Sample records for technology division progress

  1. 10. Freiburger Symposium 2011 der SCG-Division Industrielle Chemie Technology Progress, Success Key for our Production Sites.

    PubMed

    Naef, Olivier

    2012-01-01

    This short paper presents the abstracts of the different presentations during 10. Freiburger Symposium 2011 der SCG-Division Industrielle Chemie: Technology Progress, Success key for our production sites held Thursday and Friday, September 29 and 30, 2011 at the Ecole d'ingénieurs et d'architectes de Fribourg (Switzerland).

  2. Nuclear Technology Division annual progress report for period ending June 30, 1972

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1972-10-01

    This document is a report of progress on technical programs of the Nuclear Technology,Division of Aerojet Nuclear Company for FY 72 ending June 30, 1972. It contains abstracts or expansions of abstracts of papers which have been published within the year. In these cases, preprints or reprints of the articles available. Results of work in progress are also reported; since this work is of a preliminary nature, the authors should be contacted before including any reference to these works in other publications.

  3. Physics division. Progress report, January 1, 1995--December 31, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, M.; Bacon, D.S.; Aine, C.J.

    1997-10-01

    This issue of the Physics Division Progress Report describes progress and achievements in Physics Division research during the period January 1, 1995-December 31, 1996. The report covers the five main areas of experimental research and development in which Physics Division serves the needs of Los Alamos National Laboratory and the nation in applied and basic sciences: (1) biophysics, (2) hydrodynamic physics, (3) neutron science and technology, (4) plasma physics, and (5) subatomic physics. Included in this report are a message from the Division Director, the Physics Division mission statement, an organizational chart, descriptions of the research areas of the fivemore » groups in the Division, selected research highlights, project descriptions, the Division staffing and funding levels for FY95-FY97, and a list of publications and presentations.« less

  4. Health physics division annual progress report for period ending June 30, 1977

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-07-01

    This annual progress report follows, as in the past, the organizational structure of the Health Physics Division. Each part is a report of work done by a section of the division: Assessment and Technology Section (Part I), headed by H.W. Dickson; Biological and Radiation Physics Section (Part II), H.A. Wright; Chemical Physics and Spectroscopy Section (Part III), W.R. Garrett; Emergency Technology Section (Part IV), C.V. Chester, Medical Physics and Internal Dosimetry Section (Part V), K.E. Cowser; and the Analytic Dosimetry and Education Group (Part VI), J.E. Turner.

  5. Solid State Division progress report for period ending March 31, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, P.H.; Hinton, L.W.

    1997-12-01

    This report covers research progress in the Solid State Division from April 1, 1995, through March 31, 1997. During this period, the division conducted a broad, interdisciplinary materials research program in support of Department of Energy science and technology missions. The report includes brief summaries of research activities in condensed matter theory, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. An addendum includes listings of division publications and professional activities.

  6. RESEARCH AND TECHNOLOGY DIVISION REPORT FOR 1966.

    ERIC Educational Resources Information Center

    BAUM, C.

    THE WORK OF THE RESEARCH AND TECHNOLOGY DIVISION OF SYSTEM DEVELOPMENT CORPORATION DURING 1966 IS REPORTED. THE PROGRESS OF VARIOUS STUDIES AND ACTIVITIES DISCUSSED IN THE REPORT WERE ADVANCED PROGRAMING, INFORMATION PROCESSING RESEARCH, PROGRAMING SYSTEMS, DATA BASE SYSTEMS. LANGUAGE PROCESSING AND RETRIEVAL, BEHAVIORAL GAMING AND SIMULATION…

  7. Lewis materials research and technology: An overview

    NASA Technical Reports Server (NTRS)

    Grisaffe, Salvatore J.

    1987-01-01

    The Materials Division at the Lewis Research Center has a long record of contributions to both materials and process technology as well as to the understanding of key high-temperature phenomena. An overview of the division staff, facilities, past history, recent progress, and future interests is presented.

  8. NASA. Lewis Research Center materials research and technology: An overview

    NASA Technical Reports Server (NTRS)

    Grisaffe, Salvatore J.

    1990-01-01

    The Materials Division at the Lewis Research Center has a long record of contributions to both materials and process technology as well as to the understanding of key high-temperature phenomena. This paper overviews the division staff, facilities, past history, recent progress, and future interests.

  9. Metals and Ceramics Division progress report for period ending December 31, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, D.F.; Weir, J.R. Jr.

    1993-04-01

    This report provides a brief overview of the activities and accomplishments of the division, whose purpose is to provide technical support, primarily in the area of high-temperature materials, for the various technologies being developed by US DOE. Activities range from basic research to industrial research and technology transfer. The division (and the report) is divided into the following: Engineering materials, high-temperature materials, materials science, ceramics, nuclear fuel materials, program activities, collaborative research facilities and technology transfer, and educational programs.

  10. Technology Development, Evaluation, and Application (TDEA) FY 2001 Progress Report Environment, Safety, and Health (ESH) Division

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L.G. Hoffman; K. Alvar; T. Buhl

    2002-05-01

    This progress report presents the results of 11 projects funded ($500K) in FY01 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division (ESH). Five projects fit into the Health Physics discipline, 5 projects are environmental science and one is industrial hygiene/safety. As a result of their TDEA-funded projects, investigators have published sixteen papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplement funds and in-kind contributions, such as staff time, instrument use, and workspace, were also provided to TDEA-funded projects by organizations external to ESH Divisions.

  11. Chemical Technology Division: Progress report, January 1, 1987--June 30, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-02-01

    This progress report summarizes the research and development efforts conducted in the Chemical Technology Division (Chem Tech) during the period January 1, 1987, to June 30, 1988. The following major areas are covered: waste management and environmental programs, radiochemical and reactor engineering programs, basic science and technology, Nuclear Regulatory Commission programs, and administrative resources and facilities. The Administrative Summary, an appendix, presents a comprehensive listing of publications, oral presentations, awards and recognitions, and patents of Chem Tech staff members during this period. A staffing level and financial summary and lists of seminars and Chem Tech consultants for the period aremore » also included.« less

  12. Metals and Ceramics Division progress report for period ending December 31, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, D.F.; Bradley, R.A.; Weir, J.R. Jr.

    1994-07-01

    This report provides an overview of activities and accomplishsments of the division from October 1992 through December 1993; the division is organized to provide technical support, mainly in the area of high-temperature materials, for technologies being developed by DOE. Activities span the range from basic research to industrial interactions (cooperative research and technology transfer). Sections 1-5 describe the different functional groups (engineering materials, high-temperature materials, materials science, ceramics, nuclear fuel materials). Sect. 6 provides an alternative view of the division in terms of the major programs, most of which cross group lines. Sect. 7 summarizes external interactions including cooperative Rmore » and D programs and technology transfer functions. Finally, Sect. 8 briefly describes the division`s involvement in educational activities. Several organizational changes were effected during this period.« less

  13. Metals and Ceramics Division progress report for period ending June 30, 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brogden, I.

