OSMA Research and Technology Strategy Team Summary
NASA Technical Reports Server (NTRS)
Wetherholt, Martha
2010-01-01
This slide presentation reviews the work of the Office of Safety and Mission Assurance (OSMA), and the OSMA Research and Technology Strategy (ORTS) team. There is discussion of the charter of the team, Technology Readiness Levels (TRLs) and how the teams responsibilities are related to these TRLs. In order to improve the safety of all levels of the development through the TRL phases, improved communication, understanding and cooperation is required at all levels, particularly at the mid level technologies development.
NASA technology applications team: Applications of aerospace technology
NASA Technical Reports Server (NTRS)
1993-01-01
This report covers the activities of the Research Triangle Institute (RTI) Technology Applications Team for the period 1 October 1992 through 30 September 1993. The work reported herein was supported by the National Aeronautics and Space Administration (NASA), Contract No. NASW-4367. Highlights of the RTI Applications Team activities over the past year are presented in Section 1.0. The Team's progress in fulfilling the requirements of the contract is summarized in Section 2.0. In addition to our market-driven approach to applications project development, RTI has placed increased effort on activities to commercialize technologies developed at NASA Centers. These Technology Commercialization efforts are summarized in Section 3.0. New problem statements prepared by the Team in the reporting period are presented in Section 4.0. The Team's transfer activities for ongoing projects with the NASA Centers are presented in Section 5.0. Section 6.0 summarizes the status of four add-on tasks. Travel for the reporting period is described in Section 7.0. The RTI Team staff and consultants and their project responsibilities are listed in Appendix A. Appendix B includes Technology Opportunity Announcements and Spinoff! Sheets prepared by the Team while Appendix C contains a series of technology transfer articles prepared by the Team.
Distributed teaming on JPL projects
NASA Technical Reports Server (NTRS)
Baroff, L. E.
2002-01-01
This paper addresses structures, actions and technologies that contribute to real team development of a distributed team, and the leadership skills and tools that are used to implement that team development.
NASA's Launch Propulsion Systems Technology Roadmap
NASA Technical Reports Server (NTRS)
McConnaughey, Paul K.; Femminineo, Mark G.; Koelfgen, Syri J.; Lepsch, Roger A; Ryan, Richard M.; Taylor, Steven A.
2012-01-01
Safe, reliable, and affordable access to low-Earth (LEO) orbit is necessary for all of the United States (US) space endeavors. In 2010, NASA s Office of the Chief Technologist commissioned 14 teams to develop technology roadmaps that could be used to guide the Agency s and US technology investment decisions for the next few decades. The Launch Propulsion Systems Technology Area (LPSTA) team was tasked to address the propulsion technology challenges for access to LEO. The developed LPSTA roadmap addresses technologies that enhance existing solid or liquid propulsion technologies and their related ancillary systems or significantly advance the technology readiness level (TRL) of less mature systems like airbreathing, unconventional, and other launch technologies. In developing this roadmap, the LPSTA team consulted previous NASA, military, and industry studies as well as subject matter experts to develop their assessment of this field, which has fundamental technological and strategic impacts for US space capabilities.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-24
...), Global Product Development, Engineering Workstation Refresh Team, Working On-Site at General Motors... groups: The Non-Information Technology Business Development Team, the Engineering Application Support Team, and the Engineering Workstation Refresh Team. On February 2, 2011, the Department issued an...
Understanding Human Autonomy Teaming Through Applications
NASA Technical Reports Server (NTRS)
Aponso, B.; Stallmann, Summer; Lachter, Joel; Shively, Jay; Benton, J.; Kaneshige, John; Mumaw, Randy; Feary, Michael
2017-01-01
This presentation describes the development and demonstration of human autonomy teaming technologies for improving aviation safety and efficiency during nominal and off-nominal operations by developing and validating increasingly autonomous systems concepts, technologies, and procedures.
Building Virtual Teams: Experiential Learning Using Emerging Technologies
ERIC Educational Resources Information Center
Hu, Haihong
2015-01-01
Currently, virtual teams are being used exponentially in higher education and business because of the development of technologies and globalization. These teams have become an essential approach for collaborative learning as well as task completion. Team learning, especially in an online format, can be challenging due to lack of effective…
ERIC Educational Resources Information Center
Kafyulilo, Ayoub; Fisser, Petra; Voogt, Joke
2016-01-01
This study investigated the impact of teacher design teams as a professional development arrangement for developing technology integration knowledge and skills among in-service science teachers. The study was conducted at a secondary school in Tanzania, where 12 in-service science teachers participated in a workshop about technology integration in…
Technology Applications Team: Applications of aerospace technology
NASA Technical Reports Server (NTRS)
1993-01-01
Highlights of the Research Triangle Institute (RTI) Applications Team activities over the past quarter are presented in Section 1.0. The Team's progress in fulfilling the requirements of the contract is summarized in Section 2.0. In addition to our market-driven approach to applications project development, RTI has placed increased effort on activities to commercialize technologies developed at NASA Centers. These Technology Commercialization efforts are summarized in Section 3.0. New problem statements prepared by the Team in the reporting period are presented in Section 4.0. The Team's transfer activities for ongoing projects with the NASA Centers are presented in Section 5.0. Section 6.0 summarizes the status of four add-on tasks. Travel for the reporting period is described in Section 7.0. The RTI Team staff and consultants and their project responsibilities are listed in Appendix A. The authors gratefully acknowledge the contributions of many individuals to the RTI Technology Applications Team program. The time and effort contributed by managers, engineers, and scientists throughout NASA were essential to program success. Most important to the program has been a productive working relationship with the NASA Field Center Technology Utilization (TU) Offices. The RTI Team continues to strive for improved effectiveness as a resource to these offices. Industry managers, technical staff, medical researchers, and clinicians have been cooperative and open in their participation. The RTI Team looks forward to continuing expansion of its interaction with U.S. industry to facilitate the transfer of aerospace technology to the private sector.
A Quantitative Study of Global Software Development Teams, Requirements, and Software Projects
ERIC Educational Resources Information Center
Parker, Linda L.
2016-01-01
The study explored the relationship between global software development teams, effective software requirements, and stakeholders' perception of successful software development projects within the field of information technology management. It examined the critical relationship between Global Software Development (GSD) teams creating effective…
NASA Astrophysics Prioritizes Technology Development Funding for Strategic Missions
NASA Astrophysics Data System (ADS)
Thronson, Harley A.; Pham, Bruce; Ganel, Opher
2017-01-01
The Cosmic Origins (COR) and Physics of the Cosmos (PCOS) Program Offices (POs) reside at NASA GSFC and implement priorities for the NASA HQ Astrophysics Division (APD). One major aspect of the POs’ activities is managing our Strategic Astrophysics Technology (SAT) program to mature technologies for future strategic missions. The Programs follow APD guidance on which missions are strategic, currently informed by the NRC’s 2010 Decadal Survey report, as well as APD’s Implementation Plan and the Astrophysics Roadmap.In preparation for the upcoming 2020 Decadal Survey, the APD has established Science and Technology Definition Teams (STDTs) to study four large-mission concepts: the Origins Space Telescope, Habitable Exoplanet Imaging Mission, Large UV/Optical/IR Surveyor, and X-ray Surveyor. The STDTs will develop the science case and design reference mission, assess technology development needs, and estimate the cost of their concept. A fifth team, the L3 Study Team (L3ST), was charged to study potential US contributions to ESA’s planned L3 gravitational-wave observatory.The POs use a rigorous and transparent process to solicit technology gaps from the scientific and technical communities, and prioritize those entries based on strategic alignment, expected impact, cross-cutting applicability, and urgency. Starting in 2016, the technology-gap assessments of the four STDTs and the L3ST are included in our process. Until a study team submits its final report, community-proposed changes to gaps submitted or adopted by a study team are forwarded to that study team for consideration.We discuss our technology development process, with strategic prioritization informing calls for SAT proposals and informing investment decisions. We also present results of this year’s technology gap prioritization and showcase our current portfolio of technology development projects. To date, 77 COR and 80 PCOS SAT proposals have been received, of which 18 COR and 22 PCOS projects were funded (PCOS awards starting in 2017 have yet to be announced). For more information, see the respective Program Annual Technology Reports under the technology tabs of the COR website at cor.gsfc.nasa.gov and the PCOS website at pcos.gsfc.nasa.gov.
ERIC Educational Resources Information Center
Geist, Lori A.
2010-01-01
Team collaboration is necessary to fully support school-age students who use assistive technology (AT). Teams should include the student, his or her family, and school professionals. Unfortunately, team collaboration is often not realized due to constraints that range from scheduling conflicts and language barriers to lack of defined roles and…
Evaluation of Usage of Information Diagnostic Technology in Family and General Medicine
Sivic, Suad; Masic, Izet; Zunic, Lejla; Huseinagic, Senad
2010-01-01
Summary Introduction: In recent decades, the development and improvement of technology is rapidly advancing. The development of science, new materials, information technology, new procedures and other modern achievements were his first confirmation sought to improve living conditions, particularly in achieving better health conditions. In an effort to improve living conditions, solve the problem of severe diseases and to facilitate treatment, new technologies, almost always find its first application in medicine. In such conditions of general pressure of new modern technologies, health professionals often succumb to uncritically use these technologies. Methodology: Analyzing data collected from 30,000 research papers that have done 30 doctors of family medicine and 30 doctors of general medicine, and from interviews conducted with all 60 doctors who participated in the research. Results: a) Teams of family medicine have a significantly higher professional education, and it should be noted that there was no significant difference in length of service of employees; b) Teams of family medicine have significantly less committed population on which the care; c) Teams of family medicine in an average have fewer visits per day than the teams in general medicine; d) Information diagnostic technologies are more accessible to family medicine teams. Conclusion: It is necessary to introduce a technology assessment as a standard scientific methods in decision making and the creation of the health system. In fact, it is necessary to establish and enable institutions to assess health technologies and join the developed world in creating better health care. PMID:24493985
NASA Technology Applications Team: Commercial applications of aerospace technology
NASA Technical Reports Server (NTRS)
1994-01-01
The Research Triangle Institute (RTI) Team has maintained its focus on helping NASA establish partnerships with U.S. industry for dual use development and technology commercialization. Our emphasis has been on outcomes, such as licenses, industry partnerships and commercialization of technologies, that are important to NASA in its mission of contributing to the improved competitive position of U.S. industry. The RTI Team has been successful in the development of NASA/industry partnerships and commercialization of NASA technologies. RTI ongoing commitment to quality and customer responsiveness has driven our staff to continuously improve our technology transfer methodologies to meet NASA's requirements. For example, RTI has emphasized the following areas: (1) Methodology For Technology Assessment and Marketing: RTI has developed and implemented effective processes for assessing the commercial potential of NASA technologies. These processes resulted from an RTI study of best practices, hands-on experience, and extensive interaction with the NASA Field Centers to adapt to their specific needs. (2) Effective Marketing Strategies: RTI surveyed industry technology managers to determine effective marketing tools and strategies. The Technology Opportunity Announcement format and content were developed as a result of this industry input. For technologies with a dynamic visual impact, RTI has developed a stand-alone demonstration diskette that was successful in developing industry interest in licensing the technology. And (3) Responsiveness to NASA Requirements: RTI listened to our customer (NASA) and designed our processes to conform with the internal procedures and resources at each NASA Field Center and the direction provided by NASA's Agenda for Change. This report covers the activities of the Research Triangle Institute Technology Applications Team for the period 1 October 1993 through 31 December 1994.
Bell, Marnie; Robertson, Della; Weeks, Marlene; Yu, Deborah
2002-01-01
Virtual teams are a phenomenon of the Information Era and their existence in health care is anticipated to increase with technology enhancements such as telehealth and groupware. The mobilization and support of high performing virtual teams are important for leading knowledge-based health professionals in the 21st century. Using an adapted McGrath group development model, the four staged maturation process of a virtual team consisting of four masters students is explored in this paper. The team's development is analyzed addressing the interaction of technology with social and task dynamics. Throughout the project, leadership competencies of value to the group that emerged were demonstrated and incorporated into the development of a leadership competency assessment instrument. The demonstration of these competencies illustrated how they were valued and internalized by the group. In learning about the work of this virtual team, the reader will gain understanding of how leadership impacts virtual team performance.
NASA Program Office Technology Investments to Enable Future Missions
NASA Astrophysics Data System (ADS)
Thronson, Harley; Pham, Thai; Ganel, Opher
2018-01-01
The Cosmic Origins (COR) and Physics of the Cosmos (PCOS) Program Offices (POs) reside at NASA GSFC and implement priorities for the NASA HQ Astrophysics Division (APD). One major aspect of the POs’ activities is managing our Strategic Astrophysics Technology (SAT) program to mature technologies for future strategic missions. The Programs follow APD guidance on which missions are strategic, currently informed by the NRC’s 2010 Decadal Survey report, as well as APD’s Implementation Plan and the Astrophysics Roadmap.In preparation for the upcoming 2020 Decadal Survey, the APD has established Science and Technology Definition Teams (STDTs) to study four large-mission concepts: the Origins Space Telescope (née, Far-IR Surveyor), Habitable Exoplanet Imaging Mission, Large UV/Optical/IR Surveyor, and Lynx (née, X-ray Surveyor). The STDTs will develop the science case and design reference mission, assess technology development needs, and estimate the cost of their concept. A fifth team, the L3 Study Team (L3ST), was charged to study potential US contributions to ESA’s planned Laser Interferometer Space Antenna (LISA) gravitational-wave observatory.The POs use a rigorous and transparent process to solicit technology gaps from the scientific and technical communities, and prioritize those entries based on strategic alignment, expected impact, cross-cutting applicability, and urgency. For the past two years, the technology-gap assessments of the four STDTs and the L3ST are included in our process. Until a study team submits its final report, community-proposed changes to gaps submitted or adopted by a study team are forwarded to that study team for consideration.We discuss our technology development process, with strategic prioritization informing calls for SAT proposals and informing investment decisions. We also present results of the 2017 technology gap prioritization and showcase our current portfolio of technology development projects. To date, 96 COR and 86 PCOS SAT proposals have been received, of which 22 COR and 28 PCOS projects were awarded. For more information, see the Program Annual Technology Reports available through the PO Technology web page at https://apd440.gsfc.nasa.gov/technology.html .
Exercising Trust to Power Technology.
ERIC Educational Resources Information Center
Winkler, Carol Ann K.
1998-01-01
Recounts the Nerinx Hall High School New Frontiers team's apprehension in the 1992 New Frontiers for Catholic Schools workshop, convened to write technology plans for Catholic schools. Describes faculty and student success in incorporating new multimedia technology into the curriculum, after the team developed a plan for the school. (VWC)
NASA Technology Applications Team: Commercial applications of aerospace technology
NASA Technical Reports Server (NTRS)
1994-01-01
The Research Triangle Institute (RTI) is pleased to report the results of NASA contract NASW-4367, 'Operation of a Technology Applications Team'. Through a period of significant change within NASA, the RTI Team has maintained its focus on helping NASA establish partnerships with U.S. industry for dual use development and technology commercialization. Our emphasis has been on outcomes, such as licenses, industry partnerships and commercialization of technologies that are important to NASA in its mission of contributing to the improved competitive position of U.S. industry. RTI's ongoing commitment to quality and customer responsiveness has driven our staff to continuously improve our technology transfer methodologies to meet NASA's requirements. For example, RTI has emphasized the following areas: (1) Methodology For Technology Assessment and Marketing: RTI has developed an implemented effective processes for assessing the commercial potential of NASA technologies. These processes resulted from an RTI study of best practices, hands-on experience, and extensive interaction with the NASA Field Centers to adapt to their specific needs; (2) Effective Marketing Strategies: RTI surveyed industry technology managers to determine effective marketing tools and strategies. The Technology Opportunity Announcement format and content were developed as a result of this industry input. For technologies with a dynamic visual impact, RTI has developed a stand-alone demonstration diskette that was successful in developing industry interest in licensing the technology; and (3) Responsiveness to NASA Requirements: RTI listened to our customer (NASA) and designed our processes to conform with the internal procedures and resources at each NASA Field Center and the direction provided by NASA's Agenda for Change. This report covers the activities of the Research Triangle Institute Technology Applications Team for the period 1 October 1993 through 31 December 1994.
Fiore, Stephen M.; Wiltshire, Travis J.
2016-01-01
In this paper we advance team theory by describing how cognition occurs across the distribution of members and the artifacts and technology that support their efforts. We draw from complementary theorizing coming out of cognitive engineering and cognitive science that views forms of cognition as external and extended and integrate this with theorizing on macrocognition in teams. Two frameworks are described that provide the groundwork for advancing theory and aid in the development of more precise measures for understanding team cognition via focus on artifacts and the technologies supporting their development and use. This includes distinctions between teamwork and taskwork and the notion of general and specific competencies from the organizational sciences along with the concepts of offloading and scaffolding from the cognitive sciences. This paper contributes to the team cognition literature along multiple lines. First, it aids theory development by synthesizing a broad set of perspectives on the varied forms of cognition emerging in complex collaborative contexts. Second, it supports research by providing diagnostic guidelines to study how artifacts are related to team cognition. Finally, it supports information systems designers by more precisely describing how to conceptualize team-supporting technology and artifacts. As such, it provides a means to more richly understand process and performance as it occurs within sociotechnical systems. Our overarching objective is to show how team cognition can both be more clearly conceptualized and more precisely measured by integrating theory from cognitive engineering and the cognitive and organizational sciences. PMID:27774074
Fiore, Stephen M; Wiltshire, Travis J
2016-01-01
In this paper we advance team theory by describing how cognition occurs across the distribution of members and the artifacts and technology that support their efforts. We draw from complementary theorizing coming out of cognitive engineering and cognitive science that views forms of cognition as external and extended and integrate this with theorizing on macrocognition in teams. Two frameworks are described that provide the groundwork for advancing theory and aid in the development of more precise measures for understanding team cognition via focus on artifacts and the technologies supporting their development and use. This includes distinctions between teamwork and taskwork and the notion of general and specific competencies from the organizational sciences along with the concepts of offloading and scaffolding from the cognitive sciences. This paper contributes to the team cognition literature along multiple lines. First, it aids theory development by synthesizing a broad set of perspectives on the varied forms of cognition emerging in complex collaborative contexts. Second, it supports research by providing diagnostic guidelines to study how artifacts are related to team cognition. Finally, it supports information systems designers by more precisely describing how to conceptualize team-supporting technology and artifacts. As such, it provides a means to more richly understand process and performance as it occurs within sociotechnical systems. Our overarching objective is to show how team cognition can both be more clearly conceptualized and more precisely measured by integrating theory from cognitive engineering and the cognitive and organizational sciences.
Technology transfer: Transportation
NASA Technical Reports Server (NTRS)
Anyos, T.; Lizak, R.; Merrifield, D.
1973-01-01
Standard Research Institute (SRI) has operated a NASA-sponsored team for four years. The SRI Team is concentrating on solving problems in the public transportation area and on developing methods for decreasing the time gap between the development and the marketing of new technology and for aiding the movement of knowledge across industrial, disciplinary, and regional boundaries. The SRI TAT has developed a methodology that includes adaptive engineering of the aerospace technology and commercialization when a market is indicated. The SRI Team has handled highway problems on a regional rather than a state basis, because many states in similar climatic or geologic regions have similar problems. Program exposure has been increased to encompass almost all of the fifty states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, M.A.
1996-08-01
Teamwork is the key to the future of effective technology management. Today`s technologies and markets have become too complex for individuals to work alone. Global competition, limited resources, cost consciousness, and time pressures have forced organizations and project managers to encourage teamwork. Many of these teams will be cross-functional teams that can draw on a multitude of talents and knowledge. To develop high-performing cross-functional teams, managers must understand motivations, functional loyalties, and the different backgrounds of the individual team members. To develop a better understanding of these issues, managers can learn from experience and from literature on teams and teamingmore » concepts. When studying the literature to learn about cross-functional teaming, managers will find many good theoretical concepts, but when put into practice, these concepts have varying effects. This issue of varying effectiveness is what drives the research for this paper. The teaming concepts were studied to confirm or modify current understanding. The literature was compared with a {open_quotes}ground truth{close_quotes}, a survey of the reality of teaming practices, to examine the teaming concepts that the literature finds to be critical to the success of teams. These results are compared to existing teams to determine if such techniques apply in real-world cases.« less
The Cascading Impacts of Technology Selection: Incorporating Ruby on Rails into ECHO
NASA Astrophysics Data System (ADS)
Pilone, D.; Cechini, M.
2010-12-01
NASA’s Earth Observing System (EOS) ClearingHOuse (ECHO) is a SOA based Earth Science Data search and order system implemented in Java with one significant exception: the web client used by 98% of our users is written in Perl. After several decades of maintenance the Perl based application had reached the end of its serviceable life and ECHO was tasked with implementing a replacement. Despite a broad investment in Java, the ECHO team conducted a survey of modern development technologies including Flex, Python/Django, JSF2/Spring and Ruby on Rails. The team ultimately chose Ruby on Rails (RoR) with Cucumber for testing due to its perceived applicability to web application development and corresponding development efficiency gains. Both positive and negative impacts on the entire ECHO team, including our stakeholders, were immediate and sometimes subtle. The technology selection caused shifts in our architecture and design, development and deployment procedures, requirement definition approach, testing approach, and, somewhat surprisingly, our project team structure and software process. This presentation discusses our experiences, including technical, process, and psychological, using RoR on a production system. During this session we will discuss: - Real impacts of introducing a dynamic language to a Java team - Real and perceived efficiency advantages - Impediments to adoption and effectiveness - Impacts of transition from Test Driven Development to Behavior Driven Development - Leveraging Cucumber to provide fully executable requirement documents - Impacts on team structure and roles
Technology evaluation, assessment, modeling, and simulation: the TEAMS capability
NASA Astrophysics Data System (ADS)
Holland, Orgal T.; Stiegler, Robert L.
1998-08-01
The United States Marine Corps' Technology Evaluation, Assessment, Modeling and Simulation (TEAMS) capability, located at the Naval Surface Warfare Center in Dahlgren Virginia, provides an environment for detailed test, evaluation, and assessment of live and simulated sensor and sensor-to-shooter systems for the joint warfare community. Frequent use of modeling and simulation allows for cost effective testing, bench-marking, and evaluation of various levels of sensors and sensor-to-shooter engagements. Interconnectivity to live, instrumented equipment operating in real battle space environments and to remote modeling and simulation facilities participating in advanced distributed simulations (ADS) exercises is available to support a wide- range of situational assessment requirements. TEAMS provides a valuable resource for a variety of users. Engineers, analysts, and other technology developers can use TEAMS to evaluate, assess and analyze tactical relevant phenomenological data on tactical situations. Expeditionary warfare and USMC concept developers can use the facility to support and execute advanced warfighting experiments (AWE) to better assess operational maneuver from the sea (OMFTS) concepts, doctrines, and technology developments. Developers can use the facility to support sensor system hardware, software and algorithm development as well as combat development, acquisition, and engineering processes. Test and evaluation specialists can use the facility to plan, assess, and augment their processes. This paper presents an overview of the TEAMS capability and focuses specifically on the technical challenges associated with the integration of live sensor hardware into a synthetic environment and how those challenges are being met. Existing sensors, recent experiments and facility specifications are featured.
ARPA-E: Guiding Technologies to Commercial Success
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuttle, John; Aizenberg, Joanna; Madrone, Leila
ARPA-E’s Technology-to-Market Advisors work closely with each ARPA-E project team to develop and execute a commercialization strategy. ARPA-E requires our teams to focus on their commercial path forward, because we understand that to have an impact on our energy mission, technologies must have a viable path into the marketplace. ARPA-E Senior Commercialization Advisor Dr. John Tuttle discusses what this Tech-to-Market guidance in practice looks like with reference to two project teams. OPEN 2012 awardees from Harvard University and Sunfolding share their stories of how ARPA-E worked with their teams to analyze market conditions and identify commercial opportunities that ultimately convincedmore » them to pivot their technologies towards market applications with greater potential.« less
ERIC Educational Resources Information Center
Maryland State Dept. of Education, Baltimore.
A team consisting of Maryland State Department of Education (MSDE) staff, local educators, and other representatives developed an action plan to assist in advancing the blending of academic, career, and technology education. The team prepared a vision statement, set strategic directions, analyzed barriers, and developed recommendations and actions…
Aeroelastic modeling for the FIT (Functional Integration Technology) team F/A-18 simulation
NASA Technical Reports Server (NTRS)
Zeiler, Thomas A.; Wieseman, Carol D.
1989-01-01
As part of Langley Research Center's commitment to developing multidisciplinary integration methods to improve aerospace systems, the Functional Integration Technology (FIT) team was established to perform dynamics integration research using an existing aircraft configuration, the F/A-18. An essential part of this effort has been the development of a comprehensive simulation modeling capability that includes structural, control, and propulsion dynamics as well as steady and unsteady aerodynamics. The structural and unsteady aerodynamics contributions come from an aeroelastic mode. Some details of the aeroelastic modeling done for the Functional Integration Technology (FIT) team research are presented. Particular attention is given to work done in the area of correction factors to unsteady aerodynamics data.
The In-place Inactivation and Natural Ecological Restoration Technologies (IINERT) Soil-Metals Action Team was established in 11/95 as one of several Action Teams under the USEPA Remediation Technologies Development Forum (RTDF). Its primary goal was to examine in situ remediatio...
IS REMOVAL THE ONLY OPTION: IN SITU REMEDIATION OF METAL CONTAMINATED SOILS
The In-place Inactivation and Natural Ecological Restoration Technologies (IINERT) Soil-Metals Action Team was established in 11/95 as one of several Action Teams under the USEPA Remediation Technologies Development Forum (RTDF). Its primary goal was to examine in situ remediatio...
Center for Advanced Bioengineering for Soldier Survivability
2013-06-01
useful products have been limited. This is in part because the technology development teams have failed to include clinicians and engineers...to useful products have been limited. This is in part because the technology development teams have failed to include clinicians and engineers...7, 14, 21, and 28 days. After 28 days the samples were explanted, fixed, and scanned for mineralized matrix using Micro -CT imaging. Some samples
Manufacturing Process Applications Team (MATeam)
NASA Technical Reports Server (NTRS)
1978-01-01
The activities of the Manufacturing Process Applications Team concerning the promotion of joint Industry/Federal Agency/NASA funded research and technology operating plan (RTOP) programs are reported. Direct transfers occurred in cutting tools, laser wire stripping, soldering, and portable X-ray unit technology. TROP program funding approval was obtained for the further development of the cutting tool Sialon and development of an automated nondestructive fracture toughness testing system.
Share (And Not) Share Alike: Improving Virtual Team Climate and Decision Performance
ERIC Educational Resources Information Center
Cordes, Sean
2017-01-01
Virtual teams face unique communication and collaboration challenges that impact climate development and performance. First, virtual teams rely on technology mediated communication which can constrain communication. Second, team members lack skill for adapting process to the virtual setting. A collaboration process structure was designed to…
How Virtual Team Leaders Cope with Creativity Challenges
ERIC Educational Resources Information Center
Han, Soo Jeoung; Chae, Chungil; Macko, Patricia; Park, Woongbae; Beyerlein, Michael
2017-01-01
Purpose: As technology-mediated communication improves, many organizations increasingly use new types of collaborative online tools to promote team-based learning and performance. The purpose of this study is to explore how virtual team leaders cope with process challenges in developing a context for team creativity. Design/methodology/approach:…
A Conceptual Measurement Model for eHealth Readiness: a Team Based Perspective
Phillips, James; Poon, Simon K.; Yu, Dan; Lam, Mary; Hines, Monique; Brunner, Melissa; Power, Emma; Keep, Melanie; Shaw, Tim; Togher, Leanne
2017-01-01
Despite the shift towards collaborative healthcare and the increase in the use of eHealth technologies, there does not currently exist a model for the measurement of eHealth readiness in interdisciplinary healthcare teams. This research aims to address this gap in the literature through the development of a three phase methodology incorporating qualitative and quantitative methods. We propose a conceptual measurement model consisting of operationalized themes affecting readiness across four factors: (i) Organizational Capabilities, (ii) Team Capabilities, (iii) Patient Capabilities, and (iv) Technology Capabilities. The creation of this model will allow for the measurement of the readiness of interdisciplinary healthcare teams to use eHealth technologies to improve patient outcomes. PMID:29854207
Professional Development in Educational Technology through Teacher Support Teams
ERIC Educational Resources Information Center
Alvarado, Guillermo
2017-01-01
Since the turn of the 21st century, the implementation of instructional technologies in the secondary classroom has increased exponentially. As a result, teacher support in its implementation has become paramount. Using a qualitative case study design, this research explored teachers' and administrators' perceptions of teacher support teams that…
Subsonic Ultra Green Aircraft Research
NASA Technical Reports Server (NTRS)
Bradley, Marty K.; Droney, Christopher K.
2011-01-01
This Final Report summarizes the work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team in Phase 1, which includes the time period of October 2008 through March 2010. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech. The team completed the development of a comprehensive future scenario for world-wide commercial aviation, selected baseline and advanced configurations for detailed study, generated technology suites for each configuration, conducted detailed performance analysis, calculated noise and emissions, assessed technology risks, and developed technology roadmaps. Five concepts were evaluated in detail: 2008 baseline, N+3 reference, N+3 high span strut braced wing, N+3 gas turbine battery electric concept, and N+3 hybrid wing body. A wide portfolio of technologies was identified to address the NASA N+3 goals. Significant improvements in air traffic management, aerodynamics, materials and structures, aircraft systems, propulsion, and acoustics are needed. Recommendations for Phase 2 concept and technology projects have been identified.
Subsonic Ultra Green Aircraft Research Phase II: N+4 Advanced Concept Development
NASA Technical Reports Server (NTRS)
Bradley, Marty K.; Droney, Christopher K.
2012-01-01
This final report documents the work of the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team on Task 1 of the Phase II effort. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech. Using a quantitative workshop process, the following technologies, appropriate to aircraft operational in the N+4 2040 timeframe, were identified: Liquefied Natural Gas (LNG), Hydrogen, fuel cell hybrids, battery electric hybrids, Low Energy Nuclear (LENR), boundary layer ingestion propulsion (BLI), unducted fans and advanced propellers, and combinations. Technology development plans were developed.
Virtual Team Governance: Addressing the Governance Mechanisms and Virtual Team Performance
NASA Astrophysics Data System (ADS)
Zhan, Yihong; Bai, Yu; Liu, Ziheng
As technology has improved and collaborative software has been developed, virtual teams with geographically dispersed members spread across diverse physical locations have become increasingly prominent. Virtual team is supported by advancing communication technologies, which makes virtual teams able to largely transcend time and space. Virtual teams have changed the corporate landscape, which are more complex and dynamic than traditional teams since the members of virtual teams are spread on diverse geographical locations and their roles in the virtual team are different. Therefore, how to realize good governance of virtual team and arrive at good virtual team performance is becoming critical and challenging. Good virtual team governance is essential for a high-performance virtual team. This paper explores the performance and the governance mechanism of virtual team. It establishes a model to explain the relationship between the performance and the governance mechanisms in virtual teams. This paper is focusing on managing virtual teams. It aims to find the strategies to help business organizations to improve the performance of their virtual teams and arrive at the objectives of good virtual team management.
Meyer, Deborah; Hamel-Lambert, Jane; Tice, Carolyn; Safran, Steven; Bolon, Douglas; Rose-Grippa, Kathleen
2005-01-01
Faculty from 5 disciplines (health administration, nursing, psychology, social work, and special education) collaborated to develop and teach a distance-learning course designed to encourage undergraduate and graduate students to seek mental health services employment in rural areas and to provide the skills, experience, and knowledge necessary for successful rural practice. The primary objectives of the course, developed after thorough review of the rural retention and recruitment literature, were to (1) enhance interdisciplinary team skills, (2) employ technology as a tool for mental health practitioners, and (3) enhance student understanding of Appalachian culture and rural mental health. Didactic instruction emphasized Appalachian culture, rural mental health, teamwork and communication, professional ethics, and technology. Students were introduced to videoconferencing, asynchronous and synchronous communication, and Internet search tools. Working in teams of 3 or 4, students grappled with professional and cultural issues plus team process as they worked through a hypothetical case of a sexually abused youngster. The course required participants to engage in a nontraditional manner by immersing students in Web-based teams. Student evaluations suggested that teaching facts or "content" about rural mental health and Appalachian culture was much easier than the "process" of using new technologies or working in teams. Given that the delivery of mental health care demands collaboration and teamwork and that rural practice relies increasingly more on the use of technology, our experience suggests that more team-based, technology-driven courses are needed to better prepare students for clinical practice.
The communication in industrialised building system (IBS) construction project: Virtual environment
NASA Astrophysics Data System (ADS)
Pozin, Mohd Affendi Ahmad; Nawi, Mohd Nasrun Mohd
2017-10-01
Large portion of numbers team organization in the IBS construction sector is known are being fragmented. That is contributed from a segregation of construction activity thus create team working in virtually. Virtual team are the nature when teams are working in distributed area, across culture and time. Therefore, teams can be respond to the task without relocating to the site project and settle down a problem through information and communication technology (ICT). The emergence of virtual team are carry out by advancements in communication technologies as a medium to improve project team communication in project delivery process on IBS construction. Based on literature review from previous study and data collected from interviewing, this paper aim to identified communication challenges among project team members according to current project development practices in IBS construction project. Hence, in attempt to develop effective communication through the advantages of virtual team approach for IBS construction project. In order to ensure the data is gathered comprehensively and accurately, the data was collected from project managers by using semi structured interview method. It was found that virtual team approach could be enable competitive challenges on complexity in the construction project management process.
78 FR 7464 - Large Scale Networking (LSN) ; Joint Engineering Team (JET)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-01
... NATIONAL SCIENCE FOUNDATION Large Scale Networking (LSN) ; Joint Engineering Team (JET) AGENCY: The Networking and Information Technology Research and Development (NITRD) National Coordination...://www.nitrd.gov/nitrdgroups/index.php?title=Joint_Engineering_Team_ (JET)#title. SUMMARY: The JET...
78 FR 7464 - Large Scale Networking (LSN)-Middleware And Grid Interagency Coordination (MAGIC) Team
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-01
... Coordination (MAGIC) Team AGENCY: The Networking and Information Technology Research and Development (NITRD... (703) 292-4873. Date/Location: The MAGIC Team meetings are held on the first Wednesday of each month, 2... basis. WebEx participation is available for each meeting. Please reference the MAGIC Team Web site for...
Leading Game-Simulation Development Teams: Enabling Collaboration with Faculty Experts
ERIC Educational Resources Information Center
Aleckson, Jon D.
2010-01-01
This study explored how educational technology development leaders can facilitate increased collaboration between the instructional design and development team and faculty member experts when developing games and simulations. A qualitative, case study method was used to analyze interviews and documents, and Web postings related specifically to…
NASA Technical Reports Server (NTRS)
Griffin, Lisa W.; Huber, Frank W.
1992-01-01
The current status of the activities and future plans of the Turbine Technology Team of the Consortium for Computational Fluid Dynamics is reviewed. The activities of the Turbine Team focus on developing and enhancing codes and models, obtaining data for code validation and general understanding of flows through turbines, and developing and analyzing the aerodynamic designs of turbines suitable for use in the Space Transportation Main Engine fuel and oxidizer turbopumps. Future work will include the experimental evaluation of the oxidizer turbine configuration, the development, analysis, and experimental verification of concepts to control secondary and tip losses, and the aerodynamic design, analysis, and experimental evaluation of turbine volutes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geisz, J. F.
2012-11-01
The intent of the work is for RFMD and NREL to cooperate in the development of a commercially viable and high volume capable process to manufacture high performance photovoltaic cells, based on inverted metamorphic (IMM) GaAs technology. The successful execution of the agreement will result in the production of a PV cell using technology that is capable of conversion efficiency at par with the market at the time of release (reference 2009: 37-38%), using RFMD's production facilities. The CRADA work has been divided into three phases: (1) a foundation phase where the teams will demonstrate the manufacturing of a basicmore » PV cell at RFMD's production facilities; (2) a technology demonstration phase where the teams will demonstrate the manufacturing of prototype PV cells using IMM technology at RFMD's production facilities, and; (3) a production readiness phase where the teams will demonstrate the capability to manufacture PV cells using IMM technology with high yields, high reliability, high reproducibility and low cost.« less
77 FR 58415 - Large Scale Networking (LSN); Joint Engineering Team (JET)
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-20
... NATIONAL SCIENCE FOUNDATION Large Scale Networking (LSN); Joint Engineering Team (JET) AGENCY: The Networking and Information Technology Research and Development (NITRD) National Coordination Office (NCO..._Engineering_Team_ (JET). SUMMARY: The JET, established in 1997, provides for information sharing among Federal...
78 FR 70076 - Large Scale Networking (LSN)-Joint Engineering Team (JET)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-22
... NATIONAL SCIENCE FOUNDATION Large Scale Networking (LSN)--Joint Engineering Team (JET) AGENCY: The Networking and Information Technology Research and Development (NITRD) National Coordination Office (NCO..._Engineering_Team_ (JET)#title. SUMMARY: The JET, established in 1997, provides for information sharing among...
Effective Engineering Presentations through Teaching Visual Literacy Skills.
ERIC Educational Resources Information Center
Kerns, H. Dan; And Others
This paper describes a faculty resource team in the Bradley University (Illinois) Department of Industrial Engineering that works with student project teams in an effort to improve their visualization and oral presentation skills. Students use state of the art technology to develop and display their visuals. In addition to technology, students are…
ERIC Educational Resources Information Center
Rogers, Camille, Ed.
The conference paper topics include: business and information technology (IT) education; knowledge management; teaching software applications; development of multimedia teaching materials; technology job skills in demand; IT management for executives; self-directed teams in information systems courses; a team building exercise to software…
NASA Technical Reports Server (NTRS)
Gaier, James R.; Vangen, Scott; Abel, Phil; Agui, Juan; Buffington, Jesse; Calle, Carlos; Mary, Natalie; Smith, Jonathan Drew; Straka, Sharon; Mugnuolo, Raffaele;
2016-01-01
The International Space Exploration Coordination Group (ISECG) formed two Gap Assessment teams to evaluate topic discipline areas that had not been worked at an international level to date. Accordingly, the ISECG Technology Working Group (TWG) recommended two discipline areas based on Global Exploration Roadmap (GER) Critical Technology Needs reflected within the GER Technology Development Map (GTDM): Dust Mitigation and LOX/Methane Propulsion, with this paper addressing the former. The ISECG approved the recommended Gap Assessment teams, and tasked the TWG to formulate the new teams with subject matter experts (SMEs) from the participating agencies. The participating agencies for the Dust Mitigation Gap Assessment Team were ASI, CSA, ESA, JAXA, and NASA. The team was asked to identify and make a presentation on technology gaps related to the GER2 mission scenario (including cislunar and lunar mission themes and long-lead items for human exploration of Mars) at the international level. In addition the team was tasked to produce a gap assessment in the form of a summary report and presentation identifying those GER Critical Technology Needs, including opportunities for international coordination and cooperation in closing the identified gaps. Dust is still a principal limiting factor in returning to the lunar surface for missions of any extended duration. However, viable technology solutions have been identified, but need maturation to be available to support both lunar and Mars missions.
NASA Technical Reports Server (NTRS)
Lingo, Robert; Cadogan, Dave; Sanner, Rob; Sorenson, Beth
1997-01-01
The main goal of this program was to develop an unobtrusive power-assisted EVA glove metacarpalphalangeal (MCP) joint that could provide the crew member with as close to nude body performance as possible, and to demonstrate the technology feasibility of power assisted space suit components in general. The MCP joint was selected due to its being representative of other space suit joints, such as the shoulder, hip and carpometacarpal joint, that would also greatly benefit from this technology. In order to meet this objective, a development team of highly skilled and experienced personnel was assembled. The team consisted of two main entities. The first was comprised of ILC's experienced EVA space suit glove designers, who had the responsibility of designing and fabricating a low torque MCP joint which would be compatible with power assisted technology. The second part of the team consisted of space robotics experts from the University of Maryland's Space Systems Laboratory. This team took on the responsibility of designing and building the robotics aspects of the power-assist system. Both parties addressed final system integration responsibilities.
NASA Technical Reports Server (NTRS)
Keys, Andrew S.
2006-01-01
Aeroassist technology development is a vital part of the NASA In-Space Propulsion Technology (ISPT) Program. One of the main focus areas of ISPT is aeroassist technologies through the Aerocapture Technology (AT) Activity. Within the ISPT, the current aeroassist technology development focus is aerocapture. Aerocapture relies on the exchange of momentum with an atmosphere to achieve thrust, in this case a decelerating thrust leading to orbit capture. Without aerocapture, a substantial propulsion system would be needed on the spacecraft to perform the same reduction of velocity. This could cause reductions in the science payload delivered to the destination, increases in the size of the launch vehicle (to carry the additional fuel required for planetary capture) or could simply make the mission impossible due to additional propulsion requirements. The AT is advancing each technology needed for the successful implementation of aerocapture in future missions. The technology development focuses on both rigid aeroshell systems as well as the development of inflatable aerocapture systems, advanced aeroshell performance sensors, lightweight structure and higher temperature adhesives. Inflatable systems such as tethered trailing ballutes ('balloon parachutes'), clamped ballutes, and inflatable aeroshells are also under development. Aerocapture-specific computational tools required to support future aerocapture missions are also an integral part of the ATP. Tools include: engineering reference atmosphere models, guidance and navigation, aerothermodynamic modeling, radiation modeling and flight simulation. Systems analysis plays a key role in the AT development process. The NASA in-house aerocapture systems analysis team has been taken with multiple systems definition and concept studies to complement the technology development tasks. The team derives science requirements, develops guidance and navigation algorithms, as well as engineering reference atmosphere models and aeroheating specifications. The study team also creates designs for the overall mission spacecraft. Presentation slides are provided to further describe the aerocapture project.
Perfecting scientists’ collaboration and problem-solving skills in the virtual team environment
USDA-ARS?s Scientific Manuscript database
Perfecting Scientists’ Collaboration and Problem-Solving Skills in the Virtual Team Environment Numerous factors have contributed to the proliferation of conducting work in virtual teams at the domestic, national, and global levels: innovations in technology, critical developments in software, co-lo...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-20
... Coordination (MAGIC) Team AGENCY: The Networking and Information Technology Research and Development (NITRD.... Dates/Location: The MAGIC Team meetings are held on the first Wednesday of each month, 2:00-4:00pm, at... participation is available for each meeting. Please reference the MAGIC Team Web site for updates. Magic Web...
78 FR 70076 - Large Scale Networking (LSN)-Middleware and Grid Interagency Coordination (MAGIC) Team
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-22
... Coordination (MAGIC) Team AGENCY: The Networking and Information Technology Research and Development (NITRD... MAGIC Team meetings are held on the first Wednesday of each month, 2:00-4:00 p.m., at the National... for each meeting. Please reference the MAGIC Team Web site for updates. Magic Web site: The agendas...
Olson, Kristian R; Walsh, Madeline; Garg, Priya; Steel, Alexis; Mehta, Sahil; Data, Santorino; Petersen, Rebecca; Guarino, Anthony J; Bailey, Elizabeth; Bangsberg, David R
2017-02-01
Healthcare-focused hackathons are 48-hour platforms intended to accelerate novel medical technology. However, debate exists about how much they contribute to medical technology innovation. The Consortium for Affordable Medical Technologies (CAMTech) has developed a three-pronged model to maximise their effectiveness. To gauge the success of this model, we examined follow-up outcomes. Outcomes of 12 hackathons from 2012 to 2015 in India, Uganda and the USA were measured using emailed surveys. To minimise response bias, non-responding teams were coded as having made no progress. 331 individuals provided information on 196 of 356 projects (55.1% response rate), with no difference in responses from teams participating in different countries (Cramer's V=0.09, p=0.17). 30.3% of projects had made progress after a mean of 12.2 months. 88 (24.7%) teams had initiated pilot testing, with 42 (11.8%) piloting with care providers and 24 (6.7%) with patients. Overall, 97 teams (8.1 per hackathon) drafted business plans, 22 (1.8 per hackathon) had filed patents on their innovations and 15 (1.3 per hackathon) had formed new companies. Teams raised US$64.08 million in funding (average US$5.34 million per hackathon; median award size of $1800). In addition, 108 teams (30.3%) reported at least one member working on additional technologies with people they met at a hackathon. Individual confidence to address medical technology challenges was significantly increased after attending (t(1282)=192.77, p 0.001). CAMTech healthcare hackathons lead to consistent output with respect to medical technology innovation, including clinical trials, business plan development, securing investment capital/funding and new company formation.
Walsh, Madeline; Garg, Priya; Steel, Alexis; Mehta, Sahil; Data, Santorino; Petersen, Rebecca; Guarino, Anthony J; Bailey, Elizabeth; Bangsberg, David R
2017-01-01
Background Healthcare-focused hackathons are 48-hour platforms intended to accelerate novel medical technology. However, debate exists about how much they contribute to medical technology innovation. The Consortium for Affordable Medical Technologies (CAMTech) has developed a three-pronged model to maximise their effectiveness. To gauge the success of this model, we examined follow-up outcomes. Methods Outcomes of 12 hackathons from 2012 to 2015 in India, Uganda and the USA were measured using emailed surveys. To minimise response bias, non-responding teams were coded as having made no progress. Results 331 individuals provided information on 196 of 356 projects (55.1% response rate), with no difference in responses from teams participating in different countries (Cramer's V=0.09, p=0.17). 30.3% of projects had made progress after a mean of 12.2 months. 88 (24.7%) teams had initiated pilot testing, with 42 (11.8%) piloting with care providers and 24 (6.7%) with patients. Overall, 97 teams (8.1 per hackathon) drafted business plans, 22 (1.8 per hackathon) had filed patents on their innovations and 15 (1.3 per hackathon) had formed new companies. Teams raised US$64.08 million in funding (average US$5.34 million per hackathon; median award size of $1800). In addition, 108 teams (30.3%) reported at least one member working on additional technologies with people they met at a hackathon. Individual confidence to address medical technology challenges was significantly increased after attending (t(1282)=192.77, p 0.001). Conclusion CAMTech healthcare hackathons lead to consistent output with respect to medical technology innovation, including clinical trials, business plan development, securing investment capital/funding and new company formation. PMID:28250965
Influences of Government Championship on the Technology Innovation Process at the Project-level
NASA Astrophysics Data System (ADS)
Yue, Xin
Government support is a popular instrument to foster technology innovation. It can take various forms such as financial aid, tax credits, and technological assistance. Along with the firm characteristics, strategic behavior of the project team, characteristics of the technology and the market, and the regulatory environment, government support influences firms' research and development (R&D) motivations, decision making process, and hence technology development performance. How government support influences the performance in different industries is an important policy and research question. There are many studies on the effectiveness and impacts of government support, mostly at program-level or industry-level. Government Championship is a form of government support distinct from direct financial or technological assistance. Championship includes expressing confidence in the innovation, encouraging others to support the innovation, and persisting under adversity. Championship has been studied as a critical inside factor for innovation success, particularly at project-level. Usually a champion emerged within the organization responsible for the innovation project. However, with the intention to encourage technology development, governments can also play a championship role. Government championship, besides government financial and technological assistance (hereafter "government F&T"), could be one major category of government support to facilitate high-technology innovation. However, there are few studies focusing on the effectiveness of government championship, and how it influences the innovation process. This thesis addresses this question through two studies on high-technology development projects. The first study has tested the effectiveness of government championship on the performance of 431 government sponsored technology innovation projects. Government championship and government F&T, as well as project team strategic behavior, are hypothesized to influence the technology innovation performance. The team strategy has two dimensions in this model: pro-activeness and defensiveness, which indicate the emphasis of the team on exploiting new opportunities, and enhancing the current methods, respectively. A survey was administered to the project managers of li-ion battery projects in the United States. After data was collected, factor analysis and regression were used to test hypotheses. The results suggest that both government championship and government F&T are positive factors in technology innovation performance, while strategic behaviors are positive and more significant. The results also suggest a strong correlation between government support (both championship and F&T assistance) and the R&D team strategy, which means government intervention and team strategic behavior could affect each other. To understand how the government champions and the project team impact each other during the project, the second study employed a single in-depth case study, investigating the Shenhua Direct-Coal-Liquefaction (DCL) Project. A variety of government championship behaviors have been identified, and their situation and impacts on the project performance and outcome were analyzed. This case is a good start to accumulate information and observations for a better understanding of the influences of government championship in technology innovation. These two studies will help increase understanding of how government championship behaviors influence the process, the project performance, and the outcome of technology innovation, particularly in high-technology industries.
NASA Astrophysics Data System (ADS)
Orngreen, Rikke; Clemmensen, Torkil; Pejtersen, Annelise Mark
The boundaries and work processes for how virtual teams interact are undergoing changes, from a tool and stand-alone application orientation, to the use of multiple generic platforms chosen and redesigned to the specific context. These are often at the same time designed both by professional software developers and the individual members of the virtual teams, rather than determined on a single organizational level. There may be no impact of the technology per se on individuals, groups or organizations, as the technology for virtual teams rather enhance situation ambiguity and disrupt existing task-artifact cycles. This ambiguous situation calls for new methods for empirical work analysis and interaction design that can help us understand how organizations, teams and individuals learn to organize, design and work in virtual teams in various networked contexts.
Teaching 2.0: Teams Keep Teachers and Students Plugged into Technology
ERIC Educational Resources Information Center
Bourgeois, Michelle; Hunt, Bud
2011-01-01
A Colorado district develops a two-year program that gives teacher teams an opportunity to learn how to use digital tools in the classroom. Called the Digital Learning Collaborative, it is built on three things about professional learning: (1) Learning takes time; (2) Learning is a social process; and (3) Learning about technology should be…
ERIC Educational Resources Information Center
Becuwe, Heleen; Roblin, Natalie Pareja; Tondeur, Jo; Thys, Jeroen; Castelein, Els; Voogt, Joke
2017-01-01
Teacher educators often struggle to model effective integration of technology. Several studies suggest that the involvement of teacher educators in collaborative design is effective in developing the competences necessary for integrating information and communication technology (ICT) in teaching. In a teacher educator design team (TeDT), two or…
Critical Technology Determination for Future Human Space Flight
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Vangen, Scott D.; Williams-Byrd, Julie A.; Steckleim, Jonette M.; Alexander, Leslie; Rahman, Shamin A.; Rosenthal, Matthew; Wiley, Dianne S.; Davison, Stephan C.; Korsmeyer, David J.;
2012-01-01
As the National Aeronautics and Space Administration (NASA) prepares to extend human presence throughout the solar system, technical capabilities must be developed to enable long duration flights to destinations such as near Earth asteroids, Mars, and extended stays on the Moon. As part of the NASA Human Spaceflight Architecture Team, a Technology Development Assessment Team has identified a suite of critical technologies needed to support this broad range of missions. Dialog between mission planners, vehicle developers, and technologists was used to identify a minimum but sufficient set of technologies, noting that needs are created by specific mission architecture requirements, yet specific designs are enabled by technologies. Further consideration was given to the re-use of underlying technologies to cover multiple missions to effectively use scarce resources. This suite of critical technologies is expected to provide the needed base capability to enable a variety of possible destinations and missions. This paper describes the methodology used to provide an architecture driven technology development assessment (technology pull), including technology advancement needs identified by trade studies encompassing a spectrum of flight elements and destination design reference missions.
