidance landscape, and thus focus Dryden s efforts more effectively towards the providing of assets and test ranges for future flight testing within this research field.
NASA Technical Reports Server (NTRS)
Boardman, T. A.; Carpenter, R. L.; Goldberg, B. E.; Shaeffer, C. W.
1993-01-01
Establishment of a test facility and associated 11-in.-diameter motor for hybrid propulsion technology development at NASA's George C. Marshall Space Flight Center is discussed in this paper. Results of twenty 11-in.-diameter motor tests with a UTF-29901 (60 percent polycyclopentadiene, 40 percent hydroxyl-terminated polybutadiene)/gaseous oxygen propellant system are presented. Tests at this scale have developed fuel regression correlations for comparison with results of yet-to-be-completed, 24-in.-diameter motor tests; demonstrated combustion efficiency levels in the 95 percent range for both single- and multiple-port grain configurations; have shown smooth and stable throttling characteristics over flight-type throttle ranges; and have begun to establish criteria for stable combustion in hybrid motors. The testing of 24-in. motors has not as yet been initiated and is not addressed.
NASA Lewis Stirling SPRE testing and analysis with reduced number of cooler tubes
NASA Technical Reports Server (NTRS)
Wong, Wayne A.; Cairelli, James E.; Swec, Diane M.; Doeberling, Thomas J.; Lakatos, Thomas F.; Madi, Frank J.
1992-01-01
Free-piston Stirling power converters are candidates for high capacity space power applications. The Space Power Research Engine (SPRE), a free-piston Stirling engine coupled with a linear alternator, is being tested at the NASA Lewis Research Center in support of the Civil Space Technology Initiative. The SPRE is used as a test bed for evaluating converter modifications which have the potential to improve the converter performance and for validating computer code predictions. Reducing the number of cooler tubes on the SPRE has been identified as a modification with the potential to significantly improve power and efficiency. Experimental tests designed to investigate the effects of reducing the number of cooler tubes on converter power, efficiency and dynamics are described. Presented are test results from the converter operating with a reduced number of cooler tubes and comparisons between this data and both baseline test data and computer code predictions.
Comparative performance evaluation of advanced AC and DC EV propulsion systems
NASA Astrophysics Data System (ADS)
MacDowall, R. D.; Crumley, R. L.
Idaho National Engineering Laboratory (INEL) evaluates EV propulsion systems and components for the U.S. Department of Energy (DOE) Electric and Hybrid Vehicle (EHV) Program. In this study, experimental data were used to evaluate the relative performances of the benchmark Chrysler/GE ETV-1 DC and the Ford/GE First Generation Single-Shaft AC (ETX-I) propulsion systems. Tests were conducted on the INEL's chassis dynamometer using identical aerodynamic and rolling resistance road-load coefficients and vehicle test weights. The results allowed a direct comparison of selected efficiency and performance characteristics for the two propulsion system technologies. The ETX-I AC system exhibited slightly lower system efficiency during constant speed testing than the ETV-1 DC propulsion system.
NASA Technical Reports Server (NTRS)
Lyle, Karen H.
2015-01-01
Acceptance of new spacecraft structural architectures and concepts requires validated design methods to minimize the expense involved with technology demonstration via flight-testing. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) architectures are attractive for spacecraft deceleration because they are lightweight, store compactly, and utilize the atmosphere to decelerate a spacecraft during entry. However, designers are hesitant to include these inflatable approaches for large payloads or spacecraft because of the lack of flight validation. This publication summarizes results comparing analytical results with test data for two concepts subjected to representative entry, static loading. The level of agreement and ability to predict the load distribution is considered sufficient to enable analytical predictions to be used in the design process.
Prolonged 500 C Operation of 100+ Transistor Silicon Carbide Integrated Circuits
NASA Technical Reports Server (NTRS)
Spry, David J.; Neudeck, Philip G.; Lukco, Dorothy; Chen, Liangyu; Krasowski, Michael J.; Prokop, Norman F.; Chang, Carl W.; Beheim, Glenn M.
2017-01-01
This report describes more than 5000 hours of successful 500 C operation of semiconductor integrated circuits (ICs) with more than 100 transistors. Multiple packaged chips with two different 4H-SiC junction field effect transistor (JFET) technology demonstrator circuits have surpassed thousands of hours of oven-testing at 500 C. After 100 hours of 500 C burn-in, the circuits (except for 2 failures) exhibit less than 10% change in output characteristics for the remainder of 500 C testing. We also describe the observation of important differences in IC materials durability when subjected to the first nine constituents of Venus-surface atmosphere at 9.4 MPa and 460 C in comparison to what is observed for Earth-atmosphere oven testing at 500 C.
Prolonged 500 C Operation of 100+ Transistor Silicon Carbide Integrated Circuits
NASA Technical Reports Server (NTRS)
Spry, David J.; Neudeck, Philip G.; Lukco, Dorothy; Chen, Liangyu; Krasowski, Michael J.; Prokop, Norman F.; Chang, Carl W.; Beheim, Glenn M.
2017-01-01
This report describes more than 5000 hours of successful 500 C operation of semiconductor integrated circuits (ICs) with more than 100 transistors. Multiple packaged chips with two different 4H-SiC junction field effect transistor (JFET) technology demonstrator circuits have surpassed thousands of hours of oven-testing at 500 C. After 100 hours of 500 C burn-in, the circuits (except for 2 failures) exhibit less than 10 change in output characteristics for the remainder of 500C testing. We also describe the observation of important differences in IC materials durability when subjected to the first nine constituents of Venus-surface atmosphere at 9.4 MPa and 460C in comparison to what is observed for Earth-atmosphere oven testing at 500 C.
NASA Astrophysics Data System (ADS)
Zavala, Miguel; Molina, Luisa T.; Fortner, Edward; Knighton, Berk; Herndon, Scott; Yacovitch, Tara; Floerchinger, Cody; Roscioli, Joseph; Kolb, Charles; Mejia, Jose Antonio; Sarmiento, Jorge; Paramo, Victor Hugo; Zirath, Sergio; Jazcilevich, Aron
2014-05-01
Black carbon emitted from freight, public transport, and heavy duty trucks sources is linked with adverse effects on human health. In addition, the control of emissions of black carbon, an important short-lived climate forcing agent (SLCF), has recently been considered as one of the key strategies for mitigating regional near-term climate change. Despite the availability of new emissions control technologies for reducing emissions from diesel-powered mobile sources, their introduction is still not widespread in many urban areas and there is a need to characterize real-world emission rates of black carbon from this key source. The emissions of black carbon, organic carbon, and other gaseous and particle pollutants from diesel-powered mobile sources in Mexico were characterized by deploying a mobile laboratory equipped with real-time instrumentation in Mexico City as part of the SLCFs-Mexico 2013 project. From February 25-28 of 2013 the emissions from selected diesel-powered vehicles were measured in both controlled experiments and real-world on-road driving conditions. Sampled vehicles had several emissions levels technologies, including: EPA98, EPA03, EPA04, EURO3-5, and Hybrid. All vehicles were sampled using diesel fuel and several vehicles were measured using both diesel and biodiesel fuels. Additional measurements included the use of a remote sensing unit for the co-sampling of all tested vehicles, and the installation and operation of a Portable Emissions Measurements System (PEMS) for the measurement of emissions from a test vehicle. We will present inter-comparisons of the emission factors obtained among the various vehicle technologies that were sampled during the experiment as well as the inter-comparison of results from the various sampling platforms. The results can be used to
Compare, Angelo; Kouloulias, Vassilis; Apostolos, Vontas; Peña, Wendy Moreno; Molinari, Enrico; Grossi, Enzo; Efstathios, Efstathopoulos; Carenini, Michele
2012-09-03
There is compelling evidence that psychological factors may have the same or even greater impact on the possibility of adverse events on cardiac diseases (CD) than other traditional clinical risk factors. Anxiety and depression are predictors of short- and long-term adverse outcomes, increased risk for higher rates of in-hospital complications, re-infarction, malignant arrhythmias, and mortality in CD patients. Despite researchers finding that cognitive behavior therapy (CBT) reduced depressive and anxiety symptoms, the fact that such results are maintained only in the short term and the lack of maintenance of the long-term affects the absence of changes in lifestyles, preventing the possibility of a wide generalization of results. Recently wellbeing therapy (WBT) has been proposed as a useful approach to improve healthy lifestyle behaviors and reduce psychological distress. The present randomized controlled study will test WBT, in comparison with CBT, as far as the reduction of symptoms of depression, anxiety and psychological distress, and the improvement of lifestyle behaviors and quality of life in cardiac patients are concerned. Moreover, innovations in communication technologies allow patients to be constantly followed in real life. Therefore WBT based on personalized mobile technology will allow the testing of its effectiveness in comparison with usual WBT. The present study is a large outpatient study on the treatment of co-morbid depression, anxiety, and psychological distress in cardiac patients. The most important issues of this study are its randomized design, the focus on promotion of health-related behaviors, and the use of innovative technologies supporting patients' wellbeing in real life and in a continuous way. First results are expected in 2012. ClinicalTrials.gov Identifier: NCT01543815.
Emission rates of regulated pollutants from on-road heavy-duty diesel vehicles
NASA Astrophysics Data System (ADS)
Shah, Sandip D.; Johnson, Kent C.; Wayne Miller, J.; Cocker, David R.
Emissions from heavy-duty diesel (HDD) vehicles are affected by many factors. Changes in engine technology, operating mode, fuel properties, vehicle speed and ambient conditions can have significant effects on emission rates of regulated species. This paper presents the results of on-road emissions testing of 11 HDD vehicles (model years 1996-2000) over the ARB Four Phase driving schedule and the urban dynamometer driving schedule (UDDS). Emission rates were found to be highly dependent on vehicle operating mode. Per mile NO x emission rates for vehicle operation at low speeds, in simulated congested traffic, were three times higher per mile emissions then while cruising on the freeway. Comparisons of NO x emission factors to EMFAC baseline emission factors were within 5-40% for vehicles of various model years tested over the UDDS. A comparison of NO x emission factors for a weighted average of the ARB four phase driving schedule yielded values within 17-57% of EMFAC values. Generally, particulate matter (PM) emission rates were lower than EMFAC values.
NASA Astrophysics Data System (ADS)
Bilal, Bisma; Ahmed, Suhaib; Kakkar, Vipan
2018-02-01
The challenges which the CMOS technology is facing toward the end of the technology roadmap calls for an investigation of various logical and technological solutions to CMOS at the nano scale. Two such paradigms which are considered in this paper are the reversible logic and the quantum-dot cellular automata (QCA) nanotechnology. Firstly, a new 3 × 3 reversible and universal gate, RG-QCA, is proposed and implemented in QCA technology using conventional 3-input majority voter based logic. Further the gate is optimized by using explicit interaction of cells and this optimized gate is then used to design an optimized modular full adder in QCA. Another configuration of RG-QCA gate, CRG-QCA, is then proposed which is a 4 × 4 gate and includes the fault tolerant characteristics and parity preserving nature. The proposed CRG-QCA gate is then tested to design a fault tolerant full adder circuit. Extensive comparisons of gate and adder circuits are drawn with the existing literature and it is envisaged that our proposed designs perform better and are cost efficient in QCA technology.
NASA Technical Reports Server (NTRS)
O'Donnell, Patricia M. (Editor)
1990-01-01
Attention is given to topics of advanced concepts, hydrogen-oxygen fuel cells and electrolyzers, nickel electrodes, and advanced rechargeable batteries. Papers are presented on human exploration mission studies, advanced rechargeable sodium batteries with novel cathodes, advanced double-layer capacitors, recent advances in solid-polymer electrolyte fuel cell technology with low platinum loading electrodes, electrocatalysts for oxygen electrodes in fuel cells and water electrolyzers for space applications, and the corrosion testing of candidates for the alkaline fuel cell cathode. Other papers are on a structural comparison of nickel electodes and precursor phases, the application of electrochemical impedance spectroscopy for characterizing the degradation of Ni(OH)2/NiOOH electrodes, advances in lightweight nickel electrode technology, multimission nickel-hydrogen battery cell for the 1990s, a sodium-sulfur battery flight experiment definition study, and advances in ambient-temperature secondary lithium cells.
Direct molding of pavement tiles made of ground tire rubber
NASA Astrophysics Data System (ADS)
Quadrini, Fabrizio; Gagliardi, Donatella; Tedde, Giovanni Matteo; Santo, Loredana; Musacchi, Ettore
2016-10-01
Large rubber products can be molded by using only ground tire rubber (GTR) without any additive or binder due to a new technology called "direct molding". Rubber granules and powders from tire recycling are compression molded at elevated temperatures and pressures. The feasibility of this process was clearly shown in laboratory but the step to the industrial scale was missing. Thanks to an European Project (SMART "Sustainable Molding of Articles from Recycled Tires") this step has been made and some results are reported in this study. The press used for compression molding is described. Some tests were made to measure the energy consumption so as to evaluate costs for production in comparison with conventional technologies for GTR molding (by using binders). Results show that 1 m2 tiles can be easily molded with several thicknesses in a reasonable low time. Energy consumption is higher than conventional technologies but it is lower than the cost for binders.
Improving clinical instruction: comparison of literature.
Giordano, Shelley
2008-01-01
Clinical education in radiologic technology and athletic training is similar in that both programs use clinical sites and clinical instructors to instruct and evaluate student competency. The purpose of this paper is to review and compare the literature from radiologic technology and athletic training clinical education. The literature for this review was obtained using ProQuest and PubMed databases, from the years 1998 to 2006. Research is available for both radiologic technology and athletic training and provides a good comparison. Radiologic technology students experience various clinical stressors that can be remedied by properly trained clinical instructors and instructors who spend quality time with students. The opinions regarding the necessary behaviors of clinical instructors vary between program directors, clinical instructors and students. Cooperation and communication between programs and clinical instructors is important for students to achieve clinical success. A comparison of the literature demonstrates that radiologic technology and athletic training programs are similar; thus, ideas from athletic training can be applied to radiologic technology clinical education.
Performance, size, mass, and cost estimates for projected 1kW EOL Si, InP, and GaAs arrays
NASA Technical Reports Server (NTRS)
Slifer, Luther W., Jr.
1991-01-01
One method of evaluating the potential of emerging solar cell and array technologies is to compare their projected capabilities in space flight applications to those of established Si solar cells and arrays. Such an application-oriented comparison provides an integrated view of the elemental comparisons of efficiency, radiation resistance, temperature sensitivity, size, mass, and cost in combination. In addition, the assumptions necessary to make the comparisons provide insights helpful toward determining necessary areas of development or evaluation. Finally, as developments and evaluations progress, the results can be used in more precisely defining the overall potential of the new technologies in comparison to existing technologies. The projected capabilities of Si, InP, and GaAs cells and arrays are compared.
NASA Technical Reports Server (NTRS)
Gallo, Christopher A.; Agui, Juan H.; Creager, Colin M.; Oravec, Heather A.
2012-01-01
An Excavation System Model has been written to simulate the collection and transportation of regolith on the moon. The calculations in this model include an estimation of the forces on the digging tool as a result of excavation into the regolith. Verification testing has been performed and the forces recorded from this testing were compared to the calculated theoretical data. The Northern Centre for Advanced Technology Inc. rovers were tested at the NASA Glenn Research Center Simulated Lunar Operations facility. This testing was in support of the In-Situ Resource Utilization program Innovative Partnership Program. Testing occurred in soils developed at the Glenn Research Center which are a mixture of different types of sands and whose soil properties have been well characterized. This testing is part of an ongoing correlation of actual field test data to the blade forces calculated by the Excavation System Model. The results from this series of tests compared reasonably with the predicted values from the code.
An In-vitro Comparison of Force Loss of Orthodontic Non-Latex Elastics
Alavi, Shiva; Tabatabaie, Atusa Rahnama; Hajizadeh, Fatemeh; Ardekani, Alireza Haerian
2014-01-01
Objective: The amount and consistency of the applied forces to the tooth are important factors in tooth movements; therefore, the aim of this study was to compare the initial force and the force loss of three brands of elastics in 24 hours. Materials and Methods: In this in-vitro study sixty non-latex elastics (3/16 medium) from three companies (Forestadent, Dentaurum and Ortho Technology) were randomly selected. Two static tests were performed, the first in a dry environment to evaluate the initial force and the other performed in a wet environment (artificial saliva) to evaluate the force loss in 24 hours. The Universal testing machine measured the forces after stretching the elastics to three times the lumen diameter. Data were analyzed by repeated measures ANOVA, One-way ANOVA, Tukey-HSD, Paired samples test, and one sample test. Results: The difference between the brands was significant (p=0.002). Force loss was observed in all samples; 4–7.5% force loss occurred after one hour and 19–38% force loss occurred after 24 hours. The average initial force of Forestadent and Ortho Technology was significantly higher than marketed forces (p<0.001), but the initial force of Dentaurum elastics was similar to the marketed force. Conclusion: The force loss over 24 hours time period was Forestadent>Dentaurum>Ortho-Technology. According to the initial force and force loss percentage it is suggested to replace the non-latex elastics several times a day. PMID:24910671
Dish concentrators for solar thermal energy - Status and technology development
NASA Technical Reports Server (NTRS)
Jaffe, L. D.
1981-01-01
Comparisons are presented of point-focusing, or 'dish' solar concentrator system features, development status, and performance levels demonstrated to date. In addition to the requirements of good optical efficiency and high geometric concentration ratios, the most important future consideration in solar thermal energy dish concentrator design will be the reduction of installed and lifetime costs, as well as the materials and labor costs of production. It is determined that technology development initiatives are needed in such areas as optical materials, design wind speeds and wind loads, structural configuration and materials resistance to prolonged exposure, and the maintenance of optical surfaces. The testing of complete concentrator systems, with energy-converting receivers and controls, is also necessary. Both reflector and Fresnel lens concentrator systems are considered.
Comparison of Requirements for Composite Structures for Aircraft and Space Applications
NASA Technical Reports Server (NTRS)
Raju, Ivatury S.; Elliot, Kenny B.; Hampton, Roy W.; Knight, Norman F., Jr.; Aggarwal, Pravin; Engelstad, Stephen P.; Chang, James B.
2010-01-01
In this report, the aircraft and space vehicle requirements for composite structures are compared. It is a valuable exercise to study composite structural design approaches used in the airframe industry and to adopt methodology that is applicable for space vehicles. The missions, environments, analysis methods, analysis validation approaches, testing programs, build quantities, inspection, and maintenance procedures used by the airframe industry, in general, are not transferable to spaceflight hardware. Therefore, while the application of composite design approaches from aircraft and other industries is appealing, many aspects cannot be directly utilized. Nevertheless, experiences and research for composite aircraft structures may be of use in unexpected arenas as space exploration technology develops, and so continued technology exchanges are encouraged.
Quiet High Speed Fan II (QHSF II): Final Report
NASA Technical Reports Server (NTRS)
Kontos, Karen; Weir, Don; Ross, Dave
2012-01-01
This report details the aerodynamic, mechanical, structural design and fabrication of a Honey Engines Quiet High Speed Fan II (lower hub/tip ratio and higher specific flow than the Baseline I fan). This fan/nacelle system incorporates features such as advanced forward sweep and an advanced integrated fan/fan exit guide vane design that provides for the following characteristics: (1) Reduced noise at supersonic tip speeds, in comparison to current state-of-the-art fan technology; (2) Improved aeroelastic stability within the anticipated operating envelope; and (3) Aerodynamic performance consistent with current state-of-the-art fan technology. This fan was fabricated by Honeywell and tested in the NASA Glenn 9- by 15-Ft Low Speed Wind Tunnel for aerodynamic, aeromechanical, and acoustic performance.
X-34 Experimental Aeroheating at Mach 6 and 10
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Horvath, Thomas J.; DiFulvio, Michael; Glass, Christopher; Merski, N. Ronald
1998-01-01
Critical technologies are being developed to support the goals of the NASA Office of Aeronautics and Space Transportation Technology Access to Space initiative for next-generation reusable space transportation systems. From the perspective of aerothermodynamic performance throughout the flight trajectory, the Reusable Launch Vehicle program incorporates conceptual analysis, ground-based testing, and computational fluid dynamics to provide flyable suborbital flight demonstrator vehicles. This report provides an overview of the hypersonic aeroheating wind tunnel test program conducted at the NASA Langley Research Center in support of one of these vehicles, the X-34 small reusable technology demonstrator program. Global surface heat transfer images, surface streamline patterns, and shock shapes were measured on 0.0153- and 0.0183-scale models of proposed X-34 flight vehicles at Mach 6 and 10 in air. The primary parametrics that were investigated include angles-of-attack from 0 to 35 deg. and freestream unit Reynolds numbers from 0.5 to 8 million per foot (which was sufficient to produce laminar, transitional, and turbulent heating data), both with and without control surface deflections. Comparisons of the experimental data to computational predictions are included, along with a discussion of the implications of some of the experimental flow features for the flight vehicle.
Bibliography on Cold Regions Science and Technology, Volume 46, Part 2, 1992
1992-01-01
Modelling of heat capacity-temperature data for sucrose- conditions: trial study . Peck, L.. 1)992. 15p.. eng) Comparison of four cold hardiness tests on...authors are listed along with the title, date, pagination, and language of the document and the accession number. The subject index is composed of four ...eng1 46-1074 Radar backscatter measurements during the Winter Weddell Abramov Glacier and the runoff in its basin (1989. p.85- Aakjaer. P.D. Gyre Study
Cooling techniques for turbojet pre-heater channels
NASA Astrophysics Data System (ADS)
Desaulty, M.; Troullot, P.; Coutor, S.
1985-09-01
Increases in the performance of turbojets with pre-heating are dependent upon technological research in the area of protection of the wall in pre-heater channels. The procedures used to cool the thermal protection jackets have undergone important improvements which have optimized performance, reduced weight and improved cooling efficiency. This report presents a comparison of the thermal protection jackets for several SNECMA engines, as well as the principal stages of development for the jacket from the design stages through static engines tests.
1979-11-01
diameter test cell used for laser propagation measurements is Path length-84 m to 2.0 km available and has been designed for circulating aerosols or...36- and 110-GHz and found an attenuation ratio of comparison measurements along a 4-km path with rain rate measured near the receiver end. a *02 They...time. Tipping-bucket systems . gauges are reliable, but become increasingly in- accurate at high rates . Flow gauges which The direct field measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merket, Noel D; DeGraw, Jason W; Lee, Edwin S
The use of radiant technology in attics aims to reduce the radiation component of heat transfer between the attic floor and roof decks, gables, and eaves. Recently, it has been shown that EnergyPlus underestimates the savings using radiant technologies in attic spaces. The aim of this study is to understand why EnergyPlus underestimates the performance of radiant technologies and provide a solution strategy that works within the current capabilities of EnergyPlus. The analysis uses three attic energy models as a baseline for comparison for EnergyPlus. Potential reasons for the discrepancies between the attic specific energy models and EnergyPlus are isolatedmore » and individually tested. A solution strategy is proposed using the Energy Management System (EMS) capabilities within EnergyPlus. This solution strategy produces similar results to the other attic specific energy models. This paper shows that the current capabilities of EnergyPlus are sufficient to simulate radiant technologies in attics. The methodology showcased in this paper serves as a guide for engineers and researchers who would like to predict the performance radiant technology in attics using the whole building energy software, EnergyPlus.« less
Design and Application of New Low-Cost Instruments for Marine Environmental Research
Marcelli, Marco; Piermattei, Viviana; Madonia, Alice; Mainardi, Umberto
2014-01-01
The development of low-cost instrumentation plays a key role in marine environmental studies and represents one of the most innovative aspects of current oceanographic research. These kinds of devices can be used for several applications, ranging from vertical profilers to stand-alone systems, and can be installed on different platforms (buoys, Voluntary Observing Ships, underwater vehicles, etc.). The availability of low-cost technologies enables the realization of extended observatory networks for the study of marine physical and biological processes through an integrated approach merging in situ observations, forecasting models and remotely sensed data. We present new low-cost sensors and probes developed to measure marine temperature, conductivity, chlorophyll a and Chromophoric Dissolved Organic Matter fluorescence, focusing on sensing strategies, general architecture, laboratory trials, in situ tests and comparison with standard instruments. Furthermore, we report the expendable (New T-FLaP), vertical profiler (T-FLaPpro) and stand-alone (Spectra) applications of these technological developments that were tested during several oceanographic surveys in the Mediterranean Sea. PMID:25490594
NASA Astrophysics Data System (ADS)
Wang, Xinyi; Shen, Jialong; Liu, Xinbo
2018-01-01
Against the technical defects of universally applicable beam tube monitoring system at present, such as air suction in the beam tube, line clogging, long sampling time, etc., the paper analyzes the current situation of the spontaneous combustion fire disaster forecast of mine in our country and these defects one by one. On this basis, the paper proposes a research thought that improving the positive pressure beam tube so as to substitute the negative pressure beam tube. Then, the paper introduces the beam tube monitoring system based on positive pressure technology through theoretical analysis and experiment. In the comparison with negative pressure beam tube, the paper concludes the advantage of the new system and draws the conclusion that the positive pressure beam tube is superior to the negative pressure beam tube system both in test result and test time. At last, the paper proposes prospect of the beam tube monitoring system based on positive pressure technology.
Active vibration absorber for CSI evolutionary model: Design and experimental results
NASA Technical Reports Server (NTRS)
Bruner, Anne M.; Belvin, W. Keith; Horta, Lucas G.; Juang, Jer-Nan
1991-01-01
The development of control of large flexible structures technology must include practical demonstration to aid in the understanding and characterization of controlled structures in space. To support this effort, a testbed facility was developed to study practical implementation of new control technologies under realistic conditions. The design is discussed of a second order, acceleration feedback controller which acts as an active vibration absorber. This controller provides guaranteed stability margins for collocated sensor/actuator pairs in the absence of sensor/actuator dynamics and computational time delay. The primary performance objective considered is damping augmentation of the first nine structural modes. Comparison of experimental and predicted closed loop damping is presented, including test and simulation time histories for open and closed loop cases. Although the simulation and test results are not in full agreement, robustness of this design under model uncertainty is demonstrated. The basic advantage of this second order controller design is that the stability of the controller is model independent.
Design and application of new low-cost instruments for marine environmental research.
Marcelli, Marco; Piermattei, Viviana; Madonia, Alice; Mainardi, Umberto
2014-12-05
The development of low-cost instrumentation plays a key role in marine environmental studies and represents one of the most innovative aspects of current oceanographic research. These kinds of devices can be used for several applications, ranging from vertical profilers to stand-alone systems, and can be installed on different platforms (buoys, Voluntary Observing Ships, underwater vehicles, etc.). The availability of low-cost technologies enables the realization of extended observatory networks for the study of marine physical and biological processes through an integrated approach merging in situ observations, forecasting models and remotely sensed data. We present new low-cost sensors and probes developed to measure marine temperature, conductivity, chlorophyll a and Chromophoric Dissolved Organic Matter fluorescence, focusing on sensing strategies, general architecture, laboratory trials, in situ tests and comparison with standard instruments. Furthermore, we report the expendable (New T-FLaP), vertical profiler (T-FLaPpro) and stand-alone (Spectra) applications of these technological developments that were tested during several oceanographic surveys in the Mediterranean Sea.
Evolutionary Design of an X-Band Antenna for NASA's Space Technology 5 Mission
NASA Technical Reports Server (NTRS)
Lohn, Jason D.; Hornby, Gregory S.; Rodriguez-Arroyo, Adan; Linden, Derek S.; Kraus, William F.; Seufert, Stephen E.
2003-01-01
We present an evolved X-band antenna design and flight prototype currently on schedule to be deployed on NASA s Space Technology 5 spacecraft in 2004. The mission consists of three small satellites that wall take science measurements in Earth s magnetosphere. The antenna was evolved to meet a challenging set of mission requirements, most notably the combination of wide beamwidth for a circularly-polarized wave and wide bandwidth. Two genetic algorithms were used: one allowed branching an the antenna arms and the other did not. The highest performance antennas from both algorithms were fabricated and tested. A handdesigned antenna was produced by the contractor responsible for the design and build of the mission antennas. The hand-designed antenna is a quadrifilar helix, and we present performance data for comparison to the evolved antennas. As of this writing, one of our evolved antenna prototypes is undergoing flight qualification testing. If successful, the resulting antenna would represent the first evolved hardware in space, and the first deployed evolved antenna.
Use of Docker for deployment and testing of astronomy software
NASA Astrophysics Data System (ADS)
Morris, D.; Voutsinas, S.; Hambly, N. C.; Mann, R. G.
2017-07-01
We describe preliminary investigations of using Docker for the deployment and testing of astronomy software. Docker is a relatively new containerization technology that is developing rapidly and being adopted across a range of domains. It is based upon virtualization at operating system level, which presents many advantages in comparison to the more traditional hardware virtualization that underpins most cloud computing infrastructure today. A particular strength of Docker is its simple format for describing and managing software containers, which has benefits for software developers, system administrators and end users. We report on our experiences from two projects - a simple activity to demonstrate how Docker works, and a more elaborate set of services that demonstrates more of its capabilities and what they can achieve within an astronomical context - and include an account of how we solved problems through interaction with Docker's very active open source development community, which is currently the key to the most effective use of this rapidly-changing technology.
Update on results of SPRE testing at NASA Lewis
NASA Technical Reports Server (NTRS)
Cairelli, James E.; Swec, Diane M.; Wong, Wayne A.; Doeberling, Thomas J.; Madi, Frank J.
1991-01-01
The Space Power Research Engine (SPRE), a free-piston Stirling engine with a linear alternator, is being tested at NASA Lewis Research Center as part of the Civilian Space Technology Initiative (CSTI) as a candidate for high capacity space power. Results are presented from recent SPRE tests designed to investigated the effects of variation in the displacer seal clearance and piston centering port area on engine performance and dynamics. The impact of these variations on PV power and efficiency are presented. Comparisons of the displacer seal clearance tests results with HFAST code predictions show good agreement for PV power, but show poor agreement for PV efficiency. Correlations are presented relating the piston midstroke position to the dynamic Delta P across the piston and the centering port area. Test results indicate that a modest improvement in PV power and efficiency may be realized with a reduction in piston centering port area.
Update on results of SPRE testing at NASA Lewis
NASA Technical Reports Server (NTRS)
Cairelli, James E.; Swec, Diane M.; Wong, Wayne A.; Doeberling, Thomas J.; Madi, Frank J.
1991-01-01
The Space Power Research Engine (SPRE), a free-piston Stirling engine with a linear alternator, is being tested at NASA Lewis Research Center as part of the Civilian Space Technology Initiative (CSTI) as a candidate for high capacity space power. Results are presented from recent SPRE tests designed to investigate the effects of variation in the displacer seal clearance and piston centering port area on engine performance and dynamics. The effects of these variations on PV power and efficiency are presented. Comparisons of the displacer seal clearance test results with HFAST code predictions show good agreement for PV power but poor agreement for PV efficiency. Correlations are presented relating the piston mid-stroke position to the dynamic Delta P across the piston and the centering port area. Test results indicate that a modest improvement in PV power and efficiency may be realized with a reduction in piston centering port area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitfield, R.G.; Habegger, L.J.; Levine, E.P.
1981-04-01
The objective of the comparative assessment is to provide an initial, traceable and consistent comparison of the SPS and selected current, near-term, and advanced energy technologies. Terrestrial alternatives were selected, and their cost, performance, and environmental and societal attributes were specified for use in the comparison with the SPS in the post-2000 era. The framework for comparisons was established. The SPS was compared with alternative systems in terms of key issues such as life-cycle cost and environmental impacts. The results of the assessments were assembled and integrated into a consistent comparative assessment. Environmental and economic effects are evaluated, which weremore » subdivided into the following issue areas: human health and safety, environmental welfare, resources (land, materials, energy, water, labor), macroeconomics, socioeconomics, and institutional. These evaluations were based on technology characterization data and alternative futures scenarios, which were developed as part of CDEP by supporting studies. The technologies and the scenarios are described. An additional major issue area concerned the cost and performance of the SPS and the alternative technologies: results in this area provided part of the basis of the macroeconomic analyses. 159 references.« less
Preliminary assessment of rover power systems for the Mars Rover Sample Return Mission
NASA Technical Reports Server (NTRS)
Bents, D. J.
1989-01-01
Four isotope power system concepts were presented and compared on a common basis for application to on-board electrical prime power for an autonomous planetary rover vehicle. A representative design point corresponding to the Mars Rover Sample Return (MRSR) preliminary mission requirements (500 W) was selected for comparison purposes. All systems concepts utilize the General Purpose Heat Source (GPHS) isotope heat source developed by DOE. Two of the concepts employ thermoelectric (TE) conversion: one using the GPHS Radioisotope Thermoelectric Generator (RTG) used as a reference case, the other using an advanced RTG with improved thermoelectric materials. The other two concepts employed are dynamic isotope power systems (DIPS): one using a closed Brayton cycle (CBC) turboalternator, and the other using a free piston Stirling cycle engine/linear alternator (FPSE) with integrated heat source/heater head. Near-term technology levels have been assumed for concept characterization using component technology figure-of-merit values taken from the published literature. For example, the CBC characterization draws from the historical test database accumulated from space Brayton cycle subsystems and components from the NASA B engine through the mini-Brayton rotating unit. TE system performance is estimated from Voyager/multihundred Watt (MHW)-RTG flight experience through Mod-RTG performance estimates considering recent advances in TE materials under the DOD/DOE/NASA SP-100 and NASA Committee on Scientific and Technological Information programs. The Stirling DIPS system is characterized from scaled-down Space Power Demonstrator Engine (SPDE) data using the GPHS directly incorporated into the heater head. The characterization/comparison results presented here differ from previous comparison of isotope power (made for LEO applications) because of the elevated background temperature on the Martian surface compared to LEO, and the higher sensitivity of dynamic systems to elevated s
A Comparison of What Is Part of Usability Testing in Three Countries
NASA Astrophysics Data System (ADS)
Clemmensen, Torkil
The cultural diversity of users of technology challenges our methods for usability evaluation. In this paper we report and compare three ethnographic interview studies of what is a part of a standard (typical) usability test in a company in Mumbai, Beijing and Copenhagen. At each of these three locations, we use structural and contrast questions do a taxonomic and paradigm analysis of a how a company performs a usability test. We find similar parts across the three locations. We also find different results for each location. In Mumbai, most parts of the usability test are not related to the interactive application that is tested, but to differences in user characteristics, test preparation, method, and location. In Copenhagen, considerations about the client's needs are part of a usability test. In Beijing, the only varying factor is the communication pattern and relation to the user. These results are then contrasted in a cross cultural matrix to identify cultural themes that can help interpret results from existing laboratory research in usability test methods.
Cryo-comminution of plastic waste.