    1984-09-01

    This progress report covers the research and development activities of the Metals and Ceramics Division from January 1, 1983, through June 30, 1984. The format of the report follows the organizational structure of the division. Short summaries of technical work in progress in the various experimental groups are presented in six parts. Chapter 1 deals with the research and development activities of the Engineering Materials Section, Chapter 2 with the Processing Science and Technology Section, Chapter 3 with the Materials Science Section, Chapter 4 with Project Activities, Chapter 5 with Specialized Research Facilities and Equipment, and Chapter 6 with Miscellaneousmore » Activities.« less

  14. Multichannel demultiplexer/demodulator technologies for future satellite communication systems

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Budinger, James M.; Staples, Edward J.; Abramovitz, Irwin; Courtois, Hector A.

    1992-01-01

    NASA-Lewis' Space Electronics Div. supports ongoing research in advanced satellite communication architectures, onboard processing, and technology development. Recent studies indicate that meshed VSAT (very small aperture terminal) satellite communication networks using FDMA (frequency division multiple access) uplinks and TDMA (time division multiplexed) downlinks are required to meet future communication needs. One of the critical advancements in such a satellite communication network is the multichannel demultiplexer/demodulator (MCDD). The progress is described which was made in MCDD development using either acousto-optical, optical, or digital technologies.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The goals and accomplishments of the Energy Division of Oak Ridge National Laboratory are described in this annual progress report for Fiscal Year (FY) 1988. The Energy Division is a multidisciplinary research organization committed to (1) increasing the knowledge and understanding of the way society makes choices in energy use and energy-using technologies, (2) improving society's understanding of the environmental implications of changes in energy technology, and (3) improving and developing new energy-efficient technologies. The Energy Division's programmatic activities focus on four major areas: (1) analysis and assessment, (2) transportation and decision systems research, (3) technology research and development formore » improving the efficiency of energy and end-use technologies, and (4) electric power systems. The Division's total expenditures in FY 1988 were $44.3 million. The work is supported by the US Department of Energy, US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 139 staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics.« less

  16. Multiple access techniques and spectrum utilization of the GLOBALSTAR mobile satellite system

    NASA Astrophysics Data System (ADS)

    Louie, Ming; Cohen, Michel; Rouffet, Denis; Gilhousen, Klein S.

    The GLOBALSTAR System is a Low Earth Orbit (LEO) satellite-based mobile communications system that is interoperable with the current and future Public Land Mobile Network (PLMN). The GLOBALSTAR System concept is based upon technological advancement in two key areas: (1) the advancement in LEO satellite technology; (2) the advancement in cellular telephone technology, including the commercial applications of Code Division Multiple Access (CDMA) technologies, and of the most recent progress in Time Division Multiple Access technologies. The GLOBALSTAR System uses elements of CDMA, Frequency Division Multiple Access (FDMA), and Time Division Multiple Access (TDMA) technology, combining with satellite Multiple Beam Antenna (MBA) technology, to arrive at one of the most efficient modulation and multiple access system ever proposed for a satellite communications system. The technology used in GLOBALSTAR exploits the following techniques in obtaining high spectral efficiency and affordable cost per channel, with minimum coordination among different systems: power control, in open and closed loops, voice activation, spot beam satellite antenna for frequency reuse, weighted satellite antenna gain, multiple satellite coverage, and handoff between satellites. The GLOBALSTAR system design will use the following frequency bands: 1610-1626.5 MHz for up-link and 2483.5-2500 MHz for down-link.

  17. Environmental Sciences Division annual progress report for period ending September 30, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-04-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during the period October 1, 1990, through September 30, 1991. The report is structured to provide descriptions of current activities and accomplishments in each of the division`s major organizational units. Following the sections describing the organizational units is a section devoted to lists of information necessary to convey the scope of the work in the division. The Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) conducts environmental research and analyses associated with both energy technology development and themore » interactions between people and the environment. The division engages in basic and applied research for a diverse list of sponsors. While the US Department of Energy (DOE) is the primary sponsor ESD staff also perform research for other federal agencies, state agencies, and private industry. The division works collaboratively with federal agencies, universities, and private organizations in achieving its research objectives and hosts a large number of visiting investigators from these organizations. Given the diverse interdisciplinary specialization of its staff, ESD provides technical expertise on complex environmental problems and renders technical leadership for major environmental issues of national and local concern. This progress report highlights many of ESD`s accomplishment in these and other areas in FY 1991.« less

  18. Health and Safety Research Division progress report, April 1, 1981-September 30, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-02-01

    Research progress for the reporting period is briefly summarized for the following sections: (1) health studies, (2) technology assessments, (3) biological and radiation physics, (4) chemical physics, (5) Office of Risk Analysis, and (6) health and environmental risk and analysis. (ACR)

  19. Technology Development, Evaluation, and Application (TDEA) FY 1998 Progress Report Environment, Safety, and Health (ESH) Division

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larry G. Hoffman; Kenneth Alvar; Thomas Buhl

    1999-06-01

    This progress report presents the results of 10 projects funded ($504K) in FY98 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division. Nine projects are new for this year; two projects were completed in their third and final TDEA-funded year. As a result of their TDEA-funded projects, investigators have published 19 papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplemental funds and in-kind contributions, such as staff time, instrument use, and work space were also provided to the TDEA-funded projects by organizations external to ESHmore » Division. Products generated from the projects funded in FY98 included a new extremity dosimeter that replaced the previously used finger-ring dosimeters, a light and easy-to-use detector to measure energy deposited by neutron interactions, and a device that will allow workers to determine the severity of a hazard.« less

  20. Health and Safety Research Division. Progress report, October 1, 1979-March 31, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-08-01

    Research progress for the period October 1, 1979 through March 31, 1981 is reported. Research conducted by the Office of Integrated Assessments and Policy Analysis, Health Studies Section, Technology Assessments Section, Biological and Radiation Physics Section, and Chemical Physics Section is summarized. (ACR)

  1. Environmental Sciences Division annual progress report for period ending September 30, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-04-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during the period October 1, 1990, through September 30, 1991. The report is structured to provide descriptions of current activities and accomplishments in each of the division's major organizational units. Following the sections describing the organizational units is a section devoted to lists of information necessary to convey the scope of the work in the division. The Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) conducts environmental research and analyses associated with both energy technology development and themore » interactions between people and the environment. The division engages in basic and applied research for a diverse list of sponsors. While the US Department of Energy (DOE) is the primary sponsor ESD staff also perform research for other federal agencies, state agencies, and private industry. The division works collaboratively with federal agencies, universities, and private organizations in achieving its research objectives and hosts a large number of visiting investigators from these organizations. Given the diverse interdisciplinary specialization of its staff, ESD provides technical expertise on complex environmental problems and renders technical leadership for major environmental issues of national and local concern. This progress report highlights many of ESD's accomplishment in these and other areas in FY 1991.« less