Critical Technology Determination for Future Human Space Flight
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Vangen, Scott D.; Williams-Byrd, Julie A.; Stecklein, Jonette M.; Rahman, Shamim A.; Rosenthal, Matthew E.; Hornyak, David M.; Alexander, Leslie; Korsmeyer, David J.; Tu, Eugene L.;
2012-01-01
As the National Aeronautics and Space Administration (NASA) prepares to extend human presence throughout the solar system, technical capabilities must be developed to enable long duration flights to destinations such as near Earth asteroids, Mars, and extended stays on the Moon. As part of the NASA Human Spaceflight Architecture Team, a Technology Development Assessment Team has identified a suite of critical technologies needed to support this broad range of missions. Dialog between mission planners, vehicle developers, and technologists was used to identify a minimum but sufficient set of technologies, noting that needs are created by specific mission architecture requirements, yet specific designs are enabled by technologies. Further consideration was given to the re-use of underlying technologies to cover multiple missions to effectively use scarce resources. This suite of critical technologies is expected to provide the needed base capability to enable a variety of possible destinations and missions. This paper describes the methodology used to provide an architecture-driven technology development assessment ("technology pull"), including technology advancement needs identified by trade studies encompassing a spectrum of flight elements and destination design reference missions.
Planetary Science Technology Infusion Study: Findings and Recommendations Status
NASA Technical Reports Server (NTRS)
Anderson, David J.; Sandifer, Carl E., II; Sarver-Verhey, Timothy R.; Vento, Daniel M.; Zakrajsek, June F.
2014-01-01
The Planetary Science Division (PSD) within the National Aeronautics and Space Administrations (NASA) Science Mission Directorate (SMD) at NASA Headquarters sought to understand how to better realize a scientific return on spacecraft system technology investments currently being funded. In order to achieve this objective, a team at NASA Glenn Research Center was tasked with surveying the science and mission communities to collect their insight on technology infusion and additionally sought inputs from industry, universities, and other organizations involved with proposing for future PSD missions. This survey was undertaken by issuing a Request for Information (RFI) activity that requested input from the proposing community on present technology infusion efforts. The Technology Infusion Study was initiated in March 2013 with the release of the RFI request. The evaluation team compiled and assessed this input in order to provide PSD with recommendations on how to effectively infuse new spacecraft systems technologies that it develops into future competed missions enabling increased scientific discoveries, lower mission cost, or both. This team is comprised of personnel from the Radioisotope Power Systems (RPS) Program and the In-Space Propulsion Technology (ISPT) Program staff.The RFI survey covered two aspects of technology infusion: 1) General Insight, including: their assessment of barriers to technology infusion as related to infusion approach; technology readiness; information and documentation products; communication; integration considerations; interaction with technology development areas; cost-capped mission areas; risk considerations; system level impacts and implementation; and mission pull. 2) Specific technologies from the most recent PSD Announcements of Opportunities (AOs): The Advanced Stirling Radioisotope Generator (ASRG), aerocapture and aeroshell hardware technologies, the NASA Evolutionary Xenon Thruster (NEXT) ion propulsion system, and the Advanced Materials Bi-propellant Rocket (AMBR) engine.This report will present the teams Findings from the RFI inputs and the recommendations that arose from these findings. Methodologies on the findings and recommendations development are discussed.
Integration of e-learning technologies in an interprofessional health science course.
Carbonaro, Mike; King, Sharla; Taylor, Elizabeth; Satzinger, Franziska; Snart, Fern; Drummond, Jane
2008-02-01
Advances in information and communication technology are influencing instructional formats and delivery modes for post secondary teaching and learning. The purpose of this study was to determine whether interprofessional team process skills traditionally taught in a small group face-to-face classroom setting could be taught in a blended learning environment; without compromising the pedagogical approach and collaborative Group Investigation Model (Sharan & Sharan 1992) used in the course. A required interprofessional team development course designed to teach health science students (Medicine, Nursing, Pharmacy, Occupational Therapy, Physical Therapy, Dentistry, Dental Hygiene, Medical Laboratory Science, and Nutrition) team process skills was redesigned from a 100% face-to-face delivery format to a blended learning format where 70% of the instruction was delivered using a new synchronous virtual classroom technology (Elluminate www.elluminate.com) in conjunction with asynchronous technology (WebCT). It was hypothesized there would be no significant difference between the blended learning format and the traditional face-to-face format in the development of interprofessional team knowledge, skills and attitudes. The two formats were evaluated on demographic information, computer experience, and interprofessional team attitudes, knowledge and skills. The three main findings are: (a) no significant differences between student groups on achieving team process skills, (b) an observation of differences between the groups on team dynamics, and (c) a more positive achievement of course learning objectives perceived by students in the blended learning class. The results provide evidence to support our blended learning format without compromising pedagogy. They also suggest that this format enhances students' perceptions of their learning.
NASA Technical Reports Server (NTRS)
Demange, Jeffrey J.; Taylor, Shawn C.; Dunlap, Patrick H.; Steinetz, Bruce M.; Finkbeiner, Joshua R.; Proctor, Margaret P.
2014-01-01
The NASA Glenn Research Center (GRC), partnering with the University of Toledo, has a long history of developing and testing seal technologies for high-temperature applications. The GRC Seals Team has conducted research and development on high-temperature seal technologies for applications including advanced propulsion systems, thermal protection systems (airframe and control surface thermal seals), high-temperature preloading technologies, and other extreme-environment seal applications. The team has supported several high-profile projects over the past 30 years and has partnered with numerous organizations, including other government entities, academic institutions, and private organizations. Some of these projects have included the National Aerospace Space Plane (NASP), Space Shuttle Space Transport System (STS), the Multi-Purpose Crew Vehicle (MPCV), and the Dream Chaser Space Transportation System, as well as several high-speed vehicle programs for other government organizations. As part of the support for these programs, NASA GRC has developed unique seal-specific test facilities that permit evaluations and screening exercises in relevant environments. The team has also embarked on developing high-temperature preloaders to help maintain seal functionality in extreme environments. This paper highlights several propulsion-related projects that the NASA GRC Seals Team has supported over the past several years and will provide an overview of existing testing capabilities
The Future of Allied Dental Education: Creating a Professional TEAM.
ERIC Educational Resources Information Center
Nash, David A.
1993-01-01
To prepare for the significant professional, technological, and demographic changes ahead, allied dental education should develop teams of dental professionals that are cost effective, efficient, and highly productive. Team leaders must be educated to acknowledge each member's unique role and affirm the importance of mutuality and reciprocity in…
Enhancing Student Collaboration in Global Virtual Teams
ERIC Educational Resources Information Center
Kohut, Gary F.
2012-01-01
With the growth in the global economy and the rapid development of communication and information technologies, global virtual teams are quickly becoming the norm in the workplace. Research indicates, however, that many students have little or no experience working in such teams. Students who learn through these experiences benefit from higher task…
ERIC Educational Resources Information Center
Haughton, Noela A.; Keil, Virginia L.
2009-01-01
This article discusses the development and implementation of a technology-supported student teacher performance assessment that supports integration with a larger electronic assessment system. The authors spearheaded a multidisciplinary team to develop a comprehensive performance assessment based on the Pathwise framework. The team collaborated…
Ehn, Maria; Hansson, Pär; Sjölinder, Marie; Boman, Inga-Lill; Folke, Mia; Sommerfeld, Disa; Borg, Jörgen; Palmcrantz, Susanne
2015-01-01
The aim of this work has been to develop a technical support enabling home-based motor training after stroke. The basis for the work plan has been to develop an interactive technical solution supporting three different groups of stroke patients: (1) patients with stroke discharged from hospital with support from neuro team; (2) patients with stroke whose support from neuro team will be phased out and (3) patients living with impaired motor functions long-term. The technology has been developed in close collaboration with end-users using a method earlier evaluated and described [12]. This paper describes the main functions of the developed technology. Further, results from early user-tests with end-users, performed to identify needs for improvements to be carried out during further technical development. The developed technology will be tested further in a pilot study of the safety and, usefulness of the technology when applied as a support for motor training in three different phases of the post-stroke rehabilitation process.
Technology and Economics, Inc. Technology Application Team
NASA Technical Reports Server (NTRS)
Ballard, T.; Macfadyen, D. J.
1981-01-01
Technology + Economics, Inc. (T+E), under contract to the NASA Headquarters Technology Transfer Division, operates a Technology Applications Team (TATeam) to assist in the transfer of NASA-developed aerospace technology. T+E's specific areas of interest are selected urban needs at the local, county, and state levels. T+E contacts users and user agencies at the local, state, and county levels to assist in identifying significant urban needs amenable to potential applications of aerospace technology. Once viable urban needs have been identified in this manner, or through independent research, T+E searches the NASA technology database for technology and/or expertise applicable to the problem. Activities currently under way concerning potential aerospace applications are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wantuck, P. J.; Hollen, R. M.
2002-01-01
This paper provides an overview of some design and automation-related projects ongoing within the Applied Engineering Technologies (AET) Group at Los Alamos National Laboratory. AET uses a diverse set of technical capabilities to develop and apply processes and technologies to applications for a variety of customers both internal and external to the Laboratory. The Advanced Recovery and Integrated Extraction System (ARIES) represents a new paradigm for the processing of nuclear material from retired weapon systems in an environment that seeks to minimize the radiation dose to workers. To achieve this goal, ARIES relies upon automation-based features to handle and processmore » the nuclear material. Our Chemical Process Development Team specializes in fuzzy logic and intelligent control systems. Neural network technology has been utilized in some advanced control systems developed by team members. Genetic algorithms and neural networks have often been applied for data analysis. Enterprise modeling, or discrete event simulation, as well as chemical process simulation has been employed for chemical process plant design. Fuel cell research and development has historically been an active effort within the AET organization. Under the principal sponsorship of the Department of Energy, the Fuel Cell Team is now focusing on technologies required to produce fuel cell compatible feed gas from reformation of a variety of conventional fuels (e.g., gasoline, natural gas), principally for automotive applications. This effort involves chemical reactor design and analysis, process modeling, catalyst analysis, as well as full scale system characterization and testing. The group's Automation and Robotics team has at its foundation many years of experience delivering automated and robotic systems for nuclear, analytical chemistry, and bioengineering applications. As an integrator of commercial systems and a developer of unique custom-made systems, the team currently supports the automation needs of many Laboratory programs.« less
MRI, Battelle, Bechtel Team Wins National Renewable Energy Laboratory
sustainable energy future by developing and deploying renewable energy technologies and improving energy with both industrial and government clients in developing new technologies and products. "We are
NASA Technical Reports Server (NTRS)
Lenz, Robert W.
1995-01-01
A fact-finding team of American scientists and engineers visited Japan to assess the status of research and development and applications in biodegradable polymers. The visit was sponsored by the National Science Foundation and industry. In Japan, the team met with representatives of 31 universities, government ministries and institutes, companies, and associations. Japan's national program on biodegradable polymers and plastics evaluates new technologies, testing methods, and potential markets for biodegradables. The program is coordinated by the Biodegradable Plastics Society of Japan, which seeks to achieve world leadership in biodegradable polymer technology and identify commercial opportunities for exploiting this technology. The team saw no major new technology breakthroughs. Japanese scientists and engineers are focusing on natural polymers from renewable resources, synthetic polymers, and bacterially-produced polymers such as polyhydroxyalkanoates, poly(amino acids), and polysaccharides. The major polymers receiving attention are the Zeneca PHBV copolymers, Biopol(registered trademark), poly(lactic acid) from several sources, polycaprolactone, and the new synthetic polyester, Bionolle(registered trademark), from Showa High Polymer. In their present state of development, these polymers all have major deficiencies that inhibit their acceptance for large-scale applications.
Combustion devices technology team - An overview and status of STME-related activities
NASA Technical Reports Server (NTRS)
Tucker, P. K.; Croteau-Gillespie, Margie
1992-01-01
The Consortium for CFD applications in propulsion technology has been formed at NASA/Marshall Space Flight Center. The combustion devices technology team is one of the three teams that constitute the Consortium. While generally aiming to advance combustion devices technology for rocket propulsion, the team's efforts for the last 1 and 1/2 years have been focused on issues relating to the Space Transportation Main Engine (STME) nozzle. The nozzle design uses hydrogen-rich turbine exhaust to cool the wall in a film/dump scheme. This method of cooling presents challenges and associated risks for the nozzle designers and the engine/vehicle integrators. Within the nozzle itself, a key concern is the ability to effectively and efficiently film cool the wall. From the National Launch System vehicle base standpoint, there are concerns with dumping combustible gases at the nozzle exit and their potential adverse effects on the base thermal environment. The Combustion Team has developed and is implementing plans to use validated CFD tools to aid in risk mitigation for both areas.
Concurrency in product realization
NASA Astrophysics Data System (ADS)
Kelly, Michael J.
1994-03-01
Technology per se does not provide a competitive advantage. Timely exploitation of technology is what gives the competitive edge, and this demands a major shift in the product development process and management of the industrial enterprise. `Teaming to win' is more than a management theme; it is the disciplined engineering practice that is essential to success in today's global marketplace. Teaming supports the concurrent engineering practices required to integrate the activities of people responsible for product realization through achievement of shorter development cycles, lower costs, and defect-free products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nasseh, Bizhan
Ball State University (BSU) was the recipient of a U.S. Department of Energy award to develop educational games teaching science and math. The Science Media Program will merge Ball State University’s nationally recognized capabilities in education, technology, and communication to develop new, interactive, game-based media for the teaching and learning of science and scientific principles for K-12 students. BSU established a team of educators, researchers, scientists, animators, designers, technology specialists, and hired a professional media developer company (Outside Source Design) from Indianapolis. After six months discussions and assessments the project team selected the following 8 games in Math, Physics, Chemistry,more » and Biology, 2 from each discipline. The assembled teams were innovative and unique. This new model of development and production included a process that integrated all needed knowledge and expertise for the development of high quality science and math games for K-12 students. This new model has potential to be used by others for the development of the educational games. The uniqueness of the model is to integrate domain experts’ knowledge with researchers/quality control group, and combine a professional development team from the game development company with the academic game development team from Computer Science and Art departments at Ball State University. The developed games went through feasibility tests with selected students for improvement before use in the research activities.« less
[Investigation in medical technology: support for cooperation among countries].
Sánchez, E C; Arredondo, A; Cruz, C
1991-01-01
This paper discusses the results of the research work on medical technology in several countries by research teams whose goals are to prompt the exchange of information and support practical cooperation. Emphasis is placed on the work developed by the Pan American Health Organization, which has supported 45 research proposals on medical technology and stimulated the association of academic groups, national institutions and international agencies. The authors also describe the research activities of the team devoted to medical technology research at the National Institute of Public Health in Mexico.
Mirror Technology Development for The International X-Ray Observatory Mission
NASA Technical Reports Server (NTRS)
Zhang, Will
2010-01-01
Presentation slides include: International X-ray Observatory (IXO), Lightweight and High Resolution X-ray Optics is Needed; Modular Design of Mirror Assembly, IXO Mirror Technology Development Objectives, Focus of Technology Development, Slumping - Status, Mirror Fabrication Progress, Temporary Bonding - Status, Alignment - Status, Permanent Bonding - Status, Mirror Housing Simulator (MHS) - TRL-4, Mini-Module (TRL-5), Flight-Like Module (TRL-6), Mirror Technology Development Team, Outlook, and Small Technology Firms that Have Made Direct Contributions to IXO Mirror Technology Development.
Mobile and Web Game Development: Using Videogames as an Educational and Outreach Tool
NASA Technical Reports Server (NTRS)
Jaime, Fernando I.
2012-01-01
Few tools reach out to capture the imagination and interests of children like video games do. As such, the development of educational applications that foster young minds' interest in science and technology become of the utmost importance. To this end, I spent my summer internship developing outreach and educational applications in conjunction with JPL's Space Place team. This small, but dedicated, team of people manages three NASA websites that focus on presenting science and technology information in such a manner that young children can understand it and develop an interest in the subjects. Besides the websites, with their plethora of educational content presented through hands-on activities, games and informative articles, the team also creates and coordinates the distribution of printed material to museums, astronomy clubs and a huge network of educators.
STTR Phase 1 Final Technical Report for Project Entitled "Developing a Mobile Torrefaction Machine"
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, Joseph J.
The goal of this project, sponsored by Agri-Tech Producers, LLC (ATP), the small business grantee, was to determine if the torrefaction technology, developed by North Carolina State University (NCSU), which ATP has licensed, could be feasibly deployed in a mobile unit. The study adds to the area investigated, by having ATP’s STTR Phase I team give thoughtful consideration to how to use NCSU’s technology in a mobile unit. The findings by ATP’s team were that NCSU’s technology would best perform in units 30’ by 80’ (See Spec Sheet for the Torre-Tech 5.0 Unit in the Appendix) and the technical effectivenessmore » and economic feasibility investigation suggested that such units were not easily, efficiently or safely utilized in a forest or farm setting. (Note rendering of possible mobile system in the Appendix) Therefore, the findings by ATP’s team were that NCSU’s technology could not feasibly be deployed as a mobile unit.« less
Managing Biases in Product Development Teams: A Tale of Two Rocks
ERIC Educational Resources Information Center
Keene, Michael A.
2017-01-01
The management of product development teams is a challenging task, especially when success hinges on the ability to guide technical and nontechnical personnel through an effective decision-making process. The "Tale of Two Rocks" exercise illustrates how differing motivations and beliefs about new technologies can affect the decisions…
ERIC Educational Resources Information Center
Fiore, Stephen M.; Rodriguez, Walter E.; Carstens, Deborah S.
2012-01-01
This paper presents a framework for facilitating communication among STEM project teams that are geographically dispersed in synchronous or asynchronous online courses. The framework has been developed to: (a) improve how engineering and technology students and faculty work with collocated and geographically-dispersed teams; and (b) to connect the…
Practices and technologies in hazardous material transportation and security.
DOT National Transportation Integrated Search
2011-11-23
"The University of Arkansas (UA) team is responsible for investigating practices of : hazardous material transportation in the private sector. The UA team is a subcontractor : to the project Petrochemical Transportation Security, Development of...
Fission Surface Power System Initial Concept Definition
NASA Technical Reports Server (NTRS)
2010-01-01
Under the NASA Exploration Technology Development Program (ETDP) and in partnership with the Department of Energy (DOE), NASA has embarked on a project to develop Fission Surface Power (FSP) technology. The primary goals of the project are to 1) develop FSP concepts that meet expected surface power requirements at reasonable cost with added benefits over other options, 2) establish a hardwarebased technical foundation for FSP design concepts and reduce overall development risk, 3) reduce the cost uncertainties for FSP and establish greater credibility for flight system cost estimates, and 4) generate the key products to allow NASA decision-makers to consider FSP as a preferred option for flight development. The FSP project was initiated in 2006 as the Prometheus Program and the Jupiter Icy Moons Orbiter (JIMO) mission were phased-out. As a first step, NASA Headquarters commissioned the Affordable Fission Surface Power System Study to evaluate the potential for an affordable FSP development approach. With a cost-effective FSP strategy identified, the FSP team evaluated design options and selected a Preliminary Reference Concept to guide technology development. Since then, the FSP Preliminary Reference Concept has served as a point-of-departure for several NASA mission architecture studies examining the use of nuclear power and has provided the foundation for a series of "Pathfinder" hardware tests. The long-term technology goal is a Technology Demonstration Unit (TDU) integrated system test using full-scale components and a non-nuclear reactor simulator. The FSP team consists of Glenn Research Center (GRC), Marshall Space Flight Center (MSFC) and the DOE National Laboratories at Los Alamos (LANL), Idaho (INL), Oak Ridge (ORNL), and Sandia (SNL). The project is organized into two main elements: Concept Definition and Risk Reduction. Under Concept Definition, the team performs trade studies, develops analytical tools, and formulates system concepts. Under Risk Reduction the team develops hardware prototypes and conducts laboratory-based testing.
2011-11-01
based perception of each team member‟s behavior and physiology with the goal of predicting unobserved variables (e.g., cognitive state). Along with...sensing technologies are showing promise as enablers of computer-based perception of each team member‟s behavior and physiology with the goal...an essential element of team performance. The perception that other team members may be unable to perform their tasks is detrimental to trust and
Effective factor of virtual team: Resolving communication breakdown in IBS construction project
NASA Astrophysics Data System (ADS)
Pozin, Mohd Affendi Ahmad; Nawi, Mohd. Nasrun Mohd.
2016-08-01
Currently, rapid development of information technology has provided new opportunities to organisation toward increasing the effectiveness of collaboration and teamwork management. Thus the virtual team approach has been implemented in numerous of field. However, there is limited study of virtual team in construction project management. Currently IBS project is still based on traditional construction process which is isolation team working environment. Therefore this approach has been declared as a main barrier to ensure cooperative working relation in term of communication and information in between project stakeholders. Thus, this paper through literature review is attempted to present a discussion of the virtual team approach toward IBS project in developing effective team communication during construction project.
Rein, Robert; Memmert, Daniel
2016-01-01
Until recently tactical analysis in elite soccer were based on observational data using variables which discard most contextual information. Analyses of team tactics require however detailed data from various sources including technical skill, individual physiological performance, and team formations among others to represent the complex processes underlying team tactical behavior. Accordingly, little is known about how these different factors influence team tactical behavior in elite soccer. In parts, this has also been due to the lack of available data. Increasingly however, detailed game logs obtained through next-generation tracking technologies in addition to physiological training data collected through novel miniature sensor technologies have become available for research. This leads however to the opposite problem where the shear amount of data becomes an obstacle in itself as methodological guidelines as well as theoretical modelling of tactical decision making in team sports is lacking. The present paper discusses how big data and modern machine learning technologies may help to address these issues and aid in developing a theoretical model for tactical decision making in team sports. As experience from medical applications show, significant organizational obstacles regarding data governance and access to technologies must be overcome first. The present work discusses these issues with respect to tactical analyses in elite soccer and propose a technological stack which aims to introduce big data technologies into elite soccer research. The proposed approach could also serve as a guideline for other sports science domains as increasing data size is becoming a wide-spread phenomenon.
Information Technology Assessment Study: Full Report
NASA Technical Reports Server (NTRS)
Peterson, John (Editor)
2002-01-01
A team was formed to assess NASA Office of Space Science (OSS) information technology research and development activities. These activities were reviewed for their relevance to OSS missions, for their potential for using products better supplied by industry or other government agencies, and for recommending an information technology (IT) infusion strategy for appropriate products for OSS missions. Assessment scope and methodology are presented. IT needs and interests for future OSS missions and current NASA IT research and development (R&D) are discussed. Non-NASA participants provide overviews of some of their IT R&D programs. Implementation and infusion issues and the findings and recommendations of the assessment team are presented.
CASIS Fact Sheet: Hardware and Facilities
NASA Technical Reports Server (NTRS)
Solomon, Michael R.; Romero, Vergel
2016-01-01
Vencore is a proven information solutions, engineering, and analytics company that helps our customers solve their most complex challenges. For more than 40 years, we have designed, developed and delivered mission-critical solutions as our customers' trusted partner. The Engineering Services Contract, or ESC, provides engineering and design services to the NASA organizations engaged in development of new technologies at the Kennedy Space Center. Vencore is the ESC prime contractor, with teammates that include Stinger Ghaffarian Technologies, Sierra Lobo, Nelson Engineering, EASi, and Craig Technologies. The Vencore team designs and develops systems and equipment to be used for the processing of space launch vehicles, spacecraft, and payloads. We perform flight systems engineering for spaceflight hardware and software; develop technologies that serve NASA's mission requirements and operations needs for the future. Our Flight Payload Support (FPS) team at Kennedy Space Center (KSC) provides engineering, development, and certification services as well as payload integration and management services to NASA and commercial customers. Our main objective is to assist principal investigators (PIs) integrate their science experiments into payload hardware for research aboard the International Space Station (ISS), commercial spacecraft, suborbital vehicles, parabolic flight aircrafts, and ground-based studies. Vencore's FPS team is AS9100 certified and a recognized implementation partner for the Center for Advancement of Science in Space (CASIS
Banking, Technology Workers and Their Career Development.
ERIC Educational Resources Information Center
Armstrong, Lesley; West, Jim
2001-01-01
An Australian bank developed a four-stage career development strategy for information technology workers: (1) career coaching sessions with executives; (2) career coaching seminars for line managers and team leaders; (3) staff career planning workshops; and (4) online career development support. The program resulted in increased satisfaction,…
Home care and technology: a case study.
Stroulia, Eleni; Nikolaidisa, Ioanis; Liua, Lili; King, Sharla; Lessard, Lysanne
2012-01-01
Health care aides (HCAs) are the backbone of the home care system and provide a range of services to people who, for various reasons related to chronic conditions and aging, are not able to take care of themselves independently. The demand for HCA services will increase and the current HCA supply will likely not keep up with this increasing demand without fundamental changes in the current environment. Information and communication technology (ICT) can address some of the workflow challenges HCAs face. In this project, we conducted an ethnographic study to document and analyse HCAs' workflows and team interactions. Based on our findings, we designed an ICT tool suite, integrating easily available existing and newly developed (by our team) technologies to address these issues. Finally, we simulated the deployment of our technologies, to assess the potential impact of these technological solutions on the workflow and productivity of HCAs, their healthcare teams and client care.
ERIC Educational Resources Information Center
Tosti, Donald T.; Jackson, Stephanie F.
2001-01-01
Discusses information technology and human performance technology (HPT) and considers the potential of performance technology to improve business results. Topics include the strategic value of HPT in organizational governance, developing leadership capability, team building, fostering collaboration, and corporate culture change; and the need to…
Team 278 gets help from KSC machine shop
NASA Technical Reports Server (NTRS)
2000-01-01
The Hero Team (278) gets some help from a Kennedy Space Center research and development machine shop in repairing their robot, named Hero. The team of Edgewater High School students was co- sponsored by NASA Kennedy Space Center and Honeywell. Students from all over the country are at the KSC Visitor Complex for the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition March 9-11 in the Rocket Garden. Teams of high school students are testing the limits of their imagination using robots they have designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing, 16 are Florida teams co- sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusville.
Team 278 gets help from KSC machine shop
NASA Technical Reports Server (NTRS)
2000-01-01
The Hero Team (278) robot, named Hero, is repaired in a Kennedy Space Center research and development machine shop. The team of Edgewater High School students was co-sponsored by NASA Kennedy Space Center and Honeywell. Students from all over the country are at the KSC Visitor Complex for the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition March 9-11 in the Rocket Garden. Teams of high school students are testing the limits of their imagination using robots they have designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing, 16 are Florida teams co-sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusville.
An Approach for Performance Based Glove Mobility Requirements
NASA Technical Reports Server (NTRS)
Aitchison, Lindsay; Benson, Elizabeth; England, Scott
2016-01-01
The Space Suit Assembly (SSA) Development Team at NASA Johnson Space Center has invested heavily in the advancement of rear-entry planetary exploration suit design but largely deferred development of extravehicular activity (EVA) glove designs, and accepted the risk of using the current flight gloves, Phase VI, for exploration missions. However, as design reference missions mature, the risks of using heritage hardware have highlighted the need for developing robust new glove technologies. To address the technology gap, the NASA Space Technology Mission Directorate's Game-Changing Development Program provided start-up funding for the High Performance EVA Glove (HPEG) Element as part of the Next Generation Life Support (NGLS) Project in the fall of 2013. The overarching goal of the HPEG Element is to develop a robust glove design that increases human performance during EVA and creates pathway for implementation of emergent technologies, with specific aims of increasing pressurized mobility to 60% of barehanded capability, increasing the durability in on-pristine environments, and decreasing the potential of gloves to cause injury during use. The HPEG Element focused initial efforts on developing quantifiable and repeatable methodologies for assessing glove performance with respect to mobility, injury potential, thermal conductivity, and abrasion resistance. The team used these methodologies to establish requirements against which emerging technologies and glove designs can be assessed at both the component and assembly levels. The mobility performance testing methodology was an early focus for the HPEG team as it stems from collaborations between the SSA Development team and the JSC Anthropometry and Biomechanics Facility (ABF) that began investigating new methods for suited mobility and fit early in the Constellation Program. The combined HPEG and ABF team used lessons learned from the previous efforts as well as additional reviews of methodologies in physical and occupational therapy arenas to develop a protocol that assesses gloved range of motion, strength, dexterity, tactility, and fit in comparative quantitative terms and also provides qualitative insight to direct hardware design iterations. The protocol was evaluated using five experienced test subjects wearing the EMU pressurized to 4.3psid with three different glove configurations. The results of the testing are presented to illustrate where the protocol is and is not valid for benchmark comparisons. The process for requirements development based upon the results is also presented along with suggested performance values for the High Performance EVA Gloves currently in development.
Advanced Radioisotope Power Conversion Technology Research and Development
NASA Technical Reports Server (NTRS)
Wong, Wayne A.
2004-01-01
NASA's Radioisotope Power Conversion Technology program is developing next generation power conversion technologies that will enable future missions that have requirements that cannot be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power System (RPS) technology. Performance goals of advanced radioisotope power systems include improvement over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. NASA has awarded ten contracts in the technology areas of Brayton, Stirling, Thermoelectric, and Thermophotovoltaic power conversion including five development contracts that deal with more mature technologies and five research contracts. The Advanced RPS Systems Assessment Team includes members from NASA GRC, JPL, DOE and Orbital Sciences whose function is to review the technologies being developed under the ten Radioisotope Power Conversion Technology contracts and assess their relevance to NASA's future missions. Presented is an overview of the ten radioisotope power conversion technology contracts and NASA's Advanced RPS Systems Assessment Team.
The Emergence of Innovative Work in School Development
ERIC Educational Resources Information Center
Vennebo, Kirsten Foshaug; Ottesen, Eli
2015-01-01
In this article, we analyse the school developmental work of a project team in Norwegian upper secondary schools. The team aims to improve teaching and learning by making use of new technologies. The aim of the article is to explore the "black box" of developmental work practices by analysing the interactions between the team members to…
ERIC Educational Resources Information Center
McFadden, Justin R.; Roehrig, Gillian H.
2017-01-01
Background: This study presents two teacher design teams (TDTs) during a professional development experience centered on science, technology, engineering, and mathematics (STEM)-integrated curriculum development. The main activity of the study, curriculum design, was framed as a design problem in order to better understand how teachers engaged…
NASA Technical Reports Server (NTRS)
Berke, J. G.
1971-01-01
The organization and functions of an interdisciplinary team for the application of aerospace generated technology to the solution of discrete technological problems within the public sector are presented. The interdisciplinary group formed at Stanford Research Institute, California is discussed. The functions of the group are to develop and conduct a program not only optimizing the match between public sector technological problems in criminalistics, transportation, and the postal services and potential solutions found in the aerospace data base, but ensuring that appropriate solutions are acutally utilized. The work accomplished during the period from July 1, 1970 to June 30, 1971 is reported.
Enhancing public involvement in assistive technology design research.
Williamson, Tracey; Kenney, Laurence; Barker, Anthony T; Cooper, Glen; Good, Tim; Healey, Jamie; Heller, Ben; Howard, David; Matthews, Martin; Prenton, Sarah; Ryan, Julia; Smith, Christine
2015-05-01
To appraise the application of accepted good practice guidance on public involvement in assistive technology research and to identify its impact on the research team, the public, device and trial design. Critical reflection and within-project evaluation were undertaken in a case study of the development of a functional electrical stimulation device. Individual and group interviews were undertaken with lay members of a 10 strong study user advisory group and also research team members. Public involvement was seen positively by research team members, who reported a positive impact on device and study designs. The public identified positive impact on confidence, skills, self-esteem, enjoyment, contribution to improving the care of others and opportunities for further involvement in research. A negative impact concerned the challenge of engaging the public in dissemination after the study end. The public were able to impact significantly on the design of an assistive technology device which was made more fit for purpose. Research team attitudes to public involvement were more positive after having witnessed its potential first hand. Within-project evaluation underpins this case study which presents a much needed detailed account of public involvement in assistive technology design research to add to the existing weak evidence base. The evidence base for impact of public involvement in rehabilitation technology design is in need of development. Public involvement in co-design of rehabilitation devices can lead to technologies that are fit for purpose. Rehabilitation researchers need to consider the merits of active public involvement in research.
NASA Operational Environment Team (NOET) - NASA's key to environmental technology
NASA Technical Reports Server (NTRS)
Cook, Beth
1993-01-01
NOET is a NASA-wide team which supports the research and development community by sharing information both in person and via a computerized network, assisting in specification and standard revisions, developing cleaner propulsion systems, and exploring environmentally compliant alternatives to current processes. NOET's structure, dissemination of materials, electronic information, EPA compliance, specifications and standards, and environmental research and development are discussed.
NASA Technical Reports Server (NTRS)
Young, Roy M.; Montgomery, Edward E.; Montgomery, Sandy; Adams, Charles L.
2007-01-01
The NASA In-Space Propulsion Technology (ISPT) Projects Office has been sponsoring 2 separate, independent system design and development hardware demonstration activities during 2002-2005. ATK Space Systems of Goleta, CA was the prime contractor for one development team and L'Garde, Inc. of Tustin, CA was the prime contractor for the other development team. The goal of these activities was to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by the year 2006. Component and subsystem fabrication and testing were completed successfully, including the ground deployment of 10-meter and 20-meter ground demonstration hardware systems under vacuum conditions. The deployment and structural testing of the 20-meter solar sail systems was conducted in the 30 meter diameter Space Power Facility thermal-vacuum chamber at NASA Glenn Plum Brook in April though August, 2005. This paper will present the results of the TRL assessment following the solar sail technology development activities associated with the design, development, analysis and testing of the 20-meter system ground demonstrators. Descriptions of the system designs for both the ATK and L'Garde systems will be presented. Changes, additions and evolution of the system designs will be highlighted. A description of the modeling and analyses activities performed by both teams, as well as testing conducted to raise the TRL of solar sail technology will be presented. A summary of the results of model correlation activities will be presented. Finally, technology gaps identified during the assessment and gap closure plans will be presented, along with "lessons learned", subsequent planning activities and validation flight opportunities for solar sail propulsion technology.
Herron, Jennifer; Kaneshiro, Kellie
2017-01-01
This article describes the planning and development of a 3D printing makerspace at an academic health sciences library. At the start of 2015, a new library Technology Team was formed consisting of a team leader, an emerging technologies librarian, and a library systems analyst. One of the critical steps in the development of the proposal and with the planning of this project was collaborating and partnering with different departments and units outside the library. These connections helped shape the design of the makerspace.
An Approach for Performance Based Glove Mobility Requirements
NASA Technical Reports Server (NTRS)
Aitchison, Lindsay; Benson, Elizabeth; England, Scott
2015-01-01
The Space Suit Assembly (SSA) Development Team at NASA Johnson Space Center has invested heavily in the advancement of rear-entry planetary exploration suit design but largely deferred development of extravehicular activity (EVA) glove designs, and accepted the risk of using the current flight gloves, Phase VI, for exploration missions. However, as design reference missions mature, the risks of using heritage hardware have highlighted the need for developing robust new glove technologies. To address the technology gap, the NASA Space Technology Mission Directorate's Game-Changing Development Program provided start-up funding for the High Performance EVA Glove (HPEG) Element as part of the Next Generation Life Support (NGLS) Project in the fall of 2013. The overarching goal of the HPEG Element is to develop a robust glove design that increases human performance during EVA and creates pathway for implementation of emergent technologies, with specific aims of increasing pressurized mobility to 60% of barehanded capability, increasing the durability in on-pristine environments, and decreasing the potential of gloves to cause injury during use. The HPEG Element focused initial efforts on developing quantifiable and repeatable methodologies for assessing glove performance with respect to mobility, injury potential, thermal conductivity, and abrasion resistance. The team used these methodologies to establish requirements against which emerging technologies and glove designs can be assessed at both the component and assembly levels. The mobility performance testing methodology was an early focus for the HPEG team as it stems from collaborations between the SSA Development team and the JSC Anthropometry and Biomechanics Facility (ABF) that began investigating new methods for suited mobility and fit early in the Constellation Program. The combined HPEG and ABF team used lessons learned from the previous efforts as well as additional reviews of methodologies in physical and occupational therapy arenas to develop a protocol that assesses gloved range of motion, strength, dexterity, tactility, and fit in comparative quantitative terms and also provides qualitative insight to direct hardware design iterations. The protocol was evaluated using five experienced test subjects wearing the EMU pressurized to 4.3psid with three different glove configurations. The results of the testing are presented to illustrate where the protocol is and is not valid for benchmark comparisons. The process for requirements development based upon the results is also presented along with suggested performance values for the High Performance EVA Gloves to be procured in fiscal year 2015.
What Is Technology Transfer? | Poster
The NCI Technology Transfer Center (TTC) facilitates partnerships between NIH research laboratories and external partners. With a team of technology transfer specialists, NCI TTC guides interactions from discovery to patenting, as well as from collaboration and invention development to licensing.
A methodology and supply chain management inspired reference ontology for modeling healthcare teams.
Kuziemsky, Craig E; Yazdi, Sara
2011-01-01
Numerous studies and strategic plans are advocating more team based healthcare delivery that is facilitated by information and communication technologies (ICTs). However before we can design ICTs to support teams we need a solid conceptual model of team processes and a methodology for using such a model in healthcare settings. This paper draws upon success in the supply chain management domain to develop a reference ontology of healthcare teams and a methodology for modeling teams to instantiate the ontology in specific settings. This research can help us understand how teams function and how we can design ICTs to support teams.
Best practices for team-based assistive technology design courses.
Goldberg, Mary R; Pearlman, Jonathan L
2013-09-01
Team-based design courses focused on products for people with disabilities have become relatively common, in part because of training grants such as the NSF Research to Aid Persons with Disabilities course grants. An output from these courses is an annual description of courses and projects but has yet to be complied into a "best practices guide," though it could be helpful for instructors. To meet this need, we conducted a study to generate best practices for assistive technology product development courses and how to use these courses to teach students the fundamentals of innovation. A full list of recommendations is comprised in the manuscript and include identifying a client through a reliable clinical partner; allowing for transparency between the instructors, the client, and the team(s); establishing multi-disciplinary teams; using a process-oriented vs. solution-oriented product development model; using a project management software to facilitate and archive communication and outputs; facilitating client interaction through frequent communication; seeking to develop professional role confidence to inspire students' commitment to engineering and (where applicable) rehabilitation field; publishing student designs on repositories; incorporating both formal and informal education opportunities related to design; and encouraging students to submit their designs to local or national entrepreneurship competitions.
Information Technology Team Projects in Higher Education: An International Viewpoint
ERIC Educational Resources Information Center
Lynch, Kathy; Heinze, Aleksej; Scott, Elsje
2007-01-01
It is common to find final or near final year undergraduate Information Technology students undertaking a substantial development project; a project where the students have the opportunity to be fully involved in the analysis, design, and development of an information technology service or product. This involvement has been catalyzed and prepared…
Internationalizing the Business Curriculum: Technology and Social Change.
ERIC Educational Resources Information Center
Seabrook, Roberta
In 1986 the Technology and Social Change Program and the College of Business at Iowa State University joined forces to develop a new graduate course that focused on the role of the multinational corporation in technology transfer to the lesser developed countries. The course was team taught by faculty from different disciplines and colleges, and…
2000-03-10
The Hero Team (278) robot, named Hero, is repaired in a Kennedy Space Center research and development machine shop. The team of Edgewater High School students was co-sponsored by NASA Kennedy Space Center and Honeywell. Students from all over the country are at the KSC Visitor Complex for the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition March 9-11 in the Rocket Garden. Teams of high school students are testing the limits of their imagination using robots they have designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing, 16 are Florida teams co-sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusville
2000-03-10
The Hero Team (278) robot, named Hero, is repaired in a Kennedy Space Center research and development machine shop. The team of Edgewater High School students was co-sponsored by NASA Kennedy Space Center and Honeywell. Students from all over the country are at the KSC Visitor Complex for the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition March 9-11 in the Rocket Garden. Teams of high school students are testing the limits of their imagination using robots they have designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing, 16 are Florida teams co-sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusville
2000-03-10
The Hero Team (278) robot, named Hero, is repaired in a Kennedy Space Center research and development machine shop. The team of Edgewater High School students was co-sponsored by NASA Kennedy Space Center and Honeywell. Students from all over the country are at the KSC Visitor Complex for the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition March 9-11 in the Rocket Garden. Teams of high school students are testing the limits of their imagination using robots they have designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing, 16 are Florida teams co-sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusville
Green Propellant Infusion Mission Program Development and Technology Maturation
NASA Technical Reports Server (NTRS)
McLean, Christopher H.; Deininger, William D.; Joniatis, John; Aggarwal, Pravin K.; Spores, Ronald A.; Deans, Matthew; Yim, John T.; Bury, Kristen; Martinez, Jonathan; Cardiff, Eric H.;
2014-01-01
The NASA Space Technology Mission Directorate's (STMD) Green Propellant Infusion Mission (GPIM) Technology Demonstration Mission (TDM) is comprised of a cross-cutting team of domestic spacecraft propulsion and storable green propellant technology experts. This TDM is led by Ball Aerospace & Technologies Corp. (BATC), who will use their BCP- 100 spacecraft to carry a propulsion system payload consisting of one 22 N thruster for primary divert (DeltaV) maneuvers and four 1 N thrusters for attitude control, in a flight demonstration of the AF-M315E technology. The GPIM project has technology infusion team members from all three major market sectors: Industry, NASA, and the Department of Defense (DoD). The GPIM project team includes BATC, includes Aerojet Rocketdyne (AR), Air Force Research Laboratory, Aerospace Systems Directorate, Edwards AFB (AFRL), NASA Glenn Research Center (GRC), NASA Kennedy Space Center (KSC), and NASA Goddard Space Flight Center (GSFC). STMD programmatic and technology oversight is provided by NASA Marshall Space Flight Center. The GPIM project shall fly an operational AF-M315E green propulsion subsystem on a Ball-built BCP-100 spacecraft.
Lessons Learned from Deploying an Analytical Task Management Database
NASA Technical Reports Server (NTRS)
O'Neil, Daniel A.; Welch, Clara; Arceneaux, Joshua; Bulgatz, Dennis; Hunt, Mitch; Young, Stephen
2007-01-01
Defining requirements, missions, technologies, and concepts for space exploration involves multiple levels of organizations, teams of people with complementary skills, and analytical models and simulations. Analytical activities range from filling a To-Be-Determined (TBD) in a requirement to creating animations and simulations of exploration missions. In a program as large as returning to the Moon, there are hundreds of simultaneous analysis activities. A way to manage and integrate efforts of this magnitude is to deploy a centralized database that provides the capability to define tasks, identify resources, describe products, schedule deliveries, and generate a variety of reports. This paper describes a web-accessible task management system and explains the lessons learned during the development and deployment of the database. Through the database, managers and team leaders can define tasks, establish review schedules, assign teams, link tasks to specific requirements, identify products, and link the task data records to external repositories that contain the products. Data filters and spreadsheet export utilities provide a powerful capability to create custom reports. Import utilities provide a means to populate the database from previously filled form files. Within a four month period, a small team analyzed requirements, developed a prototype, conducted multiple system demonstrations, and deployed a working system supporting hundreds of users across the aeros pace community. Open-source technologies and agile software development techniques, applied by a skilled team enabled this impressive achievement. Topics in the paper cover the web application technologies, agile software development, an overview of the system's functions and features, dealing with increasing scope, and deploying new versions of the system.
Life Cycle Analysis of Dedicated Nano-Launch Technologies
NASA Technical Reports Server (NTRS)
Zapata, Edgar; McCleskey, Carey; Martin, John; Lepsch, Roger; Hernani, Tosoc
2014-01-01
Recent technology advancements have enabled the development of small cheap satellites that can perform useful functions in the space environment. Currently, the only low cost option for getting these payloads into orbit is through ride share programs. As a result, these launch opportunities await primary payload launches and a backlog exists. An alternative option would be dedicated nano-launch systems built and operated to provide more flexible launch services, higher availability, and affordable prices. The potential customer base that would drive requirements or support a business case includes commercial, academia, civil government and defense. Further, NASA technology investments could enable these alternative game changing options.With this context, in 2013 the Game Changing Development (GCD) program funded a NASA team to investigate the feasibility of dedicated nano-satellite launch systems with a recurring cost of less than $2 million per launch for a 5 kg payload to low Earth orbit. The team products would include potential concepts, technologies and factors for enabling the ambitious cost goal, exploring the nature of the goal itself, and informing the GCD program technology investment decision making process. This paper provides an overview of the life cycle analysis effort that was conducted in 2013 by an inter-center NASA team. This effort included the development of reference nano-launch system concepts, developing analysis processes and models, establishing a basis for cost estimates (development, manufacturing and launch) suitable to the scale of the systems, and especially, understanding the relationship of potential game changing technologies to life cycle costs, as well as other factors, such as flights per year.
Hot Structure Control Surface Progress for X-37 Technology Development Program
NASA Technical Reports Server (NTRS)
Valentine, P. G.; Meyer, David L. (Editor); Snow, Holly (Editor)
2004-01-01
The NASA Marshall Space Flight Center (MSFC) has been leading the development of technologies that will enable the development, fabrication, and flight of the automated X-37 Orbital Vehicle (OV). With the Administration s recent announcement of the Vision for Space Exploration, NASA placed the X-37 OV design on hold while developing detailed requirements for a Crew Exploration Vehicle, but has continued funding the development of high-risk, critical technologies for potential future space exploration vehicle applications. Hot Structure Control Surfaces (HSCS) technology development is one of the high-priority areas being funded at this time. The goal of HSCS research is to mitigate risk by qualifying the lightest possible components that meet the stringent X-37 OV weight and performance requirements, including Shuttle-type reen- try environments with peak temperatures of 2800 OF. The small size of the X-37 OV (25.7-feet long and 14.9-foot wingspan) drives the need for advanced HSCS because the vehicle's two primary aerodynamic surfaces, the flaperons and ruddervators, have thicknesses ranging from approximately 5 in. down to 1 in. Traditional metallic or polymer-matrix composites covered with tile or blanket thermal protection system (TPS) materials cannot be used as there is insufficient volume to fabricate such multi-component structures. Therefore, carbon-carbon (C-C) and carbodsilicon-carbide (C-SiC) composite HSCS structures are being developed in parallel by two teams supporting the X-37 prime contractor (The Boeing Company). The Science Applications International Coy. (SAIC) and Carbon-Carbon Advanced Technologies, Inc. (C-CAT) team is developing the C-C HSCS, while the General Electric Energy Power Systems Composites (GE-PSC) and Materials Research and Design (MRD) team is developing the C-SiC HSCS. These two teams were selected to reduce the high level of risk associated with developing advanced control surface components. They have continued HSCS development work as part of the X-37 critical technology development contract. The SAIC/C-CAT team is using Advanced Carbon-Carbon (ACC) because its fabrication is very similar to the process used for Space Shuttle Reinforced Carbon-Carbon fabrication, including the Sic-based pack cementation conversion coating systems using with both materials. ACC was selected over RCC because it has much higher tension and compressions strengths, and because T-300 fiber is readily available, whereas RCC rayon fiber is no longer manufactured. The GE-PSC/MRD team is using a T-300 fiber-reinforced Sic matrix composite material densified by chemical vapor infiltration. The C-Sic material has an Sic-based environmental barrier coating. Major accomplishments have been made over the past year by both HSCS teams. C-C and C- SiC flaperon subcomponents, which are truncated full-scale versions of flight hardware, have been fabricated and are undergoing testing at the NASA Dryden Flight Research Center, NASA Langley Research Center, and U.S. Air Force Research Laboratory. By the end of 2004, ruddervator subcomponents also will be delivered and tested. As NASA moves forward in realizing the Vision for Space Exploration, it will continue to invest in advanced research and development aimed at making new generations of spacecraft safer, more reliable, and more affordable. The X-37 HSCS effort ultimately will benefit the Agency's vision and mission.
ERIC Educational Resources Information Center
Koh, Joyce Hwee Ling; Chai, Ching Sing; Lim, Wei Ying
2017-01-01
This article explicates the conception and evaluation of an information and communications technologies (ICT) professional development process for developing teachers' technological pedagogical content knowledge for 21st century learning. The process emphasizes teachers' prolonged engagement with peers and researchers in design teams. Supported by…
Courseware Development for Semiconductor Technology and Its Application into Instruction
ERIC Educational Resources Information Center
Tsai, Shu-chiao
2009-01-01
This study reports on the development of ESP (English for specific purposes) courseware for semiconductor technology and its integration as a "silent partner" into instruction. This kind of team-teaching could help overcome current problems encountered in developing ESP in Taiwan. The content of the material under discussion includes…
NASA Technical Reports Server (NTRS)
Chavers, Greg
2015-01-01
Since 2006 NASA has been formulating robotic missions to the lunar surface through programs and projects like the Robotic Lunar Exploration Program, Lunar Precursor Robotic Program, and International Lunar Network. All of these were led by NASA Marshall Space Flight Center (MSFC). Due to funding shortfalls, the lunar missions associated with these efforts, the designs, were not completed. From 2010 to 2013, the Robotic Lunar Lander Development Activity was funded by the Science Mission Directorate (SMD) to develop technologies that would enable and enhance robotic lunar surface missions at lower costs. In 2013, a requirements-driven, low-cost robotic lunar lander concept was developed for the Resource Prospector Mission. Beginning in 2014, The Advanced Exploration Systems funded the lander team and established the MSFC, Johnson Space Center, Applied Physics Laboratory, and the Jet Propulsion Laboratory team with MSFC leading the project. The lander concept to place a 300-kg rover on the lunar surface has been described in the New Technology Report Case Number MFS-33238-1. A low-cost lander concept for placing a robotic payload on the lunar surface is shown in figures 1 and 2. The NASA lander team has developed several lander concepts using common hardware and software to allow the lander to be configured for a specific mission need. In addition, the team began to transition lander expertise to United States (U.S.) industry to encourage the commercialization of space, specifically the lunar surface. The Lunar Cargo Transportation and Landing by Soft Touchdown (CATALYST) initiative was started and the NASA lander team listed above is partnering with three competitively selected U.S. companies (Astrobotic, Masten Space Systems, and Moon Express) to develop, test, and operate their lunar landers.
