NASA Technical Reports Server (NTRS)
Cole, Stuart K.; Wallace, Jon; Schaffer, Mark; May, M. Scott; Greenberg, Marc W.
2014-01-01
As a leader in space technology research and development, NASA is continuing in the development of the Technology Estimating process, initiated in 2012, for estimating the cost and schedule of low maturity technology research and development, where the Technology Readiness Level is less than TRL 6. NASA' s Technology Roadmap areas consist of 14 technology areas. The focus of this continuing Technology Estimating effort included four Technology Areas (TA): TA3 Space Power and Energy Storage, TA4 Robotics, TA8 Instruments, and TA12 Materials, to confine the research to the most abundant data pool. This research report continues the development of technology estimating efforts completed during 2013-2014, and addresses the refinement of parameters selected and recommended for use in the estimating process, where the parameters developed are applicable to Cost Estimating Relationships (CERs) used in the parametric cost estimating analysis. This research addresses the architecture for administration of the Technology Cost and Scheduling Estimating tool, the parameters suggested for computer software adjunct to any technology area, and the identification of gaps in the Technology Estimating process.
NASA Technical Reports Server (NTRS)
Anderson, David J.; Pencil, Eric; Vento, Daniel; Peterson, Todd; Dankanich, John; Hahne, David; Munk, Michelle M.
2011-01-01
Since September 2001 NASA s In-Space Propulsion Technology (ISPT) program has been developing technologies for lowering the cost of planetary science missions. Recently completed is the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. Two other cost saving technologies nearing completion are the NEXT ion thruster and the Aerocapture technology project. Also under development are several technologies for low cost sample return missions. These include a low cost Hall effect thruster (HIVHAC) which will be completed in 2011, light weight propellant tanks, and a Multi-Mission Earth Entry Vehicle (MMEEV). This paper will discuss the status of the technology development, the cost savings or performance benefits, and applicability of these in-space propulsion technologies to NASA s future Discovery, and New Frontiers missions, as well as their relevance for sample return missions.
Cost as a technology driver. [in aerospace R and D
NASA Technical Reports Server (NTRS)
Fitzgerald, P. E., Jr.; Savage, M.
1976-01-01
Cost managment as a guiding factor in optimum development of technology, and proper timing of cost-saving programs in the development of a system or technology with payoffs in development and operational advances are discussed and illustrated. Advances enhancing the performance of hardware or software advances raising productivity or reducing cost, are outlined, with examples drawn from: thermochemical thrust maximization, development of cryogenic storage tanks, improvements in fuel cells for Space Shuttle, design of a spacecraft pyrotechnic initiator, cost cutting by reduction in the number of parts to be joined, and cost cutting by dramatic reductions in circuit component number with small-scale double-diffused integrated circuitry. Program-focused supporting research and technology models are devised to aid judicious timing of cost-conscious research programs.
Testing a potential national strategy for cost-effective medical technology
NASA Astrophysics Data System (ADS)
Fitch, J. Patrick
1995-10-01
The Center for Healthcare Technologies at Lawrence Livermore National Laboratory is a partnership among government, industry, and universities that focuses on improving healthcare through development of cost-effective technology. With the guidance of healthcare providers, medical institutions, and medical instrument manufacturers, technology can be harnessed to reduce healthcare costs. The partnership is a miniature test case for a potential national strategy for development and adoption of technology specifically to reduce costs.
Kabir, Fayzul; Chowdhury, Shakhawat
2017-11-01
Arsenic pollution of drinking water is a concern, particularly in the developing countries. Removal of arsenic from drinking water is strongly recommended. Despite the availability of efficient technologies for arsenic removal, the small and rural communities in the developing countries are not capable of employing most of these technologies due to their high cost and technical complexity. There is a need for the "low-cost" and "easy to use" technologies to protect the humans in the arsenic affected developing countries. In this study, arsenic removal technologies were summarized and the low-cost technologies were reviewed. The advantages and disadvantages of these technologies were identified and their scopes of applications and improvements were investigated. The costs were compared in context to the capacity of the low-income populations in the developing countries. Finally, future research directions were proposed to protect the low-income populations in the developing countries.
Detailed costing document for the centralized waste treatment industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-12-01
In this document, EPA presents the costs estimated for compliance with the proposed CWT effluent limitations guidelines and standards. Section 1 provides a general description of how the individual treatment technology and regulatory option costs were developed. In Sections 2 through 4, EPA describes the development of costs for each of the wastewater and sludge treatment technologies. In Section 5, EPA presents additional compliance costs to be incurred by facilities, which are not technology specific. These additional items are retrofit costs, monitoring costs, RCRA permit modification costs, and land costs.
ERIC Educational Resources Information Center
Meeks, Glenn E.; Fisher, Ricki; Loveless, Warren
Personnel involved in planning or developing schools lack the costing tools that will enable them to determine educational technology costs. This report presents an overview of the technology costing process and the general costs used in estimating educational technology systems on a macro-budget basis, along with simple cost estimates for…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Jochem W; Laird, Daniel; Costello, Ronan
This paper presents a comparative assessment of three fundamentally different wave energy converter technology development trajectories. The three technology development trajectories are expressed and visualised as a function of technology readiness levels and technology performance levels. The assessment shows that development trajectories that initially prioritize technology readiness over technology performance are likely to require twice the development time, consume a threefold of the development cost, and are prone to a risk of technical or commercial failure of one order of magnitude higher than those development trajectories that initially prioritize technology performance over technology readiness.
Cost/benefit analysis of advanced materials technology candidates for the 1980's, part 2
NASA Technical Reports Server (NTRS)
Dennis, R. E.; Maertins, H. F.
1980-01-01
Cost/benefit analyses to evaluate advanced material technologies projects considered for general aviation and turboprop commuter aircraft through estimated life-cycle costs, direct operating costs, and development costs are discussed. Specifically addressed is the selection of technologies to be evaluated; development of property goals; assessment of candidate technologies on typical engines and aircraft; sensitivity analysis of the changes in property goals on performance and economics, cost, and risk analysis for each technology; and ranking of each technology by relative value. The cost/benefit analysis was applied to a domestic, nonrevenue producing, business-type jet aircraft configured with two TFE731-3 turbofan engines, and to a domestic, nonrevenue producing, business type turboprop aircraft configured with two TPE331-10 turboprop engines. In addition, a cost/benefit analysis was applied to a commercial turboprop aircraft configured with a growth version of the TPE331-10.
Intelligent Controls for Net-Zero Energy Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Haorong; Cho, Yong; Peng, Dongming
2011-10-30
The goal of this project is to develop and demonstrate enabling technologies that can empower homeowners to convert their homes into net-zero energy buildings in a cost-effective manner. The project objectives and expected outcomes are as follows: • To develop rapid and scalable building information collection and modeling technologies that can obtain and process “as-built” building information in an automated or semiautomated manner. • To identify low-cost measurements and develop low-cost virtual sensors that can monitor building operations in a plug-n-play and low-cost manner. • To integrate and demonstrate low-cost building information modeling (BIM) technologies. • To develop decision supportmore » tools which can empower building owners to perform energy auditing and retrofit analysis. • To develop and demonstrate low-cost automated diagnostics and optimal control technologies which can improve building energy efficiency in a continual manner.« less
Space-based solar power conversion and delivery systems study. Volume 5: Economic analysis
NASA Technical Reports Server (NTRS)
1977-01-01
Space-based solar power conversion and delivery systems are studied along with a variety of economic and programmatic issues relevant to their development and deployment. The costs, uncertainties and risks associated with the current photovoltaic Satellite Solar Power System (SSPS) configuration, and issues affecting the development of an economically viable SSPS development program are addressed. In particular, the desirability of low earth orbit (LEO) and geosynchronous (GEO) test satellites is examined and critical technology areas are identified. The development of SSPS unit production (nth item), and operation and maintenance cost models suitable for incorporation into a risk assessment (Monte Carlo) model (RAM) are reported. The RAM was then used to evaluate the current SSPS configuration expected costs and cost-risk associated with this configuration. By examining differential costs and cost-risk as a function of postulated technology developments, the critical technologies, that is, those which drive costs and/or cost-risk, are identified. It is shown that the key technology area deals with productivity in space, that is, the ability to fabricate and assemble large structures in space, not, as might be expected, with some hardware component technology.
Research requirements to reduce civil helicopter life cycle cost
NASA Technical Reports Server (NTRS)
Blewitt, S. J.
1978-01-01
The problem of the high cost of helicopter development, production, operation, and maintenance is defined and the cost drivers are identified. Helicopter life cycle costs would decrease by about 17 percent if currently available technology were applied. With advanced technology, a reduction of about 30 percent in helicopter life cycle costs is projected. Technological and managerial deficiencies which contribute to high costs are examined, basic research and development projects which can reduce costs include methods for reduced fuel consumption; improved turbine engines; airframe and engine production methods; safety; rotor systems; and advanced transmission systems.
Using Work Breakdown Structure Models to Develop Unit Treatment Costs
This article presents a new cost modeling approach called work breakdown structure (WBS), designed to develop unit costs for drinking water technologies. WBS involves breaking the technology into its discrete components for the purposes of estimating unit costs. The article dem...
Update on Multi-Variable Parametric Cost Models for Ground and Space Telescopes
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Henrichs, Todd; Luedtke, Alexander; West, Miranda
2012-01-01
Parametric cost models can be used by designers and project managers to perform relative cost comparisons between major architectural cost drivers and allow high-level design trades; enable cost-benefit analysis for technology development investment; and, provide a basis for estimating total project cost between related concepts. This paper reports on recent revisions and improvements to our ground telescope cost model and refinements of our understanding of space telescope cost models. One interesting observation is that while space telescopes are 50X to 100X more expensive than ground telescopes, their respective scaling relationships are similar. Another interesting speculation is that the role of technology development may be different between ground and space telescopes. For ground telescopes, the data indicates that technology development tends to reduce cost by approximately 50% every 20 years. But for space telescopes, there appears to be no such cost reduction because we do not tend to re-fly similar systems. Thus, instead of reducing cost, 20 years of technology development may be required to enable a doubling of space telescope capability. Other findings include: mass should not be used to estimate cost; spacecraft and science instrument costs account for approximately 50% of total mission cost; and, integration and testing accounts for only about 10% of total mission cost.
Cost Modeling for Space Optical Telescope Assemblies
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Henrichs, Todd; Luedtke, Alexander; West, Miranda
2011-01-01
Parametric cost models are used to plan missions, compare concepts and justify technology investments. This paper reviews an on-going effort to develop cost modes for space telescopes. This paper summarizes the methodology used to develop cost models and documents how changes to the database have changed previously published preliminary cost models. While the cost models are evolving, the previously published findings remain valid: it costs less per square meter of collecting aperture to build a large telescope than a small telescope; technology development as a function of time reduces cost; and lower areal density telescopes cost more than more massive telescopes.
NASA Astrophysics Data System (ADS)
Bearden, David A.; Duclos, Donald P.; Barrera, Mark J.; Mosher, Todd J.; Lao, Norman Y.
1997-12-01
Emerging technologies and micro-instrumentation are changing the way remote sensing spacecraft missions are developed and implemented. Government agencies responsible for procuring space systems are increasingly requesting analyses to estimate cost, performance and design impacts of advanced technology insertion for both state-of-the-art systems as well as systems to be built 5 to 10 years in the future. Numerous spacecraft technology development programs are being sponsored by Department of Defense (DoD) and National Aeronautics and Space Administration (NASA) agencies with the goal of enhancing spacecraft performance, reducing mass, and reducing cost. However, it is often the case that technology studies, in the interest of maximizing subsystem-level performance and/or mass reduction, do not anticipate synergistic system-level effects. Furthermore, even though technical risks are often identified as one of the largest cost drivers for space systems, many cost/design processes and models ignore effects of cost risk in the interest of quick estimates. To address these issues, the Aerospace Corporation developed a concept analysis methodology and associated software tools. These tools, collectively referred to as the concept analysis and design evaluation toolkit (CADET), facilitate system architecture studies and space system conceptual designs focusing on design heritage, technology selection, and associated effects on cost, risk and performance at the system and subsystem level. CADET allows: (1) quick response to technical design and cost questions; (2) assessment of the cost and performance impacts of existing and new designs/technologies; and (3) estimation of cost uncertainties and risks. These capabilities aid mission designers in determining the configuration of remote sensing missions that meet essential requirements in a cost- effective manner. This paper discuses the development of CADET modules and their application to several remote sensing satellite mission concepts.
The costs of introducing new technologies into space systems
NASA Technical Reports Server (NTRS)
Dodson, E. N.; Partma, H.; Ruhland, W.
1992-01-01
A review is conducted of cost-research studies intended to provide guidelines for cost estimates of integrating new technologies into existing satellite systems. Quantitative methods are described for determining the technological state-of-the-art so that proposed programs can be evaluated accurately in terms of their contribution to technological development. The R&D costs associated with the proposed programs are then assessed with attention given to the technological advances. Also incorporated quantifiably are any reductions in the costs of production, operations, and support afforded by the advanced technologies. The proposed model is employed in relation to a satellite sizing and cost study in which a tradeoff between increased R&D costs and reduced production costs is examined. The technology/cost model provides a consistent yardstick for assessing the true relative economic impact of introducing novel techniques and technologies.
Forecasting the impact of virtual environment technology on maintenance training
NASA Technical Reports Server (NTRS)
Schlager, Mark S.; Boman, Duane; Piantanida, Tom; Stephenson, Robert
1993-01-01
To assist NASA and the Air Force in determining how and when to invest in virtual environment (VE) technology for maintenance training, we identified possible roles for VE technology in such training, assessed its cost-effectiveness relative to existing technologies, and formulated recommendations for a research agenda that would address instructional and system development issues involved in fielding a VE training system. In the first phase of the study, we surveyed VE developers to forecast capabilities, maturity, and estimated costs for VE component technologies. We then identified maintenance tasks and their training costs through interviews with maintenance technicians, instructors, and training developers. Ten candidate tasks were selected from two classes of maintenance tasks (seven aircraft maintenance and three space maintenance) using five criteria developed to identify types of tasks most likely to benefit from VE training. Three tasks were used as specific cases for cost-benefit analysis. In formulating research recommendations, we considered three aspects of feasibility: technological considerations, cost-effectiveness, and anticipated R&D efforts. In this paper, we describe the major findings in each of these areas and suggest research efforts that we believe will help achieve the goal of a cost-effective VE maintenance training system by the next decade.
Low-Cost Inkjet Printing Technology for the Rapid Prototyping of Transducers
Andò, Bruno; Baglio, Salvatore; Bulsara, Adi R.; Emery, Teresa; Marletta, Vincenzo; Pistorio, Antonio
2017-01-01
Recently, there has been an upsurge in efforts dedicated to developing low-cost flexible electronics by exploiting innovative materials and direct printing technologies. This interest is motivated by the need for low-cost mass-production, shapeable, and disposable devices, and the rapid prototyping of electronics and sensors. This review, following a short overview of main printing processes, reports examples of the development of flexible transducers through low-cost inkjet printing technology. PMID:28368318
Low cost carbon fiber technology development for carbon fiber composite applications.
DOT National Transportation Integrated Search
2012-04-01
The objective of this project was to further develop low cost carbon fiber for a variety of potential applications. Manufacturing feasi-bility of low cost carbon fibers/composites has been demonstrated. A number of technologies that are currently usi...
Technologies for space station autonomy
NASA Technical Reports Server (NTRS)
Staehle, R. L.
1984-01-01
This report presents an informal survey of experts in the field of spacecraft automation, with recommendations for which technologies should be given the greatest development attention for implementation on the initial 1990's NASA Space Station. The recommendations implemented an autonomy philosophy that was developed by the Concept Development Group's Autonomy Working Group during 1983. They were based on assessments of the technologies' likely maturity by 1987, and of their impact on recurring costs, non-recurring costs, and productivity. The three technology areas recommended for programmatic emphasis were: (1) artificial intelligence expert (knowledge based) systems and processors; (2) fault tolerant computing; and (3) high order (procedure oriented) computer languages. This report also describes other elements required for Station autonomy, including technologies for later implementation, system evolvability, and management attitudes and goals. The cost impact of various technologies is treated qualitatively, and some cases in which both the recurring and nonrecurring costs might be reduced while the crew productivity is increased, are also considered. Strong programmatic emphasis on life cycle cost and productivity is recommended.
Power systems for future missions
NASA Technical Reports Server (NTRS)
Gill, S. P.; Frye, P. E.; Littman, Franklin D.; Meisl, C. J.
1994-01-01
A comprehensive scenario of future missions was developed and applicability of different power technologies to these missions was assessed. Detailed technology development roadmaps for selected power technologies were generated. A simple methodology to evaluate economic benefits of current and future power system technologies by comparing Life Cycle Costs of potential missions was developed. The methodology was demonstrated by comparing Life Cycle Costs for different implementation strategies of DIPS/CBC technology to a selected set of missions.
48 CFR 231.205-18 - Independent research and development and bid and proposal costs.
Code of Federal Regulations, 2010 CFR
2010-10-01
... development of technologies identified as critical under 10 U.S.C. 2522. (6) Increase the development and promotion of efficient and effective applications of dual-use technologies. (7) Provide efficient and... and life-cycle costs of military systems. (3) Strengthen the defense industrial and technology base of...
48 CFR 231.205-18 - Independent research and development and bid and proposal costs.
Code of Federal Regulations, 2013 CFR
2013-10-01
... development of technologies identified as critical under 10 U.S.C. 2522. (6) Increase the development and promotion of efficient and effective applications of dual-use technologies. (7) Provide efficient and... and life-cycle costs of military systems. (3) Strengthen the defense industrial and technology base of...
48 CFR 231.205-18 - Independent research and development and bid and proposal costs.
Code of Federal Regulations, 2014 CFR
2014-10-01
... development of technologies identified as critical under 10 U.S.C. 2522. (6) Increase the development and promotion of efficient and effective applications of dual-use technologies. (7) Provide efficient and... and life-cycle costs of military systems. (3) Strengthen the defense industrial and technology base of...
48 CFR 231.205-18 - Independent research and development and bid and proposal costs.
Code of Federal Regulations, 2011 CFR
2011-10-01
... development of technologies identified as critical under 10 U.S.C. 2522. (6) Increase the development and promotion of efficient and effective applications of dual-use technologies. (7) Provide efficient and... and life-cycle costs of military systems. (3) Strengthen the defense industrial and technology base of...
48 CFR 231.205-18 - Independent research and development and bid and proposal costs.
Code of Federal Regulations, 2012 CFR
2012-10-01
... development of technologies identified as critical under 10 U.S.C. 2522. (6) Increase the development and promotion of efficient and effective applications of dual-use technologies. (7) Provide efficient and... and life-cycle costs of military systems. (3) Strengthen the defense industrial and technology base of...
Development of Advanced Life Cycle Costing Methods for Technology Benefit/Cost/Risk Assessment
NASA Technical Reports Server (NTRS)
Yackovetsky, Robert (Technical Monitor)
2002-01-01
The overall objective of this three-year grant is to provide NASA Langley's System Analysis Branch with improved affordability tools and methods based on probabilistic cost assessment techniques. In order to accomplish this objective, the Aerospace Systems Design Laboratory (ASDL) needs to pursue more detailed affordability, technology impact, and risk prediction methods and to demonstrate them on variety of advanced commercial transports. The affordability assessment, which is a cornerstone of ASDL methods, relies on the Aircraft Life Cycle Cost Analysis (ALCCA) program originally developed by NASA Ames Research Center and enhanced by ASDL. This grant proposed to improve ALCCA in support of the project objective by updating the research, design, test, and evaluation cost module, as well as the engine development cost module. Investigations into enhancements to ALCCA include improved engine development cost, process based costing, supportability cost, and system reliability with airline loss of revenue for system downtime. A probabilistic, stand-alone version of ALCCA/FLOPS will also be developed under this grant in order to capture the uncertainty involved in technology assessments. FLOPS (FLight Optimization System program) is an aircraft synthesis and sizing code developed by NASA Langley Research Center. This probabilistic version of the coupled program will be used within a Technology Impact Forecasting (TIF) method to determine what types of technologies would have to be infused in a system in order to meet customer requirements. A probabilistic analysis of the CER's (cost estimating relationships) within ALCCA will also be carried out under this contract in order to gain some insight as to the most influential costs and the impact that code fidelity could have on future RDS (Robust Design Simulation) studies.
PRELIMINARY COST ESTIMATES OF POLLUTION CONTROL TECHNOLOGIES FOR GEOTHERMAL DEVELOPMENTS
This report provides preliminary cost estimates of air and water pollution control technologies for geothermal energy conversion facilities. Costs for solid waste disposal are also estimated. The technologies examined include those for control of hydrogen sulfide emissions and fo...
A methodology for spacecraft technology insertion analysis balancing benefit, cost, and risk
NASA Astrophysics Data System (ADS)
Bearden, David Allen
Emerging technologies are changing the way space missions are developed and implemented. Technology development programs are proceeding with the goal of enhancing spacecraft performance and reducing mass and cost. However, it is often the case that technology insertion assessment activities, in the interest of maximizing performance and/or mass reduction, do not consider synergistic system-level effects. Furthermore, even though technical risks are often identified as a large cost and schedule driver, many design processes ignore effects of cost and schedule uncertainty. This research is based on the hypothesis that technology selection is a problem of balancing interrelated (and potentially competing) objectives. Current spacecraft technology selection approaches are summarized, and a Methodology for Evaluating and Ranking Insertion of Technology (MERIT) that expands on these practices to attack otherwise unsolved problems is demonstrated. MERIT combines the modern techniques of technology maturity measures, parametric models, genetic algorithms, and risk assessment (cost and schedule) in a unique manner to resolve very difficult issues including: user-generated uncertainty, relationships between cost/schedule and complexity, and technology "portfolio" management. While the methodology is sufficiently generic that it may in theory be applied to a number of technology insertion problems, this research focuses on application to the specific case of small (<500 kg) satellite design. Small satellite missions are of particular interest because they are often developed under rigid programmatic (cost and schedule) constraints and are motivated to introduce advanced technologies into the design. MERIT is demonstrated for programs procured under varying conditions and constraints such as stringent performance goals, not-to-exceed costs, or hard schedule requirements. MERIT'S contributions to the engineering community are its: unique coupling of the aspects of performance, cost, and schedule; assessment of system level impacts of technology insertion; procedures for estimating uncertainties (risks) associated with advanced technology; and application of heuristics to facilitate informed system-level technology utilization decisions earlier in the conceptual design phase. MERIT extends the state of the art in technology insertion assessment selection practice and, if adopted, may aid designers in determining the configuration of complex systems that meet essential requirements in a timely, cost-effective manner.
Concept designs for NASA's Solar Electric Propulsion Technology Demonstration Mission
NASA Technical Reports Server (NTRS)
Mcguire, Melissa L.; Hack, Kurt J.; Manzella, David H.; Herman, Daniel A.
2014-01-01
Multiple Solar Electric Propulsion Technology Demonstration Mission were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kilogram spacecraft capable of delivering 4000 kilogram of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kilogram spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload. Low-cost and maximum Delta-V capability variants of a spacecraft concept based on utilizing a secondary payload adapter as the primary bus structure were developed as were concepts designed to be co-manifested with another spacecraft on a single launch vehicle. Each of the Solar Electric Propulsion Technology Demonstration Mission concepts developed included an estimated spacecraft cost. These data suggest estimated spacecraft costs of $200 million - $300 million if 30 kilowatt-class solar arrays and the corresponding electric propulsion system currently under development are used as the basis for sizing the mission concept regardless of launch vehicle costs. The most affordable mission concept developed based on subscale variants of the advanced solar arrays and electric propulsion technology currently under development by the NASA Space Technology Mission Directorate has an estimated cost of $50M and could provide a Delta-V capability comparable to much larger spacecraft concepts.
Developing a Methodology for Risk-Informed Trade-Space Analysis in Acquisition
2015-01-01
73 6.10. Research, Development, Test, and Evaluation Cost Distribution, Technology 1 Mitigation of...6.11. Research, Development, Test, and Evaluation Cost Distribution, Technology 3 Mitigation of the Upgrade Alternative...courses of action, or risk- mitigation behaviors, which take place in the event that the technology is not developed by the mile- stone date (e.g
Final Report - Stationary and Emerging Market Fuel Cell System Cost Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Contini, Vince; Heinrichs, Mike; George, Paul
The U.S. Department of Energy (DOE) is focused on providing a portfolio of technology solutions to meet energy security challenges of the future. Fuel cells are a part of this portfolio of technology offerings. To help meet these challenges and supplement the understanding of the current research, Battelle has executed a five-year program that evaluated the total system costs and total ownership costs of two technologies: (1) an ~80 °C polymer electrolyte membrane fuel cell (PEMFC) technology and (2) a solid oxide fuel cell (SOFC) technology, operating with hydrogen or reformate for different applications. Previous research conducted by Battelle, andmore » more recently by other research institutes, suggests that fuel cells can offer customers significant fuel and emission savings along with other benefits compared to incumbent alternatives. For this project, Battelle has applied a proven cost assessment approach to assist the DOE Fuel Cell Technologies Program in making decisions regarding research and development, scale-up, and deployment of fuel cell technology. The cost studies and subsequent reports provide accurate projections of current system costs and the cost impact of state-of-the-art technologies in manufacturing, increases in production volume, and changes to system design on system cost and life cycle cost for several near-term and emerging fuel cell markets. The studies also provide information on types of manufacturing processes that must be developed to commercialize fuel cells and also provide insights into the optimization needed for use of off-the-shelf components in fuel cell systems. Battelle’s analysis is intended to help DOE prioritize investments in research and development of components to reduce the costs of fuel cell systems while considering systems optimization.« less
NASA Technical Reports Server (NTRS)
Smith, Jeffrey H.; Levin, Richard R.; Carpenter, Elisabeth J.
1990-01-01
The results are described of an application of multiattribute analysis to the evaluation of high leverage prototyping technologies in the automation and robotics (A and R) areas that might contribute to the Space Station (SS) Freedom baseline design. An implication is that high leverage prototyping is beneficial to the SS Freedom Program as a means for transferring technology from the advanced development program to the baseline program. The process also highlights the tradeoffs to be made between subsidizing high value, low risk technology development versus high value, high risk technology developments. Twenty one A and R Technology tasks spanning a diverse array of technical concepts were evaluated using multiattribute decision analysis. Because of large uncertainties associated with characterizing the technologies, the methodology was modified to incorporate uncertainty. Eight attributes affected the rankings: initial cost, operation cost, crew productivity, safety, resource requirements, growth potential, and spinoff potential. The four attributes of initial cost, operations cost, crew productivity, and safety affected the rankings the most.
NASA Technical Reports Server (NTRS)
Lemanski, A. J.
1976-01-01
Helicopter drive-system technology which would result in the largest benefit in direct maintenance cost when applied to civil helicopters in the 1980 timeframe was developed. A prototype baseline drive system based on 1975 technology provided the basis for comparison against the proposed advanced technology in order to determine the potential for each area recommended for improvement. A specific design example of an advanced-technology main transmission is presented to define improvements for maintainability, weight, producibility, reliability, noise, vibration, and diagnostics. Projections of the technology achievable in the 1980 timeframe are presented. Based on this data, the technologies with the highest payoff (lowest direct maintenance cost) for civil-helicopter drive systems are identified.
Novel Structured Metal Bipolar Plates for Low Cost Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Conghua
Bipolar plates are an important component in fuel cell stacks and accounts for more than 75% of stack weight and volume, and 20% of the stack cost. The technology development of metal bipolar plates can effectively reduce the fuel cells stack weight and volume over 50%. The challenge is to protect metal plate from corrosion at low cost for the broad commercial applications. While most of today’s PEM fuel cell metallic bipolar plate technologies use some precious metal, the focus of this SBIR project is to develop a low cost, novel nano-structured metal bipolar plate coating technology without using anymore » precious metal. The technology must meet the performance and cost requirements for automobile applications.« less
Falck-Zepeda, Jose; Yorobe, Jose; Husin, Bahagiawati Amir; Manalo, Abraham; Lokollo, Erna; Ramon, Godfrey; Zambrano, Patricia; Sutrisno
2012-01-01
Estimating the cost of compliance with biosafety regulations is important as it helps developers focus their investments in producer development. We provide estimates for the cost of compliance for a set of technologies in Indonesia, the Philippines and other countries. These costs vary from US $100,000 to 1.7 million. These are estimates of regulatory costs and do not include product development or deployment costs. Cost estimates need to be compared with potential gains when the technology is introduced in these countries and the gains in knowledge accumulate during the biosafety assessment process. Although the cost of compliance is important, time delays and uncertainty are even more important and may have an adverse impact on innovations reaching farmers.
Coons, James E.; Kalb, Daniel M.; Dale, Taraka; ...
2014-08-31
Among the most formidable challenges to algal biofuels is the ability to harvest algae and extract intracellular lipids at low cost and with a positive energy balance. Here, we construct two paradigms that contrast energy requirements and costs of conventional and cutting-edge Harvesting and Extraction (H&E) technologies. By application of the parity criterion and the moderate condition reference state, an energy–cost paradigm is created that allows 1st stage harvesting technologies to be compared with easy reference to the National Alliance for Advanced Biofuels and Bioproducts (NAABB) target of $0.013/gallon of gasoline equivalent (GGE) and to the U.S. DOE's Bioenergy Technologiesmore » Office 2022 cost metrics. Drawing from the moderate condition reference state, a concentration-dependency paradigm is developed for extraction technologies, making easier comparison to the National Algal Biofuels Technology Roadmap (NABTR) target of less than 10% total energy. This monograph identifies cost-bearing factors for a variety of H&E technologies, describes a design basis for ultrasonic harvesters, and provides a framework to measure future technological advancements toward reducing H&E costs. Finally, we show that ultrasonic harvesters and extractors are uniquely capable of meeting both NAABB and NABTR targets. Ultrasonic technologies require further development and scale-up before they can achieve low-cost performance at industrially relevant scales. But, the advancement of this technology would greatly reduce H&E costs and accelerate the commercial viability of algae-based biofuels.« less
How do we evaluate the cost of healthcare technology?
NASA Astrophysics Data System (ADS)
Nobel, Joel J.
1994-12-01
Five critical questions apply when evaluating the cost of healthcare technology: Who is asking the question (of how to evaluate healthcare costs)? For what purpose? What is the nature of the decision that must be made? At what state of a technology's development and diffusion are the questions being posed? What type of technology is stimulating the questions? A large number of organizations, both national and international, are engaged in technology assessment, and constructive disagreement improves the overall quality of those assessments. Current cost measurements tools such as cost-utility analysis, cost-benefit analysis, cost- effectiveness analysis, and outcomes research are weak and ineffective. Recently, pharmaceutical manufacturers have adopted more global cost-effectiveness studies. Technology assessments will ultimately focus on examining the relative cost-effectiveness of alternative technologies for a specific pathology or examining the relative cost-effectiveness of alternative technologies for a specific pathology or DRG. In addition to the traditional healthcare facility--hospital, outpatient facility, or group practice, group purchasing organizations are also asking about cost-effectiveness of healthcare. ECRI's SELECTTM process, unlike less effective technology assessments, takes into account real-world user experience data and life-cycle cost analysis in addition to detailed comparisons of technical features and performance.
Human spaceflight technology needs-a foundation for JSC's technology strategy
NASA Astrophysics Data System (ADS)
Stecklein, J. M.
Human space exploration has always been heavily influenced by goals to achieve a specific mission on a specific schedule. This approach drove rapid technology development, the rapidity of which added risks and became a major driver for costs and cost uncertainty. The National Aeronautics and Space Administration (NASA) is now approaching the extension of human presence throughout the solar system by balancing a proactive yet less schedule-driven development of technology with opportunistic scheduling of missions as the needed technologies are realized. This approach should provide cost effective, low risk technology development that will enable efficient and effective manned spaceflight missions. As a first step, the NASA Human Spaceflight Architecture Team (HAT) has identified a suite of critical technologies needed to support future manned missions across a range of destinations, including in cis-lunar space, near earth asteroid visits, lunar exploration, Mars moons, and Mars exploration. The challenge now is to develop a strategy and plan for technology development that efficiently enables these missions over a reasonable time period, without increasing technology development costs unnecessarily due to schedule pressure, and subsequently mitigating development and mission risks. NASA's Johnson Space Center (JSC), as the nation's primary center for human exploration, is addressing this challenge through an innovative approach in allocating Internal Research and Development funding to projects. The HAT Technology Needs (Tech Needs) Database has been developed to correlate across critical technologies and the NASA Office of Chief Technologist Technology Area Breakdown Structure (TABS). The TechNeeds Database illuminates that many critical technologies may support a single technical capability gap, that many HAT technology needs may map to a single TABS technology discipline, and that a single HAT technology need may map to multiple TABS technology disciplines. Th- TechNeeds Database greatly clarifies understanding of the complex relationships of critical technologies to mission and architecture element needs. Extensions to the core TechNeeds Database allow JSC to factor in and appropriately weight JSC core technology competencies, and considerations of commercialization potential and partnership potential. The inherent coupling among these, along with an appropriate importance weighting, has provided an initial prioritization for allocation of technology development research funding at JSc. The HAT Technology Needs Database, with a core of built-in reports, clarifies and communicates complex technology needs for cost effective human space exploration so that an organization seeking to assure that research prioritization supports human spaceflight of the future can be successful.
Human Spaceflight Technology Needs - A Foundation for JSC's Technology Strategy
NASA Technical Reports Server (NTRS)
Stecklein, Jonette M.
2013-01-01
Human space exploration has always been heavily influenced by goals to achieve a specific mission on a specific schedule. This approach drove rapid technology development, the rapidity of which adds risks as well as provides a major driver for costs and cost uncertainty. The National Aeronautics and Space Administration (NASA) is now approaching the extension of human presence throughout the solar system by balancing a proactive yet less schedule-driven development of technology with opportunistic scheduling of missions as the needed technologies are realized. This approach should provide cost effective, low risk technology development that will enable efficient and effective manned spaceflight missions. As a first step, the NASA Human Spaceflight Architecture Team (HAT) has identified a suite of critical technologies needed to support future manned missions across a range of destinations, including in cis-lunar space, near earth asteroid visits, lunar exploration, Mars moons, and Mars exploration. The challenge now is to develop a strategy and plan for technology development that efficiently enables these missions over a reasonable time period, without increasing technology development costs unnecessarily due to schedule pressure, and subsequently mitigating development and mission risks. NASA's Johnson Space Center (JSC), as the nation s primary center for human exploration, is addressing this challenge through an innovative approach in allocating Internal Research and Development funding to projects. The HAT Technology Needs (TechNeeds) Database has been developed to correlate across critical technologies and the NASA Office of Chief Technologist Technology Area Breakdown Structure (TABS). The TechNeeds Database illuminates that many critical technologies may support a single technical capability gap, that many HAT technology needs may map to a single TABS technology discipline, and that a single HAT technology need may map to multiple TABS technology disciplines. The TechNeeds Database greatly clarifies understanding of the complex relationships of critical technologies to mission and architecture element needs. Extensions to the core TechNeeds Database allow JSC to factor in and appropriately weight JSC Center Core Technology Competencies, and considerations of Commercialization Potential and Partnership Potential. The inherent coupling among these, along with an appropriate importance weighting, has provided an initial prioritization for allocation of technology development research funding for JSC. The HAT Technology Needs Database, with a core of built-in reports, clarifies and communicates complex technology needs for cost effective human space exploration such that an organization seeking to assure that research prioritization supports human spaceflight of the future can be successful.
Preliminary Multi-Variable Cost Model for Space Telescopes
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Hendrichs, Todd
2010-01-01
Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. This paper reviews the methodology used to develop space telescope cost models; summarizes recently published single variable models; and presents preliminary results for two and three variable cost models. Some of the findings are that increasing mass reduces cost; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and technology development as a function of time reduces cost at the rate of 50% per 17 years.
Additive Manufacturing of Low Cost Upper Stage Propulsion Components
NASA Technical Reports Server (NTRS)
Protz, Christopher; Bowman, Randy; Cooper, Ken; Fikes, John; Taminger, Karen; Wright, Belinda
2014-01-01
NASA is currently developing Additive Manufacturing (AM) technologies and design tools aimed at reducing the costs and manufacturing time of regeneratively cooled rocket engine components. These Low Cost Upper Stage Propulsion (LCUSP) tasks are funded through NASA's Game Changing Development Program in the Space Technology Mission Directorate. The LCUSP project will develop a copper alloy additive manufacturing design process and develop and optimize the Electron Beam Freeform Fabrication (EBF3) manufacturing process to direct deposit a nickel alloy structural jacket and manifolds onto an SLM manufactured GRCop chamber and Ni-alloy nozzle. In order to develop these processes, the project will characterize both the microstructural and mechanical properties of the SLMproduced GRCop-84, and will explore and document novel design techniques specific to AM combustion devices components. These manufacturing technologies will be used to build a 25K-class regenerative chamber and nozzle (to be used with tested DMLS injectors) that will be tested individually and as a system in hot fire tests to demonstrate the applicability of the technologies. These tasks are expected to bring costs and manufacturing time down as spacecraft propulsion systems typically comprise more than 70% of the total vehicle cost and account for a significant portion of the development schedule. Additionally, high pressure/high temperature combustion chambers and nozzles must be regeneratively cooled to survive their operating environment, causing their design to be time consuming and costly to build. LCUSP presents an opportunity to develop and demonstrate a process that can infuse these technologies into industry, build competition, and drive down costs of future engines.
Equivalent Mass versus Life Cycle Cost for Life Support Technology Selection
NASA Technical Reports Server (NTRS)
Jones, Harry
2003-01-01
The decision to develop a particular life support technology or to select it for flight usually depends on the cost to develop and fly it. Other criteria - performance, safety, reliability, crew time, and risk - are considered, but cost is always an important factor. Because launch cost accounts for most of the cost of planetary missions, and because launch cost is directly proportional to the mass launched, equivalent mass has been used instead of cost to select life support technology. The equivalent mass of a life support system includes the estimated masses of the hardware and of the pressurized volume, power supply, and cooling system that the hardware requires. The equivalent mass is defined as the total payload launch mass needed to provide and support the system. An extension of equivalent mass, Equivalent System Mass (ESM), has been established for use in Advanced Life Support. A crew time mass-equivalent and sometimes other non-mass factors are added to equivalent mass to create ESM. Equivalent mass is an estimate of the launch cost only. For earth orbit rather than planetary missions, the launch cost is usually exceeded by the cost of Design, Development, Test, and Evaluation (DDT&E). Equivalent mass is used only in life support analysis. Life Cycle Cost (LCC) is much more commonly used. LCC includes DDT&E, launch, and operations costs. Since LCC includes launch cost, it is always a more accurate cost estimator than equivalent mass. The relative costs of development, launch, and operations vary depending on the mission design, destination, and duration. Since DDT&E or operations may cost more than launch, LCC may give a more accurate cost ranking than equivalent mass. To be sure of identifying the lowest cost technology for a particular mission, we should use LCC rather than equivalent mass.
Cost/benefit analysis of advanced materials technologies for future aircraft turbine engines
NASA Technical Reports Server (NTRS)
Stephens, G. E.
1980-01-01
The materials technologies studied included thermal barrier coatings for turbine airfoils, turbine disks, cases, turbine vanes and engine and nacelle composite materials. The cost/benefit of each technology was determined in terms of Relative Value defined as change in return on investment times probability of success divided by development cost. A recommended final ranking of technologies was based primarily on consideration of Relative Values with secondary consideration given to changes in other economic parameters. Technologies showing the most promising cost/benefits were thermal barrier coated temperature nacelle/engine system composites.
NASA Astrophysics Data System (ADS)
Gates, W. R.
1983-02-01
Estimated future energy cost savings associated with the development of cost-competitive solar thermal technologies (STT) are discussed. Analysis is restricted to STT in electric applications for 16 high-insolation/high-energy-price states. Three fuel price scenarios and three 1990 STT system costs are considered, reflecting uncertainty over future fuel prices and STT cost projections. Solar thermal technology research and development (R&D) is found to be unacceptably risky for private industry in the absence of federal support. Energy cost savings were projected to range from $0 to $10 billion (1990 values in 1981 dollars), depending on the system cost and fuel price scenario. Normal R&D investment risks are accentuated because the Organization of Petroleum Exporting Countries (OPEC) cartel can artificially manipulate oil prices and undercut growth of alternative energy sources. Federal participation in STT R&D to help capture the potential benefits of developing cost-competitive STT was found to be in the national interest. Analysis is also provided regarding two federal incentives currently in use: The Federal Business Energy Tax Credit and direct R&D funding.
NASA Technical Reports Server (NTRS)
Gates, W. R.
1983-01-01
Estimated future energy cost savings associated with the development of cost-competitive solar thermal technologies (STT) are discussed. Analysis is restricted to STT in electric applications for 16 high-insolation/high-energy-price states. Three fuel price scenarios and three 1990 STT system costs are considered, reflecting uncertainty over future fuel prices and STT cost projections. Solar thermal technology research and development (R&D) is found to be unacceptably risky for private industry in the absence of federal support. Energy cost savings were projected to range from $0 to $10 billion (1990 values in 1981 dollars), depending on the system cost and fuel price scenario. Normal R&D investment risks are accentuated because the Organization of Petroleum Exporting Countries (OPEC) cartel can artificially manipulate oil prices and undercut growth of alternative energy sources. Federal participation in STT R&D to help capture the potential benefits of developing cost-competitive STT was found to be in the national interest. Analysis is also provided regarding two federal incentives currently in use: The Federal Business Energy Tax Credit and direct R&D funding.
Evaluating the administration costs of biologic drugs: development of a cost algorithm.
Tetteh, Ebenezer K; Morris, Stephen
2014-12-01
Biologic drugs, as with all other medical technologies, are subject to a number of regulatory, marketing, reimbursement (financing) and other demand-restricting hurdles applied by healthcare payers. One example is the routine use of cost-effectiveness analyses or health technology assessments to determine which medical technologies offer value-for-money. The manner in which these assessments are conducted suggests that, holding all else equal, the economic value of biologic drugs may be determined by how much is spent on administering these drugs or trade-offs between drug acquisition and administration costs. Yet, on the supply-side, it seems very little attention is given to how manufacturing and formulation choices affect healthcare delivery costs. This paper evaluates variations in the administration costs of biologic drugs, taking care to ensure consistent inclusion of all relevant cost resources. From this, it develops a regression-based algorithm with which manufacturers could possibly predict, during process development, how their manufacturing and formulation choices may impact on the healthcare delivery costs of their products.
Heritage and Advanced Technology Systems Engineering Lessons Learned from NASA Deep Space Missions
NASA Technical Reports Server (NTRS)
Barley, Bryan; Newhouse, Marilyn; Clardy, Dennon
2010-01-01
In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology systems or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced and heritage systems within the spacecraft and mission environment identifies unanticipated technical issues. Resolving these issues often results in cost overruns and schedule impacts. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that optimistic hardware/software inheritance and technology readiness assumptions caused cost and schedule growth for four of the five missions studied. The cost and schedule growth was not found to result from technical hurdles requiring significant technology development. The projects institutional inheritance and technology readiness processes appear to adequately assess technology viability and prevent technical issues from impacting the final mission success. However, the processes do not appear to identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: an inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of development experience with the heritage system; or an inadequate scoping of the system-wide impacts necessary to implement an advanced technology for space flight applications. The paper summarizes the study's lessons learned in more detail and offers suggestions for improving the project's ability to identify and manage the technology and heritage risks inherent in the design solution.
NASA Astrophysics Data System (ADS)
Miller, S. C.
1989-09-01
With relation to advanced technology for gas turbines, the overall process of product definition and development, concentrating particularly on the integration of activities between engineering design and manufacturing, is surveyed. The development of new philosophies in each of these spheres of activity is concluded to be cost effective technology and to make a highly significant contribution to the competitiveness and profitability of the industry.
Park, Aeri; Chyall, Leonard J; Dunlap, Jeanette; Schertz, Christine; Jonaitis, David; Stahly, Barbara C; Bates, Simon; Shipplett, Rex; Childs, Scott
2007-01-01
Modern drug development demands constant deployment of more effective technologies to mitigate the high cost of bringing new drugs to market. In addition to cost savings, new technologies can improve all aspects of pharmaceutical development. New technologies developed at SSCI, Inc. include solid form development of an active pharmaceutical ingredients. (APIs) are PatternMatch software and capillary-based crystallisation techniques that not only allow for fast and effective solid form screening, but also extract maximum property information from the routine screening data that is generally available. These new technologies offer knowledge-based decision making during solid form development of APIs and result in more developable API solid forms.
The Need for Technology Maturity of Any Advanced Capability to Achieve Better Life Cycle Cost (LCC)
NASA Technical Reports Server (NTRS)
Robinson, John W.; Levack, Daniel J. H.; Rhodes, Russel E.; Chen, Timothy T.
2009-01-01
Programs such as space transportation systems are developed and deployed only rarely, and they have long development schedules and large development and life cycle costs (LCC). They have not historically had their LCC predicted well and have only had an effort to control the DDT&E phase of the programs. One of the factors driving the predictability, and thus control, of the LCC of a program is the maturity of the technologies incorporated in the program. If the technologies incorporated are less mature (as measured by their Technology Readiness Level - TRL), then the LCC not only increases but the degree of increase is difficult to predict. Consequently, new programs avoid incorporating technologies unless they are quite mature, generally TRL greater than or equal to 7 (system prototype demonstrated in a space environment) to allow better predictability of the DDT&E phase costs unless there is no alternative. On the other hand, technology development programs rarely develop technologies beyond TRL 6 (system/subsystem model or prototype demonstrated in a relevant environment). Currently the lack of development funds beyond TRL 6 and the major funding required for full scale development leave little or no funding available to prototype TRL 6 concepts so that hardware would be in the ready mode for safe, reliable and cost effective incorporation. The net effect is that each new program either incorporates little new technology or has longer development schedules and costs, and higher LCC, than planned. This paper presents methods to ensure that advanced technologies are incorporated into future programs while providing a greater accuracy of predicting their LCC. One method is having a dedicated organization to develop X-series vehicles or separate prototypes carried on other vehicles. The question of whether such an organization should be independent of NASA and/or have an independent funding source is discussed. Other methods are also discussed. How to make the choice of which technologies to pursue to the prototype level is also discussed since, to achieve better LCC, first the selection of the appropriate technologies.
Space Technology Mission Directorate: Game Changing Development
NASA Technical Reports Server (NTRS)
Gaddis, Stephen W.
2015-01-01
NASA and the aerospace community have deep roots in manufacturing technology and innovation. Through it's Game Changing Development Program and the Advanced Manufacturing Technology Project NASA develops and matures innovative, low-cost manufacturing processes and products. Launch vehicle propulsion systems are a particular area of interest since they typically comprise a large percentage of the total vehicle cost and development schedule. NASA is currently working to develop and utilize emerging technologies such as additive manufacturing (i.e. 3D printing) and computational materials and processing tools that could dramatically improve affordability, capability, and reduce schedule for rocket propulsion hardware.
NASA Technical Reports Server (NTRS)
Boudreaux, Mark; Montgomery, Edward; Cacas, Joseph
2008-01-01
The National Aeronautics and Space Administr ation at Marshall Space Flight Center and the National Space Science and Technology Center in Huntsville Alabama USA, are jointly developing a new class of science and technology mission small satellites. The Fast, Affordable, Science and Technology SATell ite (FASTSAT) was designed and developed using a new collaborative and best practices approach. The FASTSAT development, along with the new class of low cost vehicles currently being developed, would allow performance of 30 kg payload mass missions for a cost of less than 10 million US dollars.
The reusable launch vehicle technology program
NASA Astrophysics Data System (ADS)
Cook, S.
Today's launch systems have major shortcomings that will increase in significance in the future, and thus are principal drivers for seeking major improvements in space transportation. They are too costly; insufficiently reliable, safe, and operable; and increasingly losing market share to international competition. For the United States to continue its leadership in the human exploration and wide ranging utilization of space, the first order of business must be to achieve low cost, reliable transportatin to Earth orbit. NASA's Access to Space Study, in 1993, recommended the development of a fully reusable single-stage-to-orbit (SSTO) rocket vehicle as an Agency goal. The goal of the Reusable Launch Vehicle (RLV) technology program is to mature the technologies essential for a next-generation reusable launch system capable of reliably serving National space transportation needs at substantially reduced costs. The primary objectives of the RLV technology program are to (1) mature the technologies required for the next-generation system, (2) demonstrate the capability to achieve low development and operational cost, and rapid launch turnaround times and (3) reduce business and technical risks to encourage significant private investment in the commercial development and operation of the next-generation system. Developing and demonstrating the technologies required for a Single Stage to Orbit (SSTO) rocket is a focus of the program becuase past studies indicate that it has the best potential for achieving the lowest space access cost while acting as an RLV technology driver (since it also encompasses the technology requirements of reusable rocket vehicles in general).
The reusable launch vehicle technology program
NASA Technical Reports Server (NTRS)
Cook, S.
1995-01-01
Today's launch systems have major shortcomings that will increase in significance in the future, and thus are principal drivers for seeking major improvements in space transportation. They are too costly; insufficiently reliable, safe, and operable; and increasingly losing market share to international competition. For the United States to continue its leadership in the human exploration and wide ranging utilization of space, the first order of business must be to achieve low cost, reliable transportatin to Earth orbit. NASA's Access to Space Study, in 1993, recommended the development of a fully reusable single-stage-to-orbit (SSTO) rocket vehicle as an Agency goal. The goal of the Reusable Launch Vehicle (RLV) technology program is to mature the technologies essential for a next-generation reusable launch system capable of reliably serving National space transportation needs at substantially reduced costs. The primary objectives of the RLV technology program are to (1) mature the technologies required for the next-generation system, (2) demonstrate the capability to achieve low development and operational cost, and rapid launch turnaround times and (3) reduce business and technical risks to encourage significant private investment in the commercial development and operation of the next-generation system. Developing and demonstrating the technologies required for a Single Stage to Orbit (SSTO) rocket is a focus of the program becuase past studies indicate that it has the best potential for achieving the lowest space access cost while acting as an RLV technology driver (since it also encompasses the technology requirements of reusable rocket vehicles in general).
Social Acceptance of Wind Energy: Managing and Evaluating Its Market Impacts (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baring-Gould, I.
2012-06-01
As with any industrial-scale technology, wind power has impacts. As wind technology deployment becomes more widespread, a defined opposition will form as a result of fear of change and competing energy technologies. As the easy-to-deploy sites are developed, the costs of developing at sites with deployment barriers will increase, therefore increasing the total cost of power. This presentation provides an overview of wind development stakeholders and related stakeholder engagement questions, Energy Department activities that provide wind project deployment information, and the quantification of deployment barriers and costs in the continental United States.
Innovative High-Performance Deposition Technology for Low-Cost Manufacturing of OLED Lighting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamer, John; Scott, David
In this project, OLEDWorks developed and demonstrated the innovative high-performance deposition technology required to deliver dramatic reductions in the cost of manufacturing OLED lighting in production equipment. The current high manufacturing cost of OLED lighting is the most urgent barrier to its market acceptance. The new deposition technology delivers solutions to the two largest parts of the manufacturing cost problem – the expense per area of good product for organic materials and for the capital cost and depreciation of the equipment. Organic materials cost is the largest expense item in the bill of materials and is predicted to remain somore » through 2020. The high-performance deposition technology developed in this project, also known as the next generation source (NGS), increases material usage efficiency from 25% found in current Gen2 deposition technology to 60%. This improvement alone results in a reduction of approximately 25 USD/m 2 of good product in organic materials costs, independent of production volumes. Additionally, this innovative deposition technology reduces the total depreciation cost from the estimated value of approximately 780 USD/m 2 of good product for state-of-the-art G2 lines (at capacity, 5-year straight line depreciation) to 170 USD/m 2 of good product from the OLEDWorks production line.« less
Biomedical engineering at Sandia National Laboratories
NASA Astrophysics Data System (ADS)
Zanner, Mary Ann
1994-12-01
The potential exists to reduce or control some aspects of the U.S. health care expenditure without compromising health care delivery by developing carefully selected technologies which impact favorably on the health care system. A focused effort to develop such technologies is underway at Sandia National Laboratories. As a DOE National Laboratory, Sandia possesses a wealth of engineering and scientific expertise that can be readily applied to this critical national need. Appropriate mechanisms currently exist to allow transfer of technology from the laboratory to the private sector. Sandia's Biomedical Engineering Initiative addresses the development of properly evaluated, cost-effective medical technologies through team collaborations with the medical community. Technology development is subjected to certain criteria including wide applicability, earlier diagnoses, increased efficiency, cost-effectiveness and dual-use. Examples of Sandia's medical technologies include a noninvasive blood glucose sensor, computer aided mammographic screening, noninvasive fetal oximetry and blood gas measurement, burn diagnostics and laser debridement, telerobotics and ultrasonic scanning for prosthetic devices. Sandia National Laboratories has the potential to aid in directing medical technology development efforts which emphasize health care needs, earlier diagnosis, cost containment and improvement of the quality of life.
Parametric Cost Models for Space Telescopes
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Henrichs, Todd; Dollinger, Courtney
2010-01-01
Multivariable parametric cost models for space telescopes provide several benefits to designers and space system project managers. They identify major architectural cost drivers and allow high-level design trades. They enable cost-benefit analysis for technology development investment. And, they provide a basis for estimating total project cost. A survey of historical models found that there is no definitive space telescope cost model. In fact, published models vary greatly [1]. Thus, there is a need for parametric space telescopes cost models. An effort is underway to develop single variable [2] and multi-variable [3] parametric space telescope cost models based on the latest available data and applying rigorous analytical techniques. Specific cost estimating relationships (CERs) have been developed which show that aperture diameter is the primary cost driver for large space telescopes; technology development as a function of time reduces cost at the rate of 50% per 17 years; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and increasing mass reduces cost.
Does technology acceleration equate to mask cost acceleration?
NASA Astrophysics Data System (ADS)
Trybula, Walter J.; Grenon, Brian J.
2003-06-01
The technology acceleration of the ITRS Roadmap has many implications on both the semiconductor sup-plier community and the manufacturers. INTERNATIONAL SEMATECH has revaluated the projected cost of advanced technology masks. Building on the methodology developed in 1996 for mask costs, this work provided a critical review of mask yields and factors relating to the manufacture of photolithography masks. The impact of the yields provided insight into the learning curve for leading edge mask manufac-turing. The projected mask set cost was surprising, and the ability to provide first and second year cost estimates provided additional information on technology introduction. From this information, the impact of technology acceleration can be added to the projected yields to evaluate the impact on mask costs.
2D net shape weaving for cost effective manufacture of textile reinforced composites
NASA Astrophysics Data System (ADS)
Vo, D. M. P.; Kern, M.; Hoffmann, G.; Cherif, C.
2017-10-01
Despite significant weight and performance advantages over metal parts, the today’s demand for fibre-reinforced polymer composites (FRPC) has been limited mainly by their large manufacturing cost. The combination of dry textile preforms and low-cost consolidation processes such as resin transfer molding (RTM) has been appointed as a promising approach to low-cost FRPC manufacture. At the current state of the art, tooling and impregnation technology is well understood whereas preform fabrication technology has not been developed effectively. This paper presents an advanced 2D net shape weaving technology developed with the aim to establish a more cost effective system for the manufacture of dry textile preforms for FRPC. 2D net shape weaving is developed based on open reed weave (ORW) technology and enables the manufacture of 2D contoured woven fabrics with firm edge, so that oversize cutting and hand trimming after molding are no longer required. The introduction of 2D net shape woven fabrics helps to reduce material waste, cycle time and preform manufacturing cost significantly. Furthermore, higher grade of automation in preform fabrication can be achieved.