Gente, Vincenzo; La Marca, Floriana; Lucci, Federica; Massacci, Paolo; Pani, Eleonora
2004-01-01
Recycling of plastics is a big issue in terms of environmental sustainability and of waste management. The development of proper technologies for plastic recycling is recognised as a priority. To achieve this aim, the technologies applied in mineral processing can be adapted to recycling systems. In particular, the improvement of comminution technologies is one of the main actions to improve the quality of recycled plastics. The aim of this work is to point out suitable comminution processes for different types of plastic waste. Laboratory comminution tests have been carried out under different conditions of temperature and sample pre-conditioning adopting as refrigerant agents CO2 and liquid nitrogen. The temperature has been monitored by thermocouples placed in the milling chamber. Also different internal mill screens have been adopted. A proper procedure has been set up in order to obtain a selective comminution and a size reduction suitable for further separation treatment. Tests have been performed on plastics coming from medical plastic waste and from a plant for spent lead batteries recycling. Results coming from different mill devices have been compared taking into consideration different indexes for representative size distributions. The results of the performed tests show as cryo-comminution improves the effectiveness of size reduction of plastics, promotes liberation of constituents and increases specific surface size of comminuted particles in comparison to a comminution process carried out at room temperature. Copyright 2004 Elsevier Ltd.
Sewer Lateral Electro Scan Field Verification Pilot (WERF ...
Abstract:WERF selected a proposed research project to field test an emerging technology for inspecting sanitary sewer lateral pipes. The technology is called Electro Scan and is used to find defects in laterals that allow the infiltration of groundwater into the lateral. Electro Scan testing involves passing an electrical probe through a pipe filled with water. The probe emits a focused electrical beam that is able to pass through the pipe wall into the surrounding soil, ultimately to complete an electrical circuit with a ground rod. The significance of the electrical signal suggests the significance of the infiltration defect. Over 100 laterals were tested in the City of Wauwatosa, Wisconsin, as a pilot project partially funded by the Milwaukee Metropolitan Sewerage District (MMSD). These tests were then compared to additional information concerning the condition of the laterals, including internal television inspection, infiltration rates produced in a rainfall simulation test, and water exfiltration rates. The results of these comparisons, lessons learned, and costs related to the testing are presented in this report, suggesting that while less expensive than a CCTV inspection, Electro Scan is best when performed with CCTV. [NOTE: For link (url) below – click on “sign in”; sign in or create new account; return to home page; enter project number in “search” box; and click on report title.] Benefits: • Demonstrates the effectiveness of Electro Sca
Initial Closed Operation of the CELSS Test Facility Engineering Development Unit
NASA Technical Reports Server (NTRS)
Kliss, Mark
1995-01-01
As part of the NASA Controlled Ecological Life Support System (CELSS) Program, a CELSS Test Facility (CTF) is being planned for installation on the Space Station. The CTF will be used to provide data on the productivity and efficiency of a variety of CELSS higher plant crops grown sequentially from seed to harvest in the microgravity environment of the Space Station. Stringent environmental control will be maintained while fundamental crop productivity issues, such as carbon dioxide uptake and oxygen production rates, water transpiration rates, and biomass accumulation rates are obtained for comparison with ground-based data. In order to obtain an early realistic determination of the subsystem and system requirements necessary to provide the appropriate environmental conditions specified for CTF crop productivity experiments, an Engineering Development Unit (EDU) has been constructed and is undergoing initial operational testing at NASA Ames Research Center. The EDU is a ground-based testbed which will be used to characterize the integrated performance of major subsystem technologies, to evaluate hardware candidates and control strategies required for the CTF, and to further define the ability to meet CTF requirements within present Space Station constraints. This paper describes the initial closed operational testing of the EDU. Measured performance data are compared with the specified functional requirements and results from initial closed testing are presented. Plans for future science and technology testing are discussed.
Medical Laboratory Science: An International Comparison for Credentials Evaluators.
ERIC Educational Resources Information Center
Turner, Solveig M.; Karlsson, Britta
Information is presented to help medical technology schools abroad evaluate their credentials in comparison to U.S. requirements. After defining the subfields of medical technology, also called medical laboratory science, a summary is provided of the educational requirements, the professional titles, and the certification recognition of medical…
NASA Technical Reports Server (NTRS)
Keba, John E.
1996-01-01
Rotordynamic coefficients obtained from testing two different hydrostatic bearings are compared to values predicted by two different computer programs. The first set of test data is from a relatively long (L/D=1) orifice compensated hydrostatic bearing tested in water by Texas A&M University (TAMU Bearing No.9). The second bearing is a shorter (L/D=.37) bearing and was tested in a lower viscosity fluid by Rocketdyne Division of Rockwell (Rocketdyne 'Generic' Bearing) at similar rotating speeds and pressures. Computed predictions of bearing rotordynamic coefficients were obtained from the cylindrical seal code 'ICYL', one of the industrial seal codes developed for NASA-LeRC by Mechanical Technology Inc., and from the hydrodynamic bearing code 'HYDROPAD'. The comparison highlights the difference the bearing has on the accuracy of the predictions. The TAMU Bearing No. 9 test data is closely matched by the predictions obtained for the HYDROPAD code (except for added mass terms) whereas significant differences exist between the data from the Rocketdyne 'Generic' bearing the code predictions. The results suggest that some aspects of the fluid behavior in the shorter, higher Reynolds Number 'Generic' bearing may not be modeled accurately in the codes. The ICYL code predictions for flowrate and direct stiffness approximately equal those of HYDROPAD. Significant differences in cross-coupled stiffness and the damping terms were obtained relative to HYDROPAD and both sets of test data. Several observations are included concerning application of the ICYL code.
External Vision Systems (XVS) Proof-of-Concept Flight Test Evaluation
NASA Technical Reports Server (NTRS)
Shelton, Kevin J.; Williams, Steven P.; Kramer, Lynda J.; Arthur, Jarvis J.; Prinzel, Lawrence, III; Bailey, Randall E.
2014-01-01
NASA's Fundamental Aeronautics Program, High Speed Project is performing research, development, test and evaluation of flight deck and related technologies to support future low-boom, supersonic configurations (without forward-facing windows) by use of an eXternal Vision System (XVS). The challenge of XVS is to determine a combination of sensor and display technologies which can provide an equivalent level of safety and performance to that provided by forward-facing windows in today's aircraft. This flight test was conducted with the goal of obtaining performance data on see-and-avoid and see-to-follow traffic using a proof-of-concept XVS design in actual flight conditions. Six data collection flights were flown in four traffic scenarios against two different sized participating traffic aircraft. This test utilized a 3x1 array of High Definition (HD) cameras, with a fixed forward field-of-view, mounted on NASA Langley's UC-12 test aircraft. Test scenarios, with participating NASA aircraft serving as traffic, were presented to two evaluation pilots per flight - one using the proof-of-concept (POC) XVS and the other looking out the forward windows. The camera images were presented on the XVS display in the aft cabin with Head-Up Display (HUD)-like flight symbology overlaying the real-time imagery. The test generated XVS performance data, including comparisons to natural vision, and post-run subjective acceptability data were also collected. This paper discusses the flight test activities, its operational challenges, and summarizes the findings to date.
A comparison of dental ultrasonic technologies on subgingival calculus removal: a pilot study.
Silva, Lidia Brión; Hodges, Kathleen O; Calley, Kristin Hamman; Seikel, John A
2012-01-01
This pilot study compared the clinical endpoints of the magnetostrictive and piezoelectric ultrasonic instruments on calculus removal. The null hypothesis stated that there is no statistically significant difference in calculus removal between the 2 instruments. A quasi-experimental pre- and post-test design was used. Eighteen participants were included. The magnetostrictive and piezoelectric ultrasonic instruments were used in 2 assigned contra-lateral quadrants on each participant. A data collector, blind to treatment assignment, assessed the calculus on 6 predetermined tooth sites before and after ultrasonic instrumentation. Calculus size was evaluated using ordinal measurements on a 4 point scale (0, 1, 2, 3). Subjects were required to have size 2 or 3 calculus deposit on the 6 predetermined sites. One clinician instrumented the pre-assigned quadrants. A maximum time of 20 minutes of instrumentation was allowed with each technology. Immediately after instrumentation, the data collector then conducted the post-test calculus evaluation. The repeated analysis of variance (ANOVA) was used to analyze the pre- and post-test calculus data (p≤0.05). The null hypothesis was accepted indicating that there is no statistically significant difference in calculus removal when comparing technologies (p≤0.05). Therefore, under similar conditions, both technologies removed the same amount of calculus. This research design could be used as a foundation for continued research in this field. Future studies include implementing this study design with a larger sample size and/or modifying the study design to include multiple clinicians who are data collectors. Also, deposit removal with periodontal maintenance patients could be explored.
Handheld computers in critical care.
Lapinsky, S E; Weshler, J; Mehta, S; Varkul, M; Hallett, D; Stewart, T E
2001-08-01
Computing technology has the potential to improve health care management but is often underutilized. Handheld computers are versatile and relatively inexpensive, bringing the benefits of computers to the bedside. We evaluated the role of this technology for managing patient data and accessing medical reference information, in an academic intensive-care unit (ICU). Palm III series handheld devices were given to the ICU team, each installed with medical reference information, schedules, and contact numbers. Users underwent a 1-hour training session introducing the hardware and software. Various patient data management applications were assessed during the study period. Qualitative assessment of the benefits, drawbacks, and suggestions was performed by an independent company, using focus groups. An objective comparison between a paper and electronic handheld textbook was achieved using clinical scenario tests. During the 6-month study period, the 20 physicians and 6 paramedical staff who used the handheld devices found them convenient and functional but suggested more comprehensive training and improved search facilities. Comparison of the handheld computer with the conventional paper text revealed equivalence. Access to computerized patient information improved communication, particularly with regard to long-stay patients, but changes to the software and the process were suggested. The introduction of this technology was well received despite differences in users' familiarity with the devices. Handheld computers have potential in the ICU, but systems need to be developed specifically for the critical-care environment.
Handheld computers in critical care
Lapinsky, Stephen E; Weshler, Jason; Mehta, Sangeeta; Varkul, Mark; Hallett, Dave; Stewart, Thomas E
2001-01-01
Background Computing technology has the potential to improve health care management but is often underutilized. Handheld computers are versatile and relatively inexpensive, bringing the benefits of computers to the bedside. We evaluated the role of this technology for managing patient data and accessing medical reference information, in an academic intensive-care unit (ICU). Methods Palm III series handheld devices were given to the ICU team, each installed with medical reference information, schedules, and contact numbers. Users underwent a 1-hour training session introducing the hardware and software. Various patient data management applications were assessed during the study period. Qualitative assessment of the benefits, drawbacks, and suggestions was performed by an independent company, using focus groups. An objective comparison between a paper and electronic handheld textbook was achieved using clinical scenario tests. Results During the 6-month study period, the 20 physicians and 6 paramedical staff who used the handheld devices found them convenient and functional but suggested more comprehensive training and improved search facilities. Comparison of the handheld computer with the conventional paper text revealed equivalence. Access to computerized patient information improved communication, particularly with regard to long-stay patients, but changes to the software and the process were suggested. Conclusions The introduction of this technology was well received despite differences in users' familiarity with the devices. Handheld computers have potential in the ICU, but systems need to be developed specifically for the critical-care environment. PMID:11511337
NASA Astrophysics Data System (ADS)
Viscardi, Massimo; Arena, Maurizio; Ciminello, Monica; Guida, Michele; Meola, Carosena; Cerreta, Pietro
2018-03-01
The development of advanced monitoring system for strain measurements on aeronautical components remain an important target both when related to the optimization of the lead-time and cost for part validation, allowing earlier entry into service, and when related to the implementation of advanced health monitoring systems dedicated to the in-service parameters verification and early stage detection of structural problems. The paper deals with the experimental testing of a composite samples set of the main landing gear bay for a CS-25 category aircraft, realized through an innovative design and production process. The test have represented a good opportunity for direct comparison of different strain measurement techniques: Strain Gauges (SG) and Fibers Bragg Grating (FBG) have been used as well as non-contact techniques, specifically the Digital Image Correlation (DIC) and Infrared (IR) thermography applied where possible in order to highlight possible hot-spot during the tests. The crucial points identification on the specimens has been supported by means of advanced finite element simulations, aimed to assessment of the structural strength and deformation as well as to ensure the best performance and the global safety of the whole experimental campaign.
Khan, Haseeb Ahmad
2005-01-28
Due to versatile diagnostic and prognostic fidelity molecular signatures or fingerprints are anticipated as the most powerful tools for cancer management in the near future. Notwithstanding the experimental advancements in microarray technology, methods for analyzing either whole arrays or gene signatures have not been firmly established. Recently, an algorithm, ArraySolver has been reported by Khan for two-group comparison of microarray gene expression data using two-tailed Wilcoxon signed-rank test. Most of the molecular signatures are composed of two sets of genes (hybrid signatures) wherein up-regulation of one set and down-regulation of the other set collectively define the purpose of a gene signature. Since the direction of a selected gene's expression (positive or negative) with respect to a particular disease condition is known, application of one-tailed statistics could be a more relevant choice. A novel method, ArrayVigil, is described for comparing hybrid signatures using segregated-one-tailed (SOT) Wilcoxon signed-rank test and the results compared with integrated-two-tailed (ITT) procedures (SPSS and ArraySolver). ArrayVigil resulted in lower P values than those obtained from ITT statistics while comparing real data from four signatures.
Use of loading-unloading compression curves in medical device design
NASA Astrophysics Data System (ADS)
Ciornei, M. C.; Alaci, S.; Ciornei, F. C.; Romanu, I. C.
2017-08-01
The paper presents a method and experimental results regarding mechanical testing of soft materials. In order to characterize the mechanical behaviour of technological materials used in prosthesis, a large number of material constants are required, as well as the comparison to the original. The present paper proposes as methodology the comparison between compression loading-unloading curves corresponding to a soft biological tissue and to a synthetic material. To this purpose, a device was designed based on the principle of the dynamic harness test. A moving load is considered and the force upon the indenter is controlled for loading-unloading phases. The load and specimen deformation are simultaneously recorded. A significant contribution of this paper is the interpolation of experimental data by power law functions, a difficult task because of the instability of the system of equations to be optimized. Finding the interpolation function was simplified, from solving a system of transcendental equations to solving a unique equation. The characteristic parameters of the experimentally curves must be compared to the ones corresponding to actual tissue. The tests were performed for two cases: first, using a spherical punch, and second, for a flat-ended cylindrical punch.
NASA Technical Reports Server (NTRS)
Schwartz, Richard J.; Fleming, Gary A.
2007-01-01
Virtual Diagnostics Interface technology, or ViDI, is a suite of techniques utilizing image processing, data handling and three-dimensional computer graphics. These techniques aid in the design, implementation, and analysis of complex aerospace experiments. LiveView3D is a software application component of ViDI used to display experimental wind tunnel data in real-time within an interactive, three-dimensional virtual environment. The LiveView3D software application was under development at NASA Langley Research Center (LaRC) for nearly three years. LiveView3D recently was upgraded to perform real-time (as well as post-test) comparisons of experimental data with pre-computed Computational Fluid Dynamics (CFD) predictions. This capability was utilized to compare experimental measurements with CFD predictions of the surface pressure distribution of the NASA Ares I Crew Launch Vehicle (CLV) - like vehicle when tested in the NASA LaRC Unitary Plan Wind Tunnel (UPWT) in December 2006 - January 2007 timeframe. The wind tunnel tests were conducted to develop a database of experimentally-measured aerodynamic performance of the CLV-like configuration for validation of CFD predictive codes.
Urine Pretreatment History and Perspective in NASA Human Spaceflight
NASA Technical Reports Server (NTRS)
Anderson, Molly; Adam, Niklas; Chambers, Antja; Broyan, James
2015-01-01
Urine pretreatment is a technology that may seem to have small mass impacts in future spaceflight missions, but can have significant impacts on reliability, life, and performance of the rest of the wastewater management and recovery systems. NASA has experience with several different urine pretreatment systems, including those flow on the space shuttle, evaluated for NASA waste collection systems or used in Russian commodes on ISS, or developed by NASA or industry as alternatives. Each has had unique requirements for shelf life, operational life, and the life or conditions of the stored, treated urine. Each was evaluated under different test conditions depending on mission, and depending on testing experience developed over NASA's history. Those that were flown led to further lessons learned about hardware compatibility and control. As NASA looks forward to human spaceflight missions beyond low Earth orbit, these techniques need to be evaluated in new light. Based on published design reference missions, candidate requirements can be derived for future systems. Initial comparisons between these requirements and previous performance or test results can be performed. In many cases these comparisons reveal data gaps. Successful previous performance is not enough to address current needs.
Paint removal using wheat starch blast media
NASA Astrophysics Data System (ADS)
Foster, Terry; Oestreich, John
1993-03-01
A review of the Wheat Starch Blasting technology is presented. Laboratory evaluations covering Almen Arc testing on bare 2024-T3 aluminum and magnesium, as well as crack detection on 7075-T6 bare aluminum, are discussed. Comparisons with Type V plastic media show lower residual stresses are achieved on aluminum and magnesium with wheat starch media. Dry blasting effects on the detection of cracks confirms better crack visibility with wheat starch media versus Type V or Type II plastic media. Testing of wheat starch media in several composite test programs, including fiberglass, Kevlar, and graphite-epoxy composites, showed no fiber damage. Process developments and production experience at the first U.S. aircraft stripping facility are also reviewed. Corporate and regional aircraft are being stripped in this three nozzle dry blast hanger.
Results and conclusions: perception sensor study for high speed autonomous operations
NASA Astrophysics Data System (ADS)
Schneider, Anne; LaCelle, Zachary; Lacaze, Alberto; Murphy, Karl; Close, Ryan
2016-05-01
Previous research has presented work on sensor requirements, specifications, and testing, to evaluate the feasibility of increasing autonomous vehicle system speeds. Discussions included the theoretical background for determining sensor requirements, and the basic test setup and evaluation criteria for comparing existing and prototype sensor designs. This paper will present and discuss the continuation of this work. In particular, this paper will focus on analyzing the problem via a real-world comparison of various sensor technology testing results, as opposed to previous work that utilized more of a theoretical approach. LADAR/LIDAR, radar, visual, and infrared sensors are considered in this research. Results are evaluated against the theoretical, desired perception specifications. Conclusions for utilizing a suite of perception sensors, to achieve the goal of doubling ground vehicle speeds, is also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kreutzer, Cory J.; Rugh, John; Tomerlin, Jeff
Increased market penetration of electric drive vehicles (EDVs) requires overcoming a number of hurdles, including limited vehicle range and the elevated cost in comparison to conventional vehicles. Climate control loads have a significant impact on range, cutting it by over 50% in both cooling and heating conditions. To minimize the impact of climate control on EDV range, the National Renewable Energy Laboratory has partnered with Hyundai America and key industry partners to quantify the performance of thermal load reduction technologies on a Hyundai Sonata plug-in hybrid electric vehicle. Technologies that impact vehicle cabin heating in cold weather conditions and cabinmore » cooling in warm weather conditions were evaluated. Tests included thermal transient and steady-state periods for all technologies, including the development of a new test methodology to evaluate the performance of occupant thermal conditioning. Heated surfaces demonstrated significant reductions in energy use from steady-state heating, including a 29%-59% reduction from heated surfaces. Solar control glass packages demonstrated significant reductions in energy use for both transient and steady-state cooling, with up to a 42% reduction in transient and 12.8% reduction in steady-state energy use for the packages evaluated. Technologies that demonstrated significant climate control load reduction were selected for incorporation into a complete thermal load reduction package. The complete package is set to be evaluated in the second phase of the ongoing project.« less
Two-stage, low noise advanced technology fan. 5: Acoustic final report
NASA Technical Reports Server (NTRS)
Sofrin, T. G.; Riloff, N., Jr.
1975-01-01
The NASA Q2S(quiet two-stage) fan is a 0.836m (32.9 in.) diameter model of the STF 433 engine fan, selected in a 1972 study for an Advanced Technology Transport (ATT) airplane. Noise-control features include: low tip speed, moderate stage pressure rise, large blade-vane spacings, no inlet guide vanes, and optimum blade and vane numbers. Tests were run on the baseline Q2S fan with standard inlet and discharge ducts. Further tests were made of a translating centerbody sonic inlet device and treated discharge ducts. Results were scaled to JT8D and JT3D engine fan size for comparison with current two-stage fans, and were also scaled to STF 433 fan size to compare calculated ATT flyover noise with FAR 36 limits. Baseline Q2S results scaled to JT8D and JT3D engine fan sizes showed substantial noise reductions. Calculated unsuppressed baseline ATT flyovers averaged about 2.5 EPNdB below FAR 36 limits. Using measured sonic inlet results, scaled baseline Q2S fan results, and calculated attenuations for a 1975 technology duct liner, projected flyover noise calculations for the ATT averaged about FAR 36 limits minus 10 EPNdB. Advances in suppression technology required to meet the 1985 goal of FAR 36 limits minus 20 EPNdB are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bevolo, A.J.; Kjartanson, B.H.; Wonder, J.D.
1996-03-01
The goal of the Ames Expedited Site Characterization (ESC) project is to evaluate and promote both innovative technologies (IT) and state-of-the-practice technologies (SOPT) for site characterization and monitoring. In April and May 1994, the ESC project conducted site characterization, technology comparison, and stakeholder demonstration activities at a former manufactured gas plant (FMGP) owned by Iowa Electric Services (IES) Utilities, Inc., in Marshalltown, Iowa. Three areas of technology were fielded at the Marshalltown FMGP site: geophysical, analytical and data integration. The geophysical technologies are designed to assess the subsurface geological conditions so that the location, fate and transport of the targetmore » contaminants may be assessed and forecasted. The analytical technologies/methods are designed to detect and quantify the target contaminants. The data integration technology area consists of hardware and software systems designed to integrate all the site information compiled and collected into a conceptual site model on a daily basis at the site; this conceptual model then becomes the decision-support tool. Simultaneous fielding of different methods within each of the three areas of technology provided data for direct comparison of the technologies fielded, both SOPT and IT. This document reports the results of the site characterization, technology comparison, and ESC demonstration activities associated with the Marshalltown FMGP site. 124 figs., 27 tabs.« less
Game-based biofeedback for paediatric anxiety and depression
2011-01-01
Twenty-four children and adolescents aged 9–17 who were referred for treatment for anxiety were assigned to either a game-based biofeedback group or a waiting list comparison group. The eight-session biofeedback intervention included psychoeducation, identification of triggers and signs of anxiety, and in vivo practice. The intervention used computer-based gaming technology to teach and practise relaxation. Analyses using ANCOVA revealed significant differences in post-test scores of anxiety and depression measures between the two groups. The intervention group reduced anxiety and depression scores on standardised tests. Findings suggest that biofeedback-assisted relaxation training can be useful in decreasing anxiety and depressive symptoms in anxious youths. PMID:22942901
NASA Technical Reports Server (NTRS)
Noll, Thomas E.; Perry, Boyd, III; Tiffany, Sherwood H.; Cole, Stanley R.; Buttrill, Carey S.; Adams, William M., Jr.; Houck, Jacob A.; Srinathkumar, S.; Mukhopadhyay, Vivek; Pototzky, Anthony S.
1989-01-01
The status of the joint NASA/Rockwell Active Flexible Wing Wind-Tunnel Test Program is described. The objectives are to develop and validate the analysis, design, and test methodologies required to apply multifunction active control technology for improving aircraft performance and stability. Major tasks include designing digital multi-input/multi-output flutter-suppression and rolling-maneuver-load alleviation concepts for a flexible full-span wind-tunnel model, obtaining an experimental data base for the basic model and each control concept and providing comparisons between experimental and analytical results to validate the methodologies. The opportunity is provided to improve real-time simulation techniques and to gain practical experience with digital control law implementation procedures.
High Speed Operation and Testing of a Fault Tolerant Magnetic Bearing
NASA Technical Reports Server (NTRS)
DeWitt, Kenneth; Clark, Daniel
2004-01-01
Research activities undertaken to upgrade the fault-tolerant facility, continue testing high-speed fault-tolerant operation, and assist in the commission of the high temperature (1000 degrees F) thrust magnetic bearing as described. The fault-tolerant magnetic bearing test facility was upgraded to operate to 40,000 RPM. The necessary upgrades included new state-of-the art position sensors with high frequency modulation and new power edge filtering of amplifier outputs. A comparison study of the new sensors and the previous system was done as well as a noise assessment of the sensor-to-controller signals. Also a comparison study of power edge filtering for amplifier-to-actuator signals was done; this information is valuable for all position sensing and motor actuation applications. After these facility upgrades were completed, the rig is believed to have capabilities for 40,000 RPM operation, though this has yet to be demonstrated. Other upgrades included verification and upgrading of safety shielding, and upgrading control algorithms. The rig will now also be used to demonstrate motoring capabilities and control algorithms are in the process of being created. Recently an extreme temperature thrust magnetic bearing was designed from the ground up. The thrust bearing was designed to fit within the existing high temperature facility. The retrofit began near the end of the summer, 04, and continues currently. Contract staff authored a NASA-TM entitled "An Overview of Magnetic Bearing Technology for Gas Turbine Engines", containing a compilation of bearing data as it pertains to operation in the regime of the gas turbine engine and a presentation of how magnetic bearings can become a viable candidate for use in future engine technology.
NASA Technical Reports Server (NTRS)
Wolf, Stephen W. D.; Ray, Edward J.
1988-01-01
The unique combination of adaptive wall technology with a contonuous flow cryogenic wind tunnel is described. This powerful combination allows wind tunnel users to carry out 2-D tests at flight Reynolds numbers with wall interference essentially eliminated. Validation testing was conducted to support this claim using well tested symmetrical and cambered airfoils at transonic speeds and high Reynolds numbers. The test section hardware has four solid walls, with the floor and ceiling flexible. The method of adapting/shaping the floor and ceiling to eliminate top and bottom wall interference at its source is outlined. Data comparisons for different size models tested and others in several sophisticated 2-D wind tunnels are made. In addition, the effects of Reynolds number, testing at high lift with associated large flexible wall movements, the uniqueness of the adapted wall shapes, and the effects of sidewall boundary layer control are examined. The 0.3-m TCT is now the most advanced 2-D research facility anywhere.
Validation of NASA Thermal Ice Protection Computer Codes. Part 1; Program Overview
NASA Technical Reports Server (NTRS)
Miller, Dean; Bond, Thomas; Sheldon, David; Wright, William; Langhals, Tammy; Al-Khalil, Kamel; Broughton, Howard
1996-01-01
The Icing Technology Branch at NASA Lewis has been involved in an effort to validate two thermal ice protection codes developed at the NASA Lewis Research Center. LEWICE/Thermal (electrothermal deicing & anti-icing), and ANTICE (hot-gas & electrothermal anti-icing). The Thermal Code Validation effort was designated as a priority during a 1994 'peer review' of the NASA Lewis Icing program, and was implemented as a cooperative effort with industry. During April 1996, the first of a series of experimental validation tests was conducted in the NASA Lewis Icing Research Tunnel(IRT). The purpose of the April 96 test was to validate the electrothermal predictive capabilities of both LEWICE/Thermal, and ANTICE. A heavily instrumented test article was designed and fabricated for this test, with the capability of simulating electrothermal de-icing and anti-icing modes of operation. Thermal measurements were then obtained over a range of test conditions, for comparison with analytical predictions. This paper will present an overview of the test, including a detailed description of: (1) the validation process; (2) test article design; (3) test matrix development; and (4) test procedures. Selected experimental results will be presented for de-icing and anti-icing modes of operation. Finally, the status of the validation effort at this point will be summarized. Detailed comparisons between analytical predictions and experimental results are contained in the following two papers: 'Validation of NASA Thermal Ice Protection Computer Codes: Part 2- The Validation of LEWICE/Thermal' and 'Validation of NASA Thermal Ice Protection Computer Codes: Part 3-The Validation of ANTICE'
Benchmarking Evaluation Results for Prototype Extravehicular Activity Gloves
NASA Technical Reports Server (NTRS)
Aitchison, Lindsay; McFarland, Shane
2012-01-01
The Space Suit Assembly (SSA) Development Team at NASA Johnson Space Center has invested heavily in the advancement of rear-entry planetary exploration suit design but largely deferred development of extravehicular activity (EVA) glove designs, and accepted the risk of using the current flight gloves, Phase VI, for unique mission scenarios outside the Space Shuttle and International Space Station (ISS) Program realm of experience. However, as design reference missions mature, the risks of using heritage hardware have highlighted the need for developing robust new glove technologies. To address the technology gap, the NASA Game-Changing Technology group provided start-up funding for the High Performance EVA Glove (HPEG) Project in the spring of 2012. The overarching goal of the HPEG Project is to develop a robust glove design that increases human performance during EVA and creates pathway for future implementation of emergent technologies, with specific aims of increasing pressurized mobility to 60% of barehanded capability, increasing the durability by 100%, and decreasing the potential of gloves to cause injury during use. The HPEG Project focused initial efforts on identifying potential new technologies and benchmarking the performance of current state of the art gloves to identify trends in design and fit leading to establish standards and metrics against which emerging technologies can be assessed at both the component and assembly levels. The first of the benchmarking tests evaluated the quantitative mobility performance and subjective fit of four prototype gloves developed by Flagsuit LLC, Final Frontier Designs, LLC Dover, and David Clark Company as compared to the Phase VI. All of the companies were asked to design and fabricate gloves to the same set of NASA provided hand measurements (which corresponded to a single size of Phase Vi glove) and focus their efforts on improving mobility in the metacarpal phalangeal and carpometacarpal joints. Four test subjects representing the design ]to hand anthropometry completed range of motion, grip/pinch strength, dexterity, and fit evaluations for each glove design in both the unpressurized and pressurized conditions. This paper provides a comparison of the test results along with a detailed description of hardware and test methodologies used.
NASA Technical Reports Server (NTRS)
Penaranda, Frank E.
1992-01-01
The topics are presented in viewgraph form and include the following: international comparison of R&D expenditures in 1989; NASA Technology Transfer Program; NASA Technology Utilization Program thrusts for FY 1992 and FY 1993; National Technology Transfer Network; and NTTC roles.
Chang, M-C Oliver; Shields, J Erin
2017-06-01
To reliably measure at the low particulate matter (PM) levels needed to meet California's Low Emission Vehicle (LEV III) 3- and 1-mg/mile particulate matter (PM) standards, various approaches other than gravimetric measurement have been suggested for testing purposes. In this work, a feasibility study of solid particle number (SPN, d50 = 23 nm) and black carbon (BC) as alternatives to gravimetric PM mass was conducted, based on the relationship of these two metrics to gravimetric PM mass, as well as the variability of each of these metrics. More than 150 Federal Test Procedure (FTP-75) or Supplemental Federal Test Procedure (US06) tests were conducted on 46 light-duty vehicles, including port-fuel-injected and direct-injected gasoline vehicles, as well as several light-duty diesel vehicles equipped with diesel particle filters (LDD/DPF). For FTP tests, emission variability of gravimetric PM mass was found to be slightly less than that of either SPN or BC, whereas the opposite was observed for US06 tests. Emission variability of PM mass for LDD/DPF was higher than that of both SPN and BC, primarily because of higher PM mass measurement uncertainties (background and precision) near or below 0.1 mg/mile. While strong correlations were observed from both SPN and BC to PM mass, the slopes are dependent on engine technologies and driving cycles, and the proportionality between the metrics can vary over the course of the test. Replacement of the LEV III PM mass emission standard with one other measurement metric may imperil the effectiveness of emission reduction, as a correlation-based relationship may evolve over future technologies for meeting stringent greenhouse standards. Solid particle number and black carbon were suggested in place of PM mass for the California LEV III 1-mg/mile FTP standard. Their equivalence, proportionality, and emission variability in comparison to PM mass, based on a large light-duty vehicle fleet examined, are dependent on engine technologies and driving cycles. Such empirical derived correlations exhibit the limitation of using these metrics for enforcement and certification standards as vehicle combustion and after-treatment technologies advance.
Measurement of health outcomes.
Thavorncharoensap, Montarat
2014-05-01
Health outcomes are one of the most important components of health technology assessments (HTAs). All HTA outcomes should be measured from a relevant sample using a properly designed study and method. A number of recommendations on health outcome measurements are made in this second edition of Thailand's HTA guidelines. In particular the use of final outcomes, rather than surrogate outcomes, in HTAs is stressed. Where surrogate outcomes are used, strong justification and evidence must be provided. Effectiveness is preferred over efficacy. The relative treatment effect (the difference between health outcome that would be experienced by patients receiving the technology and that experienced by the same group were they to receive an alternative technology) should be derived from a systematic review of head-to-head RCTs. Mixed treatment comparison (MTC) should be used only to provide supplementary data that cannot be obtained from a head-to-head comparison. Where no direct comparison evidence exists, indirect comparison and observational study data can be used.
Orbiter entry aerothermodynamics
NASA Technical Reports Server (NTRS)
Ried, R. C.
1985-01-01
The challenge in the definition of the entry aerothermodynamic environment arising from the challenge of a reliable and reusable Orbiter is reviewed in light of the existing technology. Select problems pertinent to the orbiter development are discussed with reference to comprehensive treatments. These problems include boundary layer transition, leeward-side heating, shock/shock interaction scaling, tile gap heating, and nonequilibrium effects such as surface catalysis. Sample measurements obtained from test flights of the Orbiter are presented with comparison to preflight expectations. Numerical and wind tunnel simulations gave efficient information for defining the entry environment and an adequate level of preflight confidence. The high quality flight data provide an opportunity to refine the operational capability of the orbiter and serve as a benchmark both for the development of aerothermodynamic technology and for use in meeting future entry heating challenges.
NASA Technical Reports Server (NTRS)
Wong, Wayne A.
2002-01-01
Thin-film inflatable solar concentrators offer significant advantages in comparison to stateof- the-art rigid panel concentrators, including low weight, low stowage volume, and simple gas deployment. From June 10 to 22, 2001, the ElectroMagnetic Radiation Control Experiment (EMRCE) Team used simulated solar energy to demonstrate the operation of an inflatable concentrator system at NASA Glenn Research Center's Tank 6 thermal vacuum facility. The joint Government/industry test team was composed of engineers and technicians from Glenn, the Air Force Research Laboratory, SRS Technologies, and ATK Thiokol Propulsion. The research hardware consisted of the following: 1) A thin-film inflatable concentrator; 2) The hexapod pointing and focus control system; 3) Two rigidized support struts using two candidate technologies - ultraviolet-rigidized glass and radiation-cured isographite.
Verification of Emergent Behaviors in Swarm-based Systems
NASA Technical Reports Server (NTRS)
Rouff, Christopher; Vanderbilt, Amy; Hinchey, Mike; Truszkowski, Walt; Rash, James
2004-01-01
The emergent properties of swarms make swarm-based missions powerful, but at the same time more difficult to design and to assure that the proper behaviors will emerge. We are currently investigating formal methods and techniques for verification and validation of swarm-based missions. The Autonomous Nano-Technology Swarm (ANTS) mission is being used as an example and case study for swarm-based missions to experiment and test current formal methods with intelligent swarms. Using the ANTS mission, we have evaluated multiple formal methods to determine their effectiveness in modeling and assuring swarm behavior. This paper introduces how intelligent swarm technology is being proposed for NASA missions, and gives the results of a comparison of several formal methods and approaches for specifying intelligent swarm-based systems and their effectiveness for predicting emergent behavior.
Commercial Parts Technology Qualification Processes
NASA Technical Reports Server (NTRS)
Cooper, Mark S.