Using a Red Team to devise countermeasures
NASA Astrophysics Data System (ADS)
Swedenburg, R. L.
1995-01-01
The ability of a defense system to operate effectively when deployed in battle is dependent on designs able to deal with countermeasures against the defense. The formation of a technical Red Team to stress the preliminary designs of the defensive system with technologically feasible and effective potential countermeasures provides a means to identify such potential countermeasures. This paper describes the experience of the U.S. Ballistic Missile Defense Organization's (BMDO) Theater Missile Defense Red Team since the Gulf War in 1991, the Red-Blue Exchange process, and the value it has provided to the designers of the U.S. Theater Missile Defense systems for developing robust systems. A wide-range of technologically feasible countermeasures has been devised, analyzed, tested for feasibility, and provided to the system developers for mitigation design. The process for independently analyzing possible susceptibilities of preliminary designs and exploiting the susceptibilities to identify possible countermeasures is explained. Designing and characterizing the Red Team's countermeasures, determining their feasibility, and analyzing their potential effectiveness against the defense are explained. A technique for the Blue Team's designers to deal with a wide range of potential countermeasures is explained.
The Effect of Design Teams on Preservice Teachers' Technology Integration
ERIC Educational Resources Information Center
Johnson, Laurene D.
2012-01-01
This study examined the effect of a specific instructional approach called design teams on preservice teachers' attitudes toward technology, their technology skills, and their Technological Pedagogical Content Knowledge (TPACK). In a design teams approach, participants work in collaborative teams to design solutions to solve real-world…
Reflections on a Technology Integration Project.
ERIC Educational Resources Information Center
Kovalik, Cindy
2003-01-01
Describes Technology-Enhanced Learning Outcomes (TELO), a grant funded by the Ohio Learning Network to help K-12 teachers integrate technology by having teams of undergraduate education students design and develop technology-enhanced instructional unites using existing curriculum topics. Presents a case study that investigated the nature and…
Developing Trust in Virtual Teams
ERIC Educational Resources Information Center
Germain, Marie-Line
2011-01-01
Rapid globalization, advances in technology, flatter organizational structures, synergistic cooperation among firms, and a shift to knowledge work environments have led to the increasing use of virtual teams in organizations. Selecting, training, and socializing employees in virtual teamwork has therefore become an important human resource…
System model development for nuclear thermal propulsion
NASA Technical Reports Server (NTRS)
Walton, James T.; Hannan, Nelson A.; Perkins, Ken R.; Buksa, John H.; Worley, Brian A.; Dobranich, Dean
1992-01-01
A critical enabling technology in the evolutionary development of nuclear thermal propulsion (NTP) is the ability to predict the system performance under a variety of operating conditions. This is crucial for mission analysis and for control subsystem testing as well as for the modeling of various failure modes. Performance must be accurately predicted during steady-state and transient operation, including startup, shutdown, and post operation cooling. The development and application of verified and validated system models has the potential to reduce the design, testing, and cost and time required for the technology to reach flight-ready status. Since Oct. 1991, the U.S. Department of Energy (DOE), Department of Defense (DOD), and NASA have initiated critical technology development efforts for NTP systems to be used on Space Exploration Initiative (SEI) missions to the Moon and Mars. This paper presents the strategy and progress of an interagency NASA/DOE/DOD team for NTP system modeling. It is the intent of the interagency team to develop several levels of computer programs to simulate various NTP systems. The first level will provide rapid, parameterized calculations of overall system performance. Succeeding computer programs will provide analysis of each component in sufficient detail to guide the design teams and experimental efforts. The computer programs will allow simulation of the entire system to allow prediction of the integrated performance. An interagency team was formed for this task to use the best capabilities available and to assure appropriate peer review.
Space 2100: A Shared Visioning Exercise for the Future Space Economy
NASA Astrophysics Data System (ADS)
Ferguson, C. K.; Nall, M. E.; Scott, D. W.; Tinker, M. L.; Oneil, D.; Sivak, A. D.; Wright, G. M.; Eberly, E. A.; Ramdall, C.
In 2013, NASA's Marshall Space Flight Center chartered a diverse team for a six-week "sprint" to envision how Earth, space, and public/private entities might be operating in the year 2100. This sprint intended to inspire innovation, creativity and improved teamwork between all levels of employees, in addition to pulling diverse ideas about exploration from organizations that are not traditionally included in technology development at NASA. The team was named Space 2100. In 2014, the team ran a sprint based on the previous outcomes to a) develop detailed estimates of operations and challenges of space activities in the vicinity of the Earth and Moon in the year 2050, b) identify evolutionary steps to make this vision a reality, and c) recommend actions to enable those steps. In 2015, the team continued building on previous years by identifying technologies and approaches to reduce and ultimately eliminate the need for resupply from Earth, enabling self-sufficient exploration throughout the solar system. This exercise identified 30 technologies as potential critical paths to Earth independency. Space 2100's conclusions and recommendations are not part of NASA's strategic planning or policy. This paper explores the three Space 2100 sprints and their implications for the future of space exploration.
NASA Technical Reports Server (NTRS)
Zande, Jill; Meeson, Blanche; Cook, Susan; Matsumoto, George
2006-01-01
Teams participating in the 2006 ROV competition organized by the Marine Advanced Technology Education (MATE) Center and the Marine Technology Society's (MTS) ROV Committee experienced first-hand the scientific and technical challenges that many ocean scientists, technicians, and engineers face every day. The competition tasked more than 1,000 middle and high school, college, and university students from Newfoundland to Hong Kong with designing and building ROVs to support the next generation of ocean observing systems. Teaming up with the National Office for Integrated and Sustained Ocean Observations, Ocean. US, and the Ocean Research Interactive Observatory Networks (ORION) Program, the competition highlighted ocean observing systems and the careers, organizations, and technologies associated with ocean observatories. The student teams were challenged to develop vehicles that can deploy, install, and maintain networks of instruments as well as to explore the practical applications and the research questions made possible by observing systems.
Strategies for the War on Terrorism: Results of a Special Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
MOORE, JUDY H.
2002-08-01
On September 13, 2001, the first day after the attacks of September 11 that Sandia National Laboratories re-opened, Vice President Gerry Yonas entirely redirected the efforts of his organization, the Advanced Concepts Group (ACG), to the problem of terrorism. For the next several weeks, the ACG focused on trying to better characterize the international terrorist threat and the vulnerabilities of the US to further attacks. This work culminated in a presentation by Dr . Yonas to the Fall Leadership Focus meeting at Sandia National Laboratories on October 22. Following that meeting, President and Lab Director, Paul Robinson, asked Dr. Yonasmore » and the ACG to develop a long-term (3-5 year) technology roadmap showing how Sandia could direct efforts to making major contributions to the success of the nation's war on terrorism. The ACG effort would communicate with other Labs activities working on near-term responses to Federal calls for technological support. The ACG study was conducted in two phases. The first, more exploratory, stage divided the terrorism challenge into three broad parts, each examined by a team that included both permanent ACG staff and part-time staff and consultants from other Sandia organizations. The ''Red'' team looked at the problems of finding and stopping terrorists before they strike (or strike again). The ''Yellow'' team studied the problems of protecting people and facilities from terrorist attacks, as well as those of responding to attacks that occur. The ''Green'' team attempted to understand the long-term, ''root'' causes of terrorism, and how technology might help ameliorate the conditions that lead people to support, or even become, terrorists. In addition, a ''Purple'' team worked with the other teams to provide an integrating vision for them all, to help make appropriate connections among them, and to see that they left no important gaps between them. The findings of these teams were presented to a broad representation of laboratory staff and management on January 3, 2002. From the many ideas explored by the Red, Green, and Yellow teams, and keeping in mind criteria formulated by the Purple team, the ACG assembled a set of five major technology development goals. These goals, if pursued, could lead to major contributions to the war on terrorism. With some rearrangement of team members and coordinators, a new set of teams began fleshing out these five ''Big Hairy Audacious Goals'' for the consideration of Laboratory leadership. Dr. Yonas briefed Sandia upper management on the work of these teams on February 4, 2002. This report presents the essence of that work as applicable to the R&D community of the nation interested in the development of better tools for a long term ''War on Terrorism.''« less
Technology Readiness Level Assessment Process as Applied to NASA Earth Science Missions
NASA Technical Reports Server (NTRS)
Leete, Stephen J.; Romero, Raul A.; Dempsey, James A.; Carey, John P.; Cline, Helmut P.; Lively, Carey F.
2015-01-01
Technology assessments of fourteen science instruments were conducted within NASA using the NASA Technology Readiness Level (TRL) Metric. The instruments were part of three NASA Earth Science Decadal Survey missions in pre-formulation. The Earth Systematic Missions Program (ESMP) Systems Engineering Working Group (SEWG), composed of members of three NASA Centers, provided a newly modified electronic workbook to be completed, with instructions. Each instrument development team performed an internal assessment of its technology status, prepared an overview of its instrument, and completed the workbook with the results of its assessment. A team from the ESMP SEWG met with each instrument team and provided feedback. The instrument teams then reported through the Program Scientist for their respective missions to NASA's Earth Science Division (ESD) on technology readiness, taking the SEWG input into account. The instruments were found to have a range of TRL from 4 to 7. Lessons Learned are presented; however, due to the competition-sensitive nature of the assessments, the results for specific missions are not presented. The assessments were generally successful, and produced useful results for the agency. The SEWG team identified a number of potential improvements to the process. Particular focus was on ensuring traceability to guiding NASA documents, including the NASA Systems Engineering Handbook. The TRL Workbook has been substantially modified, and the revised workbook is described.
Fuel Cell Technology Status Analysis | Hydrogen and Fuel Cells | NREL
Technology Status Analysis Fuel Cell Technology Status Analysis Get Involved Fuel cell developers interested in collaborating with NREL on fuel cell technology status analysis should send an email to NREL's Technology Validation Team at techval@nrel.gov. NREL's analysis of fuel cell technology provides objective
PHYS-MA-TECH. An Integrated Partnership.
ERIC Educational Resources Information Center
Scarborough, Jule Dee
This document contains 45 integrated physics, mathematics, and technology curriculum modules developed by teachers at 5 Illinois schools. An introduction discusses the collaborative project, in which teams of one mathematics, physics, and technology teacher from each school developed innovative instructional delivery models that enabled the three…
2000-03-10
The Hero Team (278) gets some help from a Kennedy Space Center research and development machine shop in repairing their robot, named Hero. The team of Edgewater High School students was co-sponsored by NASA Kennedy Space Center and Honeywell. Students from all over the country are at the KSC Visitor Complex for the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition March 9-11 in the Rocket Garden. Teams of high school students are testing the limits of their imagination using robots they have designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing, 16 are Florida teams co-sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusville
Teams, Networks, and Assistive Technology: Training Special Educators in Rural Areas.
ERIC Educational Resources Information Center
Henderson, Cheryl; Kyger, Maggie; Guarino-Murphey, Dana
Assistive technology is equipment that improves the functional capabilities of individuals with disabilities. Using assistive technology, children discover they have control over their environment and develop a sense of competence and independence. As special education enrollments increase, more students are using assistive technology, but many…
NASA Advanced Refrigerator/Freezer Technology Development Project Overview
NASA Technical Reports Server (NTRS)
Cairelli, J. E.
1995-01-01
NASA Lewis Research Center (LeRC) has recently initiated a three-year project to develop the advanced refrigerator/freezer (R/F) technologies needed to support future life and biomedical sciences space experiments. Refrigerator/freezer laboratory equipment, most of which needs to be developed, is enabling to about 75 percent of the planned space station life and biomedical science experiments. These experiments will require five different classes of equipment; three storage freezers operating at -20 C, -70 C and less than 183 C, a -70 C freeze-dryer, and a cryogenic (less than 183 C) quick/snap freezer. This project is in response to a survey of cooling system technologies, performed by a team of NASA scientists and engineers. The team found that the technologies, required for future R/F systems to support life and biomedical sciences spaceflight experiments, do not exist at an adequate state of development and concluded that a program to develop the advanced R/F technologies is needed. Limitations on spaceflight system size, mass, and power consumption present a significant challenge in developing these systems. This paper presents some background and a description of the Advanced R/F Technology Development Project, project approach and schedule, general description of the R/F systems, and a review of the major R/F equipment requirements.
ERIC Educational Resources Information Center
Barilli, Elomar Castilho; de Freitas Barretto, Stenio; Lima, Carla Moura; Menezes, Marco Antonio
2014-01-01
This paper is intended to share the results of the assessment of the use of the Online Work Community (OWC), developed in the Moodle technology that was used as an instrument to facilitate the educational and operational processes, intended to share problems and proposals for solution among the 470 members of the development teams, made up of…
Cole, Kenneth D; Waite, Martha S; Nichols, Linda O
2003-01-01
For a nationwide Geriatric Interdisciplinary Team Training (GITT) program evaluation of 8 sites and 26 teams, team evaluators developed a quantitative and qualitative team observation scale (TOS), examining structure, process, and outcome, with specific focus on the training function. Qualitative data provided an important expansion of quantitative data, highlighting positive effects that were not statistically significant, such as role modeling and training occurring within the clinical team. Qualitative data could also identify "too much" of a coded variable, such as time spent in individual team members' assessments and treatment plans. As healthcare organizations have increasing demands for productivity and changing reimbursement, traditional models of teamwork, with large teams and structured meetings, may no longer be as functional as they once were. To meet these constraints and to train students in teamwork, teams of the future will have to make choices, from developing and setting specific models to increasing the use of information technology to create virtual teams. Both quantitative and qualitative data will be needed to evaluate these new types of teams and the important outcomes they produce.
A Summary of NASA Architecture Studies Utilizing Fission Surface Power Technology
NASA Technical Reports Server (NTRS)
Mason, Lee S.; Poston, David I.
2011-01-01
Beginning with the Exploration Systems Architecture Study in 2005, NASA has conducted various mission architecture studies to evaluate implementation options for the U.S. Space Policy. Several of the studies examined the use of Fission Surface Power (FSP) systems for human missions to the lunar and Martian surface. This paper summarizes the FSP concepts developed under four different NASA-sponsored architecture studies: Lunar Architecture Team, Mars Architecture Team, Lunar Surface Systems/Constellation Architecture Team, and International Architecture Working Group-Power Function Team.
Support to X-33/Reusable Launch Vehicle Technology Program
NASA Technical Reports Server (NTRS)
2000-01-01
The Primary activities of Lee & Associates for the referenced Purchase Order has been in direct support of the X-33/Reusable Launch Vehicle Technology Program. An independent review to evaluate the X-33 liquid hydrogen fuel tank failure, which recently occurred after-test of the starboard tank has been provided. The purpose of the Investigation team was to assess the tank design modifications, provide an assessment of the testing approach used by MSFC (Marshall Space Flight Center) in determining the flight worthiness of the tank, assessing the structural integrity, and determining the cause of the failure of the tank. The approach taken to satisfy the objectives has been for Lee & Associates to provide the expertise of Mr. Frank Key and Mr. Wayne Burton who have relevant experience from past programs and a strong background of experience in the fields critical to the success of the program. Mr. Key and Mr. Burton participated in the NASA established Failure Investigation Review Team to review the development and process data and to identify any design, testing or manufacturing weaknesses and potential problem areas. This approach worked well in satisfying the objectives and providing the Review Team with valuable information including the development of a Fault Tree. The detailed inputs were made orally in real time in the Review Team daily meetings. The results of the investigation were presented to the MSFC Center Director by the team on February 15, 2000. Attached are four charts taken from that presentation which includes 1) An executive summary, 2) The most probable cause, 3) Technology assessment, and 4) Technology Recommendations for Cryogenic tanks.
2015-09-01
evaluate adaptive technologies to make them usable by a larger segment of the training and educational community. This research includes 5...Needed for Modeling Small Unit Team Processes and Performance Outcomes That Can Be Used in Adaptive Tutoring 25 8.2 Design Simulation Technologies ...learning and career development through the growth of metacognitive (e.g., reflection), self-assessment, and motivational skills (Butler and Winne 1995
NASA Technical Reports Server (NTRS)
Young, Roy M.; Adams, Charles L.
2010-01-01
The NASA In-Space Propulsion Technology (ISPT) Projects Office sponsored two separate, independent solar sail system design and development demonstration activities during 2002-2005. ATK Space Systems of Goleta, CA was the prime contractor for one development team and L' Garde, Inc. of Tustin, CA was the prime contractor for the other development team. The goal of these activities was to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by the year 2006. Component and subsystem fabrication and testing were completed successfully, including the ground deployment of 10-meter and 20-meter demonstration hardware systems under vacuum conditions. The deployment and structural testing of the 20-meter solar sail systems was conducted in the 30 meter diameter Space Power Facility thermal-vacuum chamber at NASA Glenn Plum Brook in April though August, 2005. This paper will present the results of the TRL assessment following the solar sail technology development activities associated with the design, development, analysis and testing of the 20-meter system ground demonstrators.
Thermal Protection System Application to Composite Cryotank Technology Demonstrator
NASA Technical Reports Server (NTRS)
Protz, Alison; Nettles, Mindy
2015-01-01
The EM41 Thermal Protection System (TPS) team contributed to the success of the Composite Cryotank Technology Demonstrator (CCTD) manufacturing by developing and implementing a low-cost solution to apply cryoinsulation foam on the exterior surface of the tank in the NASA Marshall Space Flight Center (MSFC) TPS Development Facility, Bldg. 4765. The TPS team used techniques developed for the smallscale composite cryotank to apply Stepanfoam S-180 polyurethane foam to the 5.5-meter CCTD using a manual spray process. Manual spray foam technicians utilized lifts and scaffolding to access the barrel and dome sections of the large-scale tank in the horizontal orientation. During manufacturing, the tank was then oriented vertically, allowing access to the final barrel section for manual spray foam application. The CCTD was the largest application of manual spray foam performed to date with the S-180 polyurethane foam and required the TPS team to employ best practices for process controls on the development article.
Looking Forward to Look Backward: Technology and King Arthur
ERIC Educational Resources Information Center
Thomas, Jennifer D. E.; Driver, Martha; Coppola, Jean F.; Thomas, Barbara A.
2008-01-01
This article discusses students' perceptions of the impact of technology integration in an interdisciplinary medieval English literature and multimedia course on developing higher-order thinking skills and team-building skills. The results indicate that undergraduate students in this course perceived generally strong support for development of…
Converged Librarian/Academic Roles in the 'Wired' University.
ERIC Educational Resources Information Center
Dugdale, Christine
New technologies allow universities to extend pedagogical practices, enhance learning experiences and develop self-managed lifelong learners. To take full advantage of evolving technologies, multi-skilled teaching and development teams are required with a merging and converging of academic and librarian roles. Conclusions are reported from the…
Applications of aerospace technology
NASA Technical Reports Server (NTRS)
Rouse, Doris J.
1984-01-01
The objective of the Research Triangle Institute Technology Transfer Team is to assist NASA in achieving widespread utilization of aerospace technology in terrestrial applications. Widespread utilization implies that the application of NASA technology is to benefit a significant sector of the economy and population of the Nation. This objective is best attained by stimulating the introduction of new or improved commercially available devices incorporating aerospace technology. A methodology is presented for the team's activities as an active transfer agent linking NASA Field Centers, industry associations, user groups, and the medical community. This methodology is designed to: (1) identify priority technology requirements in industry and medicine, (2) identify applicable NASA technology that represents an opportunity for a successful solution and commercial product, (3) obtain the early participation of industry in the transfer process, and (4) successfully develop a new product based on NASA technology.
Life Cycle Analysis of Dedicated Nano-Launch Technologies
NASA Technical Reports Server (NTRS)
Zapata, Edgar; McCleskey, Carey (Editor); Martin, John; Lepsch, Roger; Ternani, Tosoc
2014-01-01
Recent technology advancements have enabled the development of small cheap satellites that can perform useful functions in the space environment. Currently, the only low cost option for getting these payloads into orbit is through ride share programs - small satellites awaiting the launch of a larger satellite, and then riding along on the same launcher. As a result, these small satellite customers await primary payload launches and a backlog exists. An alternative option would be dedicated nano-launch systems built and operated to provide more flexible launch services, higher availability, and affordable prices. The potential customer base that would drive requirements or support a business case includes commercial, academia, civil government and defense. Further, NASA technology investments could enable these alternative game changing options. With this context, in 2013 the Game Changing Development (GCD) program funded a NASA team to investigate the feasibility of dedicated nano-satellite launch systems with a recurring cost of less than $2 million per launch for a 5 kg payload to low Earth orbit. The team products would include potential concepts, technologies and factors for enabling the ambitious cost goal, exploring the nature of the goal itself, and informing the GCD program technology investment decision making process. This paper provides an overview of the life cycle analysis effort that was conducted in 2013 by an inter-center NASA team. This effort included the development of reference nano-launch system concepts, developing analysis processes and models, establishing a basis for cost estimates (development, manufacturing and launch) suitable to the scale of the systems, and especially, understanding the relationship of potential game changing technologies to life cycle costs, as well as other factors, such as flights per year.
Task conflict and team creativity: a question of how much and when.
Farh, Jiing-Lih; Lee, Cynthia; Farh, Crystal I C
2010-11-01
Bridging the task conflict, team creativity, and project team development literatures, we present a contingency model in which the relationship between task conflict and team creativity depends on the level of conflict and when it occurs in the life cycle of a project team. In a study of 71 information technology project teams in the greater China region, we found that task conflict had a curvilinear effect on team creativity, such that creativity was highest at moderate levels of task conflict. Additionally, we found this relationship to be moderated by team phase, such that the curvilinear effect was strongest at an early phase. In contrast, at later phases of the team life cycle, task conflict was found to be unrelated to team creativity. (c) 2010 APA, all rights reserved.
Surface contamination analysis technology team overview
NASA Astrophysics Data System (ADS)
Burns, H. Dewitt, Jr.
1996-11-01
The surface contamination analysis technology (SCAT) team was originated as a working roup of NASA civil service, Space Shuttle contractor, and university groups. Participating members of the SCAT Team have included personnel from NASA Marshall Space Flight Center's Materials and Processes Laboratory and Langley Research Center's Instrument Development Group; contractors-Thiokol Corporation's Inspection Technology Group, AC Engineering support contractor, Aerojet, SAIC, and Lockheed MArtin/Oak Ridge Y-12 support contractor and Shuttle External Tank prime contractor; and the University of Alabama in Huntsville's Center for Robotics and Automation. The goal of the SCAT team as originally defined was to develop and integrate a multi-purpose inspection head for robotic application to in-process inspection of contamination sensitive surfaces. One area of interest was replacement of ozone depleting solvents currently used for surface cleanliness verification. The team approach brought together the appropriate personnel to determine what surface inspection techniques were applicable to multi-program surface cleanliness inspection. Major substrates of interest were chosen to simulate space shuttle critical bonding surface or surfaces sensitive to contamination such as fuel system component surfaces. Inspection techniques evaluated include optically stimulated electron emission or photoelectron emission; Fourier transform infrared spectroscopy; near infrared fiber optic spectroscopy; and, ultraviolet fluorescence. Current plans are to demonstrate an integrated system in MSFC's Productivity Enhancement Complex within five years from initiation of this effort in 1992. Instrumentation specifications and designs developed under this effort include a portable diffuse reflectance FTIR system built by Surface Optics Corporation and a third generation optically stimulated electron emission system built by LaRC. This paper will discuss the evaluation of the various techniques on a number of substrate materials contaminated with hydrocarbons, silicones, and fluorocarbons. Discussion will also include standards development for instrument calibration and testing.
NASA Technical Reports Server (NTRS)
Swanson, Greg; Cheatwood, Neil; Johnson, Keith; Calomino, Anthony; Hughes, Steve; Gilles, Brian; Anderson, Paul; Bond, Bruce
2016-01-01
Over a decade of work has been conducted in the development of NASAs Hypersonic Inflatable Aerodynamic Decelerator (HIAD) deployable aeroshell technology. This effort has included multiple ground test campaigns and flight tests culminating in the HIAD projects second generation (Gen-2) aeroshell system. The HIAD project team has developed, fabricated, and tested stacked-torus inflatable structures (IS) with flexible thermal protection systems (F-TPS) ranging in diameters from 3-6m, with cone angles of 60 and 70 deg. To meet NASA and commercial near term objectives, the HIAD team must scale the current technology up to 12-15m in diameter. The HIAD projects experience in scaling the technology has reached a critical juncture in development. Growing from a 6m to a 15m class system will introduce many...
Perfecting Scientists' Collaboration and Problem-Solving Skills in the Virtual Team Environment
NASA Astrophysics Data System (ADS)
Jabro, A.; Jabro, J.
2012-04-01
PPerfecting Scientists' Collaboration and Problem-Solving Skills in the Virtual Team Environment Numerous factors have contributed to the proliferation of conducting work in virtual teams at the domestic, national, and global levels: innovations in technology, critical developments in software, co-located research partners and diverse funding sources, dynamic economic and political environments, and a changing workforce. Today's scientists must be prepared to not only perform work in the virtual team environment, but to work effectively and efficiently despite physical and cultural barriers. Research supports that students who have been exposed to virtual team experiences are desirable in the professional and academic arenas. Research supports establishing and maintaining established protocols for communication behavior prior to task discussion provides for successful team outcomes. Research conducted on graduate and undergraduate virtual teams' behaviors led to the development of successful pedagogic practices and assessment strategies.
and high school student teams on science and math topics. The National Science Bowl provides an opportunity for students to develop science, technology, engineering, and math (STEM) skills in a non tournament challenges students' knowledge of science. Student teams are questioned on life science, math
The New Millenium Program: Serving Earth and Space Sciences
NASA Technical Reports Server (NTRS)
Li, Fuk K.
2000-01-01
NASA has exciting plans for space science and Earth observations during the next decade. A broad range of advanced spacecraft and measurement technologies will be needed to support these plans within the existing budget and schedule constraints. Many of these technology needs are common to both NASA's Office of Earth Science (OES) and Office of Space Sciences (OSS). Even though some breakthrough technologies have been identified to address these needs, project managers have traditionally been reluctant to incorporate them into flight programs because their inherent development risk. To accelerate the infusion of new technologies into its OES and OSS missions, NASA established the New Millennium Program (NMP). This program analyzes the capability needs of these enterprises, identifies candidate technologies to address these needs, incorporates advanced technology suites into validation flights, validates them in the relevant space environment, and then proactively infuses the validated technologies into future missions to enhance their capabilities while reducing their life cycle cost. The NMP employs a cross-enterprise Science Working Group, the NASA Enterprise science and technology roadmaps to define the capabilities needed by future Earth and Space science missions. Additional input from the science community is gathered through open workshops and peer-reviewed NASA Research Announcement (NRAs) for advanced measurement concepts. Technology development inputs from the technology organizations within NASA, other government agencies, federally funded research and development centers (FFRDC's), U.S. industry, and academia are sought to identify breakthrough technologies that might address these needs. This approach significantly extends NASA's technology infrastructure. To complement other flight test programs that develop or validate of individual components, the NMP places its highest priority on system-level validations of technology suites in the relevant space environment. This approach is not needed for all technologies, but it is usually essential to validate advanced system architectures or new measurement concepts. The NMP has recently revised its processes for defining candidate validation flights, and selecting technologies for these flights. The NMP now employs integrated project formulation teams, 'Which include scientists, technologists, and mission planners, to incorporate technology suites into candidate validation flights. These teams develop competing concepts, which can be rigorously evaluated prior to selection for flight. The technology providers for each concept are selected through an open, competitive, process during the project formulation phase. If their concept is selected for flight, they are incorporated into the Project Implementation Team, which develops, integrates, tests, launches, and operates the technology validation flight. Throughout the project implementation phase, the Implementation Team will document and disseminate their validation results to facilitate the infusion of their validated technologies into future OSS and OES science missions. The NMP has successfully launched its first two Deep Space flights for the OSS, and is currently implementing its first two Earth Orbiting flights for the OES. The next OSS and OES flights are currently being defined. Even though these flights are focused on specific Space Science and Earth Science themes, they are designed to validate a range of technologies that could benefit both enterprises, including advanced propulsion, communications, autonomous operations and navigation, multifunctional structures, microelectronics, and advanced instruments. Specific examples of these technologies will be provided in our presentation. The processes developed by the NMP also provide benefits across the Space and Earth Science enterprises. In particular, the extensive, nation-wide technology infrastructure developed by the NMP enhances the access to breakthrough technologies for both enterprises.
Nuclear rocket propulsion technology - A joint NASA/DOE project
NASA Technical Reports Server (NTRS)
Clark, John S.
1991-01-01
NASA and the DOE have initiated critical technology development for nuclear rocket propulsion systems for SEI human and robotic missions to the moon and to Mars. The activities and project plan of the interagency project planning team in FY 1990 and 1991 are summarized. The project plan includes evolutionary technology development for both nuclear thermal and nuclear electric propulsion systems.
ERIC Educational Resources Information Center
Arnold, David
1997-01-01
The Lowell, Massachusetts, district technology administrator and team have assumed responsibility for determining the requirements for technology and establishing the specifications and selection of equipment. Joint discussions with the architect are held to develop appropriate infrastructure and educational spaces. (MLF)
NASA Technical Reports Server (NTRS)
1997-01-01
As the NASA Center responsible for preparing and launching space missions, the John F. Kennedy Space Center (KSC) is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the entire KSC team, consisting of Government and contractor personnel, working in partnership with academic institutions and commercial industry. This edition of the KSC Research and Technology 1997 Annual Report covers the efforts of these contributors to the KSC advanced technology development program, as well as our technology transfer activities.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-19
... Expense Team, Working From Various States in the United States, Including On-Site Leased Workers From... Technology Services Business Unit, Integrated Technology Services, Cost and Expense Team working from various... Technology Services Business Unit, Integrated Technology Services, Cost and Expense Team. The Department has...
ERIC Educational Resources Information Center
Children's Hospital Medical Center of Akron, OH.
The Preschool Technology Training Project was designed to develop and demonstrate a regional training model on the applications of assistive technology for preschoolers with disabilities. The goal of the training was to enable preschool special education teachers, related services personnel, and parents of young children with disabilities to…
North Dakota Standards and Benchmarks--Content Standards: Library/Technology Literacy
ERIC Educational Resources Information Center
North Dakota Department of Public Instruction, 2003
2003-01-01
The Library/Technology Literacy Standards for the State of North Dakota were developed during 2000-2002 by a team of library and technology specialists, assisted by representatives from the Department of Public Instruction. The initial task was to decide whether technology and library curricula overlapped enough to create a shared set of…
Motivating Instructors through Innovative Technology and Pedagogy
ERIC Educational Resources Information Center
Weber, Nicole L.; Barth, Dylan J.
2016-01-01
Members of the UWM CETL online and blended faculty development team share innovative technological and pedagogical strategies that they currently utilize to motivate and assist instructors in developing courses for the online or blended environments, and they discuss the lessons learned from incorporating active learning, open content, bring your…
Augmenting Space Technology Program Management with Secure Cloud & Mobile Services
NASA Technical Reports Server (NTRS)
Hodson, Robert F.; Munk, Christopher; Helble, Adelle; Press, Martin T.; George, Cory; Johnson, David
2017-01-01
The National Aeronautics and Space Administration (NASA) Game Changing Development (GCD) program manages technology projects across all NASA centers and reports to NASA headquarters regularly on progress. Program stakeholders expect an up-to-date, accurate status and often have questions about the program's portfolio that requires a timely response. Historically, reporting, data collection, and analysis were done with manual processes that were inefficient and prone to error. To address these issues, GCD set out to develop a new business automation solution. In doing this, the program wanted to leverage the latest information technology platforms and decided to utilize traditional systems along with new cloud-based web services and gaming technology for a novel and interactive user environment. The team also set out to develop a mobile solution for anytime information access. This paper discusses a solution to these challenging goals and how the GCD team succeeded in developing and deploying such a system. The architecture and approach taken has proven to be effective and robust and can serve as a model for others looking to develop secure interactive mobile business solutions for government or enterprise business automation.
James Webb Space Telescope (JWST) Optical Telescope Element (OTE) Development Status
NASA Technical Reports Server (NTRS)
Feinberg, Lee D.
2004-01-01
The James Webb Space Telescope (JWST) Optical Telescope Element (OTE) is a segmented, cryogenic telescope scheduled for launch in 2011. In September of 2002, NASA selected prime contractor Northrop Grumman Space Technology (NGST) to build the observatory including management of the OTE. NGST is teamed with subcontractors Ball Aerospace, Alliant Techsystems (ATK). and Kodak. The team has completed several significant design, technology, architecture definition, and manufacturing milestones in the past year that are summarized in this paper.
Phases and Patterns of Group Development in Virtual Learning Teams
ERIC Educational Resources Information Center
Yoon, Seung Won; Johnson, Scott D.
2008-01-01
With the advancement of Internet communication technologies, distributed work groups have great potential for remote collaboration and use of collective knowledge. Adopting the Complex Adaptive System (CAS) perspective (McGrath, Arrow, & Berdhal, "Personal Soc Psychol Rev" 4 (2000) 95), which views virtual learning teams as an adaptive and…
Marrone, Babetta L.; Lacey, Ronald E.; Anderson, Daniel B.; ...
2017-08-07
Energy-efficient and scalable harvesting and lipid extraction processes must be developed in order for the algal biofuels and bioproducts industry to thrive. The major challenge for harvesting is the handling of large volumes of cultivation water to concentrate low amounts of biomass. For lipid extraction, the major energy and cost drivers are associated with disrupting the algae cell wall and drying the biomass before solvent extraction of the lipids. Here we review the research and development conducted by the Harvesting and Extraction Team during the 3-year National Alliance for Advanced Biofuels and Bioproducts (NAABB) algal consortium project. The harvesting andmore » extraction team investigated five harvesting and three wet extraction technologies at lab bench scale for effectiveness, and conducted a techoeconomic study to evaluate their costs and energy efficiency compared to available baseline technologies. Based on this study, three harvesting technologies were selected for further study at larger scale. We evaluated the selected harvesting technologies: electrocoagulation, membrane filtration, and ultrasonic harvesting, in a field study at minimum scale of 100 L/h. None of the extraction technologies were determined to be ready for scale-up; therefore, an emerging extraction technology (wet solvent extraction) was selected from industry to provide scale-up data and capabilities to produce lipid and lipid-extracted materials for the NAABB program. One specialized extraction/adsorption technology was developed that showed promise for recovering high value co-products from lipid extracts. Overall, the NAABB Harvesting and Extraction Team improved the readiness level of several innovative, energy efficient technologies to integrate with algae production processes and captured valuable lessons learned about scale-up challenges.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marrone, Babetta L.; Lacey, Ronald E.; Anderson, Daniel B.
Energy-efficient and scalable harvesting and lipid extraction processes must be developed in order for the algal biofuels and bioproducts industry to thrive. The major challenge for harvesting is the handling of large volumes of cultivation water to concentrate low amounts of biomass. For lipid extraction, the major energy and cost drivers are associated with disrupting the algae cell wall and drying the biomass before solvent extraction of the lipids. Here we review the research and development conducted by the Harvesting and Extraction Team during the 3-year National Alliance for Advanced Biofuels and Bioproducts (NAABB) algal consortium project. The harvesting andmore » extraction team investigated five harvesting and three wet extraction technologies at lab bench scale for effectiveness, and conducted a techoeconomic study to evaluate their costs and energy efficiency compared to available baseline technologies. Based on this study, three harvesting technologies were selected for further study at larger scale. We evaluated the selected harvesting technologies: electrocoagulation, membrane filtration, and ultrasonic harvesting, in a field study at minimum scale of 100 L/h. None of the extraction technologies were determined to be ready for scale-up; therefore, an emerging extraction technology (wet solvent extraction) was selected from industry to provide scale-up data and capabilities to produce lipid and lipid-extracted materials for the NAABB program. One specialized extraction/adsorption technology was developed that showed promise for recovering high value co-products from lipid extracts. Overall, the NAABB Harvesting and Extraction Team improved the readiness level of several innovative, energy efficient technologies to integrate with algae production processes and captured valuable lessons learned about scale-up challenges.« less
Nuclear Nonproliferation Ontology Assessment Team Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strasburg, Jana D.; Hohimer, Ryan E.
Final Report for the NA22 Simulations, Algorithm and Modeling (SAM) Ontology Assessment Team's efforts from FY09-FY11. The Ontology Assessment Team began in May 2009 and concluded in September 2011. During this two-year time frame, the Ontology Assessment team had two objectives: (1) Assessing the utility of knowledge representation and semantic technologies for addressing nuclear nonproliferation challenges; and (2) Developing ontological support tools that would provide a framework for integrating across the Simulation, Algorithm and Modeling (SAM) program. The SAM Program was going through a large assessment and strategic planning effort during this time and as a result, the relative importancemore » of these two objectives changed, altering the focus of the Ontology Assessment Team. In the end, the team conducted an assessment of the state of art, created an annotated bibliography, and developed a series of ontological support tools, demonstrations and presentations. A total of more than 35 individuals from 12 different research institutions participated in the Ontology Assessment Team. These included subject matter experts in several nuclear nonproliferation-related domains as well as experts in semantic technologies. Despite the diverse backgrounds and perspectives, the Ontology Assessment team functioned very well together and aspects could serve as a model for future inter-laboratory collaborations and working groups. While the team encountered several challenges and learned many lessons along the way, the Ontology Assessment effort was ultimately a success that led to several multi-lab research projects and opened up a new area of scientific exploration within the Office of Nuclear Nonproliferation and Verification.« less
Propulsion Technology Lifecycle Operational Analysis
NASA Technical Reports Server (NTRS)
Robinson, John W.; Rhodes, Russell E.
2010-01-01
The paper presents the results of a focused effort performed by the members of the Space Propulsion Synergy Team (SPST) Functional Requirements Sub-team to develop propulsion data to support Advanced Technology Lifecycle Analysis System (ATLAS). This is a spreadsheet application to analyze the impact of technology decisions at a system-of-systems level. Results are summarized in an Excel workbook we call the Technology Tool Box (TTB). The TTB provides data for technology performance, operations, and programmatic parameters in the form of a library of technical information to support analysis tools and/or models. The lifecycle of technologies can be analyzed from this data and particularly useful for system operations involving long running missions. The propulsion technologies in this paper are listed against Chemical Rocket Engines in a Work Breakdown Structure (WBS) format. The overall effort involved establishing four elements: (1) A general purpose Functional System Breakdown Structure (FSBS). (2) Operational Requirements for Rocket Engines. (3) Technology Metric Values associated with Operating Systems (4) Work Breakdown Structure (WBS) of Chemical Rocket Engines The list of Chemical Rocket Engines identified in the WBS is by no means complete. It is planned to update the TTB with a more complete list of available Chemical Rocket Engines for United States (US) engines and add the Foreign rocket engines to the WBS which are available to NASA and the Aerospace Industry. The Operational Technology Metric Values were derived by the SPST Sub-team in the form of the TTB and establishes a database for users to help evaluate and establish the technology level of each Chemical Rocket Engine in the database. The Technology Metric Values will serve as a guide to help determine which rocket engine to invest technology money in for future development.
NASA Astrophysics Data System (ADS)
Hereld, Mark; Hudson, Randy; Norris, John; Papka, Michael E.; Uram, Thomas
2009-07-01
The Computer Supported Collaborative Work research community has identified that the technology used to support distributed teams of researchers, such as email, instant messaging, and conferencing environments, are not enough. Building from a list of areas where it is believed technology can help support distributed teams, we have divided our efforts into support of asynchronous and synchronous activities. This paper will describe two of our recent efforts to improve the productivity of distributed science teams. One effort focused on supporting the management and tracking of milestones and results, with the hope of helping manage information overload. The second effort focused on providing an environment that supports real-time analysis of data. Both of these efforts are seen as add-ons to the existing collaborative infrastructure, developed to enhance the experience of teams working at a distance by removing barriers to effective communication.
NASA Technical Reports Server (NTRS)
2004-01-01
In early 1995, NASA s Glenn Research Center (then Lewis Research Center) formed an industry-government team with several jet engine companies to develop the National Combustion Code (NCC), which would help aerospace engineers solve complex aerodynamics and combustion problems in gas turbine, rocket, and hypersonic engines. The original development team consisted of Allison Engine Company (now Rolls-Royce Allison), CFD Research Corporation, GE Aircraft Engines, Pratt and Whitney, and NASA. After the baseline beta version was established in July 1998, the team focused its efforts on consolidation, streamlining, and integration, as well as enhancement, evaluation, validation, and application. These activities, mainly conducted at NASA Glenn, led to the completion of NCC version 1.0 in October 2000. NCC version 1.0 features high-fidelity representation of complex geometry, advanced models for two-phase turbulent combustion, and massively parallel computing. Researchers and engineers at Glenn have been using NCC to provide analysis and design support for various aerospace propulsion technology development projects. NASA transfers NCC technology to external customers using non- exclusive Space Act Agreements. Glenn researchers also communicate research and development results derived from NCC's further development through publications and special sessions at technical conferences.
A case study of technology transfer: Cardiology
NASA Technical Reports Server (NTRS)
Schafer, G.
1974-01-01
Research advancements in cardiology instrumentation and techniques are summarized. Emphasis is placed upon the following techniques: (1) development of electrodes which show good skin compatibility and wearer comfort; (2) contourography - a real time display system for showing the results of EKGs; (3) detection of arteriosclerosis by digital computer processing of X-ray photos; (4) automated, noninvasive systems for blood pressure measurement; (5) ultrasonoscope - a noninvasive device for use in diagnosis of aortic, mitral, and tricuspid valve disease; and (6) rechargable cardiac pacemakers. The formation of a biomedical applications team which is an interdisciplinary team to bridge the gap between the developers and users of technology is described.
[Robot--a member of (re)habilitation team].
Krasnik, Rastislava; Mikov, Aleksandra; Golubović, Spela; Komazec, Zoran; Komazec, Slobodanka Lemajić
2012-01-01
The rehabilitation process involves a whole team of experts who participate in it over a long period oftime. The Intensive development of science and technology has made it possible to design a number of robots which are used for therapeutic purposes and participate in the rehabilitation process. During the long history of technological development of mankind, a number of conceptual and technological solutions for the construction of robots have been known. By using robots in medical rehabilitation it is possible to implement the rehabilitation of peripheral and central motor neurons by increasing the motivation of patients for further recovery and effectiveness of therapy. The paper presents some technological solutions for robot-assisted rehabilitation of patients of different age groups and some possibilities of its use in the treatment. Using robots in standard physiotherapy protocols that involve a number of repetitions, exact dosage, quality design and adaptability to each individual patient leads to the significant progress in the rehabilitation of patients.
Systems Engineering and Integration for Technology Programs
NASA Technical Reports Server (NTRS)
Kennedy, Kruss J.
2006-01-01
The Architecture, Habitability & Integration group (AH&I) is a system engineering and integration test team within the NASA Crew and Thermal Systems Division (CTSD) at Johnson Space Center. AH&I identifies and resolves system-level integration issues within the research and technology development community. The timely resolution of these integration issues is fundamental to the development of human system requirements and exploration capability. The integration of the many individual components necessary to construct an artificial environment is difficult. The necessary interactions between individual components and systems must be approached in a piece-wise fashion to achieve repeatable results. A formal systems engineering (SE) approach to define, develop, and integrate quality systems within the life support community has been developed. This approach will allow a Research & Technology Program to systematically approach the development, management, and quality of technology deliverables to the various exploration missions. A tiered system engineering structure has been proposed to implement best systems engineering practices across all development levels from basic research to working assemblies. These practices will be implemented through a management plan across all applicable programs, projects, elements and teams. While many of the engineering practices are common to other industries, the implementation is specific to technology development. An accounting of the systems engineering management philosophy will be discussed and the associated programmatic processes will be presented.
Hamline/3M Project: Liaison for Curricular Change
NASA Astrophysics Data System (ADS)
Rundquist, Andy
2002-03-01
This project was designed to catalyze curricular changes to better prepare students for the workplace. Industrial managers provided a list of 16 characteristics valued in the workplace: most were NOT related to science course content. The project formed 5 teams each including 3M professionals and students. Each team developed curricular changes in one of the 16 areas. Team goals were to improve skills in communication, data analysis, business/economics, team problem solving, and culture competency. Curricular changes realized include communication skill activities embodied in science courses and faculty communication teaching skill seminars, self learning tools in data analysis, statistics and model building, a new course developed with assistance from 3M personnel focussing on topics directly related to technological industries, high performance team problem solving training/coaching for faculty and workshops for students and faculty relative to importance of cultural competencies in the workplace, and a new course focusing on culture, team problem solving and conflict resolution in the technical workplace. Process for developing and content of curricular changes will be reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, Joseph J; Doris, Elizabeth S; Farrar, Sara L
The U.S. Department of Energy (DOE) Solar Decathlon is a collegiate competition that challenges student teams to design and build full-size, solar-powered houses. Because of balanced design priorities of architecture, engineering, innovation, performance, and energy use, teams have focused on a range of technologies in the built environment, from wall materials to home control systems, from electric lighting to HVAC equipment, and from geothermal to solar photovoltaic technology. This report provides insights into building technology innovation from a review of the Solar Decathlon competition entry designs, anecdotal experiences, and related market reports. The report describes example case studies of themore » evolution of technology solutions over time to illustrate the innovative, market-driving nature of the Solar Decathlon. It charts technologies utilized in the team designs over seven competitions and compares those to broader market adoption. It is meant to illustrate the technology innovation aspects of the competition, not to be a comprehensive or quantitative analysis. Solar Decathlon also has impacts on public perception of innovative technologies as well as workforce development through the thousands of participating students. The focus of these case studies is to showcase how it contributes to marketplace adoption of innovative energy technologies.« less
RT 164: Design and Development Tools for the Systems Engineering Experience Accelerator - Part 3
2017-04-29
Investigator: Dr. Jon Wade, Stevens Institute of Technology Co-Principal Investigator: Dr. Doug Bodner, Georgia Institute of Technology Research Team...Defense Acquisition University: Yvette Rodriguez Georgia Institute of Technology : Jing Liu Stevens Institute of Technology : Dr. Richard Turner...Stevens Institute of Technology : Peizhu Zhang Sponsor: Office of the DASD (Systems Engineering) Report No. SERC-2017-TR-107
NASA Technical Reports Server (NTRS)
Tri, Terry O.; Kennedy, Kriss J.; Toups, Larry; Gill, Tracy R.; Howe, A. Scott
2011-01-01
This paper describes the construction, assembly, subsystem integration, transportation, and field testing operations associated with the Habitat Demonstration Unit (HDU) Pressurized Excursion Module (PEM) and discusses lessons learned. In a one-year period beginning summer 2009, a tightly scheduled design-develop-build process was utilized by a small NASA "tiger team" to produce the functional HDU-PEM prototype in time to participate in the 2010 Desert Research and Technology Studies (Desert RATS) field campaign. The process required the coordination of multiple teams, subcontractors, facility management and safety staff. It also required a well-choreographed material handling and transportation process to deliver the finished product from the NASA-Johnson Space Center facilities to the remote Arizona desert locations of the field test. Significant findings of this paper include the team s greater understanding of the HDU-PEM s many integration issues and the in-field training the team acquired which will enable the implementation of the next-generation of improvements and development of high-fidelity field operations in a harsh environment. The Desert RATS analog environment is being promoted by NASA as an efficient means to design, build, and integrate multiple technologies in a mission architecture context, with the eventual goal of evolving the technologies into robust flight hardware systems. The HDU-PEM in-field demonstration at Desert RATS 2010 provided a validation process for the integration team, which has already begun to retool for the 2011 field tests that require an adapted architecture.
Collaborative Design of Technology-Enhanced Learning: What Can We Learn from Teacher Talk?
ERIC Educational Resources Information Center
McKenney, Susan; Boschman, Ferry; Pieters, Jules; Voogt, Joke
2016-01-01
The collaborative design of technology-enhanced learning is seen as a practical and effective professional development strategy, especially because teachers learn from each other as they share and apply knowledge. But how teacher design team participants draw on and develop their knowledge has not yet been investigated. This qualitative…
Area Consortium on Training. "Training for Technology" Project, 1982-1983. Final Report.
ERIC Educational Resources Information Center
Moock, Lynn D.
The Area Consortium on Training initiated the Training for Technology Project to fill industry needs for skilled personnel and job needs for economically disadvantaged persons. Major accomplishments included establishment of a training team for economic development and for development of training programs; contacting of more than 100 employers;…
Purposeful Action Research: Reconsidering Science and Technology Teacher Professional Development
ERIC Educational Resources Information Center
vanOostveen, Roland
2017-01-01
Initial plans for this project arose from a need to address issues of professional development of science and technology teachers that went beyond the norm available within school board settings. Two teams of 4 teachers responded to an invitation to participate in a collaborative action research project. Collaborative action research was chosen in…
An improved method for collecting and monitoring pine oleoresin
Dick Karsky; Brian Strom; Harold Thistle
2004-01-01
A new method for collecting and monitoring pine oleoresin has been developed through a cooperative project involving the Missoula Technology Development Center (MTDC), Southern Research Station (Brian Strom, research entomologist), and the Forest Health Technology Enterprise Team. The new sampling unit (figure 1) is cast from rugged plastic. It provides a closed system...
ERIC Educational Resources Information Center
Foster, W. Tad; Shahhosseini, A. Mehran; Maughan, George
2016-01-01
Facilitating student growth and development in diagnosing and solving technical problems remains a challenge for technology and engineering educators. With funding from the National Science Foundation, this team of researchers developed a self-guided, computer-based instructional program to experiment with conceptual mapping as a treatment to…
ERIC Educational Resources Information Center
McGrady, Lisa
2010-01-01
This article reports on a study designed to explore whether and in what ways individual students' technological literacies might impact collaborative teams. For the collaborative team discussed in this article, technological literacy--specifically, limited repertoires for solving technical problems, clashes between document management strategies,…
NASA Astrophysics Data System (ADS)
Marek, W.; Śliwiński, K.