Ultralightweight optics for space applications
NASA Astrophysics Data System (ADS)
Mayo, James W.; DeHainaut, Linda L.; Bell, Kevin D.; Smith, Winfred S.; Killpatrick, Don H.; Dyer, Richard W.
2000-07-01
Lightweight, deployable space optics has been identified as a key technology for future cost-effective, space-based systems. The United States Department of Defense has partnered with the National Aeronautical Space Administration to implement a space mirror technology development activity known as the Advanced Mirror System Demonstrator (AMSD). The AMSD objectives are to advance technology in the production of low-mass primary mirror systems, reduce mirror system cost and shorten mirror- manufacturing time. The AMSD program will offer substantial weight, cost and production rate improvements over Hubble Space Telescope mirror technology. A brief history of optical component development and a review of optical component state-of-the-art technology will be given, and the AMSD program will be reviewed.
NASA Astrophysics Data System (ADS)
Kobos, Peter Holmes
This dissertation analyzes the current and potential future costs of renewable energy technology from an institutional perspective. The central hypothesis is that reliable technology cost forecasting can be achieved through standard and modified experience curves implemented in a dynamic simulation model. Additionally, drawing upon region-specific institutional lessons highlights the role of market, social, and political institutions throughout an economy. Socio-political influences and government policy pathways drive resource allocation decisions that may be predominately influenced by factors other than those considered in a traditional market-driven, mechanistic approach. Learning in economic systems as a research topic is an attractive complement to the notion of institutional pathways. The economic implications of learning by doing, as first outlined by Arrow (1962), highlight decreasing production costs as individuals, or more generally the firm, become more familiar with a production process. The standard approach in the literature has been to employ a common experience curve where cumulative production is the only independent variable affecting costs. This dissertation develops a two factor experience curve, adding research, development and demonstration (RD&D) expenditures as a second variable. To illustrate the concept in the context of energy planning, two factor experience curves are developed for wind energy technology and solar photovoltaic (PV) modules under different assumptions on learning rates for cumulative capacity and the knowledge stock (a function of past RD&D efforts). Additionally, a one factor experience curve and cost trajectory scenarios are developed for concentrated solar power and geothermal energy technology, respectively. Cost forecasts are then developed for all four of these technologies in a dynamic simulation model. Combining the theoretical framework of learning by doing with the fields of organizational learning and institutional economics, this dissertation argues that the current state of renewable energy technology costs is largely due to the past production efforts (learning by doing) and RD&D efforts (learning by searching) in these global industries. This cost pathway, however, may be altered through several policy process feedback mechanisms including targeted RD&D expenditures, maintenance of RD&D to promote learning effects, and financial incentive programs that support energy production from renewable energy technologies.
Low Gravity Issues of Deep Space Refueling
NASA Technical Reports Server (NTRS)
Chato, David J.
2005-01-01
This paper discusses the technologies required to develop deep space refueling of cryogenic propellants and low cost flight experiments to develop them. Key technologies include long term storage, pressure control, mass gauging, liquid acquisition, and fluid transfer. Prior flight experiments used to mature technologies are discussed. A plan is presented to systematically study the deep space refueling problem and devise low-cost experiments to further mature technologies and prepare for full scale flight demonstrations.
Focus of NASA's Spaceliner 100 Investment Area
NASA Technical Reports Server (NTRS)
Hueter, Uwe; Lyles, Garry (Technical Monitor)
2000-01-01
This presentation discuss the goals and objectives of the SL100 Technology Focus. Some of the Technology objectives were to: increase system performance margin; drive down operations costs; drive down manufacturing and production costs; and drive down development test and evaluation costs.
E-Learning for University Effectiveness in the Developing World
ERIC Educational Resources Information Center
Sekiwu, Denis
2010-01-01
The globalisation trends of society have taken centre stage meaning that people around the world are required to develop high level but low cost technologies and innovative competencies in order to enhance social development. In the field of higher education, university managers need to join the technological revolution by adopting low cost ICT…
Heritage Systems Engineering Lessons from NASA Deep Space Missions
NASA Technical Reports Server (NTRS)
Barley, Bryan; Newhouse, Marilyn; Clardy, Dennon
2010-01-01
In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology systems or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced and heritage systems within the spacecraft and mission environment identifies unanticipated technical issues. Resolving these issues often results in cost overruns and schedule impacts. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that optimistic hardware/software inheritance and technology readiness assumptions caused cost and schedule growth for all five missions studied. The cost and schedule growth was not found to be the result of technical hurdles requiring significant technology development. The projects institutional inheritance and technology readiness processes appear to adequately assess technology viability and prevent technical issues from impacting the final mission success. However, the processes do not appear to identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: an inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of development experience with the heritage system; or an inadequate scoping of the systemwide impacts necessary to implement an advanced technology for space flight applications. The paper summarizes the study s lessons learned in more detail and offers suggestions for improving the project s ability to identify and manage the technology and heritage risks inherent in the design solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barron, Robert W.; McJeon, Haewon C.
2015-05-01
This paper considers the effect of several key parameters of low carbon energy technologies on the cost of abatement. A methodology for determining the minimum level of performance required for a parameter to have a statistically significant impact on CO2 abatement cost is developed and used to evaluate the impact of eight key parameters of low carbon energy supply technologies on the cost of CO2 abatement. The capital cost of nuclear technology is found to have the greatest impact of the parameters studied. The cost of biomass and CCS technologies also have impacts, while their efficiencies have little, if any.more » Sensitivity analysis of the results with respect to population, GDP, and CO2 emission constraint show that the minimum performance level and impact of nuclear technologies is consistent across the socioeconomic scenarios studied, while the other technology parameters show different performance under higher population, lower GDP scenarios. Solar technology was found to have a small impact, and then only at very low costs. These results indicate that the cost of nuclear is the single most important driver of abatement cost, and that trading efficiency for cost may make biomass and CCS technologies more competitive.« less
Low cost carbon fiber technology development for carbon fiber composite applications : phase 1.
DOT National Transportation Integrated Search
2008-01-01
The main goals of this research program at UTSI were: 1) to produce low cost carbon fibers and 2) to develop specific carbonbased : material technologies to meet current and future high performance fiber-reinforced composite needs of FTA and other : ...
NASA Technical Reports Server (NTRS)
LaPointe, Michael
2006-01-01
The Solar Electric Propulsion (SEP) technology area is tasked to develop near and mid-term SEP technology to improve or enable science mission capture while minimizing risk and cost to the end user. The solar electric propulsion investments are primarily driven by SMD cost-capped mission needs. The technology needs are determined partially through systems analysis tasks including the recent "Re-focus Studies" and "Standard Architecture Study." These systems analysis tasks transitioned the technology development to address the near term propulsion needs suitable for cost-capped open solicited missions such as Discovery and New Frontiers Class missions. Major SEP activities include NASA's Evolutionary Xenon Thruster (NEXT), implementing a Standard Architecture for NSTAR and NEXT EP systems, and developing a long life High Voltage Hall Accelerator (HiVHAC). Lower level investments include advanced feed system development and xenon recovery testing. Future plans include completion of ongoing ISP development activities and evaluating potential use of commercial electric propulsion systems for SMD applications. Examples of enhanced mission capability and technology readiness dates shall be discussed.
Final Report: Hydrogen Production Pathways Cost Analysis (2013 – 2016)
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, Brian David; DeSantis, Daniel Allan; Saur, Genevieve
This report summarizes work conducted under a three year Department of Energy (DOE) funded project to Strategic Analysis, Inc. (SA) to analyze multiple hydrogen (H 2) production technologies and project their corresponding levelized production cost of H 2. The analysis was conducted using the H2A Hydrogen Analysis Tool developed by the DOE and National Renewable Energy Laboratory (NREL). The project was led by SA but conducted in close collaboration with the NREL and Argonne National Laboratory (ANL). In-depth techno-economic analysis (TEA) of five different H 2 production methods was conducted. These TEAs developed projections for capital costs, fuel/feedstock usage, energymore » usage, indirect capital costs, land usage, labor requirements, and other parameters, for each H 2 production pathway, and use the resulting cost and system parameters as inputs into the H2A discounted cash flow model to project the production cost of H 2 ($/kgH 2). Five technologies were analyzed as part of the project and are summarized in this report: Proton Exchange Membrane technology (PEM), High temperature solid oxide electrolysis cell technology (SOEC), Dark fermentation of biomass for H 2 production, H 2 production via Monolithic Piston-Type Reactors with rapid swing reforming and regeneration reactions, and Reformer-Electrolyzer-Purifier (REP) technology developed by Fuel Cell Energy, Inc. (FCE).« less
Developing a Strategic Plan for NASA JSC's Technology Investments
NASA Technical Reports Server (NTRS)
Stecklein, Jonette M.
2012-01-01
Human space exploration has always been heavily influenced by goals to achieve a specific mission on a specific schedule. This approach drove rapid technology development, the rapidity of which adds risks as well as provides a major driver for costs. The National Aeronautics and Space Administration (NASA) is now approaching the extension of human presence throughout the solar system by balancing a proactive yet less schedule-driven development of technology with opportunistic scheduling of missions as the needed technologies are realized. This approach should provide cost effective, low risk technology development that will enable efficient and effective manned spaceflight missions. As a first step, the NASA Human Spaceflight Architecture Team (HAT) has identified a suite of critical technologies needed to support future manned missions across a range of destinations, including in cislunar space, near earth asteroid visits, lunar exploration, Mars space, and Mars exploration. The challenge now is to develop a strategy and plan for technology development that efficiently enables these missions over a reasonable time period, without increasing technology development costs unnecessarily due to schedule pressure, and subsequently mitigating development and mission risks. NASA fs Johnson Space Center (JSC), as the nation's primary center for human exploration, is addressing this challenge through an innovative approach allocating Internal Research and Development funding to projects that have been prioritized using four focus criteria, with appropriate importance weighting. These four focus criteria are the Human Space Flight Technology Needs, JSC Core Technology Competencies, Commercialization Potential, and Partnership Potential. The inherent coupling in these focus criteria have been captured in a database and have provided an initial prioritization for allocation of technology development research funding. This paper will describe this process and this database, and the preliminary technology development prioritization results.
Air Force Reusable Booster System A Quick-look, Design Focused Modeling and Cost Analysis Study
NASA Technical Reports Server (NTRS)
Zapata, Edgar
2011-01-01
Presents work supporting the Air force Reusable Booster System (RBS) - A Cost Study with Goals as follows: Support US launch systems decision makers, esp. in regards to the research, technology and demonstration investments required for reusable systems to succeed. Encourage operable directions in Reusable Booster / Launch Vehicle Systems technology choices, system design and product and process developments. Perform a quick-look cost study, while developing a cost model for more refined future analysis.
Technology for low-cost PIR security sensors
NASA Astrophysics Data System (ADS)
Liddiard, Kevin C.
2008-03-01
Current passive infrared (PIR) security sensors employing pyroelectric detectors are simple, cheap and reliable, but have several deficiencies. These sensors, developed two decades ago, are essentially short-range moving-target hotspot detectors. They cannot detect slow temperature changes, and thus are unable to respond to radiation stimuli indicating potential danger such as overheating electrical appliances and developing fires. They have a poor optical resolution and limited ability to recognize detected targets. Modern uncooled thermal infrared technology has vastly superior performance but as yet is too costly to challenge the PIR security sensor market. In this paper microbolometer technology will be discussed which can provide enhanced performance at acceptable cost. In addition to security sensing the technology has numerous applications in the military, industrial and domestic markets where target range is short and low cost is paramount.
Structures, performance, benefit, cost study. [gas turbine engines
NASA Technical Reports Server (NTRS)
Feder, E.
1981-01-01
Aircraft engine structures were studied to identify the advanced structural technologies that would provide the most benefits to future aircraft operations. A series of studies identified engine systems with the greatest potential for improvements. Based on these studies, six advanced generic structural concepts were selected and conceptually designed. The benefits of each concept were quantitatively assessed in terms of thrust specific fuel consumption, weight, cost, maintenance cost, fuel burned and direct operating cost plus interest. The probability of success of each concept was also determined. The concepts were ranked and the three most promising were selected for further study which consisted of identifying and comprehensively outlining the advanced technologies required to develop these concepts for aircraft engine application. Analytic, fabrication, and test technology developments are required. The technology programs outlined emphasize the need to provide basic, fundamental understanding of technology to obtain the benefit goals.
Study of Multimission Modular Spacecraft (MMS) propulsion requirements
NASA Technical Reports Server (NTRS)
Fischer, N. H.; Tischer, A. E.
1977-01-01
The cost effectiveness of various propulsion technologies for shuttle-launched multimission modular spacecraft (MMS) missions was determined with special attention to the potential role of ion propulsion. The primary criterion chosen for comparison for the different types of propulsion technologies was the total propulsion related cost, including the Shuttle charges, propulsion module costs, upper stage costs, and propulsion module development. In addition to the cost comparison, other criteria such as reliability, risk, and STS compatibility are examined. Topics covered include MMS mission models, propulsion technology definition, trajectory/performance analysis, cost assessment, program evaluation, sensitivity analysis, and conclusions and recommendations.
In-Situ Resource Utilization for Economical Space Missions
NASA Technical Reports Server (NTRS)
Ramohalli, Kumar
1999-01-01
This paper presents some recent developments in the technologies of ISRU with the specific intention of cost reductions in space missions. Recognizing that a certain level of technology maturation is necessary before the mission designers will seriously consider any technology, the hypothesis is made that the overall cost-index is inversely proportional to the TRL. Also recognizing that the cost is directly proportional to the mass at launch, the cost-index is identified as the ratio of the launch mass to the TRL. Whether this cost-index is the true measure of the overall mission cost is arguable; however, the relative costs of comparable technologies can be readily assessed by applying identical rules of such an evaluation. As one example of this approach, Mars Sample Return (MSR) is studied, and nine competing technologies are evaluated for the key Mars Ascent Vehicle (MAV). It is found that the technology of oxygen production through the dissociation of atmospheric carbon dioxide can be a key technology. In addition to reporting upon this technology briefly, one innovative application that significantly enhances the science capabilities of a rover is discussed.
Niu, Kunyu; Wu, Jian; Yu, Fang; Guo, Jingli
2016-11-15
This paper aims to develop a construction and operation cost model of wastewater treatment for the paper industry in China and explores the main factors that determine these costs. Previous models mainly involved factors relating to the treatment scale and efficiency of treatment facilities for deriving the cost function. We considered the factors more comprehensively by adding a regional variable to represent the economic development level, a corporate ownership factor to represent the plant characteristics, a subsector variable to capture pollutant characteristics, and a detailed-classification technology variable. We applied a unique data set from a national pollution source census for the model simulation. The major findings include the following: (1) Wastewater treatment costs in the paper industry are determined by scale, technology, degree of treatment, ownership, and regional factors; (2) Wastewater treatment costs show a large decreasing scale effect; (3) The current level of pollutant discharge fees is far lower than the marginal treatment costs for meeting the wastewater discharge standard. Key implications are as follows: (1) Cost characteristics and impact factors should be fully recognized when planning or making policies relating to wastewater treatment projects or technology development; (2) There is potential to reduce treatment costs by centralizing wastewater treatment via industrial parks; (3) Wastewater discharge fee rates should be increased; (4) Energy efficient technology should become the future focus of wastewater treatment.
NASA Technical Reports Server (NTRS)
2012-01-01
Success in executing future NASA space missions will depend on advanced technology developments that should already be underway. It has been years since NASA has had a vigorous, broad-based program in advanced space technology development, and NASA's technology base is largely depleted. As noted in a recent National Research Council report on the U.S. civil space program: Future U.S. leadership in space requires a foundation of sustained technology advances that can enable the development of more capable, reliable, and lower-cost spacecraft and launch vehicles to achieve space program goals. A strong advanced technology development foundation is needed also to enhance technology readiness of new missions, mitigate their technological risks, improve the quality of cost estimates, and thereby contribute to better overall mission cost management. Yet financial support for this technology base has eroded over the years. The United States is now living on the innovation funded in the past and has an obligation to replenish this foundational element. NASA has developed a draft set of technology roadmaps to guide the development of space technologies under the leadership of the NASA Office of the Chief Technologist. The NRC appointed the Steering Committee for NASA Technology Roadmaps and six panels to evaluate the draft roadmaps, recommend improvements, and prioritize the technologies within each and among all of the technology areas as NASA finalizes the roadmaps. The steering committee is encouraged by the initiative NASA has taken through the Office of the Chief Technologist (OCT) to develop technology roadmaps and to seek input from the aerospace technical community with this study.
Emerging Technologies for Environmental Remediation: Integrating Data and Judgment.
Bates, Matthew E; Grieger, Khara D; Trump, Benjamin D; Keisler, Jeffrey M; Plourde, Kenton J; Linkov, Igor
2016-01-05
Emerging technologies present significant challenges to researchers, decision-makers, industry professionals, and other stakeholder groups due to the lack of quantitative risk, benefit, and cost data associated with their use. Multi-criteria decision analysis (MCDA) can support early decisions for emerging technologies when data is too sparse or uncertain for traditional risk assessment. It does this by integrating expert judgment with available quantitative and qualitative inputs across multiple criteria to provide relative technology scores. Here, an MCDA framework provides preliminary insights on the suitability of emerging technologies for environmental remediation by comparing nanotechnology and synthetic biology to conventional remediation methods. Subject matter experts provided judgments regarding the importance of criteria used in the evaluations and scored the technologies with respect to those criteria. The results indicate that synthetic biology may be preferred over nanotechnology and conventional methods for high expected benefits and low deployment costs but that conventional technology may be preferred over emerging technologies for reduced risks and development costs. In the absence of field data regarding the risks, benefits, and costs of emerging technologies, structuring evidence-based expert judgment through a weighted hierarchy of topical questions may be helpful to inform preliminary risk governance and guide emerging technology development and policy.
CoMET: Cost and Mass Evaluation Tool for Spacecraft and Mission Design
NASA Technical Reports Server (NTRS)
Bieber, Ben S.
2005-01-01
New technology in space exploration is often developed without a complete knowledge of its impact. While the immediate benefits of a new technology are obvious, it is harder to understand its indirect consequences, which ripple through the entire system. COMET is a technology evaluation tool designed to illuminate how specific technology choices affect a mission at each system level. COMET uses simplified models for mass, power, and cost to analyze performance parameters of technologies of interest. The sensitivity analysis that CoMET provides shows whether developing a certain technology will greatly benefit the project or not. CoMET is an ongoing project approaching a web-based implementation phase. This year, development focused on the models for planetary daughter craft, such as atmospheric probes, blimps and balloons, and landers. These models are developed through research into historical data, well established rules of thumb, and engineering judgment of experts at JPL. The model is validated by corroboration with JpL advanced mission studies. Other enhancements to COMET include adding launch vehicle analysis and integrating an updated cost model. When completed, COMET will allow technological development to be focused on areas that will most drastically improve spacecraft performance.
NASA Technical Reports Server (NTRS)
Barley, Bryan; Newhouse, Marilyn; Clardy, Dennon
2011-01-01
In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced or heritage systems and the system environment identifies unanticipated issues that result in cost overruns or schedule impacts. The Discovery & New Frontiers (D&NF) Program Office recently studied cost overruns and schedule delays resulting from advanced technology or heritage assumptions for 6 D&NF missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that the cost and schedule growth did not result from technical hurdles requiring significant technology development. Instead, systems engineering processes did not identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of experience with the heritage system; or an inadequate scoping of the system-wide impacts necessary to implement the heritage or advanced technology. This presentation summarizes the study s findings and offers suggestions for improving the project s ability to identify and manage the risks inherent in the technology and heritage design solution.
Water assessment for the Lower Colorado River region-emerging energy technology development
NASA Astrophysics Data System (ADS)
1981-08-01
Water supply availability for two hypothetical levels of emerging energy technology development are assessed. The water and related land resources implications of such hypothetical developments are evaluated. Water requirement, the effects on water quality, costs of water supplies, costs of disposal of wastewaters, and the environmental, economic and social impacts are determined, providing information for the development of non-nuclear energy research.
Cost/benefit analysis of advanced material technologies for small aircraft turbine engines
NASA Technical Reports Server (NTRS)
Comey, D. H.
1977-01-01
Cost/benefit studies were conducted on ten advanced material technologies applicable to small aircraft gas turbine engines to be produced in the 1985 time frame. The cost/benefit studies were applied to a two engine, business-type jet aircraft in the 6800- to 9100-Kg (15,000- to 20,000-lb) gross weight class. The new material technologies are intended to provide improvements in the areas of high-pressure turbine rotor components, high-pressure turbine rotor components, high-pressure turbine stator airfoils, and static structural components. The cost/benefit of each technology is presented in terms of relative value, which is defined as a change in life cycle cost times probability of success divided by development cost. Technologies showing the most promising cost/benefits based on relative value are uncooled single crystal MAR-M 247 turbine blades, cooled DS MAR-M 247 turbine blades, and cooled ODS 'M'CrAl laminate turbine stator vanes.
Cost estimating methods for advanced space systems
NASA Technical Reports Server (NTRS)
Cyr, Kelley
1994-01-01
NASA is responsible for developing much of the nation's future space technology. Cost estimates for new programs are required early in the planning process so that decisions can be made accurately. Because of the long lead times required to develop space hardware, the cost estimates are frequently required 10 to 15 years before the program delivers hardware. The system design in conceptual phases of a program is usually only vaguely defined and the technology used is so often state-of-the-art or beyond. These factors combine to make cost estimating for conceptual programs very challenging. This paper describes an effort to develop parametric cost estimating methods for space systems in the conceptual design phase. The approach is to identify variables that drive cost such as weight, quantity, development culture, design inheritance and time. The nature of the relationships between the driver variables and cost will be discussed. In particular, the relationship between weight and cost will be examined in detail. A theoretical model of cost will be developed and tested statistically against a historical database of major research and development projects.
Photovoltaic system costs using local labor and materials in developing countries
NASA Technical Reports Server (NTRS)
Jacobson, E.; Fletcher, G.; Hein, G.
1980-01-01
The use of photovoltaic (PV) technology in countries that do not presently have high technology industrial capacity was investigated. The relative cost of integrating indigenous labor (and manufacturing where available) into the balance of the system industry of seven countries (Egypt, Haiti, the Ivory Coast, Kenya, Mexico, Nepal, and the Phillipines) was determined. The results were then generalized to other countries, at most levels of development. The results of the study imply several conclusions: (1) the cost of installing and maintaining comparable photovoltaic systems in developing countries is less than in the United States; (2) skills and some materials are available in the seven subject countries that may be applied to constructing and maintaining PV systems; (3) there is an interest in foreign countries in photovoltaics; and (4) conversations with foreign nationals suggest that photovoltaics must be introduced in foreign markets as an appropriate technology with high technology components rather than as a high technology system.
Photovoltaic system costs using local labor and materials in developing countries
NASA Astrophysics Data System (ADS)
Jacobson, E.; Fletcher, G.; Hein, G.
1980-05-01
The use of photovoltaic (PV) technology in countries that do not presently have high technology industrial capacity was investigated. The relative cost of integrating indigenous labor (and manufacturing where available) into the balance of the system industry of seven countries (Egypt, Haiti, the Ivory Coast, Kenya, Mexico, Nepal, and the Phillipines) was determined. The results were then generalized to other countries, at most levels of development. The results of the study imply several conclusions: (1) the cost of installing and maintaining comparable photovoltaic systems in developing countries is less than in the United States; (2) skills and some materials are available in the seven subject countries that may be applied to constructing and maintaining PV systems; (3) there is an interest in foreign countries in photovoltaics; and (4) conversations with foreign nationals suggest that photovoltaics must be introduced in foreign markets as an appropriate technology with high technology components rather than as a high technology system.
NASA Technical Reports Server (NTRS)
Schlater, Nelson J.; Simonds, Charles H.; Ballin, Mark G.
1993-01-01
Applied research and technology development (R&TD) is often characterized by uncertainty, risk, and significant delays before tangible returns are obtained. Given the increased awareness of limitations in resources, effective R&TD today needs a method for up-front assessment of competing technologies to help guide technology investment decisions. Such an assessment approach must account for uncertainties in system performance parameters, mission requirements and architectures, and internal and external events influencing a development program. The methodology known as decision analysis has the potential to address these issues. It was evaluated by performing a case study assessment of alternative carbon dioxide removal technologies for NASA's proposed First Lunar Outpost program. An approach was developed that accounts for the uncertainties in each technology's cost and performance parameters as well as programmatic uncertainties such as mission architecture. Life cycle cost savings relative to a baseline, adjusted for the cost of money, was used as a figure of merit to evaluate each of the alternative carbon dioxide removal technology candidates. The methodology was found to provide a consistent decision-making strategy for development of new life support technology. The case study results provided insight that was not possible from more traditional analysis approaches.
Health care development: integrating transaction cost theory with social support theory.
Hajli, M Nick; Shanmugam, Mohana; Hajli, Ali; Khani, Amir Hossein; Wang, Yichuan
2014-07-28
The emergence of Web 2.0 technologies has already been influential in many industries, and Web 2.0 applications are now beginning to have an impact on health care. These new technologies offer a promising approach for shaping the future of modern health care, with the potential for opening up new opportunities for the health care industry as it struggles to deal with challenges including the need to cut costs, the increasing demand for health services and the increasing cost of medical technology. Social media such as social networking sites are attracting more individuals to online health communities, contributing to an increase in the productivity of modern health care and reducing transaction costs. This study therefore examines the potential effect of social technologies, particularly social media, on health care development by adopting a social support/transaction cost perspective. Viewed through the lens of Information Systems, social support and transaction cost theories indicate that social media, particularly online health communities, positively support health care development. The results show that individuals join online health communities to share and receive social support, and these social interactions provide both informational and emotional support.
A study of the cost-effective markets for new technology agricultural aircraft
NASA Technical Reports Server (NTRS)
Hazelrigg, G. A., Jr.; Clyne, F.
1979-01-01
A previously developed data base was used to estimate the regional and total U.S. cost-effective markets for a new technology agricultural aircraft as incorporating features which could result from NASA-sponsored aerial applications research. The results show that the long-term market penetration of a new technology aircraft would be near 3,000 aircraft. This market penetration would be attained in approximately 20 years. Annual sales would be about 200 aircraft after 5 to 6 years of introduction. The net present value of cost savings benefit which this aircraft would yield (measured on an infinite horizon basis) would be about $35 million counted at a 10 percent discount rate and $120 million at a 5 percent discount rate. At both discount rates the present value of cost savings exceeds the present value of research and development (R&D) costs estimated for the development of the technology base needed for the proposed aircraft. These results are quite conservative as they have been derived neglecting future growth in the agricultural aviation industry, which has been averaging about 12 percent per year over the past several years.
Scenario drafting to anticipate future developments in technology assessment.
Retèl, Valesca P; Joore, Manuela A; Linn, Sabine C; Rutgers, Emiel J T; van Harten, Wim H
2012-08-16
Health Technology Assessment (HTA) information, and in particular cost-effectiveness data is needed to guide decisions, preferably already in early stages of technological development. However, at that moment there is usually a high degree of uncertainty, because evidence is limited and different development paths are still possible. We developed a multi-parameter framework to assess dynamic aspects of a technology -still in development-, by means of scenario drafting to determine the effects, costs and cost-effectiveness of possible future diffusion patterns. Secondly, we explored the value of this method on the case of the clinical implementation of the 70-gene signature for breast cancer, a gene expression profile for selecting patients who will benefit most from chemotherapy. To incorporate process-uncertainty, ten possible scenarios regarding the introduction of the 70-gene signature were drafted with European experts. Out of 5 most likely scenarios, 3 drivers of diffusion (non-compliance, technical failure, and uptake) were quantitatively integrated in a decision-analytical model. For these scenarios, the cost-effectiveness of the 70-gene signature expressed in Incremental Cost-Effectiveness Ratios (ICERs) was compared to clinical guidelines, calculated from the past (2005) until the future (2020). In 2005 the ICER was €1,9 million/quality-adjusted-life-year (QALY), meaning that the 70-gene signature was not yet cost-effective compared to the current clinical guideline. The ICER for the 70-gene signature improved over time with a range of €1,9 million to €26,145 in 2010 and €1,9 million to €11,123/QALY in 2020 depending on the separate scenario used. From 2010, the 70-gene signature should be cost-effective, based on the combined scenario. The uptake-scenario had strongest influence on the cost-effectiveness. When optimal diffusion of a technology is sought, incorporating process-uncertainty by means of scenario drafting into a decision model may reveal unanticipated developments and can demonstrate a range of possible cost-effectiveness outcomes. The effect of scenarios give additional information on the speed with cost effectiveness might be reached and thus provide a more realistic picture for policy makers, opinion leaders and manufacturers.
Scenario drafting to anticipate future developments in technology assessment
2012-01-01
Background Health Technology Assessment (HTA) information, and in particular cost-effectiveness data is needed to guide decisions, preferably already in early stages of technological development. However, at that moment there is usually a high degree of uncertainty, because evidence is limited and different development paths are still possible. We developed a multi-parameter framework to assess dynamic aspects of a technology -still in development-, by means of scenario drafting to determine the effects, costs and cost-effectiveness of possible future diffusion patterns. Secondly, we explored the value of this method on the case of the clinical implementation of the 70-gene signature for breast cancer, a gene expression profile for selecting patients who will benefit most from chemotherapy. Methods To incorporate process-uncertainty, ten possible scenarios regarding the introduction of the 70-gene signature were drafted with European experts. Out of 5 most likely scenarios, 3 drivers of diffusion (non-compliance, technical failure, and uptake) were quantitatively integrated in a decision-analytical model. For these scenarios, the cost-effectiveness of the 70-gene signature expressed in Incremental Cost-Effectiveness Ratios (ICERs) was compared to clinical guidelines, calculated from the past (2005) until the future (2020). Results In 2005 the ICER was €1,9 million/quality-adjusted-life-year (QALY), meaning that the 70-gene signature was not yet cost-effective compared to the current clinical guideline. The ICER for the 70-gene signature improved over time with a range of €1,9 million to €26,145 in 2010 and €1,9 million to €11,123/QALY in 2020 depending on the separate scenario used. From 2010, the 70-gene signature should be cost-effective, based on the combined scenario. The uptake-scenario had strongest influence on the cost-effectiveness. Conclusions When optimal diffusion of a technology is sought, incorporating process-uncertainty by means of scenario drafting into a decision model may reveal unanticipated developments and can demonstrate a range of possible cost-effectiveness outcomes. The effect of scenarios give additional information on the speed with cost effectiveness might be reached and thus provide a more realistic picture for policy makers, opinion leaders and manufacturers. PMID:22894140
Technology for low cost solid rocket boosters.
NASA Technical Reports Server (NTRS)
Ciepluch, C.
1971-01-01
A review of low cost large solid rocket motors developed at the Lewis Research Center is given. An estimate is made of the total cost reduction obtainable by incorporating this new technology package into the rocket motor design. The propellant, case material, insulation, nozzle ablatives, and thrust vector control are discussed. The effect of the new technology on motor cost is calculated for a typical expandable 260-in. booster application. Included in the cost analysis is the influence of motor performance variations due to specific impulse and weight changes. It is found for this application that motor costs may be reduced by up to 30% and that the economic attractiveness of future large solid rocket motors will be improved when the new technology is implemented.
The Future Potential of Wave Power in the US
NASA Astrophysics Data System (ADS)
Previsic, M.; Epler, J.; Hand, M.; Heimiller, D.; Short, W.; Eurek, K.
2012-12-01
The theoretical ocean wave energy resource potential exceeds 50% of the annual domestic energy demand of the US, is located in close proximity of coastal population centers, and, although variable in nature, may be more consistent and predictable than some other renewable generation technologies. As renewable electricity generation technologies, ocean wave energy offers a low air pollutant option for diversifying the US electricity generation portfolio. Furthermore, the output characteristics of these technologies may complement other renewable technologies. This study addresses: (1) The energy extraction potential from the US wave energy resource, (2) The present cost of wave technology in /kW, (3) The estimated cost of energy in /kWh, and (4) Cost levels at which the technology should see significant deployment. RE Vision Consulting in collaboration with NREL engaged in various analyses to establish present-day and future cost profiles for MHK technologies, compiled existing resource assessments and wave energy supply curves, and developed cost and deployment scenarios using the ReEDS analysis model to estimate the present-day technology cost reductions necessary to facilitate significant technology deployment in the US.
Renewable Energy Development in Hermosa Beach, California
NASA Astrophysics Data System (ADS)
Morris, K.
2016-12-01
The City of Hermosa Beach, California, with the support of the AGU's TEX program, is exploring the potential for renewable energy generation inside the City, as part of the implementation of the City's 2015 Municipal Carbon Neutral Plan. Task 1: Estimate the technical potential of existing and future technologies Given the City's characteristics, this task will identify feasible technologies: wind, solar, tidal/wave, wastewater biogas, landfill biogas, microscale anaerobic digestion (AD), and complementary energy storage. Some options may be open to the City acting alone, but others will require working with municipal partners and private entities that provide services to Hermosa Beach (e.g., wastewater treatment). Energy storage is a means to integrate intermittent renewable energy output. Task 2: Review transaction types and pathways In this task, feasible technologies will be further examined in terms of municipal ordinances and contractual paths: (a) power purchase agreements (PPAs) with developers, under which the City would purchase energy or storage services directly; (b) leases with developers, under which the City would rent sites (e.g., municipal rooftops) to developers; (c) ordinances related to permitting, under which the City would reduce regulatory barriers to entry for developers; (d) pilot projects, under which the City would engage with developers to test new technologies such as wind/wave/microscale AD (pursuant to PPAs and/or leases); and (e) existing projects, under which the City would work with current wastewater and landfill contractors to understand (i) current plans to develop renewable energy, and (ii) opportunities for the City to work with such contractors to promote renewable energy. Task 3: Estimate costs by technology Finally, the last task will gather existing information about the costs, both current and projected, of the feasible technologies, including (i) overnight construction cost (capital); (ii) integration costs (e.g., charges from Edison and energy storage); (iii) costs that may be avoided due to promotion of renewable energy; and (iv) comparisons of projected annual nominal costs (in $/MWh and net present values).
Who should pay for biomedical-engineering technology development?
NASA Astrophysics Data System (ADS)
Varnado, Samuel G.
1994-12-01
It is an enigma that the introduction of technology has led to improvements in productivity in practically every area of endeavor except the field of medicine. This paper asserts that properly applied technology, based on a systems engineering approach, can help reduce the cost while maintaining the quality of health care delivery. Achieving this goal will require more cooperation and coordination at the Federal level to insure that a focused systems approach is used in applying and developing technology that will lead to cost reduction. It is further asserted that much of the technology that could help reduce costs resides in the DoD and the DOE and has not historically been of prime interest to the NIH. Several dual use applications are presented that show how defense related technology can benefit the field of medicine.
Ceramic Technology Project semiannual progress report, October 1992--March 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.R.
1993-09-01
This project was developed to meet the ceramic technology requirements of the OTS`s automotive technology programs. Although progress has been made in developing reliable structural ceramics, further work is needed to reduce cost. The work described in this report is organized according to the following work breakdown structure project elements: Materials and processing (monolithics [Si nitride, carbide], ceramic composites, thermal and wear coatings, joining, cost effective ceramic machining), materials design methodology (contact interfaces, new concepts), data base and life prediction (structural qualification, time-dependent behavior, environmental effects, fracture mechanics, nondestructive evaluation development), and technology transfer.
Cost-Effective and High-Resolution Subsurface Characterization Using Hydraulic Tomography
2017-08-28
implementation and compare costs associated with HT and conventional methods. TECHNOLOGY DESCRIPTION The HT concept is analogous to the Computerized...develop guidance for HT field implementation and compare costs associated with HT and conventional methods. 15. SUBJECT TERMS Subsurface...3 2.1 TECHNOLOGY DESCRIPTION
NREL Launches Electrification Futures Study Series | News | NREL
Study Series First report includes foundational data on cost and performance of electric technologies Futures Study: End-Use Electric Technology Cost and Performance Projections through 2050. This report uses a combination of recently published literature and expert assessment to develop future cost and
Point Focusing Thermal and Electric Applications Project. Volume 2: Workshop proceedings
NASA Technical Reports Server (NTRS)
Landis, K. E. (Editor)
1979-01-01
Point focus distributed receiver solar thermal technology for the production of electric power and of industrial process heat is discussed. Thermal power systems are described. Emphasis is on the development of cost effective systems which will accelerate the commercialization and industrialization of plants, using parabolic dish collectors. The characteristics of PFDR systems and the cost targets for major subsystems hardware are identified. Markets for this technology and their size are identified, and expected levelized bus bar energy costs as a function of yearly production level are presented. The present status of the technology development effort is discussed.
Life Cycle Analysis of Dedicated Nano-Launch Technologies
NASA Technical Reports Server (NTRS)
Zapata, Edgar; McCleskey, Carey; Martin, John; Lepsch, Roger; Hernani, Tosoc
2014-01-01
Recent technology advancements have enabled the development of small cheap satellites that can perform useful functions in the space environment. Currently, the only low cost option for getting these payloads into orbit is through ride share programs. As a result, these launch opportunities await primary payload launches and a backlog exists. An alternative option would be dedicated nano-launch systems built and operated to provide more flexible launch services, higher availability, and affordable prices. The potential customer base that would drive requirements or support a business case includes commercial, academia, civil government and defense. Further, NASA technology investments could enable these alternative game changing options.With this context, in 2013 the Game Changing Development (GCD) program funded a NASA team to investigate the feasibility of dedicated nano-satellite launch systems with a recurring cost of less than $2 million per launch for a 5 kg payload to low Earth orbit. The team products would include potential concepts, technologies and factors for enabling the ambitious cost goal, exploring the nature of the goal itself, and informing the GCD program technology investment decision making process. This paper provides an overview of the life cycle analysis effort that was conducted in 2013 by an inter-center NASA team. This effort included the development of reference nano-launch system concepts, developing analysis processes and models, establishing a basis for cost estimates (development, manufacturing and launch) suitable to the scale of the systems, and especially, understanding the relationship of potential game changing technologies to life cycle costs, as well as other factors, such as flights per year.
Energy Efficient Engine Program: Technology Benefit/Cost Study, Volume II
NASA Technical Reports Server (NTRS)
Gray, D. E.; Gardner, W. B.
1983-01-01
The Benefit/Cost Study portion of the NASA-sponsored Energy Efficient Engine Component Development and Integration program was successful in achieving its objectives: identification of air transport propulsion system technology requirements for the years 2000 and 2010, and formulation of programs for developing these technologies. It is projected that the advanced technologies identified, when developed to a state of readiness, will provide future commercial and military turbofan engines with significant savings in fuel consumption and related operating costs. These benefits are significant and far from exhausted. The potential savings translate into billions of dollars in annual savings for the airlines. Analyses indicate that a significant portion of the overall savings is attributed to aerodynamic and structure advancements. Another important consideration in acquiring these benefits is developing a viable reference technology base that will permit engines to operate at substantially higher overall pressure ratios and bypass ratios. Results have pointed the direction for future research and a comprehensive program plan for achieving this was formulated. The next major step is initiating the program effort that will convert the advanced technologies into the expected benefits.
Power Systems for Future Missions: Appendices A-L
NASA Technical Reports Server (NTRS)
Gill, S. P.; Frye, P. E.; Littman, Franklin D.; Meisl, C. J.
1994-01-01
Selection of power system technology for space applications is typically based on mass, readiness of a particular technology to meet specific mission requirements, and life cycle costs (LCC). The LCC is typically used as a discriminator between competing technologies for a single mission application. All other future applications for a given technology are usually ignored. As a result, development cost of a technology becomes a dominant factor in the LCC comparison. Therefore, it is common for technologies such as DIPS and LMR-CBC to be potentially applicable to a wide range of missions and still lose out in the initial LCC comparison due to high development costs. This collection of appendices (A through L) contains the following power systems technology plans: CBC DIPS Technology Roadmap; PEM PFC Technology Roadmap; NAS Battery Technology Roadmap; PV/RFC Power System Technology Roadmap; PV/NAS Battery Technology Roadmap; Thermionic Reactor Power System Technology Roadmap; SP-100 Power System Technology Roadmap; Dynamic SP-100 Power System Technology Roadmap; Near-Term Solar Dynamic Power System Technology Roadmap; Advanced Solar Dynamic Power System Technology Roadmap; Advanced Stirling Cycle Dynamic Isotope Power System Technology Roadmap; and the ESPPRS (Evolutionary Space Power and Propulsion Requirements System) User's Guide.
Thermal Management and Reliability of Automotive Power Electronics and Electric Machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narumanchi, Sreekant V; Bennion, Kevin S; Cousineau, Justine E
Low-cost, high-performance thermal management technologies are helping meet aggressive power density, specific power, cost, and reliability targets for power electronics and electric machines. The National Renewable Energy Laboratory is working closely with numerous industry and research partners to help influence development of components that meet aggressive performance and cost targets through development and characterization of cooling technologies, and thermal characterization and improvements of passive stack materials and interfaces. Thermomechanical reliability and lifetime estimation models are important enablers for industry in cost-and time-effective design.
Electrification Futures Study Technology Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jadun, Paige; McMillan, Colin; Steinberg, Daniel
This data supplements the "Electrification Futures Study: End-Use Electric Technology Cost and Performance Projections through 2050" report. The data included here consist of the cost and performance estimates for electric end-use technologies developed for the three sensitivity cases in the Electrification Futures Study: Slow Advancement, Moderate Advancement, and Rapid Advancement.
Technological Minimalism: A Cost-Effective Alternative for Course Design and Development.
ERIC Educational Resources Information Center
Lorenzo, George
2001-01-01
Discusses the use of minimum levels of technology, or technological minimalism, for Web-based multimedia course content. Highlights include cost effectiveness; problems with video streaming, the use of XML for Web pages, and Flash and Java applets; listservs instead of proprietary software; and proper faculty training. (LRW)
Structures performance, benefit, cost-study
NASA Technical Reports Server (NTRS)
Woike, O. G.; Salemme, C.; Stearns, E.; Oritz, P.; Roberts, M. L.; Baughman, J. L.; Johnston, R. P.; Demel, H. F.; Stabrylla, R. G.; Coffinberry, G. A.
1981-01-01
New technology concepts and structural analysis development needs which could lead to improved life cycle cost for future high-bypass turbofans were studied. The NASA-GE energy efficient engine technology is used as a base to assess the concept benefits. Recommended programs are identified for attaining these generic structural and other beneficial technologies.
NASA Technical Reports Server (NTRS)
Jankovsky, Robert; Elliott, Fred
2000-01-01
It is the goal of this activity to develop 50 kW class Hall thruster technology in support of cost and time critical mission applications such as orbit insertion. NASA Marshall Space Flight Center is tasked to develop technologies that enable cost and travel time reduction of interorbital transportation. Therefore, a key challenge is development of moderate specific impulse (2000-3000 s), high thrust-to-power electric propulsion. NASA Glenn Research Center is responsible for development of a Hall propulsion system to meet these needs. First-phase, sub-scale Hall engine development completed. A 10 kW engine designed, fabricated, and tested. Performance demonstrated >2400 s, >500 mN thrust over 1000 hours of operation documented.
Mask strategy at International SEMATECH
NASA Astrophysics Data System (ADS)
Kimmel, Kurt R.
2002-08-01
International SEMATECH (ISMT) is a consortium consisting of 13 leading semiconductor manufacturers from around the globe. Its objective is to develop the infrastructure necessary for its member companies to realize the International Technology Roadmap for Semiconductors (ITRS) through efficiencies of shared development resources and knowledge. The largest area of effort is lithography, recognized as a crucial enabler for microelectronics technology progress. Within the Lithography Division, most of the efforts center on mask-related issues. The development strategy at International SEMATCH will be presented and the interlock of lithography projects clarified. Because of the limited size of the mask production equipment market, the business case is weak for aggressive investment commensurate with the pace of the International Technology Roadmap for Semiconductors. With masks becoming the overwhelming component of lithography cost, new ways of reducing or eliminating mask costs are being explored. Will mask technology survive without a strong business case? Will the mask industry limit the growth of the semiconductor industry? Are advanced masks worth their escalating cost? An analysis of mask cost from the perspective of mask value imparted to the user is presented with examples and generic formulas for the reader to apply independently. A key part to the success for both International SEMATECH and the industry globally will be partnerships on both the local level between mask-maker and mask-user, and the macro level where global collaborations will be necessary to resolve technology development cost challenges.
Automated array assembly task, phase 1
NASA Technical Reports Server (NTRS)
Carbajal, B. G.
1977-01-01
An assessment of state-of-the-art technologies that are applicable to silicon solar cell and solar cell module fabrication is provided. The assessment consists of a technical feasibility evaluation and a cost projection for high-volume production of silicon solar cell modules. The cost projection was approached from two directions; a design-to-cost analysis assigned cost goals to each major process element in the fabrication scheme, and a cost analysis built up projected costs for alternate technologies for each process element. A technical evaluation was used in combination with the cost analysis to identify a baseline low cost process. A novel approach to metal pattern design based on minimum power loss was developed. These design equations were used as a tool in the evaluation of metallization technologies.
Equivalent Mass versus Life Cycle Cost for Life Support Technology Selection
NASA Technical Reports Server (NTRS)
Jones, Harry
2003-01-01
The decision to develop a particular life support technology or to select it for flight usually depends on the cost to develop and fly it. Other criteria such as performance, safety, reliability, crew time, and technical and schedule risk are considered, but cost is always an important factor. Because launch cost would account for much of the cost of a future planetary mission, and because launch cost is directly proportional to the mass launched, equivalent mass has been used instead of cost to select advanced life support technology. The equivalent mass of a life support system includes the estimated mass of the hardware and of the spacecraft pressurized volume, power supply, and cooling system that the hardware requires. The equivalent mass of a system is defined as the total payload launch mass needed to provide and support the system. An extension of equivalent mass, Equivalent System Mass (ESM), has been established for use in the Advanced Life Support project. ESM adds a mass-equivalent of crew time and possibly other cost factors to equivalent mass. Traditional equivalent mass is strictly based on flown mass and reflects only the launch cost. ESM includes other important cost factors, but it complicates the simple flown mass definition of equivalent mass by adding a non-physical mass penalty for crew time that may exceed the actual flown mass. Equivalent mass is used only in life support analysis. Life Cycle Cost (LCC) is much more commonly used. LCC includes DDT&E, launch, and operations costs. For Earth orbit rather than planetary missions, the launch cost is less than the cost of Design, Development, Test, and Evaluation (DDTBE). LCC is a more inclusive cost estimator than equivalent mass. The relative costs of development, launch, and operations vary depending on the mission destination and duration. Since DDTBE or operations may cost more than launch, LCC gives a more accurate relative cost ranking than equivalent mass. To select the lowest cost technology for a particular application we should use LCC rather than equivalent mass.
Educational Videodisc in Canada. New Technologies in Canadian Education Series. Paper 13.
ERIC Educational Resources Information Center
Tobin, Judith
This paper describes the development and current state of videodisk technology in Canada. The first section focuses on the technology itself, i.e., the disks, disk players, and the possibilities they offer for interaction between learner and machine. The current costs of the technology and the probable effect of these costs on the market are also…
NASA Technical Reports Server (NTRS)
Pitman, C. L.; Erb, D. M.; Izygon, M. E.; Fridge, E. M., III; Roush, G. B.; Braley, D. M.; Savely, R. T.
1992-01-01
The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described.
Research requirements to reduce maintenance costs of civil helicopters
NASA Technical Reports Server (NTRS)
Million, D. J.; Waters, K. T.
1978-01-01
The maintenance problems faced by the operators of civil helicopters that result in high costs are documented. Existing technology that can be applied to reduce maintenance costs and research that should be carried out were identified. Good design practice and application of existing technology were described as having a significant impact on reducing maintenance costs immediately. The research and development that have potential for long range reduction of maintenance costs are presented.
The role of technology in reducing health care costs. Phase II and phase III.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cilke, John F.; Parks, Raymond C.; Funkhouser, Donald Ray
2004-04-01
In Phase I of this project, reported in SAND97-1922, Sandia National Laboratories applied a systems approach to identifying innovative biomedical technologies with the potential to reduce U.S. health care delivery costs while maintaining care quality. The effort provided roadmaps for the development and integration of technology to meet perceived care delivery requirements and an economic analysis model for development of care pathway costs for two conditions: coronary artery disease (CAD) and benign prostatic hypertrophy (BPH). Phases II and III of this project, which are presented in this report, were directed at detailing the parameters of telemedicine that influence care deliverymore » costs and quality. These results were used to identify and field test the communication, interoperability, and security capabilities needed for cost-effective, secure, and reliable health care via telemedicine.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yelundur, Vijay
Suniva, Inc., in collaboration with the University Center for Excellence in Photovoltaics (UCEP) at the Georgia Institute of Technology (GIT) proposed this comprehensive three year program to enable the development of an advanced high performance product that will help the US regain its competitive edge in PV. This project was designed to overcome cost and efficiency barriers through advances in PV science, technology innovation, low-cost manufacturing and full production of ~22.5% efficient n-type Si cells in Norcross, GA. At the heart of the project is the desire to complement the technology being developed concurrently under the Solarmat and ARPAe initiativesmore » to develop a differentiated product superior in both performance and cost effectiveness to the competing alternatives available on the market, and push towards achieving SunShot objectives while ensuring a sustainable business model based on US manufacturing. A significant reduction of the costs in modules produced today will need to combine reductions in wafer costs, cell processing costs as well as module fabrication costs while delivering a product that is not only more efficient under test conditions but also increases the energy yield in outdoor operations. This project will result in a differentiated high performance product and technology that is consistent with sustaining PV manufacturing in the US for a longer term and further highlights the need for continued support for developing the next generation concepts that can keep US manufacturing thriving to support the growing demand for PV in the US and consistent with the US government’s mandates for energy independence.« less
Photovoltaic power systems for rural areas of developing countries
NASA Technical Reports Server (NTRS)
Rosenblum, L.; Bifano, W. J.; Hein, G. F.; Ratajczak, A. F.
1979-01-01
Systems technology, reliability, and present and projected costs of photovoltaic systems are discussed using data derived from NASA, Lewis Research Center experience with photovoltaic systems deployed with a variety of users. Operating systems in two villages, one in Upper Volta and the other in southwestern Arizona are described. Energy cost comparisons are presented for photovoltaic systems versus alternative energy sources. Based on present system technology, reliability, and costs, photovoltaics provides a realistic energy option for developing nations.
Meeting NASA's Mission Through Commercial Partnerships
NASA Technical Reports Server (NTRS)
Nall, Mark
2003-01-01
This paper examines novel approaches to furthering NASA's missions through the use of commercial partnerships. The exploration of space ha proven to be a costly endeavor requiring the development of new technologies at significant expense. One of the prime factors holding bac the robust development of space is insufficient investment in the technologies necessary to make it a reality. The key to success in bringin needed space development technologies to maturation lies in bringing technology investors together from government, industry and academia. aggressive road map for developing space will require a diverse set of interest to industry or other government agencies. By having each invest( contributing to the part of the technology development of interest to them development of space systems can be put together at a cost far below wl would be required to develop for a stand-alone effort. The NASA Space Partnership Division has been employing this technique to leverage a 30 million dollar NASA investment into at 100 million dollar advanced technology development effort focused on meeting NASA's mission needs.
Toward cost-effective solar energy use.
Lewis, Nathan S
2007-02-09
At present, solar energy conversion technologies face cost and scalability hurdles in the technologies required for a complete energy system. To provide a truly widespread primary energy source, solar energy must be captured, converted, and stored in a cost-effective fashion. New developments in nanotechnology, biotechnology, and the materials and physical sciences may enable step-change approaches to cost-effective, globally scalable systems for solar energy use.
Systems engineering and integration: Cost estimation and benefits analysis
NASA Technical Reports Server (NTRS)
Dean, ED; Fridge, Ernie; Hamaker, Joe
1990-01-01
Space Transportation Avionics hardware and software cost has traditionally been estimated in Phase A and B using cost techniques which predict cost as a function of various cost predictive variables such as weight, lines of code, functions to be performed, quantities of test hardware, quantities of flight hardware, design and development heritage, complexity, etc. The output of such analyses has been life cycle costs, economic benefits and related data. The major objectives of Cost Estimation and Benefits analysis are twofold: (1) to play a role in the evaluation of potential new space transportation avionics technologies, and (2) to benefit from emerging technological innovations. Both aspects of cost estimation and technology are discussed here. The role of cost analysis in the evaluation of potential technologies should be one of offering additional quantitative and qualitative information to aid decision-making. The cost analyses process needs to be fully integrated into the design process in such a way that cost trades, optimizations and sensitivities are understood. Current hardware cost models tend to primarily use weights, functional specifications, quantities, design heritage and complexity as metrics to predict cost. Software models mostly use functionality, volume of code, heritage and complexity as cost descriptive variables. Basic research needs to be initiated to develop metrics more responsive to the trades which are required for future launch vehicle avionics systems. These would include cost estimating capabilities that are sensitive to technological innovations such as improved materials and fabrication processes, computer aided design and manufacturing, self checkout and many others. In addition to basic cost estimating improvements, the process must be sensitive to the fact that no cost estimate can be quoted without also quoting a confidence associated with the estimate. In order to achieve this, better cost risk evaluation techniques are needed as well as improved usage of risk data by decision-makers. More and better ways to display and communicate cost and cost risk to management are required.
Advancing Technologies for Climate Observation
NASA Technical Reports Server (NTRS)
Wu, D.; Esper, J.; Ehsan, N.; Johnson, T.; Mast, W.; Piepmeier, J.; Racette, P.
2014-01-01
Climate research needs Accurate global cloud ice measurements Cloud ice properties are fundamental controlling variables of radiative transfer and precipitation Cost-effective, sensitive instruments for diurnal and wide-swath coverage Mature technology for space remote sensing IceCube objectivesDevelop and validate a flight-qualified 883 GHz receiver for future use in ice cloud radiometer missions Raise TRL (57) of 883 GHz receiver technology Reduce instrument cost and risk by developing path to space for COTS sub-mm-wave receiver systems Enable remote sensing of global cloud ice with advanced technologies and techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jia
Biorefineries convert biomass into many useful intermediates. For bio-based products to be used for fuel, energy, chemical, and many other applications, water needs to be removed from these aqueous products. Membrane separation technologies can significantly reduce separation energy consumption compared with conventional separation processes such as distillation. Nanoporous inorganic membranes have superior pervaporation performance with excellent organic fouling resistance. However, their commercial applications are limited due to high membrane costs and poor production reproducibility. A novel cost-effective inorganic membrane fabrication technology has been developed with low cost materials and using an advanced membrane fabrication technology. Low cost precursor material formulationmore » was successfully developed with desired material properties for membrane fabrication. An advanced membrane fabrication process was developed using the novel membrane materials to enable the fabrication of separation membranes of various geometries. The structural robustness and separation performance of the low cost inorganic membranes were evaluated. The novel inorganic membranes demonstrated high structural integrity and were effective in pervaporation removal of water.« less
Technoeconomic aspects of alternative municipal solid wastes treatment methods.