  2. Health and Safety Research Division progress report, October 1, 1988--March 31, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-09-01

    The Health and Safety Research Division (HASRD) of the Oak Ridge National Laboratory (ORNL) continues to maintain an outstanding program of basic and applied research displaying a high level of creativity and achievement as documented by awards, publications, professional service, and successful completion of variety of projects. Our focus is on human health and the scientific basis for measurement and assessment of health-related impacts of energy technologies. It is our custom to publish a division progress report every 18 months that summarizes our programmatic progress and other measures of achievement over the reporting period. Since it is not feasible tomore » summarize in detail all of our work over the period covered by this report (October 1, 1988, to March 30, 1990), we intend this document to point the way to the expensive open literature that documents our findings. During the reporting period the Division continued to maintain strong programs in its traditional areas of R D, but also achieved noteworthy progress in other areas. Much of the Division's work on site characterization, development of new field instruments, compilation of data bases, and methodology development fits into this initiative. Other new work in tunneling microscopy in support of DOE's Human Genome Program and the comprehensive R D work related to surface-enhanced Raman spectroscopy have attained new and exciting results. These examples of our progress and numerous other activities are highlighted in this report.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, Reinhold C.

    This is the first formal progress report issued by the ORNL Life Sciences Division. It covers the period from February 1997 through December 1998, which has been critical in the formation of our new division. The legacy of 50 years of excellence in biological research at ORNL has been an important driver for everyone in the division to do their part so that this new research division can realize the potential it has to make seminal contributions to the life sciences for years to come. This reporting period is characterized by intense assessment and planning efforts. They included thorough scrutinymore » of our strengths and weaknesses, analyses of our situation with respect to comparative research organizations, and identification of major thrust areas leading to core research efforts that take advantage of our special facilities and expertise. Our goal is to develop significant research and development (R&D) programs in selected important areas to which we can make significant contributions by combining our distinctive expertise and resources in the biological sciences with those in the physical, engineering, and computational sciences. Significant facilities in mouse genomics, mass spectrometry, neutron science, bioanalytical technologies, and high performance computing are critical to the success of our programs. Research and development efforts in the division are organized in six sections. These cluster into two broad areas of R&D: systems biology and technology applications. The systems biology part of the division encompasses our core biological research programs. It includes the Mammalian Genetics and Development Section, the Biochemistry and Biophysics Section, and the Computational Biosciences Section. The technology applications part of the division encompasses the Assessment Technology Section, the Environmental Technology Section, and the Toxicology and Risk Analysis Section. These sections are the stewards of the division's core competencies. The common mission of the division is to advance science and technology to understand complex biological systems and their relationship with human health and the environment.« less

  4. Fusion Energy Division progress report, 1 January 1990--31 December 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1994-03-01

    The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from componentsmore » for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.« less

  5. Long life technology work at Rockwell International Space Division

    NASA Technical Reports Server (NTRS)

    Huzel, D. K.

    1974-01-01

    This paper presents highlights of long-life technology oriented work performed at the Space Division of Rockwell International Corporation under contract to NASA. This effort included evaluation of Saturn V launch vehicle mechanical and electromechanical components for potential extended life capabilities, endurance tests, and accelerated aging experiments. A major aspect was evaluation of the components at the subassembly level (i.e., at the interface between moving surfaces) through in-depth wear analyses and assessments. Although some of this work is still in progress, preliminary conclusions are drawn and presented, together with the rationale for each. The paper concludes with a summary of the effort still remaining.

  6. LANSCE Activity Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amy Robinson; Audrey Archuleta; Barbara Maes

    1999-02-01

    The Los Alamos Neutron Science Center Activity Report describes scientific and technological progress and achievements in LANSCE Division during the period of 1995 to 1998. This report includes a message from the Division Director, an overview of LANSCE, sponsor overviews, research highlights, advanced projects and facility upgrades achievements, experimental and user program accomplishments, news and events, and a list of publications. The research highlights cover the areas of condensed-matter science and engineering, accelerator science, nuclear science, and radiography. This report also contains a compact disk that includes an overview, the Activity Report itself, LANSCE operations progress reports for 1996 andmore » 1997, experiment reports from LANSCE users, as well as a search capability.« less

  7. Publications in biomedical and environmental sciences programs, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, J.B.

    1982-07-01

    This bibliography contains 698 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1981. There are 520 references to articles published in journals and books and 178 references to reports. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly, bimonthly, and quarterly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically bymore » author. The sorting by divisions separates the references by subject area in a simple way. The divisions represented in the order that they appear in the bibliography are Analytical Chemistry, Biology, Chemical Technology, Information R and D, Health and Safety Research, Instrumentation and Controls, Computer Sciences, Energy, Engineering Technology, Solid State, Central Management, Operations, and Environmental Sciences. Indexes are provided by author, title, and journal reference.« less

  8. Environmental Decision Support with Consistent Metrics

    EPA Science Inventory

    One of the most effective ways to pursue environmental progress is through the use of consistent metrics within a decision making framework. The US Environmental Protection Agency’s Sustainable Technology Division has developed TRACI, the Tool for the Reduction and Assessment of...

  9. Analytical Chemistry Division annual progress report for period ending December 31, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Analytical Chemistry Division of Oak Ridge National Laboratory (ORNL) is a large and diversified organization. As such, it serves a multitude of functions for a clientele that exists both in and outside of ORNL. These functions fall into the following general categories: (1) Analytical Research, Development, and Implementation. The division maintains a program to conceptualize, investigate, develop, assess, improve, and implement advanced technology for chemical and physicochemical measurements. Emphasis is on problems and needs identified with ORNL and Department of Energy (DOE) programs; however, attention is also given to advancing the analytical sciences themselves. (2) Programmatic Research, Development, andmore » Utilization. The division carries out a wide variety of chemical work that typically involves analytical research and/or development plus the utilization of analytical capabilities to expedite programmatic interests. (3) Technical Support. The division performs chemical and physicochemical analyses of virtually all types. The Analytical Chemistry Division is organized into four major sections, each of which may carry out any of the three types of work mentioned above. Chapters 1 through 4 of this report highlight progress within the four sections during the period January 1 to December 31, 1988. A brief discussion of the division's role in an especially important environmental program is given in Chapter 5. Information about quality assurance, safety, and training programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8.« less

  10. Gendered Patterns in Computing Work in the Late 1990s.

    ERIC Educational Resources Information Center

    Panteli, Niki; Stack, Janet; Ramsay, Harvie

    2001-01-01

    Data on information technology employment in Britain and interviews in four companies depicted experiences of women in computing. Gender disparities in numbers and distribution, salaries, division of labor, and career progression were found. Masculine values in computing culture, gender differences in working style, and attitudes toward computers…

  11. LCACCESS: MAKING LIFE CYCLE DATA AVAILABLE VIA THE INTERNET(SYSTEMS ANLAYSIS BRANCH, SUSTAINABLE TECHNOLOGY DIVISION, NRMRL)

    EPA Science Inventory

    The lack of readily available, quality environmental life cycle inventory (LCI) data is often a barrier to manufacturers, among others, for incorporating life cycle considerations into their decision-making process. While much progress has been made on standardizing and improving...