2016-09-01
The article concerns research carried out by the Krakow University of Technology on the concept of a pneumatic fuel injection spark ignition engines. In this artkule an example of an application of this type of power to the Wankel's engine, together with a description of its design and operating principles and the benefits of its use. The work was carried out over many years by Prof. Stanislaw Jarnuszkiewicz despite the development of many patents but not widely used in engines. Authors who were involved in the team-work of the team of Prof. Jarnuszkiewicz, after conducting exploratory studies, believed that this solution has development potential and this will be presented in future articles.
Virtual Teams in Higher Education: The Light and Dark Side
ERIC Educational Resources Information Center
Grinnell, Lynn; Sauers, Amy; Appunn, Frank; Mack, Larry
2012-01-01
Students and faculty are grappling with learning teams in the online environment - more than half of all higher education organizations offer online courses (Hoffman, 2006). As online course developers try to replicate the best practices of traditional classrooms, the asynchronous technology of the Internet has added great capability while also…
Project T.E.A.M. (Technical Education Advancement Modules). Fundementals of Workplace Integration.
ERIC Educational Resources Information Center
Kraeling, Vicki
This module is one of a series of instructional guides developed by Project TEAM (Technical Education Advancement Modules), a cooperative demonstration program for high technology training for unemployed, underemployed, and existing industrial employees whose basic technical skills are in need of upgrading. The module is a 27-hour overview course…
ERIC Educational Resources Information Center
Pellegrini, John J.; Jansen, Elizabeth
2013-01-01
The Mayo Innovation Scholars Program introduces undergraduates to technology transfer in biomedical sciences by having teams of students from multiple disciplines (e.g., biology, chemistry, economics, and business) analyze inventions in development at the Mayo Clinic. Over 6 months, teams consult with inventors, intellectual property experts, and…
Rendezvous, proximity operations and capture quality function deployment report
NASA Technical Reports Server (NTRS)
Lamkin, Stephen L. (Editor)
1991-01-01
Rendezvous, Proximity Operations, and Capture (RPOC) is a missions operations area which is extremely important to present and future space initiatives and must be well planned and coordinated. To support this, a study team was formed to identify a specific plan of action using the Quality Function Deployment (QFD) process. This team was composed of members from a wide spectrum of engineering and operations organizations which are involved in the RPOC technology area. The key to this study's success is an understanding of the needs of potential programmatic customers and the technology base available for system implementation. To this end, the study team conducted interviews with a variety of near term and future programmatic customers and technology development sponsors. The QFD activity led to a thorough understanding of the needs of these customers in the RPOC area, as well as the relative importance of these needs.
NASA Astrophysics Data System (ADS)
Martin, Gene; Criscione, Joseph C.; Cauffman, Sandra A.; Davis, Martin A.
2004-11-01
The Hyperspectral Environmental Suite (HES) instrument is currently under development by the NASA GOES-R Project team within the framework of the GOES Program to fulfill the future needs and requirements of the National Environmental Satellite, Data, and Information Service (NESDIS) Office. As part of the GOES-R instrument complement, HES will provide measurements of the traditional temperature and water vapor vertical profiles with higher accuracy and vertical resolution than obtained through current sounder technologies. HES will provide measurements of the properties of the shelf and coastal waters and back up imaging (at in-situ resolution) for the GOES-R Advanced Baseline Imager (ABI). The HES team is forging the future of remote environmental monitoring with the development of an operational instrument with high temporal, spatial and spectral-resolution and broad hemispheric coverage. The HES development vision includes threshold and goal requirements that encompass potential system solutions. The HES team has defined tasks for the instrument(s) that include a threshold functional complement of Disk Sounding (DS), Severe Weather/Mesoscale Sounding (SW/M), and Shelf and Coastal Waters imaging (CW) and a goal functional complement of Open Ocean (OO) imaging, and back up imaging (at in-situ resolution) for the GOES-R Advanced Baseline Imager (ABI). To achieve the best-value procurement, the GOES-R Project has base-lined a two-phase procurement approach to the HES design and development; a Formulation/study phase and an instrument Implementation phase. During Formulation, currently slated for the FY04-05 timeframe, the developing team(s) will perform Systems Requirements Analysis and evaluation, System Trade and Requirements Baseline Studies, Risk Assessment and Mitigation Strategy and complete a Preliminary Conceptual Design of the HES instrument. The results of the formulation phase will be leveraged to achieve an effective and efficient system solution during the Implementation Phase scheduled to begin FY05 for a resultant FY12 launch. The magnitude of complexity of the HES development requires an appreciation of the technologies required to achieve the functional objectives. To this end, the GOES-R project team is making available all NASA developed technologies to potential HES vendors, including, the NASA New Millennium Program"s (NMP) Earth Observing-3, Geostationary Imaging Fourier Transform Spectrometer (GIFTS) instrument developed technologies, as applicable. It is anticipated that the instrument(s) meeting the HES requirements will be either a dispersive spectrometer or an interferometric spectrometer or perhaps a combination. No instrument configuration is preferred or favored by the Government. This paper outlines the HES development plan; including an overview of current requirements, existing partnerships and the GOES-R project methodologies to achieve the advanced functional objectives of the GOES Program partnership.
X-ray technology behind NASA's black-hole hunter (NuSTAR)
Craig, Bill
2018-05-18
Livermore Lab astrophysicist Bill Craig describes his team's role in developing X-ray imaging technology for the NASA Nuclear Spectroscopic Telescope Array (NuSTAR) mission. The black-hole-hunting spacecraft bagged its first 10 supermassive black holes this week.
Information Technologies and Workplace Learning.
ERIC Educational Resources Information Center
Roth, Gene L.
1995-01-01
Information technologies are important tools for individual, team, and organizational learning. Developments in virtual reality and the Internet, performance support systems that increase the efficiency of individuals and groups, and other innovations have the potential to enhance the relationship between work and learning. (SK)
X-ray technology behind NASA's black-hole hunter (NuSTAR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig, Bill
2013-09-10
Livermore Lab astrophysicist Bill Craig describes his team's role in developing X-ray imaging technology for the NASA Nuclear Spectroscopic Telescope Array (NuSTAR) mission. The black-hole-hunting spacecraft bagged its first 10 supermassive black holes this week.
Illinois Manufacturing Technology Curriculum.
ERIC Educational Resources Information Center
Cliffe, Roger; And Others
This manufacturing technology curriculum involves students in learning problem-solving, communication, team building, quality control, safety, math, science, and technical skills. The document begins with a section on implementation, which gives background information on the purposes and development of the curriculum, explains its rationale,…
Materials Development for Hypersonic Flight Vehicles
NASA Technical Reports Server (NTRS)
Glass, David E.; Dirling, Ray; Croop, Harold; Fry, Timothy J.; Frank, Geoffrey J.
2006-01-01
The DARPA/Air Force Falcon program is planning to flight test several hypersonic technology vehicles (HTV) in the next several years. A Materials Integrated Product Team (MIPT) was formed to lead the development of key thermal protection system (TPS) and hot structures technologies. The technologies being addressed by the MIPT are in the following areas: 1) less than 3000 F leading edges, 2) greater than 3000 F refractory composite materials, 3) high temperature multi-layer insulation, 4) acreage TPS, and 5) high temperature seals. Technologies being developed in each of these areas are discussed in this paper.
Korb, Werner; Geißler, Norman; Strauß, Gero
2015-03-01
Engineering a medical technology is a complex process, therefore it is important to include experts from different scientific fields. This is particularly true for the development of surgical technology, where the relevant scientific fields are surgery (medicine) and engineering (electrical engineering, mechanical engineering, computer science, etc.). Furthermore, the scientific field of human factors is important to ensure that a surgical technology is indeed functional, process-oriented, effective, efficient as well as user- and patient-oriented. Working in such trans- and inter-disciplinary teams can be challenging due to different working cultures. The intention of this paper is to propose an innovative cooperative working culture for the interdisciplinary field of computer-assisted surgery (CAS) based on more than ten years of research on the one hand and the interdisciplinary literature on working cultures and various organizational theories on the other hand. In this paper, a retrospective analysis of more than ten years of research work in inter- and trans-disciplinary teams in the field of CAS will be performed. This analysis is based on the documented observations of the authors, the study reports, protocols, lab reports and published publications. To additionally evaluate the scientific experience in an interdisciplinary research team, a literature analysis regarding scientific literature on trans- and inter-disciplinarity was performed. Own research and literature analyses were compared. Both the literature and the scientific experience in an interdisciplinary research team show that consensus finding is not always easy. It is, however, important to start trans- and interdisciplinary projects with a shared mental model and common goals, which include communication and leadership issues within the project teams, i.e. clear and unambiguous information about the individual responsibilities and objectives to attain. This is made necessary due to differing leadership cultures within the cooperating disciplines. Another research outcome is the relevance of a cooperative learning culture throughout the complete duration of the project. Based on this cooperation, new ideas and projects were developed, i.e. a training concept for surgical trainers including technological competence for surgeons. An adapted innovative paradigm for a cooperating working culture in CAS is based on a shared mental model and common goals from the very beginning of a project. All actors in trans- and inter-disciplinary teams need to be interested in cooperation. This will lead to a common view on patients and technology models. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
1980-01-01
A technology evaluation of five coal gasifier systems (Koppers-Totzek, Texaco, Babcock and Wilcox, Lurgi and BGC/Lurgi) and procedures and criteria for evaluating competitive commercial coal gasification designs is presented. The technology evaluation is based upon the plant designs and cost estimates developed by the BDM-Mittelhauser team.
ERIC Educational Resources Information Center
Haruna, Umar Ibrahim
2015-01-01
Collaboration plays a major role in interdisciplinary activities among Science, Technology, Engineering & Mathematics (STEM) disciplines or fields. It also affects the relationships among cluster members on the management team. Although effective collaboration does not guarantee success among STEM disciplines, its absence usually assures…
ERIC Educational Resources Information Center
Parker, Denise L.
2017-01-01
Virtual teams are comprised of members from various locations who use Information and Communication Technology (ICT) for member interaction. Many organizations have accepted virtual teams as an alternative to face-to-face teams. With the acceptance comes many challenges, one of those challenges is supporting team sharing in the virtual…
ERIC Educational Resources Information Center
Bailey, Gerald D.; Ross, Tweed; Bailey, Gwen L.; Lumley, Dan
Using teams is an effective way to meet the challenges of breaking down teacher isolation, halting curriculum fragmentation, and creating a learning organization. This guide is designed to help school leaders train groups to become teams, guide them to become high-performance teams, and empower them to become technology-based teams. It contains…
My Green Car: Painting Motor City Green (Ep. 2) â DOE Lab-Corps Video Series
Saxena, Samveg; Shah, Nihar; Hansen, Dana
2018-06-12
The Labâs MyGreenCar team kicks off its customer discovery process in Detroit with a business boot camp designed for scientists developing energy-related technologies. Customer interviews lead to late night discussions and insights on less-than-receptive consumers. Back in Berkeley, the team decides to fine tune targeted customer segments. What makes a new technology compelling enough to transition out of the lab and become a consumer product? Thatâs the question Berkeley Lab researchers Samveg Saxena, Nihar Shah, and Dana Hansen plus industry mentor Russell Carrington set out to answer for MyGreenCar, an app providing personalized fuel economy or electric vehicle range estimates for consumers researching new cars. DOEâs Lab-Corps program offered the technology team some answers. The EERE-funded program, based on the National Science Foundationâs I-Corps⢠model for entrepreneurial training, provides tools and training to move energy-related inventions to the marketplace. During Lab-Corpâs intensive six-week session, technology teams interview 100 customer and value chain members to discover which potential products based on their technologies will have significant market pull. A six video series follows the MyGreenCar teamâs Lab-Corps experience, from pre-training preparation with the Labâs Innovation and Partnerships Office through the ups and downs of the customer discovery process. Will the app make it to the marketplace? Youâll just have to watch.
Keeping Cool With Solar-Powered Refrigeration
NASA Technical Reports Server (NTRS)
2003-01-01
In the midst of developing battery-free, solar-powered refrigeration and air conditioning systems for habitats in space, David Bergeron, the team leader for NASA's Advanced Refrigerator Technology Team at Johnson Space Center, acknowledged the need for a comparable solar refrigerator that could operate in conjunction with the simple lighting systems already in place on Earth. Bergeron, a 20-year veteran in the aerospace industry, founded the company Solus Refrigeration, Inc., in 1999 to take the patented advanced refrigeration technology he co-developed with his teammate, Johnson engineer Michael Ewert, to commercial markets. Now known as SunDanzer Refrigeration, Inc., Bergeron's company is producing battery-free, photovoltaic (PV) refrigeration systems under license to NASA, and selling them globally.
Hypermedia and intelligent tutoring applications in a mission operations environment
NASA Technical Reports Server (NTRS)
Ames, Troy; Baker, Clifford
1990-01-01
Hypermedia, hypertext and Intelligent Tutoring System (ITS) applications to support all phases of mission operations are investigated. The application of hypermedia and ITS technology to improve system performance and safety in supervisory control is described - with an emphasis on modeling operator's intentions in the form of goals, plans, tasks, and actions. Review of hypermedia and ITS technology is presented as may be applied to the tutoring of command and control languages. Hypertext based ITS is developed to train flight operation teams and System Test and Operation Language (STOL). Specific hypermedia and ITS application areas are highlighted, including: computer aided instruction of flight operation teams (STOL ITS) and control center software development tools (CHIMES and STOL Certification Tool).
ERIC Educational Resources Information Center
Cornelius, Fran; Glasgow, Mary Ellen Smith
2007-01-01
Technology's impact on the delivery of health care mandates that nursing faculty use all technologies at their disposal to better prepare students to work in technology-infused health care environments. Essential components of an infrastructure to grow technology-infused nursing education include a skilled team comprised of tech-savvy faculty and…
Information Protection Engineering: Using Technology and Experience to Protect Assets
2001-07-01
SAIC’s highly experienced team has developed technology, techniques and expertise in protecting these information assets from electronic attack by...criminals, terrorists, hackers or nation states. INFORMATION PROTECTION ENGINEERING : Using Technology and Experience to Protect Assets William J. Marlow... Engineering : Using Technology and Experience to Protect Assets Contract or Grant Number Program Element Number Authors Marlow, William J. Project
Two-Phase Flow Technology Developed and Demonstrated for the Vision for Exploration
NASA Technical Reports Server (NTRS)
Sankovic, John M.; McQuillen, John B.; Lekan, Jack F.
2005-01-01
NASA s vision for exploration will once again expand the bounds of human presence in the universe with planned missions to the Moon and Mars. To attain the numerous goals of this vision, NASA will need to develop technologies in several areas, including advanced power-generation and thermal-control systems for spacecraft and life support. The development of these systems will have to be demonstrated prior to implementation to ensure safe and reliable operation in reduced-gravity environments. The Two-Phase Flow Facility (T(PHI) FFy) Project will provide the path to these enabling technologies for critical multiphase fluid products. The safety and reliability of future systems will be enhanced by addressing focused microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability, all of which are essential to exploration technology. The project--a multiyear effort initiated in 2004--will include concept development, normal-gravity testing (laboratories), reduced gravity aircraft flight campaigns (NASA s KC-135 and C-9 aircraft), space-flight experimentation (International Space Station), and model development. This project will be implemented by a team from the NASA Glenn Research Center, QSS Group, Inc., ZIN Technologies, Inc., and the Extramural Strategic Research Team composed of experts from academia.
Rupcic, Sonia; Tamrat, Tigest; Kachnowski, Stan
2012-11-01
This study reviews the state of diabetes information technology (IT) initiatives and presents a set of recommendations for improvement based on interviews with commercial IT innovators. Semistructured interviews were conducted with 10 technology developers, representing 12 of the most successful IT companies in the world. Average interview time was approximately 45 min. Interviews were audio-recorded, transcribed, and entered into ATLAS.ti for qualitative data analysis. Themes were identified through a process of selective and open coding by three researchers. We identified two practices, common among successful IT companies, that have allowed them to avoid or surmount the challenges that confront healthcare professionals involved in diabetes IT development: (1) employing a diverse research team of software developers and engineers, statisticians, consumers, and business people and (2) conducting rigorous research and analytics on technology use and user preferences. Because of the nature of their respective fields, healthcare professionals and commercial innovators face different constraints. With these in mind we present three recommendations, informed by practices shared by successful commercial developers, for those involved in developing diabetes IT programming: (1) include software engineers on the implementation team throughout the intervention, (2) conduct more extensive baseline testing of users and monitor the usage data derived from the technology itself, and (3) pursue Institutional Review Board-exempt research.
Team Learning in Technology-Mediated Distributed Teams
ERIC Educational Resources Information Center
Andres, Hayward P.; Shipps, Belinda P.
2010-01-01
This study examines technological, educational/learning, and social affordances associated with the facilitation of project-based learning and problem solving in technology-mediated distributed teams. An empirical interpretive research approach using direct observation is used to interpret, evaluate and rate observable manifested behaviors and…
NASA Application Team Program: Application of aerospace technology in biology and medicine
NASA Technical Reports Server (NTRS)
1973-01-01
The results of the medically related activities of the NASA Application Team Program in technology application for the reporting period September 1, 1972, to August 31, 1973 are reported. The accomplishments of the application team during the reporting period are as follows: The team has identified 39 new problems for investigation, has accomplished 7 technology applications, 4 potential technology applications, 2 impacts, has closed 38 old problems, and has a total of 59 problems under active investigation.
Applications of aerospace technology in biology and medicine
NASA Technical Reports Server (NTRS)
Brown, J. N.
1974-01-01
The results of the medically related activities of the NASA Application Team Program at the Research Triangle Institute are presented. The RTI team, a multidisciplinary team of scientists and engineers, acted as an information and technology interface between NASA and individuals, institutions, and agencies involved in biomedical research and clinical medicine. The Team has identified 40 new problems for investigation, has accomplished 7 technology applications, 6 potential technology application, 4 impacts, has closed 54 old problems, and has a total of 47 problems under active investigation.
ORNL superconducting technology program for electric power systems
NASA Astrophysics Data System (ADS)
Hawsey, R. A.
1994-04-01
The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are conductor development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1993 Annual Program Review held July 28--29, 1993. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to industrial competitiveness projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer to US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.
ORNL superconducting technology program for electric energy systems
NASA Astrophysics Data System (ADS)
Hawsey, R. A.
1993-02-01
The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy's (DOE's) Office of Conservation and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and systems development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY-92 Peer Review of Projects, which was conducted by DOE's Office of Program Analysis, Office of Energy Research. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer to US industry. Working together, the collaborative teams are making tremendous progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.
ERIC Educational Resources Information Center
Lien, Bella Ya-Hui; Hung, Richard Y.; McLean, Gary N.
2007-01-01
Organizational learning (OL) is about how individuals collect, absorb, and transform information into organizational memory and knowledge. This case study explored how six high-technology firms in Taiwan chose OL as an organization development intervention strategy. Issues included how best to implement OL; how individuals, teams, and…
A Multi-scale, Multi-Model, Machine-Learning Solar Forecasting Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamann, Hendrik F.
The goal of the project was the development and demonstration of a significantly improved solar forecasting technology (short: Watt-sun), which leverages new big data processing technologies and machine-learnt blending between different models and forecast systems. The technology aimed demonstrating major advances in accuracy as measured by existing and new metrics which themselves were developed as part of this project. Finally, the team worked with Independent System Operators (ISOs) and utilities to integrate the forecasts into their operations.
Transportation technology program: Strategic plan
NASA Astrophysics Data System (ADS)
1991-09-01
The purpose of this report is to define the technology program required to meet the transportation technology needs for current and future civil space missions. It is a part of an integrated plan, prepared by NASA in part in response to the Augustine Committee recommendations, to describe and advocate expanded and more aggressive efforts in the development of advanced space technologies. This expanded program will provide a technology basis for future space missions to which the U.S. aspires, and will help to regain technology leadership for the U.S. on a broader front. The six aspects of this integrated program/plan deal with focused technologies to support space sciences, exploration, transportation, platforms, and operations as well as provide a Research and Technology Base Program. This volume describes the technologies needed to support transportation systems, e.g., technologies needed for upgrades to current transportation systems and to provide reliable and efficient transportation for future space missions. The Office of Aeronautics, Exploration, and Technology (OAET) solicited technology needs from the major agency technology users and the aerospace industry community and formed a transportation technology team (appendix A) to develop a technology program to respond to those needs related to transportation technologies. This report addresses the results of that team activity. It is a strategic plan intended for use as a planning document rather than as a project management tool. It is anticipated that this document will be primarily utilized by research & technology (R&T) management at the various NASA Centers as well as by officials at NASA Headquarters and by industry in planning their corporate Independent Research and Development (IR&D) investments.
Transportation technology program: Strategic plan
NASA Technical Reports Server (NTRS)
1991-01-01
The purpose of this report is to define the technology program required to meet the transportation technology needs for current and future civil space missions. It is a part of an integrated plan, prepared by NASA in part in response to the Augustine Committee recommendations, to describe and advocate expanded and more aggressive efforts in the development of advanced space technologies. This expanded program will provide a technology basis for future space missions to which the U.S. aspires, and will help to regain technology leadership for the U.S. on a broader front. The six aspects of this integrated program/plan deal with focused technologies to support space sciences, exploration, transportation, platforms, and operations as well as provide a Research and Technology Base Program. This volume describes the technologies needed to support transportation systems, e.g., technologies needed for upgrades to current transportation systems and to provide reliable and efficient transportation for future space missions. The Office of Aeronautics, Exploration, and Technology (OAET) solicited technology needs from the major agency technology users and the aerospace industry community and formed a transportation technology team (appendix A) to develop a technology program to respond to those needs related to transportation technologies. This report addresses the results of that team activity. It is a strategic plan intended for use as a planning document rather than as a project management tool. It is anticipated that this document will be primarily utilized by research & technology (R&T) management at the various NASA Centers as well as by officials at NASA Headquarters and by industry in planning their corporate Independent Research and Development (IR&D) investments.
Five generations in the nursing workforce: implications for nursing professional development.
Bell, Julie A
2013-01-01
Positive patient outcomes require effective teamwork, communication, and technological literacy. These skills vary among the unprecedented five generations in the nursing workforce, spanning the "Silent Generation" nurses deferring retirement to the newest "iGeneration." Nursing professional development educators must understand generational differences; address communication, information technology, and team-building competencies across generations; and promote integration of learner-centered strategies into professional development activities.
Inflatable Structures Technology Handbook. Chapter 21; Inflatable Habitats
NASA Technical Reports Server (NTRS)
Kennedy, Kriss J.; Raboin, Jasen; Spexarth, Gary; Valle, Gerard
2000-01-01
The technologies required to design, fabricate, and utilize an inflatable module for space applications has been demonstrated and proven by the TransHab team during the development phase of the program. Through testing and hands-on development several issues about inflatable space structures have been addressed , such as: ease of manufacturing, structural integrity, micrometeorite protection, folding , and vacuum deployment. The TransHab inflatable technology development program has proven that not only are inflatable structures a viable option, but they also offer significant advantages over conventional metallic structures.
Understanding the Complexity of Teacher Interaction in a Teacher Professional Learning Community
ERIC Educational Resources Information Center
Sjoer, Ellen; Meirink, Jacobiene
2016-01-01
In this study, we examine a professional learning community of primary school teachers developing a joint school-based curriculum for science and technology (S&T) education. Team meetings were observed over the course of one school year and the participating teachers and school head were interviewed. An essential factor in the team's…
ERIC Educational Resources Information Center
Gray, Denis O.; Sundstrom, Eric
2010-01-01
Two emergent conceptual models for fostering the development of innovative technology through applied science at Cooperative Research Centers (CRCs)--the Triple Helix and the science of team science--have proved highly productive in stimulating research into how the innovation process works. Although the two arenas for fostering innovation have…
Developing a Culture of Assessment through a Faculty Learning Community: A Case Study
ERIC Educational Resources Information Center
Schlitz, Stephanie A.; O'Connor, Margaret; Pang, Yanhui; Stryker, Deborah; Markell, Stephen; Krupp, Ethan; Byers, Celina; Jones, Sheila Dove; Redfern, Alicia King
2009-01-01
This article describes how a diverse, interdisciplinary team of faculty formed a topic-based faculty learning community. Following an introduction to faculty learning communities and a brief discussion of their benefit to faculty engaged in the process of adopting new technology, we explain how our team, through a competitive mini-grant…
Training Programmes as Incubators.
ERIC Educational Resources Information Center
Erikson, Truls; Gjellan, Are
2003-01-01
A European technological university conducts quarterly incubator programs in which teams develop ideas into viable business plans. Analysis indicates that 57 of 102 ideas resulted in successful technology-based businesses and more than 400 students received hands-on experience in business start-up. (Contains 16 references.) (SK)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Cheryl; Gerst, Kacy; Gould, Josh
Technical success is one thing, but commercial success is another. ARPA-E’s unique Technology-to-Market program was designed to help our awardees move their research out of the lab and into the market, accelerating the adoption of potentially game-changing technologies. The Technology-to-Market team is dedicated to the common goal of answering the fundamental question: if it works, will it matter? Featuring remarks from Cheryl Martin, ARPA-E’s Deputy Director for Commercialization, as well as interviews with three members of the Technology-to-Market team, this video demonstrates ARPA-E’s commitment to both the development and deployment of transformational energy technologies. The video also incorporates footage shotmore » on site with several ARPA-E awardees, much of which will be highlighted in other videos shown throughout the 2015 ARPA-E Energy Innovation Summit.« less
Martin, Cheryl; Gerst, Kacy; Gould, Josh; Babinec, Sue
2018-05-11
Technical success is one thing, but commercial success is another. ARPA-Eâs unique Technology-to-Market program was designed to help our awardees move their research out of the lab and into the market, accelerating the adoption of potentially game-changing technologies. The Technology-to-Market team is dedicated to the common goal of answering the fundamental question: if it works, will it matter? Featuring remarks from Cheryl Martin, ARPA-Eâs Deputy Director for Commercialization, as well as interviews with three members of the Technology-to-Market team, this video demonstrates ARPA-Eâs commitment to both the development and deployment of transformational energy technologies. The video also incorporates footage shot on site with several ARPA-E awardees, much of which will be highlighted in other videos shown throughout the 2015 ARPA-E Energy Innovation Summit.
NASA Technical Reports Server (NTRS)
O'Neill, Mark; McDanal, A. J.; Brandhorst, Henry; Spence, Brian; Iqbal, Shawn; Sharps, Paul; McPheeters, Clay; Steinfeldt, Jeff; Piszczor, Michael; Myers, Matt
2016-01-01
At the 42nd PVSC, our team presented recent advances in our space photovoltaic concentrator technology. These advances include more robust Fresnel lenses for optical concentration, more thermally conductive graphene radiators for waste heat rejection, improved color-mixing lens technology to minimize chromatic aberration losses with 4-junction solar cells, and an articulating photovoltaic receiver enabling single-axis sun-tracking, while maintaining a sharp focal line despite large beta angles of incidence. In the past year, under a NASA Phase II SBIR program, our team has made much additional progress in the development of this new space photovoltaic concentrator technology, as described in this paper.
Electro-Optics Millimeter/Microwave Technology in Japan. Report of DoD Technology Team.
1985-05-01
Fiber Technology Hitachi is developing Ge-Se chalcogenide glass infrared optical fibers. Mate- rial development and evaluation has been carried out...chalcogenide glass fibers. The analysis indi- cates that the addition of Sb to Ge-Se chalcogenide glass should yield fibers with a very small absorption...representative of other commercial cables. Fiber is drawn using Vapor Axial Deposition (VAD) with pre-form glass ingots. Multiple fibers are combined
Research and Technology: 2003 Annual Report of the John F Kennedy Space Center
NASA Technical Reports Server (NTRS)
2003-01-01
The John F. Kennedy Space Center (KSC) is America's Spaceport Technology Center. The KSC technology development program encompasses the efforts of the entire KSC team, consisting of Government and contractor personnel, working in partnership with academic institutions and commercial industry. KSC's assigned mission areas are space launch operations and spaceport and range technologies. KSC's technology development customers include current space transportation programs, future space transportation programs / initiatives, and enabling technical programs. The KSC Research and Technology 2003 Annual Report encompasses the efforts of contributors to the KSC advanced technology development program and KSC technology transfer activities. Dr. Dave Bartine, KSC Chief Technologist, (321) 867-7069, is responsible for publication of this report and should be contacted for any desired information regarding KSC's research and technology development activities.
Microsystems: from technologies to products
NASA Astrophysics Data System (ADS)
Ryser, Peter
2003-10-01
In this paper, we outline the process leading from technologies to successful products in the MEMS (Microelectromechanical Systems) and MST (Microsystems Technology) field. The development of new products involves a lot of factors, such as mature technologies, interdisciplinary team, identifying the right business potential and long term oriented investors. The paper summarizes a survey of different technologies and point out that packaging, test and calibration are still major shortcomings for the concerned industries.
Hamline/3M Corp. Project: Liason for Curricular Change*
NASA Astrophysics Data System (ADS)
Artz, Jerry L.
2002-04-01
This project was designed to catalyze curricular changes to better prepare students for the workplace. Industrial managers provided a list of 16 characteristics valued in the workplace; most were NOT related to science course content. The project formed 5 teams each including 3M professionals and students. Each team developed curricular changes in one of the 16 areas. Team goals were to improve skills in communication, data analysis, business/economics, team problem solving, and cultural competency. Curricular changes realized include communication skill activities embodied in science courses and faculty communication teaching skill seminars; self learning tools in data analysis, statistics and model building; a new course developed with assistance from 3M personnel focusing on topics directly related to technological industries; high performance team problem solving training/coaching for faculty; workshops for students and faculty relative to importance of cultural competencies in the workplace; and a new course focusing on culture, team problem solving and conflict resolution in the technical workplace. Process for developing and content of curricular changes will be reported. *Thanks to: NSF GOALI CHE-99010782
The continuing quest for the 'Holy Braille' of tactile displays
NASA Astrophysics Data System (ADS)
Runyan, Noel H.; Blazie, Deane B.
2011-10-01
The Boston-based National Braille Press has established a Center for Braille Innovation (CBI), whose mission is to research and develop affordable braille literacy products. The primary focus has been to facilitate the development of dramatically lower cost electronic braille display devices, and the much-sought-after "Holy Braille" of a full-page electronic braille display. Developing affordable new braille technologies is crucial to improving the extremely low braille literacy rate (around 12%) of blind students. Our CBI team is working to aid developers of braille technology by focusing attention and resources on the development of the underlying braille actuator technologies. We are also developing braille-related information resources to aid braille display developers. The CBI braille requirements summary (available through the NBP website (http://www.nbp.org) is one of these resources. The braille specifications include braille dot dimensions, spacing, displacement, lifting force, and response time requirements. In addition, mentoring, helping to evaluate new braille display ideas, and openly sharing braille display technology are all part of the activities of the NBP braille innovation team. NBP has expanded the CBI project with domestic and international partners including the China Braille Press, World Braille Foundation, National Federation of the Blind, American Printing House for the Blind, American Foundation for the Blind, and many university and research partners.
Randhawa, Gurvaneet S; Ahern, David K; Hesse, Bradford W
2017-03-01
The existing healthcare delivery systems across the world need to be redesigned to ensure high-quality care is delivered to all patients. This redesign needs to ensure care is knowledge-based, patient-centered and systems-minded. The rapid advances in the capabilities of information and communication technology and its recent rapid adoption in healthcare delivery have ensured this technology will play a vital role in the redesign of the healthcare delivery system. This commentary highlights promising new developments in health information technology (IT) that can support patient engagement and self-management as well as team-based, patient-centered care. Collaborative care is an effective approach to screen and treat depression in cancer patients and it is a good example of the benefits of team-based and patient-centered care. However, this approach was developed prior to the widespread adoption and use of health IT. We provide examples to illustrate how health IT can improve prevention and treatment of depression in cancer patients. We found several knowledge gaps that limit our ability to realize the full potential of health IT in the context of cancer and comorbid depression care. These gaps need to be filled to improve patient engagement; enhance the reach and effectiveness of collaborative care and web-based programs to prevent and treat depression in cancer patients. We also identify knowledge gaps in health IT design and implementation. Filling these gaps will help shape policies that enable clinical teams to deliver high-quality cancer care globally.
A Research on Development of The Multi-mode Flood Forecasting System Version Management
NASA Astrophysics Data System (ADS)
Shen, J.-C.; Chang, C. H.; Lien, H. C.; Wu, S. J.; Horng, M. J.
2009-04-01
With the global economy and technological development, the degree of urbanization and population density relative to raise. At the same time, a natural buffer space and resources year after year, the situation has been weakened, not only lead to potential environmental disasters, more and more serious, disaster caused by the economy, loss of natural environment at all levels has been expanded. In view of this, the active participation of all countries in the world cross-sectoral integration of disaster prevention technology research and development, in addition, the specialized field of disaster prevention technology, science and technology development, network integration technology, high-speed data transmission and information to support the establishment of mechanisms for disaster management The decision-making and cross-border global disaster information network building and other related technologies, has become the international anti-disaster science and technology development trends, this trend. Naturally a few years in Taiwan, people's lives and property losses caused by many problems related to natural disaster prevention and disaster prevention and the establishment of applications has become a very important. For FEWS_Taiwan, flood warning system developed by the Delft Hydraulics and introduced the Water Resources Agency (WRA), it provides those functionalities for users to modify contents to add the basins, regions, data sources, models and etc. Despite this advantage, version differences due to different users or different teams yet bring about the difficulties on synchronization and integration.At the same time in different research teams will also add different modes of meteorological and hydrological data. From the government perspective of WRA, the need to plan standard operation procedures for system integration demands that the effort for version control due to version differences must be cost down or yet canceled out. As for FEWS_Taiwan, this paper proposed the feasible avenues and solutions to smoothly integrate different configurations from different teams. In the current system has been completed by 20 of Taiwan's main rivers in the building of the basic structure of the flood forecasting. And regular updating of the relevant parameters, using the new survey results, in order to have a better flood forecasting results.
Report from the Gravitational Observatory Advisory Team
NASA Astrophysics Data System (ADS)
Mueller, Guido; Gravitational Observatory Advisory Team
2016-03-01
As a response to the selection of the Gravitational Universe as the science theme for ESA's L3 mission, ESA formed the Gravitational-Wave Observatory Advisory Team (GOAT) to advise ESA on the scientific and technological approach for a gravitational wave observatory. NASA is participating with three US scientists and one NASA observer; JAXA was also invited and participates with one observer. The GOAT looked at a range of mission technologies and designs, discussed their technical readiness with respect to the ESA schedule, recommended technology development activities for selected technologies, and worked with the wider gravitational-wave community to analyze the impact on the science of the various mission designs. The final report is expected to be submitted to ESA early March and I plan to summarize its content.
A status of the Turbine Technology Team activities
NASA Technical Reports Server (NTRS)
Griffin, Lisa W.
1992-01-01
The recent activities of the Turbine Technology Team of the Consortium for Computational Fluid Dynamics (CFD) Application in Propulsion Technology is presented. The team consists of members from the government, industry, and universities. The goal of this team is to demonstrate the benefits to the turbine design process attainable through the application of CFD. This goal is to be achieved by enhancing and validating turbine design tools for improved loading and flowfield definition and loss prediction, and transferring the advanced technology to the turbine design process. In order to demonstrate the advantages of using CFD early in the design phase, the Space Transportation Main Engine (STME) turbines for the National Launch System (NLS) were chosen on which to focus the team's efforts. The Turbine Team activities run parallel to the STME design work.
Deep Space Habitat Wireless Smart Plug
NASA Technical Reports Server (NTRS)
Morgan, Joseph A.; Porter, Jay; Rojdev, Kristina; Carrejo, Daniel B.; Colozza, Anthony J.
2014-01-01
NASA has been interested in technology development for deep space exploration, and one avenue of developing these technologies is via the eXploration Habitat (X-Hab) Academic Innovation Challenge. In 2013, NASA's Deep Space Habitat (DSH) project was in need of sensors that could monitor the power consumption of various devices in the habitat with added capability to control the power to these devices for load shedding in emergency situations. Texas A&M University's Electronic Systems Engineering Technology Program (ESET) in conjunction with their Mobile Integrated Solutions Laboratory (MISL) accepted this challenge, and over the course of 2013, several undergraduate students in a Capstone design course developed five wireless DC Smart Plugs for NASA. The wireless DC Smart Plugs developed by Texas A&M in conjunction with NASA's Deep Space Habitat team is a first step in developing wireless instrumentation for future flight hardware. This paper will further discuss the X-Hab challenge and requirements set out by NASA, the detailed design and testing performed by Texas A&M, challenges faced by the team and lessons learned, and potential future work on this design.
Microtechnology in Space: NASA's Lab-on-a-Chip Applications Development Program
NASA Technical Reports Server (NTRS)
Monaco, Lisa; Spearing, Scott; Jenkins, Andy; Symonds, Wes; Mayer, Derek; Gouldie, Edd; Wainwright, Norm; Fries, Marc; Maule, Jake; Toporski, Jan
2004-01-01
NASA's Marshall Space Flight Center (MSFC) Lab on a Chip Application Development LOCAD) team has worked with microfluidic technology for the past few years in an effort to support NASA's Mission. In that time, such microfluidic based Lab-on-a-Chip (LOC) systems have become common technology in clinical and diagnostic laboratories. The approach is most attractive due to its highly miniaturized platform and ability to perform reagent handling (i-e., dilution, mixing, separation) and diagnostics for multiple reactions in an integrated fashion. LOCAD, along with Caliper Life Sciences has successfully developed the first LOC device for macromolecular crystallization using a workstation acquired specifically for designing custom chips, the Caliper 42. LOCAD uses this, along with a novel MSFC-designed and built workstation for microfluidic development. The team has a cadre of LOC devices that can be used to perform initial feasibility testing to determine the efficacy of the LOC approach for a specific application. Once applicability has been established, the LOCAD team, along with the Army's Aviation and Missile Command microfabrication facility, can then begin to custom design and fabricate a device per the user's specifications. This presentation will highlight the LOCAD team's proven and unique expertise that has been utilized to provide end to end capabilities associated with applying microfluidics for applications that include robotic life detection instrumentation, crew health monitoring and microbial and environmental monitoring for human Exploration.
Eva K. Strand; Kathy H. Schon; Jeff Jones
2010-01-01
Technological advances in the area of fuel and wildland fire management have created a need for effective decision support tools and technology training. The National Interagency Fuels Committee and LANDFIRE have chartered a team to develop science-based learning tools for assessment of fire and fuels and to provide online training and technology transfer to help...
ERIC Educational Resources Information Center
Jones, Frankie S.
2007-01-01
This qualitative study explored how collaborative technologies influence the informal learning experiences of virtual team members. Inputs revealed as critical to virtual informal learning were integrated, collaborative technological systems; positive relationships and trust; and organizational support and virtual team management. These inputs…
Biomedical research and aerospace technology applications
NASA Technical Reports Server (NTRS)
1971-01-01
The accomplishments and activities of an Applications Team for biomedical subjects are presented. The team attempts to couple the technological problems and requirements in medicine with the relevant aerospace technology and, in particular, NASA-generated technology. The team actively engages in identifying these problems through direct contact with medical staffs or problem originators. The identification and specification of medical problems is followed by a search for technology which may be relevant to solutions to these problems.
NASA Astrophysics Data System (ADS)
Duke, Michael B.
1999-01-01
HEDS-UP (Human Exploration and Development of Space-University Partners) conducted its second annual forum on May 6-7, 1999, at the Lunar and Planetary Institute in Houston. This year, the topics focused on human exploration of Mars, including considerations ranging from systems analysis of the transportation and surface architecture to very detailed considerations of surface elements such as greenhouses, rovers, and EVA suits. Ten undergraduate projects and four graduate level projects were presented with a total of 13 universities from around the country. Over 200 students participated on the study teams and nearly 100 students attended the forum meeting. The overall quality of reports and presentations was extremely high, with most projects requiring that the students dig into space systems concepts, designs, and technologies in detail. University team outreach projects also reached approximately 1500 people through articles and Web sites developed by the students. Several of the teams had NASA or industry mentors and included visits to NASA centers as part of their class activities. Awards were made to the three top undergraduate teams and the top team of graduate students. The first-place award went to a team from Wichita State University, Wichita, Kansas. Their faculty advisor was Dr. Gawad Nagati of the Department of Aerospace Engineering. Second place went to a team from the California Institute of Technology, Pasadena, California, with Dr. James Burke of the jet Propulsion Laboratory as advisor. Third place was awarded to the University of Houston in Houston, Texas, where Dr. David Zimmerman was the faculty sponsor. The graduate award was made to a team from the University of Maryland, College Park, Maryland, under the sponsorship of Dr. David Akin.
Distributing Planning and Control for Teams of Cooperating Mobile Robots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, L.E.
2004-07-19
This CRADA project involved the cooperative research of investigators in ORNL's Center for Engineering Science Advanced Research (CESAR) with researchers at Caterpillar, Inc. The subject of the research was the development of cooperative control strategies for autonomous vehicles performing applications of interest to Caterpillar customers. The project involved three Phases of research, conducted over the time period of November 1998 through December 2001. This project led to the successful development of several technologies and demonstrations in realistic simulation that illustrated the effectiveness of our control approaches for distributed planning and cooperation in multi-robot teams. The primary objectives of this researchmore » project were to: (1) Develop autonomous control technologies to enable multiple vehicles to work together cooperatively, (2) Provide the foundational capabilities for a human operator to exercise oversight and guidance during the multi-vehicle task execution, and (3) Integrate these capabilities to the ALLIANCE-based autonomous control approach for multi-robot teams. These objectives have been successfully met with the results implemented and demonstrated in a near real-time multi-vehicle simulation of up to four vehicles performing mission-relevant tasks.« less
Deep Space Habitat Team: HEFT Phase 2 Effects
NASA Technical Reports Server (NTRS)
Toups, Larry D.; Smitherman, David; Shyface, Hilary; Simon, Matt; Bobkill, Marianne; Komar, D. R.; Guirgis, Peggy; Bagdigian, Bob; Spexarth, Gary
2011-01-01
HEFT was a NASA-wide team that performed analyses of architectures for human exploration beyond LEO, evaluating technical, programmatic, and budgetary issues to support decisions at the highest level of the agency in HSF planning. HEFT Phase I (April - September, 2010) and Phase II (September - December, 2010) examined a broad set of Human Exploration of Near Earth Objects (NEOs) Design Reference Missions (DRMs), evaluating such factors as elements, performance, technologies, schedule, and cost. At end of HEFT Phase 1, an architecture concept known as DRM 4a represented the best available option for a full capability NEO mission. Within DRM4a, the habitation system was provided by Deep Space Habitat (DSH), Multi-Mission Space Exploration Vehicle (MMSEV), and Crew Transfer Vehicle (CTV) pressurized elements. HEFT Phase 2 extended DRM4a, resulting in DRM4b. Scrubbed element-level functionality assumptions and mission Concepts of Operations. Habitation Team developed more detailed concepts of the DSH and the DSH/MMSEV/CTV Conops, including functionality and accommodations, mass & volume estimates, technology requirements, and DDT&E costs. DRM 5 represented an effort to reduce cost by scaling back on technologies and eliminating the need for the development of an MMSEV.
Organizational and expertise directory : summer 2007
DOT National Transportation Integrated Search
2007-01-01
The Federal Highway Administration (FHWA) Office of Research, Development, and Technology (RD&T) : is organized into 8 offices with 15 teams of experts in more than 30 transportation-related disciplines. : Three research and development (R&D) offices...
NASA Technical Reports Server (NTRS)
2002-01-01
The Mission of the NSBRI will be to lead a National effort for accomplishing the integrated, critical path, biomedical research necessary to support the long term human presence, development, and exploration of space and to enhance life on Earth by applying the resultant advances in human knowledge and technology acquired through living and working in space. To carry out this mission, the NSBRI focuses its activities on three Strategic Programs: Strategic Program 1: Countermeasure Research Strategic Program 2: Education, Training and Outreach Strategic Program 3: Cooperative Research and Development. This document contains the detailed Team Strategic Plans for the 11 research teams focused on Strategic Program 1, and the Education and Outreach Team focused on Strategic Program 2. There is overlap and integration among the Programs and Team Strategic Plans, as described in each of the Plans.
ERIC Educational Resources Information Center
Burd, Elizabeth L.; Hatch, Andrew; Ashurst, Colin; Jessop, Alan
2009-01-01
This article describes an approach whereby patterns are used to describe management issues and solutions to be used during the project management of team-based software development. The work describes how web 2.0 technologies have been employed to support the use and development of such patterns. To evaluate the success of patterns and the…
Mars exploration study workshop 2
NASA Astrophysics Data System (ADS)
Duke, Michael B.; Budden, Nancy Ann
1993-11-01
A year-long NASA-wide study effort has led to the development of an innovative strategy for the human exploration of Mars. The latest Mars Exploration Study Workshop 2 advanced a design reference mission (DRM) that significantly reduces the perceived high costs, complex infrastructure, and long schedules associated with previous Mars scenarios. This surface-oriented philosophy emphasizes the development of high-leveraging surface technologies in lieu of concentrating exclusively on space transportation technologies and development strategies. As a result of the DRM's balanced approach to mission and crew risk, element commonality, and technology development, human missions to Mars can be accomplished without the need for complex assembly operations in low-Earth orbit. This report, which summarizes the Mars Exploration Study Workshop held at the Ames Research Center on May 24-25, 1993, provides an overview of the status of the Mars Exploration Study, material presented at the workshop, and discussions of open items being addressed by the study team. The workshop assembled three teams of experts to discuss cost, dual-use technology, and international involvement, and to generate a working group white paper addressing these issues. The three position papers which were generated are included in section three of this publication.
Mars exploration study workshop 2
NASA Technical Reports Server (NTRS)
Duke, Michael B.; Budden, Nancy Ann
1993-01-01
A year-long NASA-wide study effort has led to the development of an innovative strategy for the human exploration of Mars. The latest Mars Exploration Study Workshop 2 advanced a design reference mission (DRM) that significantly reduces the perceived high costs, complex infrastructure, and long schedules associated with previous Mars scenarios. This surface-oriented philosophy emphasizes the development of high-leveraging surface technologies in lieu of concentrating exclusively on space transportation technologies and development strategies. As a result of the DRM's balanced approach to mission and crew risk, element commonality, and technology development, human missions to Mars can be accomplished without the need for complex assembly operations in low-Earth orbit. This report, which summarizes the Mars Exploration Study Workshop held at the Ames Research Center on May 24-25, 1993, provides an overview of the status of the Mars Exploration Study, material presented at the workshop, and discussions of open items being addressed by the study team. The workshop assembled three teams of experts to discuss cost, dual-use technology, and international involvement, and to generate a working group white paper addressing these issues. The three position papers which were generated are included in section three of this publication.
Research and Technology 1996: Innovation in Time and Space
NASA Technical Reports Server (NTRS)
1996-01-01
As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1996 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as our technology transfer activities.
ERIC Educational Resources Information Center
Lauridsen, Barbara L.
2013-01-01
The purpose of this research was to determine if the effectiveness of technology education can be significantly increased through use of team-based activities including both real-time team encounters and results-driven team assignments. The research addresses this purpose by examining perceptions regarding effectiveness of team-based learning in…
NASA Technical Reports Server (NTRS)
Keyes, Jennifer; Troutman, Patrick A.; Saucillo, Rudolph; Cirillo, William M.; Cavanaugh, Steve; Stromgren, Chel
2006-01-01
The NASA Langley Research Center (LaRC) Systems Analysis & Concepts Directorate (SACD) began studying human exploration missions beyond low Earth orbit (LEO) in the year 1999. This included participation in NASA s Decadal Planning Team (DPT), the NASA Exploration Team (NExT), Space Architect studies and Revolutionary Aerospace Systems Concepts (RASC) architecture studies that were used in formulating the new Vision for Space Exploration. In May of 2005, NASA initiated the Exploration Systems Architecture Study (ESAS). The primary outputs of the ESAS activity were concepts and functional requirements for the Crewed Exploration Vehicle (CEV), its supporting launch vehicle infrastructure and identification of supporting technology requirements and investments. An exploration systems analysis capability has evolved to support these functions in the past and continues to evolve to support anticipated future needs. SACD had significant roles in supporting the ESAS study team. SACD personnel performed the liaison function between the ESAS team and the Shuttle/Station Configuration Options Team (S/SCOT), an agency-wide team charged with using the Space Shuttle to complete the International Space Station (ISS) by the end of Fiscal Year (FY) 2010. The most significant of the identified issues involved the ability of the Space Shuttle system to achieve the desired number of flights in the proposed time frame. SACD with support from the Kennedy Space Center performed analysis showing that, without significant investments in improving the shuttle processing flow, that there was almost no possibility of completing the 28-flight sequence by the end of 2010. SACD performed numerous Lunar Surface Access Module (LSAM) trades to define top level element requirements and establish architecture propellant needs. Configuration trades were conducted to determine the impact of varying degrees of segmentation of the living capabilities of the combined descent stage, ascent stage, and other elements. The technology assessment process was developed and implemented by SACD as the ESAS architecture was refined. SACD implemented a rigorous and objective process which included (a) establishing architectural functional needs, (b) collection, synthesis and mapping of technology data, and (c) performing an objective decision analysis resulting in technology development investment recommendations. The investment recommendation provided budget, schedule, and center/program allocations to develop required technologies for the exploration architecture, as well as the identification of other investment opportunities to maximize performance and flexibility while minimizing cost and risk. A summary of the trades performed and methods utilized by SACD for the Exploration Systems Mission Directorate (ESAS) activity is presented along with how SACD is currently supporting the implementation of the Vision for Space Exploration.
Theeke, Laurie A.; Theeke, Elliott; Mallow, Brian K.