Economopoulos, Alexander P
2010-04-01
This paper considers selected treatment technologies for comingled domestic and similar wastes and provides technoeconomic data and information, useful for the development of strategic management plans. For this purpose, treatment technologies of interest are reviewed and representative flow diagrams, along with material and energy balances, are presented for the typical composition of wastes in Greece; possible difficulties in the use of treatment products, along with their management implications, are discussed, and; cost functions are developed, allowing assessment of the initial capital investment and annual operating costs. Based on the latter, cost functions are developed for predicting the normalized treatment costs of alternative methods (in euro/t of MSW treated), as function of the quantity of MSW processed by plants built and operated (a) by municipality associations, and (b) by private enterprises. Finally, the alternative technologies considered are evaluated on the basis of their cost aspects, product utilization and compatibility with the EU waste framework Directive 2008/98. Copyright 2009 Elsevier Ltd. All rights reserved.
Urban Maglev Technology Development Program : Colorado Maglev Project : part 2 final report
DOT National Transportation Integrated Search
2004-06-01
The overall objective of the urban maglev transit technology development program is to develop magnetic levitation technology that is a cost effective, reliable, and environmentally sound transit option for urban mass transportation in the United Sta...
Nuclear power technology requirements for NASA exploration missions
NASA Technical Reports Server (NTRS)
Bloomfield, Harvey S.
1990-01-01
It is pointed out that future exploration of the moon and Mars will mandate developments in many areas of technology. In particular, major advances will be required in planet surface power systems. Critical nuclear technology challenges that can enable strategic self-sufficiency, acceptable operational costs, and cost-effective space transportation goals for NASA exploration missions have been identified. Critical technologies for surface power systems include stationary and mobile nuclear reactor and radioisotope heat sources coupled to static and dynamic power conversion devices. These technologies can provide dramatic reductions in mass, leading to operational and transportation cost savings. Critical technologies for space transportation systems include nuclear thermal rocket and nuclear electric propulsion options, which present compelling concepts for significantly reducing mass, cost, or travel time required for Earth-Mars transport.
Software engineering technology transfer: Understanding the process
NASA Technical Reports Server (NTRS)
Zelkowitz, Marvin V.
1993-01-01
Technology transfer is of crucial concern to both government and industry today. In this report, the mechanisms developed by NASA to transfer technology are explored and the actual mechanisms used to transfer software development technologies are investigated. Time, cost, and effectiveness of software engineering technology transfer is reported.
Technology-driven dietary assessment: a software developer’s perspective
Buday, Richard; Tapia, Ramsey; Maze, Gary R.
2015-01-01
Dietary researchers need new software to improve nutrition data collection and analysis, but creating information technology is difficult. Software development projects may be unsuccessful due to inadequate understanding of needs, management problems, technology barriers or legal hurdles. Cost overruns and schedule delays are common. Barriers facing scientific researchers developing software include workflow, cost, schedule, and team issues. Different methods of software development and the role that intellectual property rights play are discussed. A dietary researcher must carefully consider multiple issues to maximize the likelihood of success when creating new software. PMID:22591224
Evaluation of alternative future energy scenarios for Brazil using an energy mix model
NASA Astrophysics Data System (ADS)
Coelho, Maysa Joppert
The purpose of this study is to model and assess the performance and the emissions impacts of electric energy technologies in Brazil, based on selected economic scenarios, for a time frame of 40 years, taking the year of 1995 as a base year. A Base scenario has been developed, for each of three economic development projections, based upon a sectoral analysis. Data regarding the characteristics of over 300 end-use technologies and 400 energy conversion technologies have been collected. The stand-alone MARKAL technology-based energy-mix model, first developed at Brookhaven National Laboratory, was applied to a base case study and five alternative case studies, for each economic scenario. The alternative case studies are: (1) minimum increase in the thermoelectric contribution to the power production system of 20 percent after 2010; (2) extreme values for crude oil price; (3) minimum increase in the renewable technologies contribution to the power production system of 20 percent after 2010; (4) uncertainty on the cost of future renewable conversion technologies; and (5) model is forced to use the natural gas plants committed to be built in the country. Results such as the distribution of fuel used for power generation, electricity demand across economy sectors, total CO2 emissions from burning fossil fuels for power generation, shadow price (marginal cost) of technologies, and others, are evaluated and compared to the Base scenarios previous established. Among some key findings regarding the Brazilian energy system it may be inferred that: (1) diesel technologies are estimated to be the most cost-effective thermal technology in the country; (2) wind technology is estimated to be the most cost-effective technology to be used when a minimum share of renewables is imposed to the system; and (3) hydroelectric technologies present the highest cost/benefit relation among all conversion technologies considered. These results are subject to the limitations of key input assumptions and key assumptions of modeling framework, and are used as the basis for recommendations regarding energy development priorities for Brazil.
NASA Technical Reports Server (NTRS)
1985-01-01
An ad-hoc committee was asked to review the following questions relevant to the space station program: (1) onboard maintainability and repair; (2) in-space research and technology program and facility plans; (3) solar thermodynamic research and technology development program planning; (4) program performance (cost estimating, management, and cost avoidance); (5) onboard versus ground-based mission control; and (6) technology development road maps from IOC to the growth station. The objective of these new assignments is to provide NASA with advice on ways and means for improving the content, performance, and/or effectiveness of these elements of the space station program.
Impact of managed care on the development of new medical technology: ethical concerns
NASA Astrophysics Data System (ADS)
Saha, Pamela; Saha, Subrata
1995-10-01
During the last three decades, development of new medical technology has been largely responsible for the spectacular advances in the diagnosis and treatment of many human diseases. This has contributed to improved medical care of our population. However, concerns have been raised that in today's managed care environment of health care, introduction of new medical technology will be difficult. Cost-sensitive health care providers should consider various ethical issues involved before demanding that only those technologies that save money and show highly positive cost benefit ratio will be reimbursed. The impact of such considerations on the innovations of new medical devices and their developments is discussed.
Evaluation of solar electric propulsion technologies for discovery class missions
NASA Technical Reports Server (NTRS)
Oh, David Y.
2005-01-01
A detailed study examines the potential benefits that advanced electric propulsion (EP) technologies offer to the cost-capped missions in NASA's Discovery program. The study looks at potential cost and performance benefits provided by three EP technologies that are currently in development: NASA's Evolutionary Xenon Thruster (NEXT), an Enhanced NSTAR system, and a Low Power Hall effect thruster. These systems are analyzed on three straw man Discovery class missions and their performance is compared to a state of the art system using the NSTAR ion thruster. An electric propulsion subsystem cost model is used to conduct a cost-benefit analysis for each option. The results show that each proposed technology offers a different degree of performance and/or cost benefit for Discovery class missions.
Integrated technology wing design study
NASA Technical Reports Server (NTRS)
Hays, A. P.; Beck, W. E.; Morita, W. H.; Penrose, B. J.; Skarshaug, R. E.; Wainfan, B. S.
1984-01-01
The technology development costs and associated benefits in applying advanced technology associated with the design of a new wing for a new or derivative trijet with a capacity for 350 passengers and maximum range of 8519 km, entering service in 1990 were studied. The areas of technology are: (1) airfoil technology; (2) planform parameters; (3) high lift; (4) pitch active control system; (5) all electric systems; (6) E to 3rd power propulsion; (7) airframe/propulsion integration; (8) graphite/epoxy composites; (9) advanced aluminum alloys; (10) titanium alloys; and (11) silicon carbide/aluminum composites. These technologies were applied to the reference aircraft configuration. Payoffs were determined for block fuel reductions and net value of technology. These technologies are ranked for the ratio of net value of technology (NVT) to technology development costs.
Status of Sample Return Propulsion Technology Development Under NASA's ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Glaab, Louis J.; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Peterson, Todd T.
2012-01-01
The In-Space Propulsion Technology (ISPT) program was tasked in 2009 to start development of propulsion technologies that would enable future sample return missions. ISPT s sample return technology development areas are diverse. Sample Return Propulsion (SRP) addresses electric propulsion for sample return and low cost Discovery-class missions, propulsion systems for Earth Return Vehicles (ERV) including transfer stages to the destination, and low technology readiness level (TRL) advanced propulsion technologies. The SRP effort continues work on HIVHAC thruster development to transition into developing a Hall-effect propulsion system for sample return (ERV and transfer stages) and low-cost missions. Previous work on the lightweight propellant-tanks continues for sample return with direct applicability to a Mars Sample Return (MSR) mission with general applicability to all future planetary spacecraft. The Earth Entry Vehicle (EEV) work focuses on building a fundamental base of multi-mission technologies for Earth Entry Vehicles (MMEEV). The main focus of the Planetary Ascent Vehicles (PAV) area is technology development for the Mars Ascent Vehicle (MAV), which builds upon and leverages the past MAV analysis and technology developments from the Mars Technology Program (MTP) and previous MSR studies
Life Cycle Analysis of Dedicated Nano-Launch Technologies
NASA Technical Reports Server (NTRS)
Zapata, Edgar; McCleskey, Carey (Editor); Martin, John; Lepsch, Roger; Ternani, Tosoc
2014-01-01
Recent technology advancements have enabled the development of small cheap satellites that can perform useful functions in the space environment. Currently, the only low cost option for getting these payloads into orbit is through ride share programs - small satellites awaiting the launch of a larger satellite, and then riding along on the same launcher. As a result, these small satellite customers await primary payload launches and a backlog exists. An alternative option would be dedicated nano-launch systems built and operated to provide more flexible launch services, higher availability, and affordable prices. The potential customer base that would drive requirements or support a business case includes commercial, academia, civil government and defense. Further, NASA technology investments could enable these alternative game changing options. With this context, in 2013 the Game Changing Development (GCD) program funded a NASA team to investigate the feasibility of dedicated nano-satellite launch systems with a recurring cost of less than $2 million per launch for a 5 kg payload to low Earth orbit. The team products would include potential concepts, technologies and factors for enabling the ambitious cost goal, exploring the nature of the goal itself, and informing the GCD program technology investment decision making process. This paper provides an overview of the life cycle analysis effort that was conducted in 2013 by an inter-center NASA team. This effort included the development of reference nano-launch system concepts, developing analysis processes and models, establishing a basis for cost estimates (development, manufacturing and launch) suitable to the scale of the systems, and especially, understanding the relationship of potential game changing technologies to life cycle costs, as well as other factors, such as flights per year.
NASA Technical Reports Server (NTRS)
Schlater, Nelson J.; Simonds, Charles H.; Ballin, Mark G.
1993-01-01
Applied research and technology development (R&TD) is often characterized by uncertainty, risk, and significant delays before tangible returns are obtained. Given the increased awareness of limitations in resources, effective R&TD today needs a method for up-front assessment of competing technologies to help guide technology investment decisions. Such an assessment approach must account for uncertainties in system performance parameters, mission requirements and architectures, and internal and external events influencing a development program. The methodology known as decision analysis has the potential to address these issues. It was evaluated by performing a case study assessment of alternative carbon dioxide removal technologies for NASA"s proposed First Lunar Outpost program. An approach was developed that accounts for the uncertainties in each technology's cost and performance parameters as well as programmatic uncertainties such as mission architecture. Life cycle cost savings relative to a baseline, adjusted for the cost of money, was used as a figure of merit to evaluate each of the alternative carbon dioxide removal technology candidates. The methodology was found to provide a consistent decision-making strategy for the develpoment of new life support technology. The case study results provided insight that was not possible from more traditional analysis approaches.
Can developing countries leapfrog the centralized electrification paradigm?
Levin, Todd; Thomas, Valerie M.
2016-02-04
Due to the rapidly decreasing costs of small renewable electricity generation systems, centralized power systems are no longer a necessary condition of universal access to modern energy services. Developing countries, where centralized electricity infrastructures are less developed, may be able to adopt these new technologies more quickly. We first review the costs of grid extension and distributed solar home systems (SHSs) as reported by a number of different studies. We then present a general analytic framework for analyzing the choice between extending the grid and implementing distributed solar home systems. Drawing upon reported grid expansion cost data for three specificmore » regions, we demonstrate this framework by determining the electricity consumption levels at which the costs of provision through centralized and decentralized approaches are equivalent in these regions. We then calculate SHS capital costs that are necessary for these technologies provide each of five tiers of energy access, as defined by the United Nations Sustainable Energy for All initiative. Our results suggest that solar home systems can play an important role in achieving universal access to basic energy services. The extent of this role depends on three primary factors: SHS costs, grid expansion costs, and centralized generation costs. Given current technology costs, centralized systems will still be required to enable higher levels of consumption; however, cost reduction trends have the potential to disrupt this paradigm. Furthermore, by looking ahead rather than replicating older infrastructure styles, developing countries can leapfrog to a more distributed electricity service model.« less
Payload software technology: Software technology development plan
NASA Technical Reports Server (NTRS)
1977-01-01
Programmatic requirements for the advancement of software technology are identified for meeting the space flight requirements in the 1980 to 1990 time period. The development items are described, and software technology item derivation worksheets are presented along with the cost/time/priority assessments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Max; Smith, Sarah J.; Sohn, Michael D.
Technology learning rates can be dynamic quantities as a technology moves from early development to piloting and from low volume manufacturing to high volume manufacturing. This work describes a generalizable technology analysis approach for disaggregating observed technology cost reductions and presents results of this approach for one specific case study (micro-combined heat and power fuel cell systems in Japan). We build upon earlier reports that combine discussion of fuel cell experience curves and qualitative discussion of cost components by providing greater detail on the contributing mechanisms to observed cost reductions, which were not quantified in earlier reports. Greater standardization ismore » added to the analysis approach, which can be applied to other technologies. This paper thus provides a key linkage that has been missing from earlier literature on energy-related technologies by integrating the output of earlier manufacturing cost studies with observed learning rates to quantitatively estimate the different components of cost reduction including economies of scale and cost reductions due to product performance and product design improvements. This work also provides updated fuel cell technology price versus volume trends from the California Self-Generation Incentive Program, including extensive data for solid-oxide fuel cells (SOFC) reported here for the first time. The Japanese micro-CHP market is found to have a learning rate of 18% from 2005 to 2015, while larger SOFC fuel cell systems (200 kW and above) in the California market are found to have a flat (near-zero) learning rate, and these are attributed to a combination of exogenous, market, and policy factors.« less
NASA Astrophysics Data System (ADS)
Gwamuri, J.; Pearce, Joshua M.
2017-08-01
The recent introduction of RepRap (self-replicating rapid prototyper) 3-D printers and the resultant open source technological improvements have resulted in affordable 3-D printing, enabling low-cost distributed manufacturing for individuals. This development and others such as the rise of open source-appropriate technology (OSAT) and solar powered 3-D printing are moving 3-D printing from an industry based technology to one that could be used in the developing world for sustainable development. In this paper, we explore some specific technological improvements and how distributed manufacturing with open-source 3-D printing can be used to provide open-source 3-D printable optics components for developing world communities through the ability to print less expensive and customized products. This paper presents an open-source low cost optical equipment library which enables relatively easily adapted customizable designs with the potential of changing the way optics is taught in resource constraint communities. The study shows that this method of scientific hardware development has a potential to enables a much broader audience to participate in optical experimentation both as research and teaching platforms. Conclusions on the technical viability of 3-D printing to assist in development and recommendations on how developing communities can fully exploit this technology to improve the learning of optics through hands-on methods have been outlined.
DOT National Transportation Integrated Search
2004-06-01
The overall objective of the urban maglev transit technology development program is to develop magnetic levitation technology that is a cost effective, reliable, and environmentally sound transit option for urban mass transportation in the United Sta...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moawad, Ayman; Kim, Namdoo; Shidore, Neeraj
2016-01-01
The U.S. Department of Energy (DOE) Vehicle Technologies Office (VTO) has been developing more energy-efficient and environmentally friendly highway transportation technologies that will enable America to use less petroleum. The long-term aim is to develop "leapfrog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment. This report reviews the results of the DOE VTO. It gives an assessment of the fuel and light-duty vehicle technologies that are most likely to be established, developed, and eventually commercialized during the next 30 years (up to 2045). Because of themore » rapid evolution of component technologies, this study is performed every two years to continuously update the results based on the latest state-of-the-art technologies.« less
Wind tunnel technology for the development of future commercial aircraft
NASA Technical Reports Server (NTRS)
Szodruch, J.
1986-01-01
Requirements for new technologies in the area of civil aircraft design are mainly related to the high cost involved in the purchase of modern, fuel saving aircraft. A second important factor is the long term rise in the price of fuel. The demonstration of the benefits of new technologies, as far as these are related to aerodynamics, will,for the foreseeable future, still be based on wind tunnel measurements. Theoretical computation methods are very successfully used in design work, wing optimization, and an estimation of the Reynolds number effect. However, wind tunnel tests are still needed to verify the feasibility of the considered concepts. Along with other costs, the cost for the wind tunnel tests needed for the development of an aircraft is steadily increasing. The present investigation is concerned with the effect of numerical aerodynamics and civil aircraft technology on the development of wind tunnels. Attention is given to the requirements for the wind tunnel, investigative methods, measurement technology, models, and the relation between wind tunnel experiments and theoretical methods.
Unshrouded Impeller Technology Development Status
NASA Technical Reports Server (NTRS)
Droege, Alan R.; Williams, Robert W.; Garcia, Roberto
2000-01-01
To increase payload and decrease the cost of future Reusable Launch Vehicles (RLVs), engineers at NASA/MSFC and Boeing, Rocketdyne are developing unshrouded impeller technology for application to rocket turbopumps. An unshrouded two-stage high-pressure fuel pump is being developed to meet the performance objectives of a three-stage shrouded pump. The new pump will have reduced manufacturing costs and pump weight. The lower pump weight will allow for increased payload.
Innes, Anthea; Mountain, Gail; Robinson, Louise; van der Roest, Henriëtte; García-Casal, J Antonio; Gove, Dianne; Thyrian, Jochen René; Evans, Shirley; Dröes, Rose-Marie; Kelly, Fiona; Kurz, Alexander; Casey, Dympna; Szcześniak, Dorota; Dening, Tom; Craven, Michael P; Span, Marijke; Felzmann, Heike; Tsolaki, Magda; Franco-Martin, Manuel
2017-01-01
Background With the expected increase in the numbers of persons with dementia, providing timely, adequate, and affordable care and support is challenging. Assistive and health technologies may be a valuable contribution in dementia care, but new challenges may emerge. Objective The aim of our study was to review the state of the art of technologies for persons with dementia regarding issues on development, usability, effectiveness and cost-effectiveness, deployment, and ethics in 3 fields of application of technologies: (1) support with managing everyday life, (2) support with participating in pleasurable and meaningful activities, and (3) support with dementia health and social care provision. The study also aimed to identify gaps in the evidence and challenges for future research. Methods Reviews of literature and expert opinions were used in our study. Literature searches were conducted on usability, effectiveness and cost-effectiveness, and ethics using PubMed, Embase, CINAHL, and PsycINFO databases with no time limit. Selection criteria in our selected technology fields were reviews in English for community-dwelling persons with dementia. Regarding deployment issues, searches were done in Health Technology Assessment databases. Results According to our results, persons with dementia want to be included in the development of technologies; there is little research on the usability of assistive technologies; various benefits are reported but are mainly based on low-quality studies; barriers to deployment of technologies in dementia care were identified, and ethical issues were raised by researchers but often not studied. Many challenges remain such as including the target group more often in development, performing more high-quality studies on usability and effectiveness and cost-effectiveness, creating and having access to high-quality datasets on existing technologies to enable adequate deployment of technologies in dementia care, and ensuring that ethical issues are considered an important topic for researchers to include in their evaluation of assistive technologies. Conclusions Based on these findings, various actions are recommended for development, usability, effectiveness and cost-effectiveness, deployment, and ethics of assistive and health technologies across Europe. These include avoiding replication of technology development that is unhelpful or ineffective and focusing on how technologies succeed in addressing individual needs of persons with dementia. Furthermore, it is suggested to include these recommendations in national and international calls for funding and assistive technology research programs. Finally, practitioners, policy makers, care insurers, and care providers should work together with technology enterprises and researchers to prepare strategies for the implementation of assistive technologies in different care settings. This may help future generations of persons with dementia to utilize available and affordable technologies and, ultimately, to benefit from them. PMID:28582262
Healthcare technology: physician collaboration in reducing the surgical cost.
Olson, Steven A; Obremskey, William T; Bozic, Kevin J
2013-06-01
The increasing cost of providing health care is a national concern. Healthcare spending related to providing hospital care is one of the primary drivers of healthcare spending in the United States. Adoption of advanced medical technologies accounts for the largest percentage of growth in healthcare spending in the United States when compared with other developed countries. Within the specialty of orthopaedic surgery, a variety of implants can result in similar outcomes for patients in several areas of clinical care. However, surgeons often do not know the cost of implants used in a specific procedure or how the use of an implant or technology affects the overall cost of the episode of care. The purposes of this study were (1) to describe physician-led processes for introduction of new surgical products and technologies; and (2) to inform physicians of potential cost savings of physician-led product contract negotiations and approval of new technology. We performed a detailed review of the steps taken by two centers that have implemented surgeon-led programs to demonstrate responsibility in technology acquisition and product procurement decision-making. Each program has developed a physician peer review process in technology and new product acquisition that has resulted in a substantial reduction in spending for the respective hospitals in regard to surgical implants. Implant costs have decreased between 3% and 38% using different negotiating strategies. At the same time, new product requests by physicians have been approved in greater than 90% of instances. Hospitals need physicians to be engaged and informed in discussions concerning current and new technology and products. Surgeons can provide leadership for these efforts to reduce the cost of high-quality care.
2005-06-01
relative cost -effectiveness of a technology for a given site. DOD has identified a number of contaminants of concern at its facilities, each of...to contain or eliminate hazardous contaminants in groundwater. However, the long cleanup times and high costs of using pump-and- treat technologies...environment. DOD estimates that cleanup of its contaminated sites will cost billions of dollars and may take decades to complete because of the
Processor Units Reduce Satellite Construction Costs
NASA Technical Reports Server (NTRS)
2014-01-01
As part of the effort to build the Fast Affordable Science and Technology Satellite (FASTSAT), Marshall Space Flight Center developed a low-cost telemetry unit which is used to facilitate communication between a satellite and its receiving station. Huntsville, Alabama-based Orbital Telemetry Inc. has licensed the NASA technology and is offering to install the cost-cutting units on commercial satellites.
Heritage and Advanced Technology Systems Engineering Lessons Learned from NASA Space Missions
NASA Technical Reports Server (NTRS)
Barley, Bryan; Newhouse, Marilyn; Bacskay, Allen
2010-01-01
Use of heritage and new technology is necessary/enabling to implementing small, low cost missions, yet overruns decrease the ability to sustain future mission flight rates The majority of the cost growth drivers seen in the D&NF study were embedded early during formulation phase and later realized during the development and I&T phases Cost drivers can be avoided or significantly decreased by project management and SE emphasis on early identification of risks and realistic analyses SE processes that emphasize an assessment of technology within the mission system to identify technical issues in the design or operational use of the technology. Realistic assessment of new and heritage spacecraft technology assumptions , identification of risks and mitigation strategies. Realistic estimates of effort required to inherit existing or qualify new technology, identification of risks to estimates and develop mitigation strategies. Allocation of project reserves for risk-based mitigation strategies of each individual area of heritage or new technology. Careful tailoring of inheritance processes to ensure due diligence.
A Fast Technology Infusion Model for Aerospace Organizations
NASA Technical Reports Server (NTRS)
Shapiro, Andrew A.; Schone, Harald; Brinza, David E.; Garrett, Henry B.; Feather, Martin S.
2006-01-01
A multi-year Fast Technology Infusion initiative proposes a model for aerospace organizations to improve the cost-effectiveness by which they mature new, in-house developed software and hardware technologies for space mission use. The first year task under the umbrella of this initiative will provide the framework to demonstrate and document the fast infusion process. The viability of this approach will be demonstrated on two technologies developed in prior years with internal Jet Propulsion Laboratory (JPL) funding. One hardware technology and one software technology were selected for maturation within one calendar year or less. The overall objective is to achieve cost and time savings in the qualification of technologies. At the end of the recommended three-year effort, we will have demonstrated for six or more in-house developed technologies a clear path to insertion using a documented process that permits adaptation to a broad range of hardware and software projects.
Dunnett, Alex J; Adjiman, Claire S; Shah, Nilay
2008-01-01
Background Lignocellulosic bioethanol technologies exhibit significant capacity for performance improvement across the supply chain through the development of high-yielding energy crops, integrated pretreatment, hydrolysis and fermentation technologies and the application of dedicated ethanol pipelines. The impact of such developments on cost-optimal plant location, scale and process composition within multiple plant infrastructures is poorly understood. A combined production and logistics model has been developed to investigate cost-optimal system configurations for a range of technological, system scale, biomass supply and ethanol demand distribution scenarios specific to European agricultural land and population densities. Results Ethanol production costs for current technologies decrease significantly from $0.71 to $0.58 per litre with increasing economies of scale, up to a maximum single-plant capacity of 550 × 106 l year-1. The development of high-yielding energy crops and consolidated bio-processing realises significant cost reductions, with production costs ranging from $0.33 to $0.36 per litre. Increased feedstock yields result in systems of eight fully integrated plants operating within a 500 × 500 km2 region, each producing between 1.24 and 2.38 × 109 l year-1 of pure ethanol. A limited potential for distributed processing and centralised purification systems is identified, requiring developments in modular, ambient pretreatment and fermentation technologies and the pipeline transport of pure ethanol. Conclusion The conceptual and mathematical modelling framework developed provides a valuable tool for the assessment and optimisation of the lignocellulosic bioethanol supply chain. In particular, it can provide insight into the optimal configuration of multiple plant systems. This information is invaluable in ensuring (near-)cost-optimal strategic development within the sector at the regional and national scale. The framework is flexible and can thus accommodate a range of processing tasks, logistical modes, by-product markets and impacting policy constraints. Significant scope for application to real-world case studies through dynamic extensions of the formulation has been identified. PMID:18662392
Enabling technologies for fiber optic sensing
NASA Astrophysics Data System (ADS)
Ibrahim, Selwan K.; Farnan, Martin; Karabacak, Devrez M.; Singer, Johannes M.
2016-04-01
In order for fiber optic sensors to compete with electrical sensors, several critical parameters need to be addressed such as performance, cost, size, reliability, etc. Relying on technologies developed in different industrial sectors helps to achieve this goal in a more efficient and cost effective way. FAZ Technology has developed a tunable laser based optical interrogator based on technologies developed in the telecommunication sector and optical transducer/sensors based on components sourced from the automotive market. Combining Fiber Bragg Grating (FBG) sensing technology with the above, high speed, high precision, reliable quasi distributed optical sensing systems for temperature, pressure, acoustics, acceleration, etc. has been developed. Careful design needs to be considered to filter out any sources of measurement drifts/errors due to different effects e.g. polarization and birefringence, coating imperfections, sensor packaging etc. Also to achieve high speed and high performance optical sensing systems, combining and synchronizing multiple optical interrogators similar to what has been used with computer/processors to deliver super computing power is an attractive solution. This path can be achieved by using photonic integrated circuit (PIC) technology which opens the doors to scaling up and delivering powerful optical sensing systems in an efficient and cost effective way.
Consumer Vehicle Choice Model Documentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Changzheng; Greene, David L
In response to the Fuel Economy and Greenhouse Gas (GHG) emissions standards, automobile manufacturers will need to adopt new technologies to improve the fuel economy of their vehicles and to reduce the overall GHG emissions of their fleets. The U.S. Environmental Protection Agency (EPA) has developed the Optimization Model for reducing GHGs from Automobiles (OMEGA) to estimate the costs and benefits of meeting GHG emission standards through different technology packages. However, the model does not simulate the impact that increased technology costs will have on vehicle sales or on consumer surplus. As the model documentation states, “While OMEGA incorporates functionsmore » which generally minimize the cost of meeting a specified carbon dioxide (CO2) target, it is not an economic simulation model which adjusts vehicle sales in response to the cost of the technology added to each vehicle.” Changes in the mix of vehicles sold, caused by the costs and benefits of added fuel economy technologies, could make it easier or more difficult for manufacturers to meet fuel economy and emissions standards, and impacts on consumer surplus could raise the costs or augment the benefits of the standards. Because the OMEGA model does not presently estimate such impacts, the EPA is investigating the feasibility of developing an adjunct to the OMEGA model to make such estimates. This project is an effort to develop and test a candidate model. The project statement of work spells out the key functional requirements for the new model.« less
Solar Stirling system development
NASA Technical Reports Server (NTRS)
Stearns, J. W., Jr.; Won, Y. S.; Poon, P. T.; Das, R.; Chow, E. Y.
1979-01-01
A low-cost, high-efficiency dish-Stirling solar thermal-electric power system is being developed for test in 1981. System components are the solar concentrator, receiver, fossil fuel combustor, thermal energy storage (TES), engine-generator, and power processing. System conceptualization is completed and design is in progress. Two receiver alternatives are being evaluated, a direct-coupled receiver-engine configuration with no TES and a heat pipe receiver with TES. System cost projections are being made. Goals for the system development task are (1) to develop an advanced dish-Stirling technology, utilizing a team of industrial contractors, (2) to demonstrate that technology at the system level, and (3) to determine how to achieve low production cost.
Low-weight, low-cost, low-cycle time, replicated glass mirrors
NASA Astrophysics Data System (ADS)
Egerman, Robert; De Smitt, Steven; Strafford, David
2010-07-01
ITT has patented and continues to develop processes to fabricate low-cost borosilicate mirrors that can be used for both ground and space-based optical telescopes. Borosilicate glass is a commodity and is the material of choice for today's flat-panel televisions and monitors. Supply and demand has kept its cost low compared to mirror substrate materials typically found in telescopes. The current technology development is on the path to having the ability to deliver imaging quality optics of up to 1m (scalable to 2m) in diameter in three weeks. For those applications that can accommodate the material properties of borosilicate glasses, this technology has the potential to revolutionize ground and space-based astronomy. ITT Corporation has demonstrated finishing a planar, 0.6m borosilicate, optic to <100 nm-rms. This paper will provide an historical overview of the development in this area with an emphasis on recent technology developments to fabricate a 0.6m parabolic mirror under NASA Earth Science Technology Office (ESTO) grant #NNX09AD61G.
High Efficiency Solar Integrated Roof Membrane Product
DOE Office of Scientific and Technical Information (OSTI.GOV)
Partyka, Eric; Shenoy, Anil
2013-05-15
This project was designed to address the Solar Energy Technology Program objective, to develop new methods to integrate photovoltaic (PV) cells or modules within a building-integrated photovoltaic (BIPV) application that will result in lower installed cost as well as higher efficiencies of the encapsulated/embedded PV module. The technology assessment and development focused on the evaluation and identification of manufacturing technologies and equipment capable of producing such low-cost, high-efficiency, flexible BIPV solar cells on single-ply roofing membranes.
Assessing the costs of photovoltaic and wind power in six developing countries
NASA Astrophysics Data System (ADS)
Schmidt, Tobias S.; Born, Robin; Schneider, Malte
2012-07-01
To support developing countries in greenhouse-gas emission abatement the 2010 Cancún Agreement established various institutions, among others a financial mechanism administered by the Green Climate Fund. However, the instruments for delivering the support and the magnitude of different countries' financial needs are strongly debated. Both debates are predominantly underpinned by rather aggregate and strongly varying top-down cost estimates. To complement these numbers, we provide a more fine-grained bottom-up approach, comparing the cost of the renewable-energy technologies photovoltaics and wind in six developing countries with those of conventional technologies. Our results unveil large cost variations across specific technology-country combinations and show to what extent fossil-fuel subsidies can negatively affect the competitiveness of renewable-energy technologies. Regarding the instrument debate, our results indicate that to foster transformative changes, nationally appropriate mitigation actions are often more suited than a reformed clean development mechanism. Regarding the debate on financial needs, our results highlight the need for a decision on a fair baseline calculation methodology. To this end, we propose a new methodology that incentivizes changes in the baseline through subsidy phase-out. Finally, we contribute to the debate on domestic versus international support for these measures.
Technology requirements for communication satellites in the 1980's
NASA Technical Reports Server (NTRS)
Burtt, J. E.; Moe, C. R.; Elms, R. V.; Delateur, L. A.; Sedlacek, W. C.; Younger, G. G.
1973-01-01
The key technology requirements are defined for meeting the forecasted demands for communication satellite services in the 1985 to 1995 time frame. Evaluation is made of needs for services and technical and functional requirements for providing services. The future growth capabilities of the terrestrial telephone network, cable television, and satellite networks are forecasted. The impact of spacecraft technology and booster performance and costs upon communication satellite costs are analyzed. Systems analysis techniques are used to determine functional requirements and the sensitivities of technology improvements for reducing the costs of meeting requirements. Recommended development plans and funding levels are presented, as well as the possible cost saving for communications satellites in the post 1985 era.
Flat-plate solar array project. Volume 5: Process development
NASA Technical Reports Server (NTRS)
Gallagher, B.; Alexander, P.; Burger, D.
1986-01-01
The goal of the Process Development Area, as part of the Flat-Plate Solar Array (FSA) Project, was to develop and demonstrate solar cell fabrication and module assembly process technologies required to meet the cost, lifetime, production capacity, and performance goals of the FSA Project. R&D efforts expended by Government, Industry, and Universities in developing processes capable of meeting the projects goals during volume production conditions are summarized. The cost goals allocated for processing were demonstrated by small volume quantities that were extrapolated by cost analysis to large volume production. To provide proper focus and coverage of the process development effort, four separate technology sections are discussed: surface preparation, junction formation, metallization, and module assembly.
Economic and technological aspects of the market introduction of renewable power technologies
NASA Astrophysics Data System (ADS)
Worlen, Christine M.
Renewable energy, if developed and delivered with appropriate technologies, is cleaner, more evenly distributed, and safer than conventional energy systems. Many countries and several states in the United States promote the development and introduction of technologies for "green" electricity production. This dissertation investigates economic and technological aspects of this process for wind energy. In liberalized electricity markets, policy makers use economic incentives to encourage the adoption of renewables. Choosing from a large range of possible policies and instruments is a multi-criteria decision process. This dissertation evaluates the criteria used and the trade-offs among the criteria, and develops a hierarchical flow scheme that policy makers can use to choose the most appropriate policy for a given situation. Economic incentives and market transformation programs seek to reduce costs through mass deployment in order to make renewable technologies competitive. Cost reduction is measured in "experience curves" that posit negative exponential relationships between cumulative deployment and production cost. This analysis reveals the weaknesses in conventional experience curve analyses for wind turbines, and concludes that the concept is limited by data availability, a weak conceptual foundation, and inappropriate statistical estimation. A revised model specifies a more complete set of economic and technological forces that determine the cost of wind power. Econometric results indicate that experience and upscaling of turbine sizes accounted for the observed cost reduction in wind turbines in the United States, Denmark and Germany between 1983 and 2001. These trends are likely to continue. In addition, future cost reductions will result from economies of scale in production. Observed differences in the performance of theoretically equivalent policy instruments could arise from economic uncertainty. To test this hypothesis, a methodology for the quantitative comparison of economic incentive schemes and their effect on uncertainty and investor behavior in renewable power markets is developed using option value theory of investment. Critical investment thresholds compared with actual benefit-cost ratios for several case studies in Germany indicate that uncertainty in prices for wind power and green certificates would delay investment. In Germany, the fixed-tariff system effectively removes this barrier.
Silicon microelectronic field-emissive devices for advanced display technology
NASA Astrophysics Data System (ADS)
Morse, J. D.
1993-03-01
Field-emission displays (FED's) offer the potential advantages of high luminous efficiency, low power consumption, and low cost compared to AMLCD or CRT technologies. An LLNL team has developed silicon-point field emitters for vacuum triode structures and has also used thin-film processing techniques to demonstrate planar edge-emitter configurations. LLNL is interested in contributing its experience in this and other FED-related technologies to collaborations for commercial FED development. At LLNL, FED development is supported by computational capabilities in charge transport and surface/interface modeling in order to develop smaller, low-work-function field emitters using a variety of materials and coatings. Thin-film processing, microfabrication, and diagnostic/test labs permit experimental exploration of emitter and resistor structures. High field standoff technology is an area of long-standing expertise that guides development of low-cost spacers for FEDS. Vacuum sealing facilities are available to complete the FED production engineering process. Drivers constitute a significant fraction of the cost of any flat-panel display. LLNL has an advanced packaging group that can provide chip-on-glass technologies and three-dimensional interconnect generation permitting driver placement on either the front or the back of the display substrate.
Technology commercialization cost model and component case study
NASA Astrophysics Data System (ADS)
1991-12-01
Fuel cells seem poised to emerge as a clean, efficient, and cost competitive source of fossil fuel based electric power and thermal energy. Sponsors of fuel cell technology development need to determine the validity and the attractiveness of a technology to the market in terms of meeting requirements and providing value which exceeds the total cost of ownership. Sponsors of fuel cell development have addressed this issue by requiring the developers to prepare projections of the future production cost of their fuel cells in commercial quantities. These projected costs, together with performance and life projections, provide a preliminary measure of the total value and cost of the product to the customer. Booz-Allen & Hamilton Inc. and Michael A. Cobb & Company have been retained in several assignments over the years to audit these cost projections. The audits have gone well beyond a simple review of the numbers. They have probed the underlying technical and financial assumptions, the sources of data on material and equipment costs, and explored issues such as the realistic manufacturing yields which can be expected in various processes. Based on the experience gained from these audits, DOE gave Booz-Allen and Michael A. Cobb & company the task to develop a criteria to be used in the execution of future fuel cell manufacturing cost studies. It was thought that such a criteria would make it easier to execute such studies in the future as well as to cause such studies to be more understandable and comparable.
Roham, Mehrdad; Gabrielyan, Anait R; Archer, Norman P; Grignon, Michel L; Spencer, Byron G
2014-10-01
Advances in technology and subsequent changes in clinical practice can lead to increases in healthcare costs. Our objective is to assess the impact that changes in the technological intensity of physician-provided health services have had on the age pattern of both the volume of services provided and the average expenditures associated with them. We based our analysis on age-sex-specific patient-level administrative records of diagnoses and treatments. These records include virtually all physician services provided in the province of Ontario, Canada in a 10-year span ending in 2004 and their associated costs. An algorithm is developed to classify services and their costs into three levels of technological intensity. We find that while the overall age-standardized level and cost of services per capita have decreased, the volume and cost of high technologically intensive treatments have increased, especially among older patients. Copyright © 2013 John Wiley & Sons, Ltd.
Standard cost elements for technology programs
NASA Technical Reports Server (NTRS)
Christensen, Carisa B.; Wagenfuehrer, Carl
1992-01-01
The suitable structure for an effective and accurate cost estimate for general purposes is discussed in the context of a NASA technology program. Cost elements are defined for research, management, and facility-construction portions of technology programs. Attention is given to the mechanisms for insuring the viability of spending programs, and the need for program managers is established for effecting timely fund disbursement. Formal, structures, and intuitive techniques are discussed for cost-estimate development, and cost-estimate defensibility can be improved with increased documentation. NASA policies for cash management are examined to demonstrate the importance of the ability to obligate funds and the ability to cost contracted funds. The NASA approach to consistent cost justification is set forth with a list of standard cost-element definitions. The cost elements reflect the three primary concerns of cost estimates: the identification of major assumptions, the specification of secondary analytic assumptions, and the status of program factors.
NASA Technical Reports Server (NTRS)
Gates, W. R.
1983-01-01
Estimated future energy cost savings associated with the development of cost-competitive solar thermal technologies (STT) are discussed. Analysis is restricted to STT in electric applications for 16 high-insolation/high-energy-price states. The fuel price scenarios and three 1990 STT system costs are considered, reflecting uncertainty over future fuel prices and STT cost projections. STT R&D is found to be unacceptably risky for private industry in the absence of federal support. Energy cost savings were projected to range from $0 to $10 billion (1990 values in 1981 dollars), dependng on the system cost and fuel price scenario. Normal R&D investment risks are accentuated because the Organization of Petroleum Exporting Countries (OPEC) cartel can artificially manipulate oil prices and undercut growth of alternative energy sources. Federal participation in STT R&D to help capture the potential benefits of developing cost-competitive STT was found to be in the national interest.
NASA Astrophysics Data System (ADS)
Gates, W. R.
1983-02-01
Estimated future energy cost savings associated with the development of cost-competitive solar thermal technologies (STT) are discussed. Analysis is restricted to STT in electric applications for 16 high-insolation/high-energy-price states. The fuel price scenarios and three 1990 STT system costs are considered, reflecting uncertainty over future fuel prices and STT cost projections. STT R&D is found to be unacceptably risky for private industry in the absence of federal support. Energy cost savings were projected to range from $0 to $10 billion (1990 values in 1981 dollars), dependng on the system cost and fuel price scenario. Normal R&D investment risks are accentuated because the Organization of Petroleum Exporting Countries (OPEC) cartel can artificially manipulate oil prices and undercut growth of alternative energy sources. Federal participation in STT R&D to help capture the potential benefits of developing cost-competitive STT was found to be in the national interest.
Study of Advanced Propulsion Systems for Small Transport Aircraft Technology (STAT) Program
NASA Technical Reports Server (NTRS)
Baerst, C. F.; Heldenbrand, R. W.; Rowse, J. H.
1981-01-01
Definitions of takeoff gross weight, performance, and direct operating cost for both a 30 and 50 passenger airplane were established. The results indicate that a potential direct operating cost benefit, resulting from advanced technologies, of approximately 20 percent would be achieved for the 1990 engines. Of the numerous design features that were evaluated, only maintenance-related items contributed to a significant decrease in direct operating cost. Recommendations are made to continue research and technology programs for advanced component and engine development.
Fission Power System Technology for NASA Exploration Missions
NASA Technical Reports Server (NTRS)
Mason, Lee; Houts, Michael
2011-01-01
Under the NASA Exploration Technology Development Program, and in partnership with the Department of Energy (DOE), NASA is conducting a project to mature Fission Power System (FPS) technology. A primary project goal is to develop viable system options to support future NASA mission needs for nuclear power. The main FPS project objectives are as follows: 1) Develop FPS concepts that meet expected NASA mission power requirements at reasonable cost with added benefits over other options. 2) Establish a hardware-based technical foundation for FPS design concepts and reduce overall development risk. 3) Reduce the cost uncertainties for FPS and establish greater credibility for flight system cost estimates. 4) Generate the key products to allow NASA decisionmakers to consider FPS as a preferred option for flight development. In order to achieve these goals, the FPS project has two main thrusts: concept definition and risk reduction. Under concept definition, NASA and DOE are performing trade studies, defining requirements, developing analytical tools, and formulating system concepts. A typical FPS consists of the reactor, shield, power conversion, heat rejection, and power management and distribution (PMAD). Studies are performed to identify the desired design parameters for each subsystem that allow the system to meet the requirements with reasonable cost and development risk. Risk reduction provides the means to evaluate technologies in a laboratory test environment. Non-nuclear hardware prototypes are built and tested to verify performance expectations, gain operating experience, and resolve design uncertainties.
A Short Progress Report on High-Efficiency Perovskite Solar Cells.
Tang, He; He, Shengsheng; Peng, Chuangwei
2017-12-01
Faced with the increasingly serious energy and environmental crisis in the world nowadays, the development of renewable energy has attracted increasingly more attention of all countries. Solar energy as an abundant and cheap energy is one of the most promising renewable energy sources. While high-performance solar cells have been well developed in the last couple of decades, the high module cost largely hinders wide deployment of photovoltaic devices. In the last 10 years, this urgent demand for cost-effective solar cells greatly facilitates the research of solar cells. This paper reviews the recent development of cost-effective and high-efficient solar cell technologies. This report paper covers low-cost and high-efficiency perovskite solar cells. The development and the state-of-the-art results of perovskite solar cell technologies are also introduced.
A Low-Cost Data Acquisition System for Automobile Dynamics Applications
González, Alejandro; Vinolas, Jordi
2018-01-01
This project addresses the need for the implementation of low-cost acquisition technology in the field of vehicle engineering: the design, development, manufacture, and verification of a low-cost Arduino-based data acquisition platform to be used in <80 Hz data acquisition in vehicle dynamics, using low-cost accelerometers. In addition to this, a comparative study is carried out of professional vibration acquisition technologies and low-cost systems, obtaining optimum results for low- and medium-frequency operations with an error of 2.19% on road tests. It is therefore concluded that these technologies are applicable to the automobile industry, thereby allowing the project costs to be reduced and thus facilitating access to this kind of research that requires limited resources. PMID:29382039
A Low-Cost Data Acquisition System for Automobile Dynamics Applications.
González, Alejandro; Olazagoitia, José Luis; Vinolas, Jordi
2018-01-27
This project addresses the need for the implementation of low-cost acquisition technology in the field of vehicle engineering: the design, development, manufacture, and verification of a low-cost Arduino-based data acquisition platform to be used in <80 Hz data acquisition in vehicle dynamics, using low-cost accelerometers. In addition to this, a comparative study is carried out of professional vibration acquisition technologies and low-cost systems, obtaining optimum results for low- and medium-frequency operations with an error of 2.19% on road tests. It is therefore concluded that these technologies are applicable to the automobile industry, thereby allowing the project costs to be reduced and thus facilitating access to this kind of research that requires limited resources.
Optimal technology investment strategies for a reusable launch vehicle
NASA Technical Reports Server (NTRS)
Moore, A. A.; Braun, R. D.; Powell, R. W.
1995-01-01
Within the present budgetary environment, developing the technology that leads to an operationally efficient space transportation system with the required performance is a challenge. The present research focuses on a methodology to determine high payoff technology investment strategies. Research has been conducted at Langley Research Center in which design codes for the conceptual analysis of space transportation systems have been integrated in a multidisciplinary design optimization approach. The current study integrates trajectory, propulsion, weights and sizing, and cost disciplines where the effect of technology maturation on the development cost of a single stage to orbit reusable launch vehicle is examined. Results show that the technology investment prior to full-scale development has a significant economic payoff. The design optimization process is used to determine strategic allocations of limited technology funding to maximize the economic payoff.
Space Station engineering and technology development
NASA Technical Reports Server (NTRS)
1985-01-01
Historical background, costs, organizational assignments, technology development, user requirements, mission evolution, systems analyses and design, systems engineering and integration, contracting, and policies of the space station are discussed.
NASA Astrophysics Data System (ADS)
Cullis, James D. S.; Walker, Nicholas J.; Ahjum, Fadiel; Juan Rodriguez, Diego
2018-02-01
Many countries, like South Africa, Australia, India, China and the United States, are highly dependent on coal fired power stations for energy generation. These power stations require significant amounts of water, particularly when fitted with technology to reduce pollution and climate change impacts. As water resources come under stress it is important that spatial variability in water availability is taken into consideration for future energy planning particularly with regards to motivating for a switch from coal fired power stations to renewable technologies. This is particularly true in developing countries where there is a need for increased power production and associated increasing water demands for energy. Typically future energy supply options are modelled using a least cost optimization model such as TIMES that considers water supply as an input cost, but is generally constant for all technologies. Different energy technologies are located in different regions of the country with different levels of water availability and associated infrastructure development and supply costs. In this study we develop marginal cost curves for future water supply options in different regions of a country where different energy technologies are planned for development. These water supply cost curves are then used in an expanded version of the South Africa TIMES model called SATIM-W that explicitly models the water-energy nexus by taking into account the regional nature of water supply availability associated with different energy supply technologies. The results show a significant difference in the optimal future energy mix and in particular an increase in renewables and a demand for dry-cooling technologies that would not have been the case if the regional variability of water availability had not been taken into account. Choices in energy policy, such as the introduction of a carbon tax, will also significantly impact on future water resources, placing additional water demands in some regions and making water available for other users in other regions with a declining future energy demand. This study presents a methodology for modelling the water-energy nexus that could be used to inform the sustainable development planning process in the water and energy sectors for both developed and developing countries.
ERIC Educational Resources Information Center
Yates, Christopher
Perhaps the most significant development in microcomputer technology over the last two years has been the development of desktop publishing techniques. This technology promises to offer some significant advantages to institutions developing instructional materials in less developed countries, particularly in terms of control, cost effectiveness,…
NASA Astrophysics Data System (ADS)
Chaurasia, Pratik Ranjan; Subhash
2018-06-01
An unknown indigenous driller combined the percussion and circulation drilling principles, resulting in the development of low cost, low weight manual boring set in the year 1990-1991/1991-1992, which revolutionized the shallow well drilling technology and made possible to drill about 4.5 million shallow bore wells in the State. This has changed the landscape of irrigated agriculture, changing the life of millions of small and marginal farmers and contributed a lot in increasing crop production and crop productivity. The developed drilling equipment locally known as "Pressure Boring Set" is manually operated, low cost and can be transported on bicycles. Drilling cost is also less. This low cost and simple technology made it possible to drill large number of shallow bore wells in comparatively short time span and less cost, consequently enhancing the rate of increase in irrigated area and in turn crop production and productivity. Cost of the boring set is also low, as compared to traditional sand pump hand boring set and suitable for alluvial areas.
NASA Astrophysics Data System (ADS)
Chaurasia, Pratik Ranjan; Subhash
2018-02-01
An unknown indigenous driller combined the percussion and circulation drilling principles, resulting in the development of low cost, low weight manual boring set in the year 1990-1991/1991-1992, which revolutionized the shallow well drilling technology and made possible to drill about 4.5 million shallow bore wells in the State. This has changed the landscape of irrigated agriculture, changing the life of millions of small and marginal farmers and contributed a lot in increasing crop production and crop productivity. The developed drilling equipment locally known as "Pressure Boring Set" is manually operated, low cost and can be transported on bicycles. Drilling cost is also less. This low cost and simple technology made it possible to drill large number of shallow bore wells in comparatively short time span and less cost, consequently enhancing the rate of increase in irrigated area and in turn crop production and productivity. Cost of the boring set is also low, as compared to traditional sand pump hand boring set and suitable for alluvial areas.
Low-cost solar array project progress and plans
NASA Technical Reports Server (NTRS)
Callaghan, W. T.
1981-01-01
The considered project is part of the DOE Photovoltaic Technology and Market Development Program. This program is concerned with the development and the utilization of cost-competitive photovoltaic systems. The project has the objective to develop, by 1986, the national capability to manufacture low-cost, long-life photovoltaic arrays at production rates that will realize economies of scale, and at a price of less than $0.70/watt. The array performance objectives include an efficiency greater than 10% and an operating lifetime longer than 20 years. The objective of the silicon material task is to establish the practicality of processes for producing silicon suitable for terrestrial photovoltaic applications at a price of $14/kg. The large-area sheet task is concerned with the development of process technology for sheet formation. Low-cost encapsulation material systems are being developed in connection with the encapsulation task. Another project goal is related to the development of economical process sequences.
Can developing countries leapfrog the centralized electrification paradigm?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levin, Todd; Thomas, Valerie M.
Due to the rapidly decreasing costs of small renewable electricity generation 'systems, centralized power systems are no longer a necessary condition of universal access to modern energy services. Developing countries, where centralized electricity infrastructures are less developed, may be able to adopt these new technologies more quickly. We first review the costs of grid extension and distributed solar home systems (SHSs) as reported by a number of different studies. We then present a general analytic framework for analyzing the choice between extending the grid and implementing distributed solar home systems. Drawing upon reported grid expansion cost data for three specificmore » regions, we demonstrate this framework by determining the electricity consumption levels at which the costs of provision through centralized and decentralized approaches are equivalent in these regions. We then calculate SHS capital costs that are necessary for these technologies provide each of five tiers of energy access, as defined by the United Nations Sustainable Energy for All initiative. Our results suggest that solar home systems can play an important role in achieving universal access to basic energy services. The extent of this role depends on three primary factors: SHS costs, grid expansion costs, and centralized generation costs. Given current technology costs, centralized systems will still be required to enable higher levels of consumption; however, cost reduction trends have the potential to disrupt this paradigm. By looking ahead rather than replicating older infrastructure styles, developing countries can leapfrog to a more distributed electricity service model. (C) 2016 International Energy Initiative. Published by Elsevier Inc. All rights reserved.« less
FBIS report. Science and technology: Japan, November 6, 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-11-06
Some articles are: R&D on Microfactory Technologies; MHI Develops Low Cost, Low Noise Mid-size Helicopters; Kumamoto University to Apply for Approval to Conduct Clinical Experiment for Gene Therapy; MITI To Support Private Sector to Develop Cipher Technology; and Hitachi Electronics Develops Digital Broadcasting Camera System.
Key Factors of e-Learning: A Case Study at a Spanish Bank
ERIC Educational Resources Information Center
Andreu, Rafael; Jauregui, Kety
2005-01-01
Given the evident potential shown by developing new technologies, there are increasingly more companies that develop and implement training programs that use the new-technology-based facilities. Likewise, suppliers developing new-technology-based programs have emerged seeking greater effectiveness and cost reduction as opposed to traditional…
Inserting new technology into small missions
NASA Technical Reports Server (NTRS)
Deutsch, L. J.
2001-01-01
Part of what makes small missions small is that they have less money. Executing missions at low cost implies extensive use of cost sharing with other missions or use of existing solutions. However, in order to create many small missions, new technology must be developed, applied, and assimilated. Luckily, there are methods for creating new technology and inserting it into faster-better-cheaper (FBC) missions.
Aircraft System Analysis of Technology Benefits to Civil Transport Rotorcraft
NASA Technical Reports Server (NTRS)
Wilkerson, Joseph B.; Smith, Roger L.
2008-01-01
An aircraft systems analysis was conducted to evaluate the net benefits of advanced technologies on two conceptual civil transport rotorcraft, to quantify the potential of future civil rotorcraft to become operationally viable and economically competitive, with the ultimate goal of alleviating congestion in our airways, runways and terminals. These questions are three of many that must be resolved for the successful introduction of civil transport rotorcraft: 1) Can civil transport rotorcraft actually relieve current airport congestion and improve overall air traffic and passenger throughput at busy hub airports? What is that operational scenario? 2) Can advanced technology make future civil rotorcraft economically competitive in scheduled passenger transport? What are those enabling technologies? 3) What level of investment is necessary to mature the key enabling technologies? This study addresses the first two questions, and several others, by applying a systems analysis approach to a broad spectrum of potential advanced technologies at a conceptual level of design. The method was to identify those advanced technologies that showed the most promise and to quantify their benefits to the design, development, production, and operation of future civil rotorcraft. Adjustments are made to sizing data by subject matter experts to reflect the introduction of new technologies that offer improved performance, reduced weight, reduced maintenance, or reduced cost. This study used projected benefits from new, advanced technologies, generally based on research results, analysis, or small-scale test data. The technologies are identified, categorized and quantified in the report. The net benefit of selected advanced technologies is quantified for two civil transport rotorcraft concepts, a Single Main Rotor Compound (SMRC) helicopter designed for 250 ktas cruise airspeed and a Civil Tilt Rotor (CTR) designed for 350 ktas cruise airspeed. A baseline design of each concept was sized for a representative civil passenger transport mission, using current technology. Individual advanced technologies are quantified and applied to resize the aircraft, thereby quantifying the net benefit of that technology to the rotorcraft. Estimates of development cost, production cost and operating and support costs are made with a commercial cost estimating program, calibrated to Boeing products with adjustments for future civil production processes. A cost metric of cash direct operating cost per available seat-mile (DOC ASM) is used to compare the cost benefit of the technologies. The same metric is used to compare results with turboprop operating costs. Reduced engine SFC was the most advantageous advanced technology for both rotorcraft concepts. Structural weight reduction was the second most beneficial technology, followed by advanced drive systems and then by technology for rotorcraft performance. Most of the technologies evaluated in this report should apply similarly to conventional helicopters. The implicit assumption is that resources will become available to mature the technologies for fullscale production aircraft. That assumption is certainly the weak link in any forecast of future possibilities. The analysis serves the purpose of identifying which technologies offer the most potential benefit, and thus the ones that should receive the highest priority for continued development. This study directly addressed the following NASA Subsonic Rotary Wing (SRW) subtopics: SR W.4.8.I.J Establish capability for rotorcraft system analysis and SRW. 4.8.I.4 Conduct limited technology benefit assessment on baseline rotorcraft configurations.