  12. JPRS Report, Science & Technology, USSR: Science & Technology Policy

    DTIC Science & Technology

    1988-11-07

    progressive taxation to the payments to the centralized fund and to the reserves of the ministry. In addition to deductions from the accounting profit... taxation ." As we see, the decree in no uncertain terms asserted the priority of the state right to the use of inventions. A compulsory procedure of its...corresponding prob- lems and tasks, requiring the receptivity and elasticity of the international socialist division of labor with respect to the new

  13. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: July--September 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jubin, R.T.

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July--September 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within nine major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Biotechnology, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnologymore » Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information.« less

  14. The NASA Electric Propulsion Program

    NASA Technical Reports Server (NTRS)

    Byers, David C.; Wasel, Robert A.

    1987-01-01

    The NASA OAST Propulsion, Power and Energy Division supports electric propulsion for a broad class of missions. Concepts with potential to significantly benefit or enable space exploration and exploitation are identified and advanced toward applications in the near to far term. Recent program progress in mission/system analyses and in electrothermal, ion, and electromagnetic technologies are summarized.

  15. Reduced cost alternatives to premise wiring using ATM and microcellular technologies

    NASA Technical Reports Server (NTRS)

    Gejji, Raghvendra R.

    1993-01-01

    The cost of premises wiring keeps increasing due to personnel moves, new equipment, capacity upgrades etc. It would be desirable to have a wireless interface from the workstations to the fixed network, so as to minimize the wiring changes needed. New technologies such as microcellular personal communication systems are promising to bring down the cost of wireless communication. Another promising technology is Code Division Multiple Access (CDMA), which could dramatically increase the bandwidth available for wireless connections. In addition, Asynchronous Transfer Mode (ATM) technology is emerging as a technique for integrated management of voice, data, and video traffic on a single network. The focus of this investigation will be to assess the future utility of these new technologies for reducing the premise wiring cost at KSC. One of the issues to be studied is the cost comparison of 'old' versus 'new,' especially as time and technology progress. An additional issue for closer study is a feasible time-line for progress in technological capability.

  16. Biomedical Computing Technology Information Center: introduction and report of early progress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maskewitz, B.F.; Henne, R.L.; McClain, W.J.

    1976-01-01

    In July 1975, the Biomedical Computing Technology Information Center (BCTIC) was established by the Division of Biomedical and Environmental Research of the U. S. Energy Research and Development Administration (ERDA) at the Oak Ridge National Laboratory. BCTIC collects, organizes, evaluates, and disseminates information on computing technology pertinent to biomedicine, providing needed routes of communication between installations and serving as a clearinghouse for the exchange of biomedical computing software, data, and interface designs. This paper presents BCTIC's functions and early progress to the MUMPS Users' Group in order to stimulate further discussion and cooperation between the two organizations. (BCTIC services aremore » available to its sponsors and their contractors and to any individual/group willing to participate in mutual exchange.) 1 figure.« less

  17. Chemistry Division annual progress report for period ending April 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poutsma, M.L.; Ferris, L.M.; Mesmer, R.E.

    1993-08-01

    The Chemistry Division conducts basic and applied chemical research on projects important to DOE`s missions in sciences, energy technologies, advanced materials, and waste management/environmental restoration; it also conducts complementary research for other sponsors. The research are arranged according to: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, chemistry of advanced inorganic materials, structure and dynamics of advanced polymeric materials, chemistry of transuranium elements and compounds, chemical and structural principles in solvent extraction, surface science related to heterogeneous catalysis, photolytic transformations of hazardous organics, DNA sequencing and mapping, and special topics.

  18. Environmental Sciences Division annual progress report for period ending September 30, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-04-01

    The Environmental Sciences Division (ESD) of Oak Ridge National Laboratory (ORNL) conducts research on the environmental aspects of existing and emerging energy systems and applies this information to ensure that technology development and energy use are consistent with national environmental health and safety goals. Offering an interdisciplinary resource of staff and facilities to address complex environmental problems, the division is currently providing technical leadership for major environmental issues of national concern: (1) acidic deposition and related environmental effects, (2) effects of increasing concentrations of atmospheric CO{sub 2} and the resulting climatic changes to ecosystems and natural and physical resources, (3)more » hazardous chemical and radioactive waste disposal and remediation research and development, and (4) development of commercial biomass energy production systems. This progress report outlines ESD's accomplishments in these and other areas in FY 1990. Individual reports are processed separately for the data bases in the following areas: ecosystem studies; environmental analyses; environmental toxicology; geosciences; technical and administrative support; biofuels feedstock development program; carbon dioxide information analysis and research program; and environmental waste program.« less

  19. Microgravity Science and Applications. Program Tasks and Bibliography for FY 1993

    NASA Technical Reports Server (NTRS)

    1994-01-01

    An annual report published by the Microgravity Science and Applications Division (MSAD) of NASA is presented. It represents a compilation of the Division's currently-funded ground, flight and Advanced Technology Development tasks. An overview and progress report for these tasks, including progress reports by principal investigators selected from the academic, industry and government communities, are provided. The document includes a listing of new bibliographic data provided by the principal investigators to reflect the dissemination of research data during FY 1993 via publications and presentations. The document also includes division research metrics and an index of the funded investigators. The document contains three sections and three appendices: Section 1 includes an introduction and metrics data, Section 2 is a compilation of the task reports in an order representative of its ground, flight or ATD status and the science discipline it represents, and Section 3 is the bibliography. The three appendices, in the order of presentation, are: Appendix A - a microgravity science acronym list, Appendix B - a list of guest investigators associated with a biotechnology task, and Appendix C - an index of the currently funded principal investigators.

  20. Health and Safety Research Division: Progress report, October 1, 1985-March 31, 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, P.J.