2013-01-01
Many high-reliability systems, including space systems, use selected commercial parts (including Plastic Encapsulated Microelectronics or PEMs) for unique functionality, small size, low weight, high mechanical shock resistance, and other factors. Predominantly this usage is subjected to certain 100% tests (typically called screens) and certain destructive tests usually (but not always) performed on the flight lot (typically called qualification tests). Frequently used approaches include those documented in EEE-INST-002 and JPL DocID62212 (which are sometimes modified by the particular aerospace space systems manufacturer). In this study, approaches from these documents and several space systems manufacturers are compared to approaches from a launch systems manufacturer (SpaceX), an implantable medical electronics manufacturer (Medtronics), and a high-reliability transport system process (automotive systems). In the conclusions section, these processes are outlined for all of these cases and presented in tabular form. Then some simple comparisons are made. In this introduction section, the PEM technology qualification process is described, as documented in EEE-INST-002 (written by the Goddard Space Flight Center, GSFC), as well as the somewhat modified approach employed at the Jet Propulsion Laboratory (JPL). Approaches used at several major NASA contractors are also described
Panoramic autofluorescence: highlighting retinal pathology.
Slotnick, Samantha; Sherman, Jerome
2012-05-01
Recent technological advances in fundus autofluorescence (FAF) are providing new opportunities for insight into retinal physiology and pathophysiology. FAF provides distinctly different imaging information than standard photography or color separation. A review of the basis for this imaging technology is included to help the clinician understand how to interpret FAF images. Cases are presented to illustrate image interpretation. Optos, which manufactures equipment for simultaneous panoramic imaging, has recently outfitted several units with AF capabilities. Six cases are presented in which panoramic autofluorescent (PAF) images highlight retinal pathology, using Optos' Ultra-Widefield technology. Supportive imaging technologies, such as Optomap® images and spectral domain optical coherence tomography (SD-OCT), are used to assist in the clinical interpretation of retinal pathology detected on PAF. Hypofluorescent regions on FAF are identified to occur along with a disruption in the photoreceptors and/or retinal pigment epithelium, as borne out on SD-OCT. Hyperfluorescent regions on FAF occur at the advancing zones of retinal degeneration, indicating impending damage. PAF enables such inferences to be made in retinal areas which lie beyond the reach of SD-OCT imaging. PAF also enhances clinical pattern recognition over a large area and in comparison with the fellow eye. Symmetric retinal degenerations often occur with genetic conditions, such as retinitis pigmentosa, and may impel the clinician to recommend genetic testing. Autofluorescent ophthalmoscopy is a non-invasive procedure that can detect changes in metabolic activity at the retinal pigment epithelium before clinical ophthalmoscopy. Already, AF is being used as an adjunct technology to fluorescein angiography in cases of age-related macular degeneration. Both hyper- and hypoautofluorescent changes are indicative of pathology. Peripheral retinal abnormalities may precede central retinal impacts, potentially providing early signs for intervention before impacting visual acuity. The panoramic image enhances clinical pattern recognition over a large area and in comparison between eyes. Optos' Ultra-Widefield technology is capable of capturing high-resolution images of the peripheral retina without requiring dilation.
Jabran, Ali; Peach, Chris; Ren, Lei
2018-04-27
Proximal humerus fractures are the third most common in the human body but their management remains controversial. Open reduction and internal fixation with plates is one of the leading modes of operative treatment for these fractures. The development of technologies and techniques for these plates, during the recent decades, promise a bright future for their clinical use. A comprehensive review of in vitro biomechanical studies is needed for the comparison of plates' mechanical performance and the testing methodologies. This will not only guide clinicians with plate selection but also with the design of future in vitro biomechanical studies. This review was aimed to systematically categorise and review the in vitro biomechanical studies of these plates based on their protocols and discuss their results. The technologies and techniques investigated in these studies were categorised and compared to reach a census where possible. Web of Science and Scopus database search yielded 62 studies. Out of these, 51 performed axial loading, torsion, bending and/or combined bending and axial loading while 11 simulated complex glenohumeral movements by using tendons. Loading conditions and set-up, failure criteria and performance parameters, as well as results for each study, were reviewed. Only two studies tested four-part fracture model while the rest investigated two- and three-part fractures. In ten studies, synthetic humeri were tested instead of cadaveric ones. In addition to load-displacement data, three-dimensional motion analysis systems, digital image correlation and acoustic emission testing have been used for measurement. Overall, PHILOS was the most tested plate and locking plates demonstrated better mechanical performance than non-locking ones. Conflicting results have been published for their comparison with non-locking blade plates and polyaxial locking screws. Augmentation with cement [calcium phosphate or poly(methyl methacrylate)] or allografts (fibular and femoral head) was found to improve bone-plate constructs' mechanical performance. Controversy still lies over the use of rigid and semi-rigid implants and the insertion of inferomedial screws for calcar region support. This review will guide the design of in vitro and in silico biomechanical tests and also supplement the study of clinical literature.
Investigation of lunar base thermal control system options
NASA Technical Reports Server (NTRS)
Ewart, Michael K.
1993-01-01
Long duration human exploration missions to the Moon will require active thermal control systems which have not previously been used in space. The two technologies which are most promising for long term lunar base thermal control are heat pumps and radiator shades. Recent trade-off studies at the Johnson Space Center have focused development efforts on the most promising heat pump and radiator shade technologies. Since these technologies are in the early stages of development and many parameters used in the study are not well defined, a parametric study was done to test the sensitivity to each assumption. The primary comparison factor in these studies was the total mass system, with power requirements included in the form of a mass penalty for power. Heat pump technologies considered were thermally driven heat pumps such as metal hydride, complex compound, absorption and zeolite. Also considered were electrically driven Stirling and vapor compression heat pumps. Radiator shade concepts considered included step shaped, V-shaped and parabolic (or catenary) shades and ground covers. A further trade study compared the masses of heat pump and radiator shade systems.
Specific energy yield comparison between crystalline silicon and amorphous silicon based PV modules
NASA Astrophysics Data System (ADS)
Ferenczi, Toby; Stern, Omar; Hartung, Marianne; Mueggenburg, Eike; Lynass, Mark; Bernal, Eva; Mayer, Oliver; Zettl, Marcus
2009-08-01
As emerging thin-film PV technologies continue to penetrate the market and the number of utility scale installations substantially increase, detailed understanding of the performance of the various PV technologies becomes more important. An accurate database for each technology is essential for precise project planning, energy yield prediction and project financing. However recent publications showed that it is very difficult to get accurate and reliable performance data of theses technologies. This paper evaluates previously reported claims the amorphous silicon based PV modules have a higher annual energy yield compared to crystalline silicon modules relative to their rated performance. In order to acquire a detailed understanding of this effect, outdoor module tests were performed at GE Global Research Center in Munich. In this study we examine closely two of the five reported factors that contribute to enhanced energy yield of amorphous silicon modules. We find evidence to support each of these factors and evaluate their relative significance. We discuss aspects for improvement in how PV modules are sold and identify areas for further study further study.
NASA Astrophysics Data System (ADS)
Raevskaya, G. A.; Zakharchenko, K.; Larichkin, A.
2017-10-01
The research is devoted to the scientific justification of metal processing by pressure with the help of thick monolithic plates forming (thickness 40 mm) from the V95 (analog 7475) (Al-Zn-Mg-Cu) and V-1461 (analog 2099) (Al-Cu-Li-Zn) alloys in creep and close-to-superplasticity. Optimum parameters of the technological process of plate forming are described. The effect of temperature on the magnitude of mechanical stresses (relaxation) during the tests of materials on pure bending is experimentally determined. Forming of thick plates (40 mm) on the UFP-1M unit, and the control of the obtained surface, in comparison with the given electronic model, made it possible to experimentally determine the time and number of forming stages. Mechanical properties of the material after the technological process and heat treatment are preliminary evaluated. The efficiency of using the obtained parameters of the technological process and treatment of metals by pressure in such methods in general is shown.
Rapid Antimicrobial Susceptibility Testing Using Forward Laser Light Scatter Technology
Clinton, Lani K.; Hewitt, Carolyn; Koyamatsu, Terri; Sun, Yilun; Jamison, Ginger; Perkins, Rosalie; Tang, Li; Pounds, Stanley; Bankowski, Matthew J.
2016-01-01
The delayed reporting of antimicrobial susceptibility testing remains a limiting factor in clinical decision-making in the treatment of bacterial infection. This study evaluates the use of forward laser light scatter (FLLS) to measure bacterial growth for the early determination of antimicrobial susceptibility. Three isolates each (two clinical isolates and one reference strain) of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa were tested in triplicate using two commercial antimicrobial testing systems, the Vitek2 and the MicroScan MIC panel, to challenge the BacterioScan FLLS. The BacterioScan FLLS showed a high degree of categorical concordance with the commercial methods. Pairwise comparison with each commercial system serving as a reference standard showed 88.9% agreement with MicroScan (two minor errors) and 72.2% agreement with Vitek (five minor errors). FLLS using the BacterioScan system shows promise as a novel method for the rapid and accurate determination of antimicrobial susceptibility. PMID:27558176
Numerical and experimental investigations on cavitation erosion
NASA Astrophysics Data System (ADS)
Fortes Patella, R.; Archer, A.; Flageul, C.
2012-11-01
A method is proposed to predict cavitation damage from cavitating flow simulations. For this purpose, a numerical process coupling cavitating flow simulations and erosion models was developed and applied to a two-dimensional (2D) hydrofoil tested at TUD (Darmstadt University of Technology, Germany) [1] and to a NACA 65012 tested at LMH-EPFL (Lausanne Polytechnic School) [2]. Cavitation erosion tests (pitting tests) were carried out and a 3D laser profilometry was used to analyze surfaces damaged by cavitation [3]. The method allows evaluating the pit characteristics, and mainly the volume damage rates. The paper describes the developed erosion model, the technique of cavitation damage measurement and presents some comparisons between experimental results and numerical damage predictions. The extent of cavitation erosion was correctly estimated in both hydrofoil geometries. The simulated qualitative influence of flow velocity, sigma value and gas content on cavitation damage agreed well with experimental observations.
Traction test of temporary dental cements.
Román-Rodríguez, Juan-Luis; Millan-Martínez, Diego; Fons-Font, Antonio; Agustín-Panadero, Rubén; Fernández-Estevan, Lucía
2017-04-01
Classic self-curing temporary cements obstruct the translucence of provisional restorations. New dual-cure esthetic temporary cements need investigation and comparison with classic cements to ensure that they are equally retentive and provide adequate translucence. The objective is to analyze by means of traction testing in a in vitro study the retention of five temporary cements. Ten molars were prepared and ten provisional resin restorations were fabricated using CAD-CAM technology (n=10). Five temporary cements were selected: self-curing temporary cements, Dycal (D), Temp Bond (TB), Temp Bond Non Eugenol (TBNE); dual-curing esthetic cements Temp Bond Clear (TBC) and Telio CS link (TE). Each sample underwent traction testing, both with thermocycling (190 cycles at 5-55º) and without thermocycling. TE and TBC obtained the highest traction resistance values. Thermocycling reduced the resistance of all cements except TBC. The dual-cure esthetic cements tested provided optimum outcomes for bonding provisional restorations. Key words: Temporary dental cements, cements resistance.
Mehlstäubler, Tanja E; Grosche, Gesine; Lisdat, Christian; Schmidt, Piet O; Denker, Heiner
2018-06-01
We review experimental progress on optical atomic clocks and frequency transfer, and consider the prospects of using these technologies for geodetic measurements. Today, optical atomic frequency standards have reached relative frequency inaccuracies below 10 -17 , opening new fields of fundamental and applied research. The dependence of atomic frequencies on the gravitational potential makes atomic clocks ideal candidates for the search for deviations in the predictions of Einstein's general relativity, tests of modern unifying theories and the development of new gravity field sensors. In this review, we introduce the concepts of optical atomic clocks and present the status of international clock development and comparison. Besides further improvement in stability and accuracy of today's best clocks, a large effort is put into increasing the reliability and technological readiness for applications outside of specialized laboratories with compact, portable devices. With relative frequency uncertainties of 10 -18 , comparisons of optical frequency standards are foreseen to contribute together with satellite and terrestrial data to the precise determination of fundamental height reference systems in geodesy with a resolution at the cm-level. The long-term stability of atomic standards will deliver excellent long-term height references for geodetic measurements and for the modelling and understanding of our Earth.
NASA Astrophysics Data System (ADS)
Bingham, G. E.; Pougatchev, N. S.; Zavyalov, V.; Esplin, M.; Blackwell, W. J.; Barnet, C.
2009-12-01
The NPOESS Preparatory Project is serving the operations and research community as the bridge mission between the Earth Observing System and the National Polar-orbiting Operational Environmental Satellite System. The Cross-track Infrared Sounder (CrIS), combined with the Advanced Technology Microwave Sounder (ATMS) are the core instruments to provide the key performance temperature and humidity profiles (along with some other atmospheric constituent information). Both the high spectral resolution CrIS and the upgraded microwave sounder (ATMS) will be working in parallel with already orbiting Advanced Atmospheric Infrared Sounder (AIRS/AMSU) on EOS AQUA platform and Infrared Atmospheric Sounding Interferometer (IASI/AMSU) on METOP-A satellite. This presentation will review the CrIS/ATMS capabilities in the context of continuity with the excellent performance records established by AIRS and IASI. The CrIS sensor is in the process of its final calibration and characterization testing and the results and Sensor Data Record process are being validated against this excellent dataset. The comparison between CrIS, AIRS, and IASI will include spectral, spatial, radiometric performance and sounding capability comparisons.
Vertebral rotation measurement: a summary and comparison of common radiographic and CT methods
Lam, Gabrielle C; Hill, Doug L; Le, Lawrence H; Raso, Jim V; Lou, Edmond H
2008-01-01
Current research has provided a more comprehensive understanding of Adolescent Idiopathic Scoliosis (AIS) as a three-dimensional spinal deformity, encompassing both lateral and rotational components. Apart from quantifying curve severity using the Cobb angle, vertebral rotation has become increasingly prominent in the study of scoliosis. It demonstrates significance in both preoperative and postoperative assessment, providing better appreciation of the impact of bracing or surgical interventions. In the past, the need for computer resources, digitizers and custom software limited studies of rotation to research performed after a patient left the scoliosis clinic. With advanced technology, however, rotation measurements are now more feasible. While numerous vertebral rotation measurement methods have been developed and tested, thorough comparisons of these are still relatively unexplored. This review discusses the advantages and disadvantages of six common measurement techniques based on technology most pertinent in clinical settings: radiography (Cobb, Nash-Moe, Perdriolle and Stokes' method) and computer tomography (CT) imaging (Aaro-Dahlborn and Ho's method). Better insight into the clinical suitability of rotation measurement methods currently available is presented, along with a discussion of critical concerns that should be addressed in future studies and development of new methods. PMID:18976498
NASA Astrophysics Data System (ADS)
Mehlstäubler, Tanja E.; Grosche, Gesine; Lisdat, Christian; Schmidt, Piet O.; Denker, Heiner
2018-06-01
We review experimental progress on optical atomic clocks and frequency transfer, and consider the prospects of using these technologies for geodetic measurements. Today, optical atomic frequency standards have reached relative frequency inaccuracies below 10‑17, opening new fields of fundamental and applied research. The dependence of atomic frequencies on the gravitational potential makes atomic clocks ideal candidates for the search for deviations in the predictions of Einstein’s general relativity, tests of modern unifying theories and the development of new gravity field sensors. In this review, we introduce the concepts of optical atomic clocks and present the status of international clock development and comparison. Besides further improvement in stability and accuracy of today’s best clocks, a large effort is put into increasing the reliability and technological readiness for applications outside of specialized laboratories with compact, portable devices. With relative frequency uncertainties of 10‑18, comparisons of optical frequency standards are foreseen to contribute together with satellite and terrestrial data to the precise determination of fundamental height reference systems in geodesy with a resolution at the cm-level. The long-term stability of atomic standards will deliver excellent long-term height references for geodetic measurements and for the modelling and understanding of our Earth.
Gu, B; DeBusk, T A; Dierberg, F E; Chimney, M J; Pietro, K C; Aziz, T
2001-01-01
The 1994 Everglades Forever Act mandates the South Florida Water Management District and the Florida Department of Environmental Protection to evaluate a series of advanced treatment technologies to reduce total phosphorus (TP) in Everglades Agricultural Area runoff to a threshold target level. A submerged aquatic vegetation/limerock (SAV/LR) treatment system is one of the technologies selected for evaluation. The research program consists of two phases. Phase I examined the efficiency of SAV/LR treatment system for TP removal at the mesocosm scale. Preliminary results demonstrate that this technology is capable of reducing effluent TP to as low as 10 microg/L under constant flows. The SAV component removes the majority of the influent soluble reactive P, while the limerock component removes a portion of the particulate P. Phase II is a multi-scale project (i.e., microcosms, mesocosms, test cells and full-size wetlands). Experiments and field investigations using various environmental scenarios are designed to (1) identify key P removal processes; (2) provide management and operational criteria for basin-scale implementation; and (3) provide scientific data for a standardized comparison of performance among advanced treatment technologies.
Power Systems for Future Missions: Appendices A-L
NASA Technical Reports Server (NTRS)
Gill, S. P.; Frye, P. E.; Littman, Franklin D.; Meisl, C. J.
1994-01-01
Selection of power system technology for space applications is typically based on mass, readiness of a particular technology to meet specific mission requirements, and life cycle costs (LCC). The LCC is typically used as a discriminator between competing technologies for a single mission application. All other future applications for a given technology are usually ignored. As a result, development cost of a technology becomes a dominant factor in the LCC comparison. Therefore, it is common for technologies such as DIPS and LMR-CBC to be potentially applicable to a wide range of missions and still lose out in the initial LCC comparison due to high development costs. This collection of appendices (A through L) contains the following power systems technology plans: CBC DIPS Technology Roadmap; PEM PFC Technology Roadmap; NAS Battery Technology Roadmap; PV/RFC Power System Technology Roadmap; PV/NAS Battery Technology Roadmap; Thermionic Reactor Power System Technology Roadmap; SP-100 Power System Technology Roadmap; Dynamic SP-100 Power System Technology Roadmap; Near-Term Solar Dynamic Power System Technology Roadmap; Advanced Solar Dynamic Power System Technology Roadmap; Advanced Stirling Cycle Dynamic Isotope Power System Technology Roadmap; and the ESPPRS (Evolutionary Space Power and Propulsion Requirements System) User's Guide.
Ground Deployment Demonstration and Material Testing for Solar Sail
NASA Astrophysics Data System (ADS)
Huang, Xiaoqi; Cheng, Zhengai; Liu, Yufei; Wang, Li
2016-07-01
Solar Sail is a kind of spacecraft that can achieve extremely high velocity by light pressure instead of chemical fuel. The great accelerate rely on its high area-to-mass ratio. So solar sail is always designed in huge size and it use ultra thin and light weight materials. For 100-meter class solar sail, two key points must be considered in the design process. They are fold-deployment method, and material property change in space environment. To test and verify the fold-deployment technology, a 8*8m principle prototype was developed. Sail membrane folding in method of IKAROS, Nanosail-D , and new proposed L-shape folding pattern were tested on this prototype. Their deployment properties were investigated in detail, and comparisons were made between them. Also, the space environment suitability of ultra thin polyimide films as candidate solar sail material was analyzed. The preliminary test results showed that membrane by all the folding method could deploy well. Moreover, sail membrane folding by L-shape pattern deployed more rapidly and more organized among the three folding pattern tested. The mechanical properties of the polyimide had no significant change after electron irradiation. As the preliminary research on the key technology of solar sail spacecraft, in this paper, the results of the study would provide important basis on large-scale solar sail membrane select and fold-deploying method design.
Langley, Michael R; Booker, Jessica K; Evans, James P; McLeod, Howard L; Weck, Karen E
2009-05-01
Responses to warfarin (Coumadin) anticoagulation therapy are affected by genetic variability in both the CYP2C9 and VKORC1 genes. Validation of pharmacogenetic testing for warfarin responses includes demonstration of analytical validity of testing platforms and of the clinical validity of testing. We compared four platforms for determining the relevant single nucleotide polymorphisms (SNPs) in both CYP2C9 and VKORC1 that are associated with warfarin sensitivity (Third Wave Invader Plus, ParagonDx/Cepheid Smart Cycler, Idaho Technology LightCycler, and AutoGenomics Infiniti). Each method was examined for accuracy, cost, and turnaround time. All genotyping methods demonstrated greater than 95% accuracy for identifying the relevant SNPs (CYP2C9 *2 and *3; VKORC1 -1639 or 1173). The ParagonDx and Idaho Technology assays had the shortest turnaround and hands-on times. The Third Wave assay was readily scalable to higher test volumes but had the longest hands-on time. The AutoGenomics assay interrogated the largest number of SNPs but had the longest turnaround time. Four published warfarin-dosing algorithms (Washington University, UCSF, Louisville, and Newcastle) were compared for accuracy for predicting warfarin dose in a retrospective analysis of a local patient population on long-term, stable warfarin therapy. The predicted doses from both the Washington University and UCSF algorithms demonstrated the best correlation with actual warfarin doses.
NASA Astrophysics Data System (ADS)
Ouyang, Qin; Liu, Yan; Chen, Quansheng; Zhang, Zhengzhu; Zhao, Jiewen; Guo, Zhiming; Gu, Hang
2017-06-01
Instrumental test of black tea samples instead of human panel test is attracting massive attention recently. This study focused on an investigation of the feasibility for estimation of the color sensory quality of black tea samples using the VIS-NIR spectroscopy technique, comparing the performances of models based on the spectra and color information. In model calibration, the variables were first selected by genetic algorithm (GA); then the nonlinear back propagation-artificial neural network (BPANN) models were established based on the optimal variables. In comparison with the other models, GA-BPANN models from spectra data information showed the best performance, with the correlation coefficient of 0.8935, and the root mean square error of 0.392 in the prediction set. In addition, models based on the spectra information provided better performance than that based on the color parameters. Therefore, the VIS-NIR spectroscopy technique is a promising tool for rapid and accurate evaluation of the sensory quality of black tea samples.
High-pressure thermal sterilization: food safety and food quality of baby food puree.
Sevenich, Robert; Kleinstueck, Elke; Crews, Colin; Anderson, Warwick; Pye, Celine; Riddellova, Katerina; Hradecky, Jaromir; Moravcova, Eliska; Reineke, Kai; Knorr, Dietrich
2014-02-01
The benefits that high-pressure thermal sterilization offers as an emerging technology could be used to produce a better overall food quality. Due to shorter dwell times and lower thermal load applied to the product in comparison to the thermal retorting, lower numbers and quantities of unwanted food processing contaminants (FPCs), for example, furan, acrylamide, HMF, and MCPD-esters could be formed. Two spore strains were used to test the technique; Geobacillus stearothermophilus and Bacillus amyloliquefaciens, over the temperature range 90 to 121 °C at 600 MPa. The treatments were carried out in baby food puree and ACES-buffer. The treatments at 90 and 105 °C showed that G. stearothermophilus is more pressure-sensitive than B. amyloliquefaciens. The formation of FPCs was monitored during the sterilization process and compared to the amounts found in retorted samples of the same food. The amounts of furan could be reduced between 81% to 96% in comparison to retorting for the tested temperature pressure combination even at sterilization conditions of F₀-value in 7 min. © 2014 Institute of Food Technologists®
Ouyang, Qin; Liu, Yan; Chen, Quansheng; Zhang, Zhengzhu; Zhao, Jiewen; Guo, Zhiming; Gu, Hang
2017-06-05
Instrumental test of black tea samples instead of human panel test is attracting massive attention recently. This study focused on an investigation of the feasibility for estimation of the color sensory quality of black tea samples using the VIS-NIR spectroscopy technique, comparing the performances of models based on the spectra and color information. In model calibration, the variables were first selected by genetic algorithm (GA); then the nonlinear back propagation-artificial neural network (BPANN) models were established based on the optimal variables. In comparison with the other models, GA-BPANN models from spectra data information showed the best performance, with the correlation coefficient of 0.8935, and the root mean square error of 0.392 in the prediction set. In addition, models based on the spectra information provided better performance than that based on the color parameters. Therefore, the VIS-NIR spectroscopy technique is a promising tool for rapid and accurate evaluation of the sensory quality of black tea samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Development of high-speed balancing technology
NASA Technical Reports Server (NTRS)
Demuth, R.; Zorzi, E.
1981-01-01
An investigation into laser material removal showed that laser burns act in a manner typical of mechanical stress raisers causing a reduction in fatigue strength; the fatigue strength is lowered relative to the smooth specimen fatigue strength. Laser-burn zones were studied for four materials: Alloy Steel 4340, Stainless Steel 17-4 PH, Inconel 718, and Aluminum Alloy 6061-T6. Calculations were made of stress concentration factors K, for laser-burn grooves of each material type. A comparison was then made to experimentally determine the fatigue strength reduction factor. These calculations and comparisons indicated that, except for the 17-4 PH material, good agreement (a ratio of close to 1.0) existed between Kt and Kf. The performance of the 17-4 PH material has been attributed to early crack initiation due to the lower fatigue resistance of the soft, unaged laser-affected zone. Also covered in this report is the development, implementation, and testing of an influence coefficient approach to balancing a long, slender shaft under applied-torque conditions. Excellent correlation existed between the analytically predicted results and those data obtained from testing.
NASA Astrophysics Data System (ADS)
Langland-Shula, Laura E.; Vogt, Steven S.; Charbonneau, David; Butler, Paul; Marcy, Geoff
2009-05-01
We present high-resolution High Resolution Echelle Spectrometer (HIRES)/Keck spectra of HD 209458, and a Monte Carlo variation on the basic method used by other workers, to look for the excess in-transit absorption in the NaD doublet at 5893 Å due to the extrasolar planet. The HIRES data, binned by bandpass, allow a direct comparison with previous results. We find >3σ results in most test bandpasses around the NaD doublet, including relative absorption of (-108.8 ± 25.7) × 10-5 in the "narrow" bandpass used by other workers. This is ≈4.7 times larger than the "narrow" results reported by Charbonneau et al. for HD 209458b. However, >2σ absorption is detected in some weak Fe I and Ni I lines that were tested for comparison, raising concern about the uncertainties introduced by continuum-fitting and terrestrial atmosphere subtraction. Based on data obtained with the W. M. Keck Observatory, which is operated by a partnership consisting of the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration.
Passive Nosetip Technology (PANT) Program. Volume X. Summary of Experimental and Analytical Results
1975-01-01
Scallop Calorimeter Data with Sandgrain Type Calorimeter Data 3-22 4-1 Geometry for 1.5-Inch Nose Radius Camphor Model 4-3 4-2 Shape Profile History for... camphor model tested at Re. - 5.104/ft and t - 5 in the NOL hypersonic wind Tunnel Number S. (a) Run 007, Sting 2 -Graphite (b) PANT Run 204 - Camphor ...Laminar region (a) Run 006, Sting 2 -Graphite (b) PANT Run 216 - Camphor low temperature ablator Figure 2-2. Comparison of Transitional Shapes The
A risk-based approach to robotic mission requirements
NASA Technical Reports Server (NTRS)
Dias, William C.; Bourke, Roger D.
1992-01-01
A NASA Risk Team has developed a method for the application of risk management to the definition of robotic mission requirements for the Space Exploration Initiative. These requirements encompass environmental information, infrastructural emplacement in advance, and either technology testing or system/subsystems demonstration. Attention is presently given to a method for step-by-step consideration and analysis of the risk component inherent in mission architecture, followed by a calculation of the subjective risk level. Mitigation strategies are then applied with the same rules, and a comparison is made.
NASA Technical Reports Server (NTRS)
Storey, Jedediah M.; Kirk, Daniel; Gutierrez, Hector; Marsell, Brandon; Schallhorn, Paul; Lapilli, Gabriel D.
2015-01-01
Experimental and numerical results are presented from a new cryogenic fluid slosh program at the Florida Institute of Technology (FIT). Water and cryogenic liquid nitrogen are used in various ground-based tests with an approximately 30 cm diameter spherical tank to characterize damping, slosh mode frequencies, and slosh forces. The experimental results are compared to a computational fluid dynamics (CFD) model for validation. An analytical model is constructed from prior work for comparison. Good agreement is seen between experimental, numerical, and analytical results.
Screening applications in drug discovery based on microfluidic technology
Eribol, P.; Uguz, A. K.; Ulgen, K. O.
2016-01-01
Microfluidics has been the focus of interest for the last two decades for all the advantages such as low chemical consumption, reduced analysis time, high throughput, better control of mass and heat transfer, downsizing a bench-top laboratory to a chip, i.e., lab-on-a-chip, and many others it has offered. Microfluidic technology quickly found applications in the pharmaceutical industry, which demands working with leading edge scientific and technological breakthroughs, as drug screening and commercialization are very long and expensive processes and require many tests due to unpredictable results. This review paper is on drug candidate screening methods with microfluidic technology and focuses specifically on fabrication techniques and materials for the microchip, types of flow such as continuous or discrete and their advantages, determination of kinetic parameters and their comparison with conventional systems, assessment of toxicities and cytotoxicities, concentration generations for high throughput, and the computational methods that were employed. An important conclusion of this review is that even though microfluidic technology has been in this field for around 20 years there is still room for research and development, as this cutting edge technology requires ingenuity to design and find solutions for each individual case. Recent extensions of these microsystems are microengineered organs-on-chips and organ arrays. PMID:26865904
Screening applications in drug discovery based on microfluidic technology.
Eribol, P; Uguz, A K; Ulgen, K O
2016-01-01
Microfluidics has been the focus of interest for the last two decades for all the advantages such as low chemical consumption, reduced analysis time, high throughput, better control of mass and heat transfer, downsizing a bench-top laboratory to a chip, i.e., lab-on-a-chip, and many others it has offered. Microfluidic technology quickly found applications in the pharmaceutical industry, which demands working with leading edge scientific and technological breakthroughs, as drug screening and commercialization are very long and expensive processes and require many tests due to unpredictable results. This review paper is on drug candidate screening methods with microfluidic technology and focuses specifically on fabrication techniques and materials for the microchip, types of flow such as continuous or discrete and their advantages, determination of kinetic parameters and their comparison with conventional systems, assessment of toxicities and cytotoxicities, concentration generations for high throughput, and the computational methods that were employed. An important conclusion of this review is that even though microfluidic technology has been in this field for around 20 years there is still room for research and development, as this cutting edge technology requires ingenuity to design and find solutions for each individual case. Recent extensions of these microsystems are microengineered organs-on-chips and organ arrays.
Bastida Castillo, Alejandro; Gómez Carmona, Carlos D; De la Cruz Sánchez, Ernesto; Pino Ortega, José
2018-05-01
There is interest in the accuracy and inter-unit reliability of position-tracking systems to monitor players. Research into this technology, although relatively recent, has grown exponentially in the last years, and it is difficult to find professional team sport that does not use Global Positioning System (GPS) technology at least. The aim of this study is to know the accuracy of both GPS-based and Ultra Wide Band (UWB)-based systems on a soccer field and their inter- and intra-unit reliability. A secondary aim is to compare them for practical applications in sport science. Following institutional ethical approval and familiarization, 10 healthy and well-trained former soccer players (20 ± 1.6 years, 1.76 ± 0.08 cm, and 69.5 ± 9.8 kg) performed three course tests: (i) linear course, (ii) circular course, and (iii) a zig-zag course, all using UWB and GPS technologies. The average speed and distance covered were compared with timing gates and the real distance as references. The UWB technology showed better accuracy (bias: 0.57-5.85%), test-retest reliability (%TEM: 1.19), and inter-unit reliability (bias: 0.18) in determining distance covered than the GPS technology (bias: 0.69-6.05%; %TEM: 1.47; bias: 0.25) overall. Also, UWB showed better results (bias: 0.09; ICC: 0.979; bias: 0.01) for mean velocity measurement than GPS (bias: 0.18; ICC: 0.951; bias: 0.03).
Moazami, Fariborz; Bahrampour, Ehsan; Azar, Mohammad Reza; Jahedi, Farzad; Moattari, Marzieh
2014-03-05
The importance of using technologies such as e-learning in different disciplines is discussed in the literature. Researchers have measured the effectiveness of e-learning in a number of fields.Considering the lack of research on the effectiveness of online learning in dental education particularly in Iran, the advantages of these learning methods and the positive university atmosphere regarding the use of online learning. This study, therefore, aims to compare the effects of two methods of teaching (virtual versus traditional) on student learning. This post-test only design study approached 40, fifth year dental students of Shiraz University of Medical Sciences. From this group, 35 students agreed to participate. These students were randomly allocated into two groups, experimental (virtual learning) and comparison (traditional learning). To ensure similarity between groups, we compared GPAs of all participants by the Mann-Whitney U test (P > 0.05). The experimental group received a virtual learning environment courseware package specifically designed for this study, whereas the control group received the same module structured in a traditional lecture form. The virtual learning environment consisted of online and offline materials. Two identical valid, reliable post-tests that consisted of 40 multiple choice questions (MCQs) and 4 essay questions were administered immediately (15 min) after the last session and two months later to assess for knowledge retention. Data were analyzed by SPSS version 20. A comparison of the mean knowledge score of both groups showed that virtual learning was more effective than traditional learning (effect size = 0.69). The newly designed virtual learning package is feasible and will result in more effective learning in comparison with lecture-based training. However further studies are needed to generalize the findings of this study.
Mini-STAR: A small space mission testing special relativity
NASA Astrophysics Data System (ADS)
Gürlebeck, Norman
mSTAR (mini-STAR) is a proposed collaborative Saudi-USA-German small space mission to perform an advanced Kennedy-Thorndike (KT) type test of Special Relativity using the large and rapid velocity modulation available in low Earth orbit (LEO). An improvement of about a factor of 100 over present ground results is expected with an additional factor of 10 possible using more advanced technology. To date, limits on local Lorentz invariance violations (LLIV) related to boost effects are on the order of δc/c ≤ 10 15. While advances in technology will undoubtedly lead to further gains, it has become clear that space experiments in low Earth orbit offer a way to obtain much better results than ground experiments. The mSTAR LLIV experiment consists of the comparison of a molecular frequency reference, 532 nm Iodine, with a length reference, an optical cavity, in a LEO flight (7 km/s orbital velocity, 90 min period). The corresponding sensitivity to boost-dependent LLIV terms is improved relative to Earth based measurements because of the high velocity modulation and the increased number of the measurements. The mSTAR approach is to develop a small-scale instrument with a high scientific output that also provides instrument and spacecraft technology for subsequent missions, which would use further improved frequency standards.
Evans, Brian C; Hocking, Kyle M; Kilchrist, Kameron V; Wise, Eric S; Brophy, Colleen M; Duvall, Craig L
2015-06-23
A platform technology has been developed and tested for delivery of intracellular-acting peptides through electrostatically complexed nanoparticles, or nano-polyplexes, formulated from an anionic endosomolytic polymer and cationic therapeutic peptides. This delivery platform has been initially tested and optimized for delivery of two unique vasoactive peptides, a phosphomimetic of heat shock protein 20 and an inhibitor of MAPKAP kinase II, to prevent pathological vasoconstriction (i.e., vasospasm) in human vascular tissue. These peptides inhibit vasoconstriction and promote vasorelaxation by modulating actin dynamics in vascular smooth muscle cells. Formulating these peptides into nano-polyplexes significantly enhances peptide uptake and retention, facilitates cytosolic delivery through a pH-dependent endosomal escape mechanism, and enhances peptide bioactivity in vitro as measured by inhibition of F-actin stress fiber formation. In comparison to treatment with the free peptides, which were endowed with cell-penetrating sequences, the nano-polyplexes significantly increased vasorelaxation, inhibited vasoconstriction, and decreased F-actin formation in the human saphenous vein ex vivo. These results suggest that these formulations have significant potential for treatment of conditions such as cerebral vasospasm following subarachnoid hemorrhage. Furthermore, because many therapeutic peptides include cationic cell-penetrating segments, this simple and modular platform technology may have broad applicability as a cost-effective approach for enhancing the efficacy of cytosolically active peptides.