Health care technology assessment
NASA Astrophysics Data System (ADS)
Goodman, Clifford
1994-12-01
The role of technology in the cost of health care is a primary issue in current debates concerning national health care reform. The broad scope of studies for understanding technological impacts is known as technology assessment. Technology policy makers can improve their decision making by becoming more aware, and taking greater advantage, of key trends in health care technology assessment (HCTA). HCTA is the systematic evaluation of the properties, impacts, and other attributes of health care technologies, including: technical performance; clinical safety and efficacy/effectiveness; cost-effectiveness and other economic attributes; appropriate circumstances/indications for use; and social, legal, ethical, and political impacts. The main purpose of HCTA is to inform technology-related policy making in health care. Among the important trends in HCTA are: (1) proliferation of HCTA groups in the public and private sectors; (2) higher standards for scientific evidence concerning technologies; (3) methodological development in cost analyses, health-related quality of life measurement, and consolidation of available scientific evidence (e.g., meta-analysis); (4) emphasis on improved data on how well technologies work in routine practice and for traditionally under-represented patient groups; (5) development of priority-setting methods; (6) greater reliance on medical informatics to support and disseminate HCTA findings.
Subsurface Microsensors for Assisted Recertification of TPS (SmarTPS)
NASA Technical Reports Server (NTRS)
Pallix, Joan B.; Milos, Frank S.; Huestis, Dave; Arnold, James O. (Technical Monitor)
1999-01-01
Commercialization of a competitive reusable launch vehicle (RLV) is a primary goal for both NASA and the U.S. aerospace industry. To expedite achievement of this goal, the Bantam-X Technology Program is funding development of innovative technologies to lower costs for access to space. Ground operations is one area where significant cost reduction is required. For the Shuttle fleet, ground operations account for over 80% of the life cycle costs, and TPS recertification accounts for 27% of the operation costs ($4.5M per flight). Bantam Task TPS-7, Subsurface Microsensors for Assisted Recertification of TPS (SmarTPS), is a joint effort between NASA centers and industry partners to develop rapid remote detection and scanning technology for inspection of TPS and detection of subsurface defects. This short paper will provide a general overview of the SmarTPS concept.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Max; Smith, Sarah J.; Sohn, Michael D.
Fuel cells are both a longstanding and emerging technology for stationary and transportation applications, and their future use will likely be critical for the deep decarbonization of global energy systems. As we look into future applications, a key challenge for policy-makers and technology market forecasters who seek to track and/or accelerate their market adoption is the ability to forecast market costs of the fuel cells as technology innovations are incorporated into market products. Specifically, there is a need to estimate technology learning rates, which are rates of cost reduction versus production volume. Unfortunately, no literature exists for forecasting future learningmore » rates for fuel cells. In this paper, we look retrospectively to estimate learning rates for two fuel cell deployment programs: (1) the micro-combined heat and power (CHP) program in Japan, and (2) the Self-Generation Incentive Program (SGIP) in California. These two examples have a relatively broad set of historical market data and thus provide an informative and international comparison of distinct fuel cell technologies and government deployment programs. We develop a generalized procedure for disaggregating experience-curve cost-reductions in order to disaggregate the Japanese fuel cell micro-CHP market into its constituent components, and we derive and present a range of learning rates that may explain observed market trends. Finally, we explore the differences in the technology development ecosystem and market conditions that may have contributed to the observed differences in cost reduction and draw policy observations for the market adoption of future fuel cell technologies. The scientific and policy contributions of this paper are the first comparative experience curve analysis of past fuel cell technologies in two distinct markets, and the first quantitative comparison of a detailed cost model of fuel cell systems with actual market data. The resulting approach is applicable to analyzing other fuel cell markets and other energy-related technologies, and highlights the data needed for cost modeling and quantitative assessment of key cost reduction components.« less
Cost-effectiveness Analysis for Technology Acquisition.
Chakravarty, A; Naware, S S
2008-01-01
In a developing country with limited resources, it is important to utilize the total cost visibility approach over the entire life-cycle of the technology and then analyse alternative options for acquiring technology. The present study analysed cost-effectiveness of an "In-house" magnetic resonance imaging (MRI) scan facility of a large service hospital against outsourcing possibilities. Cost per unit scan was calculated by operating costing method and break-even volume was calculated. Then life-cycle cost analysis was performed to enable total cost visibility of the MRI scan in both "In-house" and "outsourcing of facility" configuration. Finally, cost-effectiveness analysis was performed to identify the more acceptable decision option. Total cost for performing unit MRI scan was found to be Rs 3,875 for scans without contrast and Rs 4,129 with contrast. On life-cycle cost analysis, net present value (NPV) of the "In-house" configuration was found to be Rs-(4,09,06,265) while that of "outsourcing of facility" configuration was Rs-(5,70,23,315). Subsequently, cost-effectiveness analysis across eight Figures of Merit showed the "In-house" facility to be the more acceptable option for the system. Every decision for acquiring high-end technology must be subjected to life-cycle cost analysis.
System driven technology selection for future European launch systems
NASA Astrophysics Data System (ADS)
Baiocco, P.; Ramusat, G.; Sirbi, A.; Bouilly, Th.; Lavelle, F.; Cardone, T.; Fischer, H.; Appel, S.
2015-02-01
In the framework of the next generation launcher activity at ESA, a top-down approach and a bottom-up approach have been performed for the identification of promising technologies and alternative conception of future European launch vehicles. The top-down approach consists in looking for system-driven design solutions and the bottom-up approach features design solutions leading to substantial advantages for the system. The main investigations have been focused on the future launch vehicle technologies. Preliminary specifications have been used in order to permit sub-system design to find the major benefit for the overall launch system. The development cost, non-recurring and recurring cost, industrialization and operational aspects have been considered as competitiveness factors for the identification and down-selection of the most interesting technologies. The recurring cost per unit payload mass has been evaluated. The TRL/IRL has been assessed and a preliminary development plan has been traced for the most promising technologies. The potentially applicable launch systems are Ariane and VEGA evolution. The main FLPP technologies aim at reducing overall structural mass, increasing structural margins for robustness, metallic and composite containment of cryogenic hydrogen and oxygen propellants, propellant management subsystems, elements significantly reducing fabrication and operational costs, avionics, pyrotechnics, etc. to derive performing upper and booster stages. Application of the system driven approach allows creating performing technology demonstrators in terms of need, demonstration objective, size and cost. This paper outlines the process of technology down selection using a system driven approach, the accomplishments already achieved in the various technology fields up to now, as well as the potential associated benefit in terms of competitiveness factors.
NASA Technical Reports Server (NTRS)
Rosmait, Russell L.
1996-01-01
The development of a new space transportation system in a climate of constant budget cuts and staff reductions can be and is a difficult task. It is no secret that NASA's current launching system consumes a very large portion of NASA funding and requires a large army of people to operate & maintain the system. The new Reusable Launch Vehicle (RLV) project and it's programs are faced with a monumental task of making the cost of access to space dramatically lower and more efficient than NASA's current system. With pressures from congressional budget cutters and also increased competition and loss of market share from international agencies RLV's first priority is to develop a 'low-cost, reliable transportation to earth orbit.' One of the RLV's major focus in achieving low-cost, reliable transportation to earth orbit is to rely on the maturing of advanced technologies. The technologies for the RLV are numerous and varied. Trying to assess their current status, within the RLV development program is paramount. There are several ways to assess these technologies. One way is through the use of Technology Readiness Levels (TRL's). This project focused on establishing current (summer 95) 'worst case' TRL's for six selected technologies that are under consideration for use within the RLV program. The six technologies evaluated were Concurrent Engineering, Embedded Sensor Technology, Rapid Prototyping, Friction Stir Welding, Thermal Spray Coatings, and VPPA Welding.
Achieving cost reductions in EOSDIS operations through technology evolution
NASA Technical Reports Server (NTRS)
Newsome, Penny; Moe, Karen; Harberts, Robert
1996-01-01
The earth observing system (EOS) data information system (EOSDIS) mission includes the cost-effective management and distribution of large amounts of data to the earth science community. The effect of the introduction of new information system technologies on the evolution of EOSDIS is considered. One of the steps taken by NASA to enable the introduction of new information system technologies into the EOSDIS is the funding of technology development through prototyping. Recent and ongoing prototyping efforts and their potential impact on the performance and cost-effectiveness of the EOSDIS are discussed. The technology evolution process as it related to the effective operation of EOSDIS is described, and methods are identified for the support of the transfer of relevant technology to EOSDIS components.
Nuclear electric propulsion mission engineering study. Volume 2: Final report
NASA Technical Reports Server (NTRS)
1973-01-01
Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed, along with the impact of its availability on future space programs. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seiter, C.
1998-07-01
The use of coal power generation applications is currently enjoying a renaissance. New highly efficient and cost-effective plant concepts together with environmental protection technologies are the main factors in this development. In addition, coal is available on the world market at attractive prices and in many places it is more readily available than gas. At the economical leading edge, standard power plant concepts have been developed to meet the requirements of emerging power markets. These concepts incorporate the high technological state-of-the-art and are designed to achieve lowest life-cycle costs. Low capital cost, fuel costs and operating costs in combination withmore » shortest lead times are the main assets that make these plants attractive especially for IPPs and Developers. Other aspects of these comprehensive concepts include turnkey construction and the willingness to participate in BOO/BOT projects. One of the various examples of such a concept, the 2 x 610-MW Paiton Private Power Project Phase II in Indonesia, is described in this paper. At the technological leading edge, Siemens has always made a major contribution and was pacemaker for new developments in steam power plant technology. Modern coal-fired steam power plants use computer-optimized process and plant design as well as advanced materials, and achieve efficiencies exceeding 45%. One excellent example of this high technology is the world's largest lignite-fired steam power plant Schwarze Pumpe in Germany, which is equipped with two 800 MW Siemens steam turbine generators with supercritical steam parameters. The world's largest 50-Hz single-shaft turbine generator with supercritical steam parameters rated at 1025 MW for the Niederaussem lignite-fired steam power plant in Germany is a further example of the sophisticated Siemens steam turbine technology and sets a new benchmark in this field.« less
Study of Cost/Benefit Tradeoffs Available in Helicopter Noise Technology Applications
1980-01-01
Report No. FAA-EE-80-5 .,,-vx s?Pi iO Oi CO 00 o STUDY OF COST/ BENEFIT TRADEOFFS AVAILABLE IN HELICOPTER NOISE TECHNOLOGY APPLICATIONS R.H...Documentation Page ). Report No. FAA-EE-80-5 2. Government Accession No. i. Title ord Subtitle Study of Cost/ Benefit Tradeoffs Available in...Abstract This study investigated cost/ benefit tradeoffs using the case histories of four helicopters for which design and development were complete, and in
Future Concepts for Modular, Intelligent Aerospace Power Systems
NASA Technical Reports Server (NTRS)
Button, Robert M.; Soeder, James F.
2004-01-01
Nasa's resent commitment to Human and Robotic Space Exploration obviates the need for more affordable and sustainable systems and missions. Increased use of modularity and on-board intelligent technologies will enable these lofty goals. To support this new paradigm, an advanced technology program to develop modular, intelligent power management and distribution (PMAD) system technologies is presented. The many benefits to developing and including modular functionality in electrical power components and systems are shown to include lower costs and lower mass for highly reliable systems. The details of several modular technologies being developed by NASA are presented, broken down into hierarchical levels. Modularity at the device level, including the use of power electronic building blocks, is shown to provide benefits in lowering the development time and costs of new power electronic components.
Analysis of Ideal Towers for Tall Wind Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dykes, Katherine L; Damiani, Rick R; Roberts, Joseph O
Innovation in wind turbine tower design is of significant interest for future development of wind power plants. First, wind turbine towers account for a large portion of overall capital expenditures for wind power projects. Second, for low wind-resource regions of the world, the use of low-cost tall-tower technology has the potential to open new markets for development. This study investigates the relative potential of various tower configurations in terms of mass and cost. For different market applications and hub heights, idealized tall towers are designed and compared. The results show that innovation in wind turbine controls makes reaching higher hubmore » heights with current technology economically viable. At the same time, new technologies hold promise for reducing tower costs as these technologies mature and hub heights reach twice the current average.« less
Analysis of Ideal Towers for Tall Wind Applications: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dykes, Katherine L; Damiani, Rick R; Roberts, Joseph O
Innovation in wind turbine tower design is of significant interest for future development of wind power plants. First, wind turbine towers account for a large portion of overall capital expenditures for wind power projects. Second, for low wind-resource regions of the world, the use of low-cost tall-tower technology has the potential to open new markets for development. This study investigates the relative potential of various tower configurations in terms of mass and cost. For different market applications and hub heights, idealized tall towers are designed and compared. The results show that innovation in wind turbine controls makes reaching higher hubmore » heights with current technology economically viable. At the same time, new technologies hold promise for reducing tower costs as these technologies mature and hub heights reach twice the current average.« less
Coal gasification systems engineering and analysis, volume 2
NASA Technical Reports Server (NTRS)
1980-01-01
The major design related features of each generic plant system were characterized in a catalog. Based on the catalog and requirements data, approximately 17 designs and cost estimates were developed for MBG and alternate products. A series of generic trade studies was conducted to support all of the design studies. A set of cost and programmatic analyses were conducted to supplement the designs. The cost methodology employed for the design and sensitivity studies was documented and implemented in a computer program. Plant design and construction schedules were developed for the K-T, Texaco, and B&W MBG plant designs. A generic work breakdown structure was prepared, based on the K-T design, to coincide with TVA's planned management approach. An extensive set of cost sensitivity analyses was completed for K-T, Texaco, and B&W design. Product price competitiveness was evaluated for MBG and the alternate products. A draft management policy and procedures manual was evaluated. A supporting technology development plan was developed to address high technology risk issues. The issues were identified and ranked in terms of importance and tractability, and a plan developed for obtaining data or developing technology required to mitigate the risk.
Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-Up
DOE Office of Scientific and Technical Information (OSTI.GOV)
Axelbaum, Richard; Kumfer, Benjamin; Gopan, Akshay
The immediate need for a high efficiency, low cost carbon capture process has prompted the recent development of pressurized oxy-combustion. With a greater combustion pressure the dew point of the flue gas is increased, allowing for effective integration of the latent heat of flue gas moisture into the Rankine cycle. This increases the net plant efficiency and reduces costs. A novel, transformational process, named Staged, Pressurized Oxy-Combustion (SPOC), achieves additional step changes in efficiency and cost reduction by significantly reducing the recycle of flue gas. The research and development activities conducted under Phases I and II of this project (FE0009702)more » include: SPOC power plant cost and performance modeling, CFD-assisted design of pressurized SPOC boilers, theoretical analysis of radiant heat transfer and ash deposition, boiler materials corrosion testing, construction of a 100 kWth POC test facility, and experimental testing. The results of this project have advanced the technology readiness level (TRL) of the SPOC technology from 1 to 5.« less
Novel Structured Metal Bipolar Plates for Low Cost Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Conghua
2013-08-15
Bipolar plates are an important component in fuel cell stacks and accounts for more than 75% of stack weight and volume, and 20% of the stack cost. The technology development of metal bipolar plates can effectively reduce the fuel cells stack weight and volume over 50%. The challenge is to protect metal plate from corrosion at low cost for the broad commercial applications. While most of today’s PEM fuel cell metallic bipolar plate technologies use some precious metal, the focus of this SBIR project is to develop a low cost, novel nano-structured metal bipolar plate technology without using any preciousmore » metal. The technology will meet the performance and cost requirements for automobile applications. Through the Phase I project, TreadStone has identified the corrosion resistant and electrically conductive titanium oxide for the metal bipolar plate surface protection for automotive PEM fuel cell applications. TreadStone has overcome the manufacturing issues to apply the coating on metal substrate surface, and has demonstrated the feasibility of the coated stainless steel plates by ex-situ evaluation tests and the in-situ fuel cell long term durability test. The test results show the feasibility of the proposed nano-structured coating as the low cost metal bipolar plates of PEM fuel cells. The plan for further technology optimization is also outlined for the Phase II project.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Brennan T.; Welch, Tim; Witt, Adam M.
The Multi-Year Plan for Research, Development, and Prototype Testing of Standard Modular Hydropower Technology (MYRP) presents a strategy for specifying, designing, testing, and demonstrating the efficacy of standard modular hydropower (SMH) as an environmentally compatible and cost-optimized renewable electricity generation technology. The MYRP provides the context, background, and vision for testing the SMH hypothesis: if standardization, modularity, and preservation of stream functionality become essential and fully realized features of hydropower technology, project design, and regulatory processes, they will enable previously unrealized levels of new project development with increased acceptance, reduced costs, increased predictability of outcomes, and increased value to stakeholders.more » To achieve success in this effort, the MYRP outlines a framework of stakeholder-validated criteria, models, design tools, testing facilities, and assessment protocols that will facilitate the development of next-generation hydropower technologies.« less
First NASA Advanced Composites Technology Conference, Part 2
NASA Technical Reports Server (NTRS)
Davis, John G., Jr. (Compiler); Bohon, Herman L. (Compiler)
1991-01-01
Presented here is a compilation of papers presented at the first NASA Advanced Composites Technology (ACT) Conference held in Seattle, Washington, from 29 Oct. to 1 Nov. 1990. The ACT program is a major new multiyear research initiative to achieve a national goal of technology readiness before the end of the decade. Included are papers on materials development and processing, innovative design concepts, analysis development and validation, cost effective manufacturing methodology, and cost tracking and prediction procedures. Papers on major applications programs approved by the Department of Defense are also included.
Smart roadside initiative macro benefit analysis : user’s guide for the benefit-cost analysis tool.
DOT National Transportation Integrated Search
2015-03-01
Through the Smart Roadside Initiative (SRI), a Benefit-Cost Analysis (BCA) tool was developed for the evaluation of various new transportation technologies at a State level and to provide results that could support technology adoption by a State Depa...
Manufacturing Cost Levelization Model – A User’s Guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrow, William R.; Shehabi, Arman; Smith, Sarah Josephine
The Manufacturing Cost Levelization Model is a cost-performance techno-economic model that estimates total large-scale manufacturing costs for necessary to produce a given product. It is designed to provide production cost estimates for technology researchers to help guide technology research and development towards an eventual cost-effective product. The model presented in this user’s guide is generic and can be tailored to the manufacturing of any product, including the generation of electricity (as a product). This flexibility, however, requires the user to develop the processes and process efficiencies that represents a full-scale manufacturing facility. The generic model is comprised of several modulesmore » that estimate variable costs (material, labor, and operating), fixed costs (capital & maintenance), financing structures (debt and equity financing), and tax implications (taxable income after equipment and building depreciation, debt interest payments, and expenses) of a notional manufacturing plant. A cash-flow method is used to estimate a selling price necessary for the manufacturing plant to recover its total cost of production. A levelized unit sales price ($ per unit of product) is determined by dividing the net-present value of the manufacturing plant’s expenses ($) by the net present value of its product output. A user defined production schedule drives the cash-flow method that determines the levelized unit price. In addition, an analyst can increase the levelized unit price to include a gross profit margin to estimate a product sales price. This model allows an analyst to understand the effect that any input variables could have on the cost of manufacturing a product. In addition, the tool is able to perform sensitivity analysis, which can be used to identify the key variables and assumptions that have the greatest influence on the levelized costs. This component is intended to help technology researchers focus their research attention on tasks that offer the greatest opportunities for cost reduction early in the research and development stages of technology invention.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenne, S.; Young, K. R.; Thorsteinsson, H.
The Department of Energy's Geothermal Technologies Office (GTO) provides RD&D funding for geothermal exploration technologies with the goal of lowering the risks and costs of geothermal development and exploration. In 2012, NREL was tasked with developing a metric to measure the impacts of this RD&D funding on the cost and time required for exploration activities. The development of this metric included collecting cost and time data for exploration techniques, creating a baseline suite of exploration techniques to which future exploration and cost and time improvements could be compared, and developing an online tool for graphically showing potential project impacts (allmore » available at http://en.openei.org/wiki/Gateway:Geothermal). The conference paper describes the methodology used to define the baseline exploration suite of techniques (baseline), as well as the approach that was used to create the cost and time data set that populates the baseline. The resulting product, an online tool for measuring impact, and the aggregated cost and time data are available on the Open EI website for public access (http://en.openei.org).« less
A top-down approach to heliostat cost reduction
NASA Astrophysics Data System (ADS)
Larmuth, James N.; Landamn, Willem A.; Gauché, Paul
2016-05-01
The Technology Innovation Agency (TIA) has funded a South African central receiver collector technology development project, called Helio100. The project aims to provide South Africa's first commercially viable heliostat technology, which is both low in cost and offers high local content potential. A top-down approach is employed for heliostat cost reduction. This approach incorporates interlinked tools which move from high level cost analyses based on qualitative data during early stages of conceptual design, to detailed quantitative analyses in the final stages of design. Low cost heliostat designs are realized by the incorporation of both a top-down and bottom-up method. The current H100 design results in heliostat costs of 155/m2 at 20 000 units p.a. while further industrialisation results in heliostat costs of 126/m2 at 20 000 units.
Space Technology for the New Century
NASA Technical Reports Server (NTRS)
1998-01-01
The National Aeronautics and Space Administration (NASA) is responsible for developing advanced space technologies that will lower the cost and improve the performance of existing space activities and enable new ones. Although NASA has recently proved adept at incorporating modern technologies into its spacecraft, the agency currently supports relatively little work in long-term space technology development. To enable ambitious future space activities and to achieve its long-term goals, NASA needs to engage in space research and technology development (R&T) in critical areas for the long term. NASA requested that the National Research Council (NRC) examine the nation's space technology needs in the post-2000 time frame and identify high-risk, high-payoff technology that could improve the capabilities and reduce the costs fo NASA, other government, and commercial space programs. The NRC was also asked to suggest how NASA can work more effectively with industry and universities to develop these technologies. To accomplish these ends, the Committee on Advanced Space Technology, under the auspices of the Aeronautics and Space Engineering Board, undertook a systematic process of information gathering and technology assessment. Six key technologies that the committee believes NASA should support are presented.
Space program payload costs and their possible reduction
NASA Technical Reports Server (NTRS)
Vanvleck, E. M.; Deerwester, J. M.; Norman, S. M.; Alton, L. R.
1973-01-01
The possible ways by which NASA payload costs might be reduced in the future were studied. The major historical reasons for payload costs being as they were, and if there are technologies (hard and soft), or criteria for technology advances, that could significantly reduce total costs of payloads were examined. Payload costs are placed in historical context. Some historical cost breakdowns for unmanned NASA payloads are presented to suggest where future cost reductions could be most significant. Space programs of NOAA, DoD and COMSAT are then examined to ascertain if payload reductions have been brought about by the operational (as opposed to developmental) nature of such programs, economies of scale, the ability to rely on previously developed technology, or by differing management structures and attitudes. The potential impact was investigated of NASA aircraft-type management on spacecraft program costs, and some examples relating previous costs associated with aircraft costs on the one hand and manned and unmanned costs on the other are included.
A multidisciplinary approach to the development of low-cost high-performance lightwave networks
NASA Technical Reports Server (NTRS)
Maitan, Jacek; Harwit, Alex
1991-01-01
Our research focuses on high-speed distributed systems. We anticipate that our results will allow the fabrication of low-cost networks employing multi-gigabit-per-second data links for space and military applications. The recent development of high-speed low-cost photonic components and new generations of microprocessors creates an opportunity to develop advanced large-scale distributed information systems. These systems currently involve hundreds of thousands of nodes and are made up of components and communications links that may fail during operation. In order to realize these systems, research is needed into technologies that foster adaptability and scaleability. Self-organizing mechanisms are needed to integrate a working fabric of large-scale distributed systems. The challenge is to fuse theory, technology, and development methodologies to construct a cost-effective, efficient, large-scale system.
Measures of International Manufacturing and Trade of Clean Energy Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engel-Cox, Jill; Sandor, Debbie; Keyser, David
The technologies that produce clean energy, such as solar photovoltaic panels and lithium ion batteries for electric vehicles, are globally manufactured and traded. As demand and deployment of these technologies grows exponentially, the innovation to reach significant economies of scale and drive down energy production costs becomes less in the technology and more in the manufacturing of the technology. Manufacturing innovations and other manufacturing decisions can reduce costs of labor, materials, equipment, operating costs, and transportation, across all the links in the supply chain. To better understand the manufacturing aspect of the clean energy economy, we have developed key metricsmore » for systematically measuring and benchmarking international manufacturing of clean energy technologies. The metrics are: trade, market size, manufacturing value-added, and manufacturing capacity and production. These metrics were applied to twelve global economies and four representative technologies: wind turbine components, crystalline silicon solar photovoltaic modules, vehicle lithium ion battery cells, and light emitting diode packages for efficient lighting and other consumer products. The results indicated that clean energy technologies are being developed via complex, dynamic, and global supply chains, with individual economies benefiting from different technologies and links in the supply chain, through both domestic manufacturing and global trade.« less
NASA Technical Reports Server (NTRS)
Cole, Stuart K.; Reeves, John D.; Williams-Byrd, Julie A.; Greenberg, Marc; Comstock, Doug; Olds, John R.; Wallace, Jon; DePasquale, Dominic; Schaffer, Mark
2013-01-01
NASA is investing in new technologies that include 14 primary technology roadmap areas, and aeronautics. Understanding the cost for research and development of these technologies and the time it takes to increase the maturity of the technology is important to the support of the ongoing and future NASA missions. Overall, technology estimating may help provide guidance to technology investment strategies to help improve evaluation of technology affordability, and aid in decision support. The research provides a summary of the framework development of a Technology Estimating process where four technology roadmap areas were selected to be studied. The framework includes definition of terms, discussion for narrowing the focus from 14 NASA Technology Roadmap areas to four, and further refinement to include technologies, TRL range of 2 to 6. Included in this paper is a discussion to address the evaluation of 20 unique technology parameters that were initially identified, evaluated and then subsequently reduced for use in characterizing these technologies. A discussion of data acquisition effort and criteria established for data quality are provided. The findings obtained during the research included gaps identified, and a description of a spreadsheet-based estimating tool initiated as a part of the Technology Estimating process.
NASA Technical Reports Server (NTRS)
Shaw, Eric J.
2001-01-01
This paper will report on the activities of the IAA Launcher Systems Economics Working Group in preparations for its Launcher Systems Development Cost Behavior Study. The Study goals include: improve launcher system and other space system parametric cost analysis accuracy; improve launcher system and other space system cost analysis credibility; and provide launcher system and technology development program managers and other decisionmakers with useful information on development cost impacts of their decisions. The Working Group plans to explore at least the following five areas in the Study: define and explain development cost behavior terms and concepts for use in the Study; identify and quantify sources of development cost and cost estimating uncertainty; identify and quantify significant influences on development cost behavior; identify common barriers to development cost understanding and reduction; and recommend practical, realistic strategies to accomplish reductions in launcher system development cost.
ERIC Educational Resources Information Center
Beem, Kate
2002-01-01
Discusses technology-support issues, including staff training, cost, and outsourcing. Describes how various school districts manage technology-support services. Features the Technology Support Index, developed by the International Society for Technology in Education, to gauge the operation of school district technology-support programs. (PKP)
Defining Teachers' Technostress Levels: A Scale Development
ERIC Educational Resources Information Center
Çoklar, Ahmet Naci; Efilti, Erkan; Sahin, Levent
2017-01-01
With the integration of technology in recent years, use of technology has rapidly increased in educational system, and has become almost a must rather than an option. The use of technology in educational processes accompanies some adaptation issues due to the nature of technology (rapid development, cost, need for electricity, change of roles,…
Felo, Michael; Christensen, Brandon; Higgins, John
2013-01-01
The bioreactor volume delineating the selection of primary clarification technology is not always easily defined. Development of a commercial scale process for the manufacture of therapeutic proteins requires scale-up from a few liters to thousands of liters. While the separation techniques used for protein purification are largely conserved across scales, the separation techniques for primary cell culture clarification vary with scale. Process models were developed to compare monoclonal antibody production costs using two cell culture clarification technologies. One process model was created for cell culture clarification by disc stack centrifugation with depth filtration. A second process model was created for clarification by multi-stage depth filtration. Analyses were performed to examine the influence of bioreactor volume, product titer, depth filter capacity, and facility utilization on overall operating costs. At bioreactor volumes <1,000 L, clarification using multi-stage depth filtration offers cost savings compared to clarification using centrifugation. For bioreactor volumes >5,000 L, clarification using centrifugation followed by depth filtration offers significant cost savings. For bioreactor volumes of ∼ 2,000 L, clarification costs are similar between depth filtration and centrifugation. At this scale, factors including facility utilization, available capital, ease of process development, implementation timelines, and process performance characterization play an important role in clarification technology selection. In the case study presented, a multi-product facility selected multi-stage depth filtration for cell culture clarification at the 500 and 2,000 L scales of operation. Facility implementation timelines, process development activities, equipment commissioning and validation, scale-up effects, and process robustness are examined. © 2013 American Institute of Chemical Engineers.
Space Station Freedom advanced photovoltaics and battery technology development planning
NASA Technical Reports Server (NTRS)
Brender, Karen D.; Cox, Spruce M.; Gates, Mark T.; Verzwyvelt, Scott A.
1993-01-01
Space Station Freedom (SSF) usable electrical power is planned to be built up incrementally during assembly phase to a peak of 75 kW end-of-life (EOL) shortly after Permanently Manned Capability (PMC) is achieved in 1999. This power will be provided by planar silicon (Si) arrays and nickel-hydrogen (NiH2) batteries. The need for power is expected to grow from 75 kW to as much as 150 kW EOL during the evolutionary phase of SSF, with initial increases beginning as early as 2002. Providing this additional power with current technology may not be as cost effective as using advanced technology arrays and batteries expected to develop prior to this evolutionary phase. A six-month study sponsored by NASA Langley Research Center and conducted by Boeing Defense and Space Group was initiated in Aug. 1991. The purpose of the study was to prepare technology development plans for cost effective advanced photovoltaic (PV) and battery technologies with application to SSF growth, SSF upgrade after its arrays and batteries reach the end of their design lives, and other low Earth orbit (LEO) platforms. Study scope was limited to information available in the literature, informal industry contacts, and key representatives from NASA and Boeing involved in PV and battery research and development. Ten battery and 32 PV technologies were examined and their performance estimated for SSF application. Promising technologies were identified based on performance and development risk. Rough order of magnitude cost estimates were prepared for development, fabrication, launch, and operation. Roadmaps were generated describing key issues and development paths for maturing these technologies with focus on SSF application.
Terrestrial photovoltaic collector technology trends
NASA Technical Reports Server (NTRS)
Shimada, K.; Costogue, E.
1984-01-01
Following the path of space PV collector development in its early stages, terrestrial PV technologies based upon single-crystal silicon have matured rapidly. Currently, terrestrial PV cells with efficiencies approaching space cell efficiencies are being fabricated into modules at a fraction of the space PV module cost. New materials, including CuInSe2 and amorphous silicon, are being developed for lowering the cost, and multijunction materials for achieving higher efficiency. Large grid-interactive, tracking flat-plate power systems and concentrator PV systems totaling about 10 MW, are already in operation. Collector technology development both flat-plate and concentrator, will continue under an extensive government and private industry partnership.
Brian Vachowski
2006-01-01
The USDA Forest Service Missoula Technology and Development Center (MTDC) offers technical expertise, technology transfer, and new equipment development to Federal, State, and private forest nurseries. Current and recently completed projects at MTDC include a nursery soil moisture meter, remote data collection systems, low cost weather stations, electronic soil...
Status and Mission Applicability of NASA's In-Space Propulsion Technology Project
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Dankanich, John; Pencil, Eric; Liou, Larry
2009-01-01
The In-Space Propulsion Technology (ISPT) project develops propulsion technologies that will enable or enhance NASA robotic science missions. Since 2001, the ISPT project developed and delivered products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. These in-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations. This paper provides status of the technology development, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of advanced chemical thrusters, electric propulsion, aerocapture, and systems analysis tools. The current chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. Investments in electric propulsion technologies focused on completing NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system, and the High Voltage Hall Accelerator (HiVHAC) thruster, which is a mid-term product specifically designed for a low-cost electric propulsion option. Aerocapture investments developed a family of thermal protections system materials and structures; guidance, navigation, and control models of blunt-body rigid aeroshells; atmospheric models for Earth, Titan, Mars and Venus; and models for aerothermal effects. In 2009 ISPT started the development of propulsion technologies that would enable future sample return missions. The paper describes the ISPT project's future focus on propulsion for sample return missions. The future technology development areas for ISPT is: Planetary Ascent Vehicles (PAV), with a Mars Ascent Vehicle (MAV) being the initial development focus; multi-mission technologies for Earth Entry Vehicles (MMEEV) needed for sample return missions from many different destinations; propulsion for Earth Return Vehicles (ERV), transfer stages to the destination, and Electric Propulsion for sample return and low cost missions; and Systems/Mission Analysis focused on sample return propulsion. The ISPT project is funded by NASA's Science Mission Directorate (SMD).
Large Instrument Development for Radio Astronomy
NASA Astrophysics Data System (ADS)
Fisher, J. Richard; Warnick, Karl F.; Jeffs, Brian D.; Norrod, Roger D.; Lockman, Felix J.; Cordes, James M.; Giovanelli, Riccardo
2009-03-01
This white paper offers cautionary observations about the planning and development of new, large radio astronomy instruments. Complexity is a strong cost driver so every effort should be made to assign differing science requirements to different instruments and probably different sites. The appeal of shared resources is generally not realized in practice and can often be counterproductive. Instrument optimization is much more difficult with longer lists of requirements, and the development process is longer and less efficient. More complex instruments are necessarily further behind the technology state of the art because of longer development times. Including technology R&D in the construction phase of projects is a growing trend that leads to higher risks, cost overruns, schedule delays, and project de-scoping. There are no technology breakthroughs just over the horizon that will suddenly bring down the cost of collecting area. Advances come largely through careful attention to detail in the adoption of new technology provided by industry and the commercial market. Radio astronomy instrumentation has a very bright future, but a vigorous long-term R&D program not tied directly to specific projects needs to be restored, fostered, and preserved.
Satellite voice broadcast. Volume 2: System study
NASA Technical Reports Server (NTRS)
Bachtell, E. E.; Bettadapur, S. S.; Coyner, J. V.; Farrell, C. E.
1985-01-01
The Technical Volume of the Satellite Broadcast System Study is presented. Designs are synthesized for direct sound broadcast satellite systems for HF-, VHF-, L-, and Ku-bands. Methods are developed and used to predict satellite weight, volume, and RF performance for the various concepts considered. Cost and schedule risk assessments are performed to predict time and cost required to implement selected concepts. Technology assessments and tradeoffs are made to identify critical enabling technologies that require development to bring technical risk to acceptable levels for full scale development.
The primary objective of this project was to evaluate cost-effective aeration technology solutions to address TTHM compliance at a water treatment plant clearwell. The project team worked closely with EPA Region 6 and the EPA Office of Research and Development (ORD) to identify a...
Overview of NASA Glenn Seal Project
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Dunlap, Patrick; Proctor, Margaret; Delgado, Irebert; Finkbeiner, Josh; DeMange, Jeff; Daniels, Christopher C.; Taylor, Shawn; Oswald, Jay
2006-01-01
NASA Glenn is currently performing seal research supporting both advanced turbine engine development and advanced space vehicle/propulsion system development. Studies have shown that decreasing parasitic leakage through applying advanced seals will increase turbine engine performance and decrease operating costs. Studies have also shown that higher temperature, long life seals are critical in meeting next generation space vehicle and propulsion system goals in the areas of performance, reusability, safety, and cost. NASA Glenn is developing seal technology and providing technical consultation for the Agency s key aero- and space technology development programs.
Geothermal Exploration Cost and Time
Jenne, Scott
2013-02-13
The Department of Energy’s Geothermal Technology Office (GTO) provides RD&D funding for geothermal exploration technologies with the goal of lowering the risks and costs of geothermal development and exploration. The National Renewable Energy Laboratory (NREL) was tasked with developing a metric in 2012 to measure the impacts of this RD&D funding on the cost and time required for exploration activities. The development of this cost and time metric included collecting cost and time data for exploration techniques, creating a baseline suite of exploration techniques to which future exploration cost and time improvements can be compared, and developing an online tool for graphically showing potential project impacts (all available at http://en.openei.org/wiki/Gateway: Geothermal). This paper describes the methodology used to define the baseline exploration suite of techniques (baseline), as well as the approach that was used to create the cost and time data set that populates the baseline. The resulting product, an online tool for measuring impact, and the aggregated cost and time data are available on the Open Energy Information website (OpenEI, http://en.openei.org) for public access. - Published 01/01/2013 by US National Renewable Energy Laboratory NREL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bill Stanley; Patrick Gonzalez; Sandra Brown
2005-10-01
The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects,more » providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st , 2005 and June 30th, 2005. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bill Stanley; Patrick Gonzalez; Sandra Brown
2006-01-01
The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects,more » providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st , 2005 and June 30th, 2005. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.« less
NASA Astrophysics Data System (ADS)
Ristow, Alan H.
2008-10-01
Electricity generated from photovoltaics (PV) promises to satisfy the world's ever-growing thirst for energy without significant pollution and greenhouse gas emissions. At present, however, PV is several times too expensive to compete economically with conventional sources of electricity delivered via the power grid. To ensure long-term success, must achieve cost parity with electricity generated by conventional sources of electricity. This requires detailed understanding of the relationship between technology and economics as it pertains to PV devices and systems. The research tasks of this thesis focus on developing and using four types of models in concert to develop a complete picture of how solar cell technology and design choices affect the quantity and cost of energy produced by PV systems. It is shown in this thesis that high-efficiency solar cells can leverage balance-of-systems (BOS) costs to gain an economic advantage over solar cells with low efficiencies. This advantage is quantified and dubbed the "efficiency premium." Solar cell device models are linked to models of manufacturing cost and PV system performance to estimate both PV system cost and performance. These, in turn, are linked to a model of levelized electricity cost to estimate the per-kilowatt-hour cost of electricity produced by the PV system. A numerical PV module manufacturing cost model is developed to facilitate this analysis. The models and methods developed in this thesis are used to propose a roadmap to high-efficiency multicrystalline-silicon PV modules that achieve cost parity with electricity from the grid. The impact of PV system failures on the cost of electricity is also investigated; from this, a methodology is proposed for improving the reliability of PV inverters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bill Stanley; Sandra Brown; Ellen Hawes
2002-09-01
The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research projects is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects,more » providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas impacts. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: advanced videography testing; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.« less
NASA Technical Reports Server (NTRS)
Follett, William W.; Rajagopal, Raj
2001-01-01
The focus of the AA MDO team is to reduce product development cost through the capture and automation of best design and analysis practices and through increasing the availability of low-cost, high-fidelity analysis. Implementation of robust designs reduces costs associated with the Test-Fall-Fix cycle. RD is currently focusing on several technologies to improve the design process, including optimization and robust design, expert and rule-based systems, and collaborative technologies.
NASA Technical Reports Server (NTRS)
Dankanich, John W.; Schumacher, Daniel M.
2015-01-01
The NASA Marshall Space Flight Center Science and Technology Office is continuously exploring technology options to increase performance or reduce cost and risk to future NASA missions including science and exploration. Electric propulsion is a prevalent technology known to reduce mission costs by reduction in launch costs and spacecraft mass through increased post launch propulsion performance. The exploration of alternative propellants for electric propulsion continues to be of interest to the community. Iodine testing has demonstrated comparable performance to xenon. However, iodine has a higher storage density resulting in higher ?V capability for volume constrained systems. Iodine's unique properties also allow for unpressurized storage yet sublimation with minimal power requirements to produce required gas flow rates. These characteristics make iodine an ideal propellant for secondary spacecraft. A range of mission have been evaluated with a focus on low-cost applications. Results highlight the potential for significant cost reduction over state of the art. Based on the potential, NASA has been developing the iodine Satellite for a near-term iodine Hall propulsion technology demonstration. Mission applications and progress of the iodine Satellite project are presented.
Cost-effectiveness analysis: problems and promise for evaluating medical technology
NASA Astrophysics Data System (ADS)
Juday, Timothy R.
1994-12-01
Although using limited financial resources in the most beneficial way, in principle, a laudable goal, actually developing standards for measuring the cost-effectiveness of medical technologies and incorporating them into the coverage process is a much more difficult proposition. Important methodological difficulties include determining how to compare a technology to its leading alternative, defining costs, incorporating patient preferences, and defining health outcomes. In addition, more practical questions must be addressed. These questions include: who does the analysis? who makes the decisions? which technologies to evaluate? what resources are required? what is the political and legal environment? how much is a health outcome worth? The ultimate question that must be answered is what is a health outcome worth? Cost-effectiveness analysis cannot answer this question; it only enables comparison of cost-effectiveness ratios across technologies. In order to determine whether a technology should be covered, society or individual insurers must determine how much they are willing to pay for the health benefits. Conducting cost-effectiveness analysis will not remove the need to make difficult resource allocation decisions; however, explicitly examining the tradeoffs involved in these decisions should help to improve the process.
FLPP NGL Structural Subsystems Activity
NASA Astrophysics Data System (ADS)
Jaredson, D.; Ramusat, G.; Appel, S.; Cardone, T.; Persson, J.; Baiocco, P.; Lavelle, F.; Bouilly, Th.
2012-07-01
The ESA Future Launchers Preparatory Programme (FLPP) is the basis for new paradigms, investigating the key elements, logic and roadmaps to prepare the development of the safe, reliable and low cost next European Launch Vehicle (LV) for access to space (dubbed NGL - Next Generation LV), with an initial operational capability mid-next decade. In addition to carry cargo to conventional GTO or SSO, the European NGL has to be flexible enough to cope with new pioneering institutional missions as well as the evolving commercial payloads market. This achievement is broached studying three main areas relevant to ELVs: System concepts, Propulsion and Core Technology During the preliminary design activity, a number of design alternatives concerning NGL main structural subsystems have been investigated. Technology is one of the ways to meet the NGL challenges to either improve the performances or to reduce the cost or both. The relevant requirements allow to steer a ‘top-down’ approach for their conception and to propose the most effective technologies. Furthermore, all these technology developments represent a significant ‘bottom-up’ approach investment and concern a large range of activities. The structural subsystems portfolio of the FLPP ‘Core Technology’ activity encompasses major cutting-edge challenges for maturation of the various subsystems leading to reduce overall structural mass, increasing structural margins for robustness, metallic and composite containment of cryogenic propellants, significantly reducing fabrication and operations cost, etc. to derive performing upper and booster stages. Application of concurrent engineering methods will allow developments of performing technology demonstrators in terms of need, demonstration objective, size and cost yielding to safe, low-risk technical approaches for a future development. Potential ability of these advanced structural LV technologies to satisfy the system requirements of the NGL and their current and targeted technology readiness (i.e. TRL 6 by 2016) are being assessed to check whether a future flawless development could be performed within a given budget and schedule. The paper outlines the various technology developments for the pressurised and unpressurised structure subsystems and describes the implementation methodology, some of the current technology works performed and achieved accomplishments up to now. This is in strong connection with the “system” activity dealing with the same matter [1].
Research and application of key technology of electric submersible plunger pump
NASA Astrophysics Data System (ADS)
Qian, K.; Sun, Y. N.; Zheng, S.; Du, W. S.; Li, J. N.; Pei, G. Z.; Gao, Y.; Wu, N.
2018-06-01
Electric submersible plunger pump is a new generation of rodless oil production equipment, whose improvements and upgrades of key technologies are conducive to its large-scale application and reduce the cost and improve the efficiency. In this paper, the operating mechanism of the unit in-depth study, aimed at the problems existing in oilfield production, to propose an optimization method creatively, including the optimal design of a linear motor for submersible oil, development of new double-acting load-relief pump, embedded flexible closed-loop control technology, research and development of low-cost power cables. 90 oil wells were used on field application, the average pump inspection cycle is 608 days, the longest pump check cycle has exceeded 1037 days, the average power saving rate is 45.6%. Application results show that the new technology of optimization and upgrading can further improve the reliability and adaptability of electric submersible plunger pump, reduce the cost of investment.
The role of technology in reducing health care costs. Final project report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sill, A.E.; Warren, S.; Dillinger, J.D.
1997-08-01
Sandia National Laboratories applied a systems approach to identifying innovative biomedical technologies with the potential to reduce U.S. health care delivery costs while maintaining care quality. This study was conducted by implementing both top-down and bottom-up strategies. The top-down approach used prosperity gaming methodology to identify future health care delivery needs. This effort provided roadmaps for the development and integration of technology to meet perceived care delivery requirements. The bottom-up approach identified and ranked interventional therapies employed in existing care delivery systems for a host of health-related conditions. Economic analysis formed the basis for development of care pathway interaction modelsmore » for two of the most pervasive, chronic disease/disability conditions: coronary artery disease (CAD) and benign prostatic hypertrophy (BPH). Societal cost-benefit relationships based on these analyses were used to evaluate the effect of emerging technology in these treatment areas. 17 figs., 48 tabs.« less
GSFC Cutting Edge Avionics Technologies for Spacecraft
NASA Technical Reports Server (NTRS)
Luers, Philip J.; Culver, Harry L.; Plante, Jeannette
1998-01-01
With the launch of NASA's first fiber optic bus on SAMPEX in 1992, GSFC has ushered in an era of new technology development and insertion into flight programs. Predating such programs the Lewis and Clark missions and the New Millenium Program, GSFC has spearheaded the drive to use cutting edge technologies on spacecraft for three reasons: to enable next generation Space and Earth Science, to shorten spacecraft development schedules, and to reduce the cost of NASA missions. The technologies developed have addressed three focus areas: standard interface components, high performance processing, and high-density packaging techniques enabling lower cost systems. To realize the benefits of standard interface components GSFC has developed and utilized radiation hardened/tolerant devices such as PCI target ASICs, Parallel Fiber Optic Data Bus terminals, MIL-STD-1773 and AS1773 transceivers, and Essential Services Node. High performance processing has been the focus of the Mongoose I and Mongoose V rad-hard 32-bit processor programs as well as the SMEX-Lite Computation Hub. High-density packaging techniques have resulted in 3-D stack DRAM packages and Chip-On-Board processes. Lower cost systems have been demonstrated by judiciously using all of our technology developments to enable "plug and play" scalable architectures. The paper will present a survey of development and insertion experiences for the above technologies, as well as future plans to enable more "better, faster, cheaper" spacecraft. Details of ongoing GSFC programs such as Ultra-Low Power electronics, Rad-Hard FPGAs, PCI master ASICs, and Next Generation Mongoose processors.
Cubesats: Cost-effective science and technology platforms for emerging and developing nations
NASA Astrophysics Data System (ADS)
Woellert, Kirk; Ehrenfreund, Pascale; Ricco, Antonio J.; Hertzfeld, Henry
2011-02-01
The development, operation, and analysis of data from cubesats can promote science education and spur technology utilization in emerging and developing nations. This platform offers uniquely low construction and launch costs together with a comparative ubiquity of launch providers; factors that have led more than 80 universities and several emerging nations to develop programs in this field. Their small size and weight enables cubesats to “piggyback” on rocket launches and accompany orbiters travelling to Moon and Mars. It is envisaged that constellations of cubesats will be used for larger science missions. We present a brief history, technology overview, and summary of applications in science and industry for these small satellites. Cubesat technical success stories are offered along with a summary of pitfalls and challenges encountered in both developed and emerging nations. A discussion of economic and public policy issues aims to facilitate the decision-making process for those considering utilization of this unique technology.
NASA Technical Reports Server (NTRS)
Borowski, S. K.; Sefcik, R. J.; Fittje, J. E.; McCurdy, D. R.; Qualls, A. L.; Schnitzler, B. G; Werner, J.; Weitzberg, A.; Joyner, C. R.
2015-01-01
In FY'11, Nuclear Thermal Propulsion (NTP) was identified as a key propulsion option under the Advanced In-Space Propulsion (AISP) component of NASA's Exploration Technology Development and Demonstration (ETDD) program A strategy was outlined by GRC and NASA HQ that included 2 key elements -"Foundational Technology Development" followed by specific "Technology Demonstration" projects. The "Technology Demonstration "element proposed ground technology demonstration (GTD) testing in the early 2020's, followed by a flight technology demonstration (FTD) mission by approx. 2025. In order to reduce development costs, the demonstration projects would focus on developing a small, low thrust (approx. 7.5 -16.5 klb(f)) engine that utilizes a "common" fuel element design scalable to the higher thrust (approx. 25 klb(f)) engines used in NASA's Mars DRA 5.0 study(NASA-SP-2009-566). Besides reducing development costs and allowing utilization of existing, flight proven engine hard-ware (e.g., hydrogen pumps and nozzles), small, lower thrust ground and flight demonstration engines can validate the technology and offer improved capability -increased payloads and decreased transit times -valued for robotic science missions identified in NASA's Decadal Study.
Exploration Life Support Overview and Benefits
NASA Technical Reports Server (NTRS)
Chambliss, Joe P.
2007-01-01
NASA s Exploration Life Support (ELS) Project is providing technology development to address air, water and waste product handling for future exploration vehicles. Existing life support technology and processes need to improve to enable exploration vehicles to meet mission goals. The weight, volume, power and thermal control required, reliability, crew time and life cycle cost are the primary targets for ELS technology development improvements. An overview of the ELS technologies being developed leads into an evaluation of the benefits the ELS technology developments offer.
Low-cost fabrication technologies for nanostructures: state-of-the-art and potential
NASA Astrophysics Data System (ADS)
Santos, A.; Deen, M. J.; Marsal, L. F.
2015-01-01
In the last decade, some low-cost nanofabrication technologies used in several disciplines of nanotechnology have demonstrated promising results in terms of versatility and scalability for producing innovative nanostructures. While conventional nanofabrication technologies such as photolithography are and will be an important part of nanofabrication, some low-cost nanofabrication technologies have demonstrated outstanding capabilities for large-scale production, providing high throughputs with acceptable resolution and broad versatility. Some of these nanotechnological approaches are reviewed in this article, providing information about the fundamentals, limitations and potential future developments towards nanofabrication processes capable of producing a broad range of nanostructures. Furthermore, in many cases, these low-cost nanofabrication approaches can be combined with traditional nanofabrication technologies. This combination is considered a promising way of generating innovative nanostructures suitable for a broad range of applications such as in opto-electronics, nano-electronics, photonics, sensing, biotechnology or medicine.
Lambert, Robyn; Carter, Drew; Burgess, Naomi; Haji Ali Afzali, Hossein
2018-04-20
State governments often face capped budgets that can restrict expenditure on health technologies and their evaluation, yet many technologies are introduced to practice through state-funded institutions such as hospitals, rather than through national evaluation mechanisms. This research aimed to identify the criteria, evidence, and standards used by South Australian committee members to recommend funding for high-cost health technologies. We undertook 8 semi-structured interviews and 2 meeting observations with members of state-wide committees that have a mandate to consider the safety, effectiveness, and cost-effectiveness of high-cost health technologies. Safety and effectiveness were fundamental criteria for decision makers, who were also concerned with increasing consistency in care and equitable access to technologies. Committee members often consider evidence that is limited in quantity and quality; however, they perceive evaluations to be rigorous and sufficient for decision making. Precise standards for safety, effective, and cost-effectiveness could not be identified. Consideration of new technologies at the state level is grounded in the desire to improve health outcomes and equity of access for patients. High quality evidence is often limited. The impact funding decisions have on population health is unclear due to limited use of cost-effectiveness analysis and unclear cost-effectiveness standards. Copyright © 2018 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Young, S. Lee
1987-01-01
Based on a comprehensive evaluation of the fundamental Intersatellite Link (ISL) systems characteristics, potential applications of ISLs to domestic, regional, and global commercial satellite communications were identified, and their cost-effectiveness and other systems benefits quantified wherever possible. Implementation scenarios for the cost-effective communications satellite systems employing ISLs were developed for the first launch in 1993 to 1994 and widespread use of ISLs in the early 2000's. Critical technology requirements for both the microwave (60 GHz) and optical (0.85 micron) ISL implementations were identified, and their technology development programs, including schedule and cost estimates, were derived.
Large horizontal axis wind turbine development
NASA Technical Reports Server (NTRS)
Robbins, W. H.; Thomas, R. L.
1979-01-01
An overview of the NASA activities concerning ongoing wind systems oriented toward utility application is presented. First-generation-technology large wind turbines were designed and are in operation at selected utility sites. In order to make a significant energy impact, costs of 2 to 3 cents per kilowatt hour must be achieved. The federal program continues to fund the development by industry of wind turbines which can meet the cost goals of 2 to 3 cents per kilowatt hour. Lower costs are achieved through the incorporation of new technology and innovative system design to reduce weight and increase energy capture.
ECONOMIC EVALUATION OF CO2 STORAGE AND SINK ENHANCEMENT OPTIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bert Bock; Richard Rhudy; Howard Herzog
2003-02-01
This project developed life-cycle costs for the major technologies and practices under development for CO{sub 2} storage and sink enhancement. The technologies evaluated included options for storing captured CO{sub 2} in active oil reservoirs, depleted oil and gas reservoirs, deep aquifers, coal beds, and oceans, as well as the enhancement of carbon sequestration in forests and croplands. The capture costs for a nominal 500 MW{sub e} integrated gasification combined cycle plant from an earlier study were combined with the storage costs from this study to allow comparison among capture and storage approaches as well as sink enhancements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, T.N.
The Global Environmental Technology Enterprise (GETE) was conceived to develop and implement strategies to facilitate the commercialization of innovative, cost-effective Department of Energy (DOE)-developed environmental technologies. These strategies are needed to aid DOE`s clean-up mission; to break down barriers to commercialization; and to build partnerships between the federal government and private industry in order to facilitate the development and use of innovative environmental technologies.
Developments in abatement technology for MOCVD processing
NASA Astrophysics Data System (ADS)
Sweeney, Joseph; Marganski, Paul; Olander, Karl; Watanabe, Tadaharu; Tomita, Nobuyasu; Orlando, Gary; Torres, Robert
2004-12-01
A newly developed technical solution has been developed for hydride gas abatement that utilizes a new material. The ULTIMA-Sorb™ material provides high capacity but low heat of reaction with the hydride gases. The new technology results in a low cost of ownership (COO) with stable operation and also reduces the cost and quantity of waste disposal. This can be significant benefit for device manufacturers since it provides a viable and cost effective solution without any risk of arsenic leakage that is a primary concern with wet chemical scrubber systems. The contents of this paper will discuss the technical and economic benefits of the newly developed material in comparison to conventional abatement materials and systems. The capacity of the dry abatement materials significantly influences both COO relating to cash outflow and the cost of lost production. High capacity materials enable significant savings in cost of lost production in cases of low and high factory utilization conditions. Capacity of the abatement material appears to be the largest single factor to reduce COO of dry abatement systems.