    1987-09-01

    This report summarizes the progress in our programs for the period October 1, 1985, through March 31, 1987. The division's presentations and publications represented important contributions on the forefronts of many fields. Eleven invention disclosures were filed, two patent applications submitted, and one patent issued. The company's transfers new technologies to the private sector more efficiently than in the past. The division's responsibilities to DOE under the Uranium Mill Tailings Remedial Action (UMTRA) program includes inclusion recommendations for 3100 properties. The nuclear medicine program developed new radiopharmaceuticals and radionuclide generators through clinical trials with some of our medical cooperatives. Twomore » major collaborative indoor air quality studies and a large epidemiological study of drinking water quality and human health were completed. ORNL's first scanning tunneling microscope (STM) has achieved single atom resolution and has produced some of the world's best images of single atoms on the surface of a silicon crystal. The Biological and Radiation Physics Section, designed and constructed a soft x-ray spectrometer which has exhibited a measuring efficiency that is 10,000 times higher than other equipment. 1164 refs.« less

  1. Biology Division progress report, October 1, 1991--September 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, F.C.; Cook, J.S.

    This Progress Report summarizes the research endeavors of the Biology Division of the Oak Ridge National Laboratory during the period October 1, 1991, through September 30, 1993. The report is structured to provide descriptions of current activities and accomplishments in each of the Division`s major organizational units. Lists of information to convey the entire scope of the Division`s activities are compiled at the end of the report.

  2. Instrumentation and Controls Division progress report for the period July 1, 1986 to June 30, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klobe, L.E.

    1988-12-01

    The Instrumentation and Controls (IandC) Division of Oak Ridge National Laboratory (ORNL) performs basic and applied instrumentation and controls research, development and design engineering, specialized instrument design and fabrication, and maintenance services for instruments, electronics, and computers. The IandC Division is one of the largest RandD organizations of its type among government laboratories, and it exists as the result of an organizational strategy to integrate ORNL's instrumentation and controls-related disciplines into one dedicated functional organization to increase the Laboratory's expertise and capabilities in these rapidly expanding, innovative areas of technology. The Division participates in the programs and projects of ORNLmore » by applying its expertise and capabilities in concert with other divisions to perform basic research and mission-oriented technology development. Many of the Division's RandD tasks that are a part of a larger ORNL program are of sufficient scope that the IandC effort constitutes a separate program element with direct funding and management responsibility within the Division. The activities of IandC include performance of an RandD task in IandC facilities, the participation of from one of many IandC engineers and scientists in a multidisciplinary team working in a specific research area or development project, design and fabrication of a special instrument or instrumentation system, or a few hours of maintenance service. In its support and maintenance work, the role of the IandC Division is to provide a level of expertise appropriate to complete a job successfully at minimum overall cost and time schedule---a role which involves IandC in almost all ORNL activities.« less

  3. The role of model organisms in the history of mitosis research.

    PubMed

    Yanagida, Mitsuhiro

    2014-09-02

    Mitosis is a cell-cycle stage during which condensed chromosomes migrate to the middle of the cell and segregate into two daughter nuclei before cytokinesis (cell division) with the aid of a dynamic mitotic spindle. The history of mitosis research is quite long, commencing well before the discovery of DNA as the repository of genetic information. However, great and rapid progress has been made since the introduction of recombinant DNA technology and discovery of universal cell-cycle control. A large number of conserved eukaryotic genes required for the progression from early to late mitotic stages have been discovered, confirming that DNA replication and mitosis are the two main events in the cell-division cycle. In this article, a historical overview of mitosis is given, emphasizing the importance of diverse model organisms that have been used to solve fundamental questions about mitosis. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  4. The Role of Model Organisms in the History of Mitosis Research

    PubMed Central

    Yanagida, Mitsuhiro

    2014-01-01

    Mitosis is a cell-cycle stage during which condensed chromosomes migrate to the middle of the cell and segregate into two daughter nuclei before cytokinesis (cell division) with the aid of a dynamic mitotic spindle. The history of mitosis research is quite long, commencing well before the discovery of DNA as the repository of genetic information. However, great and rapid progress has been made since the introduction of recombinant DNA technology and discovery of universal cell-cycle control. A large number of conserved eukaryotic genes required for the progression from early to late mitotic stages have been discovered, confirming that DNA replication and mitosis are the two main events in the cell-division cycle. In this article, a historical overview of mitosis is given, emphasizing the importance of diverse model organisms that have been used to solve fundamental questions about mitosis. PMID:25183827

  5. Detection of somatic, subclonal and mosaic CNVs from sequencing | Division of Cancer Prevention

    Cancer.gov

    Progress in technology has made individual genome sequencing a clinical reality, with partial genome sequencing already in use in clinical care. In fact, it is expected that within a few years whole genome sequencing will be a standard procedure that will allow discovering personal genomic variants of all types and thus greatly facilitate individualized medicine. However, fast

  6. Inside the Divide: Despite Progress, It's Still a Tale of Missed Connections

    ERIC Educational Resources Information Center

    Salpeter, Judy

    2006-01-01

    It has been slightly more than a decade since the U.S. Department of Commerce's NTIA division published its first major report on home computer access, "Falling through the Net: A Survey of the "Have Nots" in Rural and Urban America." Published in July 1995, the report focused on serious gaps in the levels of technology available to different…

  7. NASA technology utilization applications. [transfer of medical sciences

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The work is reported from September 1972 through August 1973 by the Technology Applications Group of the Science Communication Division (SCD), formerly the Biological Sciences Communication Project (BSCP) in the Department of Medical and Public Affairs of the George Washington University. The work was supportive of many aspects of the NASA Technology Utilization program but in particular those dealing with Biomedical and Technology Application Teams, Applications Engineering projects, new technology reporting and documentation and transfer activities. Of particular interest are detailed reports on the progress of various hardware projects, and suggestions and criteria for the evaluation of candidate hardware projects. Finally some observations about the future expansion of the TU program are offered.

  8. Progress at LAMPF: Clinton P. Anderson Meson Physics Facility. Progress report, January-June 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allred, J.C.

    1981-09-01

    Progress at LAMPF is the semiannual progress report of the MP Division of the Los Alamos National Laboratory. The report includes brief reports on research done at LAMPF by researchers from other institutions and Los Alamos divisions.

  9. Biology Division progress report, October 1, 1993--September 30, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-10-01

    This Progress Report summarizes the research endeavors of the Biology Division of the Oak Ridge National Laboratory during the period October 1, 1993, through September 30, 1995. The report is structured to provide descriptions of current activities and accomplishments in each of the Division`s major organizational units. Lists of information to convey the entire scope of the Division`s activities are compiled at the end of the report. Attention is focused on the following research activities: molecular, cellular, and cancer biology; mammalian genetics and development; genome mapping program; and educational activities.

  10. Fusion energy division annual progress report, period ending December 31, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-11-01

    The ORNL Program encompasses most aspects of magnetic fusion research including research on two magnetic confinement programs (tokamaks and ELMO bumpy tori); the development of the essential technologies for plasma heating, fueling, superconducting magnets, and materials; the development of diagnostics; the development of atomic physics and radiation effect data bases; the assessment of the environmental impact of magnetic fusion; the physics and engineering of present-generation devices; and the design of future devices. The integration of all of these activities into one program is a major factor in the success of each activity. An excellent example of this integration is themore » extremely successful application of neutral injection heating systems developed at ORNL to tokamaks both in the Fusion Energy Division and at Princeton Plasma Physics Laboratory (PPPL). The goal of the ORNL Fusion Program is to maintain this balance between plasma confinement, technology, and engineering activities.« less

  11. Metals and Ceramics Division annual progress report, October 1, 1978-June 30, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, S.