Ultrasound characterization of middle ear effusion.
Seth, Rahul; Discolo, Christopher M; Palczewska, Grazyna M; Lewandowski, Jan J; Krakovitz, Paul R
2013-01-01
To further enhance and assess the ability to characterize middle ear effusion (MEE) using non-invasive ultrasound technology. This is a prospective unblinded comparison study. Fifty-six children between the ages of 6 months and 17 years scheduled to undergo bilateral myringotomy with pressure equalization tube placement were enrolled. With the child anesthetized, the probe was placed into the external ear canal after sterile water was inserted. Ultrasound recordings of middle ear contents were analyzed by computer algorithm. Middle ear fluid was collected during myringotomy and analyzed for bacterial culture and viscosity. Ultrasound waveforms yielded a computer algorithm interpretation of middle ear contents in 66% of ears tested. When a result was obtained, the sensitivity and specificity for successfully characterizing middle ear fluid content as either void of fluid, thick fluid (mucoid), or thin fluid (serous or purulent) were at least 94%. Mucoid effusions had higher measured viscosity values (P=.002). Viscosity measures were compared to culture result, and those with low viscosity (thin consistency) had a higher likelihood of having a positive culture (P=.048). The device sensitivity and specificity for fluid detection were 94% or greater among interpretable waveforms (66% of those tested). Although this technology provides important information of the middle ear effusion presence and characteristic, further technological improvements are needed. Copyright © 2013 Elsevier Inc. All rights reserved.
Ultrasound Characterization of Middle Ear Effusion
Seth, Rahul; Discolo, Christopher M; Palczewska, Grazyna M; Lewandowski, Jan J; Krakovitz, Paul R
2012-01-01
Purpose To further enhance and assess the ability to characterize middle ear effusion (MEE) using non-invasive ultrasound technology. Materials and Methods This is a prospective unblinded comparison study. Fifty-six children between the ages of 6 months and 17 years scheduled to undergo bilateral myringotomy with pressure equalization tube placement were enrolled. With the child anesthetized, the probe was placed into the external ear canal after sterile water was inserted. Ultrasound recordings of middle ear contents were analyzed by computer algorithm. Middle ear fluid was collected during myringotomy and analyzed for bacterial culture and viscosity. Results Ultrasound waveforms yielded a computer algorithm interpretation of middle ear contents in 66% of ears tested. When a result was obtained, the sensitivity and specificity for successfully characterizing middle ear fluid content as either void of fluid, thick fluid (mucoid), or thin fluid (serous or purulent) was at least 94%. Mucoid effusions had higher measured viscosity values (P=0.002). Viscosity measures were compared to culture result, and those with low viscosity (thin consistency) had a higher likelihood of having a positive culture (P=0.048). Conclusion The device sensitivity and specificity for fluid detection was 94% or greater among interpretable waveforms (66% of those tested). Although this technology provides important information of the middle ear effusion presence and characteristic, further technological improvements are needed. PMID:23084430
NASA Astrophysics Data System (ADS)
Elwood, Teri; Bennett, Whit; Lai, Teh; Simmons-Potter, Kelly
2016-09-01
It is well known that the efficiency of a photovoltaic (PV) module is strongly impacted by its temperature such that higher temperatures lead to lower energy conversion efficiencies. An accurate measurement of the temperature de-rating effect, therefore, is vital to the correct interpretation of PV module performance under varied environmental conditions. The current work investigates and compares methods for performing measurements of module temperature both in the lab and in field-test environments. A comparison of several temperature measurement devices was made in order to establish the ideal sensor configuration for quantifying module operating temperature. Sensors were also placed in various locations along a string of up to eight photovoltaic modules to examine the variance in operating temperature with position in the string and within a larger array of strings.
ERIC Educational Resources Information Center
Wright, Michael D.; And Others
1992-01-01
Three articles discuss (1) casting technology as it relates to industry, with comparisons of shell casting, shell molding, and die casting; (2) evaporative pattern casting for metals; and (3) high technological casting with silicone rubber. (JOW)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Rui; Sumner, Tyler S.
2016-04-17
An advanced system analysis tool SAM is being developed for fast-running, improved-fidelity, and whole-plant transient analyses at Argonne National Laboratory under DOE-NE’s Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. As an important part of code development, companion validation activities are being conducted to ensure the performance and validity of the SAM code. This paper presents the benchmark simulations of two EBR-II tests, SHRT-45R and BOP-302R, whose data are available through the support of DOE-NE’s Advanced Reactor Technology (ART) program. The code predictions of major primary coolant system parameter are compared with the test results. Additionally, the SAS4A/SASSYS-1 code simulationmore » results are also included for a code-to-code comparison.« less
Green, Cynthia L; Kligfield, Paul; George, Samuel; Gussak, Ihor; Vajdic, Branislav; Sager, Philip; Krucoff, Mitchell W
2012-03-01
The Cardiac Safety Research Consortium (CSRC) provides both "learning" and blinded "testing" digital electrocardiographic (ECG) data sets from thorough QT (TQT) studies annotated for submission to the US Food and Drug Administration (FDA) to developers of ECG analysis technologies. This article reports the first results from a blinded testing data set that examines developer reanalysis of original sponsor-reported core laboratory data. A total of 11,925 anonymized ECGs including both moxifloxacin and placebo arms of a parallel-group TQT in 181 subjects were blindly analyzed using a novel ECG analysis algorithm applying intelligent automation. Developer-measured ECG intervals were submitted to CSRC for unblinding, temporal reconstruction of the TQT exposures, and statistical comparison to core laboratory findings previously submitted to FDA by the pharmaceutical sponsor. Primary comparisons included baseline-adjusted interval measurements, baseline- and placebo-adjusted moxifloxacin QTcF changes (ddQTcF), and associated variability measures. Developer and sponsor-reported baseline-adjusted data were similar with average differences <1 ms for all intervals. Both developer- and sponsor-reported data demonstrated assay sensitivity with similar ddQTcF changes. Average within-subject SD for triplicate QTcF measurements was significantly lower for developer- than sponsor-reported data (5.4 and 7.2 ms, respectively; P < .001). The virtually automated ECG algorithm used for this analysis produced similar yet less variable TQT results compared with the sponsor-reported study, without the use of a manual core laboratory. These findings indicate that CSRC ECG data sets can be useful for evaluating novel methods and algorithms for determining drug-induced QT/QTc prolongation. Although the results should not constitute endorsement of specific algorithms by either CSRC or FDA, the value of a public domain digital ECG warehouse to provide prospective, blinded comparisons of ECG technologies applied for QT/QTc measurement is illustrated. Copyright © 2012 Mosby, Inc. All rights reserved.
Stirling Convertor Extended Operation Testing and Data Analysis at GRC
NASA Technical Reports Server (NTRS)
Cornell, Peggy A.; Lewandowski, Edward J.; Oriti, Salvatore M.; Wilson, Scott D.
2009-01-01
This paper focuses on extended operation testing and data analysis of free-piston Stirling convertors at the NASA Glenn Research Center (GRC). Extended operation testing is essential to the development of radioisotope power systems and their potential use for long duration missions. To document the reliability of the convertors, regular monitoring and analysis of the extended operation data is particularly valuable; allowing us to better understand and quantity the long life characteristics of the convertors. Further, investigation and comparison of the extended operation data to baseline performance data provides us an opportunity for understanding system behavior should any off-nominal performance occur. GRC currently has 14 Stirling convertors under 24-hour unattended extended operation testing, including two operating the Advanced Stirling Radioisotope Generator Engineering Unit (ASRG-EU). 10 of the 14 Stirling convertors at GRC are the Advanced Stirling Convertors (ASC) developed by Sunpower, Incorporated. These are highly efficient (up to > 33.5% conversion efficiency), low mass convertors that have evolved through technologically progressive convertor builds. The remaining four convertors at GRC are Technology Demonstration Convertors (TDC) from Infinia Corporation. They have achieved> 27% conversion efficiency and have accumulated over 178,000 of the total 250,622 hours of extended operation currently at GRC. A synopsis of the Stirling convertor extended operation testing and data analysis at NASA GRC is presented in this paper, as well as how this testing has contributed to the Stirling convertor's progression toward flight.
X-33 Experimental Aeroheating at Mach 6 Using Phosphor Thermography
NASA Technical Reports Server (NTRS)
Horvath, Thomas J.; Berry, Scott A.; Hollis, Brian R.; Liechty, Derek S.; Hamilton, H. Harris, II; Merski, N. Ronald
1999-01-01
The goal of the NASA Reusable Launch Vehicle (RLV) technology program is to mature and demonstrate essential, cost effective technologies for next generation launch systems. The X-33 flight vehicle presently being developed by Lockheed Martin is an experimental Single Stage to Orbit (SSTO) demonstrator that seeks to validate critical technologies and insure applicability to a full scale RLV. As with the design of any hypersonic vehicle, the aeroheating environment is an important issue and one of the key technologies being demonstrated on X-33 is an advanced metallic Thermal Protection System (TPS). As part of the development of this TPS system, the X-33 aeroheating environment is being defined through conceptual analysis, ground based testing, and computational fluid dynamics. This report provides an overview of the hypersonic aeroheating wind tunnel program conducted at the NASA Langley Research Center in support of the ground based testing activities. Global surface heat transfer images, surface streamline patterns, and shock shapes were measured on 0.013 scale (10-in.) ceramic models of the proposed X-33 configuration in Mach 6 air. The test parametrics include angles of attack from -5 to 40 degs, unit Reynolds numbers from 1x106 to 8x106/ft, and body flap deflections of 0, 10, and 20 deg. Experimental and computational results indicate the presence of shock/shock interactions that produced localized heating on the deflected flaps and boundary layer transition on the canted fins. Comparisons of the experimental data to laminar and turbulent predictions were performed. Laminar windward heating data from the wind tunnel was extrapolated to flight surface temperatures and generally compared to within 50 deg F of flight prediction along the centerline. When coupled with the phosphor technique, this rapid extrapolation method would serve as an invaluable TPS design tool.
Yunus, Sami; Massart, Marion; Huang, Te-Din; Glupczynski, Youri
2015-01-01
Accurate detection of carbapenemase-producing Enterobacteriaceae (CPE) constitutes a major laboratory diagnostic challenge. We evaluated an electrochemical technique (the BYG Carba test) which allows detection of CPE in less than 35 min. The BYG Carba test was first validated in triplicate against 57 collection isolates with previously characterized β-lactam resistance mechanisms (OXA-48, n = 12; KPC, n = 8; NDM, n = 8; VIM, n = 8; IMP, n = 3; GIM, n = 1; GES-6, n = 1; no carbapenemase, n = 16) and against a panel of 10 isolates obtained from the United Kingdom National External Quality Assessment Service (NEQAS). The test was then evaluated prospectively against 324 isolates referred to the national reference center for suspicion of CPE. The BYG Carba test results were compared with those obtained with the Carba NP test using multiplex PCR sequencing as the gold standard. Of the 57 collection and the 10 NEQAS isolates, all but one GES-6-producing isolate were correctly identified by the Carba BYG test. Among the 324 consecutive Enterobacteriaceae isolates tested prospectively, 146 were confirmed as noncarbapenemase producers by PCR while 178 harbored a carbapenemase gene (OXA-48, n = 117; KPC, n = 25; NDM, n = 23; and VIM, n = 13). Prospectively, in comparison with PCR results, the BYG Carba test displayed 95% sensitivity and 100% specificity versus 89% and 100%, respectively, for the Carba NP test. The BYG Carba test is a novel, rapid, and efficient assay based on an electro-active polymer biosensing technology discriminating between CPE and non-CPE. The precise electrochemical signal (electrochemical impedance variations) allows the establishment of real-time objective measurement and interpretation criteria which should facilitate the accreditation process of this technology. PMID:26637378
FastID: Extremely Fast Forensic DNA Comparisons
2017-05-19
FastID: Extremely Fast Forensic DNA Comparisons Darrell O. Ricke, PhD Bioengineering Systems & Technologies Massachusetts Institute of...Technology Lincoln Laboratory Lexington, MA USA Darrell.Ricke@ll.mit.edu Abstract—Rapid analysis of DNA forensic samples can have a critical impact on...time sensitive investigations. Analysis of forensic DNA samples by massively parallel sequencing is creating the next gold standard for DNA
ERIC Educational Resources Information Center
Papanastasiou, Natalie
2012-01-01
The curriculum is a governance technology of knowledge production and is also itself governed by complex dynamics within European education policy space. This article focuses on how the curriculum is governed by comparative knowledge; in particular, it identifies how this facet of governance has manifested itself within the policy space of…
ERIC Educational Resources Information Center
National Science Foundation, Arlington, VA. Div. of Science Resources Studies.
This report provides comparisons of U.S. and Japanese science resources and some initial evidence that Japan is expanding the human and financial resources for science while improving the environment for basic research. The data cover science and technology trends in research and development from 1975 to 1994, as well as more recent changes in…
Use of ICT in School: A Comparison between Students with and without Physical Disabilities
ERIC Educational Resources Information Center
Lidstrom, Helene; Granlund, Mats; Hemmingsson, Helena
2012-01-01
The aim of this study was to determine the information and communication technologies use in school activities of two groups of students with physical disabilities, comprised of those who did and those who did not use a computer-based assistive technology device (ATD) and to make a comparison with students from the general population. In addition,…
Propellant Readiness Level: A Methodological Approach to Propellant Characterization
NASA Technical Reports Server (NTRS)
Bossard, John A.; Rhys, Noah O.
2010-01-01
A methodological approach to defining propellant characterization is presented. The method is based on the well-established Technology Readiness Level nomenclature. This approach establishes the Propellant Readiness Level as a metric for ascertaining the readiness of a propellant or a propellant combination by evaluating the following set of propellant characteristics: thermodynamic data, toxicity, applications, combustion data, heat transfer data, material compatibility, analytical prediction modeling, injector/chamber geometry, pressurization, ignition, combustion stability, system storability, qualification testing, and flight capability. The methodology is meant to be applicable to all propellants or propellant combinations; liquid, solid, and gaseous propellants as well as monopropellants and propellant combinations are equally served. The functionality of the proposed approach is tested through the evaluation and comparison of an example set of hydrocarbon fuels.
Photovoltaic Engineering Testbed Designed for Calibrating Photovoltaic Devices in Space
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
2002-01-01
Accurate prediction of the performance of solar arrays in space requires that the cells be tested in comparison with a space-flown standard. Recognizing that improvements in future solar cell technology will require an ever-increasing fidelity of standards, the Photovoltaics and Space Environment Branch at the NASA Glenn Research Center, in collaboration with the Ohio Aerospace Institute, designed a prototype facility to allow routine calibration, measurement, and qualification of solar cells on the International Space Station, and then the return of the cells to Earth for laboratory use. For solar cell testing, the Photovoltaic Engineering Testbed (PET) site provides a true air-mass-zero (AM0) solar spectrum. This allows solar cells to be accurately calibrated using the full spectrum of the Sun.
Density and Cavitating Flow Results from a Full-Scale Optical Multiphase Cryogenic Flowmeter
NASA Technical Reports Server (NTRS)
Korman, Valentin
2007-01-01
Liquid propulsion systems are hampered by poor flow measurements. The measurement of flow directly impacts safe motor operations, performance parameters as well as providing feedback from ground testing and developmental work. NASA Marshall Space Flight Center, in an effort to improve propulsion sensor technology, has developed an all optical flow meter that directly measures the density of the fluid. The full-scale sensor was tested in a transient, multiphase liquid nitrogen fluid environment. Comparison with traditional density models shows excellent agreement with fluid density with an error of approximately 0.8%. Further evaluation shows the sensor is able to detect cavitation or bubbles in the flow stream and separate out their resulting effects in fluid density.
Autonomous Scanning Probe Microscopy in Situ Tip Conditioning through Machine Learning.
Rashidi, Mohammad; Wolkow, Robert A
2018-05-23
Atomic-scale characterization and manipulation with scanning probe microscopy rely upon the use of an atomically sharp probe. Here we present automated methods based on machine learning to automatically detect and recondition the quality of the probe of a scanning tunneling microscope. As a model system, we employ these techniques on the technologically relevant hydrogen-terminated silicon surface, training the network to recognize abnormalities in the appearance of surface dangling bonds. Of the machine learning methods tested, a convolutional neural network yielded the greatest accuracy, achieving a positive identification of degraded tips in 97% of the test cases. By using multiple points of comparison and majority voting, the accuracy of the method is improved beyond 99%.
A long view of global plutonium management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, R.L. Jr.
1995-10-01
Dealing with the large and growing world inventories of fissile materials from all sources is a major part of the long term challenge of limiting the danger from nuclear weapons. Providing clean, safe nuclear power may also be needed to prevent conditions from arising which could lead to large scale nuclear weapon (re)armament. ADTT technologies might reconcile the seeming dilemma of providing nuclear power while maintaining a very low world inventory of nuclear materials which can be used in weapons. This vision for ADTT should be tested in a variety of ways, including comparisons with competing approaches and with othermore » objectives. Such testing is one part of constructing a path for a decades-long, worldwide implementation campaign for ADTT.« less
Development of a MEMS device for acoustic emission testing
NASA Astrophysics Data System (ADS)
Ozevin, Didem; Pessiki, Stephen P.; Jain, Akash; Greve, David W.; Oppenheim, Irving J.
2003-08-01
Acoustic emission testing is an important technology for evaluating structural materials, and especially for detecting damage in structural members. Significant new capabilities may be gained by developing MEMS transducers for acoustic emission testing, including permanent bonding or embedment for superior coupling, greater density of transducer placement, and a bundle of transducers on each device tuned to different frequencies. Additional advantages include capabilities for maintenance of signal histories and coordination between multiple transducers. We designed a MEMS device for acoustic emission testing that features two different mechanical types, a hexagonal plate design and a spring-mass design, with multiple detectors of each type at ten different frequencies in the range of 100 kHz to 1 MHz. The devices were fabricated in the multi-user polysilicon surface micromachining (MUMPs) process and we have conducted electrical characterization experiments and initial experiments on acoustic emission detection. We first report on C(V) measurements and perform a comparison between predicted (design) and measured response. We next report on admittance measurements conducted at pressures varying from vacuum to atmospheric, identifying the resonant frequencies and again providing a comparison with predicted performance. We then describe initial calibration experiments that compare the performance of the detectors to other acoustic emission transducers, and we discuss the overall performance of the device as a sensor suite, as contrasted to the single-channel performance of most commercial transducers.
Evaluation of automobiles with alternative fuels utilizing multicriteria techniques
NASA Astrophysics Data System (ADS)
Brey, J. J.; Contreras, I.; Carazo, A. F.; Brey, R.; Hernández-Díaz, A. G.; Castro, A.
This work applies the non-parametric technique of Data Envelopment Analysis (DEA) to conduct a multicriteria comparison of some existing and under development technologies in the automotive sector. The results indicate that some of the technologies under development, such as hydrogen fuel cell vehicles, can be classified as efficient when evaluated in function of environmental and economic criteria, with greater importance being given to the environmental criteria. The article also demonstrates the need to improve the hydrogen-based technology, in comparison with the others, in aspects such as vehicle sale costs and fuel price.
Standard Transistor Array (STAR). Volume 1: Placement technique
NASA Technical Reports Server (NTRS)
Cox, G. W.; Caroll, B. D.
1979-01-01
A large scale integration (LSI) technology, the standard transistor array uses a prefabricated understructure of transistors and a comprehensive library of digital logic cells to allow efficient fabrication of semicustom digital LSI circuits. The cell placement technique for this technology involves formation of a one dimensional cell layout and "folding" of the one dimensional placement onto the chip. It was found that, by use of various folding methods, high quality chip layouts can be achieved. Methods developed to measure of the "goodness" of the generated placements include efficient means for estimating channel usage requirements and for via counting. The placement and rating techniques were incorporated into a placement program (CAPSTAR). By means of repetitive use of the folding methods and simple placement improvement strategies, this program provides near optimum placements in a reasonable amount of time. The program was tested on several typical LSI circuits to provide performance comparisons both with respect to input parameters and with respect to the performance of other placement techniques. The results of this testing indicate that near optimum placements can be achieved by use of the procedures incurring severe time penalties.
Evolution of Software-Only-Simulation at NASA IV and V
NASA Technical Reports Server (NTRS)
McCarty, Justin; Morris, Justin; Zemerick, Scott
2014-01-01
Software-Only-Simulations have been an emerging but quickly developing field of study throughout NASA. The NASA Independent Verification Validation (IVV) Independent Test Capability (ITC) team has been rapidly building a collection of simulators for a wide range of NASA missions. ITC specializes in full end-to-end simulations that enable developers, VV personnel, and operators to test-as-you-fly. In four years, the team has delivered a wide variety of spacecraft simulations that have ranged from low complexity science missions such as the Global Precipitation Management (GPM) satellite and the Deep Space Climate Observatory (DSCOVR), to the extremely complex missions such as the James Webb Space Telescope (JWST) and Space Launch System (SLS).This paper describes the evolution of ITCs technologies and processes that have been utilized to design, implement, and deploy end-to-end simulation environments for various NASA missions. A comparison of mission simulators are discussed with focus on technology and lessons learned in complexity, hardware modeling, and continuous integration. The paper also describes the methods for executing the missions unmodified flight software binaries (not cross-compiled) for verification and validation activities.
Lim, Jun Young; Kim, Namhyun; Park, Jong-Chul; Yoo, Sun K; Shin, Dong Ah; Shim, Kyu-Won
2017-09-01
Cranioplasty for recovering skull defects carries the risk for a number of complications. Various materials are used, including autologous bone graft, metallic materials, and non-metallic materials, each of which has advantages and disadvantages. If the use of autologous bone is not feasible, those artificial materials also have constraints in the case of complex anatomy and/or irregular defects. This study used metal 3D-printing technology to overcome these existing drawbacks and analyze the clinical and mechanical performance requirements. To find an optimal structure that satisfied the structural and mechanical stability requirements, we evaluated biomechanical stability using finite element analysis (FEA) and mechanical testing. To ensure clinical applicability, the model was subjected to histological evaluation. Each specimen was implanted in the femur of a rabbit and was evaluated using histological measurements and push-out test. We believe that our data will provide the basis for future applications of a variety of unit structures and further clinical trials and research, as well as the direction for the study of other patient-specific implants.
A Damage Resistance Comparison Between Candidate Polymer Matrix Composite Feedline Materials
NASA Technical Reports Server (NTRS)
Nettles, A. T
2000-01-01
As part of NASAs focused technology programs for future reusable launch vehicles, a task is underway to study the feasibility of using the polymer matrix composite feedlines instead of metal ones on propulsion systems. This is desirable to reduce weight and manufacturing costs. The task consists of comparing several prototype composite feedlines made by various methods. These methods are electron-beam curing, standard hand lay-up and autoclave cure, solvent assisted resin transfer molding, and thermoplastic tape laying. One of the critical technology drivers for composite components is resistance to foreign objects damage. This paper presents results of an experimental study of the damage resistance of the candidate materials that the prototype feedlines are manufactured from. The materials examined all have a 5-harness weave of IM7 as the fiber constituent (except for the thermoplastic, which is unidirectional tape laid up in a bidirectional configuration). The resin tested were 977-6, PR 520, SE-SA-1, RS-E3 (e-beam curable), Cycom 823 and PEEK. The results showed that the 977-6 and PEEK were the most damage resistant in all tested cases.
A Lunar Surface System Supportability Technology Development Roadmap
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Struk, Peter M.; Taleghani, Barmac K.
2009-01-01
This paper discusses the establishment of a Supportability Technology Development Roadmap as a guide for developing capabilities intended to allow NASA's Constellation program to enable a supportable, sustainable and affordable exploration of the Moon and Mars. Presented is a discussion of "supportability", in terms of space facility maintenance, repair and related logistics and a comparison of how lunar outpost supportability differs from the International Space Station. Supportability lessons learned from NASA and Department of Defense experience and their impact on a future lunar outpost is discussed. A supportability concept for future missions to the Moon and Mars that involves a transition from a highly logistics dependent to a logistically independent operation is discussed. Lunar outpost supportability capability needs are summarized and a supportability technology development strategy is established. The resulting Lunar Surface Systems Supportability Strategy defines general criteria that will be used to select technologies that will enable future flight crews to act effectively to respond to problems and exploit opportunities in a environment of extreme resource scarcity and isolation. This strategy also introduces the concept of exploiting flight hardware as a supportability resource. The technology roadmap involves development of three mutually supporting technology categories, Diagnostics Test & Verification, Maintenance & Repair, and Scavenging & Recycling. The technology roadmap establishes two distinct technology types, "Embedded" and "Process" technologies, with different implementation and thus different criteria and development approaches. The supportability technology roadmap addresses the technology readiness level, and estimated development schedule for technology groups that includes down-selection decision gates that correlate with the lunar program milestones. The resulting supportability technology roadmap is intended to develop a set of technologies with widest possible capability and utility with a minimum impact on crew time and training and remain within the time and cost constraints of the Constellation program
A Lunar Surface System Supportability Technology Development Roadmap
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Struk, Peter M.; Taleghani, barmac K.
2011-01-01
This paper discusses the establishment of a Supportability Technology Development Roadmap as a guide for developing capabilities intended to allow NASA s Constellation program to enable a supportable, sustainable and affordable exploration of the Moon and Mars. Presented is a discussion of supportability, in terms of space facility maintenance, repair and related logistics and a comparison of how lunar outpost supportability differs from the International Space Station. Supportability lessons learned from NASA and Department of Defense experience and their impact on a future lunar outpost is discussed. A supportability concept for future missions to the Moon and Mars that involves a transition from a highly logistics dependent to a logistically independent operation is discussed. Lunar outpost supportability capability needs are summarized and a supportability technology development strategy is established. The resulting Lunar Surface Systems Supportability Strategy defines general criteria that will be used to select technologies that will enable future flight crews to act effectively to respond to problems and exploit opportunities in an environment of extreme resource scarcity and isolation. This strategy also introduces the concept of exploiting flight hardware as a supportability resource. The technology roadmap involves development of three mutually supporting technology categories, Diagnostics Test and Verification, Maintenance and Repair, and Scavenging and Recycling. The technology roadmap establishes two distinct technology types, "Embedded" and "Process" technologies, with different implementation and thus different criteria and development approaches. The supportability technology roadmap addresses the technology readiness level, and estimated development schedule for technology groups that includes down-selection decision gates that correlate with the lunar program milestones. The resulting supportability technology roadmap is intended to develop a set of technologies with widest possible capability and utility with a minimum impact on crew time and training and remain within the time and cost constraints of the Constellation program.
Comparative Study of 3-Dimensional Woven Joint Architectures for Composite Spacecraft Structures
NASA Technical Reports Server (NTRS)
Jones, Justin S.; Polis, Daniel L.; Segal, Kenneth N.
2011-01-01
The National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate initiated an Advanced Composite Technology (ACT) Project through the Exploration Technology Development Program in order to support the polymer composite needs for future heavy lift launch architectures. As an example, the large composite structural applications on Ares V inspired the evaluation of advanced joining technologies, specifically 3D woven composite joints, which could be applied to traditionally manufactured barrel segments. Implementation of these 3D woven joint technologies may offer enhancements in damage tolerance without sacrificing weight. However, baseline mechanical performance data is needed to properly analyze the joint stresses and subsequently design/down-select a preform architecture. Six different configurations were designed and prepared for this study; each consisting of a different combination of warp/fill fiber volume ratio and preform interlocking method (z-fiber, fully interlocked, or hybrid). Tensile testing was performed for this study with the enhancement of a dual camera Digital Image Correlation (DIC) system which provides the capability to measure full-field strains and three dimensional displacements of objects under load. As expected, the ratio of warp/fill fiber has a direct influence on strength and modulus, with higher values measured in the direction of higher fiber volume bias. When comparing the z-fiber weave to a fully interlocked weave with comparable fiber bias, the z-fiber weave demonstrated the best performance in two different comparisons. We report the measured tensile strengths and moduli for test coupons from the 6 different weave configurations under study.
Cruise noise measurements of a scale model advanced ducted propulsor
NASA Technical Reports Server (NTRS)
Dittmar, James H.; Hughes, Christopher E.; Bock, Lawrence A.; Hall, David G.
1993-01-01
A scale model Advanced Ducted Propulsor (ADP) was tested in NASA Lewis Research Center's 8- by 6-Foot Wind Tunnel to obtain acoustic data at cruise conditions. The model, designed and manufactured by Pratt & Whitney Division of United Technologies, was tested with three inlet lengths. The model has 16 rotor blades and 22 stator vanes, which results in a cut-on condition with respect to rotor-stator interaction noise. Comparisons of the noise directivity of the ADP with that of a previously tested high-speed, unducted propeller showed that the ADP peak blade passing tone was about 30 dB below that of the propeller, and therefore, should not present a cabin or enroute noise problem. The maximum blade passing tone first increased with increasing helical tip Mach number, peaked, and then decreased at a higher Mach number. The ADP tests with the shortest inlet showed more noise in the inlet arc than did tests with either of the other two inlet lengths.
Morpheus Lander Roll Control System and Wind Modeling
NASA Technical Reports Server (NTRS)
Gambone, Elisabeth A.
2014-01-01
The Morpheus prototype lander is a testbed capable of vertical takeoff and landing developed by NASA Johnson Space Center to assess advanced space technologies. Morpheus completed a series of flight tests at Kennedy Space Center to demonstrate autonomous landing and hazard avoidance for future exploration missions. As a prototype vehicle being tested in Earth's atmosphere, Morpheus requires a robust roll control system to counteract aerodynamic forces. This paper describes the control algorithm designed that commands jet firing and delay times based on roll orientation. Design, analysis, and testing are supported using a high fidelity, 6 degree-of-freedom simulation of vehicle dynamics. This paper also details the wind profiles generated using historical wind data, which are necessary to validate the roll control system in the simulation environment. In preparation for Morpheus testing, the wind model was expanded to create day-of-flight wind profiles based on data delivered by Kennedy Space Center. After the test campaign, a comparison of flight and simulation performance was completed to provide additional model validation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fort, James A.; Pfund, David M.; Sheen, David M.
2007-04-01
The MFDRC was formed in 1998 to advance the state-of-the-art in simulating multiphase turbulent flows by developing advanced computational models for gas-solid flows that are experimentally validated over a wide range of industrially relevant conditions. The goal was to transfer the resulting validated models to interested US commercial CFD software vendors, who would then propagate the models as part of new code versions to their customers in the US chemical industry. Since the lack of detailed data sets at industrially relevant conditions is the major roadblock to developing and validating multiphase turbulence models, a significant component of the work involvedmore » flow measurements on an industrial-scale riser contributed by Westinghouse, which was subsequently installed at SNL. Model comparisons were performed against these datasets by LANL. A parallel Office of Industrial Technology (OIT) project within the consortium made similar comparisons between riser measurements and models at NETL. Measured flow quantities of interest included volume fraction, velocity, and velocity-fluctuation profiles for both gas and solid phases at various locations in the riser. Some additional techniques were required for these measurements beyond what was currently available. PNNL’s role on the project was to work with the SNL experimental team to develop and test two new measurement techniques, acoustic tomography and millimeter-wave velocimetry. Acoustic tomography is a promising technique for gas-solid flow measurements in risers and PNNL has substantial related experience in this area. PNNL is also active in developing millimeter wave imaging techniques, and this technology presents an additional approach to make desired measurements. PNNL supported the advanced diagnostics development part of this project by evaluating these techniques and then by adapting and developing the selected technology to bulk gas-solids flows and by implementing them for testing in the SNL riser testbed.« less
Smith, Kenneth P; Kirby, James E
2016-09-01
With rapid emergence of multidrug-resistant bacteria, there is often a need to perform susceptibility testing for less commonly used or newer antimicrobial agents. Such testing can often be performed only by using labor-intensive, manual dilution methods and lies outside the capacity of most clinical labs, necessitating reference laboratory testing and thereby delaying the availability of susceptibility data. To address the compelling clinical need for microbiology laboratories to perform such testing in-house, we explored a novel, automated, at-will broth microdilution-based susceptibility testing platform. Specifically, we used the modified inkjet printer technology in the HP D300 digital dispensing system to dispense, directly from stock solutions into a 384-well plate, the 2-fold serial dilution series required for broth microdilution testing. This technology was combined with automated absorbance readings and data analysis to determine MICs. Performance was verified by testing members of the Enterobacteriaceae for susceptibility to ampicillin, cefazolin, ciprofloxacin, colistin, gentamicin, meropenem, and tetracycline in comparison to the results obtained with a broth microdilution reference standard. In precision studies, essential and categorical agreement levels were 96.8% and 98.3%, respectively. Furthermore, significantly fewer D300-based measurements were outside ±1 dilution from the modal MIC, suggesting enhanced reproducibility. In accuracy studies performed using a panel of 80 curated clinical isolates, rates of essential and categorical agreement and very major, major, and minor errors were 94%, 96.6%, 0%, 0%, and 3.4%, respectively. Based on these promising initial results, it is anticipated that the D300-based methodology will enable hospital-based clinical microbiology laboratories to perform at-will broth microdilution testing of antimicrobials and to address a critical testing gap. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Quinn, Michael C J; Wilson, Daniel J; Young, Fiona; Dempsey, Adam A; Arcand, Suzanna L; Birch, Ashley H; Wojnarowicz, Paulina M; Provencher, Diane; Mes-Masson, Anne-Marie; Englert, David; Tonin, Patricia N
2009-07-06
As gene expression signatures may serve as biomarkers, there is a need to develop technologies based on mRNA expression patterns that are adaptable for translational research. Xceed Molecular has recently developed a Ziplex technology, that can assay for gene expression of a discrete number of genes as a focused array. The present study has evaluated the reproducibility of the Ziplex system as applied to ovarian cancer research of genes shown to exhibit distinct expression profiles initially assessed by Affymetrix GeneChip analyses. The new chemiluminescence-based Ziplex gene expression array technology was evaluated for the expression of 93 genes selected based on their Affymetrix GeneChip profiles as applied to ovarian cancer research. Probe design was based on the Affymetrix target sequence that favors the 3' UTR of transcripts in order to maximize reproducibility across platforms. Gene expression analysis was performed using the Ziplex Automated Workstation. Statistical analyses were performed to evaluate reproducibility of both the magnitude of expression and differences between normal and tumor samples by correlation analyses, fold change differences and statistical significance testing. Expressions of 82 of 93 (88.2%) genes were highly correlated (p < 0.01) in a comparison of the two platforms. Overall, 75 of 93 (80.6%) genes exhibited consistent results in normal versus tumor tissue comparisons for both platforms (p < 0.001). The fold change differences were concordant for 87 of 93 (94%) genes, where there was agreement between the platforms regarding statistical significance for 71 (76%) of 87 genes. There was a strong agreement between the two platforms as shown by comparisons of log2 fold differences of gene expression between tumor versus normal samples (R = 0.93) and by Bland-Altman analysis, where greater than 90% of expression values fell within the 95% limits of agreement. Overall concordance of gene expression patterns based on correlations, statistical significance between tumor and normal ovary data, and fold changes was consistent between the Ziplex and Affymetrix platforms. The reproducibility and ease-of-use of the technology suggests that the Ziplex array is a suitable platform for translational research.