NASA Technical Reports Server (NTRS)
Costogue, E. N.; Ferber, R.; Lutwack, R.; Lorenz, J. H.; Pellin, R.
1984-01-01
Photovoltaic arrays that convert solar energy into electrical energy can become a cost effective bulk energy generation alternative, provided that an adequate supply of low cost materials is available. One of the key requirements for economic photovoltaic cells is reasonably priced silicon. At present, the photovoltaic industry is dependent upon polycrystalline silicon refined by the Siemens process primarily for integrated circuits, power devices, and discrete semiconductor devices. This dependency is expected to continue until the DOE sponsored low cost silicon refining technology developments have matured to the point where they are in commercial use. The photovoltaic industry can then develop its own source of supply. Silicon material availability and market pricing projections through 1988 are updated based on data collected early in 1984. The silicon refining industry plans to meet the increasing demands of the semiconductor device and photovoltaic product industries are overviewed. In addition, the DOE sponsored technology research for producing low cost polycrystalline silicon, probabilistic cost analysis for the two most promising production processes for achieving the DOE cost goals, and the impacts of the DOE photovoltaics program silicon refining research upon the commercial polycrystalline silicon refining industry are addressed.
Development of Manufacturing Technology to Accelerate Cost Reduction of Low Concentration and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detrick, Adam
The purpose of this project was to accelerate deployment of cost-effective US-based manufacturing of Solaria’s unique c-Si module technology. This effort successfully resulted in the development of US-based manufacturing technology to support two highly-differentiated, market leading product platforms. The project was initially predicated on developing Solaria’s low-concentration PV (LCPV) module technology which at the time of the award was uniquely positioned to exceed the SunShot price goal of $0.50/Wp for standard c-Si modules. The Solaria LCPV module is a 2.5x concentrator that leverages proven, high-reliability PV module materials and low silicon cell usage into a technology package that already hadmore » the lowest direct material cost and leading Levelized Cost of Electricity (LCOE). With over 25 MW commercially deployed globally, the Solaria module was well positioned to continue to lead in PV module cost reduction. Throughout the term of the contract, market conditions changed dramatically and so to did Solaria’s product offerings to support this. However, the manufacturing technology developed for the LCPV module was successfully leveraged and optimized to support two new and different product platforms. BIPV “PowerVision” and High-efficiency “PowerXT” modules. The primary barrier to enabling high-volume PV module manufacturing in the US is the high manual labor component in certain unique aspects of our manufacturing process. The funding was used to develop unique manufacturing automation which makes the manual labor components of these key processes more efficient and increase throughput. At the core of Solaria’s product offerings are its unique and proprietary techniques for dicing and re-arranging solar cells into modules with highly-differentiated characteristics that address key gaps in the c-Si market. It is these techniques that were successfully evolved and deployed into US-based manufacturing site with SunShot funding. Today, Solaria is currently positioned to become the market leader with these two technologies over the coming 24 months largely due to the successful innovations of the underlying manufacturing technology. This success will leverage US-based manufacturing technology and the associated US-jobs to support. Solaria views the project as highly successful and a great example of SunShot funding enabling the creating of US jobs and the deployment of ubiquitous solar energy products.« less
Meiland, Franka; Innes, Anthea; Mountain, Gail; Robinson, Louise; van der Roest, Henriëtte; García-Casal, J Antonio; Gove, Dianne; Thyrian, Jochen René; Evans, Shirley; Dröes, Rose-Marie; Kelly, Fiona; Kurz, Alexander; Casey, Dympna; Szcześniak, Dorota; Dening, Tom; Craven, Michael P; Span, Marijke; Felzmann, Heike; Tsolaki, Magda; Franco-Martin, Manuel
2017-01-16
With the expected increase in the numbers of persons with dementia, providing timely, adequate, and affordable care and support is challenging. Assistive and health technologies may be a valuable contribution in dementia care, but new challenges may emerge. The aim of our study was to review the state of the art of technologies for persons with dementia regarding issues on development, usability, effectiveness and cost-effectiveness, deployment, and ethics in 3 fields of application of technologies: (1) support with managing everyday life, (2) support with participating in pleasurable and meaningful activities, and (3) support with dementia health and social care provision. The study also aimed to identify gaps in the evidence and challenges for future research. Reviews of literature and expert opinions were used in our study. Literature searches were conducted on usability, effectiveness and cost-effectiveness, and ethics using PubMed, Embase, CINAHL, and PsycINFO databases with no time limit. Selection criteria in our selected technology fields were reviews in English for community-dwelling persons with dementia. Regarding deployment issues, searches were done in Health Technology Assessment databases. According to our results, persons with dementia want to be included in the development of technologies; there is little research on the usability of assistive technologies; various benefits are reported but are mainly based on low-quality studies; barriers to deployment of technologies in dementia care were identified, and ethical issues were raised by researchers but often not studied. Many challenges remain such as including the target group more often in development, performing more high-quality studies on usability and effectiveness and cost-effectiveness, creating and having access to high-quality datasets on existing technologies to enable adequate deployment of technologies in dementia care, and ensuring that ethical issues are considered an important topic for researchers to include in their evaluation of assistive technologies. Based on these findings, various actions are recommended for development, usability, effectiveness and cost-effectiveness, deployment, and ethics of assistive and health technologies across Europe. These include avoiding replication of technology development that is unhelpful or ineffective and focusing on how technologies succeed in addressing individual needs of persons with dementia. Furthermore, it is suggested to include these recommendations in national and international calls for funding and assistive technology research programs. Finally, practitioners, policy makers, care insurers, and care providers should work together with technology enterprises and researchers to prepare strategies for the implementation of assistive technologies in different care settings. This may help future generations of persons with dementia to utilize available and affordable technologies and, ultimately, to benefit from them. ©Franka Meiland, Anthea Innes, Gail Mountain, Louise Robinson, Henriëtte van der Roest, J Antonio García-Casal, Dianne Gove, Jochen René Thyrian, Shirley Evans, Rose-Marie Dröes, Fiona Kelly, Alexander Kurz, Dympna Casey, Dorota Szcześniak, Tom Dening, Michael P Craven, Marijke Span, Heike Felzmann, Magda Tsolaki, Manuel Franco-Martin. Originally published in JMIR Rehabilitation and Assistive Technology (http://rehab.jmir.org), 16.01.2017.
NASA Technical Reports Server (NTRS)
Helms, William R.; Starr, Stanley O.
1997-01-01
Priorities and achievements of the Kennedy Space Center (KSF) Instrumentation Laboratories in improving operational safety and decreasing processing costs associated with the Shuttle vehicle are addressed. Technologies that have been or are in the process of technology transfer are reviewed, and routes by which commercial concerns can obtain licenses to other KSF Instrumentation Laboratory technologies are discussed.
Feng, Qianmei
2007-10-01
Federal law mandates that every checked bag at all commercial airports be screened by explosive detection systems (EDS), explosive trace detection systems (ETD), or alternative technologies. These technologies serve as critical components of airport security systems that strive to reduce security risks at both national and global levels. To improve the operational efficiency and airport security, emerging image-based technologies have been developed, such as dual-energy X-ray (DX), backscatter X-ray (BX), and multiview tomography (MVT). These technologies differ widely in purchasing cost, maintenance cost, operating cost, processing rate, and accuracy. Based on a mathematical framework that takes into account all these factors, this article investigates two critical issues for operating screening devices: setting specifications for continuous security responses by different technologies; and selecting technology or combination of technologies for efficient 100% baggage screening. For continuous security responses, specifications or thresholds are used for classifying threat items from nonthreat items. By investigating the setting of specifications on system security responses, this article assesses the risk and cost effectiveness of various technologies for both single-device and two-device systems. The findings provide the best selection of image-based technologies for both single-device and two-device systems. Our study suggests that two-device systems outperform single-device systems in terms of both cost effectiveness and accuracy. The model can be readily extended to evaluate risk and cost effectiveness of multiple-device systems for airport checked-baggage security screening.
Developing and validating a highway construction project cost estimation tool.
DOT National Transportation Integrated Search
2004-01-01
In May 2002, Virginia's Commonwealth Transportation Commissioner tasked his Chief of Technology, Research & Innovation with leading an effort to develop a definitive, consistent, and well-documented approach for estimating the cost of delivering cons...
ERIC Educational Resources Information Center
Hoskins, Tyler D.; Gantz, J. D.; Chaffee, Blake R.; Arlinghaus, Kel; Wiebler, James; Hughes, Michael; Fernandes, Joyce J.
2017-01-01
Institutions have developed diverse approaches that vary in effectiveness and cost to improve student performance in introductory science, technology, engineering, and mathematics courses. We developed a low-cost, graduate student-led, metacognition-based study skills course taught in conjunction with the introductory biology series at Miami…
NASA Technical Reports Server (NTRS)
Sturgeon, R. F.; Bennett, J. A.; Etchberger, F. R.; Ferrill, R. S.; Meade, L. E.
1976-01-01
A study was conducted to evaluate the technical and economic feasibility of applying laminar flow control to the wings and empennage of long-range subsonic transport aircraft compatible with initial operation in 1985. For a design mission range of 10,186 km (5500 n mi), advanced technology laminar-flow-control (LFC) and turbulent-flow (TF) aircraft were developed for both 200 and 400-passenger payloads, and compared on the basis of production costs, direct operating costs, and fuel efficiency. Parametric analyses were conducted to establish the optimum geometry for LFC and TF aircraft, advanced LFC system concepts and arrangements were evaluated, and configuration variations maximizing the effectiveness of LFC were developed. For the final LFC aircraft, analyses were conducted to define maintenance costs and procedures, manufacturing costs and procedures, and operational considerations peculiar to LFC aircraft. Compared to the corresponding advanced technology TF transports, the 200- and 400-passenger LFC aircraft realized reductions in fuel consumption up to 28.2%, reductions in direct operating costs up to 8.4%, and improvements in fuel efficiency, in ssm/lb of fuel, up to 39.4%. Compared to current commercial transports at the design range, the LFC study aircraft demonstrate improvements in fuel efficiency up to 131%. Research and technology requirements requisite to the development of LFC transport aircraft were identified.
RFID in healthcare: a Six Sigma DMAIC and simulation case study.
Southard, Peter B; Chandra, Charu; Kumar, Sameer
2012-01-01
The purpose of this paper is to develop a business model to generate quantitative evidence of the benefits of implementing radio frequency identification (RFID) technology, limiting the scope to outpatient surgical processes in hospitals. The study primarily uses the define-measure-analyze-improve-control (DMAIC) approach, and draws on various analytical tools such as work flow diagrams, value stream mapping, and discrete event simulation to examine the effect of implementing RFID technology on improving effectiveness (quality and timeliness) and efficiency (cost reduction) of outpatient surgical processes. The analysis showed significant estimated annual cost and time savings in carrying out patients' surgical procedures with RFID technology implementation for the outpatient surgery processes in a hospital. This is largely due to the elimination of both non-value added activities of locating supplies and equipment and also the elimination of the "return" loop created by preventable post operative infections. Several poka-yokes developed using RFID technology were identified to eliminate those two issues. Several poka-yokes developed using RFID technology were identified for improving the safety of the patient and cost effectiveness of the operation to ensure the success of the outpatient surgical process. Many stakeholders in the hospital environment will be impacted including patients, physicians, nurses, technicians, administrators and other hospital personnel. Different levels of training of hospital personnel will be required, based on the degree of interaction with the RFID system. Computations of costs and savings will help decision makers understand the benefits and implications of the technology in the hospital environment.
Garrison, Louis P; Bauch, Chris T; Bresnahan, Brian W; Hazlet, Tom K; Kadiyala, Srikanth; Veenstra, David L
2011-07-01
Several potential measles vaccine innovations are in development to address the shortcomings of the current vaccine. Funders need to prioritize their scarce research and development resources. This article demonstrates the usefulness of cost-effectiveness analysis to support these decisions. This study had 4 major components: (1) identifying potential innovations, (2) developing transmission models to assess mortality and morbidity impacts, (3) estimating the unit cost impacts, and (4) assessing aggregate cost-effectiveness in United Nations Children's Fund countries through 2049. Four promising technologies were evaluated: aerosol delivery, needle-free injection, inhalable dry powder, and early administration DNA vaccine. They are projected to have a small absolute impact in terms of reducing the number of measles cases in most scenarios because of already improving vaccine coverage. Three are projected to reduce unit cost per dose by $0.024 to $0.170 and would improve overall cost-effectiveness. Each will require additional investments to reach the market. Over the next 40 years, the aggregate cost savings could be substantial, ranging from $98.4 million to $689.4 million. Cost-effectiveness analysis can help to inform research and development portfolio prioritization decisions. Three new measles vaccination technologies under development hold promise to be cost-saving from a global perspective over the long-term, even after considering additional investment costs. © The Author 2011. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved.
Technological hurdles to the application of intercalated graphite fibers
NASA Technical Reports Server (NTRS)
Gaier, James R.
1988-01-01
Before intercalated graphite fibers can be developed as an effective power material, there are several technological hurdles which must be overcome. These include the environmental stability, homogeneity and bulk properties, connection procedures, and costs. Strides were made within the last several years in stability and homogeneity of intercalated graphite fibers. Bulk properties and connection procedures are areas of active research now. Costs are still prohibitive for all but the most demanding applications. None of these problems, however, appear to be unsolvable, and their solution may result in wide spread GOC application. The development of a relatively simple technology application, such as EMI shielding, would stimulate the solution of scale-up problems. Once this technology is developed, then more demanding applications, such as power bus bars, may be possible.
Development of inexpensive blood imaging systems: where are we now?
Chu, Kaiqin; Smith, Zachary J; Wachsmann-Hogiu, Sebastian
2015-01-01
Clinical applications in the developing world, such as malaria and anemia diagnosis, demand a change in the medical paradigm of expensive care given in central locations by highly trained professionals. There has been a recent explosion in optical technologies entering the consumer market through the widespread adoption of smartphones and LEDs. This technology commoditization has enabled the development of small, portable optical imaging systems at an unprecedentedly low cost. Here, we review the state-of-the-field of the application of these systems for low-cost blood imaging with an emphasis on cellular imaging systems. In addition to some promising results addressing specific clinical issues, an overview of the technology landscape is provided. We also discuss several key issues that need to be addressed before these technologies can be commercialized.
Development costs of reusable launch vehicles
NASA Astrophysics Data System (ADS)
Koelle, D.
2002-07-01
The paper deals first with the definition and understanding of "Development Costs" in general. Usually there is large difference between initial "development cost guesses", "Proposal Cost Estimations" and the final "Cost-to-Completion". The reasons for the usual development cost increases during development are discussed. The second part discusses the range of historic launch systems' development costs under "Business-as-Usual" (BaU) - Conditions and potential cost reductions for future developments of RLVs, as well as the comparison to commercial, industrial development cost. Part three covers the potential reduction of development cost by application of "Cost Engineering Principles". An example of the large potential cost range (between 6 and 17 Billion USD) for the development of the same winged rocket-propelled SSTO launch vehicle concept is presented. Finally the tremendous development cost differences are shown which exist for the different potential Reusable Launch System Options which are under discussion. There remains an unresolved problem between the primary goals of the national space agencies with emphasis on new technology development/national prestige and the commercial market requirement of a simple low-cost RLV-System.
NASA Technical Reports Server (NTRS)
Kerr, Andrew W.
1990-01-01
The utilization of advanced simulation technology in the development of the non-real-time MANPRINT design tools in the Army/NASA Aircrew-Aircraft Integration (A3I) program is described. A description is then given of the Crew Station Research and Development Facilities, the primary tool for the application of MANPRINT principles. The purpose of the A3I program is to develop a rational, predictive methodology for helicopter cockpit system design that integrates human factors engineering with other principles at an early stage in the development process, avoiding the high cost of previous system design methods. Enabling technologies such as the MIDAS work station are examined, and the potential of low-cost parallel-processing systems is indicated.
The infrared imaging radiometer for PICASSO-CENA
NASA Astrophysics Data System (ADS)
Corlay, Gilles; Arnolfo, Marie-Christine; Bret-Dibat, Thierry; Lifferman, Anne; Pelon, Jacques
2017-11-01
Microbolometers are infrared detectors of an emerging technology mainly developed in US and few other countries for few years. The main targets of these developments are low performing and low cost military and civilian applications like survey cameras. Applications in space are now arising thanks to the design simplification and the associated cost reduction allowed by this new technology. Among the four instruments of the payload of PICASSO-CENA, the Imaging Infrared Radiometer (IIR) is based on the microbolometer technology. An infrared camera in development for the IASI instrument is the core of the IIR. The aim of the paper is to recall the PICASSO-CENA mission goal, to describe the IIR instrument architecture and highlight its main features and performances and to give the its development status.
Systems Analysis Of Advanced Coal-Based Power Plants
NASA Technical Reports Server (NTRS)
Ferrall, Joseph F.; Jennings, Charles N.; Pappano, Alfred W.
1988-01-01
Report presents appraisal of integrated coal-gasification/fuel-cell power plants. Based on study comparing fuel-cell technologies with each other and with coal-based alternatives and recommends most promising ones for research and development. Evaluates capital cost, cost of electricity, fuel consumption, and conformance with environmental standards. Analyzes sensitivity of cost of electricity to changes in fuel cost, to economic assumptions, and to level of technology. Recommends further evaluation of integrated coal-gasification/fuel-cell integrated coal-gasification/combined-cycle, and pulverized-coal-fired plants. Concludes with appendixes detailing plant-performance models, subsystem-performance parameters, performance goals, cost bases, plant-cost data sheets, and plant sensitivity to fuel-cell performance.
China’s Emerging Capabilities in Energy Technology Innovation and Development
2015-01-22
management of tempo, scaling, and cost reduction. For particularly complex energy technology systems, such as civilian nuclear power plants , the...technology systems, such as civilian nuclear power plants , the greatest challenges often involve not so much new technology development (a...are far more complex phenomena unfolding than simply technology transfer, duplication, and mimicry . Our work has opened up a series of new
Heat and electricity from the sun using parabolic dish collector systems
NASA Technical Reports Server (NTRS)
Truscello, V. C.; Williams, A. N.
1979-01-01
The paper investigates point focus distributed receiver (PFDR) solar thermal technology for the production of electric power and of industrial process heat. Attention is given to a thermal systems project conducted by JPL under DOE sponsorship. It is reported that project emphasis is on the development of cost-effective systems which will accelerate the commercialization and industrialization of plants up to 10 MWe, using parabolic dish collectors. Also discussed are the characteristics of PFDR systems, the cost targets for major systems hardware, and markets for this technology. Finally, the present system status of the technology development effort is discussed.
Active nursery projects at the Missoula Technology and Development Center
Brian Vachowski
2005-01-01
The USDA Forest Service Missoula Technology and Development Center (MTDC) provides technical expertise, new equipment prototypes, and technology transfer services to Federal, State, and cooperator forest tree seedling nursery managers. Current projects at MTDC include a nursery soil moisture meter, remote data collection systems, low cost weather stations, soil...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-18
... collection of data through the FERC Form No. 73. Their support stems from reliance on this data collection...) Reviewing instructions; (2) developing, acquiring, installing, and utilizing technology and systems for the... to providing this information, such as administrative costs and the cost for information technology...
Accelerating Industrial Adoption of Metal Additive Manufacturing Technology
NASA Astrophysics Data System (ADS)
Vartanian, Kenneth; McDonald, Tom
2016-03-01
While metal additive manufacturing (AM) technology has clear benefits, there are still factors preventing its adoption by industry. These factors include the high cost of metal AM systems, the difficulty for machinists to learn and operate metal AM machines, the long approval process for part qualification/certification, and the need for better process controls; however, the high AM system cost is the main barrier deterring adoption. In this paper, we will discuss an America Makes-funded program to reduce AM system cost by combining metal AM technology with conventional computerized numerical controlled (CNC) machine tools. Information will be provided on how an Optomec-led team retrofitted a legacy CNC vertical mill with laser engineered net shaping (LENS®—LENS is a registered trademark of Sandia National Labs) AM technology, dramatically lowering deployment cost. The upgraded system, dubbed LENS Hybrid Vertical Mill, enables metal additive and subtractive operations to be performed on the same machine tool and even on the same part. Information on the LENS Hybrid system architecture, learnings from initial system deployment and continuing development work will also be provided to help guide further development activities within the materials community.
Home Health Telecare and the Elderly in Spain: Technologies Involved and Methodological Issues
2001-10-25
requirements of quality in medical attendance to the elderly , with sustained costs, in a population whose mean age is increasingly older . • IT offer a...Home health telecare, information technologies, elderly people, virtual center. I. INTRODUCTION Nowadays the developed countries are facing...whether home health telecare is a cost-effective solution. To answer this question, health costs based on age show that the elder people are the main
Cost/benefit analysis of advanced materials technologies for future aircraft turbine engines
NASA Technical Reports Server (NTRS)
Bisset, J. W.
1976-01-01
The cost/benefits of advance commercial gas turbine materials are described. Development costs, estimated payoffs and probabilities of success are discussed. The materials technologies investigated are: (1) single crystal turbine blades, (2) high strength hot isostatic pressed turbine disk, (3) advanced oxide dispersion strengthened burner liner, (4) bore entry cooled hot isostatic pressed turbine disk, (5) turbine blade tip - outer airseal system, and (6) advance turbine blade alloys.
Light Water Reactor Sustainability Program: Digital Technology Business Case Methodology Guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Ken; Lawrie, Sean; Hart, Adam
The Department of Energy’s (DOE’s) Light Water Reactor Sustainability Program aims to develop and deploy technologies that will make the existing U.S. nuclear fleet more efficient and competitive. The program has developed a standard methodology for determining the impact of new technologies in order to assist nuclear power plant (NPP) operators in building sound business cases. The Advanced Instrumentation, Information, and Control (II&C) Systems Technologies Pathway is part of the DOE’s Light Water Reactor Sustainability (LWRS) Program. It conducts targeted research and development (R&D) to address aging and reliability concerns with the legacy instrumentation and control and related information systemsmore » of the U.S. operating light water reactor (LWR) fleet. This work involves two major goals: (1) to ensure that legacy analog II&C systems are not life-limiting issues for the LWR fleet and (2) to implement digital II&C technology in a manner that enables broad innovation and business improvement in the NPP operating model. Resolving long-term operational concerns with the II&C systems contributes to the long-term sustainability of the LWR fleet, which is vital to the nation’s energy and environmental security. The II&C Pathway is conducting a series of pilot projects that enable the development and deployment of new II&C technologies in existing nuclear plants. Through the LWRS program, individual utilities and plants are able to participate in these projects or otherwise leverage the results of projects conducted at demonstration plants. Performance advantages of the new pilot project technologies are widely acknowledged, but it has proven difficult for utilities to derive business cases for justifying investment in these new capabilities. Lack of a business case is often cited by utilities as a barrier to pursuing wide-scale application of digital technologies to nuclear plant work activities. The decision to move forward with funding usually hinges on demonstrating actual cost reductions that can be credited to budgets and thereby truly reduce O&M or capital costs. Technology enhancements, while enhancing work methods and making work more efficient, often fail to eliminate workload such that it changes overall staffing and material cost requirements. It is critical to demonstrate cost reductions or impacts on non-cost performance objectives in order for the business case to justify investment by nuclear operators. The Business Case Methodology (BCM) addresses the “benefit” side of the analysis—as opposed to the cost side—and how the organization evaluates discretionary projects (net present value (NPV), accounting effects of taxes, discount rates, etc.). The cost and analysis side is not particularly difficult for the organization and can usually be determined with a fair amount of precision (not withstanding implementation project cost overruns). It is in determining the "benefits" side of the analysis that utilities have more difficulty in technology projects and that is the focus of this methodology.« less
Huygens, Simone A; Rutten-van Mölken, Maureen P M H; Bekkers, Jos A; Bogers, Ad J J C; Bouten, Carlijn V C; Chamuleau, Steven A J; de Jaegere, Peter P T; Kappetein, Arie Pieter; Kluin, Jolanda; van Mieghem, Nicolas M D A; Versteegh, Michel I M; Witsenburg, Maarten; Takkenberg, Johanna J M
2016-01-01
Objective The future promises many technological advances in the field of heart valve interventions, like tissue-engineered heart valves (TEHV). Prior to introduction in clinical practice, it is essential to perform early health technology assessment. We aim to develop a conceptual model (CM) that can be used to investigate the performance and costs requirements for TEHV to become cost-effective. Methods After scoping the decision problem, a workgroup developed the draft CM based on clinical guidelines. This model was compared with existing models for cost-effectiveness of heart valve interventions, identified by systematic literature search. Next, it was discussed with a Delphi panel of cardiothoracic surgeons, cardiologists and a biomedical scientist (n=10). Results The CM starts with the valve implantation. If patients survive the intervention, they can remain alive without complications, die from non-valve-related causes or experience a valve-related event. The events are separated in early and late events. After surviving an event, patients can experience another event or die due to non-valve-related causes. Predictors will include age, gender, NYHA class, left ventricular function and diabetes. Costs and quality adjusted life years are to be attached to health conditions to estimate long-term costs and health outcomes. Conclusions We developed a CM that will serve as foundation of a decision-analytic model that can estimate the potential cost-effectiveness of TEHV in early development stages. This supports developers in deciding about further development of TEHV and identifies promising interventions that may result in faster take-up in clinical practice by clinicians and reimbursement by payers. PMID:27843569
A Cost Comparison of Alternative Approaches to Distance Education in Developing Countries
NASA Technical Reports Server (NTRS)
Ventre, Gerard G.; Kalu, Alex
1996-01-01
This paper presents a cost comparison of three approaches to two-way interactive distance learning systems for developing countries. Included are costs for distance learning hardware, terrestrial and satellite communication links, and designing instruction for two-way interactive courses. As part of this project, FSEC is developing a 30-hour course in photovoltaic system design that will be used in a variety of experiments using the Advanced Communications Technology Satellite (ACTS). A primary goal of the project is to develop an instructional design and delivery model that can be used for other education and training programs. Over two-thirds of the world photovoltaics market is in developing countries. One of the objectives of this NASA-sponsored project was to develop new and better energy education programs that take advantage of advances in telecommunications and computer technology. The combination of desktop video systems and the sharing of computer applications software is of special interest. Research is being performed to evaluate the effectiveness of some of these technologies as part of this project. The design of the distance learning origination and receive sites discussed in this paper were influenced by the educational community's growing interest in distance education. The following approach was used to develop comparative costs for delivering interactive distance education to developing countries: (1) Representative target locations for receive sites were chosen. The originating site was assumed to be Cocoa, Florida, where FSEC is located; (2) A range of course development costs were determined; (3) The cost of equipment for three alternative two-way interactive distance learning system configurations was determined or estimated. The types of system configurations ranged from a PC-based system that allows instructors to originate instruction from their office using desktop video and shared application software, to a high cost system that uses a electronic classroom; (4) A range of costs for both satellite and terrestrial communications was investigated; (5) The costs of equipment and operation of the alternative configurations for the origination and receive sites were determined; (6) A range of costs for several alternative delivery scenarios (i.e., a mix of live-interactive; asynchronous interactive;use of videotapes) was determined; and (7) A preferred delivery scenario, including cost estimate, was developed.
Conceptual design study: Forest Fire Advanced System Technology (FFAST)
NASA Technical Reports Server (NTRS)
Nichols, J. D.; Warren, J. R.
1986-01-01
An integrated forest fire detection and mapping system that will be based upon technology available in the 1990s was defined. Uncertainties in emerging and advanced technologies related to the conceptual design were identified and recommended for inclusion as preferred system components. System component technologies identified for an end-to-end system include thermal infrared, linear array detectors, automatic georeferencing and signal processing, geosynchronous satellite communication links, and advanced data integration and display. Potential system configuration options were developed and examined for possible inclusion in the preferred system configuration. The preferred system configuration will provide increased performance and be cost effective over the system currently in use. Forest fire management user requirements and the system component emerging technologies were the basis for the system configuration design. A preferred system configuration was defined that warrants continued refinement and development, examined economic aspects of the current and preferred system, and provided preliminary cost estimates for follow-on system prototype development.
Shuttle Ground Operations Efficiencies/Technologies (SGOE/T) study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Scholz, A. L.; Hart, M. T.; Lowry, D. J.
1987-01-01
Methods and technolgoy were defined to reduce the overall operations cost of a major space program. Space Shuttle processing at Kennedy Space Center (KSC) was designed as the working model that would be the source of the operational information. Methods of improving efficiency of ground operations were assessed and technology elements that could reduce cost identified. Emphasis is on: (1) specific technology items and (2) management approaches required to develop and support efficient ground operations. Prime study results are to be recommendations on how to achieve more efficient operations and identification of existing or new technology that would make vehicle processing in both the current program and future programs more efficient and, therefore, less costly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bill Major
The use of stationary gas turbines for power generation has been growing rapidly with continuing trends predicted well into the future. Factors that are contributing to this growth include advances in turbine technology, operating and siting flexibility and low capital cost. Restructuring of the electric utility industry will provide new opportunities for on-site generation. In a competitive market, it maybe more cost effective to install small distributed generation units (like gas turbines) within the grid rather than constructing large power plants in remote locations with extensive transmission and distribution systems. For the customer, on-site generation will provide added reliability andmore » leverage over the cost of purchased power One of the key issues that is addressed in virtually every gas turbine application is emissions, particularly NO{sub x} emissions. Decades of research and development have significantly reduced the NO{sub x} levels emitted from gas turbines from uncontrolled levels. Emission control technologies are continuing to evolve with older technologies being gradually phased-out while new technologies are being developed and commercialized. The objective of this study is to determine and compare the cost of NO{sub x} control technologies for three size ranges of stationary gas turbines: 5 MW, 25 MW and 150 MW. The purpose of the comparison is to evaluate the cost effectiveness and impact of each control technology as a function of turbine size. The NO{sub x} control technologies evaluated in this study include: Lean premix combustion, also known as dry low NO{sub x} (DLN) combustion; Catalytic combustion; Water/steam injection; Selective catalytic reduction (SCR)--low temperature, conventional, high temperature; and SCONO{sub x}{trademark}.« less
NASA Technical Reports Server (NTRS)
Deo, Ravi; Wang, Donny; Bohlen, Jim; Fukuda, Cliff
2008-01-01
A trade study was conducted to determine the suitability of composite structures for weight and life cycle cost savings in primary and secondary structural systems for crew exploration vehicles, crew and cargo launch vehicles, landers, rovers, and habitats. The results of the trade study were used to identify and rank order composite material technologies that can have a near-term impact on a broad range of exploration mission applications. This report recommends technologies that should be developed to enable usage of composites on Vision for Space Exploration vehicles towards mass and life-cycle cost savings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, M.
The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of hybrid propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve advanced vehicle efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors, and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs, and fuel-cell-powered automobiles that meet the goals of the Vehicle Technologies Program. A key element in making HEVs practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) more effective thermal control and packaging technologies; and (5) integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies.« less
Reflector Technology Development and System Design for Concentrating Solar Power Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adam Schaut
2011-12-30
Alcoa began this program in March of 2008 with the goal of developing and validating an advanced CSP trough design to lower the levelized cost of energy (LCOE) as compared to existing glass based, space-frame trough technology. In addition to showing a pathway to a significant LCOE reduction, Alcoa also desired to create US jobs to support the emerging CSP industry. Alcoa's objective during Phase I: Concept Feasibility was to provide the DOE with a design approach that demonstrates significant overall system cost savings without sacrificing performance. Phase I consisted of two major tasks; reflector surface development and system conceptmore » development. Two specific reflective surface technologies were investigated, silver metallized lamination, and thin film deposition both applied on an aluminum substrate. Alcoa prepared samples; performed test validation internally; and provided samples to the NREL for full-spectrum reflectivity measurements. The final objective was to report reflectivity at t = 0 and the latest durability results as of the completion of Phase 1. The target criteria for reflectance and durability were as follows: (1) initial (t = 0), hemispherical reflectance >93%, (2) initial spectral reflectance >90% for 25-mrad reading and >87% for 7-mrad reading, and (3) predicted 20 year durability of less than 5% optical performance drop. While the results of the reflective development activities were promising, Alcoa was unable to down-select on a reflective technology that met the target criteria. Given the progress and potential of both silver film and thin film technologies, Alcoa continued reflector surface development activities in Phase II. The Phase I concept development activities began with acquiring baseline CSP system information from both CSP Services and the DOE. This information was used as the basis to develop conceptual designs through ideation sessions. The concepts were evaluated based on estimated cost and high-level structural performance. The target criteria for the concept development was to achieve a solar field cost savings of 25%-50% thereby meeting or exceeding the DOE solar field cost savings target of $350/m2. After evaluating various structural design approaches, Alcoa down-selected to a monocoque, dubbed Wing Box, design that utilizes the reflective surface as a structural, load carrying member. The cost and performance potential of the Wing Box concept was developed via initial finite element analysis (FEA) and cost modeling. The structural members were sized through material utilization modeling when subjected to representative loading conditions including wind loading. Cost modeling was utilized to refine potential manufacturing techniques that could be employed to manufacture the structural members. Alcoa concluded that an aluminum intensive collector design can achieve significant cost savings without sacrificing performance. Based on the cost saving potential of this Concept Feasibility study, Alcoa recommended further validation of this CSP approach through the execution of Phase II: Design and Prototype Development. Alcoa Phase II objective was to provide the DOE with a validated CSP trough design that demonstrates significant overall system cost savings without sacrificing performance. Phase II consisted of three major tasks; Detail System Design, Prototype Build, and System Validation. Additionally, the reflector surface development that began in Phase I was continued in Phase II. After further development work, Alcoa was unable to develop a reflective technology that demonstrated significant performance or cost benefits compared to commercially available CSP reflective products. After considering other commercially available reflective surfaces, Alcoa selected Alano's MIRO-SUN product for use on the full scale prototype. Although MIRO-SUN has a lower specular reflectivity compared to other options, its durability in terms of handling, cleaning, and long-term reflectivity was deemed the most important attribute to successfully validate Alcoa's advanced trough architecture. To validate the performance of the Wing Box trough, a 6 meter aperture by 14 meter long prototype trough was built. For ease of shipping to and assembly at NREL's test facility, the prototype was fabricated in two half modules and joined along the centerline to create the Wing Box trough. The trough components were designed to achieve high precision of the reflective surface while leveraging high volume manufacturing and assembly techniques.« less
Improving building performance using smart building concept: Benefit cost ratio comparison
NASA Astrophysics Data System (ADS)
Berawi, Mohammed Ali; Miraj, Perdana; Sayuti, Mustika Sari; Berawi, Abdur Rohim Boy
2017-11-01
Smart building concept is an implementation of technology developed in the construction industry throughout the world. However, the implementation of this concept is still below expectations due to various obstacles such as higher initial cost than a conventional concept and existing regulation siding with the lowest cost in the tender process. This research aims to develop intelligent building concept using value engineering approach to obtain added value regarding quality, efficiency, and innovation. The research combined quantitative and qualitative approach using questionnaire survey and value engineering method to achieve the research objectives. The research output will show additional functions regarding technology innovation that may increase the value of a building. This study shows that smart building concept requires higher initial cost, but produces lower operational and maintenance costs. Furthermore, it also confirms that benefit-cost ratio on the smart building was much higher than a conventional building, that is 1.99 to 0.88.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Farrell, T.; Hund, F.
1986-12-01
The document presents the technical rationale for best conventional technology (BCI) effluent limitations guidelines for the pharmaceutical manufacturing point-source category as required by the Clean Water Act of 1977 (P.L. 95-217, the Act). The document describes the technologies considered as the bases for BCT limitations. Section II of this document summarizes the rulemaking process. Sections III through V describe the technical data and engineering analyses used to develop the regulatory technology options. The costs and removals associated with each technology option for each plant and the application of the BCT cost test methodology are presented in Section VI. BCI limitationsmore » bases on the best conventional pollutant control technology are to be achieved by existing direct-discharging facilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rezaei, Fateme; Rownaghi, Ali A.; Monjezi, Saman
One of the main challenges in the power and chemical industries is to remove generated toxic or environmentally harmful gases before atmospheric emission. To comply with stringent environmental and pollutant emissions control regulations, coal-fired power plants must be equipped with new technologies that are efficient and less energy-intensive than status quo technologies for flue gas cleanup. While conventional sulfur oxide (SOx) and nitrogen oxide (NOx) removal technologies benefit from their large-scale implementation and maturity, they are quite energy-intensive. In view of this, the development of lower-cost, less energy-intensive technologies could offer an advantage. Significant energy and cost savings can potentiallymore » be realized by using advanced adsorbent materials. One of the major barriers to the development of such technologies remains the development of materials that are efficient and productive in removing flue gas contaminants. In this review, adsorption-based removal of SOx/NOx impurities from flue gas is discussed, with a focus on important attributes of the solid adsorbent materials as well as implementation of the materials in conventional and emerging acid gas removal technologies. The requirements for effective adsorbents are noted with respect to their performance, key limitations, and suggested future research directions. The final section includes some key areas for future research and provides a possible roadmap for the development of technologies for the removal of flue gas impurities that are more efficient and cost-effective than status quo approaches.« less
NASA Technical Reports Server (NTRS)
Gross, Anthony R.; Sims, Michael H.; Briggs, Geoffrey A.
1996-01-01
From the beginning to the present expeditions to the Moon have involved a large investment of human labor. This has been true for all aspects of the process, from the initial design of the mission, whether scientific or technological, through the development of the instruments and the spacecraft, to the flight and operational phases. In addition to the time constraints that this situation imposes, there is also a significant cost associated with the large labor costs. As a result lunar expeditions have been limited to a few robotic missions and the manned Apollo program missions of the 1970s. With the rapid rise of the new information technologies, new paradigms are emerging that promise to greatly reduce both the time and cost of such missions. With the rapidly increasing capabilities of computer hardware and software systems, as well as networks and communication systems, a new balance of work is being developed between the human and the machine system. This new balance holds the promise of greatly increased exploration capability, along with dramatically reduced design, development, and operating costs. These new information technologies, utilizing knowledge-based software and very highspeed computer systems, will provide new design and development tools, scheduling mechanisms, and vehicle and system health monitoring capabilities that have hitherto been unavailable to the mission and spacecraft designer and the system operator. This paper will utilize typical lunar missions, both robotic and crewed, as a basis to describe and illustrate how these new information system technologies could be applied to all aspects such missions. In particular, new system design tradeoff tools will be described along with technologies that will allow a very much greater degree of autonomy of exploration vehicles than has heretofore been possible. In addition, new information technologies that will significantly reduce the human operational requirements will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, Brian David; Houchins, Cassidy; Huya-Kouadio, Jennie Moton
The Fuel Cell Technologies Office (FCTO) has identified hydrogen storage as a key enabling technology for advancing hydrogen and fuel cell power technologies in transportation, stationary, and portable applications. Consequently, FCTO has established targets to chart the progress of developing and demonstrating viable hydrogen storage technologies for transportation and stationary applications. This cost assessment project supports the overall FCTO goals by identifying the current technology system components, performance levels, and manufacturing/assembly techniques most likely to lead to the lowest system storage cost. Furthermore, the project forecasts the cost of these systems at a variety of annual manufacturing rates to allowmore » comparison to the overall 2017 and “Ultimate” DOE cost targets. The cost breakdown of the system components and manufacturing steps can then be used to guide future research and development (R&D) decisions. The project was led by Strategic Analysis Inc. (SA) and aided by Rajesh Ahluwalia and Thanh Hua from Argonne National Laboratory (ANL) and Lin Simpson at the National Renewable Energy Laboratory (NREL). Since SA coordinated the project activities of all three organizations, this report includes a technical description of all project activity. This report represents a summary of contract activities and findings under SA’s five year contract to the US Department of Energy (Award No. DE-EE0005253) and constitutes the “Final Scientific Report” deliverable. Project publications and presentations are listed in the Appendix.« less
NASA Astrophysics Data System (ADS)
Davis, T. M.; Straight, S. D.; Lockwook, R. B.
2008-08-01
Tactical Satellite 3 is an Air Force Research Laboratory Science and Technology (S&T) initiative that explores the capability and technological maturity of small, low-cost satellites. It features a low cost "plug and play" modular bus and low cost militarily significant payloads - a Raytheon developed Hyperspectral imager and secondary payload data exfiltration provided by the Office of Naval Research. In addition to providing for ongoing innovation and demonstration in this important technology area, these S&T efforts also help mitigate technology risk and establish a potential concept of operations for future acquisitions. The key objectives are rapid launch and on-orbit checkout, theater commanding, and near-real time theater data integration. It will also feature a rapid development of the space vehicle and integrated payload and spacecraft bus by using components and processes developed by the satellite modular bus initiative. Planned for a late summer 2008 launch, the TacSat-3 spacecraft will collect and process images and then downlink processed data using a Common Data Link. An in-theater tactical ground station will have the capability to uplink tasking to spacecraft and will receive full data image. An international program, the United Kingdom Defence Science and Technology Laboratory (DSTL) and Australian Defence Science and Technology Organisation (DSTO) plan to participate in TacSat-3 experiments.
Cost effectiveness and efficiency in assistive technology service delivery.
Warren, C G
1993-01-01
In order to develop and maintain a viable service delivery program, the realities of cost effectiveness and cost efficiency in providing assistive technology must be addressed. Cost effectiveness relates to value of the outcome compared to the expenditures. Cost efficiency analyzes how a provider uses available resources to supply goods and services. This paper describes how basic business principles of benefit/cost analysis can be used to determine cost effectiveness. In addition, basic accounting principles are used to illustrate methods of evaluating a program's cost efficiency. Service providers are encouraged to measure their own program's effectiveness and efficiency (and potential viability) in light of current trends. This paper is meant to serve as a catalyst for continued dialogue on this topic.
NASA Astrophysics Data System (ADS)
Ayub, F.; Akhand, S.; Khan, A. S.; Saklayen, G.
2018-05-01
In our studies we focused on area of sourcing, converting and delivering sustainable energy, concentrating at the potential role of solar power. Power generation through a solar updraft tower (SUT) has been a promising approach for sustainable generation of renewable energy. Developing nations are faced with many challenges. Conventional sources are insufficient to meet the increasing demand of a developing, industrious nation (e.g. Bangladesh). Our project aims in reducing electricity crisis and forming a solution for our country, Bangladesh. The electricity generated can be supplied to the national grid. This will mean reduced cost for the government in the long run and also allow the government to reduce its dependency on costly and unsustainable fossil fuel. This cost reduction benefit can be passed on to the public as reduced energy cost or preferably through nationwide energy infrastructure development. This technology will not only help with the energy concern of Bangladesh but also will help to improve the situations of other developing countries alike Bangladesh. All in all implementing this technology will pave the way towards a better world and form a part of an integrated ecosystem of sustainable energy technology.
Considerations for Solar Energy Technologies to Make Progress Towards Grid Price Parity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodhouse, Michael; Fu, Ran; Chung, Donald
2015-11-07
In this seminar the component costs for solar photovoltaics module and system prices will be highlighted. As a basis for comparison to other renewable and traditional energy options, the metric of focus will be total lifecycle cost-of-energy (LCOE). Several innovations to traditional photovoltaics technologies (including crystalline silicon, CdTe, and CIGS) and developing technologies (including organics and perovskites) that may close the gaps in LCOE will be discussed.
Flat-plate solar array project. Volume 3: Silicon sheet: Wafers and ribbons
NASA Technical Reports Server (NTRS)
Briglio, A.; Dumas, K.; Leipold, M.; Morrison, A.
1986-01-01
The primary objective of the Silicon Sheet Task of the Flat-Plate Solar Array (FSA) Project was the development of one or more low cost technologies for producing silicon sheet suitable for processing into cost-competitive solar cells. Silicon sheet refers to high purity crystalline silicon of size and thickness for fabrication into solar cells. Areas covered in the project were ingot growth and casting, wafering, ribbon growth, and other sheet technologies. The task made and fostered significant improvements in silicon sheet including processing of both ingot and ribbon technologies. An additional important outcome was the vastly improved understanding of the characteristics associated with high quality sheet, and the control of the parameters required for higher efficiency solar cells. Although significant sheet cost reductions were made, the technology advancements required to meet the task cost goals were not achieved.
The First NASA Advanced Composites Technology Conference, part 1
NASA Technical Reports Server (NTRS)
Davis, John G., Jr. (Compiler); Bohon, Herman L. (Compiler)
1991-01-01
Papers are presented from the conference. The ACT program is a multiyear research initiative to achieve a national goal of technology readiness before the end of the decade. Conference papers recorded results of research in the ACT program on new materials development and processing, innovative design concepts, analysis development and validation, cost effective manufacturing methodology, and cost tracking and prediction procedures. Papers presented on major applications programs approved by the Department of Defense are also included.
Solar power satellite system definition study, phase 2.
NASA Technical Reports Server (NTRS)
1979-01-01
A program plan for the Solar Power Satellite Program is presented. The plan includes research, development, and evaluation phase, engineering and development and cost verification phase, prototype construction, and commercialization. Cost estimates and task requirements are given for the following technology areas: (1) solar arrays; (2) thermal engines and thermal systems; (3) power transmission (to earth); (4) large space structures; (5) materials technology; (6) system control; (7) space construction; (8) space transportation; (9) power distribution, and space environment effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kramer, Andrew Kramer
The Gas Technology Institute (GTI) and team members RTI International (RTI), Coanda Research and Development, and Nexant, are developing and maturing a portfolio of technologies to meet the United States Department of Energy (DOE) goals for lowering the cost of producing high hydrogen syngas from coal for use in carbon capture power and coal-to-liquids/chemicals. This project matured an advanced pilot-scale gasifier, with scalable and commercially traceable components, to readiness for use in a first-of-a-kind commercially-relevant demonstration plant on the scale of 500-1,000 tons per day (TPD). This was accomplished through cold flow simulation of the gasifier quench zone transition regionmore » at Coanda and through an extensive hotfire gasifier test program on highly reactive coal and high ash/high ash fusion temperature coals at GTI. RTI matured an advanced water gas shift process and catalyst to readiness for testing at pilot plant scale through catalyst development and testing, and development of a preliminary design basis for a pilot scale reactor demonstrating the catalyst. A techno-economic analysis was performed by Nexant to assess the potential benefits of the gasifier and catalyst technologies in the context of power production and methanol production. This analysis showed an 18%reduction in cost of power and a 19%reduction in cost of methanol relative to DOE reference baseline cases.« less
Low Cost, Upper Stage-Class Propulsion
NASA Technical Reports Server (NTRS)
Vickers, John
2015-01-01
The low cost, upper stage-class propulsion (LCUSP) element will develop a high strength copper alloy additive manufacturing (AM) process as well as critical components for an upper stage-class propulsion system that will be demonstrated with testing. As manufacturing technologies have matured, it now appears possible to build all the major components and subsystems of an upper stage-class rocket engine for substantially less money and much faster than traditionally done. However, several enabling technologies must be developed before that can happen. This activity will address these technologies and demonstrate the concept by designing, manufacturing, and testing the critical components of a rocket engine. The processes developed and materials' property data will be transitioned to industry upon completion of the activity. Technologies to enable the concept are AM copper alloy process development, AM post-processing finishing to minimize surface roughness, AM material deposition on existing copper alloy substrate, and materials characterization.
Nuclear electric propulsion mission engineering study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1973-01-01
Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied. The NEP stage design provides both inherent reliability and high payload mass capability. The NEP stage and payload integration was found to be compatible with the space shuttle.
Assistive Technology Developments in Puerto Rico.
ERIC Educational Resources Information Center
Lizama, Mauricio A.; Mendez, Hector L.
Recent efforts to develop Spanish-based adaptations for alternate computer input devices are considered, as are their implications for Hispanics with disabilities and for the development of language sensitive devices worldwide. Emphasis is placed on the particular need to develop low-cost high technology devices for Puerto Rico and Latin America…
Dual use technology -- it's good for everyone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schario, K.
1998-07-01
Dual use technology is defined as technology that has both military and commercial applications. The main benefit to dual use technology is that it encourages research and development (R and D) partnerships between the government and industry that lead to the development of common products for military and commercial purposes instead of application-unique products, as in the past. Commonality, in turn, leads to better, more affordable products for all. These partnerships are cost-shared so that neither party has to bear the entire cost of development. Why is this good? Neither the military nor commercial world can afford to fully fundmore » all R and D efforts required to maintain their technological edge in the international market. How do you determine which R and D programs have enough commercial potential to motivate industry to invest in the development? This paper explores the issues involved in establishing a dual use program, and how to take advantage of the flexibility of these programs.« less
NASA Technical Reports Server (NTRS)
Clare, Loren; Clement, B.; Gao, J.; Hutcherson, J.; Jennings, E.
2006-01-01
Described recent development of communications protocols, services, and associated tools targeted to reduce risk, reduce cost and increase efficiency of IND infrastructure and supported mission operations. Space-based networking technologies developed were: a) Provide differentiated quality of service (QoS) that will give precedence to traffic that users have selected as having the greatest importance and/or time-criticality; b) Improve the total value of information to users through the use of QoS prioritization techniques; c) Increase operational flexibility and improve command-response turnaround; d) Enable new class of networked and collaborative science missions; e) Simplify applications interfaces to communications services; and f) Reduce risk and cost from a common object model and automated scheduling and communications protocols. Technologies are described in three general areas: communications scheduling, middleware, and protocols. Additionally developed simulation environment, which provides comprehensive, quantitative understanding of the technologies performance within overall, evolving architecture, as well as ability to refine & optimize specific components.
Development of Nanosatellite Technology with APRS Module for Disaster Mitigation
NASA Astrophysics Data System (ADS)
Prahyang, S. Y.; Dhiya’Ulhaq, M. Z.; Golim, O. P.; Gunawan, R.; Suhandinata; Jahja, E.; Nelwan, E. R. G.; Ananta, C.; Chow, I. M.; Mali, N. D. F.
2018-05-01
Development of nanosatellite technology has enabled satellites to be developed with multiple capabilities for a specific mission in a short time with a low cost. Satellite communications are proved to be more effective in delivering information due to its large coverage area. Surya Satellite-1 will become the first Indonesian nanosatellite developed by undergraduate students. It is designed with low-cost commercial payloads, including an APRS module for communication and operated on VHF and UHF amateur radio frequencies. The mission of the satellites focused on disaster mitigation through APRS communication network with remote stations located on disaster-prone areas.
Cost-Effective Additive Manufacturing in Space: HELIOS Technology Challenge Guide
NASA Technical Reports Server (NTRS)
DeVieneni, Alayna; Velez, Carlos Andres; Benjamin, David; Hollenbeck, Jay
2012-01-01
Welcome to the HELIOS Technology Challenge Guide. This document is intended to serve as a general road map for participants of the HELIOS Technology Challenge [HTC] Program and the associated inaugural challenge: HTC-01: Cost-Effective Additive Manufacturing in Space. Please note that this guide is not a rule book and is not meant to hinder the development of innovative ideas. Its primary goal is to highlight the objectives of the HTC-01 Challenge and to describe possible solution routes and pitfalls that such technology may encounter in space. Please also note that participants wishing to demonstrate any hardware developed under this program during any future HELIOS Technology Challenge showcase event(s) may be subject to event regulations to be published separately at a later date.
Decision Analysis and Policy Formulation for Technology-Specific Renewable Energy Targets
NASA Astrophysics Data System (ADS)
Okioga, Irene Teshamulwa
This study establishes a decision making procedure using Analytic Hierarchy Process (AHP) for a U.S. national renewable portfolio standard, and proposes technology-specific targets for renewable electricity generation for the country. The study prioritizes renewable energy alternatives based on a multi-perspective view: from the public, policy makers, and investors' points-of-view, and uses multiple criteria for ranking the alternatives to generate a unified prioritization scheme. During this process, it considers a 'quadruple bottom-line' approach (4P), i.e. reflecting technical "progress", social "people", economic 'profits", and environmental "planet" factors. The AHP results indicated that electricity generation from solar PV ranked highest, and biomass energy ranked lowest. A "Benefits/Cost Incentives/Mandates" (BCIM) model was developed to identify where mandates are needed, and where incentives would instead be required to bring down costs for technologies that have potential for profitable deployment. The BCIM model balances the development of less mature renewable energy technologies, without the potential for rising near-term electricity rates for consumers. It also ensures that recommended policies do not lead to growth of just one type of technology--the "highest-benefit, least-cost" technology. The model indicated that mandates would be suited for solar PV, and incentives generally for geothermal and concentrated solar power. Development for biomass energy, as a "low-cost, low-benefits" alternative was recommended at a local rather than national level, mainly due to its low resource potential values. Further, biomass energy generated from wastewater treatment plants (WWTPs) had the least resource potential compared to other biomass sources. The research developed methodologies and recommendations for biogas electricity targets at WWTPs, to take advantage of the waste-to-energy opportunities.
NASA Astrophysics Data System (ADS)
Fisher, J. Richard; Bradley, Richard F.; Brisken, Walter F.; Cotton, William D.; Emerson, Darrel T.; Kerr, Anthony R.; Lacasse, Richard J.; Morgan, Matthew A.; Napier, Peter J.; Norrod, Roger D.; Payne, John M.; Pospieszalski, Marian W.; Symmes, Arthur; Thompson, A. Richard; Webber, John C.
2009-03-01
This white paper offers cautionary observations about the planning and development of new, large radio astronomy instruments. Complexity is a strong cost driver so every effort should be made to assign differing science requirements to different instruments and probably different sites. The appeal of shared resources is generally not realized in practice and can often be counterproductive. Instrument optimization is much more difficult with longer lists of requirements, and the development process is longer and less efficient. More complex instruments are necessarily further behind the technology state of the art because of longer development times. Including technology R&D in the construction phase of projects is a growing trend that leads to higher risks, cost overruns, schedule delays, and project de-scoping. There are no technology breakthroughs just over the horizon that will suddenly bring down the cost of collecting area. Advances come largely through careful attention to detail in the adoption of new technology provided by industry and the commercial market. Radio astronomy instrumentation has a very bright future, but a vigorous long-term R&D program not tied directly to specific projects needs to be restored, fostered, and preserved.
Technology transfer and evaluation for Space Station telerobotics
NASA Technical Reports Server (NTRS)
Price, Charles R.; Stokes, Lebarian; Diftler, Myron A.
1994-01-01
The international space station (SS) must take advantage of advanced telerobotics in order to maximize productivity and safety and to reduce maintenance costs. The Automation and Robotics Division at the NASA Lyndon B. Johnson Space Center (JSC) has designed, developed, and constructed the Automated Robotics Maintenance of Space Station (ARMSS) facility for the purpose of transferring and evaluating robotic technology that will reduce SS operation costs. Additionally, JSC had developed a process for expediting the transfer of technology from NASA research centers and evaluating these technologies in SS applications. Software and hardware system developed at the research centers and NASA sponsored universities are currently being transferred to JSC and integrated into the ARMSS for flight crew personnel testing. These technologies will be assessed relative to the SS baseline, and, after refinements, those technologies that provide significant performance improvements will be recommended as upgrades to the SS. Proximity sensors, vision algorithms, and manipulator controllers are among the systems scheduled for evaluation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bill Stanley; Patrick Gonzalez; Sandra Brown
2006-06-30
The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects,more » providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st and July 30th 2006. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool. Work is being carried out in Brazil, Belize, Chile, Peru and the USA.« less
New media, old media: The technologies of international development
NASA Astrophysics Data System (ADS)
Ingle, Henry T.