    Research is reported concerning: (1) engineering materials including materials compatibility, mechanical properties, nondestructive testing, pressure vessel technology, and welding and brazing; (2) fuels and processes consisting of ceramic technology, fuel cycle technology, fuels evaluation, fuels fabrication and metals processing; and (3) materials science which includes, ceramic studies, physical metallurgy and properties, radiation effects and microstructural analysis, metastable and superconducting materials, structure and properties of surfaces, theoretical research, and x-ray research and applications. Highlights of the work of the metallographic group and the current status of the High-Temperature Materials Laboratory (HTML) and the Materials and Structures Technology Management Center (MSTMC) aremore » presented. (FS)« less

  12. Optical Communication: Its History and Recent Progress

    NASA Astrophysics Data System (ADS)

    Agrawal, Govind P.

    This chapter begins with a brief history of optical communication before describing the main components of a modern optical communication system. Specific attention is paid to the development of low-loss optical fibers as they played an essential role after 1975. The evolution of fiber-optic communication systems is described through its six generations over a 40-year time period ranging from 1975 to 2015. The adoption of wavelength-division multiplexing (WDM) during the 1990s to meet the demand fueled by the advent of the Internet is discussed together with the bursting of the telecom bubble in 2000. Recent advances brought by digital coherent technology and space-division multiplexing are also described briefly.

  13. On the Unsteady-Motion Theory of Magnetic Forces for Maglev

    DTIC Science & Technology

    1993-11-01

    DivisionEnergy Technology Division Forces for Maglev Energy Technology DivisionEnergy Technology Division by S. S. Chen, S. Zhu, and Y. Cai APQ 4 袲...On the Unsteady-Motion Theory of Magnetic Forces for Maglev by S. S. Chen, S. Zhu, and Y. Cai Energy Technology Division November 1993 Work supported...vi On The Unsteady-Motion Theory of Magnetic Forces for Maglev by S. S

  14. 78 FR 1265 - Dana Holding Corporation; Power Technologies Group Division; Including On-Site Leased Workers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ...; Power Technologies Group Division; Including On-Site Leased Workers From Manpower Milwaukee, WI; Notice... former workers of Dana Holding Company, Power Technologies Group Division, Milwaukee, Wisconsin (subject... reconsideration investigation, I determine that workers of Dana Holding Company, Power Technologies Group Division...

  15. 7 CFR 94.101 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... applicant for chemical, physical, or microbiological analyses and tests at a Science and Technology Division... Science and Technology Division laboratory, or by a laboratory approved and recognized by the Division to... quality control of procedures. Official plant or Science and Technology Division laboratories can analyze...

  16. 7 CFR 94.101 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... applicant for chemical, physical, or microbiological analyses and tests at a Science and Technology Division... Science and Technology Division laboratory, or by a laboratory approved and recognized by the Division to... quality control of procedures. Official plant or Science and Technology Division laboratories can analyze...

  17. 7 CFR 94.101 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... applicant for chemical, physical, or microbiological analyses and tests at a Science and Technology Division... Science and Technology Division laboratory, or by a laboratory approved and recognized by the Division to... quality control of procedures. Official plant or Science and Technology Division laboratories can analyze...

  18. Spacecraft Health Automated Reasoning Prototype (SHARP): The fiscal year 1989 SHARP portability evaluations task for NASA Solar System Exploration Division's Voyager project

    NASA Technical Reports Server (NTRS)

    Atkinson, David J.; Doyle, Richard J.; James, Mark L.; Kaufman, Tim; Martin, R. Gaius

    1990-01-01

    A Spacecraft Health Automated Reasoning Prototype (SHARP) portability study is presented. Some specific progress is described on the portability studies, plans for technology transfer, and potential applications of SHARP and related artificial intelligence technology to telescience operations. The application of SHARP to Voyager telecommunications was a proof-of-capability demonstration of artificial intelligence as applied to the problem of real time monitoring functions in planetary mission operations. An overview of the design and functional description of the SHARP system is also presented as it was applied to Voyager.

  19. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division, April--June 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jubin, R.T.

    The Chemical and Energy Research Section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within six major areas of research: Hot Cell Operations, Process Chemistry and thermodynamics, Separations and Materials Synthesis, Solution Thermodynamics, biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information.

  20. Advanced Gas Turbine (AGT) Technology Development Project annual report

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This report is the tenth in a series of Technical Summary reports for the Advanced Gas Turbine (AGT) Technology Development Project, authorized under NASA Contract DEN3-167, and sponsored by the Department of Energy (DOE). This report was prepared by Garrett Turbine Engine Company, A Division of the Garrett Corporation, and includes information provided by Ford Motor Company, the Carborundum Company, and AiResearch Casting Company. The Project is administered by Mr. Thomas N. Strom, Project Manager, NASA-Lewis Research Center, Cleveland, Ohio. This report covers plans and progress for the period July 1, 1984 through June 30, 1985.

  1. Prospects of the development of the laser medical machinery for ensuring of progress of medical technologies

    NASA Astrophysics Data System (ADS)

    Litvin, Grigory D.; Vibornov, S. I.; Jakimenko, A. P.

    1990-09-01

    Medicine, arid surry in prticu1r, ha'vE rather visib1e and fixed objects and tasks On the hc1e they incILId diagnosis of thE? patological process, division of the tissues, control of tissue mtabo1ism. Each component of mdica1 practice contains in different aspects these general basic Itments EvEn now Iasr technology gives physicians thee opportunity to gain some benefit, in recognizing and measuring living obJects, modulation of metabol ism coagulation and vapor-ation of tissue water

  2. Energy Division annual progress report for period ending September 30, 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report covers work done during FY 1983 by the staff of the Energy Division and its subcontractors and by colleagues in other Oak Ridge National Laboratory divisions working on Energy Division projects. The work can be divided into four areas: (1) analysis and assessment, (2) models and data systems, (3) research to improve the efficiency of energy use and to improve electric power transmission and distribution, and (4) research utilization. Support came principally from the US Department of Energy (DOE), the US Nuclear Regulatory Commission, and the US Department of Defense, but also from a number of other agenciesmore » and organizations. Analysis and assessment included work on (a) environmental issues, including those deriving from the preparation of environmental impact statements; (b) energy and resource analysis; and (c) emergency preparedness. The models and data systems area involved research on evaluating and developing energy, environment, and engineering simulation models and on devising large data management systems, evaluating user data requirements, and compiling data bases. Research on improving the efficiency of energy use was focused primarily on the buildings and electricity sectors. A major effort on heat pump technology, which includes both heat-activated and electrically driven systems, continues. An important aspect of all the work was research utilization. Since the Energy Division is doing applied research, results are, by definition, intended to solve problems or answer questions of DOE and other sponsors. However, there are other users, and research utilization activities include technology transfer, commercialization efforts, outreach to state and regional organizations, and, of course, information dissemination.« less