Whakapapa, genealogy and genetics.
Evans, Donald
2012-05-01
This paper provides part of an analysis of the use of the Maori term whakapapa in a study designed to test the compatibility and commensurability of views of members of the indigenous culture of New Zealand with other views of genetic technologies extant in the country. It is concerned with the narrow sense of whakapapa as denoting biological ancestry, leaving the wider sense of whakapapa as denoting cultural identity for discussion elsewhere. The phenomenon of genetic curiosity is employed to facilitate this comparison. Four levels of curiosity are identified, in the Maori data, which penetrate more or less deeply into the psyche of individuals, affecting their health and wellbeing. These phenomena are compared with non-Maori experiences and considerable commonalities are discovered together with a point of marked difference. The results raise important questions for the ethical application of genetic technologies. © 2010 Blackwell Publishing Ltd.
Technology for robotic surface inspection in space
NASA Technical Reports Server (NTRS)
Volpe, Richard; Balaram, J.
1994-01-01
This paper presents on-going research in robotic inspection of space platforms. Three main areas of investigation are discussed: machine vision inspection techniques, an integrated sensor end-effector, and an orbital environment laboratory simulation. Machine vision inspection utilizes automatic comparison of new and reference images to detect on-orbit induced damage such as micrometeorite impacts. The cameras and lighting used for this inspection are housed in a multisensor end-effector, which also contains a suite of sensors for detection of temperature, gas leaks, proximity, and forces. To fully test all of these sensors, a realistic space platform mock-up has been created, complete with visual, temperature, and gas anomalies. Further, changing orbital lighting conditions are effectively mimicked by a robotic solar simulator. In the paper, each of these technology components will be discussed, and experimental results are provided.
Investigation of Novel Membrane Technologies for Hydrogen Separation
NASA Astrophysics Data System (ADS)
Van Cleave, William M., III
The production of hydrogen gas via its separation from multicomponent syngas derived from biomass is an important process in the burgeoning carbon-neutral hydrogen economy. Current methods utilize membranes made from expensive materials such as palladium or bulky pressure vessels that use adsorption properties. Holey graphene and doped perovskite ceramics are alternative membrane materials that are relatively inexpensive and easily produced. A range of holey graphene membranes was produced using dry pressing and other techniques, including high temperature reduction, to examine the efficiency of this material. Experimental results using these holey graphene membranes are presented from a lab-scale facility designed to test various membrane types. These results showed decreasing flux and increasing selectivity as membrane thickness increased. Comparison with results from literature indicate these membranes exhibit higher overall flux but lower selectivity when compared to palladium-based membrane technologies.
Lunar Transportation Facilities and Operations Study, option 2
NASA Technical Reports Server (NTRS)
1992-01-01
During the Option 2 period of the Lunar Transportation Facilities and Operations Study (LTFOS), a joint McDonnell Douglas Space Systems Company Kennedy Space Center (MDSSC-KSC) and National Aeronautics and Space Administration Kennedy Space Center (NASA-KSC) Study team conducted a comparison of the functional testing of the RL-10 and Space Shuttle Main Engine, a quick-look impact assessment of the Synthesis Group Report, and a detailed assessment of the Synthesis Group Report. The results of these KSC LTFOS team efforts are included. The most recent study task effort was a detailed assessment of the Synthesis Group Report. The assessment was conducted to determine the impact on planetary launch and landing facilities and operations. The result of that effort is a report entitled 'Analysis of the Synthesis Group Report, its Architectures and their Impacts on PSS Launch and Landing Operations' and is contained in Appendix A. The report is structured in a briefing format with facing pages as opposed to a narrative style. A quick-look assessment of the Synthesis Group Report was conducted to determine the impact of implementing the recommendations of the Synthesis Group on KSC launch facilities and operations. The data was documented in a presentation format as requested by Kennedy Space Center Technology and Advanced Projects Office and is included in Appendix B. Appendix C is a white paper on the comparison of the functional testing of the RL-10 and Space Shuttle Main Engine. The comparison was undertaken to provide insight regarding common test requirements that would be applicable to Lunar and Mars Excursion Vehicles (LEV and MEV).
Knoblauch, Theresa A K; Stauffacher, Michael; Trutnevyte, Evelina
2018-04-01
Subsurface energy activities entail the risk of induced seismicity including low-probability high-consequence (LPHC) events. For designing respective risk communication, the scientific literature lacks empirical evidence of how the public reacts to different written risk communication formats about such LPHC events and to related uncertainty or expert confidence. This study presents findings from an online experiment (N = 590) that empirically tested the public's responses to risk communication about induced seismicity and to different technology frames, namely deep geothermal energy (DGE) and shale gas (between-subject design). Three incrementally different formats of written risk communication were tested: (i) qualitative, (ii) qualitative and quantitative, and (iii) qualitative and quantitative with risk comparison. Respondents found the latter two the easiest to understand, the most exact, and liked them the most. Adding uncertainty and expert confidence statements made the risk communication less clear, less easy to understand and increased concern. Above all, the technology for which risks are communicated and its acceptance mattered strongly: respondents in the shale gas condition found the identical risk communication less trustworthy and more concerning than in the DGE conditions. They also liked the risk communication overall less. For practitioners in DGE or shale gas projects, the study shows that the public would appreciate efforts in describing LPHC risks with numbers and optionally risk comparisons. However, there seems to be a trade-off between aiming for transparency by disclosing uncertainty and limited expert confidence, and thereby decreasing clarity and increasing concern in the view of the public. © 2017 Society for Risk Analysis.
Benchmarking the Economic Impact and Effectiveness of University Technology Transfer in Maryland.
ERIC Educational Resources Information Center
Clinch, Richard
This study examined university technology transfer in Maryland in terms of three issues: (1) the economic impact of university technology transfer; (2) a comparison of the technology transfer effort of University of Maryland System (UMS) institutions with other regional and "best practice" institutions; and (3) the technology transfer…
DKIST enclosure modeling and verification during factory assembly and testing
NASA Astrophysics Data System (ADS)
Larrakoetxea, Ibon; McBride, William; Marshall, Heather K.; Murga, Gaizka
2014-08-01
The Daniel K. Inouye Solar Telescope (DKIST, formerly the Advanced Technology Solar Telescope, ATST) is unique as, apart from protecting the telescope and its instrumentation from the weather, it holds the entrance aperture stop and is required to position it with millimeter-level accuracy. The compliance of the Enclosure design with the requirements, as of Final Design Review in January 2012, was supported by mathematical models and other analyses which included structural and mechanical analyses (FEA), control models, ventilation analysis (CFD), thermal models, reliability analysis, etc. During the Enclosure Factory Assembly and Testing the compliance with the requirements has been verified using the real hardware and the models created during the design phase have been revisited. The tests performed during shutter mechanism subsystem (crawler test stand) functional and endurance testing (completed summer 2013) and two comprehensive system-level factory acceptance testing campaigns (FAT#1 in December 2013 and FAT#2 in March 2014) included functional and performance tests on all mechanisms, off-normal mode tests, mechanism wobble tests, creation of the Enclosure pointing map, control system tests, and vibration tests. The comparison of the assumptions used during the design phase with the properties measured during the test campaign provides an interesting reference for future projects.
Quality assurance and quality control in mammography: a review of available guidance worldwide.
Reis, Cláudia; Pascoal, Ana; Sakellaris, Taxiarchis; Koutalonis, Manthos
2013-10-01
Review available guidance for quality assurance (QA) in mammography and discuss its contribution to harmonise practices worldwide. Literature search was performed on different sources to identify guidance documents for QA in mammography available worldwide in international bodies, healthcare providers, professional/scientific associations. The guidance documents identified were reviewed and a selection was compared for type of guidance (clinical/technical), technology and proposed QA methodologies focusing on dose and image quality (IQ) performance assessment. Fourteen protocols (targeted at conventional and digital mammography) were reviewed. All included recommendations for testing acquisition, processing and display systems associated with mammographic equipment. All guidance reviewed highlighted the importance of dose assessment and testing the Automatic Exposure Control (AEC) system. Recommended tests for assessment of IQ showed variations in the proposed methodologies. Recommended testing focused on assessment of low-contrast detection, spatial resolution and noise. QC of image display is recommended following the American Association of Physicists in Medicine guidelines. The existing QA guidance for mammography is derived from key documents (American College of Radiology and European Union guidelines) and proposes similar tests despite the variations in detail and methodologies. Studies reported on QA data should provide detail on experimental technique to allow robust data comparison. Countries aiming to implement a mammography/QA program may select/prioritise the tests depending on available technology and resources. •An effective QA program should be practical to implement in a clinical setting. •QA should address the various stages of the imaging chain: acquisition, processing and display. •AEC system QC testing is simple to implement and provides information on equipment performance.
Cross-Cultural Comparison of Teachers' Views upon Integration and Use of Technology in Classroom
ERIC Educational Resources Information Center
Kayalar, Fethi
2016-01-01
The purpose of the study is to compare teachers' views upon integration and use of technology in classroom. To make cross-cultural comparison of teachers' views, we interviewed with nine teachers in a primary school in city of Erzincan, Turkey and compared the views of the teachers with those of the teachers living in foreign countries. To obtain…
Variation in use of technology among vascular access specialists: an analysis of the PICC1 survey.
Chopra, Vineet; Kuhn, Latoya; Ratz, David; Winter, Suzanne; Carr, Peter J; Paje, David; Krein, Sarah L
2017-05-15
While the use of technologies such as ultrasound and electrocardiographic (ECG) guidance systems to place peripherally inserted central catheters (PICCs) has grown, little is known about the clinicians who use these tools or their work settings. Using data from a national survey of vascular access specialists, we identified technology users as PICC inserters that: (a) use ultrasound to find a suitable vein for catheter placement; (b) measure catheter-to-vein ratio; and (c) use ECG for PICC placement. Individual and organizational-level characteristics between technology users versus non-users were assessed. Bivariable comparisons were made using Chi-squared or Fisher's exact tests; two-sided alpha with p<0.05 was considered statistically significant. Of the 2762 PICC inserters who accessed the survey, 1518 (55%) provided information regarding technology use. Technology users reported greater experience than non-technology users, with a higher percentage stating they had placed >1000 PICCs (55% vs. 45%, p<0.001). A significantly greater percentage of technology users also reported being certified in vascular access by an external agency than non-technology users (75% vs. 63%, p<0.001). Technology users were more often part of vascular access teams with ≥10 members compared to non-technology users (35% vs. 22%, p<0.001). Some practices also varied between the two groups: for example, use of certain securement devices and dressings differed between technology users and non-users (p<0.001). Technology use by vascular access clinicians while placing PICCs is associated with clinician characteristics, work setting and practice factors. Understanding whether such differences influence clinical care or patient outcomes appears necessary.
Fantin, Valentina; Scalbi, Simona; Ottaviano, Giuseppe; Masoni, Paolo
2014-04-01
The purpose of this study is to propose a method for harmonising Life Cycle Assessment (LCA) literature studies on the same product or on different products fulfilling the same function for a reliable and meaningful comparison of their life-cycle environmental impacts. The method is divided in six main steps which aim to rationalize and quicken the efforts needed to carry out the comparison. The steps include: 1) a clear definition of the goal and scope of the review; 2) critical review of the references; 3) identification of significant parameters that have to be harmonised; 4) harmonisation of the parameters; 5) statistical analysis to support the comparison; 6) results and discussion. This approach was then applied to the comparative analysis of the published LCA studies on tap and bottled water production, focussing on Global Warming Potential (GWP) results, with the aim to identify the environmental preferable alternative. A statistical analysis with Wilcoxon's test confirmed that the difference between harmonised GWP values of tap and bottled water was significant. The results obtained from the comparison of the harmonised mean GWP results showed that tap water always has the best environmental performance, even in case of high energy-consuming technologies for drinking water treatments. The strength of the method is that it enables both performing a deep analysis of the LCA literature and obtaining more consistent comparisons across the published LCAs. For these reasons, it can be a valuable tool which provides useful information for both practitioners and decision makers. Finally, its application to the case study allowed both to supply a description of systems variability and to evaluate the importance of several key parameters for tap and bottled water production. The comparative review of LCA studies, with the inclusion of a statistical decision test, can validate and strengthen the final statements of the comparison. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gali, Raja L.; Roth, Christopher G.; Smith, Elizabeth; Dave, Jaydev K.
2018-03-01
In digital radiography, computed radiography (CR) technology is based on latent image capture by storage phosphors whereas direct radiography (DR) technology is based either on indirect conversion using a scintillator or direct conversion using a photoconductor. DR-based portable imaging systems may enhance workflow efficiency. The purpose of this work was to investigate changes in workflow efficiency at a tertiary healthcare center after transitioning from CR to DR technology for imaging with portable x-ray units. An IRB exemption was obtained. Data for all inpatient-radiographs acquired with portable x-ray units from July-2014 till June-2015 (period 1) with CR technology (AMX4 or AMX4+ portable unit from GE Healthcare, NX workstation from Agfa Healthcare for digitization), from July-2015 till June-2016 (period 2) with DR technology (Carestream DRX-Revolution x-ray units and DRX-1C image receptors) and from July-2016 till January-2017 (period 3; same DR technology) were extracted using Centricity RIS-IC (GE Healthcare). Duration between the imaging-examination scheduled time and completed time (timesch-com) was calculated and compared using non-parametric tests (between the three time periods with corrections for multiple comparisons; three time periods were used to identify if there were any other potential temporal trends not related to transitioning from CR to DR). IBM's SPSS package was used for statistical analysis. Overall data was obtained from 33131, 32194, and 18015 cases in periods 1, 2 and 3, respectively. Independent-Samples Kruskal-Wallis test revealed a statistically significant difference in timesch-com across the three time periods (χ2(2, n= 83,340) = 2053, p < 0.001). The timesch-com was highest for period 1 i.e., radiographs acquired with CR technology (median: 64 minutes) and it decreased significantly for radiographs acquired with DR technology in periods 2 (median: 49 minutes; p < 0.001) and 3 (median∶ 44 minutes; p < 0.001). Overall, adoption of DR technology resulted in a drop in timesch-com by 27% relative to the use of CR technology. Transitioning from CR to DR was associated with improved workflow efficiency for radiographic imaging with portable x-ray units.
NASA Technical Reports Server (NTRS)
Klos, Jacob; Palumbo, Daniel L.; Buehrle, Ralph D.; Williams, Earl G.; Valdivia, Nicolas; Herdic, Peter C.; Sklanka, Bernard
2005-01-01
A series of tests was planned and conducted in the Interior Noise Test Facility at Boeing Field, on the NASA Aries 757 flight research aircraft, and in the Structural Acoustic Loads and Transmission Facility at NASA Langley Research Center. These tests were designed to answer several questions concerning the use of array methods in flight. One focus of the tests was determining whether and to what extent array methods could be used to identify the effects of an acoustical treatment applied to a limited portion of an aircraft fuselage. Another focus of the tests was to verify that the arrays could be used to localize and quantify a known source purposely placed in front of the arrays. Thus the issues related to backside sources and flanking paths present in the complicated sound field were addressed during these tests. These issues were addressed through the use of reference transducers, both accelerometers mounted to the fuselage and microphones in the cabin, that were used to correlate the pressure holograms. measured by the microphone arrays using either SVD methods or partial coherence methods. This correlation analysis accepts only energy that is coherent with the sources sensed by the reference transducers, allowing a noise control engineer to only identify and study those vibratory sources of interest. The remainder of this paper will present a detailed description of the test setups that were used in this test sequence and typical results of the NAH/IBEM analysis used to reconstruct the sound fields. Also, a comparison of data obtained in the laboratory environments and during flights of the 757 aircraft will be made.
Optical Closed-Loop Propulsion Control System Development
NASA Technical Reports Server (NTRS)
Poppel, Gary L.
1998-01-01
The overall objective of this program was to design and fabricate the components required for optical closed-loop control of a F404-400 turbofan engine, by building on the experience of the NASA Fiber Optic Control System Integration (FOCSI) program. Evaluating the performance of fiber optic technology at the component and system levels will result in helping to validate its use on aircraft engines. This report includes descriptions of three test plans. The EOI Acceptance Test is designed to demonstrate satisfactory functionality of the EOI, primarily fail-safe throughput of the F404 sensor signals in the normal mode, and validation, switching, and output of the five analog sensor signals as generated from validated optical sensor inputs, in the optical mode. The EOI System Test is designed to demonstrate acceptable F404 ECU functionality as interfaced with the EOI, making use of a production ECU test stand. The Optical Control Engine Test Request describes planned hardware installation, optical signal calibrations, data system coordination, test procedures, and data signal comparisons for an engine test demonstration of the optical closed-loop control.
Mohler, Eric G; Ding, Zhiyong; Rueter, Lynne E; Chapin, Douglas; Young, Damon; Kozak, Rouba
2015-11-01
The low rate of success for identifying effective treatments for cognitive dysfunction has prompted recent efforts to improve pharmaceutical discovery and development. In particular, investigators have emphasized improving translation from pre-clinical to clinical research. A specific area of focus has been touchscreen technology; this computer-automated behavioral testing method provides an objective assessment of performance that can be used across species. As part of a larger multi-site study with partners from the Innovative Medicines Initiative (IMI), two US sites, AbbVie and Pfizer, conducted a cross-site experiment with a common protocol for the visual discrimination (VD) task using identical testing equipment, stimuli, and rats of the same strains, sex, and age from the same supplier. As most touchscreen-based rodent experiments have used Lister-Hooded rats that are not readily available outside of Europe, a strain comparison with male Long-Evans rats was conducted as part of the study. Rats were trained for asymptotic performance, and test sessions were performed once per week in a full crossover design with cognition-impairing drugs. Drugs tested were phencyclidine and S-ketamine (N-methyl-D-aspartate (NMDA) antagonists), D-amphetamine (indirect dopamine agonist), and scopolamine (muscarinic antagonist). Satellite brain and plasma samples were taken to confirm appropriate exposures. Results indicate that both rat strains show similar patterns of impairment, although Lister-Hooded rats were more sensitive than Long-Evans rats to three out of four drugs tested. This suggests that researchers should fully explore dose-response relationships in their strain of choice and use care in the interpretation of reversal of cognitive impairment.
Stirling Convertor Extended Operation Testing and Data Analysis at Glenn Research Center
NASA Technical Reports Server (NTRS)
Cornell, Peggy A.; Lewandowski, Edward J.; Oriti, Salvatore M.; Wilson, Scott D.
2010-01-01
Extended operation of Stirling convertors is essential to the development of radioisotope power systems and their potential use for longduration missions. To document the reliability of the convertors, regular monitoring and analysis of the extended operation data is particularly valuable, allowing us to better understand and quantify long-life characteristics of the convertors. Furthermore, investigation and comparison of the extended operation data to baseline performance data provides an opportunity to understand system behavior should any off-nominal performance occur. Glenn Research Center (GRC) has tested 16 Stirling convertors under 24-hr unattended extended operation, including four that have operated in a thermal vacuum environment and two that are operating in the Advanced Stirling Radioisotope Generator Engineering Unit. Ten of the sixteen convertors are the Advanced Stirling Convertors (ASC) developed by Sunpower, Inc. with GRC. These are highly efficient (conversion efficiency of up to 38 percent for the ASC-1), low-mass convertors that have evolved through technologically progressive convertor builds. Six convertors at GRC are Technology Demonstration Convertors from Infinia Corporation. They have achieved greater than 27 percent conversion efficiency and have accumulated over 185,000 of the total 265,000 hr of extended operation at GRC. This paper presents the extended operation testing and data analysis of free-piston Stirling convertors at NASA GRC as well as how these tests have contributed to the Stirling convertor s progression toward flight.
Tanigawa, Makoto; Stein, Jason; Park, John; Kosa, Peter; Cortese, Irene; Bielekova, Bibiana
2017-01-01
While magnetic resonance imaging contrast-enhancing lesions represent an excellent screening tool for disease-modifying treatments in relapsing-remitting multiple sclerosis (RRMS), this biomarker is insensitive for testing therapies against compartmentalized inflammation in progressive multiple sclerosis (MS). Therefore, alternative sensitive outcomes are needed. Using machine learning, clinician-acquired disability scales can be combined with timed measures of neurological functions such as walking speed (e.g. 25-foot walk; 25FW) or fine finger movements (e.g. 9-hole peg test; 9HPT) into sensitive composite clinical scales, such as the recently developed combinatorial, weight-adjusted disability scale (CombiWISE). Ideally, these complementary simplified measurements of certain neurological functions could be performed regularly at patients' homes using smartphones. We asked whether tests amenable to adaptation to smartphone technology, such as finger and foot tapping have comparable sensitivity and specificity to current non-clinician-acquired disability measures. We observed that finger and foot tapping can differentiate RRMS and progressive MS in a cross-sectional study and can also measure yearly and two-year disease progression in the latter, with better power (based on z-scores) in comparison to currently utilized 9HPT and 25FW. Replacing the 9HPT and 25FW with simplified tests broadly adaptable to smartphone technology may enhance the power of composite scales for progressive MS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter Striupaitis; R.E. Gaensslen
Efforts to use objective image comparison and bullet scanning technologies to distinguish bullets from consecutively manufactured handgun barrels from two manufacturers gave mixed results. The ability of a technology to reliably distinguish between matching and non-matching bullets, where the non-matching bullets were as close in pattern to the matching ones as is probably possible, would provide evidence that the distinctions could be made ''objectively'', and independently of human eyes. That evidence is identical or very close to what seems to be needed to satisfy Daubert standards. It is fair to say that the FTI IBIS image comparison technology correctly distinguishedmore » between all the Springfield barrel bullets, and between most but not all of the HiPoint barrel bullets. In the HiPoint cases that were not distinguished 100% of the time, they would he distinguished correctly at least 83% of the time. These results, although obviously limited to the materials used in the comparisons, provide strong evidence that barrel-to-bullet matching is objectively reliable. The results with SciClops were less compelling. The results do not mean that bullet-to-barrel matching is not objectively reliable--rather, they mean that this version of the particular technology could not quite distinguish between these extremely similar yet different bullets as well as the image comparison technology did. In a number of cases, the numerical results made the correct distinctions, although they were close to one another. It is hard to say from this data that this technology differs in its ability to make distinctions between the manufacturers, because the results are very similar with both. The human examiner results were as expected. We did not expect any misidentifications, and there were not any. It would have been preferable to have a higher return rate, and thus more comparisons in the overall sample. As noted, the ''consecutively manufactured barrel exercise'' has been done before, with the same outcome.« less
Variation and Defect Tolerance for Nano Crossbars
NASA Astrophysics Data System (ADS)
Tunc, Cihan
With the extreme shrinking in CMOS technology, quantum effects and manufacturing issues are getting more crucial. Hence, additional shrinking in CMOS feature size seems becoming more challenging, difficult, and costly. On the other hand, emerging nanotechnology has attracted many researchers since additional scaling down has been demonstrated by manufacturing nanowires, Carbon nanotubes as well as molecular switches using bottom-up manufacturing techniques. In addition to the progress in manufacturing, developments in architecture show that emerging nanoelectronic devices will be promising for the future system designs. Using nano crossbars, which are composed of two sets of perpendicular nanowires with programmable intersections, it is possible to implement logic functions. In addition, nano crossbars present some important features as regularity, reprogrammability, and interchangeability. Combining these features, researchers have presented different effective architectures. Although bottom-up nanofabrication can greatly reduce manufacturing costs, due to low controllability in the manufacturing process, some critical issues occur. Bottom- up nanofabrication process results in high variation compared to conventional top- down lithography used in CMOS technology. In addition, an increased failure rate is expected. Variation and defect tolerance methods used for conventional CMOS technology seem inadequate for adapting to emerging nano technology because the variation and the defect rate for emerging nano technology is much more than current CMOS technology. Therefore, variations and defect tolerance methods for emerging nano technology are necessary for a successful transition. In this work, in order to tolerate variations for crossbars, we introduce a framework that is established based on reprogrammability and interchangeability features of nano crossbars. This framework is shown to be applicable for both FET-based and diode-based nano crossbars. We present a characterization testing method which requires minimal number of test vectors. We formulate the variation optimization problem using Simulated Annealing with different optimization goals. Furthermore, we extend the framework for defect tolerance. Experimental results and comparison of proposed framework with exhaustive methods confirm its effectiveness for both variation and defect tolerance.
NASA Technical Reports Server (NTRS)
Kemmerly, Guy T.
1990-01-01
A moving-model ground-effect testing method was used to study the influence of rate-of-descent on the aerodynamic characteristics for the F-15 STOL and Maneuver Technology Demonstrator (S/MTD) configuration for both the approach and roll-out phases of landing. The approach phase was modeled for three rates of descent, and the results were compared to the predictions from the F-15 S/MTD simulation data base (prediction based on data obtained in a wind tunnel with zero rate of descent). This comparison showed significant differences due both to the rate of descent in the moving-model test and to the presence of the ground boundary layer in the wind tunnel test. Relative to the simulation data base predictions, the moving-model test showed substantially less lift increase in ground effect, less nose-down pitching moment, and less increase in drag. These differences became more prominent at the larger thrust vector angles. Over the small range of rates of descent tested using the moving-model technique, the effect of rate of descent on longitudinal aerodynamics was relatively constant. The results of this investigation indicate no safety-of-flight problems with the lower jets vectored up to 80 deg on approach. The results also indicate that this configuration could employ a nozzle concept using lower reverser vector angles up to 110 deg on approach if a no-flare approach procedure were adopted and if inlet reingestion does not pose a problem.
An assessment and comparison of fuel cells for transportation applications
NASA Astrophysics Data System (ADS)
Krumpelt, M.; Christianson, C. C.
1989-09-01
Fuel cells offer the potential of a clean, efficient power source for buses, cars, and other transportation applications. When the fuel cell is run on methanol, refueling would be as rapid as with gasoline-powered internal combustion engines, providing a virtually unlimited range while still maintaining the smooth and quiet acceleration that is typical for electric vehicles. The advantages and disadvantages of five types of fuel cells are reviewed and analyzed for a transportation application: alkaline, phosphoric acid, proton exchange membrane, molten carbonate, and solid oxide. The status of each technology is discussed, system designs are reviewed, and preliminary comparisons of power densities, start-up times, and dynamic response capabilities are made. To test the concept, a fuel cell/battery powered urban bus appears to be a good first step that can be realized today with phosphoric acid cells. In the longer term, the proton exchange membrane and solid oxide fuel cells appear to be superior.
Laser-Based Lighting: Experimental Analysis and Perspectives
Yushchenko, Maksym; Buffolo, Matteo; Meneghini, Matteo; Zanoni, Enrico
2017-01-01
This paper presents an extensive analysis of the operating principles, theoretical background, advantages and limitations of laser-based lighting systems. In the first part of the paper we discuss the main advantages and issues of laser-based lighting, and present a comparison with conventional LED-lighting technology. In the second part of the paper, we present original experimental data on the stability and reliability of phosphor layers for laser lighting, based on high light-intensity and high-temperature degradation tests. In the third part of the paper (for the first time) we present a detailed comparison between three different solutions for laser lighting, based on (i) transmissive phosphor layers; (ii) a reflective/angled phosphor layer; and (iii) a parabolic reflector, by discussing the advantages and drawbacks of each approach. The results presented within this paper can be used as a guideline for the development of advanced lighting systems based on laser diodes. PMID:29019958
Comparison of vibration damping of standard and PDCPD housing of the electric power steering system
NASA Astrophysics Data System (ADS)
Płaczek, M.; Wróbel, A.; Baier, A.
2017-08-01
A comparison of two different types of electric power steering system housing is presented. The first considered type of the housing was a standard one that is made of an aluminium alloy. The second one is made of polydicyclopentadiene polymer (PDCPD) and was produced using the RIM technology. Considered elements were analysed in order to verify their properties of vibrations damping. This property is very important taking into account noise generated by elements of a car’s power steering system. During the carried out tests vibrations of analysed power steering housings were measured using Marco Fiber Composite (MFC) piezoelectric transducers. Results obtained for both considered power steering housings in case of the same parameters of vibrations excitations were measured and juxtaposed. Obtained results were analysed in order to verify if the housing made of PDCPD polymer has better properties of vibration damping than the standard one.
Sequential data access with Oracle and Hadoop: a performance comparison
NASA Astrophysics Data System (ADS)
Baranowski, Zbigniew; Canali, Luca; Grancher, Eric
2014-06-01
The Hadoop framework has proven to be an effective and popular approach for dealing with "Big Data" and, thanks to its scaling ability and optimised storage access, Hadoop Distributed File System-based projects such as MapReduce or HBase are seen as candidates to replace traditional relational database management systems whenever scalable speed of data processing is a priority. But do these projects deliver in practice? Does migrating to Hadoop's "shared nothing" architecture really improve data access throughput? And, if so, at what cost? Authors answer these questions-addressing cost/performance as well as raw performance- based on a performance comparison between an Oracle-based relational database and Hadoop's distributed solutions like MapReduce or HBase for sequential data access. A key feature of our approach is the use of an unbiased data model as certain data models can significantly favour one of the technologies tested.
Preliminary assessment of rover power systems for the Mars Rover Sample Return Mission
NASA Technical Reports Server (NTRS)
Bents, David J.
1989-01-01
Four isotope power system concepts were presented and compared on a common basis for application to on-board electrical prime power for an autonomous planetary rover vehicle. A representative design point corresponding to the Mars Rover Sample Return (MRSR) preliminary mission requirements (500 W) was selected for comparison purposes. All systems concepts utilize the General Purpose Heat Source (GPHS) isotope heat source developed by DOE. Two of the concepts employ thermoelectric (TE) conversion: one using the GPHS Radioisotope Thermoelectric Generator (RTG) used as a reference case, the other using an advanced RTG with improved thermoelectric materials. The other two concepts employed are dynamic isotope power systems (DIPS): one using a closed Brayton cycle (CBC) turboalternator, and the other using a free piston Stirling cycle engine/linear alternator (FPSE) with integrated heat source/heater head. Near term technology levels have been assumed for concept characterization using component technology figure-of-merit values taken from the published literature. For example, the CBC characterization draws from the historical test database accumulated from space Brayton cycle subsystems and components from the NASA B engine through the mini-Brayton rotating unit. TE system performance is estimated from Voyager/multihundred Watt (MHW)-RTG flight experience through Mod-RTG performance estimates considering recent advances in TE materials under the DOD/DOE/NASA SP-100 and NASA Committee on Scientific and Technological Information programs. The Stirling DIPS system is characterized from scaled-down Space Power Demonstrator Engine (SPDE) data using the GPHS directly incorporated into the heater head. The characterization/comparison results presented here differ from previous comparison of isotope power (made for Low Earth Orbit (LEO) applications) because of the elevated background temperature on the Martian surface compared to LEO, and the higher sensitivity of dynamic systems to elevated sink temperature. The mass advantage of dynamic systems is significantly reduced for this application due to Mars' elevated background temperature.
Analysis and Testing of Mobile Wireless Networks
NASA Technical Reports Server (NTRS)
Alena, Richard; Evenson, Darin; Rundquist, Victor; Clancy, Daniel (Technical Monitor)
2002-01-01
Wireless networks are being used to connect mobile computing elements in more applications as the technology matures. There are now many products (such as 802.11 and 802.11b) which ran in the ISM frequency band and comply with wireless network standards. They are being used increasingly to link mobile Intranet into Wired networks. Standard methods of analyzing and testing their performance and compatibility are needed to determine the limits of the technology. This paper presents analytical and experimental methods of determining network throughput, range and coverage, and interference sources. Both radio frequency (BE) domain and network domain analysis have been applied to determine wireless network throughput and range in the outdoor environment- Comparison of field test data taken under optimal conditions, with performance predicted from RF analysis, yielded quantitative results applicable to future designs. Layering multiple wireless network- sooners can increase performance. Wireless network components can be set to different radio frequency-hopping sequences or spreading functions, allowing more than one sooner to coexist. Therefore, we ran multiple 802.11-compliant systems concurrently in the same geographical area to determine interference effects and scalability, The results can be used to design of more robust networks which have multiple layers of wireless data communication paths and provide increased throughput overall.
[Synthesis, characterization and antitumor activity of 5-fluorouracil-nicotinamide cocrystal].
Min, W U; Xingang, Liu; Yu, Xue; Qi, Chen; Xiurong, H U; Jun, Zhou; Guping, Tang
2017-03-25
Objective: To synthesize 5-fluorouracil-nicotinamide (5-FU-NCT) cocrystal and to investigate its physicochemical and biological properties. Methods: The cocrystal of 5-Fu-NCT was prepared through the cooling technology. PXRD, NMR, FTIR and DSC were used to characterize the structure of 5-FU-NCT cocrystal. Solubility was measured by HPLC method. Drug resistant human liver cancer BEL-7402/5-FU cells were treated with 5-FU-NCT cocrystal, the inhibition effect was tested by MTT and HE staining, and cancer cell migration was determined by scratch test. Results: According to PXRD, NMR, FTIR and DSC results, the cocrystal of 5-Fu-NCT had been synthesized successfully. The characteristic diffraction peaks (2θ/°) of the cocrystal were 16.4, 20.4, 22.3, 27.9 and 30.1. The solubility of 5-FU-NCT was 13.5 g/L as measured by HPLC. The antitumor activity tests showed that 5-FU-NCT cocrystal enhanced anticancer effect of 5-FU, and the IC50 of 5-FU and 5-FU-NCT was 129.6 μg/mL and 42.6 μg/mL, respectively. Conclusion: 5-Fu-NCT cocrystal have been synthesized successfully through the cooling technology and it shows an enhanced anticancer effect in comparison to 5-FU on BEL-7402/5-FU cells.
Application of Sub-Bottom Profiler to Study Riverbed Structure and Sediment Density
NASA Astrophysics Data System (ADS)
Rui, Wang; Changzheng, Li; Xiaofei, Yan
2018-03-01
In this pater, we present a study on the riverbed structure and sediment density in-situ test by using sub-bottom profiler. Compared with traditional direct observation methods, the sub-bottom profiler method based on sonar technology is non-contact, low-disturbance and high-efficient. We finish the investigation of several sections in Sanmenxia and Xiaolangdi reservoirs, which located on the main channel of lower reaches of Yellow River. Collected data show a detailed layered structure of the riverbed sediment which believed caused by sedimentary processes in different periods. Further more, we analyse the reflection coefficient of water-sediment interface and inverse the sediment density data from the raw wave record. The inversion method is based on the effective density fluid model and Kozeny-Carman formula. The comparison of the inversion results and sample tests shows that the in-situ test is reliable and useable.
An Assessment of Flap and Main Landing Gear Noise Abatement Concepts
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi R.; Humphreys, William M., Jr.; Lockard, David P.