1986-09-01
The research, theory and practice of educational technology over the past 75 years provide convincing evidence that this process offers a comprehensive and integrated approach to solving educational and social problems. The use of media and technology in development has shifted from an emphasis on mass media to personal media. A variety of electronic delivery systems are being used and are usually coordinated by centralized governmental agencies. There are no patterns of use since the problems vary and the medium used is responsive to the problem. Computers are used most frequently and satellite telecommunication networks follow. The effective use of these and other technologies requires a long-term commitment to financial support and training of personnel. The extension model of face-to-face contact still prevails in developing nations whether in agriculture, education or rural development. Low-cost technologies are being used in local projects while major regional and national companies use radio, film and related video technologies. The use of all available and cost-effective media and technologies make possible appropriate communications for specific goals with specific audiences. There appears to be no conflict among proponents of various media formats. Development in education and other sectors has much to gain from old and new communication technologies and has hardly been tapped. Several new educational technology developments are discussed as potential contributors to formal and nonformal education.
Glenn's Strategic Partnerships With HBCUs and OMUs
NASA Technical Reports Server (NTRS)
Kankam, M. David
2003-01-01
NASA senior management has identified the need to develop a strategy for increased contracting with the historically black colleges and universities (HBCUs) and other minority universities (OMUs). The benefits to the institutions, by partnering with NASA, include developing their industrial base via NASA-industry partnerships, strong competitive advantage in technology-based research opportunities, and improved research capabilities. NASA gains increased contributed value to the Agency missions and programs as well as potential future recruits from technology-trained students who also constitute a pool for the nation s workforce. This report documents synergistic links between Glenn Research Center research and technology programs and faculty expertise at HBCUs and OMUs. The links are derived, based on Glenn technologies in the various directorates, program offices, and project offices. Such links readily identify universities with faculty members who are knowledgeable or have backgrounds in the listed technologies for possible collaboration. Recommendations are made to use the links as opportunities for Glenn and NASA, as well as industry collaborators, to cultivate stronger partnerships with the universities. It is concluded that Glenn and its partners and collaborators can expect to mutually benefit from leveraging NASA s cutting-edge and challenging research and technologies; industry's high technology development, research and development facilities, system design capabilities and market awareness; and academia s expertise in basic research and relatively low overhead cost. Reduced cost, accelerated technology development, technology transfer, and infrastructure development constitute some of the derived benefits.
Fission Surface Power System Initial Concept Definition
NASA Technical Reports Server (NTRS)
2010-01-01
Under the NASA Exploration Technology Development Program (ETDP) and in partnership with the Department of Energy (DOE), NASA has embarked on a project to develop Fission Surface Power (FSP) technology. The primary goals of the project are to 1) develop FSP concepts that meet expected surface power requirements at reasonable cost with added benefits over other options, 2) establish a hardwarebased technical foundation for FSP design concepts and reduce overall development risk, 3) reduce the cost uncertainties for FSP and establish greater credibility for flight system cost estimates, and 4) generate the key products to allow NASA decision-makers to consider FSP as a preferred option for flight development. The FSP project was initiated in 2006 as the Prometheus Program and the Jupiter Icy Moons Orbiter (JIMO) mission were phased-out. As a first step, NASA Headquarters commissioned the Affordable Fission Surface Power System Study to evaluate the potential for an affordable FSP development approach. With a cost-effective FSP strategy identified, the FSP team evaluated design options and selected a Preliminary Reference Concept to guide technology development. Since then, the FSP Preliminary Reference Concept has served as a point-of-departure for several NASA mission architecture studies examining the use of nuclear power and has provided the foundation for a series of "Pathfinder" hardware tests. The long-term technology goal is a Technology Demonstration Unit (TDU) integrated system test using full-scale components and a non-nuclear reactor simulator. The FSP team consists of Glenn Research Center (GRC), Marshall Space Flight Center (MSFC) and the DOE National Laboratories at Los Alamos (LANL), Idaho (INL), Oak Ridge (ORNL), and Sandia (SNL). The project is organized into two main elements: Concept Definition and Risk Reduction. Under Concept Definition, the team performs trade studies, develops analytical tools, and formulates system concepts. Under Risk Reduction the team develops hardware prototypes and conducts laboratory-based testing.
NASA Technical Reports Server (NTRS)
Mcpherson, J.
1991-01-01
The topics presented are covered in viewgraph form. The objectives are to develop and validate technology, design tools and methodologies to enable the low cost commercial development and operational uses of hydrogen and hydrocarbon fueled liquid engines, low pressure booster engines and hybrid engines.
Innovations for competitiveness: European views on "better-faster-cheaper"
NASA Astrophysics Data System (ADS)
Atzei, A.; Groepper, P.; Novara, M.; Pseiner, K.
1999-09-01
The paper elaborates on " lessons learned" from two recent ESA workshops, one focussing on the role of Innovation in the competitiveness of the space sector and the second on technology and engineering aspects conducive to better, faster and cheaper space programmes. The paper focuses primarily on four major aspects, namely: a) the adaptations of industrial and public organisations to the global market needs; b) the understanding of the bottleneck factors limiting competitiveness; c) the trends toward new system architectures and new engineering and production methods; d) the understanding of the role of new technology in the future applications. Under the pressure of market forces and the influence of many global and regional players, applications of space systems and technology are becoming more and more competitive. It is well recognised that without major effort for innovation in industrial practices, organisations, R&D, marketing and financial approaches the European space sector will stagnate and loose its competence as well as its competitiveness. It is also recognised that a programme run according to the "better, faster, cheaper" philosophy relies on much closer integration of system design, development and verification, and draws heavily on a robust and comprehensive programme of technology development, which must run in parallel and off-line with respect to flight programmes. A company's innovation capabilities will determine its future competitive advantage (in time, cost, performance or value) and overall growth potential. Innovation must be a process that can be counted on to provide repetitive, sustainable, long-term performance improvements. As such, it needs not depend on great breakthroughs in technology and concepts (which are accidental and rare). Rather, it could be based on bold evolution through the establishment of know-how, application of best practices, process effectiveness and high standards, performance measurement, and attention to customers and professional marketing. Having a technological lead allows industry to gain a competitive advantage in performance, cost and opportunities. Instrumental to better competitiveness is an R&D effort based on the adaptation of high technology products, capable of capturing new users, increasing production, decreasing the cost and delivery time and integrating high level of intelligence, information and autonomy. New systems will have to take in to account from the start what types of technologies are being developed or are already available in other areas outside space, and design their system accordingly. The future challenge for "faster, better, cheaper" appears to concern primarily "cost-effective", performant autonomous spacecraft, "cost-effective", reliable launching means and intelligent data fusion technologies and robust software serving mass- market real time services, distributed via EHF bands and Internet. In conclusion, it can be noticed that in the past few years new approaches have considerably enlarged the ways in which space missions can be implemented. They are supported by true innovations in mission concepts, system architecture, development and technologies, in particular for the development of initiatives based on multi-mission mini-satellites platforms for communication and Earth observation missions. There are also definite limits to cost cutting (such as lowering heads counts and increasing efficiency), and therefore the strategic perspective must be shifted from the present emphasis on cost-driven enhancement to revenue-driven improvements for growth. And since the product life-cycle is continuously shortening, competitiveness is linked very strongly with the capability to generate new technology products which enhance cost/benefit performance.
Textile composite fuselage structures development
NASA Technical Reports Server (NTRS)
Jackson, Anthony C.; Barrie, Ronald E.; Chu, Robert L.
1993-01-01
Phase 2 of the NASA ACT Contract (NAS1-18888), Advanced Composite Structural Concepts and Materials Technology for Transport Aircraft Structures, focuses on textile technology, with resin transfer molding or powder coated tows. The use of textiles has the potential for improving damage tolerance, reducing cost and saving weight. This program investigates resin transfer molding (RTM), as a maturing technology for high fiber volume primary structures and powder coated tows as an emerging technology with a high potential for significant cost savings and superior structural properties. Powder coated tow technology has promise for significantly improving the processibility of high temperature resins such as polyimides.
Automobile Industry Retail Price Equivalent and Indirect Cost ...
This report develops a modified multiplier, referred to as an indirect cost (IC) multiplier, which specifically evaluates the components of indirect costs that are likely to be affected by vehicle modifications associated with environmental regulation. A range of IC multipliers are developed that 1) account for differences in the technical complexity of required vehicle modifications and 2) adjust over time as new technologies become assimilated into the automotive production process. To develop an improved methodology for estimating indirect costs of new environmental regulations on automobile manufacturers.
Peo Life Cycle Cost Accountability: Viability Of Foreign Suppliers For Weapon System Development
2016-02-16
i AIR WAR COLLEGE AIR UNIVERSITY PEO LIFE CYCLE COST ACCOUNTABILITY: VIABILITY OF FOREIGN SUPPLIERS FOR WEAPON SYSTEM DEVELOPMENT By...to decrease, then recycling may become more economically feasible. The need for the U.S. to develop affordable technologies for recycling has become
Lean Stability augmentation study
NASA Technical Reports Server (NTRS)
Mcvey, J. B.; Kennedy, J. B.
1979-01-01
An analytical and experimental program was conducted to investigate techniques and develop technology for improving the lean combustion limits of premixing, prevaporizing combustors applicable to gas turbine engine main burners. Three concepts for improving lean stability limits were selected for experimental evaluation among twelve approaches considered. Concepts were selected on the basis of the potential for improving stability limits and achieving emission goals, the technological risks associated with development of practical burners employing the concepts, and the penalties to airline direct operating costs resulting from decreased combustor performance, increased engine cost, increased maintenance cost and increased engine weight associated with implementation of the concepts. Tests of flameholders embodying the selected concepts were conducted.
NASA Astrophysics Data System (ADS)
Dubois, Alexis; Ricote, Sandrine; Braun, Robert J.
2017-11-01
Recent progress in the performance of intermediate temperature (500-600 °C) protonic ceramic fuel cells (PCFCs) has demonstrated both fuel flexibility and increasing power density that approach commercial application requirements. These developments may eventually position the technology as a viable alternative to solid oxide fuel cells (SOFCs) and molten carbonate fuel cells (MCFCs). The PCFCs investigated in this work are based on a BaZr0.8Y0.2O3-δ (BZY20) thin electrolyte supported by BZY20/Ni porous anodes, and a triple conducting cathode material comprised of BaCo0.4Fe0.4Zr0.1Y0.1O3-δ (BCFZY0.1). These cells are prepared using a low-cost solid-state reactive sintering (SSRS) process, and are capable of power densities of 0.156 W cm-2 at 500 °C operating directly from methane fuel. We develop a manufacturing cost model to estimate the Nth generation production costs of PCFC stack technology using high volume manufacturing processes and compare them to the state-of-the-art in SOFC technology. The low-cost cell manufacturing enabled by the SSRS technique compensates for the lower PCFC power density and the trade-off between operating temperature and efficiency enables the use of lower-cost stainless steel materials. PCFC stack production cost estimates are found to be as much as 27-37% lower at 550 °C than SOFCs operating at 800 °C.
Lee, Sang-Soo; Salole, Eugene
2017-01-01
In many developed countries with universal coverage healthcare systems, payers require new medical technologies to be assessed as safe, effective, and cost-effective through health technology assessment (HTA) before approval for reimbursement coverage and market access. However, in some cases, HTA is not the sole criterion for decision-making and other factors override the evidence. Remote patient monitoring (RPM) for cardiac implantable electronic devices, a novel technology recognized as safe, effective, and cost-effective, and the standard of care in many countries, is prohibited in South Korea. This peculiar situation is apparently due to deficiencies in healthcare policy and the delivery system and also to poor engagement between stakeholders. We propose that a higher level of engagement and trust between stakeholders needs to be developed, and healthcare providers should be involved in the early development of health policy, so that unnecessary barriers to access to useful medical technology are corrected, thereby allowing Koreans to enjoy the benefits available in other developed countries.
Bantam System Technology Project Ground System Operations Concept and Plan
NASA Technical Reports Server (NTRS)
Moon, Jesse M.; Beveridge, James R.
1997-01-01
The Low Cost Booster Technology Program, also known as the Bantam Booster program, is a NASA sponsored initiative to establish a viable commercial technology to support the market for placing small payloads in low earth orbit. This market is currently served by large boosters which orbit a number of small payloads on a single launch vehicle, or by these payloads taking up available space on major commercial launches. Even by sharing launch costs, the minimum cost to launch one of these small satellites is in the 6 to 8 million dollar range. Additionally, there is a shortage of available launch opportunities which can be shared in this manner. The goal of the Bantam program is to develop two competing launch vehicles, with launch costs in the neighborhood of 1.5 million dollars to launch a 150 kg payload into low earth orbit (200 nautical mile sun synchronous). Not only could the cost of the launch be significantly less than the current situation, but the payload sponsor could expect better service for his expenditure, the ability to specify his own orbit, and a dedicated vehicle. By developing two distinct launch vehicles, market forces are expected to aid in keeping customer costs low.
Technologies for Detecting Falsified and Substandard Drugs in Low and Middle-Income Countries
Kovacs, Stephanie; Hawes, Stephen E.; Maley, Stephen N.; Mosites, Emily; Wong, Ling; Stergachis, Andy
2014-01-01
Falsified and substandard drugs are a global health problem, particularly in low- and middle-income countries (LMIC) that have weak pharmacovigilance and drug regulatory systems. Poor quality medicines have important health consequences, including the potential for treatment failure, development of antimicrobial resistance, and serious adverse drug reactions, increasing healthcare costs and undermining the public's confidence in healthcare systems. This article presents a review of the methods employed for the analysis of pharmaceutical formulations. Technologies for detecting substandard and falsified drugs were identified primarily through literature reviews. Key-informant interviews with experts augmented our methods when warranted. In order to aid comparisons, technologies were assigned a suitability score for use in LMIC ranging from 0–8. Scores measured the need for electricity, need for sample preparation, need for reagents, portability, level of training required, and speed of analysis. Technologies with higher scores were deemed the most feasible in LMICs. We categorized technologies that cost $10,000 USD or less as low cost, $10,000–100,000 USD as medium cost and those greater than $100,000 USD as high cost technologies (all prices are 2013 USD). This search strategy yielded information on 42 unique technologies. Five technologies were deemed both low cost and had feasibility scores between 6–8, and an additional four technologies had medium cost and high feasibility. Twelve technologies were deemed portable and therefore could be used in the field. Many technologies can aid in the detection of substandard and falsified drugs that vary from the simplest of checklists for packaging to the most complex mass spectrometry analyses. Although there is no single technology that can serve all the requirements of detecting falsified and substandard drugs, there is an opportunity to bifurcate the technologies into specific niches to address specific sections within the workflow process of detecting products. PMID:24671033
DOE Office of Scientific and Technical Information (OSTI.GOV)
DiNunzio, Camillo A.; Gupta, Abhinav; Golay, Michael
2002-11-30
This report presents a summation of the third and final year of a three-year investigation into methods and technologies for substantially reducing the capital costs and total schedule for future nuclear plants. In addition, this is the final technical report for the three-year period of studies.
APPLICATION AND DEVELOPMENT OF APPROPRIATE TOOLS AND TECHNOLOGIES FOR COST-EFFECTIVE CARBON
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bill Stanley; Sandra Brown; Ellen Hawes
2003-09-01
The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects,more » providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas impacts. The research described in this report occurred between July 1, 2002 and June 30, 2003. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: advanced videography testing; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bill Stanley; Sandra Brown; Patrick Gonzalez
2004-07-10
The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects,more » providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas impacts. The research described in this report occurred between July 1, 2002 and June 30, 2003. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: remote sensing for carbon analysis; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.« less
Administrator's Guide to Technology: Planning, Funding & Implementation.
ERIC Educational Resources Information Center
Aspen Education Development Group, Gaithersburg, MD.
This document provides guidelines for administrators related to instructional technology and planning. Chapter 1 discusses planning, including developing a technology plan, facility assessment, e-rate planning, formation of a technology committee, budget planning, and hardware/software replacement plan and costs. Chapter 2 addresses…
Code of Federal Regulations, 2013 CFR
2013-10-01
... information technology development in which the development/modernization/enhancement costs are anticipated to equal or exceed $25 million over the life of the acquisition. The Chief Information Officer may require... the Department's Information Technology Investment Performance Measurement and Performance Reporting...
Code of Federal Regulations, 2012 CFR
2012-10-01
... information technology development in which the development/modernization/enhancement costs are anticipated to equal or exceed $25 million over the life of the acquisition. The Chief Information Officer may require... the Department's Information Technology Investment Performance Measurement and Performance Reporting...
Code of Federal Regulations, 2011 CFR
2011-10-01
... information technology development in which the development/modernization/enhancement costs are anticipated to equal or exceed $25 million over the life of the acquisition. The Chief Information Officer may require... the Department's Information Technology Investment Performance Measurement and Performance Reporting...
Code of Federal Regulations, 2014 CFR
2014-10-01
... information technology development in which the development/modernization/enhancement costs are anticipated to equal or exceed $25 million over the life of the acquisition. The Chief Information Officer may require... the Department's Information Technology Investment Performance Measurement and Performance Reporting...
The General Atomics low speed urban Maglev technology development program
DOT National Transportation Integrated Search
2003-01-01
The overall objective of this program is to develop magnetic levitation technology that is a cost effective, reliable, : and environmentally friendly option for urban mass transportation in the United States. Maglev is a revolutionary : approach in w...
Technology transfer program of Microlabsat
NASA Astrophysics Data System (ADS)
Nakamura, Y.; Hashimoto, H.
2004-11-01
A 50kg-class small satellite developed by JAXA called "MicroLabSat" was launched piggyback by H-IIA rocket No. 4 on 14 December 2002. This satellite will demonstrate small satellite bus technology and conduct experiments on a new separator feasibility and remote inspection technology. All missions were completed successfully on 25 May 2003. Furthermore, the hand-construction by young JAXA engineers motivated these engineers to higher performance in learning design, assembly and testing technology. Small and medium-sized Japanese companies have recently joined together and initiated a project to develop a small satellite. The goal of the project is to commercialise small satellites, which will require low- cost development. Therefore, they have started with a satellite incorporating the components and bus technologies of MicroLabSat and have been technically supported by universities and JAXA since 2004. This satellite project, in which industry, universities and a space agency are collaborating, seeks to meet the technical challenge of launching a low-cost satellite. This paper reports JAX's strategies for developing a small satellite for demonstrating space technology as well as the development and operation results of MicroLabSat. It also describes the project status of an industry-based satellite, developed through collaboration among industries, universities and the space agency, and how the technologies of MicroLabSat are applied.
NASA Astrophysics Data System (ADS)
Whitfield, R. G.; Habegger, L. J.; Levine, E. P.; Tanzman, E.
1981-04-01
The satellite power system (SPS) was compared with alternative systems on life cycle cost and environmental impacts. Environmental and economic effects are evaluated and subdivided into the following issue areas: human health and safety, environmental welfare, resources (land, materials, energy, water, labor), macroeconomics, socioeconomics, and institutional. These evaluations are based on technology characterization data and alternative futures scenarios, developed as part of CDEP. The technologies and the scenarios are described. The cost and performance of the SPS and the alternative technologies provide the basis of the macroeconomic analyses.
Claxton, Karl; Palmer, Stephen; Longworth, Louise; Bojke, Laura; Griffin, Susan; Soares, Marta; Spackman, Eldon; Rothery, Claire
The value of evidence about the performance of a technology and the value of access to a technology are central to policy decisions regarding coverage with, without, or only in research and managed entry (or risk-sharing) agreements. We aim to outline the key principles of what assessments are needed to inform "only in research" (OIR) or "approval with research" (AWR) recommendations, in addition to approval or rejection. We developed a comprehensive algorithm to inform the sequence of assessments and judgments that lead to different types of guidance: OIR, AWR, Approve, or Reject. This algorithm identifies the order in which assessments might be made, how similar guidance might be arrived at through different combinations of considerations, and when guidance might change. The key principles are whether the technology is expected to be cost-effective; whether the technology has significant irrecoverable costs; whether additional research is needed; whether research is possible with approval and whether there are opportunity costs that once committed by approval cannot be recovered; and whether there are effective price reductions. Determining expected cost-effectiveness is only a first step. In addition to AWR for technologies expected to be cost-effective and OIR for those not expected to be cost-effective, there are other important circumstances when OIR should be considered. These principles demonstrate that cost-effectiveness is a necessary but not sufficient condition for approval. Even when research is possible with approval, OIR may be appropriate when a technology is expected to be cost-effective due to significant irrecoverable costs. Copyright © 2016 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roeleveld, J.J.
1985-01-01
This dissertation develops a general model of technological substitution that could be of help to planners and decision makers in industry who are faced with the problems created by continual technological change. The model as presented differs from existing models in the theoretical literature because of its emphasis on analyzing current and potential technologies in an attempt to understand the underlying factors contributing to technological substitution. The general model and the cost model that is part of it belong to that step in the interactive planning cycle called the formulation of the mess. The methodology underlying the cost model ismore » a combination of life-cycle analysis (i.e., from raw materials in nature, through all intermediate products, to waste returned to the environment) and resoumetrics, which is an engineering approach to measuring all physical inputs required to produce a certain level of output. The models are illustrated with a specific field of interest: substitution of primary packaging technologies in the US brewing industry. The physical costs of packaging beer in different containers are compared. Strategic considerations for a brewery deciding to adopt plastic packaging technology are discussed. Attention is given to another potential fruitful application of the model in the field of technology transfer to developing countries.« less
In-Space Propulsion Technology Program Solar Electric Propulsion Technologies
NASA Technical Reports Server (NTRS)
Dankanich, John W.
2006-01-01
NASA's In-space Propulsion (ISP) Technology Project is developing new propulsion technologies that can enable or enhance near and mid-term NASA science missions. The Solar Electric Propulsion (SEP) technology area has been investing in NASA s Evolutionary Xenon Thruster (NEXT), the High Voltage Hall Accelerator (HiVHAC), lightweight reliable feed systems, wear testing, and thruster modeling. These investments are specifically targeted to increase planetary science payload capability, expand the envelope of planetary science destinations, and significantly reduce the travel times, risk, and cost of NASA planetary science missions. Status and expected capabilities of the SEP technologies are reviewed in this presentation. The SEP technology area supports numerous mission studies and architecture analyses to determine which investments will give the greatest benefit to science missions. Both the NEXT and HiVHAC thrusters have modified their nominal throttle tables to better utilize diminished solar array power on outbound missions. A new life extension mechanism has been implemented on HiVHAC to increase the throughput capability on low-power systems to meet the needs of cost-capped missions. Lower complexity, more reliable feed system components common to all electric propulsion (EP) systems are being developed. ISP has also leveraged commercial investments to further validate new ion and hall thruster technologies and to potentially lower EP mission costs.
Additively Manufactured Low Cost Upper Stage Combustion Chamber
NASA Technical Reports Server (NTRS)
Protz, Christopher; Cooper, Ken; Ellis, David; Fikes, John; Jones, Zachary; Kim, Tony; Medina, Cory; Taminger, Karen; Willingham, Derek
2016-01-01
Over the past two years NASA's Low Cost Upper Stage Propulsion (LCUSP) project has developed Additive Manufacturing (AM) technologies and design tools aimed at reducing the costs and manufacturing time of regeneratively cooled rocket engine components. High pressure/high temperature combustion chambers and nozzles must be regeneratively cooled to survive their operating environment, causing their design fabrication to be costly and time consuming due to the number of individual steps and different processes required. Under LCUSP, AM technologies in Sintered Laser Melting (SLM) GRCop-84 and Electron Beam Freeform Fabrication (EBF3) Inconel 625 have been significantly advanced, allowing the team to successfully fabricate a 25k-class regenerative chamber. Estimates of the costs and schedule of future builds indicate cost reductions and significant schedule reductions will be enabled by this technology. Characterization of the microstructural and mechanical properties of the SLM-produced GRCop-84, EBF3 Inconel 625 and the interface layer between the two has been performed and indicates the properties will meet the design requirements. The LCUSP chamber is to be tested with a previously demonstrated SLM injector in order to advance the Technology Readiness Level (TRL) and demonstrate the capability of the application of these processes. NASA is advancing these technologies to reduce cost and schedule for future engine applications and commercial needs.
Hydrogen energy systems studies. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogden, J.M.; Kreutz, T.; Kartha, S.
1996-08-13
The results of previous studies suggest that the use of hydrogen from natural gas might be an important first step toward a hydrogen economy based on renewables. Because of infrastructure considerations (the difficulty and cost of storing, transmitting and distributing hydrogen), hydrogen produced from natural gas at the end-user`s site could be a key feature in the early development of hydrogen energy systems. In the first chapter of this report, the authors assess the technical and economic prospects for small scale technologies for producing hydrogen from natural gas (steam reformers, autothermal reformers and partial oxidation systems), addressing the following questions:more » (1) What are the performance, cost and emissions of small scale steam reformer technology now on the market? How does this compare to partial oxidation and autothermal systems? (2) How do the performance and cost of reformer technologies depend on scale? What critical technologies limit cost and performance of small scale hydrogen production systems? What are the prospects for potential cost reductions and performance improvements as these technologies advance? (3) How would reductions in the reformer capital cost impact the delivered cost of hydrogen transportation fuel? In the second chapter of this report the authors estimate the potential demand for hydrogen transportation fuel in Southern California.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective alternative envelope designs. In the near term, these technologies will play a central role in meeting stringent energy code requirements. For manufactured homes, the thermal requirements, last updated by statute in 1994, will move up to the more rigorous IECC 2012 levels in 2013, the requirements of which are consistent with site built and modular housing. This places added urgency on identifying envelope technologies that the industry can implement in the short timeframe. The primary goal of this research is to develop wall designs that meet themore » thermal requirements based on 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing the new envelope technologies. This work is part of a four-phase, multi-year effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three selected methods for building high performance wall systems. Phase 2 focused on the development of viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped critique and select the most viable solution to move further in the research — stud walls with continuous exterior insulation. Phase 3, the subject of the current report, focused on the design development of the selected wall concept and explored variations on the use of exterior foam insulation. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing.« less
A bottom-up method to develop pollution abatement cost curves for coal-fired utility boilers
This paper illustrates a new method to create supply curves for pollution abatement using boiler-level data that explicitly accounts for technology costs and performance. The Coal Utility Environmental Cost (CUECost) model is used to estimate retrofit costs for five different NO...
Enough to Go 'Round? Thinking Smart about Total Cost of Ownership
ERIC Educational Resources Information Center
McIntire, Todd
2006-01-01
Total cost of ownership or TCO refers to the life cycle of costs for technology, including both direct and indirect expenses. TCO includes costs incurred by capital (hardware, software, and facilities); administration and operation (planning, upgrade, replacement, and technical support); and end-user operation (staff development and user…
Methodologies for Optimum Capital Expenditure Decisions for New Medical Technology
Landau, Thomas P.; Ledley, Robert S.
1980-01-01
This study deals with the development of a theory and an analytical model to support decisions regarding capital expenditures for complex new medical technology. Formal methodologies and quantitative techniques developed by applied mathematicians and management scientists can be used by health planners to develop cost-effective plans for the utilization of medical technology on a community or region-wide basis. In order to maximize the usefulness of the model, it was developed and tested against multiple technologies. The types of technologies studied include capital and labor-intensive technologies, technologies whose utilization rates vary with hospital occupancy rate, technologies whose use can be scheduled, and limited-use and large-use technologies.
NASA Astrophysics Data System (ADS)
Sawin, Janet Laughlin
2001-07-01
This dissertation seeks to determine the role of government policy in advancing the development and diffusion of renewable energy technologies, and to determine if specific policies or policy types are more effective than others in achieving these ends. This study analyzes legislation, regulations, research and development (R&D) programs and their impacts on wind energy in California, the rest of the United States, Denmark and Germany, from 1970 through 2000. These countries (and state) were chosen because each has followed a very different path and has adopted wind energy at different rates. Demand for energy, particularly electricity, is rising rapidly worldwide. Renewable energy technologies could meet much of the world's future demand for electricity without the national security, environmental and social costs of conventional technologies. But renewables now play only a minor role in the electric generation systems of most countries. According to conventional economic theory, renewable energy will achieve greater market penetration once it is cost-competitive with conventional generation. This dissertation concludes, however, that government policy is the most significant causal variable in determining the development and diffusion of wind energy technology. Policy is more important for bringing wind energy to maturity than a nation's wind resource potential, wealth, relative differences in electricity prices, or existing infrastructure. Further, policy is essential for enabling a technology to succeed in the marketplace once it is cost-competitive. Policies can affect a technology's perceived, or real, costs; they can reduce risks or increase the availability and affordability of capital; appropriate and consistent policies can eliminate barriers to wind technology. To be adopted on a large scale, renewables require effective, appropriate and, above all, consistent policies that are legislated with a long-term view toward advancing a technology and an industry. Inconsistent policy is economically costly and creates cycles of boom and bust, making it impossible to build a strong domestic industry. To be effective, policy must place priority on demand creation rather than government R&D; it must create a market, establish turbine standards and siting criteria, require data collection and dissemination, facilitate grid access, establish price guarantees, and enable stakeholder participation.
NASA Technical Reports Server (NTRS)
Price, Kent M.; Jorasch, Ronald E.; Wiskerchen, Michael J.
1991-01-01
A description is given of a data distribution satellite (DDS) system. The DDS would operate in conjunction with the tracking and data relay satellite system to give ground-based users real time, two-way access to instruments in space and space-gathered data. The scope of work includes the following: (1) user requirements are derived; (2) communication scenarios are synthesized; (3) system design constraints and projected technology availability are identified; (4) DDS communications payload configuration is derived, and the satellite is designed; (5) requirements for earth terminals and network control are given; (6) system costs are estimated, both life cycle costs and user fees; and (7) technology developments are recommended, and a technology development plan is given. The most important results obtained are as follows: (1) a satellite designed for launch in 2007 is feasible and has 10 Gb/s capacity, 5.5 kW power, and 2000 kg mass; (2) DDS features include on-board baseband switching, use of Ku- and Ka-bands, multiple optical intersatellite links; and (3) system user costs are competitive with projected terrestrial communication costs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, Mitchell
The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from ''Freedom'' and ''Cooperative Automotive Research''), it represents DOE's commitment to developing public-private partnerships to fund high risk, high payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ranmore » from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Advanced Power Electronics and Electric Machines (APEEM) subprogram within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the APEEM subprogram has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three phase approach intended to: (1) identify overall propulsion and vehicle related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and PE; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), battery electric vehicles, and fuel-cell-powered automobiles that meet the goals of the VTP. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the PE and electrical machines subsystems of the traction drive system. Areas of development include: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency, with the ability to accommodate higher temperature environments while achieving high reliability; (3) converter concepts that use methods of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control through innovative packaging technologies; and (6) integrated motor/inverter concepts. ORNL's Power Electronics and Electric Machines Research Program conducts fundamental research, evaluates hardware, and assists in the technical direction of the VTP APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2010 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, and they are indicated at the end of each section for readers interested in pursuing details of the work.« less
Coal gasification systems engineering and analysis. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1980-01-01
Feasibility analyses and systems engineering studies for a 20,000 tons per day medium Btu (MBG) coal gasification plant to be built by TVA in Northern Alabama were conducted. Major objectives were as follows: (1) provide design and cost data to support the selection of a gasifier technology and other major plant design parameters, (2) provide design and cost data to support alternate product evaluation, (3) prepare a technology development plan to address areas of high technical risk, and (4) develop schedules, PERT charts, and a work breakdown structure to aid in preliminary project planning. Volume one contains a summary of gasification system characterizations. Five gasification technologies were selected for evaluation: Koppers-Totzek, Texaco, Lurgi Dry Ash, Slagging Lurgi, and Babcock and Wilcox. A summary of the trade studies and cost sensitivity analysis is included.
26 CFR 1.482-7A - Methods to determine taxable income in connection with a cost sharing arrangement.
Code of Federal Regulations, 2010 CFR
2010-04-01
... reasonable overhead costs attributable to the project. They also share the cost of a conference facility that... reasonable overhead costs attributable to the project. USP also incurs costs related to field testing of the... Unrelated Third Party (UTP) enter into a cost sharing arrangement to develop new audio technology. In the...
26 CFR 1.482-7A - Methods to determine taxable income in connection with a cost sharing arrangement.
Code of Federal Regulations, 2011 CFR
2011-04-01
... reasonable overhead costs attributable to the project. They also share the cost of a conference facility that... reasonable overhead costs attributable to the project. USP also incurs costs related to field testing of the... Unrelated Third Party (UTP) enter into a cost sharing arrangement to develop new audio technology. In the...
26 CFR 1.482-7A - Methods to determine taxable income in connection with a cost sharing arrangement.
Code of Federal Regulations, 2012 CFR
2012-04-01
... reasonable overhead costs attributable to the project. They also share the cost of a conference facility that... reasonable overhead costs attributable to the project. USP also incurs costs related to field testing of the... Unrelated Third Party (UTP) enter into a cost sharing arrangement to develop new audio technology. In the...
26 CFR 1.482-7A - Methods to determine taxable income in connection with a cost sharing arrangement.
Code of Federal Regulations, 2013 CFR
2013-04-01
... reasonable overhead costs attributable to the project. They also share the cost of a conference facility that... reasonable overhead costs attributable to the project. USP also incurs costs related to field testing of the... Unrelated Third Party (UTP) enter into a cost sharing arrangement to develop new audio technology. In the...
26 CFR 1.482-7A - Methods to determine taxable income in connection with a cost sharing arrangement.
Code of Federal Regulations, 2014 CFR
2014-04-01
... reasonable overhead costs attributable to the project. They also share the cost of a conference facility that... reasonable overhead costs attributable to the project. USP also incurs costs related to field testing of the... Unrelated Third Party (UTP) enter into a cost sharing arrangement to develop new audio technology. In the...
Supply Chain Sustainability Analysis of Whole Algae Hydrothermal Liquefaction and Upgrading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pegallapati, Ambica Koushik; Dunn, Jennifer B.; Frank, Edward D.
2015-04-01
The Department of Energy's Bioenergy Technology Office (BETO) collaborates with a wide range of institutions towards the development and deployment of biofuels and bioproducts. To facilitate this effort, BETO and its partner national laboratories develop detailed techno-economic assessments (TEA) of biofuel production technologies as part of the development of design cases and state of technology (SOT) analyses. A design case is a TEA that outlines a target case for a particular biofuel pathway. It enables preliminary identification of data gaps and research and development needs and provides goals and targets against which technology progress is assessed. On the other hand,more » an SOT analysis assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases and includes technical, economic, and environmental criteria as available. (SOT) analyses. A design case is a TEA that outlines a target case for a particular biofuel pathway. It enables preliminary identification of data gaps and research and development needs and provides goals and targets against which technology progress is assessed. On the other hand, an SOT analysis assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases and includes technical, economic, and environmental criteria as available. (SOT) analyses. A design case is a TEA that outlines a target case for a particular biofuel pathway. It enables preliminary identification of data gaps and research and development needs and provides goals and targets against which technology progress is assessed. On the other hand, an SOT analysis assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases and includes technical, economic, and environmental criteria as available.« less
Application of ubiquitous computing in personal health monitoring systems.
Kunze, C; Grossmann, U; Stork, W; Müller-Glaser, K D
2002-01-01
A possibility to significantly reduce the costs of public health systems is to increasingly use information technology. The Laboratory for Information Processing Technology (ITIV) at the University of Karlsruhe is developing a personal health monitoring system, which should improve health care and at the same time reduce costs by combining micro-technological smart sensors with personalized, mobile computing systems. In this paper we present how ubiquitous computing theory can be applied in the health-care domain.
Legacy and Emergence of Spaceport Technology Development at the Kennedy Space Center
NASA Technical Reports Server (NTRS)
Starr, Stanley; Voska, Ned (Technical Monitor)
2003-01-01
Kennedy Space Center (KSC) has a long and successful legacy in the checkout and launch of missiles and space vehicles. These operations have become significantly more complex, and their evolution has driven the need for many technology developments. Unanticipated events have also underscored the need for a local, highly responsive technology development and testing capability. This evolution is briefly described, as well as the increasing level of technology capability at KSC. The importance of these technologies in achieving past national space goals suggests that the accomplishment of low-cost and reliable access to space will depend critically upon KSC's future success in developing spaceport technologies. This paper concludes with a description KSC's current organizational approach and major thrust areas in technology development. The first phase of our historical review focuses on the development and testing of field- deployable short- and intermediate-range ballistic missiles (1953 to 1958). These vehicles are later pressed into service as space launchers. The second phase involves the development of large space lift vehicles culminating in the Saturn V launches (1959 to 1975). The third phase addresses the development and operations of the partially reusable launch vehicle, Space Shuttle (1976 to 2000). In the current era, KSC is teaming with the U.S. Air Force (AF), industry, academia, and other partners to identify and develop Spaceport and Range Technologies necessary to achieve national space goals of lower-cost and higher-reliability space flight.
Progress in manufacturing large primary aircraft structures using the stitching/RTM process
NASA Technical Reports Server (NTRS)
Markus, Alan; Thrash, Patrick; Rohwer, Kim
1993-01-01
The Douglas Aircraft/NASA Act contract has been focused over the past three years at developing a materials, manufacturing, and cost base for stitched/Resin Transfer Molded (RTM) composites. The goal of the program is to develop RTM and stitching technology to provide enabling technology for application of these materials in primary aircraft structure with a high degree of confidence. Presented in this paper will be the progress to date in the area of manufacturing and associated cost values of stitched/RTM composites.
Concept for a power system controller for large space electrical power systems
NASA Technical Reports Server (NTRS)
Lollar, L. F.; Lanier, J. R., Jr.; Graves, J. R.
1981-01-01
The development of technology for a fail-operatonal power system controller (PSC) utilizing microprocessor technology for managing the distribution and power processor subsystems of a large multi-kW space electrical power system is discussed. The specific functions which must be performed by the PSC, the best microprocessor available to do the job, and the feasibility, cost savings, and applications of a PSC were determined. A limited function breadboard version of a PSC was developed to demonstrate the concept and potential cost savings.
Low-cost uncooled VOx infrared camera development
NASA Astrophysics Data System (ADS)
Li, Chuan; Han, C. J.; Skidmore, George D.; Cook, Grady; Kubala, Kenny; Bates, Robert; Temple, Dorota; Lannon, John; Hilton, Allan; Glukh, Konstantin; Hardy, Busbee
2013-06-01
The DRS Tamarisk® 320 camera, introduced in 2011, is a low cost commercial camera based on the 17 µm pixel pitch 320×240 VOx microbolometer technology. A higher resolution 17 µm pixel pitch 640×480 Tamarisk®640 has also been developed and is now in production serving the commercial markets. Recently, under the DARPA sponsored Low Cost Thermal Imager-Manufacturing (LCTI-M) program and internal project, DRS is leading a team of industrial experts from FiveFocal, RTI International and MEMSCAP to develop a small form factor uncooled infrared camera for the military and commercial markets. The objective of the DARPA LCTI-M program is to develop a low SWaP camera (<3.5 cm3 in volume and <500 mW in power consumption) that costs less than US $500 based on a 10,000 units per month production rate. To meet this challenge, DRS is developing several innovative technologies including a small pixel pitch 640×512 VOx uncooled detector, an advanced digital ROIC and low power miniature camera electronics. In addition, DRS and its partners are developing innovative manufacturing processes to reduce production cycle time and costs including wafer scale optic and vacuum packaging manufacturing and a 3-dimensional integrated camera assembly. This paper provides an overview of the DRS Tamarisk® project and LCTI-M related uncooled technology development activities. Highlights of recent progress and challenges will also be discussed. It should be noted that BAE Systems and Raytheon Vision Systems are also participants of the DARPA LCTI-M program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vargas, Luis
Coal Direct Chemical Looping (CDCL) is an advanced oxy-combustion technology that has potential to enable substantial reductions in the cost and energy penalty associated with carbon dioxide (CO2) capture from coal-fired power plants. Through collaborative efforts, the Babcock & Wilcox Power Generation Group (B&W) and The Ohio State University (OSU) developed a conceptual design for a 550 MWe (net) supercritical CDCL power plant with greater than 90% CO2 capture and compression. Process simulations were completed to enable an initial assessment of its technical performance. A cost estimate was developed following DOE’s guidelines as outlined in NETL’s report “Quality Guidelines formore » Energy System Studies: Cost Estimation Methodology for NETL Assessments of Power Plant Performance”, (2011/1455). The cost of electricity for the CDCL plant without CO2 Transportation and Storage cost resulted in $ $102.67 per MWh, which corresponds to a 26.8 % increase in cost of electricity (COE) when compared to an air-fired pulverized-coal supercritical power plant. The cost of electricity is strongly depending on the total plant cost and cost of the oxygen carrier particles. The CDCL process could capture further potential savings by increasing the performance of the particles and reducing the plant size. During the techno-economic analysis, the team identified technology and engineering gaps that need to be closed to bring the technology to commercialization. The technology gaps were focused in five critical areas: (i) moving bed reducer reactor, (ii) fluidized bed combustor, (iii) particle riser, (iv) oxygen-carrier particle properties, and (v) process operation. The key technology gaps are related to particle performance, particle manufacturing cost, and the operation of the reducer reactor. These technology gaps are to be addressed during Phase II of project. The project team is proposing additional lab testing to be completed on the particle and a 3MWth pilot facility be built to evaluate the reducer reactor performance among other aspects of the technology. A Phase II proposal was prepared and submitted to DOE. The project team proposed a three year program in Phase II. Year 1 includes lab testing and particle development work aimed at improving the chemical and mechanical properties of the oxygen carrier particle. In parallel, B&W will design the 3MWt pilot plant. Any improvements to the particle performance discovered in year 1 that would impact the design of the pilot will be incorporated into the final design. Year 2 will focus on procurement of materials and equipment, and construction of the pilot plant. Year 3 will include, commissioning, start-up, and testing in the pilot. Phase I work was successfully completed and a design and operating philosophy for a 550 MWe commercial scale coal-direct chemical looping power plant was developed. Based on the results of the techno-economic evaluation, B&W projects that the CDCL process can achieve 96.5% CO2 capture with a« less
Advanced space program studies. Overall executive summary
NASA Technical Reports Server (NTRS)
Wolfe, M. G.
1977-01-01
NASA and DoD requirements and planning data were used in multidiscipline advanced planning investigations of space operations and associated elements (including man), identification of potential low cost approaches, vehicle design, cost synthesis techniques, technology forecasting and opportunities for DoD technology transfer, and the development near-, mid-, and far-term space initiatives and development plans with emphasis on domestic and military commonality. An overview of objectives and results are presented for the following studies: advanced space planning and conceptual analysis, shuttle users, technology assessment and new opportunities, standardization and program practice, integrated STS operations planning, solid spinning upper stage, and integrated planning support functions.
NASA Astrophysics Data System (ADS)
Ferkinhoff, Carl
2014-07-01
There have been several exciting developments in the technologies commonly used n in the hardware hacking community. Advances in low cost additive-manufacturing processes (i.e. 3D-printers) and the development of openhardware projects, which have produced inexpensive and easily programmable micro-controllers and micro-computers (i.e. Arduino and Raspberry Pi) have opened a new door for individuals seeking to make their own devices. Here we describe the potential for these technologies to reduce costs in construction and development of submillimeter/millimeter astronomical instrumentation. Specifically we have begun a program to measure the optical properties of the custom plastics used in 3D-printers as well as the printer accuracy and resolution to assess the feasibility of directly printing sub- /millimeter transmissive optics. We will also discuss low cost designs for cryogenic temperature measurement and control utilizing Arduino and Raspberry Pi.
NASA Astrophysics Data System (ADS)
Riggs, William R.
1994-05-01
SHARP is a Navy wide logistics technology development effort aimed at reducing the acquisition costs, support costs, and risks of military electronic weapon systems while increasing the performance capability, reliability, maintainability, and readiness of these systems. Lower life cycle costs for electronic hardware are achieved through technology transition, standardization, and reliability enhancement to improve system affordability and availability as well as enhancing fleet modernization. Advanced technology is transferred into the fleet through hardware specifications for weapon system building blocks of standard electronic modules, standard power systems, and standard electronic systems. The product lines are all defined with respect to their size, weight, I/O, environmental performance, and operational performance. This method of defining the standard is very conducive to inserting new technologies into systems using the standard hardware. This is the approach taken thus far in inserting photonic technologies into SHARP hardware. All of the efforts have been related to module packaging; i.e. interconnects, component packaging, and module developments. Fiber optic interconnects are discussed in this paper.
NASA Astrophysics Data System (ADS)
Samson, Philippe
2005-05-01
The constant evolution of the satellite market is asking for better technical performances and reliability for a reduced cost. Solar array is in front line of this challenge.This can be achieved by present technologies progressive improvement in cost reduction or by technological breakthrough.To reach an effective End Of Live performance100 W/kg of solar array is not so easy, even if you suppose that the mass of everything is nothing!Thin film cells are potential candidate to contribute to this challenge with certain confidence level and consequent development plan validation and qualification on ground and flight.Based on a strong flight heritage in flexible Solar Array design, the work has allowed in these last years, to pave the way on road map of thin film technologies . This is encouraged by ESA on many technological contracts put in concurrent engineering.CISG was selected cell and their strategy of design, contributions and results will be presented.Trade-off results and Design to Cost solutions will discussed.Main technical drivers, system design constraints, market access, key technologies needed will be detailed in this paper and the resulting road-map and development plan will be presented.
Health Monitoring System Technology Assessments: Cost Benefits Analysis
NASA Technical Reports Server (NTRS)
Kent, Renee M.; Murphy, Dennis A.
2000-01-01
The subject of sensor-based structural health monitoring is very diverse and encompasses a wide range of activities including initiatives and innovations involving the development of advanced sensor, signal processing, data analysis, and actuation and control technologies. In addition, it embraces the consideration of the availability of low-cost, high-quality contributing technologies, computational utilities, and hardware and software resources that enable the operational realization of robust health monitoring technologies. This report presents a detailed analysis of the cost benefit and other logistics and operational considerations associated with the implementation and utilization of sensor-based technologies for use in aerospace structure health monitoring. The scope of this volume is to assess the economic impact, from an end-user perspective, implementation health monitoring technologies on three structures. It specifically focuses on evaluating the impact on maintaining and supporting these structures with and without health monitoring capability.
Engine Seal Technology Requirements to Meet NASA's Advanced Subsonic Technology Program Goals
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Hendricks, Robert C.
1994-01-01
Cycle studies have shown the benefits of increasing engine pressure ratios and cycle temperatures to decrease engine weight and improve performance of commercial turbine engines. NASA is working with industry to define technology requirements of advanced engines and engine technology to meet the goals of NASA's Advanced Subsonic Technology Initiative. As engine operating conditions become more severe and customers demand lower operating costs, NASA and engine manufacturers are investigating methods of improving engine efficiency and reducing operating costs. A number of new technologies are being examined that will allow next generation engines to operate at higher pressures and temperatures. Improving seal performance - reducing leakage and increasing service life while operating under more demanding conditions - will play an important role in meeting overall program goals of reducing specific fuel consumption and ultimately reducing direct operating costs. This paper provides an overview of the Advanced Subsonic Technology program goals, discusses the motivation for advanced seal development, and highlights seal technology requirements to meet future engine performance goals.
COSTS FOR ADVANCED COAL COMBUSTION TECHNOLOGIES
The report gives results of an evaluation of the development status of advanced coal combustion technologies and discusses the preparation of performance and economic models for their application to electric utility plants. he technologies addressed were atmospheric fluidized bed...
Development of low cost custom hybrid microcircuit technology
NASA Technical Reports Server (NTRS)
Perkins, K. L.; Licari, J. J.
1981-01-01
Selected potentially low cost, alternate packaging and interconnection techniques were developed and implemented in the manufacture of specific NASA/MSFC hardware, and the actual cost savings achieved by their use. The hardware chosen as the test bed for this evaluation ws the hybrids and modules manufactured by Rockwell International fo the MSFC Flight Accelerometer Safety Cut-Off System (FASCOS). Three potentially low cost packaging and interconnection alternates were selected for evaluation. This study was performed in three phases: hardware fabrication and testing, cost comparison, and reliability evaluation.
Strategies to advance vaccine technologies for resource-poor settings.
Kristensen, Debra; Chen, Dexiang
2013-04-18
New vaccine platform and delivery technologies that can have significant positive impacts on the effectiveness, acceptability, and safety of immunizations in developing countries are increasingly available. Although donor support for vaccine technology development is strong, the uptake of proven technologies by the vaccine industry and demand for them by purchasers continues to lag. This article explains the challenges and opportunities associated with accelerating the availability of innovative and beneficial vaccine technologies to meet critical needs in resource-poor settings over the next decade. Progress will require increased dialog between the public and private sectors around vaccine product attributes; establishment of specifications for vaccines that mirror programmatic needs; stronger encouragement of vaccine developers to consider novel technologies early in the product development process; broader facilitation of research and access to technologies through the formation of centers of excellence; the basing of vaccine purchase decisions on immunization systems costs rather than price per dose alone; possible subsidization of early technology adoption costs for vaccine producers that take on the risks of new technologies of importance to the public sector; and the provision of data to purchasers, better enabling them to make informed decisions that take into account the value of specific product attributes. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musial, Walter; Beiter, Philipp; Tegen, Suzanne
This report summarizes a study of possible offshore wind energy locations, technologies, and levelized cost of energy in the state of California between 2015 and 2030. The study was funded by the U.S. Department of the Interior's Bureau of Ocean Energy Management (BOEM), the federal agency responsible for regulating renewable energy development on the Outer Continental Shelf. It is based on reference wind energy areas where representative technology and performance characteristics were evaluated. These reference areas were identified as sites that were suitable to represent offshore wind cost and technology based on physical site conditions, wind resource quality, known existingmore » site use, and proximity to necessary infrastructure. The purpose of this study is to assist energy policy decision-making by state utilities, independent system operators, state government officials and policymakers, BOEM, and its key stakeholders. The report is not intended to serve as a prescreening exercise for possible future offshore wind development.« less
Computing, Information, and Communications Technology (CICT) Program Overview
NASA Technical Reports Server (NTRS)
VanDalsem, William R.
2003-01-01
The Computing, Information and Communications Technology (CICT) Program's goal is to enable NASA's Scientific Research, Space Exploration, and Aerospace Technology Missions with greater mission assurance, for less cost, with increased science return through the development and use of advanced computing, information and communication technologies
Research and Energy Efficiency: Selected Success Stories
DOE R&D Accomplishments Database
Garland, P. W.; Garland, R. W.
1997-06-26
Energy use and energy technology play critical roles in the U.S. economy and modern society. The Department of Energy (DOE) conducts civilian energy research and development (R&D) programs for the purpose of identifying promising technologies that promote energy security, energy efficiency, and renewable energy use. DOE-sponsored research ranges from basic investigation of phenomena all the way through development of applied technology in partnership with industry. DOE`s research programs are conducted in support of national strategic energy objectives, however austere financial times have dictated that R&D programs be measured in terms of cost vs. benefit. In some cases it is difficult to measure the return on investment for the basic "curiosity-driven" research, however many applied technology development programs have resulted in measurable commercial successes. The DOE has published summaries of their most successful applied technology energy R&D programs. In this paper, we will discuss five examples from the Building Technologies area of the DOE Energy Efficiency program. Each story will describe the technology, discuss the level of federal funding, and discuss the returns in terms of energy savings, cost savings, or national economic impacts.
Cost benefit analysis of space communications technology: Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Holland, L. D.; Sassone, P. G.; Gallagher, J. J.; Robinette, S. L.; Vogler, F. H.; Zimmer, R. P.
1976-01-01
The questions of (1) whether or not NASA should support the further development of space communications technology, and, if so, (2) which technology's support should be given the highest priority are addressed. Insofar as the issues deal principally with resource allocation, an economics perspective is adopted. The resultant cost benefit methodology utilizes the net present value concept in three distinct analysis stages to evaluate and rank those technologies which pass a qualification test based upon probable (private sector) market failure. User-preference and technology state-of-the-art surveys were conducted (in 1975) to form a data base for the technology evaluation. The program encompassed near-future technologies in space communications earth stations and satellites, including the noncommunication subsystems of the satellite (station keeping, electrical power system, etc.). Results of the research program include confirmation of the applicability of the methodology as well as a list of space communications technologies ranked according to the estimated net present value of their support (development) by NASA.
Technology CAD for integrated circuit fabrication technology development and technology transfer
NASA Astrophysics Data System (ADS)
Saha, Samar
2003-07-01
In this paper systematic simulation-based methodologies for integrated circuit (IC) manufacturing technology development and technology transfer are presented. In technology development, technology computer-aided design (TCAD) tools are used to optimize the device and process parameters to develop a new generation of IC manufacturing technology by reverse engineering from the target product specifications. While in technology transfer to manufacturing co-location, TCAD is used for process centering with respect to high-volume manufacturing equipment of the target manufacturing equipment of the target manufacturing facility. A quantitative model is developed to demonstrate the potential benefits of the simulation-based methodology in reducing the cycle time and cost of typical technology development and technology transfer projects over the traditional practices. The strategy for predictive simulation to improve the effectiveness of a TCAD-based project, is also discussed.
Decision support for redesigning wastewater treatment technologies.
McConville, Jennifer R; Künzle, Rahel; Messmer, Ulrike; Udert, Kai M; Larsen, Tove A
2014-10-21
This paper offers a methodology for structuring the design space for innovative process engineering technology development. The methodology is exemplified in the evaluation of a wide variety of treatment technologies for source-separated domestic wastewater within the scope of the Reinvent the Toilet Challenge. It offers a methodology for narrowing down the decision-making field based on a strict interpretation of treatment objectives for undiluted urine and dry feces and macroenvironmental factors (STEEPLED analysis) which influence decision criteria. Such an evaluation identifies promising paths for technology development such as focusing on space-saving processes or the need for more innovation in low-cost, energy-efficient urine treatment methods. Critical macroenvironmental factors, such as housing density, transportation infrastructure, and climate conditions were found to affect technology decisions regarding reactor volume, weight of outputs, energy consumption, atmospheric emissions, investment cost, and net revenue. The analysis also identified a number of qualitative factors that should be carefully weighed when pursuing technology development; such as availability of O&M resources, health and safety goals, and other ethical issues. Use of this methodology allows for coevolution of innovative technology within context constraints; however, for full-scale technology choices in the field, only very mature technologies can be evaluated.
Advancing the Aging and Technology Agenda in Gerontology
Schulz, Richard; Wahl, Hans-Werner; Matthews, Judith T.; De Vito Dabbs, Annette; Beach, Scott R.; Czaja, Sara J.