  3. Vehicle/Guideway Interaction in Maglev Systems

    DTIC Science & Technology

    1992-03-01

    Technology Division Materials and Components in Maglev Systems Technology Division Materials and Components Technology Division byY. Cai, S. S. Chen, and D. M...Transportation Systems Reports (UC-330, Vehicle/Guideway Interaction in Maglev Systems by Y. Cai and S. S. Chen Materials and Components Technology Division D. M...Surface Irregularities ...................................... 32 4 Vehicle/Guideway Interaction in Transrapid Maglev System .................. 34 4.1

  4. Coherent ultra dense wavelength division multiplexing passive optical networks

    NASA Astrophysics Data System (ADS)

    Shahpari, Ali; Ferreira, Ricardo; Ribeiro, Vitor; Sousa, Artur; Ziaie, Somayeh; Tavares, Ana; Vujicic, Zoran; Guiomar, Fernando P.; Reis, Jacklyn D.; Pinto, Armando N.; Teixeira, António

    2015-12-01

    In this paper, we firstly review the progress in ultra-dense wavelength division multiplexing passive optical network (UDWDM-PON), by making use of the key attributes of this technology in the context of optical access and metro networks. Besides the inherit properties of coherent technology, we explore different modulation formats and pulse shaping. The performance is experimentally demonstrated through a 12 × 10 Gb/s bidirectional UDWDM-PON over hybrid 80 km standard single mode fiber (SSMF) and optical wireless link. High density, 6.25 GHz grid, Nyquist shaped 16-ary quadrature amplitude modulation (16QAM) and digital frequency shifting are some of the properties exploited together in the tests. Also, bidirectional transmission in fiber, relevant in the context, is analyzed in terms of nonlinear and back-reflection effects on receiver sensitivity. In addition, as a basis for the discussion on market readiness, we experimentally demonstrate real-time detection of a Nyquist-shaped quaternary phase-shift keying (QPSK) signal using simple 8-bit digital signal processing (DSP) on a field-programmable gate array (FPGA).

  5. Progress in ion torrent semiconductor chip based sequencing.

    PubMed

    Merriman, Barry; Rothberg, Jonathan M

    2012-12-01

    In order for next-generation sequencing to become widely used as a diagnostic in the healthcare industry, sequencing instrumentation will need to be mass produced with a high degree of quality and economy. One way to achieve this is to recast DNA sequencing in a format that fully leverages the manufacturing base created for computer chips, complementary metal-oxide semiconductor chip fabrication, which is the current pinnacle of large scale, high quality, low-cost manufacturing of high technology. To achieve this, ideally the entire sensory apparatus of the sequencer would be embodied in a standard semiconductor chip, manufactured in the same fab facilities used for logic and memory chips. Recently, such a sequencing chip, and the associated sequencing platform, has been developed and commercialized by Ion Torrent, a division of Life Technologies, Inc. Here we provide an overview of this semiconductor chip based sequencing technology, and summarize the progress made since its commercial introduction. We described in detail the progress in chip scaling, sequencing throughput, read length, and accuracy. We also summarize the enhancements in the associated platform, including sample preparation, data processing, and engagement of the broader development community through open source and crowdsourcing initiatives. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Division A Commission 31: Time

    NASA Astrophysics Data System (ADS)

    Hosokawa, Mizuhiko; Arias, Elisa Felicitas; Manchester, Richard; Tuckey, Philip; Matsakis, Demetrios; Zhang, Shougang; Zharov, Vladimir

    2016-04-01

    Time is an essential element of fundamental astronomy. In recent years there have been many time-related issues, in scientific and technological aspects as well as in conventions and definitions. At the Commission 31 (Time) business meeting at the XXIX General Assembly, recent progress and many topics, including Pulsar Time Scales WG and Future UTC WG activities, were reviewed and discussed. In this report, we will review the progress of these topics in the past three years. There are many remarkable topics, such as Time scales, Atomic clock development, Time transfer, Future UTC and future redefinition of the second. Among them, scientific highlights are the progress of pulsar time scales and the optical frequency standards. On the other hand, as the social convention, change in the definition of UTC and the second is important.

  7. Key results of battery performance and life tests at Argonne National Laboratory

    NASA Astrophysics Data System (ADS)

    Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.

    1991-12-01

    Advanced battery technology evaluations are performed under simulated electric vehicle operating conditions at Argonne National Laboratory's & Diagnostic Laboratory (ADL). The ADL provide a common basis for both performance characterization and life evaluation with unbiased application of tests and analyses. This paper summarizes the performance characterizations and life evaluations conducted in 1991 on twelve single cells and eight 3- to 360-cell modules that encompass six battery technologies (Na/S, Li/MS, Ni/MH, Zn/Br, Ni/Fe, and Pb-Acid). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division. The results measure progress in battery R & D programs, compare battery technologies, and provide basic data for modeling and continuing R & D to battery users, developers, and program managers.

  8. Analytical Chemistry Division annual progress report for period ending December 31, 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shultz, W.D.

    1986-05-01

    Progress reports are presented for the four major sections of the division: analytical spectroscopy, radioactive materials laboratories, inorganic chemistry, and organic chemistry. A brief discussion of the division's role in the Laboratory's Environmental Restoration and Facilities Upgrade is given. Information about quality assurance and safety programs is presented, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited.

  9. Cell Division Synchronization

    DTIC Science & Technology

    The report summarizes the progress in the design and construction of automatic equipment for synchronizing cell division in culture by periodic...Concurrent experiments in hypothermic synchronization of algal cell division are reported.

  10. Instrumentation and Controls Division Progress Report for the Period July 1, 1994, to December 31, 1997: Working Together on New Horizons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, D.W.