2015-01-01
A detailed assessment of the acoustic performance of several noise reduction concepts for aircraft flaps and landing gear is presented. Consideration is given to the best performing concepts within the suite of technologies that were evaluated in the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel using an 18 percent scale, semi-span, high-fidelity Gulfstream aircraft model as a test bed. Microphone array measurements were obtained with the model in a landing configuration (flap deflected 39 degrees and the main landing gear deployed or retracted). The effectiveness of each concept over the range of pitch angles, speeds, and directivity angles tested is presented. Comparison of the acoustic spectra, obtained from integration of the beamform maps between the untreated baseline and treated configurations, clearly demonstrates that the flap and gear concepts maintain noise reduction benefits over the entire range of the directivity angles tested.
Iodine Absorption Cells Purity Testing.
Hrabina, Jan; Zucco, Massimo; Philippe, Charles; Pham, Tuan Minh; Holá, Miroslava; Acef, Ouali; Lazar, Josef; Číp, Ondřej
2017-01-06
This article deals with the evaluation of the chemical purity of iodine-filled absorption cells and the optical frequency references used for the frequency locking of laser standards. We summarize the recent trends and progress in absorption cell technology and we focus on methods for iodine cell purity testing. We compare two independent experimental systems based on the laser-induced fluorescence method, showing an improvement of measurement uncertainty by introducing a compensation system reducing unwanted influences. We show the advantages of this technique, which is relatively simple and does not require extensive hardware equipment. As an alternative to the traditionally used methods we propose an approach of hyperfine transitions' spectral linewidth measurement. The key characteristic of this method is demonstrated on a set of testing iodine cells. The relationship between laser-induced fluorescence and transition linewidth methods will be presented as well as a summary of the advantages and disadvantages of the proposed technique (in comparison with traditional measurement approaches).
Iodine Absorption Cells Purity Testing
Hrabina, Jan; Zucco, Massimo; Philippe, Charles; Pham, Tuan Minh; Holá, Miroslava; Acef, Ouali; Lazar, Josef; Číp, Ondřej
2017-01-01
This article deals with the evaluation of the chemical purity of iodine-filled absorption cells and the optical frequency references used for the frequency locking of laser standards. We summarize the recent trends and progress in absorption cell technology and we focus on methods for iodine cell purity testing. We compare two independent experimental systems based on the laser-induced fluorescence method, showing an improvement of measurement uncertainty by introducing a compensation system reducing unwanted influences. We show the advantages of this technique, which is relatively simple and does not require extensive hardware equipment. As an alternative to the traditionally used methods we propose an approach of hyperfine transitions’ spectral linewidth measurement. The key characteristic of this method is demonstrated on a set of testing iodine cells. The relationship between laser-induced fluorescence and transition linewidth methods will be presented as well as a summary of the advantages and disadvantages of the proposed technique (in comparison with traditional measurement approaches). PMID:28067834
Flight- and ground-test correlation study of BMDO SDS materials: Phase 1 report
NASA Technical Reports Server (NTRS)
Chung, Shirley Y.; Brinza, David E.; Minton, Timothy K.; Stiegman, Albert E.; Kenny, James T.; Liang, Ranty H.
1993-01-01
The NASA Evaluation of Oxygen Interactions with Materials-3 (EOIM-3) experiment served as a test bed for a variety of materials that are candidates for Ballistic Missile Defense Organization (BMDO) space assets. The materials evaluated on this flight experiment were provided by BMDO contractors and technology laboratories. A parallel ground exposure evaluation was conducted using the FAST atomic-oxygen simulation facility at Physical Sciences, Inc. The EOIM-3 materials were exposed to an atomic oxygen fluence of approximately 2.3 x 10(exp 2) atoms/sq. cm. The ground-exposed materials' fluence of 2.0 - 2.5 x 10(exp 2) atoms/sq. cm permits direct comparison of ground-exposed materials' performance with that of the flight-exposed specimens. The results from the flight test conducted aboard STS-46 and the correlative ground exposure are presented in this publication.
NASA Astrophysics Data System (ADS)
Guerra, J. E.; Ullrich, P. A.
2014-12-01
Tempest is a new non-hydrostatic atmospheric modeling framework that allows for investigation and intercomparison of high-order numerical methods. It is composed of a dynamical core based on a finite-element formulation of arbitrary order operating on cubed-sphere and Cartesian meshes with topography. The underlying technology is briefly discussed, including a novel Hybrid Finite Element Method (HFEM) vertical coordinate coupled with high-order Implicit/Explicit (IMEX) time integration to control vertically propagating sound waves. Here, we show results from a suite of Mesoscale testing cases from the literature that demonstrate the accuracy, performance, and properties of Tempest on regular Cartesian meshes. The test cases include wave propagation behavior, Kelvin-Helmholtz instabilities, and flow interaction with topography. Comparisons are made to existing results highlighting improvements made in resolving atmospheric dynamics in the vertical direction where many existing methods are deficient.
NASA Technical Reports Server (NTRS)
Stanic, Vesna; Braun, James; Hoberecht, Mark
2003-01-01
Proton exchange membrane (PEM) fuel cells are energy sources that have the potential to replace alkaline fuel cells for space programs. Broad power ranges, high peak-to-nominal power capabilities, low maintenance costs, and the promise of increased life are the major advantages of PEM technology in comparison to alkaline technology. The probability of PEM fuel cells replacing alkaline fuel cells for space applications will increase if the promise of increased life is verified by achieving a minimum of 10,000 hours of operating life. Durability plays an important role in the process of evaluation and selection of MEAs for Teledyne s Phase I contract with the NASA Glenn Research Center entitled Proton Exchange Membrane Fuel cell (PEMFC) Power Plant Technology Development for 2nd Generation Reusable Launch Vehicles (RLVs). For this contract, MEAs that are typically used for H2/air operation were selected as potential candidates for H2/O2 PEM fuel cells because their catalysts have properties suitable for O2 operation. They were purchased from several well-established MEA manufacturers who are world leaders in the manufacturing of diverse products and have committed extensive resources in an attempt to develop and fully commercialize MEA technology. A total of twelve MEAs used in H2/air operation were initially identified from these manufacturers. Based on the manufacturers specifications, nine of these were selected for evaluation. Since 10,000 hours is almost equivalent to 14 months, it was not possible to perform continuous testing with each MEA selected during Phase I of the contract. Because of the lack of time, a screening test on each MEA was performed for 400 hours under accelerated test conditions. The major criterion for an MEA pass or fail of the screening test was the gas crossover rate. If the gas crossover rate was higher than the membrane intrinsic permeability after 400 hours of testing, it was considered that the MEA had failed the test. Three types of MEAs out of the nine total membranes failed the test. The evaluation results showed that fuel cell operating conditions (current, pressure, stoichiometric flow rates) were the parameters that influenced the durability of MEAs. In addition, the durability test results indicated that the type of membrane was also an important parameter for MEA durability. At accelerated test conditions, the MEAs with casted membranes failed during the 400 hour test. However, the MEAs prepared from the casted membrane with support as well as extruded membranes, both passed the 400h durability test at accelerated operating test conditions. As a result of the MEA accelerated durability tests, four MEAs were selected for further endurance testing. These tests are being carried out with four-cell stacks under nominal fuel cell operating conditions.
ERIC Educational Resources Information Center
Lee, Lung-Sheng; Lai, Chun-Chin
2004-01-01
In comparison with engineering, engineering technology is more practical and purposeful. The engineering technology education programs in Taiwan have been mainly offered in 56 universities/colleges of technology (UTs/CTs) and are anticipated to continuously improve their performance to prepare quality engineering technologists. However, it is…
Toward a Philosophy of Instructional Technology: Thirty Years On.
ERIC Educational Resources Information Center
Ely, Donald
1999-01-01
Makes a current assessment of the philosophy of instructional technology using a 1970 "British Journal of Educational Technology" (BJET) article as the basis of comparison. Discusses the influence of distance education, public acceptance of media and technology, and training by artificial intelligence in business and industry.…
Study of Multimission Modular Spacecraft (MMS) propulsion requirements
NASA Technical Reports Server (NTRS)
Fischer, N. H.; Tischer, A. E.
1977-01-01
The cost effectiveness of various propulsion technologies for shuttle-launched multimission modular spacecraft (MMS) missions was determined with special attention to the potential role of ion propulsion. The primary criterion chosen for comparison for the different types of propulsion technologies was the total propulsion related cost, including the Shuttle charges, propulsion module costs, upper stage costs, and propulsion module development. In addition to the cost comparison, other criteria such as reliability, risk, and STS compatibility are examined. Topics covered include MMS mission models, propulsion technology definition, trajectory/performance analysis, cost assessment, program evaluation, sensitivity analysis, and conclusions and recommendations.
Using of simulation for comparison of technologies for pallets storing
NASA Astrophysics Data System (ADS)
Kříž, Pavel; Chramcov, Bronislav; Jemelka, Milan
2016-06-01
The paper highlights the problem oftechnology for pallet storing. The aim is to compare selected technologies and to find efficient warehouse solution for the real company, which produces a plastic parts for automotive and needs to solve storing in the new hall. The work describes differences between two pallet storing technologies - static racking system and powered mobile racking system. Comparison contains description, advantages and disadvantages of the both systems. Real data from real project are used for the evaluation of necessary parameters. The result presents proposal of solution which can meet all initial conditions.
Wahle, Fabian; Bollhalder, Lea; Kowatsch, Tobias; Fleisch, Elgar
2017-05-31
Existing research postulates a variety of components that show an impact on utilization of technology-mediated mental health information systems (MHIS) and treatment outcome. Although researchers assessed the effect of isolated design elements on the results of Web-based interventions and the associations between symptom reduction and use of components across computer and mobile phone platforms, there remains uncertainty with regard to which components of technology-mediated interventions for mental health exert the greatest therapeutic gain. Until now, no studies have presented results on the therapeutic benefit associated with specific service components of technology-mediated MHIS for depression. This systematic review aims at identifying components of technology-mediated MHIS for patients with depression. Consequently, all randomized controlled trials comparing technology-mediated treatments for depression to either waiting-list control, treatment as usual, or any other form of treatment for depression were reviewed. Updating prior reviews, this study aims to (1) assess the effectiveness of technology-supported interventions for the treatment of depression and (2) add to the debate on what components in technology-mediated MHIS for the treatment of depression should be standard of care. Systematic searches in MEDLINE, PsycINFO, and the Cochrane Library were conducted. Effect sizes for each comparison between a technology-enabled intervention and a control condition were computed using the standard mean difference (SMD). Chi-square tests were used to test for heterogeneity. Using subgroup analysis, potential sources of heterogeneity were analyzed. Publication bias was examined using visual inspection of funnel plots and Begg's test. Qualitative data analysis was also used. In an explorative approach, a list of relevant components was extracted from the body of literature by consensus between two researchers. Of 6387 studies initially identified, 45 met all inclusion criteria. Programs analyzed showed a significant trend toward reduced depressive symptoms (SMD -0.58, 95% CI -0.71 to -0.45, P<.001). Heterogeneity was large (I2≥76). A total of 15 components were identified. Technology-mediated MHIS for the treatment of depression has a consistent positive overall effect compared to controls. A total of 15 components have been identified. Further studies are needed to quantify the impact of individual components on treatment effects and to identify further components that are relevant for the design of future technology-mediated interventions for the treatment of depression and other mental disorders. ©Fabian Wahle, Lea Bollhalder, Tobias Kowatsch, Elgar Fleisch. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 31.05.2017.
Fleisch, Elgar
2017-01-01
Background Existing research postulates a variety of components that show an impact on utilization of technology-mediated mental health information systems (MHIS) and treatment outcome. Although researchers assessed the effect of isolated design elements on the results of Web-based interventions and the associations between symptom reduction and use of components across computer and mobile phone platforms, there remains uncertainty with regard to which components of technology-mediated interventions for mental health exert the greatest therapeutic gain. Until now, no studies have presented results on the therapeutic benefit associated with specific service components of technology-mediated MHIS for depression. Objective This systematic review aims at identifying components of technology-mediated MHIS for patients with depression. Consequently, all randomized controlled trials comparing technology-mediated treatments for depression to either waiting-list control, treatment as usual, or any other form of treatment for depression were reviewed. Updating prior reviews, this study aims to (1) assess the effectiveness of technology-supported interventions for the treatment of depression and (2) add to the debate on what components in technology-mediated MHIS for the treatment of depression should be standard of care. Methods Systematic searches in MEDLINE, PsycINFO, and the Cochrane Library were conducted. Effect sizes for each comparison between a technology-enabled intervention and a control condition were computed using the standard mean difference (SMD). Chi-square tests were used to test for heterogeneity. Using subgroup analysis, potential sources of heterogeneity were analyzed. Publication bias was examined using visual inspection of funnel plots and Begg’s test. Qualitative data analysis was also used. In an explorative approach, a list of relevant components was extracted from the body of literature by consensus between two researchers. Results Of 6387 studies initially identified, 45 met all inclusion criteria. Programs analyzed showed a significant trend toward reduced depressive symptoms (SMD –0.58, 95% CI –0.71 to –0.45, P<.001). Heterogeneity was large (I2≥76). A total of 15 components were identified. Conclusions Technology-mediated MHIS for the treatment of depression has a consistent positive overall effect compared to controls. A total of 15 components have been identified. Further studies are needed to quantify the impact of individual components on treatment effects and to identify further components that are relevant for the design of future technology-mediated interventions for the treatment of depression and other mental disorders. PMID:28566267
Comparison of Fast Neutron Detector Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stange, Sy; Mckigney, Edward Allen
2015-02-09
This report documents the work performed for the Department of Homeland Security Domestic Nuclear Detection O ce as the project Fast Neutron Detection Evaluation under contract HSHQDC-14-X-00022. This study was performed as a follow-on to the project Study of Fast Neutron Signatures and Measurement Techniques for SNM Detection - DNDO CFP11-100 STA-01. That work compared various detector technologies in a portal monitor con guration, focusing on a comparison between a number of fast neutron detection techniques and two standard thermal neutron detection technologies. The conclusions of the earlier work are contained in the report Comparison of Fast Neutron Detector Technologies.more » This work is designed to address questions raised about assumptions underlying the models built for the earlier project. To that end, liquid scintillators of two di erent sizes{ one a commercial, o -the-shelf (COTS) model of standard dimensions and the other a large, planer module{were characterized at Los Alamos National Laboratory. The results of those measurements were combined with the results of the earlier models to gain a more complete picture of the performance of liquid scintillator as a portal monitor technology.« less
2013-01-01
Helicopter Structure Christopher Dore Air Vehicles Division Defence Science and Technology Organisation DSTO-TN-1136 ABSTRACT A...of rotary wing aircraft structure was conducted. The comparison utilised a graphical hierarchy-based methodology developed as an improvement on text...Science and Technology Organisation researchers on the intent of the subject documents and the similarities and differences between them. RELEASE
DOE Office of Scientific and Technical Information (OSTI.GOV)
DWYER,BRIAN P.
2000-01-01
Three reactive materials were evaluated at laboratory scale to identify the optimum treatment reagent for use in a Permeable Reactive Barrier Treatment System at Rocky Flats Environmental Technology Site (RFETS). The contaminants of concern (COCS) are uranium, TCE, PCE, carbon tetrachloride, americium, and vinyl chloride. The three reactive media evaluated included high carbon steel iron filings, an iron-silica alloy in the form of a foam aggregate, and a peculiar humic acid based sorbent (Humasorb from Arctech) mixed with sand. Each material was tested in the laboratory at column scale using simulated site water. All three materials showed promise for themore » 903 Mound Site however, the iron filings were determined to be the least expensive media. In order to validate the laboratory results, the iron filings were further tested at a pilot scale (field columns) using actual site water. Pilot test results were similar to laboratory results; consequently, the iron filings were chosen for the fill-scale demonstration of the reactive barrier technology. Additional design parameters including saturated hydraulic conductivity, treatment residence time, and head loss across the media were also determined and provided to the design team in support of the final design. The final design was completed by the Corps of Engineers in 1997 and the system was constructed in the summer of 1998. The treatment system began fill operation in December, 1998 and despite a few problems has been operational since. Results to date are consistent with the lab and pilot scale findings, i.e., complete removal of the contaminants of concern (COCs) prior to discharge to meet RFETS cleanup requirements. Furthermore, it is fair to say at this point in time that laboratory developed design parameters for the reactive barrier technology are sufficient for fuel scale design; however,the treatment system longevity and the long-term fate of the contaminants are questions that remain unanswered. This project along with others such as the Durango, CO and Monticello, UT reactive barriers will provide the data to determine the long-term effectiveness and return on investment (ROI) for this technology for comparison to the baseline pump and treat.« less
Intelligent Control in Automation Based on Wireless Traffic Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurt Derr; Milos Manic
2007-09-01
Wireless technology is a central component of many factory automation infrastructures in both the commercial and government sectors, providing connectivity among various components in industrial realms (distributed sensors, machines, mobile process controllers). However wireless technologies provide more threats to computer security than wired environments. The advantageous features of Bluetooth technology resulted in Bluetooth units shipments climbing to five million per week at the end of 2005 [1, 2]. This is why the real-time interpretation and understanding of Bluetooth traffic behavior is critical in both maintaining the integrity of computer systems and increasing the efficient use of this technology in controlmore » type applications. Although neuro-fuzzy approaches have been applied to wireless 802.11 behavior analysis in the past, a significantly different Bluetooth protocol framework has not been extensively explored using this technology. This paper presents a new neurofuzzy traffic analysis algorithm of this still new territory of Bluetooth traffic. Further enhancements of this algorithm are presented along with the comparison against the traditional, numerical approach. Through test examples, interesting Bluetooth traffic behavior characteristics were captured, and the comparative elegance of this computationally inexpensive approach was demonstrated. This analysis can be used to provide directions for future development and use of this prevailing technology in various control type applications, as well as making the use of it more secure.« less
Lin, Zu-Chun
2013-05-01
The aim of nursing education is to prepare students with critical thinking, high interests in profession and high proficiency in patient care. Cooperative learning promotes team work and encourages knowledge building upon discussion. It has been viewed as one of the most powerful learning methods. Technology has been considered an influential tool in teaching and learning. It assists students in gathering more information to solve the problems and master skills better. The purpose of this study was to compare the effect of technology-based cooperative learning with technology-based individual learning in nursing students' critical thinking in catheterization knowledge gaining, error discovering, skill acquisitions, and overall scores. This study used a pretest-posttest experimental design. Ninety-eight students were assigned randomly to one of two groups. Questionnaires and tests were collected at baseline and after completion of intervention. The results of this study showed that there was no significant difference in related catheterization skill performance. However, the remaining variables differed greatly between the two groups. CONCLUSIONS AND APPLICATIONS: This study's findings guide the researchers and instructors to use technology-based cooperative learning more appropriately. Future research should address the design of the course module and the availability of mobile devices to reach student-centered and learn on the move goals. Copyright © 2011 Elsevier Ltd. All rights reserved.
Intelligent Control in Automation Based on Wireless Traffic Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurt Derr; Milos Manic
Wireless technology is a central component of many factory automation infrastructures in both the commercial and government sectors, providing connectivity among various components in industrial realms (distributed sensors, machines, mobile process controllers). However wireless technologies provide more threats to computer security than wired environments. The advantageous features of Bluetooth technology resulted in Bluetooth units shipments climbing to five million per week at the end of 2005 [1, 2]. This is why the real-time interpretation and understanding of Bluetooth traffic behavior is critical in both maintaining the integrity of computer systems and increasing the efficient use of this technology in controlmore » type applications. Although neuro-fuzzy approaches have been applied to wireless 802.11 behavior analysis in the past, a significantly different Bluetooth protocol framework has not been extensively explored using this technology. This paper presents a new neurofuzzy traffic analysis algorithm of this still new territory of Bluetooth traffic. Further enhancements of this algorithm are presented along with the comparison against the traditional, numerical approach. Through test examples, interesting Bluetooth traffic behavior characteristics were captured, and the comparative elegance of this computationally inexpensive approach was demonstrated. This analysis can be used to provide directions for future development and use of this prevailing technology in various control type applications, as well as making the use of it more secure.« less
1992-01-01
the uncertainty. The above method can give an estimate of the precision of the * analysis. However, determining the accuracy can not be done as...speciation has been determined from analyzing model samples as well as comparison with other methods and combinations of other methods with this method . 3...laboratory. The output of the sensor is characterized over its working range and an appropriate response factor determined by linear regression of the
Light aircraft crash safety program
NASA Technical Reports Server (NTRS)
Thomson, R. G.; Hayduk, R. J.
1974-01-01
NASA is embarked upon research and development tasks aimed at providing the general aviation industry with a reliable crashworthy airframe design technology. The goals of the NASA program are: reliable analytical techniques for predicting the nonlinear behavior of structures; significant design improvements of airframes; and simulated full-scale crash test data. The analytical tools will include both simplified procedures for estimating energy absorption characteristics and more complex computer programs for analysis of general airframe structures under crash loading conditions. The analytical techniques being developed both in-house and under contract are described, and a comparison of some analytical predictions with experimental results is shown.
A novel vibration sensor based on phase grating interferometry
NASA Astrophysics Data System (ADS)
Li, Qian; Liu, Xiaojun; Zhao, Li; Lei, Zili; Lu, Zhen; Guo, Lei
2017-05-01
Vibration sensors with high accuracy and reliability are needed urgently for vibration measurement. In this paper a vibration sensor with nanometer resolution is developed. This sensor is based on the principle of phase grating interference for displacement measurement and spatial polarization phase-shift interference technology, and photoelectric counting and A/D signal subdivision are adopted for vibration data output. A vibration measurement system consisting of vibration actuator and displacement adjusting device has been designed to test the vibration sensor. The high resolution and high reliability of the sensor are verified through a series of comparison experiments with Doppler interferometer.
42 CFR 493.1281 - Standard: Comparison of test results.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 42 Public Health 5 2012-10-01 2012-10-01 false Standard: Comparison of test results. 493.1281... Testing Analytic Systems § 493.1281 Standard: Comparison of test results. (a) If a laboratory performs the... between test results using the different methodologies, instruments, or testing sites. (b) The laboratory...
42 CFR 493.1281 - Standard: Comparison of test results.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 5 2010-10-01 2010-10-01 false Standard: Comparison of test results. 493.1281... Testing Analytic Systems § 493.1281 Standard: Comparison of test results. (a) If a laboratory performs the... between test results using the different methodologies, instruments, or testing sites. (b) The laboratory...
42 CFR 493.1281 - Standard: Comparison of test results.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 5 2013-10-01 2013-10-01 false Standard: Comparison of test results. 493.1281... Testing Analytic Systems § 493.1281 Standard: Comparison of test results. (a) If a laboratory performs the... between test results using the different methodologies, instruments, or testing sites. (b) The laboratory...
42 CFR 493.1281 - Standard: Comparison of test results.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 5 2011-10-01 2011-10-01 false Standard: Comparison of test results. 493.1281... Testing Analytic Systems § 493.1281 Standard: Comparison of test results. (a) If a laboratory performs the... between test results using the different methodologies, instruments, or testing sites. (b) The laboratory...
42 CFR 493.1281 - Standard: Comparison of test results.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 42 Public Health 5 2014-10-01 2014-10-01 false Standard: Comparison of test results. 493.1281... Testing Analytic Systems § 493.1281 Standard: Comparison of test results. (a) If a laboratory performs the... between test results using the different methodologies, instruments, or testing sites. (b) The laboratory...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chrisp, C.; Hobbs, C.; Clark, R.
1979-01-01
This experiment showed that mutagenicity of fly ash derived from different coal conversion technologies, as determined by the Ames plate incorporation test, was similar in all three laboratories. The differences in mutagenic activity of each fly ash between laboratories with different solvent extraction methods were no greater than one order of magnitude. In addition, there were much smaller, but still significant differences in mutagenic activity between laboratories when the same solvent extract of a particular fly ash was tested in each laboratory. There were also significant differences in mutagenicity of the positive control mutagen (maximum of fivefold) between laboratories. Becausemore » of this difference in Ames test sensitivity between laboratories, the influence of the solvent extraction methods on differences in mutagenicity was not clear. However, the data suggested that either there were significant differences in the degree of sensitivity of Ames tests for different complex mixtures within each laboratory, or else there were differences in mutagen extraction efficiency between different solvent extraction methods. Both Ames test sensitivity and solvent extraction may be important. Further work would be necessary to separate the contribution of these two factors. An important aspect of further work would be to separate the contribution of the innate sensitivity of substrains of Ames tester strains in each laboratory from the possible effects of differences in Ames testing methodology. This could be done by testing the same extracts of fly ash and positive control mutagens with substrains of tester strains exchanged between laboratories. This work also implies that caution should be exercised in assuming that the same solvent would have the same efficiency for extraction of mutagens from different fly ashes even within the same laboratory.« less
Arneja, Jugpal S; Narasimhan, Kailash; Bouwman, David; Bridge, Patrick D
2009-12-01
In-training evaluations in graduate medical education have typically been challenging. Although the majority of standardized examination delivery methods have become computer-based, in-training examinations generally remain pencil-paper-based, if they are performed at all. Audience response systems present a novel way to stimulate and evaluate the resident-learner. The purpose of this study was to assess the outcomes of audience response systems testing as compared with traditional testing in a plastic surgery residency program. A prospective 1-year pilot study of 10 plastic surgery residents was performed using audience response systems-delivered testing for the first half of the academic year and traditional pencil-paper testing for the second half. Examination content was based on monthly "Core Quest" curriculum conferences. Quantitative outcome measures included comparison of pretest and posttest and cumulative test scores of both formats. Qualitative outcomes from the individual participants were obtained by questionnaire. When using the audience response systems format, pretest and posttest mean scores were 67.5 and 82.5 percent, respectively; using traditional pencil-paper format, scores were 56.5 percent and 79.5 percent. A comparison of the cumulative mean audience response systems score (85.0 percent) and traditional pencil-paper score (75.0 percent) revealed statistically significantly higher scores with audience response systems (p = 0.01). Qualitative outcomes revealed increased conference enthusiasm, greater enjoyment of testing, and no user difficulties with the audience response systems technology. The audience response systems modality of in-training evaluation captures participant interest and reinforces material more effectively than traditional pencil-paper testing does. The advantages include a more interactive learning environment, stimulation of class participation, immediate feedback to residents, and immediate tabulation of results for the educator. Disadvantages include start-up costs and lead-time preparation.
A comparison of visual inspection time measures in children with cerebral palsy.
Kaufman, Jacqueline N; Donders, Jacobus; Warschausky, Seth
2014-05-01
This study examined the performance of children with and without cerebral palsy on two inspection time (IT) tests, as accessible nonspeeded response measures of cognitive processing speed. Participants, ages 8 to 16, included 66 children with congenital CP and 119 typically developing peers. Measures were two visual IT tasks with identical target stimuli but differential response strategies either via a traditional dual-key method or with an assistive technology pressure switch interface and response option scanning. The CP group had slower IT than the control group independent of test version. Log transformations were used to address skew, and transformed mean intraclass correlations showed moderate agreement between test versions for both participant groups. Bland-Altman plots showed that at higher mean IT thresholds, greater discrepancies between test version scores were observed. Findings support the feasibility of developing tests that reduce speeded motor response demands. Future test development should incorporate increased gradations of difficulty at the extremes of neuropsychological functioning to more accurately assess the performance of individuals whose conditions are associated with atypical performance levels. (c) 2014 APA, all rights reserved.
The next generation in aircraft protection against advanced MANPADS
NASA Astrophysics Data System (ADS)
Chapman, Stuart
2014-10-01
This paper discusses the advanced and novel technologies and underlying systems capabilities that Selex ES has applied during the development, test and evaluation of the twin head Miysis DIRCM System in order to ensure that it provides the requisite levels of protection against the latest, sophisticated all-aspect IR MANPADS. The importance of key performance parameters, including the fundamental need for "spherical" coverage, rapid time to energy-on-target, laser tracking performance and radiant intensity on seeker dome is covered. It also addresses the approach necessary to ensure that the equipment is suited to all air platforms from the smallest helicopters to large transports, while also ensuring that it achieves an inherent high reliability and an ease of manufacture and repair such that a step change in through-life cost in comparison to previous generation systems can be achieved. The benefits and issues associated with open architecture design are also considered. Finally, the need for extensive test and evaluation at every stage, including simulation, laboratory testing, platform and target dynamic testing in a System Integration Laboratory (SIL), flight trial, missile live-fire, environmental testing and reliability testing is also described.
Technology for performing ocular self-examination: comparison between printed and virtual booklets.
Nascimento, Jennara Candido; Lima, Maria Alzete; Barros, Lívia Moreira; Galindo Neto, Nelson Miguel; Pagliuca, Lorita Marlena Freitag; Caetano, Joselany Áfio
2018-01-01
Comparing the results of the ocular self-examination performed with the aid of printed and virtual versions of an educational booklet. A quasi-experimental study carried out in a state (public) school of a capital in northeast Brazil, with 100 students equally divided into control and intervention groups according to age, gender, schooling and economic status. Pearson's Chi-square test and Fisher's exact test were applied with a significance level of 5%. The results of the self-examination obtained by the virtual and printed booklets were statistically similar, except for the item 'Alterations of the pupillary reflex', in which the virtual booklet was more effective for its identification (p=0.049). The printed and virtual versions of the ocular educational booklet have similar efficacy for performing ocular self-examination.
(International seminar on the inelastic behavior of solids: Models and utilization)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruggles, M.B.
The traveler attended the International Seminar on the Inelastic Behavior of Solids: Models and Utilization, and presented an invited paper. Development and validation of constitutive models for complex loading and environmental conditions was the principal subject of the seminar. Session 1. Constitutive Models: Theoretical Development, Analysis and Comparison, and Session 2. Constitutive Models: Experimental Identification and Use, were of particular interest to the ORNL constitutive equations development effort. The traveler also visited the Applied Mechanics Laboratory at the University of Franche-Comte in Besancon and the Laboratory of Mechanics and Technology at the ENSET/Paris University 6 in Cachan. In both laboratoriesmore » the traveler held discussions regarding inelastic material behavior at room and elevated temperatures, exploratory testing and modeling, and materials testing equipment and techniques.« less
Some preliminary results from the NWTC direct-drive, variable-speed test bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlin, P.W.; Fingersh, L.J.
1996-10-01
With the remarkable rise in interest in variable-speed operation of larger wind turbines, it has become important for the National Wind Technology Center (NWTC) to have access to a variable-speed test bed that can be specially instrumented for research. Accordingly, a three-bladed, 10-meter, downwind, Grumman Windstream machine has been equipped with a set of composite blades and a direct-coupled, permanent-magnet, 20 kilowatt generator. This machine and its associated control system and data collection system are discussed. Several variations of a maximum power control algorithm have been installed on the control computer. To provide a baseline for comparison, several constant speedmore » algorithms have also been installed. The present major effort is devoted to daytime, semi-autonomous data collection.« less
Comparison of Calibration Methods for Tristimulus Colorimeters.
Gardner, James L
2007-01-01
Uncertainties in source color measurements with a tristimulus colorimeter are estimated for calibration factors determined, based on a known source spectral distribution or on accurate measurements of the spectral responsivities of the colorimeter channels. Application is to the National Institute of Standards and Technology (NIST) colorimeter and an International Commission on Illumination (CIE) Illuminant A calibration. Detector-based calibration factors generally have lower uncertainties than source-based calibration factors. Uncertainties are also estimated for calculations of spectral mismatch factors. Where both spectral responsivities of the colorimeter channels and the spectral power distributions of the calibration and test sources are known, uncertainties are lowest if the colorimeter calibration factors are recalculated for the test source; this process also avoids correlations between the CIE Source A calibration factors and the spectral mismatch factors.
Comparison of Calibration Methods for Tristimulus Colorimeters
Gardner, James L.
2007-01-01
Uncertainties in source color measurements with a tristimulus colorimeter are estimated for calibration factors determined, based on a known source spectral distribution or on accurate measurements of the spectral responsivities of the colorimeter channels. Application is to the National Institute of Standards and Technology (NIST) colorimeter and an International Commission on Illumination (CIE) Illuminant A calibration. Detector-based calibration factors generally have lower uncertainties than source-based calibration factors. Uncertainties are also estimated for calculations of spectral mismatch factors. Where both spectral responsivities of the colorimeter channels and the spectral power distributions of the calibration and test sources are known, uncertainties are lowest if the colorimeter calibration factors are recalculated for the test source; this process also avoids correlations between the CIE Source A calibration factors and the spectral mismatch factors. PMID:27110460
Performance of a Boron-Coated-Straw-Based HLNCC for International Safeguards Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simone, Angela T.; Croft, Stephen; McElroy, Robert Dennis
3He gas has been used in various scientific and security applications for decades, but it is now in short supply. Alternatives to 3He detectors are currently being integrated and tested in neutron coincidence counter designs, of a type which are widely used in nuclear safeguards for nuclear materials assay. A boron-coated-straw-based design, similar to the High-Level Neutron Coincidence Counter-II, was built by Proportional Technologies Inc., and has been tested by the Oak Ridge National Laboratory (ORNL) at both the JRC in Ispra and ORNL. Characterization measurements, along with nondestructive assays of various plutonium samples, have been conducted to determine themore » performance of this coincidence counter replacement in comparison with other similar counters. This paper presents results of these measurements.« less
NASA experiments on the B-720 structure and seats
NASA Astrophysics Data System (ADS)
Alfaro-Bou, E.
1986-01-01
Two experiments onboard a remotely piloted transport aircraft that was crashed on landing are discussed. The structural experiment deals with the location and distribution of the instrumentation throughout the airplane structure. In the seat experiment, the development and testing of an energy absorbing seat are discussed. The objective of the structural experiment was to obtain a data base of structural crash loads for use in the advancement of crashworthy technology of materials (such as composites) in structural design and for use in the comparison between computer and experimental results. The objective of the seat experiment was to compare the performance of an energy absorbing transport seat and a standard seat when subjected to similar crash pulses. Details are given on the location of instrumentation, on the dynamic seat test pulse and headward acceleration limits.
Traction test of temporary dental cements
Millan-Martínez, Diego; Fons-Font, Antonio; Agustín-Panadero, Rubén; Fernández-Estevan, Lucía
2017-01-01
Background Classic self-curing temporary cements obstruct the translucence of provisional restorations. New dual-cure esthetic temporary cements need investigation and comparison with classic cements to ensure that they are equally retentive and provide adequate translucence. The objective is to analyze by means of traction testing in a in vitro study the retention of five temporary cements. Material and Methods Ten molars were prepared and ten provisional resin restorations were fabricated using CAD-CAM technology (n=10). Five temporary cements were selected: self-curing temporary cements, Dycal (D), Temp Bond (TB), Temp Bond Non Eugenol (TBNE); dual-curing esthetic cements Temp Bond Clear (TBC) and Telio CS link (TE). Each sample underwent traction testing, both with thermocycling (190 cycles at 5-55º) and without thermocycling. Results TE and TBC obtained the highest traction resistance values. Thermocycling reduced the resistance of all cements except TBC. Conclusions The dual-cure esthetic cements tested provided optimum outcomes for bonding provisional restorations. Key words:Temporary dental cements, cements resistance. PMID:28469824
Rapid Antimicrobial Susceptibility Testing Using Forward Laser Light Scatter Technology.