2015-01-01
Interest in technology for older adults is driven by multiple converging trends: the rapid pace of technological development; the unprecedented growth of the aging population in the United States and worldwide; the increase in the number and survival of persons with disability; the growing and unsustainable costs of caring for the elderly people; and the increasing interest on the part of business, industry, and government agencies in addressing health care needs with technology. These trends have contributed to the strong conviction that technology can play an important role in enhancing quality of life and independence of older individuals with high levels of efficiency, potentially reducing individual and societal costs of caring for the elderly people. The purpose of this “Forum” position article is to integrate what we know about older adults and technology systems in order to provide direction to this vital enterprise. We define what we mean by technology for an aging population, provide a brief history of its development, introduce a taxonomy for characterizing current technology applications to older adults, summarize research in this area, describe existing development and evaluation processes, identify factors important for the acceptance of technology among older individuals, and recommend future directions for research in this area. PMID:25165042
NASA Technical Reports Server (NTRS)
Ivanco, Marie L.; Domack, Marcia S.; Stoner, Mary Cecilia; Hehir, Austin R.
2016-01-01
Low Technology Readiness Levels (TRLs) and high levels of uncertainty make it challenging to develop cost estimates of new technologies in the R&D phase. It is however essential for NASA to understand the costs and benefits associated with novel concepts, in order to prioritize research investments and evaluate the potential for technology transfer and commercialization. This paper proposes a framework to perform a cost-benefit analysis of a technology in the R&D phase. This framework was developed and used to assess the Advanced Near Net Shape Technology (ANNST) manufacturing process for fabricating integrally stiffened cylinders. The ANNST method was compared with the conventional multi-piece metallic construction and composite processes for fabricating integrally stiffened cylinders. Following the definition of a case study for a cryogenic tank cylinder of specified geometry, data was gathered through interviews with Subject Matter Experts (SMEs), with particular focus placed on production costs and process complexity. This data served as the basis to produce process flowcharts and timelines, mass estimates, and rough order-of-magnitude cost and schedule estimates. The scalability of the results was subsequently investigated to understand the variability of the results based on tank size. Lastly, once costs and benefits were identified, the Analytic Hierarchy Process (AHP) was used to assess the relative value of these achieved benefits for potential stakeholders. These preliminary, rough order-of-magnitude results predict a 46 to 58 percent reduction in production costs and a 7-percent reduction in weight over the conventional metallic manufacturing technique used in this study for comparison. Compared to the composite manufacturing technique, these results predict cost savings of 35 to 58 percent; however, the ANNST concept was heavier. In this study, the predicted return on investment of equipment required for the ANNST method was ten cryogenic tank barrels when compared with conventional metallic manufacturing. The AHP study results revealed that decreased final cylinder mass and improved quality assurance were the most valued benefits of cylinder manufacturing methods, therefore emphasizing the relevance of the benefits achieved with the ANNST process for future projects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, Mitchell
The U.S. Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the U.S. Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE's commitment to developing public-private partnerships to fund high risk-high reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research') that ran frommore » 2002 through 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machines (PEEM) subprogram within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the PEEM subprogram has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The PEEM subprogram supports the efforts of the U.S. DRIVE partnership through a three phase approach intended to: (1) identify overall propulsion and vehicle related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component R&D activities; (2) develop and validate individual subsystems and components, including EMs and PE; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), battery electric vehicles, and fuel-cell-powered automobiles that meet the goals of the VTP. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, efficiency, and cost targets for the PE and EM subsystems of the traction drive system. Areas of development include: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency with the ability to accommodate higher temperature environments while achieving high reliability; (3) converter concepts that use methods of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control through innovative packaging technologies; and (6) integrated motor-inverter traction drive system concepts. ORNL's PEEM research program conducts fundamental research, evaluates hardware, and assists in the technical direction of the VTP Advanced Power Electronics and Electric Motors (APEEM) program. In this role, ORNL serves on the U.S. DRIVE Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. DOE's continuing R&D into advanced vehicle technologies for transportation offers the possibility of reducing the nation's dependence on foreign oil and the negative economic impacts of crude oil price fluctuations. It also supports the Administration's goal of deploying 1 million PHEVs by 2015.« less
Ultra-low-head hydroelectric technology: A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Daqing; Deng, Zhiqun
In recent years, distributed renewable energy-generation technologies, such as wind and solar, have developed rapidly. Nevertheless, the utilization of ultra-low-head (ULH) water energy (i.e., situations where the hydraulic head is less than 3 m or the water flow is more than 0.5 m/s with zero head) has received little attention. We believe that, through technological innovations and cost reductions, ULH hydropower has the potential to become an attractive, renewable, and sustainable resource. This paper investigates potential sites for ULH energy resources, the selection of relevant turbines and generators, simplification of civil works, and project costs. This review introduces the currentmore » achievements on ULH hydroelectric technology to stimulate discussions and participation of stakeholders to develop related technologies for further expanding its utilization as an important form of renewable energy.« less
Predicting Cost/Performance Trade-Offs for Whitney: A Commodity Computing Cluster
NASA Technical Reports Server (NTRS)
Becker, Jeffrey C.; Nitzberg, Bill; VanderWijngaart, Rob F.; Kutler, Paul (Technical Monitor)
1997-01-01
Recent advances in low-end processor and network technology have made it possible to build a "supercomputer" out of commodity components. We develop simple models of the NAS Parallel Benchmarks version 2 (NPB 2) to explore the cost/performance trade-offs involved in building a balanced parallel computer supporting a scientific workload. We develop closed form expressions detailing the number and size of messages sent by each benchmark. Coupling these with measured single processor performance, network latency, and network bandwidth, our models predict benchmark performance to within 30%. A comparison based on total system cost reveals that current commodity technology (200 MHz Pentium Pros with 100baseT Ethernet) is well balanced for the NPBs up to a total system cost of around $1,000,000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vitina, Aisma; Lüers, Silke; Wallasch, Anna-Kathrin
The International Energy Agency Implementing Agreement for cooperation in Research, Development, and Deployment of Wind Energy Systems (IEA Wind) Task 26—The Cost of Wind Energy represents an international collaboration dedicated to exploring past, present and future cost of wind energy. This report provides an overview of recent trends in wind plant technology, cost, and performance in those countries that are currently represented by participating organizations in IEA Wind Task 26: Denmark, Germany, Ireland, Norway, and the United States as well as the European Union.
Arsenic Treatment Technology Demonstrations
EPA’s research for the new Arsenic Rule focused on the development and evaluation of innovative methods and cost-effective technologies for improving the assessment and control of arsenic contamination.
ERIC Educational Resources Information Center
Gosper, Maree; Malfroy, Janne; McKenzie, Jo
2013-01-01
The pace of technological change accompanied by an evolution in social, work-based and study behaviours and norms poses particular challenges for universities as they strive to develop high quality and sustainable technology-rich learning environments. Maintaining currency with the latest advances is resource intensive, hence the costs incurred in…
NASA Technical Reports Server (NTRS)
1975-01-01
The data processing and transfer technology areas that need to be developed and that could benefit from space flight experiments are identified. Factors considered include: user requirements, concepts in 'Outlook for Space', and cost reduction. Major program thrusts formulated are an increase in end-to-end information handling and a reduction in life cycle costs.
2008-03-01
order fulfillment visibility, Kanban deployment, inventory count can be made visually, machines and tool labeling, costs, preventive maintenance...order fulfillment, computer scheduling versus Kanban , pull versus push systems, flow time efficiencies, back room costs of scheduling, MRP costs
An Analysis of Techno-Economic Requirements for MOSAIC CPV Systems to Achieve Cost Competitiveness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horowitz, Kelsey A; Cunningham, David W.; Zahler, James
A comprehensive bottom-up cost model has been developed by NREL for ARPAE's MOSAIC micro-concentrator PV program. It will calculate LCOE for MOSAIC technologies and assess their cost competitiveness compared to traditional flat-plate systems.
Automated Laser Ultrasonic Testing (ALUT) of Hybrid Arc Welds for Pipeline Construction, #272
DOT National Transportation Integrated Search
2009-12-22
One challenge in developing new gas reserves is the high cost of pipeline construction. Welding costs are a major component of overall construction costs. Industry continues to seek advanced pipeline welding technologies to improve productivity and s...
State-of-the-art low-cost solar reflector materials
NASA Astrophysics Data System (ADS)
Kennedy, C.; Jorgensen, G.
1994-11-01
Solar thermal technologies generate power by concentrating sunlight with large mirrors. The National Renewable Energy Laboratory (NREL) is working with industrial partners to develop the optical reflector materials needed for the successful deployment of this technology. The reflector materials must be low in cost and maintain high specular reflectance for extended lifetimes in severe outdoor environments. Currently, the best candidate materials for solar mirrors are silver-coated low-iron glass and silvered polymer films. Polymer reflectors are lighter in weight, offer greater flexibility in system design, and have the potential for lower cost than glass mirrors. In parallel with collaborative activities, several innovative candidate reflector-material constructions were investigated at NREL. The low-cost material requirement necessitates manufacturing compatible with mass-production techniques. Future cooperative efforts with the web-coating industry offers the promise of exciting new alternative materials and the potential for dramatic cost savings in developing advanced solar reflector materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, Mitchell
The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as 'FreedomCAR' (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieving the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of hybrid propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve advanced vehicle efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR and Vehicle Technologies Program. A key element in making hybrid electric vehicles (HEVs) practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) more effective thermal control and packaging technologies; and (5) integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2007 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work.« less
Center for Global Health announces grants to support portable technologies
NCI's Center for Global Health announced grants that will support the development and validation of low-cost, portable technologies. These technologies have the potential to improve early detection, diagnosis, and non-invasive or minimally invasive treatm
Foregone benefits of important food crop improvements in Sub-Saharan Africa
2017-01-01
A number of new crops have been developed that address important traits of particular relevance for smallholder farmers in Africa. Scientists, policy makers, and other stakeholders have raised concerns that the approval process for these new crops causes delays that are often scientifically unjustified. This article develops a real option model for the optimal regulation of a risky technology that enhances economic welfare and reduces malnutrition. We consider gradual adoption of the technology and show that delaying approval reduces uncertainty about perceived risks of the technology. Optimal conditions for approval incorporate parameters of the stochastic processes governing the dynamics of risk. The model is applied to three cases of improved crops, which either are, or are expected to be, delayed by the regulatory process. The benefits and costs of the crops are presented in a partial equilibrium that considers changes in adoption over time and the foregone benefits caused by a delay in approval under irreversibility and uncertainty. We derive the equilibrium conditions where the net-benefits of the technology equal the costs that would justify a delay. The sooner information about the safety of the technology arrive, the lower the costs for justifying a delay need to be i.e. it pays more to delay. The costs of a delay can be substantial: e.g. a one year delay in approval of the pod-borer resistant cowpea in Nigeria will cost the country about 33 million USD to 46 million USD and between 100 and 3,000 lives. PMID:28749984
New membranes could speed the biofuels conversion process and reduce cost
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Michael
2014-07-23
ORNL researchers have developed a new class of membranes that could enable faster, more cost efficient biofuels production. These membranes are tunable at the nanopore level and have potential uses in separating water from fuel and acid from bio-oils. The membrane materials technology just won an R&D 100 award. ORNL and NREL are partnering, with support from the DOE Bioenergy Technologies Office, to determine the best uses of these membranes to speed the biofuels conversion process. Development of the membranes was funded by DOE BETO and ORNL's Laboratory Directed Research and Development Program.
New membranes could speed the biofuels conversion process and reduce cost
Hu, Michael
2018-01-26
ORNL researchers have developed a new class of membranes that could enable faster, more cost efficient biofuels production. These membranes are tunable at the nanopore level and have potential uses in separating water from fuel and acid from bio-oils. The membrane materials technology just won an R&D 100 award. ORNL and NREL are partnering, with support from the DOE Bioenergy Technologies Office, to determine the best uses of these membranes to speed the biofuels conversion process. Development of the membranes was funded by DOE BETO and ORNL's Laboratory Directed Research and Development Program.
Jones, Michael; Mueller, James; Morris, John
2017-01-01
This article describes a flexible and effective approach to research and development in an era of rapid technological advancement. The approach relies on secondary dispersal of grant funds to commercial developers through a competitive selection process. This "App Factory" model balances the practical reliance on multi-year funding needed to sustain a rehabilitation engineering research center (RERC), with the need for agility and adaptability of development efforts undertaken in a rapidly changing technology environment. This approach also allows us to take advantage of technical expertise needed to accomplish a particular development task, and provides incentives to deliver successful products in a cost-effective manner. In this article, we describe the App Factory structure, process, and results achieved to date; and we discuss the lessons learned and the potential relevance of this approach for other grant-funded research and development efforts. Data presented on the direct costs and number of downloads of the 16 app development projects funded in the App Factory's first 3 years show that it can be an effective means for supporting focused, short-term assistive technology development projects.
A unified approach for composite cost reporting and prediction in the ACT program
NASA Technical Reports Server (NTRS)
Freeman, W. Tom; Vosteen, Louis F.; Siddiqi, Shahid
1991-01-01
The Structures Technology Program Office (STPO) at NASA Langley Research Center has held two workshops with representatives from the commercial airframe companies to establish a plan for development of a standard cost reporting format and a cost prediction tool for conceptual and preliminary designers. This paper reviews the findings of the workshop representatives with a plan for implementation of their recommendations. The recommendations of the cost tracking and reporting committee will be implemented by reinstituting the collection of composite part fabrication data in a format similar to the DoD/NASA Structural Composites Fabrication Guide. The process of data collection will be automated by taking advantage of current technology with user friendly computer interfaces and electronic data transmission. Development of a conceptual and preliminary designers' cost prediction model will be initiated. The model will provide a technically sound method for evaluating the relative cost of different composite structural designs, fabrication processes, and assembly methods that can be compared to equivalent metallic parts or assemblies. The feasibility of developing cost prediction software in a modular form for interfacing with state of the art preliminary design tools and computer aided design (CAD) programs is assessed.
Geothermal Technologies Office FY 2017 Budget At-A-Glance
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-03-01
The Geothermal Technologies Office (GTO) accelerates deployment of clean, domestic geothermal energy by supporting innovative technologies that reduce the cost and risks of development. This abundant resource generates energy around the clock and has the potential to supply more than 100 GWe of electricity—roughly one-tenth of America’s energy demand. By optimizing the value stream for electricity production and cascaded uses, the office aims to make geothermal energy a fully cost-competitive, widely available, and geographically diverse component of the national energy mix.
ResStock - Targeting Energy and Cost Savings for U.S. Homes | NREL
ResStock - Targeting Energy and Cost Savings for U.S. Homes Science and Technology Highlights Highlights in Research & Development ResStock - Targeting Energy and Cost Savings for U.S. Homes Key discovered $49 billion in potential annual utility bill savings through cost-effective energy efficiency
NASA Technical Reports Server (NTRS)
Polzien, R. E.; Rodriguez, D.
1981-01-01
Aspects of incorporating a thermal energy transport system (ETS) into a field of parabolic dish collectors for industrial process heat (IPH) applications were investigated. Specific objectives are to: (1) verify the mathematical optimization of pipe diameters and insulation thicknesses calculated by a computer code; (2) verify the cost model for pipe network costs using conventional pipe network construction; (3) develop a design and the associated production costs for incorporating risers and downcomers on a low cost concentrator (LCC); (4) investigate the cost reduction of using unconventional pipe construction technology. The pipe network design and costs for a particular IPH application, specifically solar thermally enhanced oil recovery (STEOR) are analyzed. The application involves the hybrid operation of a solar powered steam generator in conjunction with a steam generator using fossil fuels to generate STEOR steam for wells. It is concluded that the STEOR application provides a baseline pipe network geometry used for optimization studies of pipe diameter and insulation thickness, and for development of comparative cost data, and operating parameters for the design of riser/downcomer modifications to the low cost concentrator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beiter, Philipp; Stehly, Tyler
The potential for cost reduction and economic viability for offshore wind varies considerably within the United States. This analysis models the cost impact of a range of offshore wind locational cost variables across more than 7,000 potential coastal sites in the United States' offshore wind resource area. It also assesses the impact of over 50 technology innovations on potential future costs between 2015 and 2027 (Commercial Operation Date) for both fixed-bottom and floating wind systems. Comparing these costs to an initial assessment of local avoided generating costs, this analysis provides a framework for estimating the economic potential for offshore wind.more » Analyzing economic potential within this framework can help establish a refined understanding across industries of the technology and site-specific risks and opportunities associated with future offshore wind development. The findings from the original report indicate that under the modeled scenario, offshore wind can be expected to achieve significant cost reductions and may approach economic viability in some parts of the United States within the next 15 years.« less
DOT National Transportation Integrated Search
1977-05-04
Technology was developed for determining delta sup 9-tetrahydrocannabinol (I) and its major metabolite 11-nor-delta sup 9-tetrahydrocannabinol-9-carboxylic acid (II) in human blood plasma utilizing high pressure liquid chromatography (hplc)-ultraviol...
Emergent Challenges in Determining Costs for Economic Evaluations.
Jacobs, Josephine C; Barnett, Paul G
2017-02-01
This paper describes methods of determining costs for economic evaluations of healthcare and considers how cost determination is being affected by recent developments in healthcare. The literature was reviewed to identify the strengths and weaknesses of the four principal methods of cost determination: micro-costing, activity-based costing, charge-based costing, and gross costing. A scoping review was conducted to identify key trends in healthcare delivery and to identify costing issues associated with these changes. Existing guidelines provide information on how to implement various costing methods. Bottom-up costing is needed when accuracy is paramount, but top-down approaches are often the only feasible approach. We describe six healthcare trends that have important implications for costing methodology: (1) reform in payment mechanisms; (2) care delivery in less restrictive settings; (3) the growth of telehealth interventions; (4) the proliferation of new technology; (5) patient privacy concerns; and (6) growing efforts to implement guidelines. Some costs are difficult to measure and have been overlooked. These include physician services for inpatients, facility costs for outpatient services, the cost of developing treatment innovations, patient and caregiver costs, and the indirect costs of organizational interventions. Standardized methods are needed to determine social welfare and productivity costs. In the future, cost determination will be facilitated by technological advances but hindered by the shift to capitated payment, to the provision of care in less restrictive settings, and by heightened concern for medical record privacy.
Study of power management technology for orbital multi-100KWe applications. Volume 3: Requirements
NASA Technical Reports Server (NTRS)
Mildice, J. W.
1980-01-01
Mid to late 1980's power management technology needs to support development of a general purpose space platform, capable of suplying 100 to 250 KWe to a variety of users in low Earth orbit are examined. A typical, shuttle assembled and supplied space platform is illustred, along with a group of payloads which might reasonably be expected to use such a facility. Examination of platform and user power needs yields a set of power requirements used to evaluate power management options for life cycle cost effectivness. The most cost effective ac/dc and dc systems are evaluated, specifically to develop system details which lead to technology goals, including: array and transmission voltages, best frequency for ac power transmission, and advantages and disadvantages of ac and dc systems for this application. System and component requirements are compared with the state-of-the-art to identify areas where technological development is required.
NASA Technical Reports Server (NTRS)
1981-01-01
The goals in this program for advanced czochralski growth process to produce low cost 150 kg silicon ingots from a single crucible for technology readiness are outlined. To provide a modified CG2000 crystal power capable of pulling a minimum of five crystals, each of approximately 30 kg in weight, 150 mm diameter from a single crucible with periodic melt replenishment. Crystals to have: resistivity of 1 to 3 ohm cm, p-type; dislocation density below 1- to the 6th power per cm; orientation (100); after growth yield of greater than 90%. Growth throughput of greater than 2.5 kg per hour of machine operation using a radiation shield. Prototype equipment suitable for use as a production facility. The overall cost goal is $.70 per peak watt by 1986. To accomplish these goals, the modified CG2000 grower and development program includes: (1) increased automation with a microprocessor based control system; (2) sensors development which will increase the capability of the automatic controls system, and provide technology transfer of the developed systems.
Steward, BARBARA
2001-01-01
Computer technologies will change both occupational therapy education and practice. Technological optimists suggest that there will be positive benefits for distance learning and supervision, universal equal access to information and expertise, and positive cross-cultural exchange. However, technologies have inevitable and unexpected costs. In this report I explore the potential for future problems with professional induction, educational reductionism, cultural imperialism and deprofessionalization through a review of the literature. I suggest that early recognition of the costs as well as the benefits of computer-based education will be important to the development of international occupational therapy.
Propulsion Technology Development for Sample Return Missions Under NASA's ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Pencil, Eric J.; Vento, Daniel; Dankanich, John W.; Munk, Michelle M.; Hahne, David
2011-01-01
The In-Space Propulsion Technology (ISPT) Program was tasked in 2009 to start development of propulsion technologies that would enable future sample return missions. Sample return missions could be quite varied, from collecting and bringing back samples of comets or asteroids, to soil, rocks, or atmosphere from planets or moons. The paper will describe the ISPT Program s propulsion technology development activities relevant to future sample return missions. The sample return propulsion technology development areas for ISPT are: 1) Sample Return Propulsion (SRP), 2) Planetary Ascent Vehicles (PAV), 3) Entry Vehicle Technologies (EVT), and 4) Systems/mission analysis and tools that focuses on sample return propulsion. The Sample Return Propulsion area is subdivided into: a) Electric propulsion for sample return and low cost Discovery-class missions, b) Propulsion systems for Earth Return Vehicles (ERV) including transfer stages to the destination, and c) Low TRL advanced propulsion technologies. The SRP effort will continue work on HIVHAC thruster development in FY2011 and then transitions into developing a HIVHAC system under future Electric Propulsion for sample return (ERV and transfer stages) and low-cost missions. Previous work on the lightweight propellant-tanks will continue under advanced propulsion technologies for sample return with direct applicability to a Mars Sample Return (MSR) mission and with general applicability to all future planetary spacecraft. A major effort under the EVT area is multi-mission technologies for Earth Entry Vehicles (MMEEV), which will leverage and build upon previous work related to Earth Entry Vehicles (EEV). The major effort under the PAV area is the Mars Ascent Vehicle (MAV). The MAV is a new development area to ISPT, and builds upon and leverages the past MAV analysis and technology developments from the Mars Technology Program (MTP) and previous MSR studies.
IVHM for the 3rd Generation RLV Program: Technology Development
NASA Technical Reports Server (NTRS)
Kahle, Bill
2000-01-01
The objective behind the Integrated Vehicle Health Management (IVHM) project is to develop and integrate the technologies which can provide a continuous, intelligent, and adaptive health state of a vehicle and use this information to improve safety and reduce costs of operations. Technological areas discussed include: developing, validating, and transfering next generation IVHM technologies to near term industry and government reusable launch systems; focus NASA on the next generation and highly advanced sensor and software technologies; and validating IVHM systems engineering design process for future programs.
FY2014 Electric Drive Technologies Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will reduce system cost and improve their efficiency in transforming battery energy to useful work. The R&D is also aimed at better understanding and improving how various components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.
FY2016 Electric Drive Technologies Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will reduce system cost and improve their efficiency in transforming battery energy to useful work. The R&D is also aimed at better understanding and improving how various components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.
FY2015 Electric Drive Technologies Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will reduce system cost and improve their efficiency in transforming battery energy to useful work. The R&D is also aimed at better understanding and improving how various components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.
Innovative on-chip packaging applied to uncooled IRFPA
NASA Astrophysics Data System (ADS)
Dumont, Geoffroy; Arnaud, Agnès; Impérinetti, Pierre; Vialle, Claire; Rabaud, Wilfried; Goudon, Valérie; Yon, Jean-Jacques
2008-04-01
The Laboratoire Infrarouge (LIR) of the Laboratoire d'Electronique et de Technologie de l'Information (LETI) has been involved in the development of microbolometers for over fifteen years. Two generations of technology have been transferred to ULIS and LETI is still working to improve performances of low cost detectors. Simultaneously, packaging still represents a significant part of detectors price. Reducing production costs would contribute to keep on extending applications of uncooled IRFPA to high volume markets like automotive. Therefore LETI is developing an on-chip packaging technology dedicated to microbolometers. This paper presents an original microcap structure that enables the use of IR window materials as sealing layers to maintain the expected vacuum level. The modelling and integration of an IR window suitable for this structure is also presented. This monolithic packaging technology is performed in a standard collective way, in continuation of bolometers' technology. The CEA-LETI, MINATEC presents status of these developments concerning this innovating technology including optical simulations results and SEM views of technical realizations.
Status of nickel-hydrogen cell technology
NASA Technical Reports Server (NTRS)
Warnock, D. R.
1980-01-01
Nickel hydrogen cell technology has been developed which solves the problems of thermal management, oxygen management, electrolyte management, and electrical and mechanical design peculiar to this new type of battery. This technology was weight optimized for low orbit operation using computer modeling programs but is near optimum for other orbits. Cells ranging in capacity up to about 70 ampere-hours can be made from components of a single standard size and are available from two manufacturers. The knowledge gained is now being applied to the development of two extensions to the basic design: a second set of larger standard components that will cover the capacity range up to 150 ampere-hours; and the development of multicell common pressure vessel modules to reduce volume, cost and weight. A manufacturing technology program is planned to optimize the producibility of the cell design and reduce cost. The most important areas for further improvement are life and reliability which are governed by electrode and separator technology.
NASA Technical Reports Server (NTRS)
Culver, Harry
1999-01-01
Abstract NASA's Goddard Space Flight Center (GSFC) is currently developing a new class of satellites called the nano-satellite (nano-sat). A major objective of this development effort is to provide the technology required to enable a constellation of tens to hundreds of nano-satellites to make both remote and in-situ measurements from space. The Nano-sat will be a spacecraft weighing a maximum of 10 kg, including the propellant mass, and producing at least 5 Watts of power to operate the spacecraft. The electronics are required to survive a total radiation dose rate of 100 krads for a mission lifetime of two years. There are many unique challenges that must be met in order to develop the avionics for such a spacecraft. The first challenge is to develop an architecture that will operate on the allotted 5 Watts and meet the diverging requirements of multiple missions. This architecture will need to incorporate a multitude of new advanced microelectronic technologies. The microelectronics developed must be a modular and scalable packaging of technology to solve the problem of developing a solution to both reduce cost and meet the requirements of various missions. This development will utilize the most cost effective approach, whether infusing commercially driven semiconductor devices into spacecraft applications or partnering with industry to design and develop low cost, low power, low mass, and high capacity data processing devices. This paper will discuss the nano-sat architecture and the major technologies that will be developed. The major technologies that will be covered include: (1) Light weight Low Power Electronics Packaging, (2) Radiation Hard/Tolerant, Low Power Processing Platforms, (3) High capacity Low Power Memory Systems (4) Radiation Hard reconfiguragble field programmable gate array (rFPGA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, Mitchell
The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Oak Ridge National Laboratory's (ORNL's) Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), all electric vehicles, and fuel-cell-powered automobiles that meet the goals of the Vehicle Technologies Program. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency, with the ability to accommodate higher-temperature environments while achieving high reliability; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control and packaging technologies; and (6) integrated motor/inverter concepts. ORNL's Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2009 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work.« less
A strategy of cost control for Mariner Venus/Mercury 1973
NASA Technical Reports Server (NTRS)
Biggs, John R.; Downhower, Walter J.
1994-01-01
The spacecraft launched by NASA on November 3, 1973 to explore Venus and Mercury proved a notable success as a development project both in space and on the ground. This article on the development points our management approaches and techniques that kept schedules and controlled costs, the intent being to stimulate thought about how to do the same with future spacecraft and payloads. The Mariner Venus/Mercury '73 (MVM '73) project kept within its originally established goals for schedule, performance, and cost. Underlying this development success was the availability of the Mariner technology. But meeting the goals demanded management determination, planning, and discipline to make optimum use of state-of-the-art technology--on the part of people at NASA, JPL, and The Boeing Co. (the contractor).
How to develop renewable power in China? A cost-effective perspective.
Cong, Rong-Gang; Shen, Shaochuan
2014-01-01
To address the problems of climate change and energy security, Chinese government strived to develop renewable power as an important alternative of conventional electricity. In this paper, the learning curve model is employed to describe the decreasing unit investment cost due to accumulated installed capacity; the technology diffusion model is used to analyze the potential of renewable power. Combined with the investment cost, the technology potential, and scenario analysis of China social development in the future, we develop the Renewable Power Optimization Model (RPOM) to analyze the optimal development paths of three sources of renewable power from 2009 to 2020 in a cost-effective way. Results show that (1) the optimal accumulated installed capacities of wind power, solar power, and biomass power will reach 169000, 20000, and 30000 MW in 2020; (2) the developments of renewable power show the intermittent feature; (3) the unit investment costs of wind power, solar power, and biomass power will be 4500, 11500, and 5700 Yuan/KW in 2020; (4) the discounting effect dominates the learning curve effect for solar and biomass powers; (5) the rise of on-grid ratio of renewable power will first promote the development of wind power and then solar power and biomass power.
How to Develop Renewable Power in China? A Cost-Effective Perspective
2014-01-01
To address the problems of climate change and energy security, Chinese government strived to develop renewable power as an important alternative of conventional electricity. In this paper, the learning curve model is employed to describe the decreasing unit investment cost due to accumulated installed capacity; the technology diffusion model is used to analyze the potential of renewable power. Combined with the investment cost, the technology potential, and scenario analysis of China social development in the future, we develop the Renewable Power Optimization Model (RPOM) to analyze the optimal development paths of three sources of renewable power from 2009 to 2020 in a cost-effective way. Results show that (1) the optimal accumulated installed capacities of wind power, solar power, and biomass power will reach 169000, 20000, and 30000 MW in 2020; (2) the developments of renewable power show the intermittent feature; (3) the unit investment costs of wind power, solar power, and biomass power will be 4500, 11500, and 5700 Yuan/KW in 2020; (4) the discounting effect dominates the learning curve effect for solar and biomass powers; (5) the rise of on-grid ratio of renewable power will first promote the development of wind power and then solar power and biomass power. PMID:24578672
Advanced Envelope Research for Factory Built Housing, Phase 3. Design Development and Prototyping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levy, E.; Kessler, B.; Mullens, M.
2014-01-01
The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective alternative envelope designs. In the near term, these technologies will play a central role in meeting stringent energy code requirements. For manufactured homes, the thermal requirements, last updated by statute in 1994, will move up to the more rigorous IECC 2012 levels in 2013, the requirements of which are consistent with site built and modular housing. This places added urgency on identifying envelope technologies that the industry can implement in the short timeframe. The primary goal of this research is to develop wall designs that meet themore » thermal requirements based on 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing the new envelope technologies. This work is part of a four-phase, multi-year effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three selected methods for building high performance wall systems. Phase 2 focused on the development of viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped critique and select the most viable solution to move further in the research -- stud walls with continuous exterior insulation. Phase 3, the subject of the current report, focused on the design development of the selected wall concept and explored variations on the use of exterior foam insulation. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing.« less
Advanced Envelope Research for Factory Built Housing, Phase 3 -- Design Development and Prototyping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levy, E.; Kessler, B.; Mullens, M.
2014-01-01
The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective alternative envelope designs. In the near term, these technologies will play a central role in meeting stringent energy code requirements. For manufactured homes, the thermal requirements, last updated by statute in 1994, will move up to the more rigorous IECC 2012 levels in 2013, the requirements of which are consistent with site built and modular housing. This places added urgency on identifying envelope technologies that the industry can implement in the short timeframe. The primary goal of this research is to develop wall designs that meet themore » thermal requirements based on 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing the new envelope technologies. This work is part of a four-phase, multi-year effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three selected methods for building high performance wall systems. Phase 2 focused on the development of viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped critique and select the most viable solution to move further in the research -- stud walls with continuous exterior insulation. Phase 3, the subject of the current report, focused on the design development of the selected wall concept and explored variations on the use of exterior foam insulation. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing.« less
Allogeneic cell therapy bioprocess economics and optimization: downstream processing decisions.
Hassan, Sally; Simaria, Ana S; Varadaraju, Hemanthram; Gupta, Siddharth; Warren, Kim; Farid, Suzanne S
2015-01-01
To develop a decisional tool to identify the most cost effective process flowsheets for allogeneic cell therapies across a range of production scales. A bioprocess economics and optimization tool was built to assess competing cell expansion and downstream processing (DSP) technologies. Tangential flow filtration was generally more cost-effective for the lower cells/lot achieved in planar technologies and fluidized bed centrifugation became the only feasible option for handling large bioreactor outputs. DSP bottlenecks were observed at large commercial lot sizes requiring multiple large bioreactors. The DSP contribution to the cost of goods/dose ranged between 20-55%, and 50-80% for planar and bioreactor flowsheets, respectively. This analysis can facilitate early decision-making during process development.
NASA Astrophysics Data System (ADS)
Way, Yusoff
2018-01-01
The main aim of this research is to develop a new prototype and to conduct cost analysis of the existing roller clamp which is one of parts attached to Intravenous (I.V) Tubing used in Intravenous therapy medical device. Before proceed with the process to manufacture the final product using Fused Deposition Modeling (FDM) Technology, the data collected from survey were analyzed using Product Design Specifications approach. Selected concept has been proven to have better quality, functions and criteria compared to the existing roller clamp and the cost analysis of fabricating the roller clamp prototype was calculated.
Aerospace Engineering Systems and the Advanced Design Technologies Testbed Experience
NASA Technical Reports Server (NTRS)
VanDalsem, William R.; Livingston, Mary E.; Melton, John E.; Torres, Francisco J.; Stremel, Paul M.
1999-01-01
Continuous improvement of aerospace product development processes is a driving requirement across much of the aerospace community. As up to 90% of the cost of an aerospace product is committed during the first 10% of the development cycle, there is a strong emphasis on capturing, creating, and communicating better information (both requirements and performance) early in the product development process. The community has responded by pursuing the development of computer-based systems designed to enhance the decision-making capabilities of product development individuals and teams. Recently, the historical foci on sharing the geometrical representation and on configuration management are being augmented: 1) Physics-based analysis tools for filling the design space database; 2) Distributed computational resources to reduce response time and cost; 3) Web-based technologies to relieve machine-dependence; and 4) Artificial intelligence technologies to accelerate processes and reduce process variability. The Advanced Design Technologies Testbed (ADTT) activity at NASA Ames Research Center was initiated to study the strengths and weaknesses of the technologies supporting each of these trends, as well as the overall impact of the combination of these trends on a product development event. Lessons learned and recommendations for future activities are reported.
Load Disaggregation Technologies: Real World and Laboratory Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayhorn, Ebony T.; Sullivan, Greg P.; Petersen, Joseph M.
Low cost interval metering and communication technology improvements over the past ten years have enabled the maturity of load disaggregation (or non-intrusive load monitoring) technologies to better estimate and report energy consumption of individual end-use loads. With the appropriate performance characteristics, these technologies have the potential to enable many utility and customer facing applications such as billing transparency, itemized demand and energy consumption, appliance diagnostics, commissioning, energy efficiency savings verification, load shape research, and demand response measurement. However, there has been much skepticism concerning the ability of load disaggregation products to accurately identify and estimate energy consumption of end-uses; whichmore » has hindered wide-spread market adoption. A contributing factor is that common test methods and metrics are not available to evaluate performance without having to perform large scale field demonstrations and pilots, which can be costly when developing such products. Without common and cost-effective methods of evaluation, more developed disaggregation technologies will continue to be slow to market and potential users will remain uncertain about their capabilities. This paper reviews recent field studies and laboratory tests of disaggregation technologies. Several factors are identified that are important to consider in test protocols, so that the results reflect real world performance. Potential metrics are examined to highlight their effectiveness in quantifying disaggregation performance. This analysis is then used to suggest performance metrics that are meaningful and of value to potential users and that will enable researchers/developers to identify beneficial ways to improve their technologies.« less
Technology assessment of portable energy RDT and P, phase 1
NASA Technical Reports Server (NTRS)
Spraul, J. R. (Compiler)
1975-01-01
A technological assessment of portable energy research, development, technology, and production was undertaken to assess the technical, economic, environmental, and sociopolitical issues associated with portable energy options. Those courses of action are discussed which would impact aviation and air transportation research and technology. Technology assessment workshops were held to develop problem statements. The eighteen portable energy problem statements are discussed in detail along with each program's objective, approach, task description, and estimates of time and costs.
LED street lighting evaluation -- phase II : LED specification and life-cycle cost analysis.
DOT National Transportation Integrated Search
2015-01-01
Phase II of this study focused on developing a draft specification for LED luminaires to be used by IDOT : and a life-cycle cost analysis (LCCA) tool for solid state lighting technologies. The team also researched the : latest developments related to...
Low Cost Cryocoolers for High Temperature Superconductor Communication Filters
NASA Technical Reports Server (NTRS)
Brown, Davina
1998-01-01
This final report describes the work performed by a consortium of Industry and Government to develop low cost cryocoolers. The specific application was for low cost commercial based high temperature superconductor communication filters. This program was initiated in January 1995 and resulted in the successful demonstration of an HTS filter dewar cooled by a low cost pulse tube cryocooler. Further development of this cryocooler technology is proceeding through various contracts underway and proposed at this time.
Cost of an informatics-based diabetes management program.
Blanchfield, Bonnie B; Grant, Richard W; Estey, Greg A; Chueh, Henry C; Gazelle, G Scott; Meigs, James B
2006-01-01
The relatively high cost of information technology systems may be a barrier to hospitals thinking of adopting this technology. The experiences of early adopters may facilitate decision making for hospitals less able to risk their limited resources. This study identifies the costs to design, develop, implement, and operate an innovative informatics-based registry and disease management system (POPMAN) to manage type 2 diabetes in a primary care setting. The various cost components of POPMAN were systematically identified and collected. POPMAN cost 450,000 dollars to develop and operate over 3.5 years (1999-2003). Approximately 250,000 dollars of these costs are one-time expenditures or sunk costs. Annual operating costs are expected to range from 90,000 dollars to 110,000 dollars translating to approximately 90 dollars per patient for a 1,200 patient registry. The cost of POPMAN is comparable to the costs of other quality-improving interventions for patients with diabetes. Modifications to POPMAN for adaptation to other chronic diseases or to interface with new electronic medical record systems will require additional investment but should not be as high as initial development costs. POPMAN provides a means of tracking progress against negotiated quality targets, allowing hospitals to negotiate pay for performance incentives with insurers that may exceed the annual operating cost of POPMAN. As a result, the quality of care of patients with diabetes through use of POPMAN could be improved at a minimal net cost to hospitals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Philip
The research objective of this project is to design and demonstrate a low-cost, compact, easy-to-deploy, maintenance-free sensor node technology, and a network of such sensors, which enable the monitoring of multiphysical parameters and can transform today’s ordinary buildings into smart buildings with environmental awareness. We develop the sensor node and network via engineering and integration of existing technologies, including high-efficiency mechanical energy harvesting, and ultralow-power integrated circuits (ICs) for sensing and wireless communication. Through integration and innovative power management via specifically designed low-power control circuits for wireless sensing applications, and tailoring energy-harvesting components to indoor applications, the target products willmore » have smaller volume, higher efficiency, and much lower cost (in both manufacturing and maintenance) than the baseline technology. Our development and commercialization objective is to create prototypes for our target products under the CWRU-Intwine collaboration.« less
Processing experiments on non-Czochralski silicon sheet
NASA Technical Reports Server (NTRS)
Pryor, R. A.; Grenon, L. A.; Sakiotis, N. G.; Pastirik, E. M.; Sparks, T. O.; Legge, R. N.
1981-01-01
A program is described which supports and promotes the development of processing techniques which may be successfully and cost-effectively applied to low-cost sheets for solar cell fabrication. Results are reported in the areas of process technology, cell design, cell metallization, and production cost simulation.
Courses of Action to Optimize Heavy Bearings Cages
NASA Astrophysics Data System (ADS)
Szekely, V. G.
2016-11-01
The global expansion in the industrial, economically and technological context determines the need to develop products, technologies, processes and methods which ensure increased performance, lower manufacturing costs and synchronization of the main costs reported to the elementary values which correspond to utilization”. The development trend of the heavy bearing industry and the wide use of bearings determines the necessity of choosing the most appropriate material for a given application in order to meet the cumulative requirements of durability, reliability, strength, etc. Evaluation of commonly known or new materials represents a fundamental criterion, in order to choose the materials based on the cost, machinability and the technological process. In order to ensure the most effective basis for the decision, regarding the heavy bearing cage, in the first stage the functions of the product are established and in a further step a comparative analysis of the materials is made in order to establish the best materials which satisfy the product functions. The decision for selecting the most appropriate material is based largely on the overlapping of the material costs and manufacturing process during which the half-finished material becomes a finished product. The study is orientated towards a creative approach, especially towards innovation and reengineering by using specific techniques and methods applied in inventics. The main target is to find new efficient and reliable constructive and/or technological solutions which are consistent with the concept of sustainable development.
NASA Technical Reports Server (NTRS)
Wong, M. D.
1974-01-01
The role of technology in nontraditional higher education with particular emphasis on technology-based networks is analyzed nontraditional programs, institutions, and consortia are briefly reviewed. Nontraditional programs which utilize technology are studied. Technology-based networks are surveyed and analyzed with regard to kinds of students, learning locations, technology utilization, interinstitutional relationships, cost aspects, problems, and future outlook.
NASA Astrophysics Data System (ADS)
German, Kristine A.; Kubby, Joel; Chen, Jingkuang; Diehl, James; Feinberg, Kathleen; Gulvin, Peter; Herko, Larry; Jia, Nancy; Lin, Pinyen; Liu, Xueyuan; Ma, Jun; Meyers, John; Nystrom, Peter; Wang, Yao Rong
2004-07-01
Xerox Corporation has developed a technology platform for on-chip integration of latching MEMS optical waveguide switches and Planar Light Circuit (PLC) components using a Silicon On Insulator (SOI) based process. To illustrate the current state of this new technology platform, working prototypes of a Reconfigurable Optical Add/Drop Multiplexer (ROADM) and a l-router will be presented along with details of the integrated latching MEMS optical switches. On-chip integration of optical switches and PLCs can greatly reduce the size, manufacturing cost and operating cost of multi-component optical equipment. It is anticipated that low-cost, low-overhead optical network products will accelerate the migration of functions and services from high-cost long-haul markets to price sensitive markets, including networks for metropolitan areas and fiber to the home. Compared to the more common silica-on-silicon PLC technology, the high index of refraction of silicon waveguides created in the SOI device layer enables miniaturization of optical components, thereby increasing yield and decreasing cost projections. The latching SOI MEMS switches feature moving waveguides, and are advantaged across multiple attributes relative to alternative switching technologies, such as thermal optical switches and polymer switches. The SOI process employed was jointly developed under the auspice of the NIST APT program in partnership with Coventor, Corning IntelliSense Corp., and MicroScan Systems to enable fabrication of a broad range of free space and guided wave MicroOptoElectroMechanical Systems (MOEMS).
Cost Optimization and Technology Enablement COTSAT-1
NASA Technical Reports Server (NTRS)
Spremo, Stevan; Lindsay, Michael C.; Klupar, Peter Damian; Swank, Aaron J.
2010-01-01
Cost Optimized Test of Spacecraft Avionics and Technologies (COTSAT-1) is an ongoing spacecraft research and development project at NASA Ames Research Center (ARC). The space industry was a hot bed of innovation and development at its birth. Many new technologies were developed for and first demonstrated in space. In the recent past this trend has reversed with most of the new technology funding and research being driven by the private industry. Most of the recent advances in spaceflight hardware have come from the cell phone industry with a lag of about 10 to 15 years from lab demonstration to in space usage. NASA has started a project designed to address this problem. The prototype spacecraft known as Cost Optimized Test of Spacecraft Avionics and Technologies (COTSAT-1) and CheapSat work to reduce these issues. This paper highlights the approach taken by NASA Ames Research center to achieve significant subsystem cost reductions. The COSTAT-1 research system design incorporates use of COTS (Commercial Off The Shelf), MOTS (Modified Off The Shelf), and GOTS (Government Off The Shelf) hardware for a remote sensing spacecraft. The COTSAT-1 team demonstrated building a fully functional spacecraft for $500K parts and $2.0M labor. The COTSAT-1 system, including a selected science payload, is described within this paper. Many of the advancements identified in the process of cost reduction can be attributed to the use of a one-atmosphere pressurized structure to house the spacecraft components. By using COTS hardware, the spacecraft program can utilize investments already made by commercial vendors. This ambitious project development philosophy/cycle has yielded the COTSAT-1 flight hardware. This paper highlights the advancements of the COTSAT-1 spacecraft leading to the delivery of the current flight hardware that is now located at NASA Ames Research Center. This paper also addresses the plans for COTSAT-2.
Definition of technology development missions for early space station satellite servicing, volume 2
NASA Technical Reports Server (NTRS)
1983-01-01
The results of all aspects of the early space station satellite servicing study tasks are presented. These results include identification of servicing tasks (and locations), identification of servicing mission system and detailed objectives, functional/operational requirements analyses of multiple servicing scenarios, assessment of critical servicing technology capabilities and development of an evolutionary capability plan, design and validation of selected servicing technology development missions (TDMs), identification of space station satellite servicing accommodation needs, and the cost and schedule implications of acquiring both required technology capability development and conducting the selected TDMs.
Solar Electric Propulsion Technology Development for Electric Propulsion
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Kerslake, Thomas W.; Scheidegger, Robert J.; Woodworth, Andrew A.; Lauenstein, Jean-Marie
2015-01-01
NASA is developing technologies to prepare for human exploration missions to Mars. Solar electric propulsion (SEP) systems are expected to enable a new cost effective means to deliver cargo to the Mars surface. Nearer term missions to Mars moons or near-Earth asteroids can be used to both develop and demonstrate the needed technology for these future Mars missions while demonstrating new capabilities in their own right. This presentation discusses recent technology development accomplishments for high power, high voltage solar arrays and power management that enable a new class of SEP missions.
I-95 Corridor Coalition Project #3 (95-003) : surveillance requirements/technology
DOT National Transportation Integrated Search
1995-06-23
The purpose of this Surveillance Requirements/Technology (SR/T) Project is to develop an : implementation plan for a Corridor-wide traffic and environmental surveillance system using state-of-the-art and cost-effective technologies. To fulfill this p...
Stokes, Jennifer R; Hendrickson, Thomas P; Horvath, Arpad
2014-12-02
The water-energy nexus is of growing interest for researchers and policy makers because the two critical resources are interdependent. Their provision and consumption contribute to climate change through the release of greenhouse gases (GHGs). This research considers the potential for conserving both energy and water resources by measuring the life-cycle economic efficiency of greenhouse gas reductions through the water loss control technologies of pressure management and leak management. These costs are compared to other GHG abatement technologies: lighting, building insulation, electricity generation, and passenger transportation. Each cost is calculated using a bottom-up approach where regional and temporal variations for three different California water utilities are applied to all alternatives. The costs and abatement potential for each technology are displayed on an environmental abatement cost curve. The results reveal that water loss control can reduce GHGs at lower cost than other technologies and well below California's expected carbon trading price floor. One utility with an energy-intensive water supply could abate 135,000 Mg of GHGs between 2014 and 2035 and save--rather than spend--more than $130/Mg using the water loss control strategies evaluated. Water loss control technologies therefore should be considered in GHG abatement portfolios for utilities and policy makers.
Application of advanced technologies to small, short-haul aircraft
NASA Technical Reports Server (NTRS)
Andrews, D. G.; Brubaker, P. W.; Bryant, S. L.; Clay, C. W.; Giridharadas, B.; Hamamoto, M.; Kelly, T. J.; Proctor, D. K.; Myron, C. E.; Sullivan, R. L.
1978-01-01
The results of a preliminary design study which investigates the use of selected advanced technologies to achieve low cost design for small (50-passenger), short haul (50 to 1000 mile) transports are reported. The largest single item in the cost of manufacturing an airplane of this type is labor. A careful examination of advanced technology to airframe structure was performed since one of the most labor-intensive parts of the airplane is structures. Also, preliminary investigation of advanced aerodynamics flight controls, ride control and gust load alleviation systems, aircraft systems and turbo-prop propulsion systems was performed. The most beneficial advanced technology examined was bonded aluminum primary structure. The use of this structure in large wing panels and body sections resulted in a greatly reduced number of parts and fasteners and therefore, labor hours. The resultant cost of assembled airplane structure was reduced by 40% and the total airplane manufacturing cost by 16% - a major cost reduction. With further development, test verification and optimization appreciable weight saving is also achievable. Other advanced technology items which showed significant gains are as follows: (1) advanced turboprop-reduced block fuel by 15.30% depending on range; (2) configuration revisions (vee-tail)-empennage cost reduction of 25%; (3) leading-edge flap addition-weight reduction of 2500 pounds.
Herron, Seth; Williams, Eric
2013-08-06
Subsidy programs for new energy technologies are motivated by the experience curve: increased adoption of a technology leads to learning and economies of scale that lower costs. Geographic differences in fuel prices and climate lead to large variability in the economic performance of energy technologies. The notion of cascading diffusion is that regions with favorable economic conditions serve as the basis to build scale and reduce costs so that the technology becomes attractive in new regions. We develop a model of cascading diffusion and implement via a case study of residential solid oxide fuel cells (SOFCs) for combined heating and power. We consider diffusion paths within the U.S. and internationally. We construct market willingness-to-pay curves and estimate future manufacturing costs via an experience curve. Combining market and cost results, we find that for rapid cost reductions (learning rate = 25%), a modest public subsidy can make SOFC investment profitable for 20-160 million households. If cost reductions are slow however (learning rate = 15%), residential SOFCs may not become economically competitive. Due to higher energy prices in some countries, international diffusion is more favorable than domestic, mitigating much of the uncertainty in the learning rate.
Enabling MEMS technologies for communications systems
NASA Astrophysics Data System (ADS)
Lubecke, Victor M.; Barber, Bradley P.; Arney, Susanne
2001-11-01
Modern communications demands have been steadily growing not only in size, but sophistication. Phone calls over copper wires have evolved into high definition video conferencing over optical fibers, and wireless internet browsing. The technology used to meet these demands is under constant pressure to provide increased capacity, speed, and efficiency, all with reduced size and cost. Various MEMS technologies have shown great promise for meeting these challenges by extending the performance of conventional circuitry and introducing radical new systems approaches. A variety of strategic MEMS structures including various cost-effective free-space optics and high-Q RF components are described, along with related practical implementation issues. These components are rapidly becoming essential for enabling the development of progressive new communications systems technologies including all-optical networks, and low cost multi-system wireless terminals and basestations.
Relative benefits of potential autonomy technology investments
NASA Technical Reports Server (NTRS)
Lincoln, W. P.; Elfes, A.; Hutsberger, T.; Rodriguez, G.; Weisbin, C. R.
2003-01-01
We developed a framework that looks at both cost and risk early in the design process in order to determine the investment strategy in new technology development that will lead to the lowest risk mission possible which enables desired science return within a given budget.
Business developments of nonthermal solar technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, S.A.; Watts, R.L.; Williams, T.A.
1985-10-01
Information on the developments of nonthermal solar technologies is presented. The focus is on the success of wind energy conversion systems (WECS) and photovoltaics. Detailed information on the installed generating capacity, market sectors, financing sources, systems costs and warranties of WECS and photovoltaic systems is summarized. (BCS)
Low-Cost, Light Weight, Thin Film Solar Concentrator
NASA Technical Reports Server (NTRS)
Ganapathi, G.; Palisoc, A.; Nesmith, B.; Greschik, G.; Gidanian, K.; Kindler, A.
2013-01-01
This research addresses a cost barrier towards achieving a solar thermal collector system with an installed cost of $75/sq m and meet the Department of Energy's (DOE's) performance targets for optical errors, operations during windy conditions and lifetime. Current concentrators can cost as much as 40-50% of the total installed costs for a CSP plant. In order to reduce the costs from current $200-$250/sq m, it is important to focus on the overall system. The reflector surface is a key cost driver, and our film-based polymer reflector will help significantly in achieving DOE's cost target of $75/sq m. The ease of manufacturability, installation and replacement make this technology a compelling one to develop. This technology can be easily modified for a variety of CSP options including heliostats, parabolic dishes and parabolic troughs.
Structural Optimisation Of Payload Fairings
NASA Astrophysics Data System (ADS)
Santschi, Y.; Eaton, N.; Verheyden, S.; Michaud, V.
2012-07-01
RUAG Space are developing materials and processing technologies for manufacture of the Next Generation Launcher (NGL) payload fairing, together with the Laboratory of Polymer and Composite Technology at the EPFL, in a project running under the ESA Future Launchers Preparatory Program (FLPP). In this paper the general aims and scope of the project are described, details of the results obtained shall be presented at a later stage. RUAG Space design, develop and manufacture fairings for the European launch vehicles Ariane 5 and VEGA using well proven composite materials and production methods which provide adequate cost/performance ratio for these applications. However, the NGL shall make full use of innovations in materials and process technologies to achieve a gain in performance at a much reduced overall manufacturing cost. NGL is scheduled to become operational in 2025, with actual development beginning in 2014. In this current project the basic technology is being developed and validated, in readiness for application in the NGL. For this new application, an entirely new approach to the fairing manufacture is evaluated.
Embedded Web Technology: Applying World Wide Web Standards to Embedded Systems
NASA Technical Reports Server (NTRS)
Ponyik, Joseph G.; York, David W.
2002-01-01
Embedded Systems have traditionally been developed in a highly customized manner. The user interface hardware and software along with the interface to the embedded system are typically unique to the system for which they are built, resulting in extra cost to the system in terms of development time and maintenance effort. World Wide Web standards have been developed in the passed ten years with the goal of allowing servers and clients to intemperate seamlessly. The client and server systems can consist of differing hardware and software platforms but the World Wide Web standards allow them to interface without knowing about the details of system at the other end of the interface. Embedded Web Technology is the merging of Embedded Systems with the World Wide Web. Embedded Web Technology decreases the cost of developing and maintaining the user interface by allowing the user to interface to the embedded system through a web browser running on a standard personal computer. Embedded Web Technology can also be used to simplify an Embedded System's internal network.
NASA Technical Reports Server (NTRS)
VanDalsem, William R.; Livingston, Mary E.; Melton, John E.; Torres, Francisco J.; Stremel, Paul M.
1999-01-01
Continuous improvement of aerospace product development processes is a driving requirement across much of the aerospace community. As up to 90% of the cost of an aerospace product is committed during the first 10% of the development cycle, there is a strong emphasis on capturing, creating, and communicating better information (both requirements and performance) early in the product development process. The community has responded by pursuing the development of computer-based systems designed to enhance the decision-making capabilities of product development individuals and teams. Recently, the historical foci on sharing the geometrical representation and on configuration management are being augmented: Physics-based analysis tools for filling the design space database; Distributed computational resources to reduce response time and cost; Web-based technologies to relieve machine-dependence; and Artificial intelligence technologies to accelerate processes and reduce process variability. Activities such as the Advanced Design Technologies Testbed (ADTT) project at NASA Ames Research Center study the strengths and weaknesses of the technologies supporting each of these trends, as well as the overall impact of the combination of these trends on a product development event. Lessons learned and recommendations for future activities will be reported.