2016-01-01
Used as integrated tools, technology may improve the ability of healthcare providers to improve access and outcomes of care. Little is known about healthcare teams' preferences in using such technology. This paper reports the findings from focus groups aimed at evaluating a newly developed primary care technology platform. Focus groups were completed in academic, outpatient, and community settings. Focus groups were attended by 37 individuals. The participants included professionals from multiple disciplines. Both prescribing (N = 8) and nonprescribing healthcare team members (n = 21) completed the focus groups and survey. The majority were practicing for more than 20 years (44.8%) in an outpatient clinic (62%) for 20–40 hours per week (37.9%). Providers identified perceived obstacles of patient use as ability, willingness, and time. System obstacles were identified as lack of integration, lack of reimbursement, and cost. The positive attributes of the developed system were capability for virtual visits, readability, connectivity, user-friendliness, ability to capture biophysical measures, enhanced patient access, and incorporation of multiple technologies. Providers suggested increasing capability for biophysical and symptom monitoring for more common chronic conditions. Technology interventions have the potential to improve access and outcomes but will not be successful without the input of users. PMID:27504199
2018-05-04
ARL-TR-8359 ● MAY 2018 US Army Research Laboratory Enhancing Human–Agent Teaming with Individualized, Adaptive Technologies : A...with Individualized, Adaptive Technologies : A Discussion of Critical Scientific Questions by Arwen H DeCostanza, Amar R Marathe, Addison Bohannon...Enhancing Human–Agent Teaming with Individualized, Adaptive Technologies : A Discussion of Critical Scientific Questions 5a. CONTRACT NUMBER 5b
Damage-Tolerant, Affordable Composite Engine Cases Designed and Fabricated
NASA Technical Reports Server (NTRS)
Hopkins, Dale A.; Roberts, Gary D.; Pereira, J. Michael; Bowman, Cheryl L.
2005-01-01
An integrated team of NASA personnel, Government contractors, industry partners, and university staff have developed an innovative new technology for commercial fan cases that will substantially influence the safety and efficiency of future turbine engines. This effective team, under the direction of the NASA Glenn Research Center and with the support of the Federal Aviation Administration, has matured a new class of carbon/polymer composites and demonstrated a 30- to 50-percent improvement in specific containment capacity (blade fragment kinetic energy/containment system weight). As the heaviest engine component, the engine case/containment system greatly affects both the safety and efficiency of aircraft engines. The ballistic impact research team has developed unique test facilities and methods for screening numerous candidate material systems to replace the traditional heavy, metallic engine cases. This research has culminated in the selection of a polymer matrix composite reinforced with triaxially braided carbon fibers and technology demonstration through the fabrication of prototype engine cases for three major commercial engine manufacturing companies.
The German joint research project "concepts for future gravity satellite missions"
NASA Astrophysics Data System (ADS)
Reubelt, Tilo; Sneeuw, Nico; Fichter, Walter; Müller, Jürgen
2010-05-01
Within the German joint research project "concepts for future gravity satellite missions", funded by the Geotechnologies programme of the German Federal Ministry of Education and Research, options and concepts for future satellite missions for precise (time-variable) gravity field recovery are investigated. The project team is composed of members from science and industry, bringing together experts in geodesy, satellite systems, metrology, sensor technology and control systems. The majority of team members already contributed to former gravity missions. The composition of the team guarantees that not only geodetic aspects and objectives are investigated, but also technological and financial constraints are considered. Conversely, satellite, sensor and system concepts are developed and improved in a direct exchange with geodetic and scientific claims. The project aims to develop concepts for both near and mid-term future satellite missions, taking into account e.g. advanced satellite formations and constellations, improved orbit design, innovative metrology and sensor systems and advances in satellite systems.
ERIC Educational Resources Information Center
Warren, Christopher M.; Dyer, Ashley; Blumenstock, Jesse; Gupta, Ruchi S.
2016-01-01
Background: Asthma places a heavy burden on Chicago's schoolchildren, particularly in low-income, minority communities. Recently, our group developed a 10-week afterschool program, the Student Asthma Research Team (START), which successfully engaged high school youth in a Photovoice investigation of factors impacting their asthma at school and in…
ERIC Educational Resources Information Center
Tsai, Chia-Wen
2016-01-01
As more and more educational institutions are providing online courses, it is necessary to design effective teaching methods integrated with technologies to benefit both teachers and students. The researcher in this study designed innovative online teaching methods of team-based learning (TBL) and co-regulated learning (CRL) to improve students'…
NASA Operational Environment Team (NOET): NASA's key to environmental technology
NASA Technical Reports Server (NTRS)
Cook, Beth
1993-01-01
NASA has stepped forward to face the environmental challenge to eliminate the use of Ozone-Layer Depleting Substances (OLDS) and to reduce our Hazardous Air Pollutants (HAP) by 50 percent in 1995. These requirements have been issued by the Clean Air Act, the Montreal Protocol, and various other legislative acts. A proactive group, the NASA Operational Environment Team or NOET, received its charter in April 1992 and was tasked with providing a network through which replacement activities and development experiences can be shared. This is a NASA-wide team which supports the research and development community by sharing information both in person and via a computerized network, assisting in specification and standard revisions, developing cleaner propulsion systems, and exploring environmentally-compliant alternatives to current processes.
Assessing Team Learning in Technology-Mediated Collaboration: An Experimental Study
ERIC Educational Resources Information Center
Andres, Hayward P.; Akan, Obasi H.
2010-01-01
This study examined the effects of collaboration mode (collocated versus non-collocated videoconferencing-mediated) on team learning and team interaction quality in a team-based problem solving context. Situated learning theory and the theory of affordances are used to provide a framework that describes how technology-mediated collaboration…
Project development teams: a novel mechanism for accelerating translational research.
Sajdyk, Tammy J; Sors, Thomas G; Hunt, Joe D; Murray, Mary E; Deford, Melanie E; Shekhar, Anantha; Denne, Scott C
2015-01-01
The trend in conducting successful biomedical research is shifting from individual academic labs to coordinated collaborative research teams. Teams of experienced investigators with a wide variety of expertise are now critical for developing and maintaining a successful, productive research program. However, assembling a team whose members have the right expertise requires a great deal of time and many resources. To assist investigators seeking such resources, the Indiana Clinical and Translational Sciences Institute (Indiana CTSI) created the Project Development Teams (PDTs) program to support translational research on and across the Indiana University-Purdue University Indianapolis, Indiana University, Purdue University, and University of Notre Dame campuses. PDTs are multidisciplinary committees of seasoned researchers who assist investigators, at any stage of research, in transforming ideas/hypotheses into well-designed translational research projects. The teams help investigators capitalize on Indiana CTSI resources by providing investigators with, as needed, mentoring and career development; protocol development; pilot funding; institutional review board, regulatory, and/or nursing support; intellectual property support; access to institutional technology; and assistance with biostatistics, bioethics, recruiting participants, data mining, engaging community health, and collaborating with other investigators.Indiana CTSI leaders have analyzed metrics, collected since the inception of the PDT program in 2008 from both investigators and team members, and found evidence strongly suggesting that the highly responsive teams have become an important one-stop venue for facilitating productive interactions between basic and clinical scientists across four campuses, have aided in advancing the careers of junior faculty, and have helped investigators successfully obtain external funds.
NASA Technical Reports Server (NTRS)
Trombka, J. I.; Floyd, S.; Ruitberg, A.; Evans, L.; Starr, R.; Metzger, A.; Reedy, R.; Drake, D.; Moss, C.; Edwards, B.
1993-01-01
An important part of the investigation of planetary origin and evolution is the determination of the surface composition of planets, comets, and asteroids. Measurements of discrete line X-ray and gamma ray emissions from condensed bodies in space can be used to obtain both qualitative and quantitative elemental composition information. The Planetary Instrumentation Definition and Development Program (PIDDP) X-Ray/Gamma Ray Team has been established to develop remote sensing and in situ technologies for future planetary exploration missions.
Revolutionary Aerospace Systems Concepts - Planning for the Future of Technology Investments
NASA Technical Reports Server (NTRS)
Ferebee, Melvin J., Jr.; Breckenridge, Roger A.; Hall, John B., Jr.
2002-01-01
In January, 2000, the NASA Administrator gave the following directions to Langley: "We will create a new role for Langley as a leader for the assessment of revolutionary aerospace system concepts and architectures, and provide resources needed to assure technology breakthroughs will be there to support these advanced concepts. This is critical in determining how NASA can best invest its resources to enable future missions." The key objective of the RASC team is to look beyond current research and technology (R&T) programs and missions and evolutionary technology development approaches with a "top-down" perspective to explore possible new mission capabilities. The accomplishment of this objective will allow NASA to provide the ability to go anywhere, anytime - safely, and affordably- to meet its strategic goals for exploration, science, and commercialization. The RASC Team will seek to maximize the cross-Enterprise benefits of these revolutionary capabilities as it defines the revolutionary enabling technology areas and performance levels needed. The product of the RASC Team studies will be revolutionary systems concepts along with enabling technologies and payoffs in new mission capabilities, which these concepts can provide. These results will be delivered to the NASA Enterprises and the NASA Chief Technologist for use in planning revolutionary future NASA R&T program investments.
ERIC Educational Resources Information Center
Ejiwale, James A.
2014-01-01
Collaboration plays a major role in interdisciplinary activities among Science, Technology, Engineering & Mathematics (STEM) disciplines or fields. It also affects the relationships among cluster members on the management team. Although effective collaboration does not guarantee success among STEM disciplines, its absence usually assures…
Transforming Our Cities: High-Performance Green Infrastructure (WERF Report INFR1R11)
The objective of this project is to demonstrate that the highly distributed real-time control (DRTC) technologies for green infrastructure being developed by the research team can play a critical role in transforming our nation’s urban infrastructure. These technologies include a...
The Systems and Global Engineering Project
ERIC Educational Resources Information Center
Harms, Henry; Janosz, David A., Jr.; Maietta, Steve
2010-01-01
This article describes the Systems and Global Engineering (SAGE) Project in which students collaborate with others from around the world to model solutions to some of today's most significant global problems. Stevens Institute of Technology and the New Jersey Technology Education Association (NJTEA) have teamed up to develop innovative…
Analyzing Agricultural Technology Systems: A Research Report.
ERIC Educational Resources Information Center
Swanson, Burton E.
The International Program for Agricultural Knowledge Systems (INTERPAKS) research team is developing a descriptive and analytic framework to examine and assess agricultural technology systems. The first part of the framework is an inductive methodology that organizes data collection and orders data for comparison between countries. It requires and…
The twelfth annual Intelligent Ground Vehicle Competition: team approaches to intelligent vehicles
NASA Astrophysics Data System (ADS)
Theisen, Bernard L.; Maslach, Daniel
2004-10-01
The Intelligent Ground Vehicle Competition (IGVC) is one of three, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI) in the 1990s. The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics, and mobile platform fundamentals to design and build an unmanned system. Both U.S. and international teams focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities. Over the past 12 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from over 43 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the three-day competition are highlighted. Finally, an assessment of the competition based on participant feedback is presented.
NASA Technical Reports Server (NTRS)
Graff, Paige Valderrama; Stefanov, William L.; Willis, Kim; Runco, Susan; McCollum, Tim; Lindgren, Charles F.; Baker, Marshalyn; Mailhot, Michele
2011-01-01
Authentic research opportunities in the classroom are most impactful when they are student-driven and inquiry-based. These experiences are even more powerful when they involve technology and meaningful connections with scientists. In today's classrooms, activities are driven by state required skills, education standards, and state mandated testing. Therefore, programs that incorporate authentic research must address the needs of teachers. NASA's Expedition Earth and Beyond (EEAB) Program has developed a framework that addresses teacher needs and incorporates the use of technology and access to mentors to promote and enhance authentic research in the classroom. EEAB is a student involvement program that facilitates student investigations of Earth or planetary comparisons using NASA data. To promote student-led research, EEAB provides standards-aligned, inquiry-based curricular resources, an implementation structure to facilitate research, educator professional development, and ongoing support. This framework also provides teachers with the option to incorporate the use of technology and connect students with a mentor, both of which can enrich student research experiences. The framework is structured by a modeled 9-step process of science which helps students organize their research. With more schools gaining increased access to technology, EEAB has created an option to help schools take advantage of students' interest and comfort with technology by leveraging the use of available technologies to enhance student research. The use of technology not only allows students to collaborate and share their research, it also provides a mechanism for them to work with a mentor. This framework was tested during the 2010/2011 school year. Team workspaces hosted on Wikispaces for Educators allow students to initiate their research and refine their research question initially without external input. This allows teams to work independently and rely on the skills and interests of team members. Once teams finalize their research question, they are assigned a mentor. The mentor introduces himself/herself, acknowledges the initial work the team has conducted, and asks a focused question to help open the lines of communication. Students continue to communicate with their mentor throughout their research. As research is completed, teams can share their investigation during a virtual presentation. These live presentations allow students to share their research with their mentor, other scientists, other students, parents, and school administrators. After the initial year of testing this authentic research process, EEAB is working to address the many lessons learned. This will allow the program to refine and improve the overall process in an effort to maximize the benefits. Combined, these powerful strategies provide a successful framework to help teachers enhance the skills and motivation of their students, preparing them to become the next generation of scientists, explorers, and STEM-literate citizens of our nation.
NASA Astrophysics Data System (ADS)
Graff, P. V.; Stefanov, W. L.; Willis, K.; Runco, S.; McCollum, T.; Lindgren, C. F.; Baker, M.; Mailhot, M.
2011-12-01
Authentic research opportunities in the classroom are most impactful when they are student-driven and inquiry-based. These experiences are even more powerful when they involve technology and meaningful connections with scientists. In today's classrooms, activities are driven by state required skills, education standards, and state mandated testing. Therefore, programs that incorporate authentic research must address the needs of teachers. NASA's Expedition Earth and Beyond (EEAB) Program has developed a framework that addresses teacher needs and incorporates the use of technology and access to mentors to promote and enhance authentic research in the classroom. EEAB is a student involvement program that facilitates student investigations of Earth or planetary comparisons using NASA data. To promote student-led research, EEAB provides standards-aligned, inquiry-based curricular resources, an implementation structure to facilitate research, educator professional development, and ongoing support. This framework also provides teachers with the option to incorporate the use of technology and connect students with a mentor, both of which can enrich student research experiences. The framework is structured by a modeled 9-step process of science which helps students organize their research. With more schools gaining increased access to technology, EEAB has created an option to help schools take advantage of students' interest and comfort with technology by leveraging the use of available technologies to enhance student research. The use of technology not only allows students to collaborate and share their research, it also provides a mechanism for them to work with a mentor. This framework was tested during the 2010/2011 school year. Team workspaces hosted on Wikispaces for Educators allow students to initiate their research and refine their research question initially without external input. This allows teams to work independently and rely on the skills and interests of team members. Once teams finalize their research question, they are assigned a mentor. The mentor introduces himself/herself, acknowledges the initial work the team has conducted, and asks a focused question to help open the lines of communication. Students continue to communicate with their mentor throughout their research. As research is completed, teams can share their investigation during a virtual presentation. These live presentations allow students to share their research with their mentor, other scientists, other students, parents, and school administrators. After the initial year of testing this authentic research process, EEAB is working to address the many lessons learned. This will allow the program to refine and improve the overall process in an effort to maximize the benefits. Combined, these powerful strategies provide a successful framework to help teachers enhance the skills and motivation of their students, preparing them to become the next generation of scientists, explorers, and STEM-literate citizens of our nation.
Capabilities of the Materials Contamination Team at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Burns, H. D.; Finckenor, M. M.; Boothe, R. E.; Albyn, K. C.; Finchum, C. A.
2003-01-01
The Materials Contamination Team of the Environmental Effects Group, Materials, Processes, and Manufacturing Department, has been recognized for its contribution to space flight, including space transportation, space science and flight projects, such as the reusable solid rocket motor, Chandra X-Ray Observatory, and the International Space Station. The Materials Contamination Team s realm of responsibility encompasses all phases of hardware development including design, manufacturing, assembly, test, transportation, launch-site processing, on-orbit exposure, return, and refurbishment if required. Contamination is a concern in the Space Shuttle with sensitivity bondlines and reactive fluid (liquid oxygen) compatibility as well as for sensitive optics, particularly spacecraft such as Hubble Space Telescope and Chandra X-Ray Observatory. The Materials Contamination Team has a variety of facilities and instrumentation capable of contaminant detection identification, and monitoring. The team addresses material applications dealing with environments, including production facilities, clean rooms, and on-orbit exposure. The team of engineers and technicians also develop and evaluates new surface cleanliness inspection technologies. Databases are maintained by the team for proces! materials as well as outgassing and optical compatibility test results for specific environments.
Alsamhi, Saeed Hamood; Ansari, Mohd Samar; Ma, Ou; Almalki, Faris; Gupta, Sachin Kumar
2018-05-23
The actions taken at the initial times of a disaster are critical. Catastrophe occurs because of terrorist acts or natural hazards which have the potential to disrupt the infrastructure of wireless communication networks. Therefore, essential emergency functions such as search, rescue, and recovery operations during a catastrophic event will be disabled. We propose tethered balloon technology to provide efficient emergency communication services and reduce casualty mortality and morbidity for disaster recovery. The tethered balloon is an actively developed research area and a simple solution to support the performance, facilities, and services of emergency medical communication. The most critical requirement for rescue and relief teams is having a higher quality of communication services which enables them to save people's lives. Using our proposed technology, it has been reported that the performance of rescue and relief teams significantly improved. OPNET Modeler 14.5 is used for a network simulated with the help of ad hoc tools (Disaster Med Public Health Preparedness. 2018;page 1 of 8).
Slush Hydrogen Technology Program
NASA Technical Reports Server (NTRS)
Cady, Edwin C.
1994-01-01
A slush hydrogen (SH2) technology facility (STF) was designed, fabricated, and assembled by a contractor team of McDonnell Douglas Aerospace (MDA), Martin Marietta Aerospace Group (MMAG), and Air Products and Chemicals, Inc. (APCI). The STF consists of a slush generator which uses the freeze-thaw production process, a vacuum subsystem, a test tank which simulates the NASP vehicle, a triple point hydrogen receiver tank, a transfer subsystem, a sample bottle, a pressurization system, and a complete instrumentation and control subsystem. The STF was fabricated, checked-out, and made ready for testing under this contract. The actual SH2 testing was performed under the NASP consortium following NASP teaming. Pre-STF testing verified SH2 production methods, validated special SH2 instrumentation, and performed limited SH2 pressurization and expulsion tests which demonstrated the need for gaseous helium pre-pressurized of SH2 to control pressure collapse. The STF represents cutting-edge technology development by an effective Government-Industry team under very tight cost and schedule constraints.
Spaceport Command and Control System - Support Software Development
NASA Technical Reports Server (NTRS)
Tremblay, Shayne
2016-01-01
The Information Architecture Support (IAS) Team, the component of the Spaceport Command and Control System (SCCS) that is in charge of all the pre-runtime data, was in need of some report features to be added to their internal web application, Information Architecture (IA). Development of these reports is crucial for the speed and productivity of the development team, as they are needed to quickly and efficiently make specific and complicated data requests against the massive IA database. These reports were being put on the back burner, as other development of IA was prioritized over them, but the need for them resulted in internships being created to fill this need. The creation of these reports required learning Ruby on Rails development, along with related web technologies, and they will continue to serve IAS and other support software teams and their IA data needs.
My Green Car: Painting Motor City Green (Ep. 2) – DOE Lab-Corps Video Series
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saxena, Samveg; Shah, Nihar; Hansen, Dana
The Lab’s MyGreenCar team kicks off its customer discovery process in Detroit with a business boot camp designed for scientists developing energy-related technologies. Customer interviews lead to late night discussions and insights on less-than-receptive consumers. Back in Berkeley, the team decides to fine tune targeted customer segments. What makes a new technology compelling enough to transition out of the lab and become a consumer product? That’s the question Berkeley Lab researchers Samveg Saxena, Nihar Shah, and Dana Hansen plus industry mentor Russell Carrington set out to answer for MyGreenCar, an app providing personalized fuel economy or electric vehicle range estimatesmore » for consumers researching new cars. DOE’s Lab-Corps program offered the technology team some answers. The EERE-funded program, based on the National Science Foundation’s I-Corps™ model for entrepreneurial training, provides tools and training to move energy-related inventions to the marketplace. During Lab-Corp’s intensive six-week session, technology teams interview 100 customer and value chain members to discover which potential products based on their technologies will have significant market pull. A six video series follows the MyGreenCar team’s Lab-Corps experience, from pre-training preparation with the Lab’s Innovation and Partnerships Office through the ups and downs of the customer discovery process. Will the app make it to the marketplace? You’ll just have to watch.« less
A system simulation development project: Leveraging resources through partnerships
NASA Technical Reports Server (NTRS)
Drummond, Colin K.; Owen, A. Karl; Davis, Milt W.
1995-01-01
Partnerships between government agencies are an intellectually attractive method of conducting scientific research; the goal is to establish mutually beneficial participant roles for technology exchange that ultimately pays-off in a stronger R&D program for each partner. Anticipated and current aerospace research budgetary pressures through the 90's provide additional impetus for Government research agencies to candidly assess their R&D for those simulation activities no longer unique enough to warrant 'going it alone,' or for those elements where partnerships or teams can offset development costs. This paper describes a specific inter-agency system simulation activity that leverages the development cost of mutually beneficial R&D. While the direct positive influence of partnerships on complex technology developments is our main thesis, we also address on-going teaming issues and hope to impart to the reader the immense indirect (sometimes immeasurable) benefits that meaningful interagency partnerships can produce.
2011-10-27
public release; distribution is unlimited Dr. Keith Bowman, AFRL, Precision Airdrop ( PAD ) Program Manager Ms. Carol Ventresca, SynGenics Corporation...Presentation Outline Entrance Criteria for PAD Integrated Product Team (IPT) S&T SE Process Steps Initial Project S&T Development Strategy...Entrance Criteria for PAD Integrated Product Team (IPT) S&T SE Process Steps Initial Project S&T Development Strategy User Understanding of
Progress update on a 2015 USIP interdisciplinary undergraduate student microgravity experiment
NASA Astrophysics Data System (ADS)
Dove, A.; Colwell, J. E.; Brisset, J.; Kirstein, J.; Brightwell, K.; Hayden, R.; Jorges, J.; Schwartzberg, D.; Strange, J.; Yates, A.
2016-12-01
Our team was selected by the 2016 USIP program to build, fly, and analyze the results from a granular dynamics experiment that will fly in 2017 on a suborbital flight. The experiment will be designed to test technology and enable science relevant to low-gravity planetary objects, such as asteroids, comets, and small moons. Following on the success of previous NASA Flight Opportunities Program (FOP) and Undergraduate Student Instrumentation Project (USIP) projects, however, the primary driver of the project is to enable undergraduate student participation in the entire lifetime of a science and technology development project. Our mentoring team consists of faculty, postdoctoral researchers, and graduate students, who have experience with the past USIP program and similar projects, as well as with mentoring undergraduate students. The undergraduate team includes a diversity of major disciplines, including physics, mechanical/aerospace engineering, electrical engineering, business (accounting), and marketing. Each team member has specific project tasks, as outlined in the proposal, and all members will also help develop and participate in outreach events. In additional to their project roles, students will also be responsible for presentations and milestones, such as design reviews. Through these reviews and the outreach events, all team members have the chance to develop their technical and non-technical communication skills. Previous experience with the NASA USIP program demonstrated that students achieve significant growth through these projects -gaining a better understanding of the entire lifecycle of a project, and, likely more importantly, how to work with a diverse team. In this talk, we will discuss the status of the project, and present student impressions and thoughts on the project thus far.
Ultra Lightweight Ballutes for Return to Earth from the Moon
NASA Technical Reports Server (NTRS)
Masciarelli, James P.; Lin, John K. H.; Ware, Joanne S.; Rohrschneider, Reuben R.; Braun, Robert D.; Bartels, Robert E.; Moses, Robert W.; Hall, Jeffery L.
2006-01-01
Ultra lightweight ballutes offer revolutionary mass and cost benefits along with flexibility in flight system design compared to traditional entry system technologies. Under funding provided by NASA s Exploration Systems Research & Technology program, our team was able to make progress in developing this technology through systems analysis and design, evaluation of materials and construction methods, and development of critical analysis tools. Results show that once this technology is mature, significant launch mass savings, operational simplicity, and mission robustness will be available to help carry out NASA s Vision for Space Exploration.
34 CFR 300.324 - Development, review, and revision of IEP.
Code of Federal Regulations, 2011 CFR
2011-07-01
... mode; and (v) Consider whether the child needs assistive technology devices and services. (3... EDUCATION OF CHILDREN WITH DISABILITIES Evaluations, Eligibility Determinations, Individualized Education.... (a) Development of IEP—(1) General. In developing each child's IEP, the IEP Team must consider— (i...
34 CFR 300.324 - Development, review, and revision of IEP.
Code of Federal Regulations, 2013 CFR
2013-07-01
... mode; and (v) Consider whether the child needs assistive technology devices and services. (3... EDUCATION OF CHILDREN WITH DISABILITIES Evaluations, Eligibility Determinations, Individualized Education.... (a) Development of IEP—(1) General. In developing each child's IEP, the IEP Team must consider— (i...
34 CFR 300.324 - Development, review, and revision of IEP.
Code of Federal Regulations, 2012 CFR
2012-07-01
... mode; and (v) Consider whether the child needs assistive technology devices and services. (3... EDUCATION OF CHILDREN WITH DISABILITIES Evaluations, Eligibility Determinations, Individualized Education.... (a) Development of IEP—(1) General. In developing each child's IEP, the IEP Team must consider— (i...
34 CFR 300.324 - Development, review, and revision of IEP.
Code of Federal Regulations, 2010 CFR
2010-07-01
... mode; and (v) Consider whether the child needs assistive technology devices and services. (3... EDUCATION OF CHILDREN WITH DISABILITIES Evaluations, Eligibility Determinations, Individualized Education.... (a) Development of IEP—(1) General. In developing each child's IEP, the IEP Team must consider— (i...
34 CFR 300.324 - Development, review, and revision of IEP.
Code of Federal Regulations, 2014 CFR
2014-07-01
... mode; and (v) Consider whether the child needs assistive technology devices and services. (3... EDUCATION OF CHILDREN WITH DISABILITIES Evaluations, Eligibility Determinations, Individualized Education.... (a) Development of IEP—(1) General. In developing each child's IEP, the IEP Team must consider— (i...
Technology-driven dietary assessment: a software developer’s perspective
Buday, Richard; Tapia, Ramsey; Maze, Gary R.
2015-01-01
Dietary researchers need new software to improve nutrition data collection and analysis, but creating information technology is difficult. Software development projects may be unsuccessful due to inadequate understanding of needs, management problems, technology barriers or legal hurdles. Cost overruns and schedule delays are common. Barriers facing scientific researchers developing software include workflow, cost, schedule, and team issues. Different methods of software development and the role that intellectual property rights play are discussed. A dietary researcher must carefully consider multiple issues to maximize the likelihood of success when creating new software. PMID:22591224
Molecular robots with sensors and intelligence.
Hagiya, Masami; Konagaya, Akihiko; Kobayashi, Satoshi; Saito, Hirohide; Murata, Satoshi
2014-06-17
CONSPECTUS: What we can call a molecular robot is a set of molecular devices such as sensors, logic gates, and actuators integrated into a consistent system. The molecular robot is supposed to react autonomously to its environment by receiving molecular signals and making decisions by molecular computation. Building such a system has long been a dream of scientists; however, despite extensive efforts, systems having all three functions (sensing, computation, and actuation) have not been realized yet. This Account introduces an ongoing research project that focuses on the development of molecular robotics funded by MEXT (Ministry of Education, Culture, Sports, Science and Technology, Japan). This 5 year project started in July 2012 and is titled "Development of Molecular Robots Equipped with Sensors and Intelligence". The major issues in the field of molecular robotics all correspond to a feedback (i.e., plan-do-see) cycle of a robotic system. More specifically, these issues are (1) developing molecular sensors capable of handling a wide array of signals, (2) developing amplification methods of signals to drive molecular computing devices, (3) accelerating molecular computing, (4) developing actuators that are controllable by molecular computers, and (5) providing bodies of molecular robots encapsulating the above molecular devices, which implement the conformational changes and locomotion of the robots. In this Account, the latest contributions to the project are reported. There are four research teams in the project that specialize on sensing, intelligence, amoeba-like actuation, and slime-like actuation, respectively. The molecular sensor team is focusing on the development of molecular sensors that can handle a variety of signals. This team is also investigating methods to amplify signals from the molecular sensors. The molecular intelligence team is developing molecular computers and is currently focusing on a new photochemical technology for accelerating DNA-based computations. They also introduce novel computational models behind various kinds of molecular computers necessary for designing such computers. The amoeba robot team aims at constructing amoeba-like robots. The team is trying to incorporate motor proteins, including kinesin and microtubules (MTs), for use as actuators implemented in a liposomal compartment as a robot body. They are also developing a methodology to link DNA-based computation and molecular motor control. The slime robot team focuses on the development of slime-like robots. The team is evaluating various gels, including DNA gel and BZ gel, for use as actuators, as well as the body material to disperse various molecular devices in it. They also try to control the gel actuators by DNA signals coming from molecular computers.
Corridor One:An Integrated Distance Visualization Enuronments for SSI+ASCI Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christopher R. Johnson, Charles D. Hansen
2001-10-29
The goal of Corridor One: An Integrated Distance Visualization Environment for ASCI and SSI Application was to combine the forces of six leading edge laboratories working in the areas of visualization and distributed computing and high performance networking (Argonne National Laboratory, Lawrence Berkeley National Laboratory, Los Alamos National Laboratory, University of Illinois, University of Utah and Princeton University) to develop and deploy the most advanced integrated distance visualization environment for large-scale scientific visualization and demonstrate it on applications relevant to the DOE SSI and ASCI programs. The Corridor One team brought world class expertise in parallel rendering, deep image basedmore » rendering, immersive environment technology, large-format multi-projector wall based displays, volume and surface visualization algorithms, collaboration tools and streaming media technology, network protocols for image transmission, high-performance networking, quality of service technology and distributed computing middleware. Our strategy was to build on the very successful teams that produced the I-WAY, ''Computational Grids'' and CAVE technology and to add these to the teams that have developed the fastest parallel visualizations systems and the most widely used networking infrastructure for multicast and distributed media. Unfortunately, just as we were getting going on the Corridor One project, DOE cut the program after the first year. As such, our final report consists of our progress during year one of the grant.« less
Team Conflict in ICT-Rich Environments: Roles of Technologies in Conflict Management
ERIC Educational Resources Information Center
Correia, Ana-Paula
2008-01-01
This study looks at how an information and communication technologies (ICT)-rich environment impacts team conflict and conflict management strategies. A case study research method was used. Three teams, part of a graduate class in instructional design, participated in the study. Data were collected through observations of team meetings, interviews…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-02
... Expense Team, Payroll, Travel and Mobility Services Team, Working From Various States In the United States... Unit, Integrated Technology Services, Cost and Expense Team, working from various states in the United... reports that workers of the Payroll, Travel, and Mobility Services Team were part of the International...
The NASA/MSFC Coherent Lidar Technology Advisory Team
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.
1999-01-01
The SPAce Readiness Coherent Lidar Experiment (SPARCLE) mission was proposed as a low cost technology demonstration mission, using a 2-micron, 100-mJ, 6-Hz, 25-cm, coherent lidar system based on demonstrated technology. SPARCLE was selected in late October 1997 to be NASA's New Millennium Program (NMP) second earth-observing (EO-2) mission. To maximize the success probability of SPARCLE, NASA/MSFC desired expert guidance in the areas of coherent laser radar (CLR) theory, CLR wind measurement, fielding of CLR systems, CLR alignment validation, and space lidar experience. This led to the formation of the NASA/MSFC Coherent Lidar Technology Advisory Team (CLTAT) in December 1997. A threefold purpose for the advisory team was identified as: 1) guidance to the SPARCLE mission, 2) advice regarding the roadmap of post-SPARCLE coherent Doppler wind lidar (CDWL) space missions and the desired matching technology development plan 3, and 3) general coherent lidar theory, simulation, hardware, and experiment information exchange. The current membership of the CLTAT is shown. Membership does not result in any NASA or other funding at this time. We envision the business of the CLTAT to be conducted mostly by email, teleconference, and occasional meetings. The three meetings of the CLTAT to date, in Jan. 1998, July 1998, and Jan. 1999, have all been collocated with previously scheduled meetings of the Working Group on Space-Based Lidar Winds. The meetings have been very productive. Topics discussed include the SPARCLE technology validation plan including pre-launch end-to-end testing, the space-based wind mission roadmap beyond SPARCLE and its implications on the resultant technology development, the current values and proposed future advancement in lidar system efficiency, and the difference between using single-mode fiber optical mixing vs. the traditional free space optical mixing.
Virtual reality as a tool for cross-cultural communication: an example from military team training
NASA Astrophysics Data System (ADS)
Downes-Martin, Stephen; Long, Mark; Alexander, Joanna R.
1992-06-01
A major problem with communication across cultures, whether professional or national, is that simple language translation if often insufficient to communicate the concepts. This is especially true when the communicators come from highly specialized fields of knowledge or from national cultures with long histories of divergence. This problem becomes critical when the goal of the communication is national negotiation dealing with such high risk items as arms negotiation or trade wars. Virtual Reality technology has considerable potential for facilitating communication across cultures, by immersing the communicators within multiple visual representations of the concepts, and providing control over those representations. Military distributed team training provides a model for virtual reality suitable for cross cultural communication such as negotiation. In both team training and negotiation, the participants must cooperate, agree on a set of goals, and achieve mastery over the concepts being negotiated. Team training technologies suitable for supporting cross cultural negotiation exist (branch wargaming, computer image generation and visualization, distributed simulation), and have developed along different lines than traditional virtual reality technology. Team training de-emphasizes the realism of physiological interfaces between the human and the virtual reality, and emphasizes the interaction of humans with each other and with intelligent simulated agents within the virtual reality. This approach to virtual reality is suggested as being more fruitful for future work.
School Technology Leadership in a Spanish Secondary School: The TEI Model
ERIC Educational Resources Information Center
Gallego-Arrufat, María-Jesús; Gutiérrez-Santiuste, Elba; Campaña-Jiménez, Rafael Luis
2017-01-01
This study analyzes the perception that teachers and management team members in secondary school education have of "technology-based educational innovation" (TEI). Two questionnaires and in-depth interviews permit us to analyze leaders' perspective of planning, development, and evaluation. The school leaders' view diverges from that of…
NREL Researchers Receive Award for Excellence in Technology Transfer
. Department of Energy's National Renewable Energy Laboratory were honored May 10 with a Year 2000 Federal as applied in geothermal power plants. Award recipients are Desikan Bharathan, who developed the condenser technology, and the geothermal research team including Vahab Hassani, Yves Parent, Federica
Flexible Learning at the Crossroads: Are Our Teachers Ready?
ERIC Educational Resources Information Center
Wills, Sandra
A study reflected on managing technological change in teaching and learning, with particular emphasis on staff development. It drew on two national reports in Australia. One report team interviewed senior management in 50 percent of Australian universities. The other reviewed 104 nationally funded information technology (IT) based teaching…
ERIC Educational Resources Information Center
DePillis, Lydia
2006-01-01
High school students in Seattle's Global Technology Academy bring refurbished computers to schools and orphanages in developing areas of the world and teach young people the skills they need to advance in an increasingly information-based global marketplace. In 19 trips to date, teams of 5-15 students have taken computers and knowledge to such…
Teaching from the Web: Constructing a Library Learning Environment Where Connections Can Be Made.
ERIC Educational Resources Information Center
Cox, Suellen; Housewright, Elizabeth
2001-01-01
Describes a course developed by librarians at California State University, Fullerton as an introduction to information technology for freshmen students. Topics include collaboration and feedback from team teaching; formal assessment and student evaluation;, and the increasing use of Web-based resources and technology. (Author/LRW)
The primary objective of this project was to evaluate cost-effective aeration technology solutions to address TTHM compliance at a water treatment plant clearwell. The project team worked closely with EPA Region 6 and the EPA Office of Research and Development (ORD) to identify a...
Teaming with Opportunity: Media Programs, Community Constituencies, and Technology.
ERIC Educational Resources Information Center
Farmer, Lesley S. J.
This book is intended to help library media teachers understand the nature of partnerships at both individual and group levels. It details the steps for developing and maintaining partnerships, particularly with groups and demonstrates how technology can affect these educational collaborative efforts. The chapters cover the following topics: (1)…
DOT National Transportation Integrated Search
2017-04-01
The main objective of this project is to develop and conduct limited testing of novel sensors using Bluetooth technology : (BT) to estimate OD demands and station wait times for users of public transit stations. The NYU research team tested the : fea...
Integrated Technology Assessment Center (ITAC) Update
NASA Technical Reports Server (NTRS)
Taylor, J. L.; Neely, M. A.; Curran, F. M.; Christensen, E. R.; Escher, D.; Lovell, N.; Morris, Charles (Technical Monitor)
2002-01-01
The Integrated Technology Assessment Center (ITAC) has developed a flexible systems analysis framework to identify long-term technology needs, quantify payoffs for technology investments, and assess the progress of ASTP-sponsored technology programs in the hypersonics area. For this, ITAC has assembled an experienced team representing a broad sector of the aerospace community and developed a systematic assessment process complete with supporting tools. Concepts for transportation systems are selected based on relevance to the ASTP and integrated concept models (ICM) of these concepts are developed. Key technologies of interest are identified and projections are made of their characteristics with respect to their impacts on key aspects of the specific concepts of interest. Both the models and technology projections are then fed into the ITAC's probabilistic systems analysis framework in ModelCenter. This framework permits rapid sensitivity analysis, single point design assessment, and a full probabilistic assessment of each concept with respect to both embedded and enhancing technologies. Probabilistic outputs are weighed against metrics of interest to ASTP using a multivariate decision making process to provide inputs for technology prioritization within the ASTP. ITAC program is currently finishing the assessment of a two-stage-to-orbit (TSTO), rocket-based combined cycle (RBCC) concept and a TSTO turbine-based combined cycle (TBCC) concept developed by the team with inputs from NASA. A baseline all rocket TSTO concept is also being developed for comparison. Boeing has recently submitted a performance model for their Flexible Aerospace System Solution for Tomorrow (FASST) concept and the ISAT program will provide inputs for a single-stage-to-orbit (SSTO) TBCC based concept in the near-term. Both of these latter concepts will be analyzed within the ITAC framework over the summer. This paper provides a status update of the ITAC program.
Eye TVR: Eye Trauma and Visual Restoration Team
2012-03-01
overall goal of this project is to develop a technology for non-invasive neuromodulation of retinal activity. Our approach is to measure the neuronal...technologies, including the millimeter wave source and the flexible multielectrode array, have been developed for non-invasive neuromodulation of retinal...activity. Further work is required to validate the feasibility of the proposed neuromodulation approach. (3) The strategy of joining a multisite
NCI Technology Transfer Center | TTC
The National Cancer Institute’s Technology Transfer Center (TTC) facilitates partnerships between the NIH research laboratories and external partners. With specialized teams, TTC guides the interactions of our partners from the point of discovery to patenting, from invention development to licensing. We play a key role in helping to accelerate development of cutting-edge research by connecting our partners to NIH’s world-class researchers, facilities, and knowledge.
Applications of aerospace technology in biology and medicine
NASA Technical Reports Server (NTRS)
1973-01-01
The results are reported of the medically related activities of the NASA Application Team Program at the Research Triangle Institute. Fourteen medical organizations are presently participating in the RTI Application Team Program: The accomplishments of the Research Triangle Institute Application Team during the reporting period were as follows: The team identified 21 new problems for investigation, accomplished 4 technology applications and 3 potential technology applications, closed 21 old problems, and on February 28, 1973, had a total of 57 problems under active investigation.
Neville, Timothy J; Salmon, Paul M; Read, Gemma J M
2018-02-01
Intra-team communication plays an important role in team effectiveness in various domains including sport. As such, it is a key consideration when introducing new tools within systems that utilise teams. The difference in intra-team communication of Australian Rules Football (AFL) umpiring teams was studied when umpiring with or without radio communications technology. A cross-sectional observational study was conducted to analyse the verbal communication of seven umpiring teams (20 participants) grouped according to their experience with radio communication. The results identified that radio communication technology increased the frequency and altered the structure of intra-team communication. Examination of the content of the intra-team communication identified impacts on the 'Big Five' teamwork behaviours and associated coordinating mechanisms. Analysis revealed that the communications utilised did not align with the closed-loop form of communication described in the Big Five model. Implications for teamwork models, coaching and training of AFL umpires are discussed. Practitioner Summary: Assessing the impact of technology on performance is of interest to ergonomics practitioners. The impact of radio communications on teamwork is explored in the highly dynamic domain of AFL umpiring. When given radio technology, intra-team communication increased which supported teamwork behaviours, such as backup behaviour and mutual performance monitoring.
A case history of technology transfer
NASA Technical Reports Server (NTRS)
1981-01-01
A sequence of events, occurring over the last 25 years, are described that chronicle the evolution of ion-bombardment electric propulsion technology. Emphasis is placed on the latter phases of this evolution, where special efforts were made to pave the way toward the use of this technology in operational space flight systems. These efforts consisted of a planned program to focus the technology toward its end applications and an organized process that was followed to transfer the technology from the research-technology NASA Center to the user-development NASA Center and its industry team. Major milestones in this evolution, which are described, include the development of thruster technology across a large size range, the successful completion of two space electric rocket tests, SERT I and SERT II, development of power-processing technology for electric propulsion, completion of a program to make the technology ready for flight system development, and finally the technology transfer events.
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-14
The NASA Centennial Challenges prize, level one, is presented to team Mountaineers for successfully completing level one of the NASA 2014 Sample Return Robot Challenge, from left, Ryan Watson, Team Mountaineers; Lucas Behrens, Team Mountaineers; Jarred Strader, Team Mountaineers; Yu Gu, Team Mountaineers; Scott Harper, Team Mountaineers; Dorothy Rasco, NASA Deputy Associate Administrator for the Space Technology Mission Directorate; Laurie Leshin, Worcester Polytechnic Institute (WPI) President; David Miller, NASA Chief Technologist; Alexander Hypes, Team Mountaineers; Nick Ohi,Team Mountaineers; Marvin Cheng, Team Mountaineers; Sam Ortega, NASA Program Manager for Centennial Challenges; and Tanmay Mandal, Team Mountaineers;, Saturday, June 14, 2014, at Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team Mountaineers was the only team to complete the level one challenge. During the competition, teams were required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge was to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-14
The NASA Centennial Challenges prize, level one, is presented to team Mountaineers for successfully completing level one of the NASA 2014 Sample Return Robot Challenge, from left, Ken Stafford, WPI Challenge technical advisor; Colleen Shaver, WPI Challenge Manager; Ryan Watson, Team Mountaineers; Marvin Cheng, Team Mountaineers; Alexander Hypes, Team Mountaineers; Jarred Strader, Team Mountaineers; Lucas Behrens, Team Mountaineers; Yu Gu, Team Mountaineers; Nick Ohi, Team Mountaineers; Dorothy Rasco, NASA Deputy Associate Administrator for the Space Technology Mission Directorate; Scott Harper, Team Mountaineers; Tanmay Mandal, Team Mountaineers; David Miller, NASA Chief Technologist; Sam Ortega, NASA Program Manager for Centennial Challenges, Saturday, June 14, 2014, at Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team Mountaineers was the only team to complete the level one challenge. During the competition, teams were required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge was to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
A Case Study of Wikis and Student-Designed Games in Physical Education
ERIC Educational Resources Information Center
Hastie, Peter A.; Casey, Ashley; Tarter, Anne-Marie
2010-01-01
This paper reports on the incorporation of wiki technology within physical education. Boys from two classes at a school in the United Kingdom were divided into small teams and given the task of creating a new game in a same genre as football, hockey, netball or rugby. Each team had a wiki on which were recorded all the plans and developments of…
DOT National Transportation Integrated Search
2003-10-29
The objective of the DOE/NREL evaluation program is to provide comprehensive, unbiased evaluation results of advanced technology vehicle development and operations, evaluation of hydrogen infrastructure development and operation, and descriptions of ...
Thin Film Transistor Control Circuitry for MEMS Acoustic Transducers
NASA Astrophysics Data System (ADS)
Daugherty, Robin
This work seeks to develop a practical solution for short range ultrasonic communications and produce an integrated array of acoustic transmitters on a flexible substrate. This is done using flexible thin film transistor (TFT) and micro electromechanical systems (MEMS). The goal is to develop a flexible system capable of communicating in the ultrasonic frequency range at a distance of 10-100 meters. This requires a great deal of innovation on the part of the FDC team developing the TFT driving circuitry and the MEMS team adapting the technology for fabrication on a flexible substrate. The technologies required for this research are independently developed. The TFT development is driven primarily by research into flexible displays. The MEMS development is driving by research in biosensors and micro actuators. This project involves the integration of TFT flexible circuit capabilities with MEMS micro actuators in the novel area of flexible acoustic transmitter arrays. This thesis focuses on the design, testing and analysis of the circuit components required for this project.
NASA Technical Reports Server (NTRS)
Young, Roy
2006-01-01
The Solar Sail Propulsion investment area has been one of the three highest priorities within the In-Space Propulsion Technology (ISPT) Project. In the fall of 2003, the NASA Headquarters' Science Mission Directorate provided funding and direction to mature the technology as far as possible through ground research and development from TRL 3 to 6 in three years. A group of experts from government, industry, and academia convened in Huntsville, Alabama to define technology gaps between what was needed for science missions to the inner solar system and the current state of the art in ultra1ightweight materials and gossamer structure design. This activity set the roadmap for development. The centerpiece of the development would be the ground demonstration of scalable solar sail systems including masts, sails, deployment mechanisms, and attitude control hardware and software. In addition, new materials would be subjected to anticipated space environments to quantify effects and assure mission life. Also, because solar sails are huge structures, and it is not feasible to validate the technology by ground test at full scale, a multi-discipline effort was established to develop highly reliable analytical models to serve as mission assurance evidence in future flight program decision-making. Two separate contractor teams were chosen to develop the SSP System Ground Demonstrator (SGD). After a three month conceptual mission/system design phase, the teams developed a ten meter diameter pathfinder set of hardware and subjected it to thermal vacuum tests to compare analytically predicted structural behavior with measured characteristics. This process developed manufacturing and handling techniques and refined the basic design. In 2005, both contractor teams delivered 20 meter, four quadrant sail systems to the largest thermal vacuum chamber in the world in Plum Brook, Ohio, and repeated the tests. Also demonstrated was the deployment and articulation of attitude control mechanisms. In conjunction with these tests, the stowed sails were subjected to launch vibration and ascent vent tests. Other investments studied radiation effects on the solar sail materials, investigated spacecraft charging issues, developed shape measuring techniques and instruments, produced advanced trajectory modeling capabilities, and identified and resolved gossamer structure dynamics issues. Technology validation flight and application to a He1iophysics science mission is on the horizon.
Augmenting team cognition in human-automation teams performing in complex operational environments.
Cuevas, Haydee M; Fiore, Stephen M; Caldwell, Barrett S; Strater, Laura
2007-05-01
There is a growing reliance on automation (e.g., intelligent agents, semi-autonomous robotic systems) to effectively execute increasingly cognitively complex tasks. Successful team performance for such tasks has become even more dependent on team cognition, addressing both human-human and human-automation teams. Team cognition can be viewed as the binding mechanism that produces coordinated behavior within experienced teams, emerging from the interplay between each team member's individual cognition and team process behaviors (e.g., coordination, communication). In order to better understand team cognition in human-automation teams, team performance models need to address issues surrounding the effect of human-agent and human-robot interaction on critical team processes such as coordination and communication. Toward this end, we present a preliminary theoretical framework illustrating how the design and implementation of automation technology may influence team cognition and team coordination in complex operational environments. Integrating constructs from organizational and cognitive science, our proposed framework outlines how information exchange and updating between humans and automation technology may affect lower-level (e.g., working memory) and higher-level (e.g., sense making) cognitive processes as well as teams' higher-order "metacognitive" processes (e.g., performance monitoring). Issues surrounding human-automation interaction are discussed and implications are presented within the context of designing automation technology to improve task performance in human-automation teams.
NASA Technical Reports Server (NTRS)
Stebbins, Robin
2016-01-01
The Astrophysics Implementation Plan calls for a minority role in L3, planned for launch in 2034. L3 The third large mission in ESAs Cosmic Visions 2015-2025 Programme NASA and ESA have been discussing a collaboration for 2 years Gravitational Observatory Advisory Team (GOAT) ESA study evaluating and recommend scientific performance tradeoffs, detection technologies, technology development activities, data analysis capabilities, schedule and cost US representatives: Guido Mueller, Mark Kasevich, Bill Klipstein, RTS Started in October 2014, concluding with a final report in late Marchor early April 2016. ESA solicited interest from ESA Member States in November 2015 NASA is continuing technology development support. ESA is restarting technology development activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
In FY 1990 Robotics Technology Development Program (RTDP) planning teams visited five DOE sites. These sites were selected by the Office of Technology Development to provide a needs basis for developing a 5-Year Plan. Visits to five DOE sites provided identification of needs for robotics technology development to support Environmental Restoration and Waste Management (ER WM) projects at those sites. Additional site visits will be conducted in the future to expand the planning basis. This volume summarizes both the results of the site visits and the needs and requirements of the priority ER WM activities at the sites, including potentialmore » needs for robotics and remote systems technology. It also discusses hazards associated with the site activities and any problems or technical uncertainties associated with dealing with the hazards in the performance of the ER WM work. Robotic or remote systems currently under development for remediation projects or waste operations are also discussed. The information in this document is organized principally by site, activity, and priority. Section 2.0, Site Needs, is based on information from the site visit reports and provides a summary which focuses on the site needs and requirements for each priority activity. Section 2.0 also records evaluations and discussions by the RTDP team following the site visit. Section 3.0, Commonality Assessment, documents similar site needs where common, or cross-cutting, robotics technology might be applied to several activities. Section 4.0 contains a summary of the site needs and requirements in tabular form. 1 tab.« less
Aircraft digital flight control technical review
NASA Technical Reports Server (NTRS)
Davenport, Otha B.; Leggett, David B.