Hayden, Randall T; Clinton, Lani K; Hewitt, Carolyn; Koyamatsu, Terri; Sun, Yilun; Jamison, Ginger; Perkins, Rosalie; Tang, Li; Pounds, Stanley; Bankowski, Matthew J
2016-11-01
The delayed reporting of antimicrobial susceptibility testing remains a limiting factor in clinical decision-making in the treatment of bacterial infection. This study evaluates the use of forward laser light scatter (FLLS) to measure bacterial growth for the early determination of antimicrobial susceptibility. Three isolates each (two clinical isolates and one reference strain) of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa were tested in triplicate using two commercial antimicrobial testing systems, the Vitek2 and the MicroScan MIC panel, to challenge the BacterioScan FLLS. The BacterioScan FLLS showed a high degree of categorical concordance with the commercial methods. Pairwise comparison with each commercial system serving as a reference standard showed 88.9% agreement with MicroScan (two minor errors) and 72.2% agreement with Vitek (five minor errors). FLLS using the BacterioScan system shows promise as a novel method for the rapid and accurate determination of antimicrobial susceptibility. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Achille, Cristiana; Adami, Andrea; Chiarini, Silvia; Cremonesi, Stefano; Fassi, Francesco; Fregonese, Luigi; Taffurelli, Laura
2015-01-01
This paper examines the survey of tall buildings in an emergency context like in the case of post-seismic events. The after-earthquake survey has to guarantee time-savings, high precision and security during the operational stages. The main goal is to optimize the application of methodologies based on acquisition and automatic elaborations of photogrammetric data even with the use of Unmanned Aerial Vehicle (UAV) systems in order to provide fast and low cost operations. The suggested methods integrate new technologies with commonly used technologies like TLS and topographic acquisition. The value of the photogrammetric application is demonstrated by a test case, based on the comparison of acquisition, calibration and 3D modeling results in case of use of a laser scanner, metric camera and amateur reflex camera. The test would help us to demonstrate the efficiency of image based methods in the acquisition of complex architecture. The case study is Santa Barbara Bell tower in Mantua. The applied survey solution allows a complete 3D database of the complex architectural structure to be obtained for the extraction of all the information needed for significant intervention. This demonstrates the applicability of the photogrammetry using UAV for the survey of vertical structures, complex buildings and difficult accessible architectural parts, providing high precision results. PMID:26134108
Basset, N; López-Palau, S; Dosta, J; Mata-Álvarez, J
2014-01-01
An anaerobic membrane bioreactor and aerobic granulation technologies were tested at laboratory scale to treat winery wastewater, which is characterised by a high and variable biodegradable organic load. Both technologies have already been tested for alcohol fermentation wastewaters, but there is a lack of data relating to their application to winery wastewater treatment. The anaerobic membrane bioreactor, with an external microfiltration module, was started up for 230 days, achieving a biogas production of up to 0.35 L CH4L(-1)d(-1) when 1.5 kg COD m(-3)d(-1) was applied. Average flux was 10.5 L m(-2) h(-1) (LMH), obtaining a treated effluent free of suspended solids and a chemical oxygen demand (COD) concentration lower than 100 mg COD L(-1). In contrast, the aerobic granular sequencing batch reactor coped with 15 kg COD m(-3)d(-1), but effluent quality was slightly worse. Aerobic granulation was identified as a suitable technique to treat this kind of wastewater due to excellent settleability, high biomass retention and a good ability to handle high organic loads and seasonal fluctuations. However, energy generation from anaerobic digestion plays an important role, favouring anaerobic membrane bioreactor application, although it was observed to be sensitive to sudden load fluctuations, which led to a thorough pH control and alkali addition.
Achille, Cristiana; Adami, Andrea; Chiarini, Silvia; Cremonesi, Stefano; Fassi, Francesco; Fregonese, Luigi; Taffurelli, Laura
2015-06-30
This paper examines the survey of tall buildings in an emergency context like in the case of post-seismic events. The after-earthquake survey has to guarantee time-savings, high precision and security during the operational stages. The main goal is to optimize the application of methodologies based on acquisition and automatic elaborations of photogrammetric data even with the use of Unmanned Aerial Vehicle (UAV) systems in order to provide fast and low cost operations. The suggested methods integrate new technologies with commonly used technologies like TLS and topographic acquisition. The value of the photogrammetric application is demonstrated by a test case, based on the comparison of acquisition, calibration and 3D modeling results in case of use of a laser scanner, metric camera and amateur reflex camera. The test would help us to demonstrate the efficiency of image based methods in the acquisition of complex architecture. The case study is Santa Barbara Bell tower in Mantua. The applied survey solution allows a complete 3D database of the complex architectural structure to be obtained for the extraction of all the information needed for significant intervention. This demonstrates the applicability of the photogrammetry using UAV for the survey of vertical structures, complex buildings and difficult accessible architectural parts, providing high precision results.
Evaluation of the KLA-Tencor 2138 for line monitoring applications
NASA Astrophysics Data System (ADS)
Metteer, Brian; Garvin, James F., Jr.; Cataldi, Frank; Ng, Albert; Button, Jon; Newell, Robyn; Rodriguez, Mike D.; Miller, Arlisa
1998-06-01
This report summarizes the results of an evaluation of the KLA-Tencor (KT) 2138 Ultra-Broadband (UBB) optical inspection system performed in the DP1 development facility at Texas Instruments from July 1997 to November 1997. The purpose of this project was to evaluate the effectiveness of the new 2138 UBB system compared to a KT AIT, non-SAT tests on a KT 2135, and SAT recipes on the KT 2132. The 2138 system was designed to provide improved sensitivity and defect detection over the 2135 and other tools. In particular, the UBB illumination source utilized by the 2138 system was expected to provide a significant sensitivity improvement over the 2135 on wafers with color variation as a source of noise. The speeds of the individual pixel tests on the 2138 are the same as those on the 2135. However, it was found that the 2138 0.62 micrometer pixel tests actually found more defects than did the 0.39 micrometer pixel tests on the 2132 on the process levels where this comparison was studied. This type of comparison was not performed between the 2138 and the 2135 since SAT capability was not available on the DP1 2135 during the evaluation. Initially, the primary objective of this project was to measure the UBB system's performance as compared to the 2135 on two Memory levels and three Logic levels. However, since the DP1 2135 system did not possess segmented autothreshold (SAT) capability during this evaluation and the DP1 2132 system did possess SAT capability, the DP1 2132 was added to the evaluation for a 2138 versus 213X SAT direct comparison. Also, the AIT was added to the evaluation plan for a brightfield versus darkfield technology comparison. Finally, three additional Logic levels were added to the evaluation plan, including one Post-CMP level. During this evaluation, the 2138 was proven to be significantly more sensitive than was the 2135, 2132, and the AIT on all process levels compared. Also, very few hardware or software problems were noted during the evaluation.
ERIC Educational Resources Information Center
Teclehaimanot, Berhane; Mentzer, Gale; Hickman, Torey
2011-01-01
Results from previous studies on pre-service teacher technology integration and faculty perceptions of technology integration within the teacher education program at a medium-sized, Midwestern university are compared to account for the self-reported lack of confidence pre-service teachers have integrating technology into their teaching. Also…
Life support systems analysis and technical trades for a lunar outpost
NASA Technical Reports Server (NTRS)
Ferrall, J. F.; Ganapathi, G. B.; Rohatgi, N. K.; Seshan, P. K.
1994-01-01
The NASA/JPL life support systems analysis (LISSA) software tool was used to perform life support system analysis and technology trades for a Lunar Outpost. The life support system was modeled using a chemical process simulation program on a steady-state, one-person, daily basis. Inputs to the LiSSA model include metabolic balance load data, hygiene load data, technology selection, process operational assumptions and mission parameter assumptions. A baseline set of technologies has been used against which comparisons have been made by running twenty-two cases with technology substitutions. System, subsystem, and technology weights and powers are compared for a crew of 4 and missions of 90 and 600 days. By assigning a weight value to power, equivalent system weights are compared. Several less-developed technologies show potential advantages over the baseline. Solid waste treatment technologies show weight and power disadvantages but one could have benefits associated with the reduction of hazardous wastes and very long missions. Technology development towards reducing the weight of resupplies and lighter materials of construction was recommended. It was also recommended that as technologies are funded for development, contractors should be required to generate and report data useful for quantitative technology comparisons.
ERIC Educational Resources Information Center
Butler, Norman L.; Davidson, Barry S.; Pachocinski, Ryszard; Griffith, Kimberly Grantham; Kritsonis, William Allan
2007-01-01
This study compares Polish post-secondary vocational institutions with Canadian community colleges using an information technology conceptual framework. The research concentrated upon programs in information technology delivered by one Polish school Cracow School of Information Technology and two Canadian community colleges Durham (Oshawa,…
Modelling of teeth of a gear transmission for modern manufacturing technologies
NASA Astrophysics Data System (ADS)
Monica, Z.; Banaś, W.; Ćwikla, G.; Topolska, S.
2017-08-01
The technological process of manufacturing of gear wheels is influenced by many factors. It is designated depending on the type of material from which the gear is to be produced, its heat treatment parameters, the required accuracy, the geometrical form and the modifications of the tooth. Therefor the parameters selection process is not easy and moreover it is unambiguous. Another important stage of the technological process is the selection of appropriate tools to properly machine teeth in the operations of both roughing and finishing. In the presented work the focus is put first of all on modern production methods of gears using technologically advanced instruments in comparison with conventional tools. Conventional processing tools such as gear hobbing cutters or Fellows gear-shaper cutters are used from the beginning of the machines for the production of gear wheels. With the development of technology and the creation of CNC machines designated for machining of gears wheel it was also developed the manufacturing technology as well as the design knowledge concerning the technological tools. Leading manufacturers of cutting tools extended the range of tools designated for machining of gears on the so-called hobbing cutters with inserted cemented carbide tips. The same have be introduced to Fellows gear-shaper cutters. The results of tests show that is advantaged to use hobbing cutters with inserted cemented carbide tips for milling gear wheels with a high number of teeth, where the time gains are very high, in relation to the use of conventional milling cutters.
Solar breeder: Energy payback time for silicon photovoltaic systems
NASA Technical Reports Server (NTRS)
Lindmayer, J.
1977-01-01
The energy expenditures of the prevailing manufacturing technology of terrestrial photovoltaic cells and panels were evaluated, including silicon reduction, silicon refinement, crystal growth, cell processing and panel building. Energy expenditures include direct energy, indirect energy, and energy in the form of equipment and overhead expenses. Payback times were development using a conventional solar cell as a test vehicle which allows for the comparison of its energy generating capability with the energies expended during the production process. It was found that the energy payback time for a typical solar panel produced by the prevailing technology is 6.4 years. Furthermore, this value drops to 3.8 years under more favorable conditions. Moreover, since the major energy use reductions in terrestrial manufacturing have occurred in cell processing, this payback time directly illustrates the areas where major future energy reductions can be made -- silicon refinement, crystal growth, and panel building.
Research, science and technology parks: A global comparison of best practices
NASA Astrophysics Data System (ADS)
Ruiz Villacres, Hugo D.
The purpose of this study was to determine if significant differences exist in the evaluation of effectiveness and efficiency between North American, European, and Asian research parks (RPs). Park directors and staff responded to 25 questions from the Survey for Research, Science and Technology Parks. Effectiveness was measured by director's perception of the RP's contribution to economic growth and job creation. Efficiency was evaluated by the interactions between local universities and research parks, assessment of the ecosystem's basic characteristics, and the culture of innovation in the ecosystem. A stratified sampling procedure from a population of 793 parks was used; analysis of variance (ANOVA) and multivariate analysis of variance (MANOVA) were used to test for significance. 130 RPs from three continents participated in this study. No significant differences were found in the evaluation of RPs' directors on effectiveness and efficiency of RPs.
Tensile strength of ramie yarn (spinning by machine)/HDPE thermoplastic matrix composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banowati, Lies, E-mail: liesbano@gmail.com; Hadi, Bambang K., E-mail: bkhadi@ae.itb.ac.id; Suratman, Rochim, E-mail: rochim@material.itb.ac.id
2016-03-29
Technological developments should be trooped to prevent a gap between technology and environmental sustainability, then it needs to be developed “Green technology”. In this research is making of green composites which use natural fiber ramie as reinforcement. Whereas the matrix used was HDPE (High Density Polyethylene) thermoplastic polymer which could be recycled and had a good formability and flexibility. The ramie yarns and fibers for unidirectional (0°) direction respectively were mixed with HDPE powder and processed using hot compression molding. The surface morphology was observed by SEM (Scanning Electrone Microscopy). Results showed that both tensile strength of the ramie fiber/HDPEmore » composites increased in comparison with the ramie yarn (spinning by machine)/HDPE composites. However, the ramie yarn (spinning by machine)/HDPE composites have a good producibility for wider application. Analysis of the test results using the Weibull distribution as approaches to modeling the reliability of the specimens.« less
Continuous high speed coherent one-way quantum key distribution.
Stucki, Damien; Barreiro, Claudio; Fasel, Sylvain; Gautier, Jean-Daniel; Gay, Olivier; Gisin, Nicolas; Thew, Rob; Thoma, Yann; Trinkler, Patrick; Vannel, Fabien; Zbinden, Hugo
2009-08-03
Quantum key distribution (QKD) is the first commercial quantum technology operating at the level of single quanta and is a leading light for quantum-enabled photonic technologies. However, controlling these quantum optical systems in real world environments presents significant challenges. For the first time, we have brought together three key concepts for future QKD systems: a simple high-speed protocol; high performance detection; and integration both, at the component level and for standard fibre network connectivity. The QKD system is capable of continuous and autonomous operation, generating secret keys in real time. Laboratory and field tests were performed and comparisons made with robust InGaAs avalanche photodiodes and superconducting detectors. We report the first real world implementation of a fully functional QKD system over a 43 dB-loss (150 km) transmission line in the Swisscom fibre optic network where we obtained average real-time distribution rates over 3 hours of 2.5 bps.
STEM Education-An Exploration of Its Impact on Female Academic Success in High School
NASA Astrophysics Data System (ADS)
Ybarra, Michael E.
The 21st century presents many new career opportunities and choices for women today. However, over the past decade, there has been a growing concern that there will not be enough students trained in Science, Technology, Engineering, and Math (STEM) to fill jobs in the United States. Current research reveals that there will be a need for highly skilled workers in the STEM industries, along with the opportunities to earn higher wages. With these opportunities ahead, it is paramount that secondary schools prepare not only their male students, but also their female students for these lucrative STEM careers. The purpose of this study was to investigate to what degree female high school students enrolled in a STEM academy, and who may play sports, experience academic differences in college preparatory math and science courses, and in the math and science portions of the California Standards Test. Academic differences shall be defined as differences in grade point averages. A comparison will be made of female students who take similar classes and play sports, but who are not enrolled in a STEM academy program. This comparison will then incorporate a quantitative non-experimental research design, along with a chi-square test.
Space commerce in a global economy - Comparison of international approaches to commercial space
NASA Technical Reports Server (NTRS)
Stone, Barbara A.; Kleber, Peter
1992-01-01
A historical perspective, current status, and comparison of national government/commercial space industry relationships in the United States and Europe are presented. It is noted that space technology has been developed and used primarily to meet the needs of civil and military government initiatives. Two future trends of space technology development include new space enterprises, and the national drive to achieve a more competitive global economic position.
Simulation and Experimental Study on Cavitating Water Jet Nozzle
NASA Astrophysics Data System (ADS)
Zhou, Wei; He, Kai; Cai, Jiannan; Hu, Shaojie; Li, Jiuhua; Du, Ruxu
2017-01-01
Cavitating water jet technology is a new kind of water jet technology with many advantages, such as energy-saving, efficient, environmentally-friendly and so on. Based on the numerical simulation and experimental verification in this paper, the research on cavitating nozzle has been carried out, which includes comparison of the cleaning ability of the cavitating jet and the ordinary jet, and comparison of cavitation effects of different structures of cavitating nozzles.
NASA Astrophysics Data System (ADS)
Zhang, Ye; van Zuijlen, Alexander; van Bussel, Gerard
2014-06-01
In this paper, three dimensional flow over non-rotating MEXICO blades is simulated by CFD methods. The numerical results are compared with the latest MEXICO wind turbine blades measurements obtained in the low speed low turbulence (LTT) wind tunnel of Delft University of Technology. This study aims to validate CFD codes by using these experimental data measured in well controlled conditions. In order to avoid use of wind tunnel corrections, both the blades and the wind tunnel test section are modelled in the simulations. The ability of Menter's k - ω shear stress transport (SST) turbulence model is investigated at both attached flow and massively separated flow cases. Steady state Reynolds averaged Navier Stokes (RANS) equations are solved in these computations. The pressure distribution at three measured sections are compared under the conditions of different inflow velocities and a range of angles of attack. The comparison shows that at attached flow condition, good agreement can be obtained for all three airfoil sections. Even with massively separated flow, still fairly good pressure distribution comparison can be found for the DU and NACA airfoil sections, although the RISØ section shows poor comparison. At the near stall case, considerable deviations exists on the forward half part of the upper surface for all three sections.
Building Technological Capability within Satellite Programs in Developing Countries
NASA Astrophysics Data System (ADS)
Wood, Danielle Renee
Global participation in space activity is growing as satellite technology matures and spreads. Countries in Africa, Asia and Latin America are creating or reinvigorating national satellite programs. These countries are building local capability in space through technological learning. They sometimes pursue this via collaborative satellite development projects with foreign firms that provide training. This phenomenon of collaborative satellite development projects is poorly understood by researchers of technological learning and technology transfer. The approach has potential to facilitate learning, but there are also challenges due to misaligned incentives and the tacit nature of the technology. Perspectives from literature on Technological Learning, Technology Transfer, Complex Product Systems and Product Delivery provide useful but incomplete insight for decision makers in such projects. This work seeks a deeper understanding of capability building through collaborative technology projects by conceiving of the projects as complex, socio-technical systems with architectures. The architecture of a system is the assignment of form to execute a function along a series of dimensions. The research questions explore the architecture of collaborative satellite projects, the nature of capability building during such projects, and the relationship between architecture and capability building. The research design uses inductive, exploratory case studies to investigate six collaborative satellite development projects. Data collection harnesses international field work driven by interviews, observation, and documents. The data analysis develops structured narratives, architectural comparison and capability building assessment. The architectural comparison reveals substantial variation in project implementation, especially in the areas of project initiation, technical specifications of the satellite, training approaches and the supplier selection process. The individual capability building assessment shows that most trainee engineers gradually progressed from no experience with satellites through theoretical training to supervised experience; a minority achieved independent experience. At the organizational level, the emerging space organizations achieved high levels of autonomy in project definition and satellite operation, but they were dependent on foreign firms for satellite design, manufacture, test and launch. The case studies can be summarized by three archetypal projects defined as "Politically Pushed," "Structured," and "Risk Taking." Countries in the case studies tended to start in a Politically Pushed mode, and then moved into either Structured or Risk Taking mode. Decision makers in emerging satellite programs can use the results of this dissertation to consider the broad set of architectural options for capability building. Future work will continue to probe how specific architectural decisions impact capability building outcomes in satellite projects and other technologies. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs@mit.edu)
ERIC Educational Resources Information Center
Longman, Stephanie Melynda Dobson
2013-01-01
In the past two decades, technology has grown exponentially in society. New inventions and innovations are on the rise in relation to technology. Because of this growth in technology use in society, technology integration in the classrooms has also been on the rise. Technology has supported student involvement and engagement in the classrooms.…
Comparison of in vitro biocompatibility of NanoBone(®) and BioOss(®) for human osteoblasts.
Liu, Qin; Douglas, Timothy; Zamponi, Christiane; Becker, Stephan T; Sherry, Eugene; Sivananthan, Sureshan; Warnke, Frauke; Wiltfang, Jörg; Warnke, Patrick H
2011-11-01
Scaffolds for bone tissue engineering seeded with the patient's own cells might be used as a preferable method to repair bone defects in the future. With the emerging new technologies of nanostructure design, new synthetic biomaterials are appearing on the market. Such scaffolds must be tested in vitro for their biocompatibility before clinical application. However, the choice between a natural or a synthetic biomaterial might be challenging for the doctor and the patient. In this study, we compared the biocompatibility of a synthetic bone substitute, NanoBone(®) , to the widely used natural bovine bone replacement material BioOss(®) . The in vitro behaviour of human osteoblasts on both materials was investigated. Cell performance was determined using scanning electron microscopy (SEM), cell vitality staining and four biocompatibility tests (LDH, MTT, WST, BrdU). We found that both materials showed low cytotoxicity and good biocompatibility. The MTT proliferation test was superior for Nanobone(®) . Both scaffolds caused only little damage to human osteoblasts and justify their clinical application. However, NanoBone(®) was able to support and promote proliferation of human osteoblasts slightly better than BioOss(®) in our chosen test set-up. The results may guide doctors and patients when being challenged with the choice between a natural or a synthetic biomaterial. Further experiments are necessary to determine the comparison of biocompatibility in vivo. © 2011 John Wiley & Sons A/S.
Introduction: Prediction of F-16XL Flight Flow Physics
NASA Technical Reports Server (NTRS)
Lamar, John E.
2009-01-01
This special section is the result of fruitful endeavors by an international group of researchers in industry, government laboratories and university-led efforts to improve the technology readiness level of their CFD solvers through comparisons with flight data collected on the F-16XL-1 aircraft at a variety of test conditions. These 1996 flight data were documented and detailed the flight-flow physics of this aircraft through surface tufts and pressures, boundary-layer rakes and skin-friction measurements. The flight project was called the Cranked Wing Aerodynamics Project (CAWAP), due to its leading-edge sweep crank (70 degrees inboard, 50 degrees outboard), and served as a basis for the International comparisons to be made, called CAWAPI. This highly focused effort was one of two vortical flow studies facilitated by the NATO Research and Technology Organization through its Applied Vehicle Panel with a title of Understanding and Modeling Vortical Flows to Improve the Technology Readiness Level for Military Aircraft. It was given a task group number of AVT-113 and had an official start date of Spring 2003. The companion part of this task group dealt with fundamentals of vortical flow from both an experimental and numerical perspective on an analytically describable 65 degree delta-wing model for which much surface pressure data had already been measured at NASA Langley Research Center at a variety of Mach and Reynolds numbers and is called the Vortex Flow Experiment - 2 (VFE-2). These two parts or facets helped one another in understanding the predictions and data that had been or were being collected.
Comparative Study of 3-Dimensional Woven Joint Architectures for Composite Spacecraft Structures
NASA Technical Reports Server (NTRS)
Jones, Justin S.; Polis, Daniel L.; Rowles, Russell R.; Segal, Kenneth N.
2011-01-01
The National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate initiated an Advanced Composite Technology (ACT) Project through the Exploration Technology Development Program in order to support the polymer composite needs for future heavy lift launch architectures. As an example, the large composite structural applications on Ares V inspired the evaluation of advanced joining technologies, specifically 3D woven composite joints, which could be applied to segmented barrel structures needed for autoclave cured barrel segments due to autoclave size constraints. Implementation of these 3D woven joint technologies may offer enhancements in damage tolerance without sacrificing weight. However, baseline mechanical performance data is needed to properly analyze the joint stresses and subsequently design/down-select a preform architecture. Six different configurations were designed and prepared for this study; each consisting of a different combination of warp/fill fiber volume ratio and preform interlocking method (Z-fiber, fully interlocked, or hybrid). Tensile testing was performed for this study with the enhancement of a dual camera Digital Image Correlation (DIC) system which provides the capability to measure full-field strains and three dimensional displacements of objects under load. As expected, the ratio of warp/fill fiber has a direct influence on strength and modulus, with higher values measured in the direction of higher fiber volume bias. When comparing the Z-fiber weave to a fully interlocked weave with comparable fiber bias, the Z-fiber weave demonstrated the best performance in two different comparisons. We report the measured tensile strengths and moduli for test coupons from the 6 different weave configurations under study.
Alternative High-Performance Motors with Non-Rare Earth Materials, Final Publishable Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galioto, Steven; Johnson, Francis
Electric drive systems, which include electric machines and power electronics, are a key enabling technology for advanced vehicle propulsion systems that reduce the petroleum dependence of the transportation sector. To have significant effect, electric drive technologies must be economical in terms of cost, weight, and size while meeting performance and reliability expectations. The goal of the project is to develop traction motors that reduce or eliminate the use of rare-earth materials and meet the DoE specifications for such a traction motor. This is accomplished by evaluating and developing multiple motor topologies in conjunction with advanced materials. Eight non-permanent magnet motormore » topologies and two reduced or non-rare earth motor topologies are analyzed and compared using a common set of requirements. Five of the motors are built and tested to validate the analysis. This paper provides a detailed quantitative comparison of the different machine topologies that reduce or eliminate rare-earth materials. Conclusions are drawn from the analysis and test data to show the tradeoffs related to selecting each of the motor topologies with the hope of providing practicing engineers and researchers in the field enough guidelines for choosing the “optimum” machine topology that suits their applications and set of performance requirements. Four materials technologies were investigated for their ability to enable a reduced rare earth electric motor. Two of the technologies were soft magnetic materials, one was a non-rare-earth containing permanent magnet technology, and the last was an insulation material. These processing and performance of these materials were first demonstrated in small coupons. The coupon tests justified proceeding to larger scale processing for two of the materials technologies: 1) a dual-phase soft magnetic material for use in rotor laminates and 2) a high temperature insulation material for use as a slot liner in the stator. The dual phase soft magnetic material was produced at a scale sufficient to build and test a sub-scale motor prototype. The high temperature insulation material was first evaluated in a series of “statorettes” before being demonstrated in the stator of one of the full-scale motor prototypes. Testing of the dual phase material revealed issues with process variability in larger production volumes that are being addressed in a subsequent project. The performance of the high-temperature slot liner insulation was demonstrated during the operation of a full-scale prototype. Furthermore, the insulation material was shown to survive aging tests of 2000 hours and 280 °C and 800 hours at 300 °C. This program provides analysis and data to accelerate the introduction of hybrid electric vehicles into the U.S. road vehicle fleet and bring the added benefits of reduced fuel consumption and environmental impacts« less
Zhao, Ni; Chen, Jun; Carroll, Ian M.; Ringel-Kulka, Tamar; Epstein, Michael P.; Zhou, Hua; Zhou, Jin J.; Ringel, Yehuda; Li, Hongzhe; Wu, Michael C.
2015-01-01
High-throughput sequencing technology has enabled population-based studies of the role of the human microbiome in disease etiology and exposure response. Distance-based analysis is a popular strategy for evaluating the overall association between microbiome diversity and outcome, wherein the phylogenetic distance between individuals’ microbiome profiles is computed and tested for association via permutation. Despite their practical popularity, distance-based approaches suffer from important challenges, especially in selecting the best distance and extending the methods to alternative outcomes, such as survival outcomes. We propose the microbiome regression-based kernel association test (MiRKAT), which directly regresses the outcome on the microbiome profiles via the semi-parametric kernel machine regression framework. MiRKAT allows for easy covariate adjustment and extension to alternative outcomes while non-parametrically modeling the microbiome through a kernel that incorporates phylogenetic distance. It uses a variance-component score statistic to test for the association with analytical p value calculation. The model also allows simultaneous examination of multiple distances, alleviating the problem of choosing the best distance. Our simulations demonstrated that MiRKAT provides correctly controlled type I error and adequate power in detecting overall association. “Optimal” MiRKAT, which considers multiple candidate distances, is robust in that it suffers from little power loss in comparison to when the best distance is used and can achieve tremendous power gain in comparison to when a poor distance is chosen. Finally, we applied MiRKAT to real microbiome datasets to show that microbial communities are associated with smoking and with fecal protease levels after confounders are controlled for. PMID:25957468
Overview of CMOS process and design options for image sensor dedicated to space applications
NASA Astrophysics Data System (ADS)
Martin-Gonthier, P.; Magnan, P.; Corbiere, F.
2005-10-01
With the growth of huge volume markets (mobile phones, digital cameras...) CMOS technologies for image sensor improve significantly. New process flows appear in order to optimize some parameters such as quantum efficiency, dark current, and conversion gain. Space applications can of course benefit from these improvements. To illustrate this evolution, this paper reports results from three technologies that have been evaluated with test vehicles composed of several sub arrays designed with some space applications as target. These three technologies are CMOS standard, improved and sensor optimized process in 0.35μm generation. Measurements are focussed on quantum efficiency, dark current, conversion gain and noise. Other measurements such as Modulation Transfer Function (MTF) and crosstalk are depicted in [1]. A comparison between results has been done and three categories of CMOS process for image sensors have been listed. Radiation tolerance has been also studied for the CMOS improved process in the way of hardening the imager by design. Results at 4, 15, 25 and 50 krad prove a good ionizing dose radiation tolerance applying specific techniques.
NASA Astrophysics Data System (ADS)
Wichalek, Supattra; Chayaburakul, Kanokporn; Santiboon, Toansakul
2018-01-01
The purposes of this action research study were 1) to develop learning activities according to the instructional designing model of science, technology, and social (STS) on Digestion Issue, 2) to compare students' learning achievements between their learning activities with the conventional instructional (CIM) and conceptual instructional designing methods of science, technology, and social (STS) on digestion system of secondary students at the 10th grade level with a sample size of 35 experimental student group of their STS learning method, and 91 controlling group in two classes in the first semester in academic year 2016. Using the 4-Instructional Innovative Lesson Plans, the Students' Learning Behaviour Observing Form, the Questionnaire on Teacher Behaviour Interaction (QTBI), the Researcher's Recording Form, the Learning Activity Form, and the Parallel Learning Achievement Test (LAT) were assessed. The results of this research have found that; the Index of Item Objective Congruence (IOC) value ranged from 0.67 to 1.00; the difficulty values were 0.47 and 0.79 for the CIM and STS methods, respectively, the discriminative validity for the LAT was ranged from 0.20 to 0.75. The reliability of the QTBI was 0.79. Students' responses of their learning achievements with the average means scores indicted of the normalized gain values of 0.79 for the STS group, and 0.50 and 0.36 for the CIM groups, respectively. Students' learning achievements of their post-test indicated that of a higher than pre-test, the pre-test and post-test assessments were also differentiated evidence at the 0.05 levels for the STS and CIM groups, significantly. The 22-students' learning outcomes from the STS group evidences at a high level, only of the 9-students' responses in a moderate level were developed of their learning achievements, responsibility.
78 FR 38075 - International Labor Comparisons
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-25
.... ADDRESSES: Send inquiries to John Ruser, Office of Productivity and Technology, Bureau of Labor Statistics... FURTHER INFORMATION CONTACT: John Ruser, Office of Productivity and Technology, Bureau of Labor Statistics...
Evaluating Blended and Flipped Instruction in Numerical Methods at Multiple Engineering Schools
ERIC Educational Resources Information Center
Clark, Renee; Kaw, Autar; Lou, Yingyan; Scott, Andrew; Besterfield-Sacre, Mary
2018-01-01
With the literature calling for comparisons among technology-enhanced or active-learning pedagogies, a blended versus flipped instructional comparison was made for numerical methods coursework using three engineering schools with diverse student demographics. This study contributes to needed comparisons of enhanced instructional approaches in STEM…
Hot-Fire Testing of 5N and 22N HPGP Thrusters
NASA Technical Reports Server (NTRS)
Burnside, Christopher G.; Pedersen, Kevin W.; Pierce, Charles W.
2015-01-01
This hot-fire test continues NASA investigation of green propellant technologies for future missions. To show the potential for green propellants to replace some hydrazine systems in future spacecraft, NASA Marshall Space Flight Center (MSFC) is continuing to embark on hot-fire test campaigns with various green propellant blends.NASA completed hot-fire testing of 5N and 22N HPGP thrusters at the Marshall Space Flight Center’s Component Development Area altitude test stand in April 2015. Both thrusters are ground test articles and not flight ready units, but are representative of potential flight hardware with a known path towards flight application. The purpose of the 5N testing was to perform facility check-outs and generate a small set of data for comparison to ECAPS and Orbital ATK data sets. The 5N thruster performed as expected with thrust and propellant flow-rate data generated that are similar to previous testing at Orbital ATK. Immediately following the 5N testing, and using the same facility, the 22N testing was conducted on the same test stand with the purpose of demonstrating the 22N performance. The results of 22N testing indicate it performed as expected.The results of the hot-fire testing are presented in this paper and presentation.
Magsonic™ Carbothermal Technology Compared with the Electrolytic and Pidgeon Processes
NASA Astrophysics Data System (ADS)
Prentice, Leon H.; Haque, Nawshad
A broad technology comparison of carbothermal magnesium production with present technologies has not been previously presented. In this paper a comparative analysis of CSIRO's MagSonic™ process is made with the electrolytic and Pidgeon processes. The comparison covers energy intensity (GJ/tonne Mg), labor intensity (person-hours/tonne Mg), capital intensity (USD/tonne annual Mg installed capacity), and Global Warming Potential (GWP, tonnes CO2-equivalent/tonne Mg). Carbothermal technology is advantageous on all measures except capital intensity (where it is roughly twice the capital cost of a similarly-sized Pidgeon plant). Carbothermal and electrolytic production can have comparatively low environmental impacts, with typical emissions one-sixth those of the Pidgeon process. Despite recent progress, the Pidgeon process depends upon abundant energy and labor combined with few environmental constraints. Pressure is expected to increase on environmental constraints and labor and energy costs over the coming decade. Carbothermal reduction technology appears to be competitive for future production.
JTEC panel on display technologies in Japan
NASA Technical Reports Server (NTRS)
Tannas, Lawrence E., Jr.; Glenn, William E.; Credelle, Thomas; Doane, J. William; Firester, Arthur H.; Thompson, Malcolm
1992-01-01
This report is one in a series of reports that describes research and development efforts in Japan in the area of display technologies. The following are included in this report: flat panel displays (technical findings, liquid crystal display development and production, large flat panel displays (FPD's), electroluminescent displays and plasma panels, infrastructure in Japan's FPD industry, market and projected sales, and new a-Si active matrix liquid crystal display (AMLCD) factory); materials for flat panel displays (liquid crystal materials, and light-emissive display materials); manufacturing and infrastructure of active matrix liquid crystal displays (manufacturing logistics and equipment); passive matrix liquid crystal displays (LCD basics, twisted nematics LCD's, supertwisted nematic LCD's, ferroelectric LCD's, and a comparison of passive matrix LCD technology); active matrix technology (basic active matrix technology, investment environment, amorphous silicon, polysilicon, and commercial products and prototypes); and projection displays (comparison of Japanese and U.S. display research, and technical evaluation of work).