Hutchison, Justin M; Guest, Jeremy S; Zilles, Julie L
2017-06-20
Removing micropollutants is challenging in part because of their toxicity at low concentrations. A biocatalytic approach could harness the high affinity of enzymes for their substrates to address this challenge. The potential of biocatalysis relative to mature (nonselective ion exchange, selective ion exchange, and whole-cell biological reduction) and emerging (catalysis) perchlorate-removal technologies was evaluated through a quantitative sustainable design framework, and research objectives were prioritized to advance economic and environmental sustainability. In its current undeveloped state, the biocatalytic technology was approximately 1 order of magnitude higher in cost and environmental impact than nonselective ion exchange. Biocatalyst production was highly correlated with cost and impact. Realistic improvement scenarios targeting biocatalyst yield, biocatalyst immobilization for reuse, and elimination of an electron shuttle could reduce total costs to $0.034 m -3 and global warming potential (GWP) to 0.051 kg CO 2 eq m -3 : roughly 6.5% of cost and 7.3% of GWP of the background from drinking water treatment and competitive with the best performing technology, selective ion exchange. With less stringent perchlorate regulatory limits, ion exchange technologies had increased cost and impact, in contrast to biocatalytic and catalytic technologies. Targeted advances in biocatalysis could provide affordable and sustainable treatment options to protect the public from micropollutants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephens, T.
2013-03-01
Consumer preferences are key to the adoption of new vehicle technologies. Barriers to consumer adoption include price and other obstacles, such as limited driving range and charging infrastructure; unfamiliarity with the technology and uncertainty about direct benefits; limited makes and models with the technology; reputation or perception of the technology; standardization issues; and regulations. For each of these non-cost barriers, this report estimates an effective cost and summarizes underlying influences on consumer preferences, approximate magnitude and relative severity, and assesses potential actions, based on a comprehensive literature review. While the report concludes that non-cost barriers are significant, effective cost andmore » potential market share are very uncertain. Policies and programs including opportunities for drivers to test drive advanced vehicles, general public outreach and information programs, incentives for providing charging and fueling infrastructure, and development of technology standards were examined for their ability to address barriers, but little quantitative data exists on the effectiveness of these measures. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.« less
The human role in space (THURIS) applications study. Final briefing
NASA Technical Reports Server (NTRS)
Maybee, George W.
1987-01-01
The THURIS (The Human Role in Space) application is an iterative process involving successive assessments of man/machine mixes in terms of performance, cost and technology to arrive at an optimum man/machine mode for the mission application. The process begins with user inputs which define the mission in terms of an event sequence and performance time requirements. The desired initial operational capability date is also an input requirement. THURIS terms and definitions (e.g., generic activities) are applied to the input data converting it into a form which can be analyzed using the THURIS cost model outputs. The cost model produces tabular and graphical outputs for determining the relative cost-effectiveness of a given man/machine mode and generic activity. A technology database is provided to enable assessment of support equipment availability for selected man/machine modes. If technology gaps exist for an application, the database contains information supportive of further investigation into the relevant technologies. The present study concentrated on testing and enhancing the THURIS cost model and subordinate data files and developing a technology database which interfaces directly with the user via technology readiness displays. This effort has resulted in a more powerful, easy-to-use applications system for optimization of man/machine roles. Volume 1 is an executive summary.
NASA Technical Reports Server (NTRS)
Thomas, Dale; Smith, Charles; Thomas, Leann; Kittredge, Sheryl
2002-01-01
The overall goal of the 2nd Generation RLV Program is to substantially reduce technical and business risks associated with developing a new class of reusable launch vehicles. NASA's specific goals are to improve the safety of a 2nd-generation system by 2 orders of magnitude - equivalent to a crew risk of 1-in-10,000 missions - and decrease the cost tenfold, to approximately $1,000 per pound of payload launched. Architecture definition is being conducted in parallel with the maturating of key technologies specifically identified to improve safety and reliability, while reducing operational costs. An architecture broadly includes an Earth-to-orbit reusable launch vehicle, on-orbit transfer vehicles and upper stages, mission planning, ground and flight operations, and support infrastructure, both on the ground and in orbit. The systems engineering approach ensures that the technologies developed - such as lightweight structures, long-life rocket engines, reliable crew escape, and robust thermal protection systems - will synergistically integrate into the optimum vehicle. To best direct technology development decisions, analytical models are employed to accurately predict the benefits of each technology toward potential space transportation architectures as well as the risks associated with each technology. Rigorous systems analysis provides the foundation for assessing progress toward safety and cost goals. The systems engineering review process factors in comprehensive budget estimates, detailed project schedules, and business and performance plans, against the goals of safety, reliability, and cost, in addition to overall technical feasibility. This approach forms the basis for investment decisions in the 2nd Generation RLV Program's risk-reduction activities. Through this process, NASA will continually refine its specialized needs and identify where Defense and commercial requirements overlap those of civil missions.
NASA Technical Reports Server (NTRS)
Thomas, Dale; Smith, Charles; Thomas, Leann; Kittredge, Sheryl
2002-01-01
The overall goal of the 2nd Generation RLV Program is to substantially reduce technical and business risks associated with developing a new class of reusable launch vehicles. NASA's specific goals are to improve the safety of a 2nd generation system by 2 orders of magnitude - equivalent to a crew risk of 1-in-10,000 missions - and decrease the cost tenfold, to approximately $1,000 per pound of payload launched. Architecture definition is being conducted in parallel with the maturating of key technologies specifically identified to improve safety and reliability, while reducing operational costs. An architecture broadly includes an Earth-to-orbit reusable launch vehicle, on-orbit transfer vehicles and upper stages, mission planning, ground and flight operations, and support infrastructure, both on the ground and in orbit. The systems engineering approach ensures that the technologies developed - such as lightweight structures, long-life rocket engines, reliable crew escape, and robust thermal protection systems - will synergistically integrate into the optimum vehicle. To best direct technology development decisions, analytical models are employed to accurately predict the benefits of each technology toward potential space transportation architectures as well as the risks associated with each technology. Rigorous systems analysis provides the foundation for assessing progress toward safety and cost goals. The systems engineering review process factors in comprehensive budget estimates, detailed project schedules, and business and performance plans, against the goals of safety, reliability, and cost, in addition to overall technical feasibility. This approach forms the basis for investment decisions in the 2nd Generation RLV Program's risk-reduction activities. Through this process, NASA will continually refine its specialized needs and identify where Defense and commercial requirements overlap those of civil missions.
Frosta: a new technology for making fast-melting tablets.
Jeong, Seong Hoon; Fu, Yourong; Park, Kinam
2005-11-01
The fast-melting tablet (FMT) technology, which is known to be one of the most innovated methods in oral drug delivery systems, is a rapidly growing area of drug delivery. The initial success of the FMT formulation led to the development of various technologies. These technologies, however, still have some limitations. Recently, a new technology called Frosta (Akina) was developed for making FMTs. The Frosta technology utilises the conventional wet granulation process and tablet press for cost-effective production of tablets. The Frosta tablets are mechanically strong with friability of < 1% and are stable in accelerated stability conditions when packaged into a bottle container. They are robust enough to be packaged in multi-tablet vials. Conventional rotary tablet presses can be used for the production of the tablets and no other special instruments are required. Thus, the cost of making FMTs is lower than that of other existing technologies. Depending on the size, Frosta tablets can melt in < 10 s after placing them in the oral cavity for easy swallowing. The Frosta technology is ideal for wide application of FMTs technology to various drug and nutritional formulations.
The NASA In-Space Propulsion Technology Project's Current Products and Future Directions
NASA Technical Reports Server (NTRS)
Anderson, David J.; Dankanich, John; Munk, Michelle M.; Pencil, Eric; Liou, Larry
2010-01-01
Since its inception in 2001, the objective of the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling for future NASA flagship and sample return missions currently under consideration, as well as having broad applicability to future Discovery and New Frontiers mission solicitations. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that recently completed, or will be completing within the next year, their technology development and are ready for infusion into missions. The paper also describes the ISPT project s future focus on propulsion for sample return missions. The ISPT technologies completing their development are: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) aerocapture technologies which include thermal protection system (TPS) materials and structures, guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and atmospheric and aerothermal effect models. The future technology development areas for ISPT are: 1) Planetary Ascent Vehicles (PAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) needed for sample return missions from many different destinations; 3) propulsion for Earth Return Vehicles (ERV) and transfer stages, and electric propulsion for sample return and low cost missions; 4) advanced propulsion technologies for sample return; and 5) Systems/Mission Analysis focused on sample return propulsion.
Cost of illness and economic evaluation in rare diseases.
López-Bastida, Julio; Oliva-Moreno, Juan
2010-01-01
Rare diseases are a major cause of morbidity and mortality in high income countries and have major repercussions on individuals and health care systems. This chapter examines the health economy of rare diseases from two different perspectives: firstly, the study of the economic impact of rare diseases (Cost of Illness studies); and, secondly, cost-effectiveness evaluation, which evaluates both the costs and results of the health care technologies applied in rare diseases. From the point of view of economics, health resource allocation is based on the principle of scarcity, as there are not - and never will be- sufficient resources for all worthy objectives. Hence, policy makers should balance costs and health outcomes. Rare diseases may well represent a significant societal burden that should rightly receive appropriate prioritisation of health care resources. As new and seemingly expensive health care technologies are developed for rare diseases, it will become increasingly important to evaluate potential and real impact of these new technologies in both dimensions: social costs and health outcomes.
Advanced space propulsion concepts
NASA Technical Reports Server (NTRS)
Lapointe, Michael R.
1993-01-01
The NASA Lewis Research Center has been actively involved in the evaluation and development of advanced spacecraft propulsion. Recent program elements have included high energy density propellants, electrode less plasma thruster concepts, and low power laser propulsion technology. A robust advanced technology program is necessary to develop new, cost-effective methods of spacecraft propulsion, and to continue to push the boundaries of human knowledge and technology.
Light-Duty Vehicle Fuel Consumption Displacement Potential up to 2045
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moawad, Ayman; Rousseau, Aymeric
2016-04-01
The U.S. Department of Energy (DOE) Vehicle Technologies Program (VTP) is developing more energy-efficient and environmentally friendly highway transportation technologies that will enable America to use less petroleum. The long-term aim is to develop "leapfrog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.
Research and Development Project Summaries, October 1991
1991-10-01
delivery methods, training cost reduction, demonstration of technology’ effectiveness, and the reduction of acquisition risk . The majority of the work...demonstrations, risk reduction developments, and cost-effectiveness investigations in simulator and training technologzv. This advanced development program is a...systems. The program is organized around specific demonstration tasks that target critical technical risks that confront future weapons system
Structures and Materials Technologies for Extreme Environments Applied to Reusable Launch Vehicles
NASA Technical Reports Server (NTRS)
Scotti, Stephen J.; Clay, Christopher; Rezin, Marc
2003-01-01
This paper provides an overview of the evolution of structures and materials technology approaches to survive the challenging extreme environments encountered by earth-to-orbit space transportation systems, with emphasis on more recent developments in the USA. The evolution of technology requirements and experience in the various approaches to meeting these requirements has significantly influenced the technology approaches. While previous goals were primarily performance driven, more recently dramatic improvements in costs/operations and in safety have been paramount goals. Technologies that focus on the cost/operations and safety goals in the area of hot structures and thermal protection systems for reusable launch vehicles are presented. Assessments of the potential ability of the various technologies to satisfy the technology requirements, and their current technology readiness status are also presented.
Technology for small spacecraft
NASA Technical Reports Server (NTRS)
1994-01-01
This report gives the results of a study by the National Research Council's Panel on Small Spacecraft Technology that reviewed NASA's technology development program for small spacecraft and assessed technology within the U.S. government and industry that is applicable to small spacecraft. The panel found that there is a considerable body of advanced technology currently available for application by NASA and the small spacecraft industry that could provide substantial improvement in capability and cost over those technologies used for current NASA small spacecraft. These technologies are the result of developments by commercial companies, Department of Defense agencies, and to a lesser degree NASA. The panel also found that additional technologies are being developed by these same entities that could provide additional substantial improvement if development is successfully completed. Recommendations for future technology development efforts by NASA across a broad technological spectrum are made.
Biomarkers in cancer screening: a public health perspective.
Srivastava, Sudhir; Gopal-Srivastava, Rashmi
2002-08-01
The last three decades have witnessed a rapid advancement and diffusion of technology in health services. Technological innovations have given health service providers the means to diagnose and treat an increasing number of illnesses, including cancer. In this effort, research on biomarkers for cancer detection and risk assessment has taken a center stage in our effort to reduce cancer deaths. For the first time, scientists have the technologies to decipher and understand these biomarkers and to apply them to earlier cancer detection. By identifying people at high risk of developing cancer, it would be possible to develop intervention efforts on prevention rather than treatment. Once fully developed and validated, then the regular clinical use of biomarkers in early detection and risk assessment will meet nationally recognized health care needs: detection of cancer at its earliest stage. The dramatic rise in health care costs in the past three decades is partly related to the proliferation of new technologies. More recent analysis indicates that technological change, such as new procedures, products and capabilities, is the primary explanation of the historical increase in expenditure. Biomarkers are the new entrants in this competing environment. Biomarkers are considered as a competing, halfway or add-on technology. Technology such as laboratory tests of biomarkers will cost less compared with computed tomography (CT) scans and other radiographs. However, biomarkers for earlier detection and risk assessment have not achieved the level of confidence required for clinical applications. This paper discusses some issues related to biomarker development, validation and quality assurance. Some data on the trends of diagnostic technologies, proteomics and genomics are presented and discussed in terms of the market share. Eventually, the use of biomarkers in health care could reduce cost by providing noninvasive, sensitive and reliable assays at a fraction of the cost of definitive technology, such as CT scan. The National Cancer Institute's Early Detection Research Network (EDRN) has begun an innovative, investigator-initiated project to improve methods for detecting the biomarkers of cancer cells. The EDRN is a consortium of more than 32 institutions to link discovery of biomarkers to the next steps in the process of developing early detection tests. These discoveries will lead to early clinical validation of tests with improved accuracy and reliability.
Nano-Launcher Technologies, Approaches, and Life Cycle Assessment. Phase II
NASA Technical Reports Server (NTRS)
Zapata, Edgar
2014-01-01
Assist in understanding NASA technology and investment approaches, and other driving factors, necessary for enabling dedicated nano-launchers by industry at a cost and flight rate that (1) could support and be supported by an emerging nano-satellite market and (2) would benefit NASAs needs. Develop life-cycle cost, performance and other NASA analysis tools or models required to understand issues, drivers and challenges.
Updated Buildings Sector Appliance and Equipment Costs and Efficiency
2016-01-01
EIA works with technology experts to project the cost and efficiency of future HVAC, lighting, and other major end-use equipment rather than developing residential and commercial technology projections in-house. These reports have always been available by request. By providing the reports online, EIA is increasing transparency for some of the most important assumptions used for our AEO projections of buildings energy demand.
Space technology research plans
NASA Technical Reports Server (NTRS)
Hook, W. Ray
1992-01-01
Development of new technologies is the primary purpose of the Office of Aeronautics and Space Technology (OAST). OAST's mission includes the following two goals: (1) to conduct research to provide fundamental understanding, develop advanced technology and promote technology transfer to assure U.S. preeminence in aeronautics and to enhance and/or enable future civil space missions: and (2) to provide unique facilities and technical expertise to support national aerospace needs. OAST includes both NASA Headquarters operations as well as programmatic and institutional management of the Ames Research Center, the Langley Research Center and the Lewis Research Center. In addition. a considerable portion of OAST's Space R&T Program is conducted through the flight and science program field centers of NASA. Within OAST, the Space Technology Directorate is responsible for the planning and implementation of the NASA Space Research and Technology Program. The Space Technology Directorate's mission is 'to assure that OAST shall provide technology for future civil space missions and provide a base of research and technology capabilities to serve all national space goals.' Accomplishing this mission entails the following objectives: y Identify, develop, validate and transfer technology to: (1) increase mission safety and reliability; (2) reduce flight program development and operations costs; (3) enhance mission performance; and (4) enable new missions. Provide the capability to: (1) advance technology in critical disciplines; and (2) respond to unanticipated mission needs. In-space experiments are an integral part of OAST's program and provides for experimental studies, development and support for in-space flight research and validation of advanced space technologies. Conducting technology experiments in space is a valuable and cost effective way to introduce advanced technologies into flight programs. These flight experiments support both the R&T base and the focussed programs within OAST.
Impact of Agile Software Development Model on Software Maintainability
ERIC Educational Resources Information Center
Gawali, Ajay R.
2012-01-01
Software maintenance and support costs account for up to 60% of the overall software life cycle cost and often burdens tightly budgeted information technology (IT) organizations. Agile software development approach delivers business value early, but implications on software maintainability are still unknown. The purpose of this quantitative study…
Low-cost solar array project and Proceedings of the 15th Project Integration Meeting
NASA Technical Reports Server (NTRS)
1980-01-01
Progress made by the Low-Cost Solar Array Project during the period December 1979 to April 1980 is described. Project analysis and integration, technology development in silicon material, large area silicon sheet and encapsulation, production process and equipment development, engineering, and operation are included.
A Low Cost Course Information Syndication System
ERIC Educational Resources Information Center
Ajayi, A. O.; Olajubu, E. A.; Bello, S. A.; Soriyan, H. A.; Obamuyide, A. V.
2011-01-01
This study presents a cost effective, reliable, and convenient mobile web-based system to facilitate the dissemination of course information to students, to support interaction that goes beyond the classroom. The system employed the Really Simple Syndication (RSS) technology and was developed using Rapid Application Development (RAD) methodology.…
FY 2001 and Beyond Program Plan
NASA Technical Reports Server (NTRS)
Bowles, Dave
2000-01-01
The scope of the project summarized in this viewgraph presentation is to develop and demonstrate third generation airframe technologies that provide significant reductions in cost of space transportation systems while dramatically improving the safety and higher operability of those systems. The Earth-to-orbit goal is to conduct research and technology development and demonstrations which will enable US industry to increase safety by four orders of magnitude (loss of vehicle/crew probability less than 1 in 1,000,000 missions) and reduce costs by two orders of magnitude within 25 years.
Development of the silane process for the production of low-cost polysilicon
NASA Technical Reports Server (NTRS)
Iya, S. K.
1986-01-01
It was recognized that the traditional hot rod type deposition process for decomposing silane is energy intensive, and a different approach for converting silane to silicon was chosen. A 1200 metric tons/year capacity commercial plant was constructed in Moses Lake, Washington. A fluidized bed processor was chosen as the most promising technology and several encouraging test runs were conducted. This technology continues to be very promising in producing low cost polysilicon. The Union Carbide silane process and the research development on the fluidized bed silane decomposition are discussed.
Preliminary Multivariable Cost Model for Space Telescopes
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2010-01-01
Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. Previously, the authors published two single variable cost models based on 19 flight missions. The current paper presents the development of a multi-variable space telescopes cost model. The validity of previously published models are tested. Cost estimating relationships which are and are not significant cost drivers are identified. And, interrelationships between variables are explored
ERIC Educational Resources Information Center
Lanki, Jari
2006-01-01
This article looks at the ethical implications of the use of information and communications technology (ICT) in bringing about development in developing societies. Any proposed means to enhance development has costs as well as benefits. Hence, the evaluation of a given means to development should always be a matter of "applied ethics".…
User needs as a basis for advanced technology. [U.S. civil space program
NASA Technical Reports Server (NTRS)
Mankins, John C.; Reck, Gregory M.
1992-01-01
The NASA Integrated Technology Plan (ITP) is described with treatment given to the identification of U.S. technology needs, space research and technology programs, and some ITP implementations. The ITP is based on the development and transfer of technologies relevant to the space program that also have significant implications for general technological research. Among the areas of technological research identified are: astrophysics, earth sciences, microgravity, and space physics. The Office of Space Science and Applications prioritizes the technology needs in three classes; the highest priority is given to submm and microwave technologies for earth sciences and astrophysics study. Other government and commercial needs are outlined that include cryogenic technologies, low-cost engines, advanced data/signal processing, and low-cost ELVs. It is demonstrated that by identifying and addressing these areas of user technology needs NASA's research and technology program can enhance U.S. trade and industrial competitiveness.
The economic impact of assisted reproductive technology: a review of selected developed countries.
Chambers, Georgina M; Sullivan, Elizabeth A; Ishihara, Osamu; Chapman, Michael G; Adamson, G David
2009-06-01
To compare regulatory and economic aspects of assisted reproductive technologies (ART) in developed countries. Comparative policy and economic analysis. Couples undergoing ART treatment in the United States, Canada, United Kingdom, Scandinavia, Japan, and Australia. Description of regulatory and financing arrangements, cycle costs, cost-effectiveness ratios, total expenditure, utilization, and price elasticity. Regulation and financing of ART share few general characteristics in developed countries. The cost of treatment reflects the costliness of the underlying healthcare system rather than the regulatory or funding environment. The cost (in 2006 United States dollars) of a standard IVF cycle ranged from $12,513 in the United States to $3,956 in Japan. The cost per live birth was highest in the United States and United Kingdom ($41,132 and $40,364, respectively) and lowest in Scandinavia and Japan ($24,485 and $24,329, respectively). The cost of an IVF cycle after government subsidization ranged from 50% of annual disposable income in the United States to 6% in Australia. The cost of ART treatment did not exceed 0.25% of total healthcare expenditure in any country. Australia and Scandinavia were the only country/region to reach levels of utilization approximating demand, with North America meeting only 24% of estimated demand. Demand displayed variable price elasticity. Assisted reproductive technology is expensive from a patient perspective but not from a societal perspective. Only countries with funding arrangements that minimize out-of-pocket expenses met expected demand. Funding mechanisms should maximize efficiency and equity of access while minimizing the potential harm from multiple births.
NASA Astrophysics Data System (ADS)
Garcia, Elena
The demand for air travel is expanding beyond the capacity of the existing National Airspace System. Excess traffic results in delays and compromised safety. Thus, a number of initiatives to improve airspace capacity have been proposed. To assess the impact of these technologies on air traffic one must move beyond the vehicle to a system-of-systems point of view. This top-level perspective must include consideration of the aircraft, airports, air traffic control and airlines that make up the airspace system. In addition to these components and their interactions economics, safety and government regulations must also be considered. Furthermore, the air transportation system is inherently variable with changes in everything from fuel prices to the weather. The development of a modeling environment that enables a comprehensive probabilistic evaluation of technological impacts was the subject of this thesis. The final modeling environment developed used economics as the thread to tie the airspace components together. Airport capacities and delays were calculated explicitly with due consideration to the impacts of air traffic control. The delay costs were then calculated for an entire fleet, and an airline economic analysis, considering the impact of these costs, was carried out. Airline return on investment was considered the metric of choice since it brings together all costs and revenues, including the cost of delays, landing fees for airport use and aircraft financing costs. Safety was found to require a level of detail unsuitable for a system-of-systems approach and was relegated to future airspace studies. Environmental concerns were considered to be incorporated into airport regulations and procedures and were not explicitly modeled. A deterministic case study was developed to test this modeling environment. The Atlanta airport operations for the year 2000 were used for validation purposes. A 2005 baseline was used as a basis for comparing the four technologies considered: a very large aircraft, Terminal Area Productivity air traffic control technologies, smoothing of an airline schedule, and the addition of a runway. A case including all four technologies simultaneously was also considered. Unfortunately, the complexity of the system prevented full exploration of the probabilistic aspects of the National Airspace System.
Ding, Linlin; Wang, Yanji; Wu, Zhaoliang; Liu, Wei; Li, Rui; Wang, Yanyan
2016-10-02
A novel technology coupling extraction and foam fractionation was developed for separating the total saponins from Achyranthes bidentata. In the developed technology, the powder of A. bidentata was loaded in a nylon filter cloth pocket with bore diameter of 180 µm. The pocket was fixed in the bulk liquid phase for continuously releasing saponins. Under the optimal conditions, the concentration and the extraction rate of the total saponins in the foamate by the developed technology were 73.5% and 416.2% higher than those by the traditional technology, respectively. The foamates obtained by the traditional technology and the developed technology were analyzed by ultraperformance liquid chromatography-mass spectrometry to determine their ingredients, and the results appeared that the developed technology exhibited a better performance for separating saponins than the traditional technology. The study is expected to develop a novel technology for cost effectively separating plant-derived materials with surface activity.
TECHNOLOGY INTEGRATION FOR CONTAMINATED SITE REMEDIATION: CLEANUP GOALS & PERFORMANCE CRITERIA
There is a need to develop and field-test integrated remediation technologies that operate in a synergistic manner for cost-effective treatment of contaminated sites to achieve risk-based and rational endpoints. Aggressive technologies designed for rapid source-zone remediation m...
NASA Astrophysics Data System (ADS)
Penn, Jay P.
1996-03-01
It is generally believed by those skilled in launch system design that Single-Stage-To-Orbit (SSTO) designs are more technically challenging, more performance sensitive, and yield larger lift-off weights than do Two-Stage-To-Orbit designs (TSTO's) offering similar payload delivery capability. Without additional insight into the other considerations which drive the development, recurring costs, operability, and reliability of a launch fleet, an analyst may easily conclude that the higher performing, less sensitive TSTO designs, thus yield a better solution to achieving low cost payload delivery. This limited insight could justify an argument to eliminate the X-33 SSTO technology/demonstration development effort, and thus proceed directly to less risky TSTO designs. Insight into real world design considerations of launch vehicles makes the choice of SSTO vs TSTO much less clear. The presentation addresses a more comprehensive evaluation of the general class of SSTO and TSTO concepts. These include pure SSTO's, augmented SSTO's, Siamese Twin, and Pure TSTO designs. The assessment considers vehicle performance and scaling relationships which characterize real vehicle designs. The assessment also addresses technology requirements, operations and supportability, cost implications, and sensitivities. Results of the assessment indicate that the trade space between various SSTO and TSTO design approaches is complex and not yet fully understood. The results of the X-33 technology demonstrators, as well as additional parametric analysis is required to better define the relative performance and costs of the various design approaches. The results also indicate that with modern technologies and today's better understanding of vehicle design considerations, the perception that SSTO's are dramatically heavier and more sensitive than TSTO designs is more of a myth, than reality.
NASA Astrophysics Data System (ADS)
Karabeyoglu, Arif; Tuncer, Onur; Inalhan, Gokhan
2016-07-01
Mankind is relient on chemical propulsion systems for space access. Nevertheless, this has been a stagnant area in terms of technological development and the technology base has not changed much almost for the past forty years. This poses a vicious circle for launch applications such that high launch costs constrain the demand and low launch freqencies drive costs higher. This also has been a key limiting factor for small and micro satellites that are geared towards planetary science. Rather this be because of the launch frequencies or the costs, the access of small and micro satellites to orbit has been limited. With today's technology it is not possible to escape this circle. However the emergence of cost effective and high performance propulsion systems such as advanced hybrid rockets can decrease launch costs by almost an order or magnitude. This paper briefly introduces the timeline and research challenges that were overcome during the development of advanced hybrid LOX/paraffin based rockets. Experimental studies demonstrated effectiveness of these advanced hybrid rockets which incorporate fast burning parafin based fuels, advanced yet simple internal balistic design and carbon composite winding/fuel casting technology that enables the rocket motor to be built from inside out. A feasibility scenario is studied using these rocket motors as building blocks for a modular launch vehicle capable of delivering micro satellites into low earth orbit. In addition, the building block rocket motor can be used further solar system missions providing the ability to do standalone small and micro satellite missions to planets within the solar system. This enabling technology therefore offers a viable alternative in order to escape the viscous that has plagued the space launch industry and that has limited the small and micro satellite delivery for planetary science.
Reengineering the Project Design Process
NASA Technical Reports Server (NTRS)
Casani, E.; Metzger, R.
1994-01-01
In response to NASA's goal of working faster, better and cheaper, JPL has developed extensive plans to minimize cost, maximize customer and employee satisfaction, and implement small- and moderate-size missions. These plans include improved management structures and processes, enhanced technical design processes, the incorporation of new technology, and the development of more economical space- and ground-system designs. The Laboratory's new Flight Projects Implementation Office has been chartered to oversee these innovations and the reengineering of JPL's project design process, including establishment of the Project Design Center and the Flight System Testbed. Reengineering at JPL implies a cultural change whereby the character of its design process will change from sequential to concurrent and from hierarchical to parallel. The Project Design Center will support missions offering high science return, design to cost, demonstrations of new technology, and rapid development. Its computer-supported environment will foster high-fidelity project life-cycle development and cost estimating.
Status of molten carbonate fuel cell technology development
NASA Astrophysics Data System (ADS)
Parsons, E. L., Jr.; Williams, M. C.; George, T. J.
The MCFC technology has been identified by the DOE as a promising product for commercialization. Development of the MCFC technology supports the National Energy Strategy. Review of the status of the MCFC technology indicates that the MCFC technology developers are making rapid and significant progress. Manufacturing facility development and extensive testing is occurring. Improvements in performance (power density), lower costs, improved packaging, and scale up to full height are planned. MCFC developers need to continue to be responsive to end-users in potential markets. It will be market demands for the correct product definition which will ultimately determine the character of MCFC power plants. There is a need for continued MCFC product improvement and multiple product development tests.
Medical technology management: from planning to application.
David, Y; Jahnke, E
2005-01-01
Appropriate deployment of technological innovation contributes to improvement in the quality of healthcare delivered, the containment of cost, and access to the healthcare system. Hospitals have been allocating a significant portion of their resources to procuring and managing capital assets; they are continuously faced with demands for new medical equipment and are asked to manage existing inventory for which they are not well prepared. To objectively manage their investment, hospitals are developing medical technology management programs that need pertinent information and planning methodology for integrating new equipment into existing operations as well as for optimizing costs of ownership of all equipment. Clinical engineers can identify technological solutions based on the matching of new medical equipment with hospital's objectives. They can review their institution's overall technological position, determine strengths and weaknesses, develop equipment-selection criteria, supervise installations, train users and monitor post procurement performance to assure meeting of goals. This program, together with cost accounting analysis, will objectively guide the capital assets decision-making process. Cost accounting analysis is a multivariate function that includes determining the amount, based upon a strategic plan and financial resources, of funding to be allocated annually for medical equipment acquisition and replacement. Often this function works closely with clinical engineering to establish equipment useful life and prioritization of acquisition, upgrade, and replacement of inventory within budget confines and without conducting time consuming, individual financial capital project evaluations.
Technology Assessment for Future MILSATCOM Systems; An Update of the EHF Bands
1980-10-01
converging these efforts, the MSO has prepared a "Technology Development Program Plan" ( TDPP ). The TOPP defines a coordinated approach to the R&D...required to insure the availability of the technology necessary to support future systems. Some of the objectives of the TDPP are: to minimize...and TDPP have illuminated the need for technology development efforts directed toward minimizing the cost- risk and schedule-risk, and insuring the
Sensor Technology for Integrated Vehicle Health Management of Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Prosser, W. H.; Brown, T. L.; Woodard, S. E.; Fleming, G. A.; Cooper, E. G.
2002-01-01
NASA is focusing considerable efforts on technology development for Integrated Vehicle Health Management systems. The research in this area is targeted toward increasing aerospace vehicle safety and reliability, while reducing vehicle operating and maintenance costs. Onboard, real-time sensing technologies that can provide detailed information on structural integrity are central to such a health management system. This paper describes a number of sensor technologies currently under development for integrated vehicle health management. The capabilities, current limitations, and future research needs of these technologies are addressed.
Too expensive to meter: the influence of transaction costs in transportation and communication.
Levinson, David; Odlyzko, Andrew
2008-06-13
Technology appears to be making fine-scale charging (as in tolls on roads that depend on time of day or even on current and anticipated levels of congestion) increasingly feasible. Such charging also appears to be increasingly desirable, as traffic on roads continues to grow and costs and public opposition limit new construction. Similar incentives towards fine-scale charging also appear to be operating in communications and other areas, such as electricity usage. Standard economic theory supports such measures and technology is being developed and deployed to implement them. But their spread is not very rapid and their prospects for the future are uncertain. This paper presents a collection of sketches, ranging from ancient history to very recent developments, that illustrate the costs that charging imposes. Some of those costs are explicit (in terms of the monetary costs to users and the costs of implementing the charging mechanisms). Others are implicit, such as the time or the mental processing costs of users. These argue that the case for fine-scale charging is not unambiguous and that in many cases such charging may lead to undesirable outcomes.
Cost estimating procedure for unmanned satellites
NASA Astrophysics Data System (ADS)
Greer, H.; Campbell, H. G.
1980-11-01
Historical costs from 11 unmanned satellite programs were analyzed. From these data, total satellite cost estimating relationships (CERs) were developed for use during preliminary design studies. A time-related factor, which it is believed accounts for differences in technology, was observed in the data. Stratification of the data by type of payload was also found to be necessary. Cost differences that stem from production quantity variations were accounted for by adjustment factors developed from standard learning curve theory. An example to illustrate use of the CERs is provided.
Road to Grid Parity through Deployment of Low-Cost 21.5% N-Type Si Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velundur, Vijay
This project seeks to develop and deploy differentiated 21.5% efficient n-type Si solar cells while reaching the SunShot module cost goal of ≤ $0.50/W. This objective hinges on development of enabling low cost technologies that simplify the manufacturing process and reduce overall processing costs. These comprise of (1) Boron emitter formation and passivation; (2) Simplified processing process for emitter and BSF layers; and (3) Advanced metallization for the front and back contacts.
NASA Astrophysics Data System (ADS)
Jørgen Koch, Hans
To meet the commitments made in Kyoto, energy-related CO 2 emissions would have to fall to almost 30% below the level projected for a "Business-As-Usual" scenario. Meeting this goal will require a large-scale shift toward climate-friendly technologies such as fuel cells, which have a large long-term potential for both stationary generation and transportation. The deployment of a technology is the last major stage in the process of technological shift. Climate-friendly technologies are not being deployed at a sufficient rate or in sufficient amount to allow IEA countries to meet their targets. Hence, if technology is to play an important roll in reducing emissions within the Kyoto time frame (2008-2012) and beyond, immediate and sustained action to accelerate technology deployment will be required. Obstacles in the way of the deployment of technologies that are ready or near-ready for normal use have come to be referred to as market barriers. The simplest yet most significant form of market barrier to a new technology is the out-of-pocket cost to the user relative to the cost of technologies currently in use. Some market barriers also involve market failure, where the market fails to take account of all the costs and benefits involved, such as omitting external environmental costs, and therefore retard the deployment of more environmentally sustainable technologies. Other barriers include poor information dissemination, excessive and costly regulations, slow capital turnover rates, and inadequate financing. Efforts by governments to alleviate market barriers play an important role to complement private-sector activities, and there are many policies and measures each government could take. In addition, international technology collaboration can help promote the best use of available R&D resources and can contribute to more effective deployment of the result of research and development by sharing costs, pooling information and avoiding duplication of efforts.
Technology Challenges in Small UAV Development
NASA Technical Reports Server (NTRS)
Logan, Michael J.; Vranas, Thomas L.; Motter, Mark; Shams, Qamar; Pollock, Dion S.
2005-01-01
Development of highly capable small UAVs present unique challenges for technology protagonists. Size constraints, the desire for ultra low cost and/or disposable platforms, lack of capable design and analysis tools, and unique mission requirements all add to the level of difficulty in creating state-of-the-art small UAVs. This paper presents the results of several small UAV developments, the difficulties encountered, and proposes a list of technology shortfalls that need to be addressed.
Visible quality aluminum and nickel superpolish polishing technology enabling new missions
NASA Astrophysics Data System (ADS)
Carrigan, Keith G.
2011-06-01
It is now well understood that with US Department of Defense (DoD) budgets shrinking and the Services and Agencies demanding new systems which can be fielded more quickly, cost and schedule are being emphasized more and more. At the same time, the US has ever growing needs for advanced capabilities to support evolving Intelligence, Surveillance and Reconnaissance objectives. In response to this market demand for ever more cost-effective, faster to market, single-channel, athermal optical systems, we have developed new metal polishing technologies which allow for short-lead, low-cost metal substrates to replace more costly, longer-lead material options. In parallel, the commercial marketplace is being driven continually to release better, faster and cheaper electronics. Growth according to Moore's law, enabled by advancements in photolithography, has produced denser memory, higher resolution displays and faster processors. While the quality of these products continues to increase, their price is falling. This seeming paradox is driven by industry advancements in manufacturing technology. The next steps on this curve can be realized via polishing technology which allows low-cost metal substrates to replace costly Silicon based optics for use in ultra-short wavelength systems.
Design study of a low cost civil aviation GPS receiver system
NASA Technical Reports Server (NTRS)
Cnossen, R.; Gilbert, G. A.
1979-01-01
A low cost Navstar receiver system for civil aviation applications was defined. User objectives and constraints were established. Alternative navigation processing design trades were evaluated. Receiver hardware was synthesized by comparing technology projections with various candidate system designs. A control display unit design was recommended as the result of field test experience with Phase I GPS sets and a review of special human factors for general aviation users. Areas requiring technology development to ensure a low cost Navstar Set in the 1985 timeframe were identified.
Design, processing and testing of LSI arrays, hybrid microelectronics task
NASA Technical Reports Server (NTRS)
Himmel, R. P.; Stuhlbarg, S. M.; Ravetti, R. G.; Zulueta, P. J.; Rothrock, C. W.
1979-01-01
Mathematical cost models previously developed for hybrid microelectronic subsystems were refined and expanded. Rework terms related to substrate fabrication, nonrecurring developmental and manufacturing operations, and prototype production are included. Sample computer programs were written to demonstrate hybrid microelectric applications of these cost models. Computer programs were generated to calculate and analyze values for the total microelectronics costs. Large scale integrated (LST) chips utilizing tape chip carrier technology were studied. The feasibility of interconnecting arrays of LSU chips utilizing tape chip carrier and semiautomatic wire bonding technology was demonstrated.
High efficiency low cost monolithic module for SARSAT distress beacons
NASA Technical Reports Server (NTRS)
Petersen, Wendell C.; Siu, Daniel P.
1992-01-01
The program objectives were to develop a highly efficient, low cost RF module for SARSAT beacons; achieve significantly lower battery current drain, amount of heat generated, and size of battery required; utilize MMIC technology to improve efficiency, reliability, packaging, and cost; and provide a technology database for GaAs based UHF RF circuit architectures. Presented in viewgraph form are functional block diagrams of the SARSAT distress beacon and beacon RF module as well as performance goals, schematic diagrams, predicted performances, and measured performances for the phase modulator and power amplifier.
Do photovoltaics have a future
NASA Technical Reports Server (NTRS)
Williams, B. F.
1979-01-01
There is major concern as to the economic practicality of widespread terrestrial use because of the high cost of the photovoltaic arrays themselves. Based on their high efficiency, photovoltaic collectors should be one of the cheapest forms of energy generators known. Present photovoltaic panels are violating the trend of lower costs with increasing efficiency due to their reliance on expensive materials. A medium technology solution should provide electricity competitive with the existing medium to high technology energy generators such as oil, coal, gas, and nuclear fission thermal plants. Programs to reduce the cost of silicon and develop reliable thin film materials have a realistic chance of producing cost effective photovoltaic panels.
NASA Technical Reports Server (NTRS)
Fridge, Ernest M., III; Hiott, Jim; Golej, Jim; Plumb, Allan
1993-01-01
Today's software systems generally use obsolete technology, are not integrated properly with other software systems, and are difficult and costly to maintain. The discipline of reverse engineering is becoming prominent as organizations try to move their systems up to more modern and maintainable technology in a cost effective manner. The Johnson Space Center (JSC) created a significant set of tools to develop and maintain FORTRAN and C code during development of the space shuttle. This tool set forms the basis for an integrated environment to reengineer existing code into modern software engineering structures which are then easier and less costly to maintain and which allow a fairly straightforward translation into other target languages. The environment will support these structures and practices even in areas where the language definition and compilers do not enforce good software engineering. The knowledge and data captured using the reverse engineering tools is passed to standard forward engineering tools to redesign or perform major upgrades to software systems in a much more cost effective manner than using older technologies. The latest release of the environment was in Feb. 1992.
Experimentation for the Maturation of Deep Space Cryogenic Refueling Technologies
NASA Technical Reports Server (NTRS)
Chato, David J.
2008-01-01
This report describes the results of the "Experimentation for the Maturation of Deep Space Cryogenic Refueling Technology" study. This study identifies cryogenic fluid management technologies that require low-gravity flight experiments bring technology readiness levels to 5 to 6; examines many possible flight experiment options; and develops near-term low-cost flight experiment concepts to mature the core technologies. A total of 25 white papers were prepared by members of the project team in the course of this study. The full text of each white paper is included and 89 relevant references are cited. The team reviewed the white papers that provided information on new or active concepts of experiments to pursue and assessed them on the basis of technical need, cost, return on investment, and flight platform. Based on on this assessment the "Centaur Test Bed for Cryogenic Fluid Management" was rated the highest. "Computational Opportunities for Cryogenics for Cryogenic and Low-g Fluid Systems" was ranked second, based on its high scores in state of the art and return on investment, even though scores in cost and time were second to last. "Flight Development Test Objective Approach for In-space Propulsion Elements" was ranked third.
Astrium Technological Roadmaps for the Next Generation of Launchers Challenges
NASA Astrophysics Data System (ADS)
Larnac, Guy
2014-06-01
Main requirement on Ariane 6 are robustness, overall ownership cost and environmental impacts. To be able to meet these requirements it's mandatory to modify our usual way of working and to think the development and qualification of technologies differently. Airbus Defence and Space in the domain of materials, technologies and structures proposes a vision which address these points declined at different level:- Selection of key metallic and composite technologies to reduce drastically the cost of manufacturing,- Implementation of robust and economical way of assembly, promoting adhesive bonding and innovative technologies- Introducing virtual testing approach coupled with advanced methods and process simulation- Introduction of in-line monitoring to reduce cost of control- Implementation of the design for environment methodology with life cycle analysis to support the choice of technologies and materials- Development of EADS common materials to get benefice of aeronautic supply chain and communalitiesTo be efficient it seems evident and mandatory to develop all these approaches in an integrated and coordinated way. Advanced technologies and methodologies are supported by a strong network of collaboration enabling the integration of upstream ideas and concepts. This network is not only focused on low TRL level. Within EADS divisions intensive collaboration is deployed in order to get synergies. On the other side it's also mandatory for reliability and obsolescence issues to take care and master the supply chain.Additive layer manufacturing and thermoplastic based composite are directly concerned by this problematic. We present how, in the domain of materials and structures, aeronautic materials are considered first and how the mechanism of common qualification shared within EADS is now developed.This vision is being implemented within Airbus Defence and Space, described and reported through roadmaps. These roadmaps are the core of Airbus defence and Space strategies for the incoming years.
User participation in the development of the human/computer interface for control centers
NASA Technical Reports Server (NTRS)
Broome, Richard; Quick-Campbell, Marlene; Creegan, James; Dutilly, Robert
1996-01-01
Technological advances coupled with the requirements to reduce operations staffing costs led to the demand for efficient, technologically-sophisticated mission operations control centers. The control center under development for the earth observing system (EOS) is considered. The users are involved in the development of a control center in order to ensure that it is cost-efficient and flexible. A number of measures were implemented in the EOS program in order to encourage user involvement in the area of human-computer interface development. The following user participation exercises carried out in relation to the system analysis and design are described: the shadow participation of the programmers during a day of operations; the flight operations personnel interviews; and the analysis of the flight operations team tasks. The user participation in the interface prototype development, the prototype evaluation, and the system implementation are reported on. The involvement of the users early in the development process enables the requirements to be better understood and the cost to be reduced.
Long-range, low-cost electric vehicles enabled by robust energy storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ping; Ross, Russel; Newman, Aron
2015-09-18
ABSTRACT A variety of inherently robust energy storage technologies hold the promise to increase the range and decrease the cost of electric vehicles (EVs). These technologies help diversify approaches to EV energy storage, complementing current focus on high specific energy lithium-ion batteries. The need for emission-free transportation and a decrease in reliance on imported oil has prompted the development of EVs. To reach mass adoption, a significant reduction in cost and an increase in range are needed. Using the cost per mile of range as the metric, we analyzed the various factors that contribute to the cost and weight ofmore » EV energy storage systems. Our analysis points to two primary approaches for minimizing cost. The first approach, of developing redox couples that offer higher specific energy than state-of-the-art lithium-ion batteries, dominates current research effort, and its challenges and potentials are briefly discussed. The second approach represents a new insight into the EV research landscape. Chemistries and architectures that are inherently more robust reduce the need for system protection and enables opportunities of using energy storage systems to simultaneously serve vehicle structural functions. This approach thus enables the use of low cost, lower specific energy chemistries without increasing vehicle weight. Examples of such systems include aqueous batteries, flow cells, and all solid-state batteries. Research progress in these technical areas is briefly reviewed. Potential research directions that can enable low-cost EVs using multifunctional energy storage technologies are described.« less
Overview of NASA Glenn Seal Project
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Dunlap, Patrick H., Jr.; Proctor, Margaret; Delgado, Irebert; Finkbeiner,Joshua; deGroh, Henry; Ritzert, Frank; Daniels, Christopher; DeMange, Jeff; Taylor, Shawn;
2009-01-01
NASA Glenn is currently performing seal research supporting both advanced turbine engine development and advanced space vehicle/propulsion system development. Studies have shown that decreasing parasitic leakage by applying advanced seals will increase turbine engine performance and decrease operating costs. Studies have also shown that higher temperature, long life seals are critical in meeting next generation space vehicle and propulsion system goals in the areas of performance, reusability, safety, and cost. Advanced docking system seals need to be very robust resisting space environmental effects while exhibiting very low leakage and low compression and adhesion forces. NASA Glenn is developing seal technology and providing technical consultation for the Agencys key aero- and space technology development programs.
Overview of Advanced Turbine Systems Program
NASA Astrophysics Data System (ADS)
Webb, H. A.; Bajura, R. A.
The US Department of Energy initiated a program to develop advanced gas turbine systems to serve both central power and industrial power generation markets. The Advanced Turbine Systems (ATS) Program will lead to commercial offerings by the private sector by 2002. ATS will be developed to fire natural gas but will be adaptable to coal and biomass firing. The systems will be: highly efficient (15 percent improvement over today's best systems); environmentally superior (10 percent reduction in nitrogen oxides over today's best systems); and cost competitive (10 percent reduction in cost of electricity). The ATS Program has five elements. Innovative cycle development will lead to the demonstration of systems with advanced gas turbine cycles using current gas turbine technology. High temperature development will lead to the increased firing temperatures needed to achieve ATS Program efficiency goals. Ceramic component development/demonstration will expand the current DOE/CE program to demonstrate industrial-scale turbines with ceramic components. Technology base will support the overall program by conducting research and development (R&D) on generic technology issues. Coal application studies will adapt technology developed in the ATS program to coal-fired systems being developed in other DOE programs.
Imaginable Technologies for Human Missions to Mars
NASA Technical Reports Server (NTRS)
Bushnell, Dennis M.
2007-01-01
The thesis of the present discussion is that the simultaneous cost and inherent safety issues of human on-site exploration of Mars will require advanced-to-revolutionary technologies. The major crew safety issues as currently identified include reduced gravity, radiation, potentially extremely toxic dust and the requisite reliability for years-long missions. Additionally, this discussion examines various technological areas which could significantly impact Human-Mars cost and safety. Cost reductions for space access is a major metric, including approaches to significantly reduce the overall up-mass. Besides fuel, propulsion and power systems, the up-mass consists of the infrastructure and supplies required to keep humans healthy and the equipment for executing exploration mission tasks. Hence, the major technological areas of interest for potential cost reductions include propulsion, in-space and on-planet power, life support systems, materials and overall architecture, systems, and systems-of-systems approaches. This discussion is specifically offered in response to and as a contribution to goal 3 of the Presidential Exploration Vision: "Develop the Innovative Technologies Knowledge and Infrastructures both to explore and to support decisions about the destinations for human exploration".
DOT National Transportation Integrated Search
2011-07-01
Based upon 50 large and medium hub airports over a 13 year period, this research estimates one and two : output translog models of airport short run operating costs. Output is passengers transported on non-stop : segments and pounds of cargo shipped....
DOT National Transportation Integrated Search
2011-12-01
Based upon 50 large and medium hub airports over a 13 year period, this research estimates one and two : output translog models of airport short run operating costs. Output is passengers transported on non-stop : segments and pounds of cargo shipped....
Understanding the reductions in US corn ethanol production costs: an experience curve approach
USDA-ARS?s Scientific Manuscript database
The US is currently the world's largest ethanol producer. An increasing percentage is used as transportation fuel, but debates continue on its cost competitiveness and energy balance. In this study, technological development of ethanol production and resulting cost reductions are investigated by usi...
Energy Efficient Engine program advanced turbofan nacelle definition study
NASA Technical Reports Server (NTRS)
Howe, David C.; Wynosky, T. A.
1985-01-01
Advanced, low drag, nacelle configurations were defined for some of the more promising propulsion systems identified in the earlier Benefit/Cost Study, to assess the benefits associated with these advanced technology nacelles and formulate programs for developing these nacelles and low volume thrust reversers/spoilers to a state of technology readiness in the early 1990's. The study results established the design feasibility of advanced technology, slim line nacelles applicable to advanced technology, high bypass ratio turbofan engines. Design feasibility was also established for two low volume thrust reverse/spoiler concepts that meet or exceed the required effectiveness for these engines. These nacelle and thrust reverse/spoiler designs were shown to be applicable in engines with takeoff thrust sizes ranging from 24,000 to 60,000 pounds. The reduced weight, drag, and cost of the advanced technology nacelle installations relative to current technology nacelles offer a mission fuel burn savings ranging from 3.0 to 4.5 percent and direct operating cost plus interest improvements from 1.6 to 2.2 percent.
Airframe Technology Development for Next Generation Launch Vehicles
NASA Technical Reports Server (NTRS)
Glass, David E.
2004-01-01
The Airframe subproject within NASA's Next Generation Launch Technology (NGLT) program has the responsibility to develop airframe technology for both rocket and airbreathing vehicles for access to space. The Airframe sub-project pushes the state-of-the-art in airframe technology for low-cost, reliable, and safe space transportation. Both low and medium technology readiness level (TRL) activities are being pursued. The key technical areas being addressed include design and integration, hot and integrated structures, cryogenic tanks, and thermal protection systems. Each of the technologies in these areas are discussed in this paper.
IT investments can add business value.
Williams, Terry G
2002-05-01
Investment in information technology (IT) is costly, but necessary to enable healthcare organizations to improve their infrastructure and achieve other improvement initiatives. Such an investment is even more costly, however, if the technology does not appropriately enable organizations to perform business processes that help them accomplish their mission of providing safe, high-quality care cost-effectively. Before committing to a costly IT investment, healthcare organizations should implement a decision-making process that can help them choose, implement, and use technology that will provide sustained business value. A seven-step decision-making process that can help healthcare organizations achieve this result involves performing a gap analysis, assessing and aligning organizational goals, establishing distributed accountability, identifying linked organizational-change initiatives, determining measurement methods, establishing appropriate teams to ensure systems are integrated with multidisciplinary improvement methods, and developing a plan to accelerate adoption of the IT product.
Photovoltaic power - An important new energy option
NASA Technical Reports Server (NTRS)
Ferber, R. R.
1983-01-01
A review of photovoltaic (PV) power technology is presented with an emphasis of PV as an economical and technically feasible alternative source of energy. The successful completion of the development and transfer of emerging low-cost technologies into a fully commercialized status are identified as the means to the realization of this option's full potential. The DOE National Photovoltaics Program, a significant sponsor of PV R&D, expects both flat-plate and concentrator collectors to meet established cost targets. Citing the DOE large flat-plate grid-connected system project of the Sacramento Municipal Utility District, current technology modules priced at near $5/Wp (1983 dollars) are steadily reducing costs. A recent DOE study suggests that PV-generated electricity produced at a 30-year levelized cost of 15 cents per kWh would represent a viable energy supply alternative for the nation.
Photovoltaic power - An important new energy option
NASA Astrophysics Data System (ADS)
Ferber, R. R.
1983-12-01
A review of photovoltaic (PV) power technology is presented with an emphasis of PV as an economical and technically feasible alternative source of energy. The successful completion of the development and transfer of emerging low-cost technologies into a fully commercialized status are identified as the means to the realization of this option's full potential. The DOE National Photovoltaics Program, a significant sponsor of PV R&D, expects both flat-plate and concentrator collectors to meet established cost targets. Citing the DOE large flat-plate grid-connected system project of the Sacramento Municipal Utility District, current technology modules priced at near $5/Wp (1983 dollars) are steadily reducing costs. A recent DOE study suggests that PV-generated electricity produced at a 30-year levelized cost of 15 cents per kWh would represent a viable energy supply alternative for the nation.
NASA Technical Reports Server (NTRS)
Underwood, Matthew C.
2017-01-01
To provide justification for equipping a fleet of aircraft with avionics capable of supporting trajectory-based operations, significant flight testing must be accomplished. However, equipping aircraft with these avionics and enabling technologies to communicate the clearances required for trajectory-based operations is cost-challenging using conventional avionics approaches. This paper describes an approach to minimize the costs and risks of flight testing these technologies in-situ, discusses the test-bed platform developed, and highlights results from a proof-of-concept flight test campaign that demonstrates the feasibility and efficiency of this approach.
Developments in the design, analysis, and fabrication of advanced technology transmission elements
NASA Technical Reports Server (NTRS)
Drago, R. J.; Lenski, J. W., Jr.
1982-01-01
Over the last decade, the presently reported proprietary development program for the reduction of helicopter drive system weight and cost and the enhancement of reliability and survivability has produced high speed roller bearings, resin-matrix composite rotor shafts and transmission housings, gear/bearing/shaft system integrations, photoelastic investigation methods for gear tooth strength, and the automatic generation of complex FEM models for gear/shaft systems. After describing the design features and performance capabilities of the hardware developed, attention is given to the prospective benefits to be derived from application of these technologies, with emphasis on the relationship between helicopter drive system performance and cost.
NASA Technical Reports Server (NTRS)
Cheng, Robert K.
2001-01-01
The Combustion Technologies Group at Lawrence Berkeley National Laboratory has developed simple, low-cost, yet robust combustion technologies that may change the fundamental design concept of burners for boilers and furnaces, and injectors for gas turbine combustors. The new technologies utilize lean premixed combustion and could bring about significant pollution reductions from commercial and industrial combustion processes and may also improve efficiency. The technologies are spinoffs of two fundamental research projects: An inner-ring burner insert for lean flame stabilization developed for NASA- sponsored reduced-gravity combustion experiments. A low-swirl burner developed for Department of Energy Basic Energy Sciences research on turbulent combustion.
Improvement of General Electric’s Chilled Ammonia Process with the use of Membrane Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muraskin, Dave; Dube, Sanjay; Baburao, Barath
General Electric Environmental Control Solutions (formerly Alstom Power Environmental Control Systems) set out to complete the Phase 1 award requirements for a Phase II renewal application for their project selected under DOE-FOA-0001190 “Small and Large Scale Pilots for Reducing the Cost of CO 2 Capture and Compression”. The project focus was to implement several improvement concepts utilizing membrane technology at the recipient’s Chilled Ammonia Process (CAP) CO 2 capture large-scale pilot plant. The goal was to lower the overall cost of technology. During the development of costs for the preliminary techno-economic assessment (TEA), it became clear that the capital andmore » operating costs of this concept were not economically attractive. All work related to a Phase II renewal application at that point was halted as GE made the decision not to submit a Phase II renewal application. Discussions with DOE resulted in a path towards useful information produced from the design and cost work already completed on the project. With the reverse osmosis (RO) unit providing most of the cost issues, GE would provide a sensitivity analysis of the RO unit with respect to project cost. This information would be included with the Techno-Economic Analysis along with the Technology Gap Analysis.« less