1993-01-01
The Aircraft Digital Flight Control Technical Review was initiated by two pilot induced oscillation (PIO) incidents in the spring and summer of 1992. Maj. Gen. Franklin (PEO) wondered why the Air Force development process for digital flight control systems was not preventing PIO problems. Consequently, a technical review team was formed to examine the development process and determine why PIO problems continued to occur. The team was also to identify the 'best practices' used in the various programs. The charter of the team was to focus on the PIO problem, assess the current development process, and document the 'best practices.' The team reviewed all major USAF aircraft programs with digital flight controls, specifically, the F-15E, F-16C/D, F-22, F-111, C-17, and B-2. The team interviewed contractor, System Program Office (SPO), and Combined Test Force (CTF) personnel on these programs. The team also went to NAS Patuxent River to interview USN personnel about the F/A-18 program. The team also reviewed experimental USAF and NASA systems with digital flight control systems: X-29, X-31, F-15 STOL and Maneuver Technology Demonstrator (SMTD), and the Variable In-Flight Stability Test Aircraft (VISTA). The team also discussed the problem with other experts in the field including Ralph Smith and personnel from Calspan. The major conclusions and recommendations from the review are presented.
NASA Astrophysics Data System (ADS)
Regnell, Björn; Höst, Martin; Nilsson, Fredrik; Bengtsson, Henrik
When developing software-intensive products for a market-place it is important for a development organisation to create innovative features for coming releases in order to achieve advantage over competitors. This paper focuses on assessment of innovation capability at team level in relation to the requirements engineering that is taking place before the actual product development projects are decided, when new business models, technology opportunities and intellectual property rights are created and investigated through e.g. prototyping and concept development. The result is a measurement framework focusing on four areas: innovation elicitation, selection, impact and ways-of-working. For each area, candidate measurements were derived from interviews to be used as inspiration in the development of a tailored measurement program. The framework is based on interviews with participants of a software team with specific innovation responsibilities and validated through cross-case analysis and feedback from practitioners.
Project Development Teams: A Novel Mechanism for Accelerating Translational Research
Sajdyk, Tammy J.; Sors, Thomas G.; Hunt, Joe D.; Murray, Mary E.; Deford, Melanie E.; Shekhar, Anantha; Denne, Scott C.
2014-01-01
The trend in conducting successful biomedical research is shifting from individual academic labs to coordinated collaborative research teams. Teams of experienced investigators with a wide variety of expertise are now critical for developing and maintaining a successful, productive research program. However, assembling a team whose members have the right expertise requires a great deal of time and many resources. To assist investigators seeking such resources, the Indiana Clinical and Translational Sciences Institute (Indiana CTSI) created the Project Development Teams (PDTs) Program to support translational research on and across the Indiana University-Purdue University Indianapolis, Indiana University, Purdue University, and University of Notre Dame campuses. PDTs are multidisciplinary committees of seasoned researchers who assist investigators, at any stage of research, in transforming ideas/hypotheses into well-designed translational research projects. The teams help investigators capitalize on Indiana CTSI resources by providing investigators with, as needed, mentoring and career development; protocol development; pilot funding; institutional review board, regulatory, and/or nursing support; intellectual property support; access to institutional technology; and assistance with biostatistics, bioethics, recruiting participants, data mining, engaging community health, and collaborating with other investigators. Indiana CTSI leaders have analyzed metrics, collected since the inception of the PDT Program in 2008 from both investigators and team members, and found evidence strongly suggesting that the highly responsive teams have become an important one-stop venue for facilitating productive interactions between basic and clinical scientists across four campuses, have aided in advancing the careers of junior faculty, and have helped investigators successfully obtain external funds. PMID:25319172
Software Technology Transfer and Export Control.
1981-01-01
development projects of their own. By analogy, a Soviet team might be able to repeat the learning experience of the ADEPT-50 junior staff...recommendations concerning product form and further study . The posture of this group has been to consider software technology and its transfer as a process...and views of the Software Subgroup of Technical Working Group 7 (Computers) of the Critical Technologies Project . The work reported
Heather Heward; Kathy H. Schon
2009-01-01
As technology continues to evolve in the area of fuel and wildland fire management so does the need to have effective tools and training on these technologies. The National Interagency Fuels Coordination Group has chartered a team of professionals to coordinate, develop, and transfer consistent, efficient, science-based fuel and fire ecology assessment GIS tools and...
Commercial technologies from the SP-100 program
NASA Astrophysics Data System (ADS)
Truscello, Vincent C.; Fujita, Toshio; Mondt, Jack F.
1995-01-01
For more than a decade, the Jet Propulsion Labortory (JPL) and Los Alamos National Laboratory (LANL) have managed a multi-agency funded effort to develop a space reactor power system. This SP-100 Program has developed technologies required for space power systems that can be implemented in the industrial and commercial sectors to improve our competitiveness in the global economy. Initial steps taken to transfer this technology from the laboratories to industrial and commercial entities within the United States include: (1) identifying specific technologies having commercial potential; (2) distributing information describing the identified technologies and interacting with interested commercial and industrial entities to develop application-specific details and requirements; and (3) providing a technological data base that leads to transfer of technology or the forming of teaming arrangements to accomplish the transfer by tailoring the technology to meet application-specific requirements. SP-100 technologies having commercial potential encompass fabrication processes, devices, and components. Examples are a process for bonding refractory metals to graphite, a device to sense the position of an actuator and a component to enable rotating machines to operate without supplying lubrication ( a self-lubricating ball bearing). Shortly after the National Aeronautics and Space Administration (NASA) Regional Technology Transfer Centers widely disseminated information covering SP-100 technologies, over one hundred expressions of interest were received. These early responses indicate that there is a large potential benefit in transferring SP-100 technology. Interactions with industrial and commercial entities have identified a substantial need for creating teaming arrangements involving the interested entity and personnel from laboratories and their contractors, who have the knowledge and ability to tailor the technology to meet application-specific requirements.
Duncan, Lindsay R; Hieftje, Kimberly D; Culyba, Sabrina; Fiellin, Lynn E
2014-03-01
As mobile technologies and videogaming platforms are becoming increasingly prevalent in the realm of health and healthcare, so are the opportunities to use these resources to conduct behavioral interventions. The creation and empirical testing of game style interventions, however, is challenged by the requisite collaboration of multidisciplinary teams, including researchers and game developers who have different cultures, terminologies, and standards of evidence. Thus, traditional intervention development tools such as logic models and intervention manuals may need to be augmented by creating what we have termed "Game Playbooks" which are intervention guidebooks that are created by, understood by, and acceptable to all members of the multidisciplinary game development team. The purpose of this paper is to describe the importance and content of a Game Playbook created to aide in the development of a videogame intervention designed specifically for health behavior change in young teens as well as the process for creating such a tool. We draw on the experience of our research and game design team to describe the critical components of the Game Playbook and the necessity of creating such a tool.
NASA Technical Reports Server (NTRS)
Rhew, Ray D.
2010-01-01
NASA's Aeronautics Test Program (ATP) chartered a team to examine the issues and risks associated with the lack of funding and focus on force measurement over the past several years, focusing specifically on strain-gage balances. NASA partnered with the U.S. Air Force's Arnold Engineering Development Center (AEDC) to exploit their combined capabilities and take a national level government view of the problem and established the National Force Measurement Technology Capability (NFMTC) project. This paper provides an update on the team's status for revitalizing the government's balance capability with respect to designing, fabricating, calibrating, and using the these critical measurement devices.
Dykes, Patricia C; Hurley, Ann C; Brown, Suzanne; Carr, Robyn; Cashen, Margaret; Collins, Rita; Cook, Robyn; Currie, Leanne; Docherty, Charles; Ensio, Anneli; Foster, Joanne; Hardiker, Nicholas R; Honey, Michelle L L; Killalea, Rosaleen; Murphy, Judy; Saranto, Kaija; Sensmeier, Joyce; Weaver, Charlotte
2009-01-01
In 2005, the Healthcare Information Management Systems Society (HIMSS) Nursing Informatics Community developed a survey to measure the impact of health information technology (HIT), the I-HIT Scale, on the role of nurses and interdisciplinary communication in hospital settings. In 2007, nursing informatics colleagues from Australia, England, Finland, Ireland, New Zealand, Scotland and the United States formed a research collaborative to validate the I-HIT across countries. All teams have completed construct and face validation in their countries. Five out of six teams have initiated reliability testing by practicing nurses. This paper reports the international collaborative's validation of the I-HIT Scale completed to date.
SHARED VIRTUAL ENVIRONMENTS FOR COLLECTIVE TRAINING
NASA Technical Reports Server (NTRS)
Loftin, R. Bowen
2000-01-01
Historically NASA has trained teams of astronauts by bringing them to the Johnson Space Center in Houston to undergo generic training, followed by mission-specific training. This latter training begins after a crew has been selected for a mission (perhaps two years before the launch of that mission). While some Space Shuttle flights have included an astronaut from a foreign country, the International Space Station will be consistently crewed by teams comprised of astronauts from two or more of the partner nations. The cost of training these international teams continues to grow in both monetary and personal terms. Thus, NASA has been seeking alternative training approaches for the International Space Station program. Since 1994 we have been developing, testing, and refining shared virtual environments for astronaut team training, including the use of virtual environments for use while in or in transit to the task location. In parallel with this effort, we have also been preparing applications for training teams of military personnel engaged in peacekeeping missions. This paper will describe the applications developed to date, some of the technological challenges that have been overcome in their development, and the research performed to guide the development and to measure the efficacy of these shared environments as training tools.
2017-04-10
Natick Soldier Research , Development and Engineering Center’s Sustainability/Logistics- Basing -Science and Technology Objective – Demonstration to...CERDEC) Tank Automotive Research , Development, and Engineering Center (TARDEC) Product Director Contingency Basing Infrastructure (PdD – CBI...assessed using the QoL (O) tool, developed for the SLB-STO-D program by the Consumer Research Team (NSRDEC), based upon the assumptions documented within
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacAllister, D.J.; Day, R.; McCormack, M.D.
This paper gives an overview of a major integrated oil company`s experience with artificial intelligence (AI) over the last 5 years, with an emphasis on expert systems. The authors chronicle the development of an AI group, including details on development tool selection, project selection strategies, potential pitfalls, and descriptions of several completed expert systems. Small expert systems produced by teams of petroleum technology experts and experienced expert system developers that are focused in well-defined technical areas have produced substantial benefits and accelerated petroleum technology transfer.
[Developing team reflexivity as a learning and working tool for medical teams].
Riskin, Arieh; Bamberger, Peter
2014-01-01
Team reflexivity is a collective activity in which team members review their previous work, and develop ideas on how to modify their work behavior in order to achieve better future results. It is an important learning tool and a key factor in explaining the varying effectiveness of teams. Team reflexivity encompasses both self-awareness and agency, and includes three main activities: reflection, planning, and adaptation. The model of briefing-debriefing cycles promotes team reflexivity. Its key elements include: Pre-action briefing--setting objectives, roles, and strategies the mission, as well as proposing adaptations based on what was previously learnt from similar procedures; Post-action debriefing--reflecting on the procedure performed and reviewing the extent to which objectives were met, and what can be learnt for future tasks. Given the widespread attention to team-based work systems and organizational learning, efforts should be made toward ntroducing team reflexivity in health administration systems. Implementation could be difficult because most teams in hospitals are short-lived action teams formed for a particular event, with limited time and opportunity to consciously reflect upon their actions. But it is precisely in these contexts that reflexive processes have the most to offer instead of the natural impulsive collective logics. Team reflexivity suggests a potential solution to the major problems of iatorgenesis--avoidable medical errors, as it forces all team members to participate in a reflexive process together. Briefing-debriefing technology was studied mainly in surgical teams and was shown to enhance team-based learning and to improve quality-related outcomes and safety.
ERIC Educational Resources Information Center
Hoffman, David M.; Blasi, Brigida; Culum, Bojana; Dragšic, Žarko; Ewen, Amy; Horta, Hugo; Nokkala, Terhi; Rios-Aguilar, Cecilia
2014-01-01
This "self-ethnography" complements the other articles in this special issue by spotlighting a set of key challenges facing international research teams. The study is focused on the relationship between information and communication technology (ICT)-based collaboration and research team dynamics. Our diverse team, drawn from researchers…
ERIC Educational Resources Information Center
Nixon, Rachel A.
1997-01-01
Presents six case studies of EARTHWATCH expeditions which provide teachers with opportunities to work with scientists, participate in scientific discovery, and employ new technology. Educators join EARTHWATCH teams to explore tropical and dry forests, monitor ecosystems and species, unearth remains, and consequently develop innovative classroom…
Information Technology Curriculum Development for Participation and Equity Programs.
ERIC Educational Resources Information Center
Post, Maarten; And Others
A study explored ways in which training in information technology could be included in Participation and Equity Programs (PEP) in the areas of hospitality/tourism, retailing, and business and finance. The research team conducted a literature search, obtained completed questionnaires from 10 colleges offering a total of 22 PEPs, visited an…
The primary objective of this project was to evaluate cost-effective aeration technology solutions to address TTHM compliance at a water treatment plant clearwell. The project team worked closely with EPA Region 6 and the EPA Office of Research and Development (ORD) to identify a...
Encouraging Data Use in the Classroom-DLESE Workshop Evaluation Results
NASA Astrophysics Data System (ADS)
Lynds, S. E.; Buhr, S. M.; Ledley, T. S.
2005-12-01
For the last two years, the Data Services Team of the Digital Library for Earth Systems Education (DLESE) has offered annual workshops, bringing scientists, technology specialists, and education professionals together to develop ways of using scientific data in education. Teams comprised of representatives from each of five professional roles (scientist, curriculum developer, data provider, teacher, tool developer) worked on developing online educational units of the Earth Exploration Toolbook (EET--http://serc.carleton.edu/eet/). Workshop evaluation projects elicited a large amount of feedback from participants at both workshops. Consistently, the attendees most highly valued the opportunity to network with those of other professional roles and to collaborate on a real-world education project. Technology and science specialists emphasized their desire for a greater understanding of practical applications for scientific data in the classroom and what educators need for successful curricula. The evaluation project also revealed similarities in the limitations that many attendees reported in using online data. Technological barriers such as data format, bandwidth limitations, and proprietary data were all mentioned by participants regardless of professional role. This talk will discuss the barriers to and advantages of collaborations between scientists, technology specialists, and educators and the potential for this format to result in data-rich curriculum elements.
The Emirates Mars Mission Science Data Center
NASA Astrophysics Data System (ADS)
Craft, James; Hammadi, Omran Al; DeWolfe, Alexandria; Staley, Bryan; Schafer, Corey; Pankratz, Chris
2017-04-01
The Emirates Mars Mission (EMM), led by the Mohammed Bin Rashid Space Center (MBRSC) in Dubai, United Arab Emirates, is expected to arrive at Mars in January 2021. The EMM Science Data Center (SDC) is to be developed as a joint effort between MBRSC and the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP). The EMM SDC is responsible for the production, management, distribution, and archiving of science data collected from the three instruments on board the Hope spacecraft. With the respective SDC teams on opposite sides of the world evolutionary techniques and cloud-based technologies are being utilized in the development of the EMM SDC. This presentation will provide a top down view of the EMM SDC, summarizing the cloud-based technologies being implemented in the design, as well as the tools, best practices, and lessons learned for software development and management in a geographically distributed team.
The Emirates Mars Mission Science Data Center
NASA Astrophysics Data System (ADS)
Craft, J.; Al Hammadi, O.; DeWolfe, A. W.; Staley, B.; Schafer, C.; Pankratz, C. K.
2017-12-01
The Emirates Mars Mission (EMM), led by the Mohammed Bin Rashid Space Center (MBRSC) in Dubai, United Arab Emirates, is expected to arrive at Mars in January 2021. The EMM Science Data Center (SDC) is to be developed as a joint effort between MBRSC and the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP). The EMM SDC is responsible for the production, management, distribution, and archiving of science data collected from the three instruments on board the Hope spacecraft.With the respective SDC teams on opposite sides of the world evolutionary techniques and cloud-based technologies are being utilized in the development of the EMM SDC. This presentation will provide a top down view of the EMM SDC, summarizing the cloud-based technologies being implemented in the design, as well as the tools, best practices, and lessons learned for software development and management in a geographically distributed team.
NASA Technical Reports Server (NTRS)
Merlin, Peter W.
2009-01-01
In 2006, NASA Dryden Flight Research Center, Edwards, Calif., obtained a civil version of the General Atomics MQ-9 unmanned aircraft system and modified it for research purposes. Proposed missions included support of Earth science research, development of advanced aeronautical technology, and improving the utility of unmanned aerial systems in general. The project team named the aircraft Ikhana a Native American Choctaw word meaning intelligent, conscious, or aware in order to best represent NASA research goals. Building on experience with these and other unmanned aircraft, NASA scientists developed plans to use the Ikhana for a series of missions to map wildfires in the western United States and supply the resulting data to firefighters in near-real time. A team at NASA Ames Research Center, Mountain View, Calif., developed a multispectral scanner that was key to the success of what became known as the Western States Fire Missions. Carried out by team members from NASA, the U.S. Department of Agriculture Forest Service, National Interagency Fire Center, National Oceanic and Atmospheric Administration, Federal Aviation Administration, and General Atomics Aeronautical Systems Inc., these flights represented an historic achievement in the field of unmanned aircraft technology.
Accelerated Insertion of Materials - Composites (AIM-C) Methodology
2004-05-12
the groups even after this point in the maturation process, but the key is that the applications team must know what the technology development team...Threats ( SWOT ) analysis? Was a check made of past showstoppers/major issues related to problem statements of a similar nature? (This will be...in this methodology and in the AIM-C system is helpful to performing strength, weakness, opportunities, and threats ( SWOT ) analyses on the materials
Overview of NASA's In Space Robotic Servicing
NASA Technical Reports Server (NTRS)
Reed, Benjamin B.
2015-01-01
The panel discussion will start with a presentation of the work of the Satellite Servicing Capabilities Office (SSCO), a team responsible for the overall management, coordination, and implementation of satellite servicing technologies and capabilities for NASA. Born from the team that executed the five Hubble servicing missions, SSCO is now maturing a core set of technologies that support both servicing goals and NASA's exploration and science objectives, including: autonomous rendezvous and docking systems; dexterous robotics; high-speed, fault-tolerant computing; advanced robotic tools, and propellant transfer systems. SSCOs proposed Restore-L mission, under development since 2009, is rapidly advancing the core capabilities the fledgling satellite-servicing industry needs to jumpstart a new national industry. Restore-L is also providing key technologies and core expertise to the Asteroid Redirect Robotic Mission (ARRM), with SSCO serving as the capture module lead for the ARRM effort. Reed will present a brief overview of SSCOs history, capabilities and technologies.
Information sharing systems and teamwork between sub-teams: a mathematical modeling perspective
NASA Astrophysics Data System (ADS)
Tohidi, Hamid; Namdari, Alireza; Keyser, Thomas K.; Drzymalski, Julie
2017-12-01
Teamwork contributes to a considerable improvement in quality and quantity of the ultimate outcome. Collaboration and alliance between team members bring a substantial progress for any business. However, it is imperative to acquire an appropriate team since many factors must be considered in this regard. Team size may represent the effectiveness of a team and it is of paramount importance to determine what the ideal team size exactly should be. In addition, information technology increasingly plays a differentiating role in productivity and adopting appropriate information sharing systems may contribute to improvement in efficiency especially in competitive markets when there are numerous producers that compete with each other. The significance of transmitting information to individuals is inevitable to assure an improvement in team performance. In this paper, a model of teamwork and its organizational structure are presented. Furthermore, a mathematical model is proposed in order to characterize a group of sub-teams according to two criteria: team size and information technology. The effect of information technology on performance of team and sub-teams as well as optimum size of those team and sub-teams from a productivity perspective are studied. Moreover, a quantitative sensitivity analysis is presented in order to analyze the interaction between these two factors through a sharing system.
Experimentation for the Maturation of Deep Space Cryogenic Refueling Technologies
NASA Technical Reports Server (NTRS)
Chato, David J.
2008-01-01
This report describes the results of the "Experimentation for the Maturation of Deep Space Cryogenic Refueling Technology" study. This study identifies cryogenic fluid management technologies that require low-gravity flight experiments bring technology readiness levels to 5 to 6; examines many possible flight experiment options; and develops near-term low-cost flight experiment concepts to mature the core technologies. A total of 25 white papers were prepared by members of the project team in the course of this study. The full text of each white paper is included and 89 relevant references are cited. The team reviewed the white papers that provided information on new or active concepts of experiments to pursue and assessed them on the basis of technical need, cost, return on investment, and flight platform. Based on on this assessment the "Centaur Test Bed for Cryogenic Fluid Management" was rated the highest. "Computational Opportunities for Cryogenics for Cryogenic and Low-g Fluid Systems" was ranked second, based on its high scores in state of the art and return on investment, even though scores in cost and time were second to last. "Flight Development Test Objective Approach for In-space Propulsion Elements" was ranked third.
Autonomous Landing and Hazard Avoidance Technology (ALHAT)
NASA Technical Reports Server (NTRS)
Epp, Chirold
2007-01-01
This viewgraph presentation reviews the work towards technology that will result in an autonomous landing on the lunar surface, that will avoid the hazards of lunar landing. In October 2005, the Exploration Systems Mission Directorate at NASA Headquarters assigned the development of new technologies to support the return to the moon. One of these was Autonomous Precision Landing and Hazard Detection and Avoidance Technology now known as ALHAT ALHAT is a lunar descent and landing GNC technology development project led by Johnson Space Center (JSC) with team members from Langley Research Center (LaRC), Jet Propulsion Laboratory (JPL), Draper Laboratories (CSDL) and the Applied Physics Laboratory (APL)
NASA Astrophysics Data System (ADS)
Theisen, Bernard L.
2005-10-01
The Intelligent Ground Vehicle Competition (IGVC) is one of three, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI) in the 1990s. The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics, and mobile platform fundamentals to design and build an unmanned system. Teams from around the world focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities. Over the past 13 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from over 50 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the three-day competition are highlighted. Finally, an assessment of the competition based on participant feedback is presented.
NASA Astrophysics Data System (ADS)
Theisen, Bernard L.; Lane, Gerald R.
2003-10-01
The Intelligent Ground Vehicle Competition (IGVC) is one of three, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI) in the 1990's. The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics, and mobile platform fundamentals to design and build an unmanned system. Both the U.S. and international teams focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligtent driving capabilities. Over the past 11 years, the competition has challenged both undergraduates and graduates, including Ph.D. students with real world applications in intelligent transportation systems, the military, and manufacturing automation. To date, teams from over 40 universities and colleges have participated. In this paper, we describe some of the applications of the technologies required by this competition, and discuss the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the three-day competition are highlighted. Finally, an assessment of the competition based on participant feedback is presented.
Team 282 prepares for the FIRST competition
NASA Technical Reports Server (NTRS)
2000-01-01
The Orange Crusher team (282) works on their robot, which is named Rust Bot, during the FIRST competition. The team of students from Lake Howell, Winter Springs and Orange Christian Private high schools was co-sponsored by NASA Kennedy Space Center, Matern Professional Engineering The Foundation, Control Technologies, Lucent Technologies and Sandy Engineering. Students from all over the country are at the KSC Visitor Complex for the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition March 9-11 in the Rocket Garden. Teams of high school students are testing the limits of their imagination using robots they have designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing, 16 are Florida teams co- sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusville.
Use of Multi-Disciplinary Projects To Develop Competence.
ERIC Educational Resources Information Center
Trotman-Dickenson, Danusia
1992-01-01
Undergraduate technology and business students at the Polytechnic of Wales (United Kingdom) participated in multi-disciplinary team projects to experience real life business challenges and develop competences that employers expect in professionals. Lists characteristics of successful multi-disciplinary projects, discusses cost and industry…
Configuration Aerodynamics: Past - Present - Future
NASA Technical Reports Server (NTRS)
Wood, Richard M.; Agrawal, Shreekant; Bencze, Daniel P.; Kulfan, Robert M.; Wilson, Douglas L.
1999-01-01
The Configuration Aerodynamics (CA) element of the High Speed Research (HSR) program is managed by a joint NASA and Industry team, referred to as the Technology Integration Development (ITD) team. This team is responsible for the development of a broad range of technologies for improved aerodynamic performance and stability and control characteristics at subsonic to supersonic flight conditions. These objectives are pursued through the aggressive use of advanced experimental test techniques and state of the art computational methods. As the HSR program matures and transitions into the next phase the objectives of the Configuration Aerodynamics ITD are being refined to address the drag reduction needs and stability and control requirements of High Speed Civil Transport (HSCT) aircraft. In addition, the experimental and computational tools are being refined and improved to meet these challenges. The presentation will review the work performed within the Configuration Aerodynamics element in 1994 and 1995 and then discuss the plans for the 1996-1998 time period. The final portion of the presentation will review several observations of the HSR program and the design activity within Configuration Aerodynamics.
Near-Term Electric Vehicle Program. Phase II: Mid-Term Summary Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1978-08-01
The Near Term Electric Vehicle (NTEV) Program is a constituent elements of the overall national Electric and Hybrid Vehicle Program that is being implemented by the Department of Energy in accordance with the requirements of the Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976. Phase II of the NTEV Program is focused on the detailed design and development, of complete electric integrated test vehicles that incorporate current and near-term technology, and meet specified DOE objectives. The activities described in this Mid-Term Summary Report are being carried out by two contractor teams. The prime contractors for these contractormore » teams are the General Electric Company and the Garrett Corporation. This report is divided into two discrete parts. Part 1 describes the progress of the General Electric team and Part 2 describes the progress of the Garrett team.« less
Touch and Go: COMET Project Brings Multitouch Technology to the Military
2011-05-01
Defense AT&L: May–June 2011 28 Touch and Go COMET Project Brings Multitouch Technology to the Military Claire Heininger Report Documentation...DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Touch and Go. COMET Project Brings Multitouch Technology to the Military 5a...research agreement. Now, just 2 years later, the same team of engineers and developers are on the cutting edge of multitouch technology for the armed
NASA Astrophysics Data System (ADS)
Pisa, Carlos Cabañero; López, Enric Serradell
Teamwork is considered one of the most important professional skills in today's business environment. More specifically, the collaborative work between professionals and information technology managers from various functional areas is a strategic key in competitive business. Several university-level programs are focusing on developing these skills. This article presents the case of the course Computer Science Applied to Management (hereafter CSAM) that has been designed with the objective to develop the ability to work cooperatively in interdisciplinary teams. For their design and development have been addressed to the key elements of efficiency that appear in the literature, most notably the establishment of shared objectives and a feedback system, the management of the harmony of the team, their level of autonomy, independence, diversity and level of supervision. The final result is a subject in which, through a working virtual platform, interdisciplinary teams solve a problem raised by a case study.
(abstract) Student Involvement in the Pluto Mission
NASA Technical Reports Server (NTRS)
Weinstein, Stacy
1994-01-01
The Pluto Fast Flyby mission development baseline consists of 2 identical spacecraft (120 - 165 kg) to be launched to Pluto/ Charon in the late 1990s. These spacecraft are intended to fly by Pluto and Charon in order to perform various remote-sensing scientific investigations and have a mission development cost less than $400M (FY92$) through launch plus 30 days. The Pluto team is committed to involving students in all areas of mission development and operations. In November 1992, the Pluto team sent a request for information to industry and universities looking for ways to lower the mass and cost of the mission. A number of universities responded with creative and promising technological developments. In addition to contracts with industry and other federal labs, contracts were signed with schools which allowed students to apply their research, enabling the Pluto team to use valuable resources on a variety of advanced technology endeavors. Perhaps the most exciting aspect of these investigations was that the deliverables that the students produced were not just final reports, but actual prototype hardware complete with write-ups on lessons learned in machining, programming, and design. Another exciting development was a prototype adapter competition in which 7 universities competed to design, build, and test their idea of a lightweight spacecraft-propulsion stack adapter. Georgia Tech won with an innovative dodecahedron composite lattice cone. Other students from other universities were involved as well. All in all, over 40 students from 20 different colleges made significant contributions to the Pluto Fast Flyby mission development through their efforts. This paper will give an overview of Pluto student involvement, the technologies which they examined, and useful results for the mission.
Virtual Team Effectiveness: An Empirical Study Using SEM
ERIC Educational Resources Information Center
Bhat, Swati Kaul; Pande, Neerja; Ahuja, Vandana
2016-01-01
Advances in communication and information technology create new opportunities for organizations to build and manage virtual teams. Virtual teams have become a norm for organizations whose members work across disparate geographical locations, relying primarily or exclusively, on the usage of Information and Communications Technology (ICT) for the…
NASA Astrophysics Data System (ADS)
Ochoa, Rosibel; DeLong, Hal; Kenyon, Jessica; Wilson, Eli
2011-06-01
The von Liebig Center for Entrepreneurism and Technology Advancement at UC San Diego (vonliebig.ucsd.edu) is focused on accelerating technology transfer and commercialization through programs and education on entrepreneurism. Technology Acceleration Projects (TAPs) that offer pre-venture grants and extensive mentoring on technology commercialization are a key component of its model which has been developed over the past ten years with the support of a grant from the von Liebig Foundation. In 2010, the von Liebig Entrepreneurism Center partnered with the U.S. Army Telemedicine and Advanced Technology Research Center (TATRC), to develop a regional model of Technology Acceleration Program initially focused on military research to be deployed across the nation to increase awareness of military medical needs and to accelerate the commercialization of novel technologies to treat the patient. Participants to these challenges are multi-disciplinary teams of graduate students and faculty in engineering, medicine and business representing universities and research institutes in a region, selected via a competitive process, who receive commercialization assistance and funding grants to support translation of their research discoveries into products or services. To validate this model, a pilot program focused on commercialization of wireless healthcare technologies targeting campuses in Southern California has been conducted with the additional support of Qualcomm, Inc. Three projects representing three different universities in Southern California were selected out of forty five applications from ten different universities and research institutes. Over the next twelve months, these teams will conduct proof of concept studies, technology development and preliminary market research to determine the commercial feasibility of their technologies. This first regional program will help build the needed tools and processes to adapt and replicate this model across other regions in the Country.
Report of the Horizontal Launch Study
NASA Technical Reports Server (NTRS)
Wilhite, Alan W.; Bartolotta, Paul A.
2011-01-01
A study of horizontal launch concepts has been conducted. This study, jointly sponsored by the Defense Advanced Research Projects Agency (DARPA) and the National Aeronautics and Space Administration (NASA) was tasked to estimate the economic and technical viability of horizontal launch approaches. The study team identified the key parameters and critical technologies which determine mission viability and reported on the state of the art of critical technologies, along with objectives for technology development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, Elizabeth James Kistin; Warren, Drake; Hess, Marguerite Evelyn
This study examines the structure and impact of state-funded technology maturation programs that leverage research institutions for economic development throughout the United States. The lessons learned and practices identified from previous experiences will inform Sandia National Laboratories' Government Relations and Technology Partnerships teams as they participate in near-term discussions about the proposed Technology Readiness Gross Receipts Tax Credit and Program, and continue to shape longer-term program and partnership opportunities. This Page Intentionally Left Blank
Research and technology 1995 annual report
NASA Technical Reports Server (NTRS)
1995-01-01
As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1995 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as technology transfer activities. Major areas of research include environmental engineering, automation, robotics, advanced software, materials science, life sciences, mechanical engineering, nondestructive evaluation, and industrial engineering.
Research and Technology at the John F. Kennedy Space Center 1993
NASA Technical Reports Server (NTRS)
1993-01-01
As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1993 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as our technology transfer activities. Major areas of research include material science, advanced software, industrial engineering, nondestructive evaluation, life sciences, atmospheric sciences, environmental technology, robotics, and electronics and instrumentation.
2000-03-10
The Orange Crusher team (282) works on their robot, which is named Rust Bot, during the FIRST competition. The team of students from Lake Howell, Winter Springs and Orange Christian Private high schools was co-sponsored by NASA Kennedy Space Center, Matern Professional Engineering The Foundation, Control Technologies, Lucent Technologies and Sandy Engineering. Students from all over the country are at the KSC Visitor Complex for the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition March 9-11 in the Rocket Garden. Teams of high school students are testing the limits of their imagination using robots they have designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing, 16 are Florida teams co-sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusvill
2000-03-10
The Orange Crusher team (282) works on their robot, which is named Rust Bot, during the FIRST competition. The team of students from Lake Howell, Winter Springs and Orange Christian Private high schools was co-sponsored by NASA Kennedy Space Center, Matern Professional Engineering The Foundation, Control Technologies, Lucent Technologies and Sandy Engineering. Students from all over the country are at the KSC Visitor Complex for the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition March 9-11 in the Rocket Garden. Teams of high school students are testing the limits of their imagination using robots they have designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing, 16 are Florida teams co-sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusvill
ERIC Educational Resources Information Center
Chambers, A. C.
This guide compiles information essential to a working knowledge of assistive technology for children with disabilities. It addresses the definition of assistive technology and provides information on laws which direct the provision of assistive technology. The manual provides a framework to guide the Individualized Education Program (IEP) team as…
The SWAT Team: Successfully Integrating Technology into the Curriculum.
ERIC Educational Resources Information Center
Cathey, Marcy E.
The Madeira School (McLean, Virginia) had been behind on advanced technology as compared to many of its competitor schools. In the fall of 1996, the cornerstone for the Savvy With All Technology (SWAT) team program was laid. The idea of SWAT was to infiltrate departments with technology specialists and users so that technology would be used across…
NASA Technical Reports Server (NTRS)
Kennedy, Kriss J.
2009-01-01
The Surface Habitat Systems (SHS) Focused Investment Group (FIG) is part of the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) effort to provide a focused direction and funding to the various projects that are working on human surface habitat designs and technologies for the planetary exploration missions. The overall SHS-FIG effort focuses on directing and guiding those projects that: 1) develop and demonstrate new surface habitat system concepts, innovations, and technologies to support human exploration missions, 2) improve environmental systems that interact with human habitats, 3) handle and emplace human surface habitats, and 4) focus on supporting humans living and working in habitats on planetary surfaces. The activity areas of the SHS FIG described herein are focused on the surface habitat project near-term objectives as described in this document. The SHS-FIG effort focuses on mitigating surface habitat risks (as identified by the Lunar Surface Systems Project Office (LSSPO) Surface Habitat Element Team; and concentrates on developing surface habitat technologies as identified in the FY08 gap analysis. The surface habitat gap assessment will be updated annually as the surface architecture and surface habitat definition continues to mature. These technologies are mapped to the SHS-FIG Strategic Development Roadmap. The Roadmap will bring to light the areas where additional innovative efforts are needed to support the development of habitat concepts and designs and the development of new technologies to support of the LSSPO Habitation Element development plan. Three specific areas of development that address Lunar Architecture Team (LAT)-2 and Constellation Architecture Team (CxAT) Lunar habitat design issues or risks will be focused on by the SHS-FIG. The SHS-FIG will establish four areas of development that will help the projects prepare in their planning for surface habitat systems development. Those development areas are the 1) surface habitat concept definition, 2) inflatable surface habitat development, and 3) autonomous habitat operations, and 4) cross-cutting / systems engineering. In subsequent years, the SHS-FIG will solicit a call for innovations and technologies that will support the development of these four development areas. The other development areas will be assessed yearly and identified on the SHS-FIG s Strategic Development Roadmap. Initial investment projects that are funded by the Constellation Program Office (CxPO), LSSPO, or the Exploration Technology Development Projects (ETDP) will also be included on the Roadmap. For example, in one or two years from now, the autonomous habitat operations and testbed would collaborations with the Integrated Systems Health Management (ISHM) and Automation for Operations ETDP projects, which will give the surface habitat projects an integrated habitat autonomy testbed to test software and systems. The SHS-FIG scope is to provide focused direction for multiple innovations, technologies and subsystems that are needed to support humans at a remote planetary surface habitat during the concept development, design definition, and integration phases of that project. Subsystems include: habitability, lightweight structures, power management, communications, autonomy, deployment, outfitting, life support, wireless connectivity, lighting, thermal and more.
Ramirez, Magaly; Wu, Shinyi; Ryan, Gery; Towfighi, Amytis; Vickrey, Barbara G
2017-05-23
Beta versions of health information technology tools are needed in service delivery models with health care and community partnerships to confirm the key components and to assess the performance of the tools and their impact on users. We developed a care management technology (CMT) for use by community health workers (CHWs) and care managers (CMs) working collaboratively to improve risk factor control among recent stroke survivors. The CMT was expected to enhance the efficiency and effectiveness of the CHW-CM team. The primary objective was to describe the Secondary Stroke Prevention by Uniting Community and Chronic Care Model Teams Early to End Disparities (SUCCEED) CMT and investigate CM and CHW perceptions of the CMT's usefulness and challenges for team-based care management. We conducted qualitative interviews with all users of the beta-version SUCCEED CMT, namely two CMs and three CHWs. They were asked to demonstrate and describe their perceptions of the CMT's ease of use and usefulness for completing predefined key care management activities. They were also probed about their general perceptions of the CMT's information quality, ease of use, usefulness, and impact on CM and CHW roles. Interview transcripts were coded using a priori codes. Coded excerpts were grouped into broader themes and then related in a conceptual model of how the CMT facilitated care management. We also conducted a survey with 14 patients to obtain their perspective on CHW tablet use during CHW-patient interactions. Care managers and community health workers expressed that the CMT helped them keep track of patient interactions and plan their work. It guided CMs in developing and sharing care plans with CHWs. For CHWs, the CMT enabled electronic collection of clinical assessment data, provided decision support, and provided remote access to patients' risk factor values. Long loading times and downtimes due to outages were the most significant challenges encountered. Additional issues included extensive use of free-text responses and manual data transfer from the electronic medical record. Despite these challenges, patients overall did not perceive the tablet as interfering with CHW-patient interactions. Our findings suggest useful functionalities of CMTs supporting health care and community partners in collaborative chronic care management. However, usability issues need to be addressed during the development process. The SUCCEED CMT is an initial step toward the development of effective health information technology tools to support collaborative, team-based models of care and will need to be modified as the evidence base grows. Future research should assess the CMT's effects on team performance. ©Magaly Ramirez, Shinyi Wu, Gery Ryan, Amytis Towfighi, Barbara G Vickrey. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 23.05.2017.
Virtual Teams and Synchronous Presentations: An Online Class Experience
ERIC Educational Resources Information Center
Adkins, Joni K.
2013-01-01
Global expansion, cost containment, and technology advances have all played a role in the increase of virtual teams in today's workplace. Virtual teams in an online graduate information technology management class prepared and presented synchronous presentations over a business or non-profit sector case. This paper includes a brief literature…
School Technology Leadership: Artifacts in Systems of Practice
ERIC Educational Resources Information Center
Dexter, Sara
2011-01-01
A cross-case analysis of five case studies of team-based technology leadership in middle schools with laptop programs identifies systems of practice that organize teams' distributed leadership. These cases suggest that successfully implementing a complex improvement effort warrants a team-based leadership approach, especially for an improvement…
Exploring the Intersections of Science and History Learning
ERIC Educational Resources Information Center
Hughes, Catherine; Cosbey, Allison
2016-01-01
How can history museums incorporate Science, Technology, Engineering and Math (STEM) activities while preserving their missions and identities? How do interdisciplinary experiences lead to learning? A cross-institutional exhibit development and evaluation team wrestled with these ideas as they developed "Create.Connect," an National…
Forest host mapping: Implications for pest survey and modeling
James R. Ellenwood
2010-01-01
The Forest Health Technology Enterprise Team has developed forest-health risk maps for the past decade. Each subsequent rendition has improved upon previous renditions by acquiring and developing better data. Part of the improvement has focused upon host data of individual tree species.
Modeling and Simulation at Tidewater Community College
NASA Technical Reports Server (NTRS)
Summers, Michael
2008-01-01
Investment of $1.5 million in medical simulation technology. Integration of medical simulation activities into the curriculum. Support from TCC leadership. Individual and team activities. Skill development and critical thinking/problem solving skills.
Monitoring Devices for Railroad Emergency Response Teams
DOT National Transportation Integrated Search
1986-02-01
This report examines new devices and technologies either commercially available or being developed which might have application to the railroad hazardous material spill response problem. Procedure and monitoring device information from Southern Railw...
Automated solar cell assembly team process research
NASA Astrophysics Data System (ADS)
Nowlan, M. J.; Hogan, S. J.; Darkazalli, G.; Breen, W. F.; Murach, J. M.; Sutherland, S. F.; Patterson, J. S.
1994-06-01
This report describes work done under the Photovoltaic Manufacturing Technology (PVMaT) project, Phase 3A, which addresses problems that are generic to the photovoltaic (PV) industry. Spire's objective during Phase 3A was to use its light soldering technology and experience to design and fabricate solar cell tabbing and interconnecting equipment to develop new, high-yield, high-throughput, fully automated processes for tabbing and interconnecting thin cells. Areas that were addressed include processing rates, process control, yield, throughput, material utilization efficiency, and increased use of automation. Spire teamed with Solec International, a PV module manufacturer, and the University of Massachusetts at Lowell's Center for Productivity Enhancement (CPE), automation specialists, who are lower-tier subcontractors. A number of other PV manufacturers, including Siemens Solar, Mobil Solar, Solar Web, and Texas instruments, agreed to evaluate the processes developed under this program.
High Performance, Dependable Multiprocessor
NASA Technical Reports Server (NTRS)
Ramos, Jeremy; Samson, John R.; Troxel, Ian; Subramaniyan, Rajagopal; Jacobs, Adam; Greco, James; Cieslewski, Grzegorz; Curreri, John; Fischer, Michael; Grobelny, Eric;
2006-01-01
With the ever increasing demand for higher bandwidth and processing capacity of today's space exploration, space science, and defense missions, the ability to efficiently apply commercial-off-the-shelf (COTS) processors for on-board computing is now a critical need. In response to this need, NASA's New Millennium Program office has commissioned the development of Dependable Multiprocessor (DM) technology for use in payload and robotic missions. The Dependable Multiprocessor technology is a COTS-based, power efficient, high performance, highly dependable, fault tolerant cluster computer. To date, Honeywell has successfully demonstrated a TRL4 prototype of the Dependable Multiprocessor [I], and is now working on the development of a TRLS prototype. For the present effort Honeywell has teamed up with the University of Florida's High-performance Computing and Simulation (HCS) Lab, and together the team has demonstrated major elements of the Dependable Multiprocessor TRLS system.
Mobile wireless network for the urban environment
NASA Astrophysics Data System (ADS)
Budulas, Peter; Luu, Brian; Gopaul, Richard
2005-05-01
As the Army transforms into the Future Force, particular attention must be paid to operations in Complex and Urban Terrain. Our adversaries increasingly draw us into operations in the urban environment and one can presume that this trend will continue in future battles. In order to ensure that the United States Army maintains battlefield dominance, the Army Research Laboratory (ARL) is developing technology to equip our soldiers for the urban operations of the future. Sophisticated soldier borne systems will extend sensing to the individual soldier, and correspondingly, allow the soldier to establish an accurate picture of their surrounding environment utilizing information from local and remote assets. Robotic platforms will be an integral part of the future combat team. These platforms will augment the team with remote sensing modalities, task execution capabilities, and enhanced communication systems. To effectively utilize the products provided by each of these systems, collected data must be exchanged in real time to all affected entities. Therefore, the Army Research Laboratory is also developing the technology that will be required to support high bandwidth mobile communication in urban environments. This technology incorporates robotic systems that will allow connectivity in areas unreachable by traditional systems. This paper will address some of the issues of providing wireless connectivity in complex and urban terrain. It will further discuss approaches developed by the Army Research Laboratory to integrate communications capabilities into soldier and robotic systems and provide seamless connectivity between the elements of a combat team, and higher echelons.
ERIC Educational Resources Information Center
Alayyar, Ghaida M.; Fisser, Petra; Voogt, Joke
2012-01-01
The "Technological Pedagogical Content Knowledge" (TPACK) framework has been used to prepare pre-service science teachers at the Public Authority of Applied Education and Training in Kuwait for ICT integration in education. Pre-service teachers worked in teams to design an ICT solution for an authentic problem they faced during in-school…
Leaders in Future and Current Technology Teaming Up to Improve Ethanol
and NREL expertise to: Develop improvements in process throughput and water management for dry mill , Complete an overall process engineering model of the dry mill technology that identifies new ways to and operation of "dry mill" plants that currently produce ethanol from corn starch. Dry
SAFETY ON UNTRUSTED NETWORK DEVICES (SOUND)
2017-10-10
in the Cyber & Communication Technologies Group , but not on the SOUND project, would review the code, design and perform attacks against a live...3.5 Red Team As part of our testing , we planned to conduct Red Team assessments. In these assessments, a group of engineers from BAE who worked...developed under the DARPA CRASH program and SOUND were designed to be companion projects. SAFE focused on the processor and the host, SOUND focused on
2010-06-18
Mike Miller demonstrates one of the backpacks his team designed and built for the Desert Research and Technology Studies project's upcoming field test in Arizona. Miller led the team that developed the backpacks. The backpacks are equipped with GPS antennas, communications components and cameras. They are meant to show researchers what an astronaut might need to explore an alien world and give designers a look at the hardships the equipment could encounter. Photo credit: NASA/Frank Michaux
Research and technology: 1994 annual report of the John F. Kennedy Space Center
NASA Technical Reports Server (NTRS)
1994-01-01
As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1994 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as our technology transfer activities. The Technology Programs and Commercialization Office (DE-TPO), (407) 867-3017, is responsible for publication of this report and should be contacted for any desired information regarding the advanced technology program.
A collaborative institutional model for integrating computer applications in the medical curriculum.
Friedman, C. P.; Oxford, G. S.; Juliano, E. L.
1991-01-01
The introduction and promotion of information technology in an established medical curriculum with existing academic and technical support structures poses a number of challenges. The UNC School of Medicine has developed the Taskforce on Educational Applications in Medicine (TEAM), to coordinate this effort. TEAM works as a confederation of existing research and support units with interests in computers and education, along with a core of interested faculty with curricular responsibilities. Constituent units of the TEAM confederation include the medical center library, medical television studios, basic science teaching laboratories, educational development office, microcomputer and network support groups, academic affairs administration, and a subset of course directors and teaching faculty. Among our efforts have been the establishment of (1) a mini-grant program to support faculty initiated development and implementation of computer applications in the curriculum, (2) a symposium series with visiting speakers to acquaint faculty with current developments in medical informatics and related curricular efforts at other institution, (3) 20 computer workstations located in the multipurpose teaching labs where first and second year students do much of their academic work, (4) a demonstration center for evaluation of courseware and technologically advanced delivery systems. The student workstations provide convenient access to electronic mail, University schedules and calendars, the CoSy computer conferencing system, and several software applications integral to their courses in pathology, histology, microbiology, biochemistry, and neurobiology. The progress achieved toward the primary goal has modestly exceeded our initial expectations, while the collegiality and interest expressed toward TEAM activities in the local environment stand as empirical measures of the success of the concept. PMID:1807705
Developing Capture Mechanisms and High-Fidelity Dynamic Models for the MXER Tether System
NASA Technical Reports Server (NTRS)
Canfield, Steven L.
2007-01-01
A team consisting of collaborators from Tennessee Technological University (TTU), Marshall Space Flight Center, BD Systems, and the University of Delaware (herein called the TTU team) conducted specific research and development activities in MXER tether systems during the base period of May 15, 2004 through September 30, 2006 under contract number NNM04AB13C. The team addressed two primary topics related to the MXER tether system: 1) Development of validated high-fidelity dynamic models of an elastic rotating tether and 2) development of feasible mechanisms to enable reliable rendezvous and capture. This contractor report will describe in detail the activities that were performed during the base period of this cycle-2 MXER tether activity and will summarize the results of this funded activity. The primary deliverables of this project were the quad trap, a robust capture mechanism proposed, developed, tested, and demonstrated with a high degree of feasibility and the detailed development of a validated high-fidelity elastic tether dynamic model provided through multiple formulations.
NASA Technical Reports Server (NTRS)
Kennedy, Kriss J.; Toup, Larry; Gill, Tracy; Tri, Terry; Howe, Scott; Smitherman, David
2011-01-01
This paper gives an overview of the National Aeronautics and Space Administration (NASA) led multi-center Habitat Demonstration Unit (HDU) project leadership and management strategies being used by the NASA HDU team for a rapid prototyping project. The HDU project team constructed and tested an analog prototype lunar surface habitat/laboratory called the Pressurized Excursion Module (PEM) during 2010. The prototype unit subsystems were integrated in a short amount of time, utilizing a tiger team rapid prototyping approach that brought together over 20 habitation-related technologies and innovations from a variety of NASA centers. This paper describes the leadership and management strategies as well as lessons learned pertaining to leading and managing a multi-center diverse team in a rapid prototype environment. The PEM configuration went from a paper design to an operational surface habitat demonstration unit in less than 12 months. The HDU project is part of the strategic plan from the Exploration Systems Mission Directorate (ESMD) Directorate Integration Office (DIO) and the Exploration Mission Systems Office (EMSO) to test destination elements in analog environments. The 2011 HDU-Deep Space Habitat (DSH) configuration will build upon the PEM work, and emphasize validity of crew operations (remote working and living), EVA operations, mission operations, logistics operations, and science operations that might be required in a deep space context for Near Earth Object (NEO) exploration mission architectures. The 2011 HDU-DSH will be field-tested during the 2011 Desert Research and Technologies Studies (DRaTS) field tests. The HDU project is a "technology-pull" project that integrates technologies and innovations from multiple NASA centers. This project will repurpose the HDU 2010 demo unit that was field tested in the 2010 DRaTS, adding habitation functionality to the prototype unit. This paper will describe the strategy of establishing a multi-center project management team that put in place the key multi-center leadership skills and disciplines to enable a successful tiger team approach. Advocacy was established with key stakeholders and NASA Headquarters (HQ) by defining a strategic vision, mission, goals and objectives for the project and team. As a technology-pull testbed capability the HDU project was able to collaborate and leverage the Exploration Technology Development Program (ETDP) and individual NASA center investments which capitalized on their respective center core competencies and skills. This approach enable the leveraging of over $7.5m of value to create an operational habitat demonstration unit 2010 PEM configuration.
A Summary of NASA Architecture Studies Utilizing Fission Surface Power Technology
NASA Technical Reports Server (NTRS)
Mason, Lee; Poston, Dave
2010-01-01
Beginning with the Exploration Systems Architecture Study in 2005, NASA has conducted various mission architecture studies to evaluate implementation options for the U.S. Space Policy (formerly the Vision for Space Exploration). Several of the studies examined the use of Fission Surface Power (FSP) systems for human missions to the lunar and Martian surface. This paper summarizes the FSP concepts developed under four different NASA-sponsored architecture studies: Lunar Architecture Team, Mars Architecture Team, Lunar Surface Systems/Constellation Architecture team, and International Architecture Working Group-Power Function team. The results include a summary of FSP design characteristics, a compilation of mission-compatible FSP configuration options, and an FSP concept-of-operations that is consistent with the overall mission objectives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Signe K.; Purohit, Sumit; Boyd, Lauren W.