NASA Astrophysics Data System (ADS)
Petropoulos, George P.; Kontoes, Charalambos C.; Keramitsoglou, Iphigenia
2012-08-01
In this study, the potential of EO-1 Advanced Land Imager (ALI) radiometer for land cover and especially burnt area mapping from a single image analysis is investigated. Co-orbital imagery from the Landsat Thematic Mapper (TM) was also utilised for comparison purposes. Both images were acquired shortly after the suppression of a fire occurred during the summer of 2009 North-East of Athens, the capital of Greece. The Maximum Likelihood (ML), Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs) classifiers were parameterised and subsequently applied to the acquired satellite datasets. Evaluation of the land use/cover mapping accuracy was based on the error matrix statistics. Also, the McNemar test was used to evaluate the statistical significance of the differences between the approaches tested. Derived burnt area estimates were validated against the operationally deployed Services and Applications For Emergency Response (SAFER) Burnt Scar Mapping service. All classifiers applied to either ALI or TM imagery proved flexible enough to map land cover and also to extract the burnt area from other land surface types. The highest total classification accuracy and burnt area detection capability was returned from the application of SVMs to ALI data. This was due to the SVMs ability to identify an optimal separating hyperplane for best classes' separation that was able to better utilise ALI's advanced technological characteristics in comparison to those of TM sensor. This study is to our knowledge the first of its kind, effectively demonstrating the benefits of the combined application of SVMs to ALI data further implying that ALI technology may prove highly valuable in mapping burnt areas and land use/cover if it is incorporated into the development of Landsat 8 mission, planned to be launched in the coming years.
Thress, Kenneth S; Brant, Roz; Carr, T Hedley; Dearden, Simon; Jenkins, Suzanne; Brown, Helen; Hammett, Tracey; Cantarini, Mireille; Barrett, J Carl
2015-12-01
To assess the ability of different technology platforms to detect epidermal growth factor receptor (EGFR) mutations, including T790M, from circulating tumor DNA (ctDNA) in advanced non-small cell lung cancer (NSCLC) patients. A comparison of multiple platforms for detecting EGFR mutations in plasma ctDNA was undertaken. Plasma samples were collected from patients entering the ongoing AURA trial (NCT01802632), investigating the safety, tolerability, and efficacy of AZD9291 in patients with EGFR-sensitizing mutation-positive NSCLC. Plasma was collected prior to AZD9291 dosing but following clinical progression on a previous EGFR-tyrosine kinase inhibitor (TKI). Extracted ctDNA was analyzed using two non-digital platforms (cobas(®) EGFR Mutation Test and therascreen™ EGFR amplification refractory mutation system assay) and two digital platforms (Droplet Digital™ PCR and BEAMing digital PCR [dPCR]). Preliminary assessment (38 samples) was conducted using all four platforms. For EGFR-TKI-sensitizing mutations, high sensitivity (78-100%) and specificity (93-100%) were observed using tissue as a non-reference standard. For the T790M mutation, the digital platforms outperformed the non-digital platforms. Subsequent assessment using 72 additional baseline plasma samples was conducted using the cobas(®) EGFR Mutation Test and BEAMing dPCR. The two platforms demonstrated high sensitivity (82-87%) and specificity (97%) for EGFR-sensitizing mutations. For the T790M mutation, the sensitivity and specificity were 73% and 67%, respectively, with the cobas(®) EGFR Mutation Test, and 81% and 58%, respectively, with BEAMing dPCR. Concordance between the platforms was >90%, showing that multiple platforms are capable of sensitive and specific detection of EGFR-TKI-sensitizing mutations from NSCLC patient plasma. The cobas(®) EGFR Mutation Test and BEAMing dPCR demonstrate a high sensitivity for T790M mutation detection. Genomic heterogeneity of T790M-mediated resistance may explain the reduced specificity observed with plasma-based detection of T790M mutations versus tissue. These data support the use of both platforms in the AZD9291 clinical development program. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Evaluation of Traditional and Technology-Based Grocery Store Nutrition Education
ERIC Educational Resources Information Center
Schultz, Jennifer; Litchfield, Ruth
2016-01-01
Background: A literature gap exists for grocery interventions with realistic resource expectations; few technology-based publications exist, and none document traditional comparison. Purpose: Compare grocery store traditional aisle demonstrations (AD) and technology-based (TB) nutrition education treatments. Methods: A quasi-experimental 4-month…
Heart Rate Detection Using Microsoft Kinect: Validation and Comparison to Wearable Devices.
Gambi, Ennio; Agostinelli, Angela; Belli, Alberto; Burattini, Laura; Cippitelli, Enea; Fioretti, Sandro; Pierleoni, Paola; Ricciuti, Manola; Sbrollini, Agnese; Spinsante, Susanna
2017-08-02
Contactless detection is one of the new frontiers of technological innovation in the field of healthcare, enabling unobtrusive measurements of biomedical parameters. Compared to conventional methods for Heart Rate (HR) detection that employ expensive and/or uncomfortable devices, such as the Electrocardiograph (ECG) or pulse oximeter, contactless HR detection offers fast and continuous monitoring of heart activities and provides support for clinical analysis without the need for the user to wear a device. This paper presents a validation study for a contactless HR estimation method exploiting RGB (Red, Green, Blue) data from a Microsoft Kinect v2 device. This method, based on Eulerian Video Magnification (EVM), Photoplethysmography (PPG) and Videoplethysmography (VPG), can achieve performance comparable to classical approaches exploiting wearable systems, under specific test conditions. The output given by a Holter, which represents the gold-standard device used in the test for ECG extraction, is considered as the ground-truth, while a comparison with a commercial smartwatch is also included. The validation process is conducted with two modalities that differ for the availability of a priori knowledge about the subjects' normal HR. The two test modalities provide different results. In particular, the HR estimation differs from the ground-truth by 2% when the knowledge about the subject's lifestyle and his/her HR is considered and by 3.4% if no information about the person is taken into account.
Heart Rate Detection Using Microsoft Kinect: Validation and Comparison to Wearable Devices
Agostinelli, Angela; Belli, Alberto; Cippitelli, Enea; Fioretti, Sandro; Pierleoni, Paola; Ricciuti, Manola
2017-01-01
Contactless detection is one of the new frontiers of technological innovation in the field of healthcare, enabling unobtrusive measurements of biomedical parameters. Compared to conventional methods for Heart Rate (HR) detection that employ expensive and/or uncomfortable devices, such as the Electrocardiograph (ECG) or pulse oximeter, contactless HR detection offers fast and continuous monitoring of heart activities and provides support for clinical analysis without the need for the user to wear a device. This paper presents a validation study for a contactless HR estimation method exploiting RGB (Red, Green, Blue) data from a Microsoft Kinect v2 device. This method, based on Eulerian Video Magnification (EVM), Photoplethysmography (PPG) and Videoplethysmography (VPG), can achieve performance comparable to classical approaches exploiting wearable systems, under specific test conditions. The output given by a Holter, which represents the gold-standard device used in the test for ECG extraction, is considered as the ground-truth, while a comparison with a commercial smartwatch is also included. The validation process is conducted with two modalities that differ for the availability of a priori knowledge about the subjects’ normal HR. The two test modalities provide different results. In particular, the HR estimation differs from the ground-truth by 2% when the knowledge about the subject’s lifestyle and his/her HR is considered and by 3.4% if no information about the person is taken into account. PMID:28767091
ERIC Educational Resources Information Center
Efe, Hülya Aslan; Efe, Rifat; Yücel, Sait
2016-01-01
In this study, pre-service science teachers' anxiety, self-efficacy and attitudes regarding educational technology were investigated. Given the increased emphasis on educational technology in the classroom, teachers' attitudes, anxiety and self-efficacy regarding educational technology are important. The study was conducted with a total of 726…
ERIC Educational Resources Information Center
Smith, Ryan Cummings
2010-01-01
Prior research on students' uses of technology has suggested it can be used to support students' development of formal justifications and proofs. The ways in which these technologies influence the construction of arguments and proofs remain uncertain. Furthermore, research has not been conducted that compares the arguments students develop while…
NASA Astrophysics Data System (ADS)
Mäkinen, Mika; Jauhiainen, Eeva; Matilainen, Ville-Pekka; Riihimäki, Jaakko; Ritvanen, Jussi; Piili, Heidi; Salminen, Antti
Laser additive manufacturing (LAM) is a fabrication technology, which enables production of complex parts from metallic materials with mechanical properties comparable to those of conventionally machined parts. These LAM parts are manufactured via melting metallic powder layer by layer with laser beam. Aim of this study is to define preliminarily the possibilities of using electroplating to supreme surface properties. Electrodeposited nickel and chromium as well as electroless (autocatalytic) deposited nickel was used to enhance laser additive manufactured and machined parts properties, like corrosion resistance, friction and wearing. All test pieces in this study were manufactured with a modified research AM equipment, equal to commercial EOS M series. The laser system used for tests was IPG 200 W CW fiber laser. The material used in this study for additive manufacturing was commercial stainless steel powder grade named SS316L. This SS316L is not equal to AISI 316L grade, but commercial name of this kind of powder is widely known in additive manufacturing as SS316L. Material used for fabrication of comparison test pieces (i.e. conventionally manufactured) was AISI 316L stainless steel bar. Electroplating was done in matrix cell and electroless was done in plastic sink properties of plated parts were tested within acetic acid salt spray corrosion chamber (AASS, SFS-EN-ISO 9227 standard). Adhesion of coating, friction and wearing properties were tested with Pin-On-Rod machine. Results show that in these preliminary tests, LAM parts and machined parts have certain differences due to manufacturing route and surface conditions. These have an effect on electroplated and electroless parts features on adhesion, corrosion, wearing and friction. However, further and more detailed studies are needed to fully understand these phenomena.
Propulsion Flight Research at NASA Dryden From 1967 to 1997
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Ray, Ronald J.; Conners, Timothy R.; Walsh, Kevin R.
1997-01-01
From 1967 to 1997, pioneering propulsion flight research activities have been conceived and conducted at the NASA Dryden Flight Research Center. Many of these programs have been flown jointly with the United States Department of Defense, industry, or the Federal Aviation Administration. Propulsion research has been conducted on the XB-70, F-111 A, F-111E, YF-12, JetStar, B-720, MD-11, F-15, F- 104, Highly Maneuverable Aircraft Technology, F-14, F/A-18, SR-71, and the hypersonic X-15 airplanes. Research studies have included inlet dynamics and control, in-flight thrust computation, integrated propulsion controls, inlet and boattail drag, wind tunnel-to-flight comparisons, digital engine controls, advanced engine control optimization algorithms, acoustics, antimisting kerosene, in-flight lift and drag, throttle response criteria, and thrust-vectoring vanes. A computer-controlled thrust system has been developed to land the F-15 and MD-11 airplanes without using any of the normal flight controls. An F-15 airplane has flown tests of axisymmetric thrust-vectoring nozzles. A linear aerospike rocket experiment has been developed and tested on the SR-71 airplane. This paper discusses some of the more unique flight programs, the results, lessons learned, and their impact on current technology.
Progress of artificial pancreas devices towards clinical use: the first outpatient studies.
Russell, Steven J
2015-04-01
This article describes recent progress in the automated control of glycemia in type 1 diabetes with artificial pancreas devices that combine continuous glucose monitoring with automated decision-making and insulin delivery. After a gestation period of closely supervised feasibility studies in research centers, the last 2 years have seen publication of studies testing these devices in outpatient environments, and many more such studies are ongoing. The most basic form of automation, suspension of insulin delivery for actual or predicted hypoglycemia, has been shown to be effective and well tolerated, and a first-generation device has actually reached the market. Artificial pancreas devices that actively dose insulin fall into two categories, those that dose insulin alone and those that also use glucagon to prevent and treat hypoglycemia (bihormonal artificial pancreas). Initial outpatient clinical trials have shown that both strategies can improve glycemic management in comparison with patient-controlled insulin pump therapy, but only the bihormonal strategy has been tested without restrictions on exercise. Artificial pancreas technology has the potential to reduce acute and chronic complications of diabetes and mitigate the burden of diabetes self-management. Successful outpatient studies bring these technologies one step closer to availability for patients.
IMS radionuclide monitoring after the announced nuclear test of the DPRK on 3 September 2017
NASA Astrophysics Data System (ADS)
Kusmierczyk-Michulec, J.; Kalinowski, M.; Bourgouin, P.; Boxue, L.; Gheddou, A.; Klingberg, F.; Leppaenen, A. P.; Schoeppner, M.; Werzi, R.; Wang, J.
2017-12-01
The International Monitoring System (IMS) developed by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) is a global system of monitoring stations, using four complementary technologies: seismic, hydroacoustic, infrasound and radionuclide. The radionuclide network comprises 80 stations, out of which 40 are to be equipped with noble gas systems. The aim of radionuclide stations is a global monitoring of radioactive aerosols, radioactive noble gases and atmospheric transport modelling (ATM). To investigate the transport of radionuclide emissions, the Provisional Technical Secretariat (PTS) operates an Atmospheric Transport Modelling (ATM) system based on the Lagrangian Particle Dispersion Model FLEXPART. The air mass trajectory provides a "link" between a radionuclide release and a detection confirmed by radionuclide measurements. The aim of this study is to demonstrate the RN analysis and the application of ATM to investigate the episodes of elevated levels of radioxenon observed by IMS stations after the sixth nuclear test, announced by the Democratic People's Republic of Korea (DPRK) at the Punggye-ri Nuclear Test Site on 3 September 2017. A comparison to the previous tests will be presented.
Xiao, Yue; Wang, Feng; Cui, Peide; Lei, Lei; Lin, Juntao; Yi, Mingwei
2018-05-29
Micro-surfacing is a widely used pavement preventive maintenance technology used all over the world, due to its advantages of fast construction, low maintenance cost, good waterproofness, and skid-resistance performance. This study evaluated the fine aggregate morphology and surface texture of micro-surfacing by AIMS (aggregate image measurement system), and explored the effect of aggregate morphology on skid-resistance of single-grade micro-surfacing. Sand patch test and British pendulum test were also used to detect skid-resistance for comparison with the image-based method. Wet abrasion test was used to measure skid-resistance durability for feasibility verification of single-grade micro-surfacing. The results show that the effect of Form2D on the skid-resistance of micro-surfacing is much stronger than that of angularity. Combining the feasibility analysis of durability and skid-resistance, 1.18⁻2.36 grade micro-surfacing meets the requirements of durability and skid-resistance at the same time. This study also determined that, compared with British pendulum test, the texture result obtained by sand patch test fits better with results of image method.
Environmental implications of wireless technologies: news delivery and business meetings.
Toffel, Michael W; Horvath, Arpad
2004-06-01
Wireless information technologies are providing new ways to communicate, and are one of several information and communication technologies touted as an opportunity to reduce society's overall environmental impacts. However, rigorous system-wide environmental impact comparisons of these technologies to the traditional applications they may replace have only recently been initiated, and the results have been mixed. In this paper, the environmental effects of two applications of wireless technologies are compared to those of conventional technologies for which they can substitute. First, reading newspaper content on a personal digital assistant (PDA) is compared to the traditional way of reading a newspaper. Second, wireless teleconferencing is compared to business travel. The results show that for both comparisons wireless technologies create lower environmental impacts. Compared to reading a newspaper, receiving the news on a PDA wirelessly results in the release of 32-140 times less CO2, several orders of magnitude less NOx and SOx, and the use of 26-67 times less water. Wireless teleconferencing results in 1-3 orders of magnitude lower CO2, NOx, and SO2 emissions than business travel.
Xie, Pusheng; Ouyang, Hanbin; Deng, Yuping; Yang, Yang; Xu, Jing; Huang, Wenhua
2017-09-02
Additive manufacturing (AM) technology has helped to achieve several advances in the medical field, particularly as far as fabrication of implants is concerned. But the application of direct metal laser sintering (DMLS) bone plate is quite limited due to the indeterminate mechanical property. The purposes of this study were to characterize the biomechanical properties of the polished DMLS reconstruction plate and to compare these with the properties of commonly applied implants and to find whether the mechanical performance of DMLS plate meets the requirements for clinical application. In this study, we fabricated two groups of plates by DMLS and computer numerical control (CNC) techniques. After that, we polished all samples and investigated their roughness, components, hardness, static bending, and torsional performance. Moreover, cyclic bending tests and fractographic analysis were conducted. Statistical comparisons of the group by means of monotonic test data were made, and a qualitative comparison was performed to assess failures in fatigue. We found no differences in surface roughness or components after polishing, but the DMLS plate hardness is 7.42% (p < 0.01) greater than that of the CNC plates. Compared with the CNC plates, the DMLS plate static bending and torsional performance were significantly greater. In a dynamic test, the DMLS plates survived 10 6 , 10 6 , 32,731, and 33,264 cycles under 0.6, 0.8, 0.9, and 1 kN cyclic loads, respectively, while the CNC plates survived 10 6 , 10 6 , 10 6 , and 283,714 cycles. These results indicate that the mechanical performances of the DMLS plate are stronger, and the strength under fatigue tests is sufficient. DMLS implant has great potential and may become a better choice for clinical use in the future. However, direct application of these AM instruments in the operating room requires further validation including animal and clinical experiment.
2014-01-01
Background The importance of using technologies such as e-learning in different disciplines is discussed in the literature. Researchers have measured the effectiveness of e-learning in a number of fields. Considering the lack of research on the effectiveness of online learning in dental education particularly in Iran, the advantages of these learning methods and the positive university atmosphere regarding the use of online learning. This study, therefore, aims to compare the effects of two methods of teaching (virtual versus traditional) on student learning. Methods This post-test only design study approached 40, fifth year dental students of Shiraz University of Medical Sciences. From this group, 35 students agreed to participate. These students were randomly allocated into two groups, experimental (virtual learning) and comparison (traditional learning). To ensure similarity between groups, we compared GPAs of all participants by the Mann–Whitney U test (P > 0.05). The experimental group received a virtual learning environment courseware package specifically designed for this study, whereas the control group received the same module structured in a traditional lecture form. The virtual learning environment consisted of online and offline materials. Two identical valid, reliable post-tests that consisted of 40 multiple choice questions (MCQs) and 4 essay questions were administered immediately (15 min) after the last session and two months later to assess for knowledge retention. Data were analyzed by SPSS version 20. Results A comparison of the mean knowledge score of both groups showed that virtual learning was more effective than traditional learning (effect size = 0.69). Conclusion The newly designed virtual learning package is feasible and will result in more effective learning in comparison with lecture-based training. However further studies are needed to generalize the findings of this study. PMID:24597923
NASA Technical Reports Server (NTRS)
Smith, Arthur F.
1985-01-01
Results of static stability wind tunnel tests of three 62.2 cm (24.5 in) diameter models of the Prop-Fan are presented. Measurements of blade stresses were made with the Prop-Fans mounted on an isolated nacelle in an open 5.5 m (18 ft) wind tunnel test section with no tunnel flow. The tests were conducted in the United Technology Research Center Large Subsonic Wind Tunnel. Stall flutter was determined by regions of high stress, which were compared with predictions of boundaries of zero total viscous damping. The structural analysis used beam methods for the model with straight blades and finite element methods for the models with swept blades. Increasing blade sweep tends to suppress stall flutter. Comparisons with similar test data acquired at NASA/Lewis are good. Correlations between measured and predicted critical speeds for all the models are good. The trend of increased stability with increased blade sweep is well predicted. Calculated flutter boundaries generaly coincide with tested boundaries. Stall flutter is predicted to occur in the third (torsion) mode. The straight blade test shows third mode response, while the swept blades respond in other modes.
Flight test of the X-29A at high angle of attack: Flight dynamics and controls
NASA Technical Reports Server (NTRS)
Bauer, Jeffrey E.; Clarke, Robert; Burken, John J.
1995-01-01
The NASA Dryden Flight Research Center has flight tested two X-29A aircraft at low and high angles of attack. The high-angle-of-attack tests evaluate the feasibility of integrated X-29A technologies. More specific objectives focus on evaluating the high-angle-of-attack flying qualities, defining multiaxis controllability limits, and determining the maximum pitch-pointing capability. A pilot-selectable gain system allows examination of tradeoffs in airplane stability and maneuverability. Basic fighter maneuvers provide qualitative evaluation. Bank angle captures permit qualitative data analysis. This paper discusses the design goals and approach for high-angle-of-attack control laws and provides results from the envelope expansion and handling qualities testing at intermediate angles of attack. Comparisons of the flight test results to the predictions are made where appropriate. The pitch rate command structure of the longitudinal control system is shown to be a valid design for high-angle-of-attack control laws. Flight test results show that wing rock amplitude was overpredicted and aileron and rudder effectiveness were underpredicted. Flight tests show the X-29A airplane to be a good aircraft up to 40 deg angle of attack.
NASA Technical Reports Server (NTRS)
Lewandowski, Edward J.; Schreiber, Jeffre G.; Wilson, Scott D.; oriti, Salvatore M.; Cornell, Peggy; Schifer, Nicholas
2008-01-01
100 We class Stirling convertors began extended operation testing at NASA Glenn Research Center (GRC) in 2003 with a pair of Technology Demonstration Convertors (TDCs) operating in air. Currently, the number of convertors on extended operation test has grown to 12, including both TDCs and Advanced Stirling Convertors (ASCs) operating both in air and in thermal vacuum. Additional convertors and an electrically heated radioisotope generator will be put on test in the near future. This testing has provided data to support life and reliability estimates and the quality improvements and design changes that have been made to the convertor. The convertors operated 24/7 at the nominal amplitude and power levels. Performance data were recorded on an hourly basis. Techniques to monitor the convertors for change in internal operation included gas analysis, vibration measurements and acoustic emission measurements. This data provided a baseline for future comparison. This paper summarizes the results of over 145,000 hours of TDC testing and 40,000 hours of ASC testing and discusses trends in the data. Data shows the importance of improved materials, hermetic sealing, and quality processes in maintaining convertor performance over long life.
NASA Technical Reports Server (NTRS)
Lewandowski, Edward J.; Schreiber, Jeffrey G.; Wilson, Scott D.; Oriti, Salvatore M.; Cornell, Peggy; Schifer, Nicholas
2009-01-01
100 We class Stirling convertors began extended operation testing at NASA Glenn Research Center (GRC) in 2003 with a pair of Technology Demonstration Convertors (TDCs) operating in air. Currently, the number of convertors on extended operation test has grown to 12, including both TDCs and Advanced Stirling Convertors (ASCs) operating both in air and in thermal vacuum. Additional convertors and an electrically heated radioisotope generator will be put on test in the near future. This testing has provided data to support life and reliability estimates and the quality improvements and design changes that have been made to the convertor. The convertors operated 24/7 at the nominal amplitude and power levels. Performance data were recorded on an hourly basis. Techniques to monitor the convertors for change in internal operation included gas analysis, vibration measurements, and acoustic emission measurements. This data provided a baseline for future comparison. This paper summarizes the results of over 145,000 hr of TDC testing and 40,000 hr of ASC testing and discusses trends in the data. Data shows the importance of improved materials, hermetic sealing, and quality processes in maintaining convertor performance over long life.
1982-05-01
including multidimensional scaling. Applications have arisen in many areas, but most notably in food technolog, marketing research, and sports ... competition .- An extensive bibliography on paired comparisons by Davidson and Farquhar (1976) contains some 400 references. - Paired comparisons have been...consideration of chess competition . Ford (1957) pro- posed the model independently. Both Zermelo and Ford concentrated on solution of normal equations for
Data storage technology comparisons
NASA Technical Reports Server (NTRS)
Katti, Romney R.
1990-01-01
The role of data storage and data storage technology is an integral, though conceptually often underestimated, portion of data processing technology. Data storage is important in the mass storage mode in which generated data is buffered for later use. But data storage technology is also important in the data flow mode when data are manipulated and hence required to flow between databases, datasets and processors. This latter mode is commonly associated with memory hierarchies which support computation. VLSI devices can reasonably be defined as electronic circuit devices such as channel and control electronics as well as highly integrated, solid-state devices that are fabricated using thin film deposition technology. VLSI devices in both capacities play an important role in data storage technology. In addition to random access memories (RAM), read-only memories (ROM), and other silicon-based variations such as PROM's, EPROM's, and EEPROM's, integrated devices find their way into a variety of memory technologies which offer significant performance advantages. These memory technologies include magnetic tape, magnetic disk, magneto-optic disk, and vertical Bloch line memory. In this paper, some comparison between selected technologies will be made to demonstrate why more than one memory technology exists today, based for example on access time and storage density at the active bit and system levels.
Finding faults: analogical comparison supports spatial concept learning in geoscience.
Jee, Benjamin D; Uttal, David H; Gentner, Dedre; Manduca, Cathy; Shipley, Thomas F; Sageman, Bradley
2013-05-01
A central issue in education is how to support the spatial thinking involved in learning science, technology, engineering, and mathematics (STEM). We investigated whether and how the cognitive process of analogical comparison supports learning of a basic spatial concept in geoscience, fault. Because of the high variability in the appearance of faults, it may be difficult for students to learn the category-relevant spatial structure. There is abundant evidence that comparing analogous examples can help students gain insight into important category-defining features (Gentner in Cogn Sci 34(5):752-775, 2010). Further, comparing high-similarity pairs can be especially effective at revealing key differences (Sagi et al. 2012). Across three experiments, we tested whether comparison of visually similar contrasting examples would help students learn the fault concept. Our main findings were that participants performed better at identifying faults when they (1) compared contrasting (fault/no fault) cases versus viewing each case separately (Experiment 1), (2) compared similar as opposed to dissimilar contrasting cases early in learning (Experiment 2), and (3) viewed a contrasting pair of schematic block diagrams as opposed to a single block diagram of a fault as part of an instructional text (Experiment 3). These results suggest that comparison of visually similar contrasting cases helped distinguish category-relevant from category-irrelevant features for participants. When such comparisons occurred early in learning, participants were more likely to form an accurate conceptual representation. Thus, analogical comparison of images may provide one powerful way to enhance spatial learning in geoscience and other STEM disciplines.
Advanced technology commercial fuselage structure
NASA Technical Reports Server (NTRS)
Ilcewicz, L. B.; Smith, P. J.; Walker, T. H.; Johnson, R. W.
1991-01-01
Boeing's program for Advanced Technology Composite Aircraft Structure (ATCAS) has focused on the manufacturing and performance issues associated with a wide body commercial transport fuselage. The primary goal of ATCAS is to demonstrate cost and weight savings over a 1995 aluminum benchmark. A 31 foot section of fuselage directly behind the wing to body intersection was selected for study purposes. This paper summarizes ATCAS contract plans and review progress to date. The six year ATCAS program will study technical issues for crown, side, and keel areas of the fuselage. All structural details in these areas will be included in design studies that incorporate a design build team (DBT) approach. Manufacturing technologies will be developed for concepts deemed by the DBT to have the greatest potential for cost and weight savings. Assembly issues for large, stiff, quadrant panels will receive special attention. Supporting technologies and mechanical tests will concentrate on the major issues identified for fuselage. These include damage tolerance, pressure containment, splices, load redistribution, post-buckled structure, and durability/life. Progress to date includes DBT selection of baseline fuselage concepts; cost and weight comparisons for crown panel designs; initial panel fabrication for manufacturing and structural mechanics research; and toughened material studies related to keel panels. Initial ATCAS studies have shown that NASA's Advanced Composite Technology program goals for cost and weight savings are attainable for composite fuselage.
Commercialization and Industrial Development for the Fetal Hear Rate Monitor
NASA Technical Reports Server (NTRS)
Zahorian, Stephen
2000-01-01
The primary objectives for this task were to continue the development and testing of the NASA/ODU passive acoustic fetal heart rate monitor, with the goal of transferring the technology to the commercial sector. Areas of work included: 1. To assist in the development of a new hardware front end electronics box for the fetal heart rate monitor, so as to reduce the size of the electronics box, and also to provide for a "low-frequency" and "high-frequency" mode of operation. To make necessary changes in the operating software to support the two modes of operation. 2. To provide an option for a strip chart recording for the system, so that medical personnel could more easily make comparisons with ultra sound strip chart recordings. and 3. To help with continued testing of the system.
NASA Astrophysics Data System (ADS)
Wassel, A. T.; Shih, W. C. L.; Curtis, R. J.
1981-01-01
Boundary layer transition and surface heating distributions on graphite fine weave carbon-carbon, and metallic nosetip materials were derived from surface temperature responses measured in nitrogen environments during both free-flight and track-guided testing in the AEDC Hyperballistics Range/Track G. Innovative test procedures were developed, and heat transfer results were validated against established theory through experiments using a super-smooth tungsten model. Quantitative definitions of mean transition front locations were established by deriving heat flux distributions from measured temperatures, and comparisons made with existing nosetip transition correlations. Qualitative transition locations were inferred directly from temperature distributions to investigate preferred orientations on fine weave nosetips. Levels of roughness augmented heat transfer were generally shown to be below values predicted by state of the art methods.
Quality of selected coals of Hungary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landis, E.R.; Rohrbacher, T.J.; Gluskoter, H.J.
2000-07-01
As part of the activities conducted under the US-Hungarian Science and Technology Fund, a total of 39 samples from five coal mines in five geologically-distinct coal areas in Hungary were selected for proximate and ultimate analyses. In addition, the heat value, forms of sulfur, free-swelling index, equilibrium moisture, Hardgrove grindability index, four-point ash fusion temperatures (both oxidizing and reducing), and apparent specific gravity were determined for each sample. Standard procedures established by the American Society for Testing and Materials (ASTM, 1999) were used. The analytical results will be available in the International Coal Quality Data Base of the USGS. Resultsmore » of the program provide data for comparison with coal quality test data from Europe and information of value to potential investors or cooperators in the coal industry of Hungary and Central Europe.« less
An Overview of the Space Shuttle Aerothermodynamic Design
NASA Technical Reports Server (NTRS)
Martin, Fred
2011-01-01
The Space Shuttle Thermal Protection System was one of the three areas that required the development of new technology. The talk discusses the pre-flight development of the aerothermodynamic environment which was based on Mach 8 wind tunnel data. A high level overview of the pre-flight heating rate predictions and comparison to the Orbiter Flight Test (OFT) data is presented, along with a discussion of the dramatic improvement in the state-of-the-art in aerothermodynamic capability that has been used to support the Shuttle Program. A high level review of the Orbiter aerothermodynamic design is discussed, along with improvements in Computational Fluid Dynamics and wind tunnel testing that was required for flight support during the last 30 years. The units have been removed from the plots, and the discussion is kept at a high level.
NASA Astrophysics Data System (ADS)
Nakano, Mika; Takahara, Kenji; Kajiwara, Toshinori
This paper describes the effect of curriculum for communication ability, “Communication Theory I”, newly started in Fukuoka Institute of Technology in 2007. The purpose of this half-year course was to develop self-awareness and to improve interpersonal relationship through dialog. The program was designed, based on the Process of attitude change of students through dialogue. In the class, students were encouraged to take active role in discussion, constructing one's own argument and refuting others'. Emphasis was also placed on giving the students the opportunity to evaluate other students' discussion. Results showed differences in pre-test-post-test comparisons, confirming that learning environment for discussion could result in conceptual change for students. Further interview analyses and analyses of speech data helped to clarify what was learned through debate.
Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration
Ebrahimi, Mehrdad; Busse, Nadine; Kerker, Steffen; Schmitz, Oliver; Hilpert, Markus; Czermak, Peter
2015-01-01
Pulp and paper waste water is one of the major sources of industrial water pollution. This study tested the suitability of ceramic tubular membrane technology as an alternative to conventional waste water treatment in the pulp and paper industry. In this context, in series batch and semi-batch membrane processes comprising microfiltration, ultrafiltration and nanofiltration, ceramic membranes were developed to reduce the chemical oxygen demand (COD) and remove residual lignin from the effluent flow during sulfite pulp production. A comparison of the ceramic membranes in terms of separation efficiency and performance revealed that the two-stage process configuration with microfiltration followed by ultrafiltration was most suitable for the efficient treatment of the alkaline bleaching effluent tested herein, reducing the COD concentration and residual lignin levels by more than 35% and 70%, respectively. PMID:26729180
Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration.
Ebrahimi, Mehrdad; Busse, Nadine; Kerker, Steffen; Schmitz, Oliver; Hilpert, Markus; Czermak, Peter
2015-12-31
Pulp and paper waste water is one of the major sources of industrial water pollution. This study tested the suitability of ceramic tubular membrane technology as an alternative to conventional waste water treatment in the pulp and paper industry. In this context, in series batch and semi-batch membrane processes comprising microfiltration, ultrafiltration and nanofiltration, ceramic membranes were developed to reduce the chemical oxygen demand (COD) and remove residual lignin from the effluent flow during sulfite pulp production. A comparison of the ceramic membranes in terms of separation efficiency and performance revealed that the two-stage process configuration with microfiltration followed by ultrafiltration was most suitable for the efficient treatment of the alkaline bleaching effluent tested herein, reducing the COD concentration and residual lignin levels by more than 35% and 70%, respectively.
Documenting helicopter operations from an energy standpoint
NASA Technical Reports Server (NTRS)
Davis, S. J.; Stepniewski, W. Z.
1974-01-01
Results are presented of a study of the relative and absolute energy consumption of helicopters, including limited comparisons with fixed-wing aircraft, and selected surface transportation vehicles. Additional comparisons were made to determine the level of reduction in energy consumption expected from the application of advanced technologies to the helicopter design and sizing process. It was found that improvements in helicopter consumption characteristics can be accomplished through the utilization of advanced technology to reduce drag, structures weight, and powerplant fuel consumption.
Selection of shuttle payload data processing drivers for the data system new technology study
NASA Technical Reports Server (NTRS)
1976-01-01
An investigation of all payloads in the IBM disciplines and the selection of driver payloads within each discipline are described. The driver payloads were selected on the basis of their data processing requirements. These requirements are measured by a weighting scheme. The total requirements for each discipline are estimated by use of the technology payload model. The driver selection process which was both a payload by payload comparison and a comparison of expected groupings of payloads was examined.
The protocol describes the Environmental Technology Verification (ETV) Program's considerations and requirements for verification of emissions reduction provided by selective catalytic reduction (SCR) technologies. The basis of the ETV will be comparison of the emissions and perf...
ERIC Educational Resources Information Center
Strycker, Jesse D.
2011-01-01
Though an educational technology experience is required as part of a traditional teacher education program student's educational preparation, research has been limited into the experiences had by alternative teacher education program students. Similarly, little research has been done comparing technology experiences between both types of teacher…
Trajectories of Mathematics and Technology Education Pointing to Engineering Design
ERIC Educational Resources Information Center
Daugherty, Jenny L.; Reese, George C.; Merrill, Chris
2010-01-01
A brief examination and comparison of mathematics and technology education provides the background for a discussion of integration. In particular, members of each field have responded to the increasing pressures to better prepare students for the technologically rich, globally competitive future. Approaches based within each discipline are varied…
Science, Math, and Technology. K-6 Science Curriculum.
ERIC Educational Resources Information Center
Blueford, J. R.; And Others
Science, Math and Technology is one of the units of a K-6 unified science curriculum program. The unit consists of four organizing sub-themes: (1) science (with activities on observation, comparisons, and the scientific method); (2) technology (examining simple machines, electricity, magnetism, waves and forces); (3) mathematics (addressing skill…
ERIC Educational Resources Information Center
Buccelli, Pamela
A study compared the perceptions of Pennsylvania laboratory directors and medical technology educators relative to career-entry competencies for associate degree medical laboratory technicians (MLTs) and baccalaureate medical technology (MT) graduates. A 55-item competency questionnaire was administered to 265 hospital laboratory directors and 40…
ERIC Educational Resources Information Center
Larson, Thomas Donald
With advances being made in the area of technology and increased emphasis being placed on use of technology in the classroom, teachers and administrators are questioning the effectiveness of technology driven teaching aids. The present issue revolves around whether students' academic performance can be enhanced by using and incorporating…