The Geothermal Technologies Office Code Comparison Study (GTO-CCS) aims to support the DOE Geothermal Technologies Office in organizing and executing a model comparison activity. This project is directed at testing, diagnosing differences, and demonstrating modeling capabilities of a worldwide collection of numerical simulators for evaluating geothermal technologies. Teams of researchers are collaborating in this code comparison effort, and it is important to be able to share results in a forum where technical discussions can easily take place without requiring teams to travel to a common location. Pacific Northwest National Laboratory has developed an open-source, flexible framework called Velo that providesmore » a knowledge management infrastructure and tools to support modeling and simulation for a variety of types of projects in a number of scientific domains. GTO-Velo is a customized version of the Velo Framework that is being used as the collaborative tool in support of the GTO-CCS project. Velo is designed around a novel integration of a collaborative Web-based environment and a scalable enterprise Content Management System (CMS). The underlying framework provides a flexible and unstructured data storage system that allows for easy upload of files that can be in any format. Data files are organized in hierarchical folders and each folder and each file has a corresponding wiki page for metadata. The user interacts with Velo through a web browser based wiki technology, providing the benefit of familiarity and ease of use. High-level folders have been defined in GTO-Velo for the benchmark problem descriptions, descriptions of simulator/code capabilities, a project notebook, and folders for participating teams. Each team has a subfolder with write access limited only to the team members, where they can upload their simulation results. The GTO-CCS participants are charged with defining the benchmark problems for the study, and as each GTO-CCS Benchmark problem is defined, the problem creator can provide a description using a template on the metadata page corresponding to the benchmark problem folder. Project documents, references and videos of the weekly online meetings are shared via GTO-Velo. A results comparison tool allows users to plot their uploaded simulation results on the fly, along with those of other teams, to facilitate weekly discussions of the benchmark problem results being generated by the teams. GTO-Velo is an invaluable tool providing the project coordinators and team members with a framework for collaboration among geographically dispersed organizations.« less
Habitat Demonstration Unit Project Leadership and Management Strategies
NASA Technical Reports Server (NTRS)
Kennedy, Kriss J.
2011-01-01
This paper gives an overview of the National Aeronautics and Space Administration (NASA) led multi-center Habitat Demonstration Unit (HDU) project leadership and management strategies. The HDU project team constructed and tested an analog prototype lunar surface habitat/laboratory called the Pressurized Excursion Module (PEM) during 2010. The prototype unit subsystems were integrated in a short amount of time, utilizing a tiger team approach that brought together over 20 habitation-related technologies and innovations from a variety of NASA centers. This paper describes the leadership and management strategies as well as lessons learned pertaining to leading and managing a multi-center diverse team in a rapid prototype environment. The PEM configuration went from a paper design to an operational surface habitat demonstration unit in less than 12 months. The HDU project is part of the strategic plan from the Exploration Systems Mission Directorate (ESMD) Directorate Integration Office (DIO) and the Exploration Mission Systems Office (EMSO) to test destination elements in analog environments. The 2011 HDU-Deep Space Habitat (DSH) configuration will build upon the PEM work, and emphasize validity of crew operations (remote working and living), EVA operations, mission operations, logistics operations, and science operations that might be required in a deep space context for Near Earth Object (NEO) exploration mission architectures. The 2011 HDU-DSH will be field-tested during the 2011 Desert Research and Technologies Studies (DRaTS) field tests. The HDU project is a "technology-pull" project that integrates technologies and innovations from multiple NASA centers. This project will repurpose the HDU 2010 demo unit that was field tested in the 2010 DRaTS, adding habitation functionality to the prototype unit. This paper will describe the strategy of establishing a multi-center project management team that put in place the key multi-center leadership skills and disciplines to enable a successful tiger team approach. Advocacy was established with key stakeholders and NASA Headquarters (HQ) by defining a strategic vision, mission, goals and objectives for the project and team. As a technology-pull testbed capability the HDU project was able to collaborate and leverage the Exploration Technology Development Program (ETDP) and individual NASA center investments which capitalized on their respective center core competencies and skills. This approach enable the leveraging of over $7.5m of value to create an operational habitat demonstration unit 2010 PEM configuration.
Including natural systems into the system engineering process: benefits to spaceflight and beyond
NASA Astrophysics Data System (ADS)
Studor, George
2014-03-01
How did we get to the point where we don't have time to be inspired by the wonders of Nature? Our office walls, homes and city streets are so plain that even when we do escape to a retreat with nature all around us, we may be blind to its magnificence. Yet there are many who have applied what can be known of natural systems (NS) to create practical solutions, but often definite applications for them are lacking. Mimicry of natural systems is not only more possible than ever before, but the education and research programs in many major universities are churning out graduates with a real appreciation for Nature's complex integrated systems. What if these skills and perspectives were employed in the teams of systems engineers and the technology developers that support them to help the teams think "outside-the-box" of manmade inventions? If systems engineers (SE) and technology developers regularly asked the question, "what can we learn from Nature that will help us?" as a part of their processes, they would discover another set of potential solutions. Biomimicry and knowledge of natural systems is exploding. What does this mean for systems engineering and technology? Some disciplines such as robotics and medical devices must consider nature constantly. Perhaps it's time for all technology developers and systems engineers to perceive natural systems experts as potential providers of the technologies they need.
Advanced Space Radiation Detector Technology Development
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.
2013-01-01
The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.
Advanced Space Radiation Detector Technology Development
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.
2013-01-01
The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.
Advanced Space Radiation Detector Technology Development
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.
2013-01-01
The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.
Exploration Blueprint: Data Book
NASA Technical Reports Server (NTRS)
Drake, Bret G. (Editor)
2007-01-01
The material contained in this report was compiled to capture the work performed by the National Aeronautics and Space Administration's (NASA's) Exploration study team in the late 2002 timeframe. The "Exploration Blueprint Data Book" documents the analyses and findings of the 90-day Agency-wide study conducted from September - November 2002. During the summer of 2002, the NASA Deputy Administrator requested that a study be performed with the following objectives: (1) Develop the rationale for exploration beyond low-Earth orbit (2) Develop roadmaps for how to accomplish the first steps through humans to Mars (3) Develop design reference missions as a basis for the roadmaps 4) Make recommendations on what can be done now to effect this future This planning team, termed the Exploration Blueprint, performed architecture analyses to develop roadmaps for how to accomplish the first steps beyond LEO through the human exploration of Mars. The previous NASA Exploration Team activities laid the foundation and framework for development of NASA's Integrated Space Plan. The reference missions resulting from the analysis performed by the Exploration Blueprint team formed the basis for requirement definition, systems development, technology roadmapping, and risk assessments for future human exploration beyond low-Earth orbit. Emphasis was placed on developing recommendations on what could be done now to effect future exploration activities. The Exploration Blueprint team embraced the "Stepping Stone" approach to exploration where human and robotic activities are conducted through progressive expansion outward beyond low-Earth orbit. Results from this study produced a long-term strategy for exploration with near-term implementation plans, program recommendations, and technology investments. Specific results included the development of a common exploration crew vehicle concept, a unified space nuclear strategy, focused bioastronautics research objectives, and an integrated human and robotic exploration strategy. Recommendations from the Exploration Blueprint included the endorsement of the Nuclear Systems Initiative, augmentation of the bioastronautics research, a focused space transportation program including heavy-lift launch and a common exploration vehicle design for ISS and exploration missions, as well as an integrated human and robotic exploration strategy for Mars.
Exploration Blueprint: Data Book
NASA Astrophysics Data System (ADS)
Drake, Bret G.
2007-02-01
The material contained in this report was compiled to capture the work performed by the National Aeronautics and Space Administration's (NASA's) Exploration study team in the late 2002 timeframe. The "Exploration Blueprint Data Book" documents the analyses and findings of the 90-day Agency-wide study conducted from September - November 2002. During the summer of 2002, the NASA Deputy Administrator requested that a study be performed with the following objectives: (1) Develop the rationale for exploration beyond low-Earth orbit (2) Develop roadmaps for how to accomplish the first steps through humans to Mars (3) Develop design reference missions as a basis for the roadmaps 4) Make recommendations on what can be done now to effect this future This planning team, termed the Exploration Blueprint, performed architecture analyses to develop roadmaps for how to accomplish the first steps beyond LEO through the human exploration of Mars. The previous NASA Exploration Team activities laid the foundation and framework for development of NASA's Integrated Space Plan. The reference missions resulting from the analysis performed by the Exploration Blueprint team formed the basis for requirement definition, systems development, technology roadmapping, and risk assessments for future human exploration beyond low-Earth orbit. Emphasis was placed on developing recommendations on what could be done now to effect future exploration activities. The Exploration Blueprint team embraced the "Stepping Stone" approach to exploration where human and robotic activities are conducted through progressive expansion outward beyond low-Earth orbit. Results from this study produced a long-term strategy for exploration with near-term implementation plans, program recommendations, and technology investments. Specific results included the development of a common exploration crew vehicle concept, a unified space nuclear strategy, focused bioastronautics research objectives, and an integrated human and robotic exploration strategy. Recommendations from the Exploration Blueprint included the endorsement of the Nuclear Systems Initiative, augmentation of the bioastronautics research, a focused space transportation program including heavy-lift launch and a common exploration vehicle design for ISS and exploration missions, as well as an integrated human and robotic exploration strategy for Mars.
Los Alamos Shows Airport Security Technology at Work
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espy, Michelle; Schultz, Larry; Hunter, James
Los Alamos scientists have advanced a Magnetic Resonance Imaging (MRI) technology that may provide a breakthrough for screening liquids at airport security. They've added low-power X-ray data to the mix, and as a result have unlocked a new detection technology. Funded in part by the Department of Homeland Security's Science and Technology Directorate, the new system is named MagRay. The goal is to quickly and accurately distinguish between liquids that visually appear identical. For example, what appears to be a bottle of white wine could potentially be nitromethane, a liquid that could be used to make an explosive. Both aremore » clear liquids, one would be perfectly safe on a commercial aircraft, the other would be strictly prohibited. How to tell them apart quickly without error at an airport security area is the focus of Michelle Espy, Larry Schultz and their team. In this video, Espy and the MagRay team explain how the new technology works, how they've developed an easy operator interface, and what the next steps might be in transitioning this technology to the private sector.« less
Los Alamos Shows Airport Security Technology at Work
Espy, Michelle; Schultz, Larry; Hunter, James
2018-05-30
Los Alamos scientists have advanced a Magnetic Resonance Imaging (MRI) technology that may provide a breakthrough for screening liquids at airport security. They've added low-power X-ray data to the mix, and as a result have unlocked a new detection technology. Funded in part by the Department of Homeland Security's Science and Technology Directorate, the new system is named MagRay. The goal is to quickly and accurately distinguish between liquids that visually appear identical. For example, what appears to be a bottle of white wine could potentially be nitromethane, a liquid that could be used to make an explosive. Both are clear liquids, one would be perfectly safe on a commercial aircraft, the other would be strictly prohibited. How to tell them apart quickly without error at an airport security area is the focus of Michelle Espy, Larry Schultz and their team. In this video, Espy and the MagRay team explain how the new technology works, how they've developed an easy operator interface, and what the next steps might be in transitioning this technology to the private sector.
The Role of Action Research in the Development of Learning Networks for Entrepreneurs
ERIC Educational Resources Information Center
Brett, Valerie; Mullally, Martina; O'Gorman, Bill; Fuller-Love, Nerys
2012-01-01
Developing sustainable learning networks for entrepreneurs is the core objective of the Sustainable Learning Networks in Ireland and Wales (SLNIW) project. One research team drawn from the Centre for Enterprise Development and Regional Economy at Waterford Institute of Technology and the School of Management and Business from Aberystwyth…
Creating a High Impact Learning Environment for Engineering Technology Students
ERIC Educational Resources Information Center
Zhan, Wei; Wang, Jyhwen; Vanajakumari, Manoj; Johnson, Michael D.
2018-01-01
This paper discusses an initiative called Product Innovation and Development (PID) that was launched at Texas A&M University. The goal of PID is to create a high impact learning environment that focuses on innovative product development. Undergraduate students are hired to develop innovative new products. The student teams generate ideas for…
Li, Hai-yan; Li, Yuan-hai; Yang, Yang; Liu, Fang-zhou; Wang, Jing; Tian, Ye; Yang, Ce; Liu, Yang; Li, Meng; Sun Li-ying
2015-12-01
The aim of this study is to identify the present status of the scientific and technological personnel in the field of traditional Chinese medicine (TCM) resource science. Based on the data from Chinese scientific research paper, an investigation regarding the number of the personnel, the distribution, their output of paper, their scientific research teams, high-yield authors and high-cited authors was conducted. The study covers seven subfields of traditional Chinese medicine identification, quality standard, Chinese medicine cultivation, harvest processing of TCM, market development and resource protection and resource management, as well as 82 widely used Chinese medicine species, such as Ginseng and Radix Astragali. One hundred and fifteen domain authority experts were selected based on the data of high-yield authors and high-cited authors. The database system platform "Skilled Scientific and Technological Personnel in the field of Traditional Chinese Medicine Resource Science-Chinese papers" was established. This platform successfully provided the retrieval result of the personnel, output of paper, and their core research team by input the study field, year, and Chinese medicine species. The investigation provides basic data of scientific and technological personnel in the field of traditional Chinese medicine resource science for administrative agencies and also evidence for the selection of scientific and technological personnel and construction of scientific research teams.
LED street lighting evaluation -- phase II : LED specification and life-cycle cost analysis.
DOT National Transportation Integrated Search
2015-01-01
Phase II of this study focused on developing a draft specification for LED luminaires to be used by IDOT : and a life-cycle cost analysis (LCCA) tool for solid state lighting technologies. The team also researched the : latest developments related to...
DOT National Transportation Integrated Search
2016-01-01
Members of the Peer Exchange Team identified actions Alaska should consider to : improve effectiveness of the research program: : 1. Conduct Research Strategic Visioning Workshop with Staff and Research : Advisory Board in Fall, 2016 : 2. Develop a T...
Solar System Exploration Research Virtual Institute: Year Three Annual Report 2016
NASA Technical Reports Server (NTRS)
Pendleton, Yvonne; Schmidt, Greg; Kring, David; Horanyi, Mihaly; Heldmann, Jennifer; Glotch, Timothy; Rivkin, Andy; Farrell, William; Pieters, Carle; Bottke, William;
2016-01-01
NASA's Solar System Exploration Research Virtual Institute (SSERVI) is pleased to present the 2016 Annual Report. Each year brings new scientific discoveries, technological breakthroughs, and collaborations. The integration of basic research and development, industry and academic partnerships, plus the leveraging of existing technologies, has further opened a scientific window into human exploration. SSERVI sponsorship by the NASA Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD) continues to enable the exchange of insights between the human exploration and space science communities, paving a clearer path for future space exploration. SSERVI provides a unique environment for scientists and engineers to interact within multidisciplinary research teams. As a virtual institute, the best teaming arrangements can be made irrespective of the geographical location of individuals or laboratory facilities. The interdisciplinary science that ensues from virtual and in-person interactions, both within the teams and across team lines, provides answers to questions that many times cannot be foreseen. Much of this research would not be accomplished except for the catalyzing, collaborative environment enabled by SSERVI. The SSERVI Central Office, located at NASA Ames Research Center in Silicon Valley, California, provides the leadership, guidance and technical support that steers the virtual institute. At the start of 2016, our institute had nine U.S. teams, each mid-way through their five-year funding cycle, plus nine international partnerships. However, by the end of the year we were well into the selection of four new domestic teams, selected through NASA's Cooperative Agreement Notice (CAN) process, and a new international partnership. Understanding that human and robotic exploration is most successful as an international endeavor, international partnerships collaborate with SSERVI domestic teams on a no-exchange of funds basis, but they bring a richness to the institute that is priceless. The international partner teams interact with the domestic teams in a number of ways, including sharing students, scientific insights, and access to facilities. We are proud to introduce our newest partnership with the Astrophysics and Planetology Research Institute (IRAP) in Toulouse, France. In 2016, Principal Investigator Dr. Patrick Pinet assembled a group of French researchers who will contribute scientific and technological expertise related to SSERVI research. SSERVI's domestic teams compete for five-year funding opportunities through proposals to a NASA CAN every few years. Having overlapping proposal selection cycles allows SSERVI to be more responsive to any change in direction NASA might experience, while providing operational continuity for the institute. Allowing new teams to blend with the more seasoned teams preserves corporate memory and expands the realm of collaborative possibilities. A key component of SSERVI's mission is to grow and maintain an integrated research community focused on questions related to the Moon, Near-Earth asteroids, and the moons of Mars. The strong community response to CAN-2 demonstrated the health of that effort. NASA Headquarters conducted the peer-review of 22 proposals early in 2017 and, based on recommendations from the SSERVI Central Office and NASA SSERVI program officers, the NASA selecting officials determined the new teams in the spring of 2017. We are pleased to welcome the CAN-2 teams into the institute, and look forward to the collaborations that will develop with the current teams. The new teams are: The Network for Exploration and Space Science (NESS) team (Principal Investigator (PI) Prof. Jack Burns/U. Colorado); the Exploration Science Pathfinder Research for Enhancing Solar System Observations (ESPRESSO) team (PI Dr. Alex Parker/Southwest Research Institute); the Toolbox for Research and Exploration (TREX) team (PI Dr. Amanda Hendrix/ Planetary Science Institute); and the Radiation Effects on Volatiles and Exploration of Asteroids & Lunar Surfaces (REVEALS) team (PI Prof. Thomas Orlando/ Georgia Institute of Technology). In this report, you will find an overview of the 2016 leadership activities of the SSERVI Central Office, reports prepared by the U.S. teams from CAN-1, and achievements from several of the SSERVI international partners. Reflecting on the past year's discoveries and advancements serves as a potent reminder that there is still a great deal to learn about NASA's target destinations. Innovation in the way we access, sample, measure, visualize, and assess our target destinations is needed for further discovery. At the same time, let us celebrate how far we have come, and strongly encourage a new generation that will make the most of future opportunities.
Capability Investment Strategy to Enable JPL Future Space Missions
NASA Technical Reports Server (NTRS)
Lincoln, William; Merida, Sofia; Adumitroaie, Virgil; Weisbin, Charles R.
2006-01-01
The Jet Propulsion Laboratory (JPL) formulates and conducts deep space missions for NASA (the National Aeronautics and Space Administration). The Chief Technologist of JPL has responsibility for strategic planning of the laboratory's advanced technology program to assure that the required technological capabilities to enable future missions are ready as needed. The responsibilities include development of a Strategic Plan (Antonsson, E., 2005). As part of the planning effort, a structured approach to technology prioritization, based upon the work of the START (Strategic Assessment of Risk and Technology) (Weisbin, C.R., 2004) team, was developed. The purpose of this paper is to describe this approach and present its current status relative to the JPL technology investment.
Flight Avionics Hardware Roadmap
NASA Technical Reports Server (NTRS)
Some, Raphael; Goforth, Monte; Chen, Yuan; Powell, Wes; Paulick, Paul; Vitalpur, Sharada; Buscher, Deborah; Wade, Ray; West, John; Redifer, Matt;
2014-01-01
The Avionics Technology Roadmap takes an 80% approach to technology investment in spacecraft avionics. It delineates a suite of technologies covering foundational, component, and subsystem-levels, which directly support 80% of future NASA space mission needs. The roadmap eschews high cost, limited utility technologies in favor of lower cost, and broadly applicable technologies with high return on investment. The roadmap is also phased to support future NASA mission needs and desires, with a view towards creating an optimized investment portfolio that matures specific, high impact technologies on a schedule that matches optimum insertion points of these technologies into NASA missions. The roadmap looks out over 15+ years and covers some 114 technologies, 58 of which are targeted for TRL6 within 5 years, with 23 additional technologies to be at TRL6 by 2020. Of that number, only a few are recommended for near term investment: 1. Rad Hard High Performance Computing 2. Extreme temperature capable electronics and packaging 3. RFID/SAW-based spacecraft sensors and instruments 4. Lightweight, low power 2D displays suitable for crewed missions 5. Radiation tolerant Graphics Processing Unit to drive crew displays 6. Distributed/reconfigurable, extreme temperature and radiation tolerant, spacecraft sensor controller and sensor modules 7. Spacecraft to spacecraft, long link data communication protocols 8. High performance and extreme temperature capable C&DH subsystem In addition, the roadmap team recommends several other activities that it believes are necessary to advance avionics technology across NASA: center dot Engage the OCT roadmap teams to coordinate avionics technology advances and infusion into these roadmaps and their mission set center dot Charter a team to develop a set of use cases for future avionics capabilities in order to decouple this roadmap from specific missions center dot Partner with the Software Steering Committee to coordinate computing hardware and software technology roadmaps and investment recommendations center dot Continue monitoring foundational technologies upon which future avionics technologies will be dependent, e.g., RHBD and COTS semiconductor technologies
Object and technologies in the working process of an itinerant team in mental health.
Eslabão, Adriane Domingues; Pinho, Leandro Barbosa de; Coimbra, Valéria Cristina Christello; Lima, Maria Alice Dias da Silva; Camatta, Marcio Wagner; Santos, Elitiele Ortiz Dos
2017-01-01
Objective To analyze the work object and the technologies in the working process of a Mental Health Itinerant Team in the attention to drug users. Methods Qualitative case study, carried out in a municipality in the South of Brazil. The theoretical framework was the Healthcare Labor Process. The data was collected through participant observation and semi-structured interviews with the professionals of an itinerant team in the year of 2015. For data analysis we used the Thematic Content Analysis. Results In the first empirical category - work object - the user is considered as a focus, bringing new challenges in the team's relationship with the network. In the second category - technologies of the work process - potentialities and contradictions of the team work tools are highlighted. Conclusions As an innovation in the mental health context, the itinerant team brings real possibilities to reinvent the care for the drug user as well as new institutional challenges.
Understanding the Adaptive Use of Virtual World Technology Capabilities and Trust in Virtual Teams
ERIC Educational Resources Information Center
Owens, Dawn
2012-01-01
In an environment of global competition and constant technological change, the use of virtual teams has become commonplace for many organizations. Virtual team members are geographically and temporally dispersed, experience cultural diversity, and lack shared social context and face-to-face encounters considered as irreplaceable for building and…
ERIC Educational Resources Information Center
Houck, Christiana L.
2013-01-01
This interpretative phenomenological study used semi-structured interviews of 10 participants to gain a deeper understanding of the experience for virtual team members using collaborative technology. The participants were knowledge workers from global software companies working on cross-functional project teams at a distance. There were no…
ERIC Educational Resources Information Center
Shelby, Kenneth R., Jr.
2013-01-01
Systems engineering teams' value-creation for enterprises is slower than possible due to inefficiencies in communication, learning, common knowledge collaboration and leadership conduct. This dissertation outlines the surrounding people, process and technology dimensions for higher performing engineering teams. It describes a true experiment…
ERIC Educational Resources Information Center
Ngoma, Ngoma Sylvestre
2013-01-01
Virtual teams are increasingly viewed as a powerful determinant of competitive advantage in geographically distributed organizations. This study was designed to provide insights into the interdependencies between virtual collaboration, collaboration technologies, knowledge transfer, and virtual team performance in an effort to understand whether…
ERIC Educational Resources Information Center
Linnell, Charles C.
2007-01-01
This article describes the 2006 Technology Education Collegiate Association (TECA) Eastern Regional elementary competition, wherein teams of technology education students from nine different universities designed and built cardboard chairs. The competition required the teams (four or five to a team) from universities up and down the East Coast to…
JPRS Report, Soviet Union. World Economy & International Relations, No. 12, December 1988.
1989-04-18
conditions of scientific and technological progress is considered to be the main factor influencing such process. Leading companies are trying to...departments, groups etc. Project teams are widely used when a new kind of product is developed or when R and D or technological problems are to be...medium-sized partners are integrated into a single scientific and technological entity by big companies. Cooperation in production is also important
Applications of aerospace technology in biology and medicine
NASA Technical Reports Server (NTRS)
Wooten, F. T.
1972-01-01
The results are presented of the medically related activities of the NASA Application Team Program at the Research Triangle Institute. The accomplishments of the Research Triangle Institute Application Team during the reporting period are as follows: The team has identified 44 new problems for investigation, has accomplished 8 technology applications and 8 potential technology applications, has closed 88 old problems, and reactivated 3 old problems, and on August 31, 1972, has a total of 57 problems under active investigation.
SHARED TECHNOLOGY TRANSFER PROGRAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
GRIFFIN, JOHN M. HAUT, RICHARD C.
2008-03-07
The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderockmore » unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casey, Leslie A.
The goal, objectives, and requirements (GOR) presented in this document define a framework for describing research directed specifically by the Ground-based Nuclear Detonation Detection (GNDD) Team of the National Nuclear Security Administration (NNSA). The intent of this document is to provide a communication tool for the GNDD Team with NNSA management and with its stakeholder community. It describes the GNDD expectation that much of the improvement in the proficiency of nuclear explosion monitoring will come from better understanding of the science behind the generation, propagation, recording, and interpretation of seismic, infrasound, hydroacoustic, and radionuclide signals and development of "game-changer" advancesmore » in science and technology.« less
Prosperity Games prototyping with the American Electronics Association, March 8--9, 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berman, M.; VanDevender, J.P.
1994-08-01
Prosperity Games are an outgrowth and adaptation of move/countermove and seminar War Games. Prosperity Games are simulations that explore complex issues in a variety of areas including economics, politics, sociology, environment, education and research. These issues can be examined from a variety of perspectives ranging from a global, macroeconomic and geopolitical viewpoint down to the details of customer/supplier/market interactions in specific industries. All Prosperity Games are unique in that both the game format and the player contributions vary from game to game. This report documents the Prosperity Game conducted under the sponsorship of the American Electronics Association in conjunction withmore » the Electronics Subcommittee of the Civilian Industrial Technology Committee of the National Science and Technology Council. Players were drawn from government, national laboratories, and universities, as well as from the electronics industry. The game explored policy changes that could enhance US competitiveness in the manufacturing of consumer electronics. Two teams simulated a presidentially appointed commission comprised of high-level representatives from government, industry, universities and national laboratories. A single team represented the foreign equivalent of this commission, formed to develop counter strategies for any changes in US policies. The deliberations and recommendations of these teams provide valuable insights as to the views of this diverse group of decision makers concerning policy changes, foreign competition, and the development, delivery and commercialization of new technologies.« less
Recent Progress at NASA in LlSA Formulation and Technology Development
NASA Technical Reports Server (NTRS)
Stebbins, Robin
2007-01-01
Over the last year, the NASA portion of the LISA team has been focused its effort on advancing the formulation of the mission and responding to a major National Academy review. This talk will describe advances in, and the current state of: the baseline mission architecture, the performance requirements, the technology development and plans for final integration and test. Interesting results stimulated by the NASINRC Beyond Einstein Program Assessment Review will also be described.
NASA Astrophysics Data System (ADS)
Rock, B. N.; Carlson, M.; Mell, V.; Maynard, N.
2010-12-01
Researchers and scientists from the University of New Hampshire (UNH) and the Confederated Tribes of Grand Ronde joined with the National Aeronautics and Space Administration (NASA) to develop and present a Summer Research Experience (SRE) that trained 21 students and 10 faculty members from 9 of the 36 Tribal Colleges and Universities (TCUs) which comprise the American Indian Higher Education Council (AIHEC). The 10-week SRE program was an inquiry-based introduction to remote sensing, geographic information systems (GIS) and field science research methods. Teams of students and TCU faculty members developed research projects that explored climate change, energy development, contamination of water and air, fire damage in forests, and lost cultural resources on tribal lands. The UNH-Grand Ronde team presented SRE participants with an initial three-week workshop in the use of research tools and development of research projects. During the following seven weeks, the team conferred weekly with SRE participants to monitor and support their progress. Rock provided specific guidance on numerous scientific questions. Carlson coached students on writing and organization and provided laboratory analysis of foliar samples. Mell provided support on GIS technology. Eight of the SRE college teams completed substantial research projects by the end of the SRE while one other team developed a method for future research. Seventeen students completed individual research papers, oral presentations and posters. Nineteen students and all teachers maintained regular and detailed communication with the UNH-Grand Ronde mentors throughout the ten-week program. The SRE produced several significant lessons learned regarding outreach educational programs in inquiry-based science and technology applications. These include: Leadership by an active research scientist (Rock) inspired and supported students and teachers in developing their own scientific inquiries. An intensive schedule of expectations for each week of the 10-week SRE, a handbook of research tools, and regular coaching and encouragement stretched individual students to high levels of achievement. Daily meetings with TCU faculty during the initial 3-week training workshop and close communication during the 7-week follow-on provided each participating TCU with lasting professional development in research, use of technology, and strategies for mentoring research students. The inquiry-based approach gave each student a sense of ownership for their projects, a sense of place for native lands and resources, a sense of pride in accomplishments, and self-discovery of gaps in knowledge and skills. Students across a wide spectrum of skills and academic experience voiced a sense of achievement and an interest in learning more science.
ERIC Educational Resources Information Center
Park, Jung-ran; Yang, Chris; Tosaka, Yuji; Ping, Qing; Mimouni, Houda El
2016-01-01
This study is a part of the larger project that develops a sustainable digital repository of professional development resources on emerging data standards and technologies for data organization and management in libraries. Toward that end, the project team developed an automated workflow to crawl for, monitor, and classify relevant web objects…
Distributed Planning and Control for Teams of Cooperating Mobile Robots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, L.E.
2004-06-15
This CRADA project involved the cooperative research of investigators in ORNL's Center for Engineering Science Advanced Research (CESAR) with researchers at Caterpillar, Inc. The subject of the research was the development of cooperative control strategies for autonomous vehicles performing applications of interest to Caterpillar customers. The project involved three Phases of research, conducted over the time period of November 1998 through December 2001. This project led to the successful development of several technologies and demonstrations in realistic simulation that illustrated the effectiveness of the control approaches for distributed planning and cooperation in multi-robot teams.
Fabrics Protect Sensitive Skin from UV Rays
NASA Technical Reports Server (NTRS)
2009-01-01
Late Johnson Space Center engineer Dr. Robert Dotts headed a team to develop cool suits for children suffering from life-threatening sun sensitivities. Dotts hoped to develop ultraviolet-blocking technology in a fabric that -- unlike in a bulky space suit -- could remain comfortable, light, and breathable in the sun and heat. The team worked with SPF 4 US LLC (SPF) of Madison, Wisconsin to design ultraviolet-blocking cool suits, which protect sun-sensitive patients and enable them to experience life outdoors safely. Using knowledge gained during the NASA collaboration, SPF created an entire line of ultraviolet-blocking apparel.
Low-Power Multi-Aspect Space Radiation Detector System
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave; Freeman, Jon C.; Burkebile, Stephen P.
2012-01-01
The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of all of these detector technologies will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the deep space radiation field.
Bosma, Laine; Balen, Robert M; Davidson, Erin; Jewesson, Peter J
2003-01-01
The development and integration of a personal digital assistant (PDA)-based point-of-care database into an intravenous resource nurse (IVRN) consultation service for the purposes of consultation management and service characterization are described. The IVRN team provides a consultation service 7 days a week in this 1000-bed tertiary adult care teaching hospital. No simple, reliable method for documenting IVRN patient care activity and facilitating IVRN-initiated patient follow-up evaluation was available. Implementation of a PDA database with exportability of data to statistical analysis software was undertaken in July 2001. A Palm IIIXE PDA was purchased and a three-table, 13-field database was developed using HanDBase software. During the 7-month period of data collection, the IVRN team recorded 4868 consultations for 40 patient care areas. Full analysis of service characteristics was conducted using SPSS 10.0 software. Team members adopted the new technology with few problems, and the authors now can efficiently track and analyze the services provided by their IVRN team.
A new model for graduate education and innovation in medical technology.
Yazdi, Youseph; Acharya, Soumyadipta
2013-09-01
We describe a new model of graduate education in bioengineering innovation and design- a year long Master's degree program that educates engineers in the process of healthcare technology innovation for both advanced and low-resource global markets. Students are trained in an iterative "Spiral Innovation" approach that ensures early, staged, and repeated examination of all key elements of a successful medical device. This includes clinical immersion based problem identification and assessment (at Johns Hopkins Medicine and abroad), team based concept and business model development, and project planning based on iterative technical and business plan de-risking. The experiential, project based learning process is closely supported by several core courses in business, design, and engineering. Students in the program work on two team based projects, one focused on addressing healthcare needs in advanced markets and a second focused on low-resource settings. The program recently completed its fourth year of existence, and has graduated 61 students, who have continued on to industry or startups (one half), additional graduate education, or medical school (one third), or our own Global Health Innovation Fellowships. Over the 4 years, the program has sponsored 10 global health teams and 14 domestic/advanced market medtech teams, and launched 5 startups, of which 4 are still active. Projects have attracted over US$2.5M in follow-on awards and grants, that are supporting the continued development of over a dozen projects.
Alsamhi, Saeed H; Samar Ansari, Mohd; Rajput, Navin S
2018-04-01
A disaster is a consequence of natural hazards and terrorist acts, which have significant potential to disrupt the entire wireless communication infrastructure. Therefore, the essential rescue squads and recovery operations during a catastrophic event will be severely debilitated. To provide efficient communication services, and to reduce casualty mortality and morbidity during the catastrophic events, we proposed the Tethered Balloon technology for disaster preparedness, detection, mitigation, and recovery assessment. The proposed Tethered Balloon is applicable to any type of disaster except for storms. The Tethered Balloon is being actively researched and developed as a simple solution to improve the performance of rescues, facilities, and services of emergency medical communication in the disaster area. The most important requirement for rescue and relief teams during or after the disaster is a high quality of service of delivery communication services to save people's lives. Using our proposed technology, we report that the Tethered Balloon has a large disaster coverage area. Therefore, the rescue and research teams are given higher priority, and their performance significantly improved in the particular coverage area. Tethered Balloon features made it suitable for disaster preparedness, mitigation, and recovery. The performance of rescue and relief teams was effective and efficient before and after the disaster as well as can be continued to coordinate the relief teams until disaster recovery. (Disaster Med Public Health Preparedness. 2018;12:222-231).
LeaRN: A Collaborative Learning-Research Network for a WLCG Tier-3 Centre
NASA Astrophysics Data System (ADS)
Pérez Calle, Elio
2011-12-01
The Department of Modern Physics of the University of Science and Technology of China is hosting a Tier-3 centre for the ATLAS experiment. A interdisciplinary team of researchers, engineers and students are devoted to the task of receiving, storing and analysing the scientific data produced by the LHC. In order to achieve the highest performance and to develop a knowledge base shared by all members of the team, the research activities and their coordination are being supported by an array of computing systems. These systems have been designed to foster communication, collaboration and coordination among the members of the team, both face-to-face and remotely, and both in synchronous and asynchronous ways. The result is a collaborative learning-research network whose main objectives are awareness (to get shared knowledge about other's activities and therefore obtain synergies), articulation (to allow a project to be divided, work units to be assigned and then reintegrated) and adaptation (to adapt information technologies to the needs of the group). The main technologies involved are Communication Tools such as web publishing, revision control and wikis, Conferencing Tools such as forums, instant messaging and video conferencing and Coordination Tools, such as time management, project management and social networks. The software toolkit has been deployed by the members of the team and it has been based on free and open source software.
Technology development and innovation for the bottom of the economic pyramid
NASA Astrophysics Data System (ADS)
Gadgil, Ashok
2015-04-01
Directed development of new technologies to solve specific problems of the poor in the developing world is a daunting task. Developing countries can be a wasteland littered with failed technologies sent there with much goodwill and effort from the industrial countries. Drawing on my team's experience I summarize our answers to some key questions for the technology designer or developer: How might one go about it? What works and what doesn't? What lessons can one draw from an examination of select successes and failures? The key lessons from our experience are: (1) successful technology design and implementation can not be separated from each other - they are tightly intertwined, (2) social factors are as critical for a technology's success as factors based on engineering science, and (3) ignorance of political economy, behavioral economics, organizational behavior, institutional imperatives, cultural norms and social drivers can prove fatal flaws when a new technology leaves the laboratory and meets the real world.
NASA Technical Reports Server (NTRS)
Cath, Tzahi Y.; Adams, Dean V.; Childress, Amy; Gormly, Sherwin; Flynn, Michael
2005-01-01
Direct osmotic concentration (DOC) has been identified as a high potential technology for recycling of wastewater to drinking water in advanced life support (ALS) systems. As a result the DOC process has been selected for a NASA Rapid Technology Development Team (RTDT) effort. The existing prototype system has been developed to a Technology Readiness Level (TRL) 3. The current project focuses on advancing the development of this technology from TRL 3 to TRL 6 (appropriate for human rated testing). A new prototype of a DOC system is been designed and fabricated that addresses the deficiencies encountered during the testing of the original system and allowing the new prototype to achieve TRL 6. Background information is provided about the technologies investigated and their capabilities, results from preliminary tests, and the milestones plan and activities for the RTDT program intended to develop a second generation prototype of the DOC system.
Subsonic Ultra Green Aircraft Research: Phase 2. Volume 2; Hybrid Electric Design Exploration
NASA Technical Reports Server (NTRS)
Bradley, Marty K.; Droney, Christopher K.
2015-01-01
This report summarizes the hybrid electric concept design, analysis, and modeling work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, consisting of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech.Performance and sizing tasks were conducted for hybrid electric versions of a conventional tube-and-wing aircraft and a hybrid wing body. The high wing Truss Braced Wing (TBW) SUGAR Volt was updated based on results from the TBW work (documented separately) and new engine performance models. Energy cost and acoustic analyses were conducted and technology roadmaps were updated for hybrid electric and battery technology. NOx emissions were calculated for landing and takeoff (LTO) and cruise. NPSS models were developed for hybrid electric components and tested using an integrated analysis of superconducting and non-superconducting hybrid electric engines. The hybrid electric SUGAR Volt was shown to produce significant emissions and fuel burn reductions beyond those achieved by the conventionally powered SUGAR High and was able to meet the NASA goals for fuel burn. Total energy utilization was not decreased but reduced energy cost can be achieved for some scenarios. The team was not able to identify a technology development path to meet NASA's noise goals
Facilitating Transdisciplinary Sustainable Development Research Teams through Online Collaboration
ERIC Educational Resources Information Center
Dale, Ann; Newman, Lenore; Ling, Chris
2010-01-01
Purpose: The purpose of this paper is to discuss the potential of online communication technologies to facilitate university-led transdisciplinary sustainable development research and lower the ecological footprints of such research projects. A series of case studies is to be explored. Design/methodology/approach: A one year project is conducted…
Systematic Method for Establishing Officer Grade Requirements Based Upon Job Demands.
ERIC Educational Resources Information Center
Christal, Raymond E.
This report presents interim results of a study developing a methodology for management engineering teams to determine the appropriate grade requirements for officer positions based on job content and responsibilities. The technology reported represents a modification and extension of methods developed between 1963 and 1966. Results indicated that…
Solar Sail Propulsion Technology Readiness Level Database
NASA Technical Reports Server (NTRS)
Adams, Charles L.
2004-01-01
The NASA In-Space Propulsion Technology (ISPT) Projects Office has been sponsoring 2 solar sail system design and development hardware demonstration activities over the past 20 months. Able Engineering Company (AEC) of Goleta, CA is leading one team and L Garde, Inc. of Tustin, CA is leading the other team. Component, subsystem and system fabrication and testing has been completed successfully. The goal of these activities is to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by 2006. These activities will culminate in the deployment and testing of 20-meter solar sail system ground demonstration hardware in the 30 meter diameter thermal-vacuum chamber at NASA Glenn Plum Brook in 2005. This paper will describe the features of a computer database system that documents the results of the solar sail development activities to-date. Illustrations of the hardware components and systems, test results, analytical models, relevant space environment definition and current TRL assessment, as stored and manipulated within the database are presented. This database could serve as a central repository for all data related to the advancement of solar sail technology sponsored by the ISPT, providing an up-to-date assessment of the TRL of this technology. Current plans are to eventually make the database available to the Solar Sail community through the Space Transportation Information Network (STIN).
15 CFR 270.105 - Duties of a Team.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 15 Commerce and Foreign Trade 1 2014-01-01 2014-01-01 false Duties of a Team. 270.105 Section 270... OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Establishment and Deployment of Teams § 270.105 Duties of a Team. (a) A Team's Lead...
15 CFR 270.105 - Duties of a Team.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 15 Commerce and Foreign Trade 1 2012-01-01 2012-01-01 false Duties of a Team. 270.105 Section 270... OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Establishment and Deployment of Teams § 270.105 Duties of a Team. (a) A Team's Lead...
15 CFR 270.105 - Duties of a Team.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 15 Commerce and Foreign Trade 1 2013-01-01 2013-01-01 false Duties of a Team. 270.105 Section 270... OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Establishment and Deployment of Teams § 270.105 Duties of a Team. (a) A Team's Lead...
15 CFR 270.105 - Duties of a Team.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Duties of a Team. 270.105 Section 270... OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Establishment and Deployment of Teams § 270.105 Duties of a Team. (a) A Team's Lead...
15 CFR 270.105 - Duties of a Team.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 15 Commerce and Foreign Trade 1 2011-01-01 2011-01-01 false Duties of a Team. 270.105 Section 270... OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Establishment and Deployment of Teams § 270.105 Duties of a Team. (a) A Team's Lead...
North, Nigel; Smith, Simon
1998-01-01
The intensifying pressure on reducing the development time for new pharmaceutical products is resulting in an increasing need for laboratory automation. A key element for the successful implementation of robotics for drug product analysis is the establishment of a reliable process for interaction of the automation team with its various customers, for example development product team and manufacturing group. The reduction of cycle time for product development appears to be resulting in more stability studies to support NDA/MAA filings for several reasons. Key clinical information may not be available before initiation of the stability studies and simultaneous world-wide development may result in an increase in the number of product strength and pack options. PMID:18924828
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-23
... launch Rebuild by Design and select the 10 teams. NEA has a history of supporting and facilitating design... design teams selected are the following: Interboro Partners with the New Jersey Institute of Technology.... Massachusetts Institute of Technology Center for Advanced Urbanism and the Dutch Delta Collaborative by ZUS...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troy G. Garn; Mitchell R. Greenhalgh; Jack D. Law
2013-10-01
The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbentmore » development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, INL sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troy G. Garn; Mitchell R. Greenhalgh; Jack D. Law
2013-09-01
The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbentmore » development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, INL sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up.« less
15 CFR 716.4 - Scope and conduct of inspections.
Code of Federal Regulations, 2010 CFR
2010-01-01
... is the responsibility of the Host Team Leader. (3) ITAR-controlled technology. ITAR-controlled technology shall not be divulged to the Inspection Team without U.S. Government authorization (such technology includes, but is not limited to technical data related to Schedule 1 chemicals or Schedule 2...
NREL/Boeing Spectrolab Team Wins Research and Development Award | News |
approach represents a powerful new technology for designing super-efficient multi-junction solar cells. The results in superior electrical performance. But, with the HEMM approach, the atoms are unevenly spaced
JCESR Scientific Sprints – Better Polymers for Better Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brushett, Fikile; Moore, Jeff; Zhang, Lu
2016-02-19
Argonne National Laboratory leads the Joint Center for Energy Storage Research (JCESR), a major collaborative research partnership with the goal of developing next-generation energy storage technologies. JCESR supplements its traditional project management approach with scientific “Sprints.” The Sprint described in this video involved a multidisciplinary team from Argonne, the University of Illinois at Urbana-Champaign, Massachusetts Institute of Technology, and the University of Michigan. As they studied how polymers in solution can react electrochemically to store energy, the team solved a crucial battery problem: “crossover,” which is caused by molecules mixing together when they should not, resulting in reduced performance. Manymore » possible materials were tested, and a set of candidate polymers were chosen that are stable, cheap to make, and suitable for conditions required in batteries. The collaboration allowed timely development that would have taken much longer had the groups been working independently.« less
JCESR Scientific Sprints â Better Polymers for Better Batteries
Brushett, Fikile; Moore, Jeff; Zhang, Lu; Rodriguez-Lopez, Joaquin; Sevov, Christo; Gavvalapalli, Nagarjuna; Montoto, Elena
2018-06-25
Argonne National Laboratory leads the Joint Center for Energy Storage Research (JCESR), a major collaborative research partnership with the goal of developing next-generation energy storage technologies. JCESR supplements its traditional project management approach with scientific âSprints.â The Sprint described in this video involved a multidisciplinary team from Argonne, the University of Illinois at Urbana-Champaign, Massachusetts Institute of Technology, and the University of Michigan. As they studied how polymers in solution can react electrochemically to store energy, the team solved a crucial battery problem: âcrossover,â which is caused by molecules mixing together when they should not, resulting in reduced performance. Many possible materials were tested, and a set of candidate polymers were chosen that are stable, cheap to make, and suitable for conditions required in batteries. The collaboration allowed timely development that would have taken much longer had the groups been working independently.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blair, N.; Dobos, S.; Janzou, S.
2013-08-01
The System Advisor Model (SAM) is a broad and robust set of models and frameworks for analyzing both system performance and system financing. It does this across a range of technologies dominated by solar technologies including photovoltaics (PV) and concentrated solar power (CSP). The U.S. Department of Energy (DOE) Solar Energy Technology Program requested the SAM development team to review the photovoltaic performance modeling with the development community and specifically, with the independent engineering community. The report summarizes the major effort for this technical review committee (TRC).
Data Management for a Climate Data Record in an Evolving Technical Landscape
NASA Astrophysics Data System (ADS)
Moore, K. D.; Walter, J.; Gleason, J. L.
2017-12-01
For nearly twenty years, NASA Langley Research Center's Clouds and the Earth's Radiant Energy System (CERES) Science Team has been producing a suite of data products that forms a persistent climate data record of the Earth's radiant energy budget. Many of the team's physical scientists and key research contributors have been with the team since the launch of the first CERES instrument in 1997. This institutional knowledge is irreplaceable and its longevity and continuity are among the reasons that the team has been so productive. Such legacy involvement, however, can also be a limiting factor. Some CERES scientists-cum-coders might possess skills that were state-of-the-field when they were emerging scientists but may now be outdated with respect to developments in software development best practices and supporting technologies. Both programming languages and processing frameworks have evolved significantly in the past twenty years, and updating one of these factors warrants consideration of updating the other. With the imminent launch of a final CERES instrument and the good health of those in flight, the CERES data record stands to continue far into the future. The CERES Science Team is, therefore, undergoing a re-architecture of its codebase to maintain compatibility with newer data processing platforms and technologies and to leverage modern software development best practices. This necessitates training our staff and consequently presents several challenges, including: Development continues immediately on the next "edition" of research algorithms upon release of the previous edition. How can code be rewritten at the same time that the science algorithms are being updated and integrated? With limited time to devote to training, how can we update the staff's existing skillset without slowing progress or introducing new errors? The CERES Science Team is large and complex, much like the current state of its codebase. How can we identify, in a breadth-wise manner, areas for code improvement across multiple research groups that maintain code with varying semantics but common concepts? In this work, we discuss the successes and pitfalls of this major re-architecture effort and share how we will sustain improvement into the future.
1999-03-06
At the award ceremony for the 1999 FIRST Southeastern Regional robotic competition held at KSC, the Space Coast FIRST Team walks past the greeting line. In the middle, shaking hands with the team, are KSC's Director of Engineering Development Sterling Walker (left) and Center Director Roy Bridges (right). The Space Coast Team included Rockledge, Cocoa Beach and Merritt Island High Schools. FIRST is a nonprofit organization, For Inspiration and Recognition of Science and Technology, that sponsors the event pitting gladiator robots against each other in an athletic-style competition. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers, pairing high school students with engineer mentors and corporations. The regional event comprised 27 teams. Along with the championship award, which went to high school teams from Miami and San German, Puerto Rico, 15 other awards were presented
Effective Team Support: From Modeling to Software Agents
NASA Technical Reports Server (NTRS)
Remington, Roger W. (Technical Monitor); John, Bonnie; Sycara, Katia
2003-01-01
The purpose of this research contract was to perform multidisciplinary research between CMU psychologists, computer scientists and engineers and NASA researchers to design a next generation collaborative system to support a team of human experts and intelligent agents. To achieve robust performance enhancement of such a system, we had proposed to perform task and cognitive modeling to thoroughly understand the impact technology makes on the organization and on key individual personnel. Guided by cognitively-inspired requirements, we would then develop software agents that support the human team in decision making, information filtering, information distribution and integration to enhance team situational awareness. During the period covered by this final report, we made substantial progress in modeling infrastructure and task infrastructure. Work is continuing under a different contract to complete empirical data collection, cognitive modeling, and the building of software agents to support the teams task.
NASA Technical Reports Server (NTRS)
Remington, Roger W. (Technical Monitor); John, Bonnie E.; Sycara, Katia
2005-01-01
The purpose of this research contract was to perform multidisciplinary research between CMU psychologists, computer scientists and NASA researchers to design a next generation collaborative system to support a team of human experts and intelligent agents. To achieve robust performance enhancement of such a system, we had proposed to perform task and cognitive modeling to thoroughly understand the impact technology makes on the organization and on key individual personnel. Guided by cognitively-inspired requirements, we would then develop software agents that support the human team in decision making, information filtering, information distribution and integration to enhance team situational awareness. During the period covered by this final report, we made substantial progress in completing a system for empirical data collection, cognitive modeling, and the building of software agents to support a team's tasks, and in running experiments for the collection of baseline data.
Capabilities of the Materials Contamination Team at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Burns, Howard; Albyn, Keith; Edwards, David; Boothe, Richard; Finchum, Charles; Finckenor, Miria
2003-01-01
The Materials Contamination Team at the Marshall Space Flight Center (MSFC) has been recognized for its contributions supporting the National Aeronautics and Space Administration (NASA) spacecraft development programs. These programs include the Reusable Solid Rocket Motor (RSRM), Chandra X-Ray Observatory, and the International Space Station (ISS). The Environmental Effects Group, with the Materials Contamination Team and the Space Environmental Effects Team has been an integral part of NASA's success by the testing, evaluation, and qualification of materials, hardware, and processes. This paper focuses on the capabilities of the Materials Contamination Team. The Materials Contamination Team's realm of responsibility includes establishing contamination control during all phases of hardware development, including design, manufacturing, assembly, test, transportation, launch site processing, on-orbit exposure, return, and refurbishment. The team continues its mission of reducing the risk of equipment failure due to molecular or particulate contamination. Contamination is a concern in the Space Shuttle with sensitive bond-lines and reactive fluid (liquid oxygen) compatibility as well as for spacecraft with sensitive optics, such as Hubble Space Telescope and Chandra X-ray Observatory. The Materials Contamination Team has a variety of facilities and instrumentation capable of contaminant detection, identification, and monitoring. The team addresses material applications dealing with environments, including production facilities, clean rooms, and on-orbit exposure. The optically stimulated electron emission (OSEE) system, the Ultraviolet (UV) fluorescence (UVF) surface contamination detection, and the Surface Optics Corporation 400 (SOC 400) portable hand-held Fourier Transform Infrared (FTIR) spectrometer are state-of-the-art tools for in-process molecular contamination detection. The team of engineers and technicians also develop contamination calibration standards and evaluate new surface cleanliness inspection technologies. The team utilizes facilities for on-orbit simulation testing of materials for outgassing and molecular film deposition characteristics in the presence of space environmental effects, such as Atomic Oxygen (AO) and UV radiation exposure. The Materials Contamination Team maintains databases for process materials as well as outgassing and optical compatibility test results for specific environments.
Computer-mediated interdisciplinary teams: theory and reality.
Vroman, Kerryellen; Kovacich, Joann
2002-05-01
The benefit of experience, tempered with the wisdom of hindsight and 5 years of text-based, asynchronous, computer-mediated, interdisciplinary team communications, provides the energy, insights and data shared in this article. Through the theoretical lens of group dynamics and the epistemology of interdisciplinary teaming, we analyze the interactions of a virtual interdisciplinary team to provide an understanding and appreciation of collaborative interdisciplinary communication in the context of interactive technologies. Whilst interactive technologies may require new patterns of language similar to that of learning a foreign language, what is communicated in the interdisciplinary team process does not change. Most important is the recognition that virtual teams, similar to their face-to-face counterparts, undergo the same challenges of interdisciplinary teaming and group developmental processes of formation: forming, storming, norming, performing, and transforming. After examining these dynamics of communication and collaboration in the context of the virtual team, the article concludes with guidelines facilitating interdisciplinary team computer-mediated communication.
Design definition of the Laser Atmospheric Wind Sounder (LAWS), phase 2. Volume 2: Final report
NASA Technical Reports Server (NTRS)
Wilson, D. J.
1992-01-01
Lockheed personnel, along with team member subcontractors and consultants, have performed a preliminary design for the LAWS Instrument. Breadboarding and testing of a LAWS class laser have also been performed. These efforts have demonstrated that LAWS is a feasible Instrument and can be developed with existing state-of-the-art technology. Only a commitment to fund the instrument development and deployment is required to place LAWS in orbit and obtain the anticipated science and operational forecasting benefits. The LAWS Science Team was selected in 1988-89 as were the competing LAWS phase 1/2 contractor teams. The LAWS Science Team developed requirements for the LAWS Instrument, and the NASA/LAWS project office defined launch vehicle and platform design constraints. From these requirements and constraints, the lockheed team developed LAWS Instrument concepts and configurations. A system designed to meet these requirements and constraints is outlined. The LAWS primary subsystem and interfaces - laser, optical, and receiver/processor - required to assemble a lidar are identified. Also identified are the support subsystems required for the lidar to function from space: structures and mechanical, thermal, electrical, and command and data management. The Lockheed team has developed a preliminary design of a LAWS Instrument System consisting of these subsystems and interfaces which will meet the requirements and objectives of the Science Team. This final report provides a summary of the systems engineering analyses and trades of the LAWS. Summaries of the configuration, preliminary designs of the subsystems, testing recommendations, and performance analysis are presented. Environmental considerations associated with deployment of LAWS are discussed. Finally, the successful LAWS laser breadboard effort is discussed along with the requirements and test results.
Research and Development Strategies for Human Centered and Group Support Technologies
1992-05-01
al.,6 Rothwell, 7 Hidson,8 and Richards and Companion 9 provide detailed 3 R . Bruce Gould, AFHRI/MOD, MPT Technology Branch, Brooks AFB, TX, and...88 Transactions, Boston, 1988. Gould, R . Bruce , AFHRL/MOD, MPT Technology Branch, Brooks AFB, TX, and Thomas Nondorf, McDonnell Douglas Corp. MCAIR...future R &D activities. This paper reports the results of research performed by an Institute for Defense Analyses study team whose immediate goal was
Sensors for process control Focus Team report
NASA Astrophysics Data System (ADS)
At the Semiconductor Technology Workshop, held in November 1992, the Semiconductor Industry Association (SIA) convened 179 semiconductor technology experts to assess the 15-year outlook for the semiconductor manufacturing industry. The output of the Workshop, a document entitled 'Semiconductor Technology: Workshop Working Group Reports,' contained an overall roadmap for the technology characteristics envisioned in integrated circuits (IC's) for the period 1992-2007. In addition, the document contained individual roadmaps for numerous key areas in IC manufacturing, such as film deposition, thermal processing, manufacturing systems, exposure technology, etc. The SIA Report did not contain a separate roadmap for contamination free manufacturing (CFM). A key component of CFM for the next 15 years is the use of sensors for (1) defect reduction, (2) improved product quality, (3) improved yield, (4) improved tool utilization through contamination reduction, and (5) real time process control in semiconductor fabrication. The objective of this Focus Team is to generate a Sensors for Process Control Roadmap. Implicit in this objective is the identification of gaps in current sensor technology so that research and development activity in the sensor industry can be stimulated to develop sensor systems capable of meeting the projected roadmap needs. Sensor performance features of interest include detection limit, specificity, sensitivity, ease of installation and maintenance, range, response time, accuracy, precision, ease and frequency of calibration, degree of automation, and adaptability to in-line process control applications.
Borland, Rob; Barasa, Mourice; Iiams-Hauser, Casey; Velez, Olivia; Kaonga, Nadi Nina; Berg, Matt
2013-01-01
The purpose of this paper is to illustrate the importance of using open source technologies and common standards for interoperability when implementing eHealth systems and illustrate this through case studies, where possible. The sources used to inform this paper draw from the implementation and evaluation of the eHealth Program in the context of the Millennium Villages Project (MVP). As the eHealth Team was tasked to deploy an eHealth architecture, the Millennium Villages Global-Network (MVG-Net), across all fourteen of the MVP sites in Sub-Saharan Africa, the team recognized the need for standards and uniformity but also realized that context would be an important factor. Therefore, the team decided to utilize open source solutions. The MVP implementation of MVG-Net provides a model for those looking to implement informatics solutions across disciplines and countries. Furthermore, there are valuable lessons learned that the eHealth community can benefit from. By sharing lessons learned and developing an accessible, open-source eHealth platform, we believe that we can more efficiently and rapidly achieve the health-related and collaborative Millennium Development Goals (MDGs). PMID:22894051
NASA Astrophysics Data System (ADS)
Franz, Thomas M.; Gonos, Greg; Simek, Lisa
1999-01-01
Six years ago at SPIE, a team of government researchers and engineers unveiled a new, military, weapons team engagement trainer (WTET). At that time, potential applications of this prototype military training device to civilian law enforcement training were realized. Subsequent action was taken under the Federal Technology Transfer Act of 1986, enabling the transfer of WTET to the private sector, through a cooperative agreement between: the Office of Naval Research (ONR), NAWCTSD, and the commercial weapons training organization Firearms Training Systems, Inc. (FATS). Planning also began for release of a commercial WTET sytem. The government research and development facility and the National Institute of Justice (NIJ) formed a cooperative agreement to make the prototype system available to military, federal, and local law enforcement agencies for use in Orlando, Florida - until a commercial version could become available. This cooperative effort has provided evidence of the effectiveness and realism of WTET with law enforcement personnel. This paper offers a technical description of the improvements made to WTET, a brief explanation of the commercialization process, a summary of the evaluations conducted to date, and insight into how that information has been used in the development of the commercial version.
The science of teamwork: Progress, reflections, and the road ahead.
Salas, Eduardo; Reyes, Denise L; McDaniel, Susan H
2018-01-01
We need teams in nearly every aspect of our lives (e.g., hospitals, schools, flight decks, nuclear power plants, oil rigs, the military, and corporate offices). Nearly a century of psychological science has uncovered extensive knowledge about team-related processes and outcomes. In this article, we draw from the reviews and articles of this special issue to identify 10 key reflections that have arisen in the team literature, briefly summarized here. Team researchers have developed many theories surrounding the multilayered aspects of teams, such that now we have a solid theoretical basis for teams. We have recognized that the collective is often stronger than the individual, initiating the shift from individual tasks to team tasks. All teams are not created equal, so it is important to consider the context to understand relevant team dynamics and outcomes, but sometimes teams performing in different contexts are more similar than not. It is critical to have teamwork-supportive organizational conditions and environments where psychological safety can flourish and be a mechanism to resolve conflicts, ensure safety, mitigate errors, learn, and improve performance. There are also helpful teamwork competencies that can increase effectiveness across teams or tasks that have been identified (e.g., coordination, communication, and adaptability). Even if a team is made up of experts, it can still fail if they do not know how to cooperate, coordinate, and communicate well together. To ensure the improvement and maintenance of effective team functioning, the organization must implement team development interventions and evaluate relevant team outcomes with robust diagnostic measurement. We conclude with 3 main directions for scientists to expand upon in the future: (a) address issues with technology to make further improvements in team assessment, (b) learn more about multiteam systems, and (c) bridge the gap between theory and practice. In summary, the science of teams has made substantial progress but still has plenty of room for advancement. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Pritt, Stacy L; Mackta, Jayne
2010-05-01
Business models for transnational organizations include linking different geographies through common codes of conduct, policies, and virtual teams. Global companies with laboratory animal science activities (whether outsourced or performed inhouse) often see the need for these business activities in relation to animal-based research and benefit from them. Global biomedical research organizations can learn how to better foster worldwide cooperation and teamwork by understanding and working with sociocultural differences in ethics and by knowing how to facilitate appropriate virtual team actions. Associated practices include implementing codes and policies transcend cultural, ethnic, or other boundaries and equipping virtual teams with the needed technology, support, and rewards to ensure timely and productive work that ultimately promotes good science and patient safety in drug development.
Online Experiential Education for Technological Entrepreneurs
ERIC Educational Resources Information Center
Ermolovich, Thomas R.
2011-01-01
Technological Entrepreneurship is both an art and a science. As such, the education of a technological entrepreneur requires both an academic and an experiential component. One form of experiential education is creating real new ventures with student teams. When these ventures are created in an online modality, students work in virtual teams and…
ERIC Educational Resources Information Center
Thomas, Valerie Brown
2010-01-01
Ubiquitous technology and agile organizational structures have enabled a strategic response to increasingly competitive, complex, and unpredictable challenges faced by many organizations. Using cyberinfrastructure, which is primarily the network of information, computers, communication technologies, and people, traditional organizations have…
15 CFR 270.103 - Publication in the Federal Register.
Code of Federal Regulations, 2012 CFR
2012-01-01
... NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Establishment and Deployment of Teams § 270.103 Publication in the... of each Team. ...
15 CFR 270.103 - Publication in the Federal Register.
Code of Federal Regulations, 2011 CFR
2011-01-01
... NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Establishment and Deployment of Teams § 270.103 Publication in the... of each Team. ...
15 CFR 270.103 - Publication in the Federal Register.
Code of Federal Regulations, 2014 CFR
2014-01-01
... NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Establishment and Deployment of Teams § 270.103 Publication in the... of each Team. ...
15 CFR 270.103 - Publication in the Federal Register.
Code of Federal Regulations, 2010 CFR
2010-01-01
... NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Establishment and Deployment of Teams § 270.103 Publication in the... of each Team. ...
15 CFR 270.103 - Publication in the Federal Register.
Code of Federal Regulations, 2013 CFR
2013-01-01
... NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Establishment and Deployment of Teams § 270.103 Publication in the... of each Team. ...
Flight Test Implementation of a Second Generation Intelligent Flight Control System
NASA Technical Reports Server (NTRS)
Williams-Hayes, Peggy S.
2005-01-01
The NASA F-15 Intelligent Flight Control System project team has developed a series of flight control concepts designed to demonstrate the benefits of a neural network-based adaptive controller. The objective of the team was to develop and flight-test control systems that use neural network technology, to optimize the performance of the aircraft under nominal conditions, and to stabilize the aircraft under failure conditions. Failure conditions include locked or failed control surfaces as well as unforeseen damage that might occur to the aircraft in flight. The Intelligent Flight Control System team is currently in the process of implementing a second generation control scheme, collectively known as Generation 2 or Gen 2, for flight testing on the NASA F-15 aircraft. This report describes the Gen 2 system as implemented by the team for flight test evaluation. Simulation results are shown which describe the experiment to be performed in flight and highlight the ways in which the Gen 2 system meets the defined objectives.
NASA Technical Reports Server (NTRS)
Moeller, Robert C.; Borden, Chester; Spilker, Thomas; Smythe, William; Lock, Robert
2011-01-01
The JPL Rapid Mission Architecture (RMA) capability is a novel collaborative team-based approach to generate new mission architectures, explore broad trade space options, and conduct architecture-level analyses. RMA studies address feasibility and identify best candidates to proceed to further detailed design studies. Development of RMA first began at JPL in 2007 and has evolved to address the need for rapid, effective early mission architectural development and trade space exploration as a precursor to traditional point design evaluations. The RMA approach integrates a small team of architecture-level experts (typically 6-10 people) to generate and explore a wide-ranging trade space of mission architectures driven by the mission science (or technology) objectives. Group brainstorming and trade space analyses are conducted at a higher level of assessment across multiple mission architectures and systems to enable rapid assessment of a set of diverse, innovative concepts. This paper describes the overall JPL RMA team, process, and high-level approach. Some illustrative results from previous JPL RMA studies are discussed.
Campbell-Voytal, Kimberly; Daly, Jeanette M; Nagykaldi, Zsolt J; Aspy, Cheryl B; Dolor, Rowena J; Fagnan, Lyle J; Levy, Barcey T; Palac, Hannah L; Michaels, LeAnn; Patterson, V Beth; Kano, Miria; Smith, Paul D; Sussman, Andrew L; Williams, Robert; Sterling, Pamela; O'Beirne, Maeve; Neale, Anne Victoria
2015-12-01
Using peer learning strategies, seven experienced PBRNs working in collaborative teams articulated procedures for PBRN Research Good Practices (PRGPs). The PRGPs is a PBRN-specific resource to facilitate PBRN management and staff training, to promote adherence to study protocols, and to increase validity and generalizability of study findings. This paper describes the team science processes which culminated in the PRGPs. Skilled facilitators used team science strategies and methods from the Technology of Participation (ToP®), and the Consensus Workshop Method to support teams to codify diverse research expertise in practice-based research. The participatory nature of "sense-making" moved through identifiable stages. Lessons learned include (1) team input into the scope of the final outcome proved vital to project relevance; (2) PBRNs with diverse domains of research expertise contributed broad knowledge on each topic; and (3) ToP® structured facilitation techniques were critical for establishing trust and clarifying the "sense-making" process. © 2015 Wiley Periodicals, Inc.
Daly, Jeanette M.; Nagykaldi, Zsolt J.; Aspy, Cheryl B.; Dolor, Rowena J.; Fagnan, Lyle J.; Levy, Barcey T.; Palac, Hannah L.; Michaels, LeAnn; Patterson, V. Beth; Kano, Miria; Smith, Paul D.; Sussman, Andrew L.; Williams, Robert; Sterling, Pamela; O'Beirne, Maeve; Neale, Anne Victoria
2015-01-01
Abstract Using peer learning strategies, seven experienced PBRNs working in collaborative teams articulated procedures for PBRN Research Good Practices (PRGPs). The PRGPs is a PBRN‐specific resource to facilitate PBRN management and staff training, to promote adherence to study protocols, and to increase validity and generalizability of study findings. This paper describes the team science processes which culminated in the PRGPs. Skilled facilitators used team science strategies and methods from the Technology of Participation (ToP®), and the Consensus Workshop Method to support teams to codify diverse research expertise in practice‐based research. The participatory nature of “sense‐making” moved through identifiable stages. Lessons learned include (1) team input into the scope of the final outcome proved vital to project relevance; (2) PBRNs with diverse domains of research expertise contributed broad knowledge on each topic; and (3) ToP® structured facilitation techniques were critical for establishing trust and clarifying the “sense‐making” process. PMID:26602516
The 21st annual intelligent ground vehicle competition: robotists for the future
NASA Astrophysics Data System (ADS)
Theisen, Bernard L.
2013-12-01
The Intelligent Ground Vehicle Competition (IGVC) is one of four, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI). The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics and mobile platform fundamentals to design and build an unmanned system. Teams from around the world focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities. Over the past 21 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from over 80 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the fourday competition are highlighted. Finally, an assessment of the competition based on participation is presented.
The 20th annual intelligent ground vehicle competition: building a generation of robotists
NASA Astrophysics Data System (ADS)
Theisen, Bernard L.; Kosinski, Andrew
2013-01-01
The Intelligent Ground Vehicle Competition (IGVC) is one of four, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI). The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics and mobile platform fundamentals to design and build an unmanned system. Teams from around the world focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities. Over the past 20 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from over 80 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the four-day competition are highlighted. Finally, an assessment of the competition based on participation is presented.
Lamb, Di
2003-04-01
Changing world events over recent years and an increasingly complex patient casemix have led to a review of the equipment used by the Aeromedical Evacuation Squadron of the Royal Air Force. The initial special purpose aeromedical equipment (SPAME) project was completed in 2001 with the new equipment being brought into service in August of the same year. The project incorporated long term planning for replacing the equipment along with its rapidly developing technology, especially with that used for the care of the critically ill. An intensive training programme was simultaneously introduced to support the deployment of this new technology. Critical care teams comprise a consultant anaesthetist, a critical care nurse, a flight nurse attendant (paramedic) and a technician, all of whom attend courses designed specifically to accommodate their role within the team.A considerable amount of work has been undertaken by a dedicated team to ensure this project became a reality and which has resulted in the provision of care to meet the needs of any casualty, anywhere in the world, being achieved using the latest technology proportionate to any hospital-based ICU.
NASA Technical Reports Server (NTRS)
1974-01-01
Insights and recommendations arising from a study of the feasibility of combining the NASA Regional Dissemination Center (RDC) and Technology Application Team (Tateam) roles to form Regional Application Centers (RADC's) are presented. The apparent convergence of the functions of RDC's and Tateams is demonstrated and strongly supportive of the primary recommendation that an applications function be added to those already being performed by the RDC's. The basis of a national network for technology transfer and public and private sector problem solving is shown to exist, the skeleton of which is an interactive network of Regional Application Centers and NASA Field Centers. The feasibility of developing and extending this network is considered and the detailed ramifications of so doing are discussed and the imperatives emphasized. It is hypothesized that such a national network could become relatively independent of NASA funding within five years.
Frieder, Jessica E; Peterson, Stephanie M; Woodward, Judy; Crane, Jaelee; Garner, Marlane
2009-01-01
This paper describes a technically driven, collaborative approach to assessing the function of problem behavior using web-based technology. A case example is provided to illustrate the process used in this pilot project. A school team conducted a functional analysis with a child who demonstrated challenging behaviors in a preschool setting. Behavior analysts at a university setting provided the school team with initial workshop trainings, on-site visits, e-mail and phone communication, as well as live web-based feedback on functional analysis sessions. The school personnel implemented the functional analysis with high fidelity and scored the data reliably. Outcomes of the project suggest that there is great potential for collaboration via the use of web-based technologies for ongoing assessment and development of effective interventions. However, an empirical evaluation of this model should be conducted before wide-scale adoption is recommended.
Planning and conducting a multi-institutional project on fatigue.
Nail, L M; Barsevick, A M; Meek, P M; Beck, S L; Jones, L S; Walker, B L; Whitmer, K R; Schwartz, A L; Stephen, S; King, M E
1998-09-01
To describe the process used in proposal development and study implementation for a complex multisite project on cancer treatment-related fatigue (CRF), identify strategies used to manage the project, and provide recommendations for teams planning multisite research. Information derived from project team meeting records, correspondence, proposals, and personal recollection. The project was built on preexisting relationships among the three site investigators who then built a team including faculty, research coordinators, staff nurses, and students. Study sites had a range of organizational models, and the proposal was designed to capitalize on the organizational and resource strengths of each setting. Three team members drawn from outside oncology nursing provided expertise in measurement and experience with fatigue in other populations. Planning meetings were critical to the success of the project. Conference calls, fax technology, and electronic mail were used for communication. Flexibility was important in managing crises and shifting responsibility for specific components of the work. The team documented and evaluated the process used for multisite research, completed a major instrumentation study, and developed a cognitive-behavioral intervention for CRF. Accomplishments during the one-year planning grant exceeded initial expectations. The process of conducting multisite research is complex, especially when the starting point is a planning grant with specific research protocols to be developed and implemented over one year. Explicit planning for decision-making processes to be used throughout the project, acknowledging the differences among the study settings and planning the protocols to capitalize upon those differences, and recruiting a strong research team that included a member with planning grant and team-building expertise were essential elements for success. Specific recommendations for others planning multisite research are related to team-building, team membership, communication, behavioral norms, role flexibility, resources, feedback, problem management, and shared recognition.
USDA-ARS?s Scientific Manuscript database
The Chesapeake Stormwater Network hosted a workshop on July, 2012 to discuss the potential nutrient reductions from emerging stormwater technologies including algal flow-way technologies (AFTs). Workshop participants recommended the Chesapeake Bay Program’s Water Quality Goal Implementation Team(WQ...
The NASA/DOE/DOD nuclear rocket propulsion project - FY 1991 status
NASA Technical Reports Server (NTRS)
Clark, John S.; Miller, Thomas J.
1991-01-01
NASA has initiated planning and critical technology development for nuclear rocket propulsion systems for Space Exploration Initiative missions to the moon and to Mars. Interagency agreements are being negotiated between NASA, the Department of Energy, and the Department of Defense for joint technology development activities. This paper summarizes the activities of the NASA project planning team in FY 1990 that led to the draft Nuclear Propulsion Project Plan, outlines the FY 1991 Interagency activities, and describes the current status of the project plan.
NASA Technical Reports Server (NTRS)
Bolcar, Matthew R.; Shaklan, Stuart; Roberge, Aki; Rioux, Norman; Feinberg, Lee; Werner, Michael; Rauscher, Bernard; Mandell, Avi; France, Kevin; Schiminovich, David
2016-01-01
We present nine "tech notes" prepared by the Large UV/Optical/Infrared (LUVOIR) Science and Technology Definition Team (STDT), Study Office, and Technology Working Group. These tech notes are intended to highlight technical challenges that represent boundaries in the trade space for developing the LUVOIR architecture that may impact the science objectives being developed by the STDT. These tech notes are intended to be high-level discussions of the technical challenges and will serve as starting points for more in-depth analysis as the LUVOIR study progresses.
Virtual reality simulation for the optimization of endovascular procedures: current perspectives.
Rudarakanchana, Nung; Van Herzeele, Isabelle; Desender, Liesbeth; Cheshire, Nicholas J W
2015-01-01
Endovascular technologies are rapidly evolving, often requiring coordination and cooperation between clinicians and technicians from diverse specialties. These multidisciplinary interactions lead to challenges that are reflected in the high rate of errors occurring during endovascular procedures. Endovascular virtual reality (VR) simulation has evolved from simple benchtop devices to full physic simulators with advanced haptics and dynamic imaging and physiological controls. The latest developments in this field include the use of fully immersive simulated hybrid angiosuites to train whole endovascular teams in crisis resource management and novel technologies that enable practitioners to build VR simulations based on patient-specific anatomy. As our understanding of the skills, both technical and nontechnical, required for optimal endovascular performance improves, the requisite tools for objective assessment of these skills are being developed and will further enable the use of VR simulation in the training and assessment of endovascular interventionalists and their entire teams. Simulation training that allows deliberate practice without danger to patients may be key to bridging the gap between new endovascular technology and improved patient outcomes.
Recent Progress on the Stretched Lens Array (SLA)
NASA Technical Reports Server (NTRS)
O'Neill, Markl; McDanal, A. J.; Piszczor, Michael; George, Patrick; Eskenazi, Michael; Botke, Matthew; Edwards, David; Hoppe, David; Brandhorst, Henry
2005-01-01
At the last Space Photovoltaic Research and Technology Conference, SPRAT XVII, held during the fateful week of 9/11/01, our team presented a paper on the early developments related to the new Stretched Lens Array (SLA), including its evolution from the successful SCARLET array on the NASA/JPL Deep Space 1 spacecraft. Within the past two years, the SLA team has made significant progress in the SLA technology, including the successful fabrication and testing of a complete four-panel prototype solar array wing (Fig. 1). The prototype wing verified the mechanical and structural design of the rigid-panel SLA approach, including multiple successful demonstrations of automatic wing deployment. One panel in the prototype wing included four fully functional photovoltaic receivers, employing triple-junction solar cells.
High-Penetration PV Integration Handbook for Distribution Engineers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seguin, Rich; Woyak, Jeremy; Costyk, David
2016-01-01
This handbook has been developed as part of a five-year research project which began in 2010. The National Renewable Energy Laboratory (NREL), Southern California Edison (SCE), Quanta Technology, Satcon Technology Corporation, Electrical Distribution Design (EDD), and Clean Power Research (CPR) teamed together to analyze the impacts of high-penetration levels of photovoltaic (PV) systems interconnected onto the SCE distribution system. This project was designed specifically to leverage the experience that SCE and the project team would gain during the significant installation of 500 MW of commercial scale PV systems (1-5 MW typically) starting in 2010 and completing in 2015 within SCE’smore » service territory through a program approved by the California Public Utility Commission (CPUC).« less
Electrical Energy Storage for Renewable Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helms, C. R.; Cho, K. J.; Ferraris, John
This program focused on development of the fundamental understanding necessary to significantly improve advanced battery and ultra-capacitor materials and systems to achieve significantly higher power and energy density on the one hand, and significantly lower cost on the other. This program spanned all the way from atomic-level theory, to new nanomaterials syntheses and characterization, to system modeling and bench-scale technology demonstration. This program not only delivered significant advancements in fundamental understanding and new materials and technology, it also showcased the power of the cross-functional, multi-disciplinary teams at UT Dallas and UT Tyler for such work. These teams are continuing thismore » work with other sources of funding from both industry and government.« less
ERIC Educational Resources Information Center
Marcus, Michael L.; Winters, Dixie L.
2004-01-01
Students from science, engineering, and technology programs should be able to work together as members of project teams to find solutions to technical problems. The exercise in this paper describes the methods actually used by a project team from a Biomedical Instrumentation Corporation in which scientists, technicians, and engineers from various…
ERIC Educational Resources Information Center
Koutsouris, George; Norwich, Brahm; Fujita, Taro; Ralph, Thomas; Adlam, Anna; Milton, Fraser
2017-01-01
This article presents an evaluation of distance technology used in a novel Lesson Study (LS) approach involving a dispersed LS team for inter-professional purposes. A typical LS model with only school teachers as team members was modified by including university-based lecturers with the school-based teachers, using video-conferencing and online…
Virtual Team Meetings: Reflections on a Class Exercise Exploring Technology Choice
ERIC Educational Resources Information Center
Bull Schaefer, Rebecca A.; Erskine, Laura
2012-01-01
Students find that choosing the appropriate technology for a virtual team meeting is not as simple as it first appears. The authors describe a class exercise used to demonstrate the benefits and drawbacks of using virtual team meetings by requiring students to replace a face-to-face meeting with a virtual meeting. The exercise challenged students'…
Reconnaissance and Autonomy for Small Robots (RASR) team: MAGIC 2010 challenge
NASA Astrophysics Data System (ADS)
Lacaze, Alberto; Murphy, Karl; Del Giorno, Mark; Corley, Katrina
2012-06-01
The Reconnaissance and Autonomy for Small Robots (RASR) team developed a system for the coordination of groups of unmanned ground vehicles (UGVs) that can execute a variety of military relevant missions in dynamic urban environments. Historically, UGV operations have been primarily performed via tele-operation, requiring at least one dedicated operator per robot, and requiring substantial real-time bandwidth to accomplish those missions. Our team goal was to develop a system that can provide long-term value to the war-fighter, utilizing MAGIC-2010 as a stepping stone. To that end, we self-imposed a set of constraints that would force us to develop technology that could readily be used by the military in the near term: • Use a relevant (deployed) platform • Use low-cost, reliable sensors • Develop an expandable and modular control system with innovative software algorithms to minimize the computing footprint required • Minimize required communications bandwidth and handle communication losses • Minimize additional power requirements to maximize battery life and mission duration
NASA Technical Reports Server (NTRS)
Hines, J.
1999-01-01
Sensors 2000! (S2K!) is a specialized, integrated projects team organized to provide focused, directed, advanced biosensor and bioinstrumentation systems technology support to NASA's spaceflight and ground-based research and development programs. Specific technology thrusts include telemetry-based sensor systems, chemical/ biological sensors, medical and physiological sensors, miniaturized instrumentation architectures, and data and signal processing systems. A concurrent objective is to promote the mutual use, application, and transition of developed technology by collaborating in academic-commercial-govemment leveraging, joint research, technology utilization and commercialization, and strategic partnering alliances. Sensors 2000! is organized around three primary program elements: Technology and Product Development, Technology infusion and Applications, and Collaborative Activities. Technology and Product Development involves development and demonstration of biosensor and biotelemetry systems for application to NASA Space Life Sciences Programs; production of fully certified spaceflight hardware and payload elements; and sensor/measurement systems development for NASA research and development activities. Technology Infusion and Applications provides technology and program agent support to identify available and applicable technologies from multiple sources for insertion into NASA's strategic enterprises and initiatives. Collaborative Activities involve leveraging of NASA technologies with those of other government agencies, academia, and industry to concurrently provide technology solutions and products of mutual benefit to participating members.
Design and testing of low sonic boom configurations and an oblique all-wing supersonic transport
NASA Technical Reports Server (NTRS)
Lee, Christopher A.
1995-01-01
From December 1991 to June 1992, applied aerodynamic research support was given to the team working on Low Sonic Boom configurations in the RAC branch at NASA Ames Research Center. This team developed two different configurations: a conventional wing-tail and a canard wing, in an effort to reduce the overpressure of shock waves and the accompanying noise which are projected to the ground from supersonic civil transport aircraft. A generic description of this sensitive technology is given.
HapHop-Physio: a computer game to support cognitive therapies in children.
Rico-Olarte, Carolina; López, Diego M; Narváez, Santiago; Farinango, Charic D; Pharow, Peter S
2017-01-01
Care and support of children with physical or mental disabilities are accompanied with serious concerns for parents, families, healthcare institutions, schools, and their communities. Recent studies and technological innovations have demonstrated the feasibility of providing therapy and rehabilitation services to children supported by computer games. The aim of this paper is to present HapHop-Physio, an innovative computer game that combines exercise with fun and learning, developed to support cognitive therapies in children. Conventional software engineering methods such as the Scrum methodology, a functionality test and a related usability test, were part of the comprehensive methodology adapted to develop HapHop-Physio. The game supports visual and auditory attention therapies, as well as visual and auditory memory activities. The game was developed by a multidisciplinary team, which was based on the Hopscotch ® platform provided by Fraunhofer Institute for Digital Media Technology IDMT Institute in Germany, and designed in collaboration with a rehabilitation clinic in Colombia. HapHop-Physio was tested and evaluated to probe its functionality and user satisfaction. The results show the development of an easy-to-use and funny game by a multidisciplinary team using state-of-the-art videogame technologies and software methodologies. Children testing the game concluded that they would like to play again while undergoing rehabilitation therapies.
Stotz, Sarah; Lee, Jung Sun
2018-01-01
The objective of this report was to describe the development process of an innovative smartphone-based electronic learning (eLearning) nutrition education program targeted to Supplemental Nutrition Assistance Program-Education-eligible individuals, entitled Food eTalk. Lessons learned from the Food eTalk development process suggest that it is critical to include all key team members from the program's inception using effective inter-team communication systems, understand the unique resources needed, budget ample time for development, and employ an iterative development and evaluation model. These lessons have implications for researchers and funding agencies in developing an innovative evidence-based eLearning nutrition education program to an increasingly technology-savvy, low-income audience. Copyright © 2016 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.
USCA, a codeveloped piece of technology, is presented to Bridges, KSC Director, by Saputo, L-3 Commu
NASA Technical Reports Server (NTRS)
1997-01-01
William Saputo, L-3 Communications, presents a new piece of technology, developed through a National Aeronautics and Space Administration (NASA) partnership with industry, to Kennedy Space Center (KSC) Director Roy Bridges, Jr. (second from left). The piece of technology being presented, the Universal Signal Conditioning Amplifier (USCA), is a key component of the codeveloped Automated Data Acquisition System (ADAS) that measures temperature, pressure and vibration at KSC's launch pads. The breakthrough technology is expected to reduce sensor setup and configuration times from hours to seconds. KSC teamed up with Florida's Technological Research and Development Authority and manufacturer L-3 Communications to produce a system that would benefit the aerospace industry and other commercial markets.
Livability performance measures to transportation plans and projects.
DOT National Transportation Integrated Search
2015-01-01
From July to September of 2014, teams from the Georgia Institute of Technology and North : Carolina State University hosted five workshops in the southeastern United States to assist : localities in developing performance measures to be used in trans...
Scientific Opportunities with ispace, a Lunar Exploration Company
NASA Astrophysics Data System (ADS)
Acierno, K. T.
2016-11-01
This presentation introduces ispace, a Tokyo-based lunar exploration company. Technology applied to the Team Hakuto Google Lunar XPRIZE mission will be described. Finally, it will discuss how developing low cost and mass efficient rovers can support scientific opportunities.
Reddy, Madhu C; Paul, Sharoda A; Abraham, Joanna; McNeese, Michael; DeFlitch, Christopher; Yen, John
2009-04-01
The purpose of this study is to identify the major challenges to coordination between emergency department (ED) teams and emergency medical services (EMS) teams. We conducted a series of focus groups involving both ED and EMS team members using a crisis scenario as the basis of the focus group discussion. We also collected organizational workflow data. We identified three major challenges to coordination between ED and EMS teams including ineffectiveness of current information and communication technologies, lack of common ground, and breakdowns in information flow. The three challenges highlight the importance of designing systems from socio-technical perspective. In particular, these inter-team coordination systems must support socio-technical issues such as awareness, context, and workflow between the two teams.
NASA Astrophysics Data System (ADS)
Brewer, Denise
The air transport industry (ATI) is a dynamic, communal, international, and intercultural environment in which the daily operations of airlines, airports, and service providers are dependent on information technology (IT). Many of the IT legacy systems are more than 30 years old, and current regulations and the globally distributed workplace have brought profound changes to the way the ATI community interacts. The purpose of the study was to identify the areas of resistance to change in the ATI community and the corresponding factors in change management requirements that minimize product development delays and lead to a successful and timely shift from legacy to open web-based systems in upgrading ATI operations. The research questions centered on product development team processes as well as the members' perceived need for acceptance of change. A qualitative case study approach rooted in complexity theory was employed using a single case of an intercultural product development team dispersed globally. Qualitative data gathered from questionnaires were organized using Nvivo software, which coded the words and themes. Once coded, themes emerged identifying the areas of resistance within the product development team. Results of follow-up interviews with team members suggests that intercultural relationship building prior to and during project execution; focus on common team goals; and, development of relationships to enhance interpersonal respect, understanding and overall communication help overcome resistance to change. Positive social change in the form of intercultural group effectiveness evidenced in increased team functioning during major project transitions is likely to result when global managers devote time to cultural understanding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Hao; Dunn, Jennifer; Pegallapati, Ambica
The Department of Energy’s (DOE) Bioenergy Technologies Office (BETO) aims to develop and deploy technologies to transform renewable biomass resources into commercially viable, high-performance biofuels, bioproducts and biopower through public and private partnerships (DOE, 2016). BETO and its national laboratory teams conduct in-depth technoeconomic assessments (TEA) of biomass feedstock supply and logistics and conversion technologies to produce biofuels, and life-cycle analysis of overall system sustainability.
Bringing space technology down to earth
NASA Technical Reports Server (NTRS)
Gray, E. Z.
1974-01-01
The direct transfer of space technology to terrestial applications is demonstrated by the use of fuel cells to augment existing electric power-generation facilities. The role of NASA's Technology Utilization Program is discussed in regard to indirect transfer of technology. The Tech Brief program for identifying and reporting innovations, the regional dissemination centers, and the Applications Teams working with other government agencies and the medical community are described. Projects discussed include the development of a lightweight breathing apparatus for firemen, a practical method for separating nonferrous metals from automobile scrap, and a rechargeable heart pacemaker.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Air Products and Chemicals
2008-09-30
An Air Products-led team successfully developed ITM Syngas technology from the concept stage to a stage where a small-scale engineering prototype was about to be built. This technology produces syngas, a gas containing carbon monoxide and hydrogen, by reacting feed gas, primarily methane and steam, with oxygen that is supplied through an ion transport membrane. An ion transport membrane operates at high temperature and oxygen ions are transported through the dense membrane's crystal lattice when an oxygen partial pressure driving force is applied. This development effort solved many significant technical challenges and successfully scaled-up key aspects of the technology tomore » prototype scale. Throughout the project life, the technology showed significant economic benefits over conventional technologies. While there are still on-going technical challenges to overcome, the progress made under the DOE-funded development project proved that the technology was viable and continued development post the DOE agreement would be warranted.« less
Stuckey, Melanie; Fulkerson, Robyn; Read, Emily; Russell-Minda, Elizabeth; Munoz, Claudio; Kleinstiver, Peter; Petrella, Robert
2011-07-01
Remote monitoring technologies are ideally suited for rural communities with limited access to health care. In an 8-week pilot study, we examined the feasibility of implementing and conducting a technology-intensive intervention in an underserviced rural setting. Our goal was to test the utility of self-monitoring technologies, physical activity, and education as tools to manage health indicators for the development of the cardiovascular complications (CVCs) of type 2 diabetes. The Diabetes and Technology for Increased Activity study was an open single-center study conducted in a community-based research setting. All 24 participants were provided with a Blackberry™ Smartphone, blood pressure monitor, glucometer, and pedometer. Smartphones transmitted measurements and survey results to the database, interfaced participants with the clinical team, and allowed for self-monitoring. Outcomes were improved body composition, improved markers of CVC risk factors, increased daily exercise, and interest in or awareness of lifestyle changes that impact health outcomes. Participants had excellent compliance for measurements, as self-monitoring provided a sense of security that improved from week 4 to week 8. Our team gained substantial insight into the operational requirements of technology-facilitated health care, including redefined hours of service; data reporting, management, and access protocols; and the utility of real-time clinical measures by remote monitoring. We developed an understanding of knowledge translation strategies as well as successful motivational and educational tools. Importantly, remote monitoring technology was found to be feasible and accepted in a rural setting. © 2011 Diabetes Technology Society.
Green Liquid Monopropellant Thruster
NASA Technical Reports Server (NTRS)
Joshi, Prakash B.
2015-01-01
Physical Sciences, Inc. (PSI), and Orbital Technologies Corporation (ORBITEC) are developing a unique chemical propulsion system for next-generation NASA science spacecraft and missions. The system is compact, lightweight, and can operate with high reliability over extended periods of time and under a wide range of thermal environments. The system uses a new storable, low-toxicity liquid monopropellant as its working fluid. In Phase I, the team demonstrated experimentally the critical ignition and combustion processes for the propellant and used the data to develop thruster design concepts. In Phase II, the team developed and demonstrated in the laboratory a proof-of-concept prototype thruster. A Phase III project is envisioned to develop a full-scale protoflight propulsion system applicable to a class of NASA missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tracy, Jenny; Jacobson, Arne; Mills, Evan
Flashlights that use LED technology have quickly emerged as the dominant source of portable lighting in Kenya. While flashlights do not normally provide a substitute for kerosene and other highly inefficient fuels, they are an important early manifestation of LED lighting in the developing world that can serve as a platform - or deterrent - to the diffusion of the technology into the broader off-grid lighting market. The lead acid batteries embedded in flashlights also represent an important source of hazardous waste, and flashlight durability is thus an important determinant of the rate of waste disposal. Low-cost LED flashlights withmore » prices from $1 to $4 are now widely available in shops and markets throughout Kenya. The increased penetration of LED technology in the flashlight market is significant, as over half of all Kenyan households report owning a flashlight (Kamfor, 2002). While this shift from conventional incandescent technology to modern LEDs may appear to be a promising development, end users that our research team interviewed expressed a number of complaints about the quality and performance of these new flashlights. This raises concerns about the interests of low-income flashlight users, and it may also indicate the onset of a broader market spoiling effect for off-grid lighting products based on LED technology (Mills and Jacobson, 2008; Lighting Africa, 2007). The quality of low-cost LED flashlights can contribute to market spoiling because these products appear to represent the first contact that most Kenyans have with LED technology. In this report, our team uses interviews with 46 end users of flashlights to collect information about their experiences, perceptions, and preferences. We focus especially on highlighting common complaints from respondents about the flashlights that they have used, as well as on noting the features that they indicated were important when evaluating the quality of a flashlight. In previous laboratory tests, researchers from our team found a wide range of quality and performance among battery powered LED lights (Granderson, et al. 2008).« less
NASA Technical Reports Server (NTRS)
Hurlbert, Eric A.; Whitley, Ryan; Klem, Mark D.; Johnson, Wesley; Alexander, Leslie; D'Aversa, Emanuela; Ruault, Jean-Marc; Manfletti, Chiara; Caruana, Jean-Noel; Ueno, Hiroshi;
2016-01-01
As part of the Global Exploration Roadmap (GER), the International Space Exploration Coordination Group (ISECG) formed two technology gap assessment teams to evaluate topic discipline areas that had not been worked at an international level to date. The participating agencies were ASI, CNES, DLR, ESA, JAXA, and NASA. Accordingly, the ISECG Technology Working Group (TWG) recommended two discipline areas based on Critical Technology Needs reflected within the GER Technology Development Map (GTDM): Dust Mitigation and LOX/Methane Propulsion. LOx/Methane propulsion systems are enabling for future human missions Mars by significantly reducing the landed mass of the Mars ascent stage through the use of in-situ propellant production, for improving common fluids for life support, power and propulion thus allowing for diverse redundancy, for eliminating the corrosive and toxic propellants thereby improving surface operations and resusabilty, and for inceasing the performance of propulsion systems. The goals and objectives of the international team are to determine the gaps in technology that must be closed for LOx/Methane to be used in human exploration missions in cis-lunar, lunar, and Mars mission applications. An emphasis is placed on near term lunar lander applications with extensibility to Mars. Each agency provided a status of the substantial amount of Lox/Methane propulsion system development to date and their inputs on the gaps in the technology that are remaining. The gaps, which are now opportunities for collaboration, are then discussed.
Understanding the Effect of Audio Communication Delay on Distributed Team Interaction
2013-06-01
means for members to socialize and learn about each other, engenders development cooperative relationships, and lays a foundation for future interaction...length will result in increases in task completion time and mental workload. 3. Audiovisual technology will moderate the effect of communication...than audio alone. 4. Audiovisual technology will moderate the effect of communication delays such that task completion time and mental workload will
Knowledge Management: A Model to Enhance Combatant Command Effectiveness
2011-02-15
implementing the change that is required to achieve the knowledge management vision.43 The Chief Knowledge Management Officer ( KMO ) is overall responsible for...the processes, people/culture and technology in the organization. The Chief KMO develops policy and leads the organization’s knowledge management...integrates team. Reporting directly to the Chief KMO is the Chief Process Manager, Chief Learning Manager and Chief Technology Officer
Advanced Mirror Technology Development (AMTD) for Very Large Space Telescopes
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2013-01-01
Accomplishments include: Assembled outstanding team from academia, industry and government with expertise in science and space telescope engineering. Derived engineering specifications for monolithic primary mirror from science measurement needs & implementation constraints. Pursuing long-term strategy to mature technologies necessary to enable future large aperture space telescopes. Successfully demonstrated capability to make 0.5 m deep mirror substrate and polish it to UVOIR traceable figure specification.
ecoSPEARS License Signing with Kelvin Manning
2017-12-19
NASA Kennedy Space Center's Associate Director Kelvin Manning, center, signs a license agreement with the President and CEO of ecoSPEARS, which allows the company to commercially sell a soil remediation technology developed by a research team at Kennedy. The technology, known as Sorbent Polymer Extraction And Remediation System, is designed to capture and remove polychlorinated biphenyls (PCBs) from contaminated sediments in waterways and wetlands.
Mark E. Kubiske; Anita R. Foss; Andrew J. Burton; Wendy S. Jones; Keith F. Lewin; John Nagy; Kurt S. Pregitzer; Donald R. Zak; David F. Karnosky
2015-01-01
This publication is an additional source of metadata for data stored and publicly available in the U.S. Department of Agriculture, Forest Service Research Data Archive. Here, we document the development, design, management, and operation of the experiment. In 1998, a team of scientists from the U.S. Forest Service, Department of Energy (DOE), Michigan Technological...
NASA Astrophysics Data System (ADS)
Sicardi-Segade, A.; Campos-Mejía, A.; Solano, C.
2016-09-01
Innovation through science and technology will be essential to solve important challenges humanity will have to face in the years to come, regarding clean energies, food quality, medicine, communications, etc. To deal with these important issues, it is necessary to promote STEM (Science, Technology, Engineering and Mathematics) education in children. In this work, we present the results of the strategies that we have implemented to increase the elementary and middle school students interest in science and technology by means of activities that allow them to use and develop their creativity, team work, critical thinking, and the use of the scientific method and the engineering design process.
1997-08-22
KENNEDY SPACE CENTER, FLA. -- William Saputo, L-3 Communications, presents a new piece of technology, developed through a National Aeronautics and Space Administration (NASA) partnership with industry, to Kennedy Space Center (KSC) Director Roy Bridges, Jr. (second from left). The piece of technology being presented, the Universal Signal Conditioning Amplifier (USCA), is a key component of the codeveloped Automated Data Acquisition System (ADAS) that measures temperature, pressure and vibration at KSC's launch pads. The breakthrough technology is expected to reduce sensor setup and configuration times from hours to seconds. KSC teamed up with Florida's Technological Research and Development Authority and manufacturer L-3 Communications to produce a system that would benefit the aerospace industry and other commercial markets
NASA Technical Reports Server (NTRS)
Venkatapathy, Ethiraj; Ellerby, Don; Gage, Peter
2017-01-01
Heat-shield for Extreme Entry Environment Technology (HEEET) has been in development since 2014 with the goal of enabling missions to Venus, Saturn and other high-speed sample return missions. It is offered as a new technology and incentivized for mission use in the New Frontiers 4 AO by NASA. The current plans are to mature the technology to TRL 6 by FY18. The HEEET Team has been working closely with multiple NF-4 proposals to Venus, Saturn and has been supporting recent Ice-Giants mission studies. This presentation will provide progress made to date and the plans for development in FY18.
Replicated x-ray optics for space applications
NASA Astrophysics Data System (ADS)
Hudec, René; Pína, Ladislav; Inneman, Adolf
2017-11-01
We report on the program of design and development of X-ray optics for space applications in the Czech Republic. Having more than 30 years background in X-ray optics development for space applications (for use in astronomical X-ray telescopes onboard spacecrafts, before 1989 mostly for Soviet and East European INTERKOSMOS program), we focus nowadays on novel technologies and approaches, thin shell replicated mirrors, as well as studies of light-weight mirrors based on innovative materials such as ceramics. The collaboration includes teams from the Academy of Sciences, Universities, and industry. We will describe and discuss both the history of the development of Xray optics in the Czech Republic and the developed technologies and approaches (with focus on replication technology) as well as recent activities and developments including our participation on the ESA XEUS mirror technology development based on the Agreement between ESA and Czech Government.
NASA Astrophysics Data System (ADS)
Hodges, Jeanelle Bland
1999-11-01
The purpose of the study was to determine factors associated with staff development processes and the creation of innovative science courses by higher education faculty who have participated in a model staff development project. The staff development program was designed for college faculty interested in creating interdisciplinary, constructivist-based science, mathematics, or engineering courses designed for non-majors. The program includes workshops on incorporating constructivist pedagogy, alternative assessment, and technology into interdisciplinary courses. Staff development interventions used in the program include grant opportunities, distribution of resource materials, and peer mentoring. University teams attending the workshops are comprised of faculty from the sciences, mathematics, or engineering, as well as education, and administration. A purposeful and convenient sample of three university teams were subjects for this qualitative study. Each team had attended a NASA Opportunities for Visionary Academics (NOVA) workshop, received funding for course development, and offered innovative courses. Five questions were addressed in this study: (a) What methods were used by faculty teams in planning the courses? (b) What changes occurred in existing science courses? (c) What factors affected the team collaboration process? (d) What personal characteristics of faculty members were important in successful course development? and (e) What barriers existed for faculty in the course development process? Data was collected at each site through individual faculty interviews (N = 11), student focus group interviews (N = 15), and classroom observations. Secondary data included original funding proposals. The NOVA staff development model incorporated effective K--12 interventions with higher education interventions. Analysis of data revealed that there were four factors of staff development processes that were most beneficial. First, the team collaborative processes were crucial in successful course development. Second, the use of instructional grants to fund course development gave credibility to the faculty involved in course development. Third, the faculty members taking the lead in creating teams actively sought out faculty members in the sciences who had previous experience teaching at the K--12 level or in informal education. In addition, college environments were found to have an impact on the success of the innovative course development projects.
Temporal Investment Strategy to Enable JPL Future Space Missions
NASA Technical Reports Server (NTRS)
Lincoln, William P.; Hua, Hook; Weisbin, Charles R.
2006-01-01
The Jet Propulsion Laboratory (JPL) formulates and conducts deep space missions for NASA (the National Aeronautics and Space Administration). The Chief Technologist of JPL has the responsibility for strategic planning of the laboratory's advanced technology program to assure that the required technological capabilities to enable future JPL deep space missions are ready as needed; as such he is responsible for the development of a Strategic Plan. As part of the planning effort, he has supported the development of a structured approach to technology prioritization based upon the work of the START (Strategic Assessment of Risk and Technology) team. A major innovation reported here is the addition of a temporal model that supports scheduling of technology development as a function of time. The JPL Strategic Technology Plan divides the required capabilities into 13 strategic themes. The results reported here represent the analysis of an initial seven.