    1998-04-01

    The ORNL I&C Division was created to support DOE-funded research. We have since broadened our mission to include other sponsors as the need for our services has grown. This report summarizes some of the work we have been conducting on behalf of DOE, other federal agencies, and the private sector during the past three and a half years. Because we take on nearly 750 individual projects every year, much of our work cannot be reported in detail. We hope that these summaries are of interest and demonstrate that our work, rooted in DOE scientific and technological programs, can also benefitmore » the nation, its industry, and its citizens in direct and tangible ways.« less

  11. New Concepts in Electromagnetic Materials and Antennas

    DTIC Science & Technology

    2015-01-01

    Bae-Ian Wu Antennas & Electromagnetics Technology Branch Multispectral Sensing & Detection Division JANUARY 2015 Final Report...Signature// //Signature// BRADLEY A. KRAMER, Program Manager TONY C. KIM, Branch Chief Antenna & Electromagnetic Technology ...Branch Antenna & Electromagnetic Technology Branch Multispectral Sensing & Detection Division Multispectral Sensing & Detection Division

  12. Environmental Sciences Division annual progress report for period ending September 30, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-31

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division (ESD) of Oak Ridge National Laboratory during fiscal year (FY) 1994, which extended from October 1, 1993, through September 30, 1994. The report is structured to provide descriptions of current activities and accomplishments in each of the division`s major organizational units. Following the sections describing the organizational units are sections highlighting ESD Scientific, Technical, and Administrative Achievement awards and listing information necessary to covey the scope of the work in the division. An organizational chart of staff and long-term guests who wee in ESD atmore » the end of FY 1994 is located in the final section of the report.« less

  13. Demonstrating Enabling Technologies for the High-Resolution Imaging Spectrometer of the Next NASA X-ray Astronomy Mission

    NASA Astrophysics Data System (ADS)

    Kilbourne, Caroline; Adams, J. S.; Bandler, S.; Chervenak, J.; Chiao, M.; Doriese, R.; Eckart, M.; Finkbeiner, F.; Fowler, J. W.; Hilton, G.; Irwin, K.; Kelley, R. L.; Moseley, S. J.; Porter, F. S.; Reintsema, C.; Sadleir, J.; Smith, S. J.; Swetz, D.; Ullom, J.

    2014-01-01

    NASA/GSFC and NIST-Boulder are collaborating on a program to advance superconducting transition-edge sensor (TES) microcalorimeter technology toward Technology Readiness Level (TRL) 6. The technology development for a TES imaging X-ray microcalorimeter spectrometer (TES microcalorimeter arrays and time-division multiplexed SQUID readout) is now at TRL 4, as evaluated by both NASA and the European Space Agency (ESA) during mission formulation for the International X-ray Observatory (IXO). We will present the status of the development program. The primary goal of the current project is to advance the core X-ray Microcalorimeter Spectrometer (XMS) detector-system technologies to a demonstration of TRL 5 in 2014. Additional objectives are to develop and demonstrate two important related technologies to at least TRL 4: position-sensitive TES devices and code-division multiplexing (CDM). These technologies have the potential to expand significantly the range of possible instrument optimizations; together they allow an expanded focal plane and higher per-pixel count rates without greatly increasing mission resources. The project also includes development of a design concept and critical technologies needed for the thermal, electrical, and mechanical integration of the detector and readout components into the focal-plane assembly. A verified design concept for the packaging of the focal-plane components will be needed for the detector system eventually to advance to TRL 6. Thus, the current project is a targeted development and demonstration program designed to make significant progress in advancing the XMS detector system toward TRL 6, establishing its readiness for a range of possible mission implementations.

  14. Overview of Future of Probabilistic Methods and RMSL Technology and the Probabilistic Methods Education Initiative for the US Army at the SAE G-11 Meeting

    NASA Technical Reports Server (NTRS)

    Singhal, Surendra N.

    2003-01-01

    The SAE G-11 RMSL Division and Probabilistic Methods Committee meeting sponsored by the Picatinny Arsenal during March 1-3, 2004 at Westin Morristown, will report progress on projects for probabilistic assessment of Army system and launch an initiative for probabilistic education. The meeting features several Army and industry Senior executives and Ivy League Professor to provide an industry/government/academia forum to review RMSL technology; reliability and probabilistic technology; reliability-based design methods; software reliability; and maintainability standards. With over 100 members including members with national/international standing, the mission of the G-11s Probabilistic Methods Committee is to enable/facilitate rapid deployment of probabilistic technology to enhance the competitiveness of our industries by better, faster, greener, smarter, affordable and reliable product development.

  15. A plot twist: the continuing story of VCSELs at AOC

    NASA Astrophysics Data System (ADS)

    Guenter, James K.; Tatum, Jim A.; Hawthorne, Robert A., III; Johnson, Ralph H.; Mathes, David T.; Hawkins, Bobby M.

    2005-03-01

    During a year of substantial consolidation in the VCSEL industry, Honeywell sold their VCSEL Optical Products Division, which has now officially changed its name to Advanced Optical Components (AOC). Both manufacture and applied research continue, however. Some of the developments of the past year are discussed in this paper. They include advances in the understanding of VCSEL degradation physics, substantial improvements in long-wavelength VCSEL performance, and continuing progress in manufacturing technology. In addition, higher speed serial communications products, at 10 gigabits and particularly at 4 gigabits per second, have shown faster than predicted growth. We place these technologies and AOC's approach to them in a market perspective, along with other emerging applications.

  16. Biology Division. Progress report, August 1, 1982-September 30, 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-01-01

    The Biology Division is the component of the Oak Ridge National Laboratory that investigates the potential adverse health effects of energy-related substances. The body of this report provides summaries of the aims, scope and progress of the research of groups of investigators in the Division during the period of August 1, 1982, through September 30, 1983. At the end of each summary is a list of publications covering the same period (published or accepted for publication). For convenience, the summaries are assembled under Sections in accordance with the current organizational structure of the Biology Division; each Section begins with anmore » overview. It will be apparent, however, that currents run throughout the Division and that the various programs support and interact with each other.« less

  17. Dynamic Stability of Maglev Systems,

    DTIC Science & Technology

    1992-04-01

    AD-A259 178 ANL-92/21 Materials and Components Dynamic Stability of Technology Division Materials and Components Maglev Systems Technology Division...of Maglev Systems Y. Cai, S. S. Chen, and T. M. Mulcahy Materials and Components Technology Division D. M. Rote Center for Transportation Research...of Maglev System with L-Shaped Guideway ......................................... 6 3 Stability of M aglev System s

  18. Instrumentation and Controls Division progress report, July 1, 1990--June 30, 1992. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-01-01

    This report contains the following information from the Instrumentation and Controls Division of Oak Ridge National Laboratory: supplementary activities; seminars; publications and presentations; scientific and professional activities, achievements, and awards; and division organization charts.

  19. Advanced Gas Turbine (AGT) Technology Development Project

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This report is the eleventh in the series of Technical Summary reports for the Advanced Gas Turbine (AGT) Technology Development Project, authorized under NASA Contract DEN3-167, and sponsored by the Department of Energy (DOE). This report was prepared by Garrett Turbine Engine Company, A Division of the Garrett Corporation, and includes information provided by Ford Motor Company, the Standard Oil Company, and AiResearch Casting Company. This report covers plans and progress for the period July 1, 1985 through June 30, 1986. Technical progress during the reported period was highlighted by the 85-hour endurance run of an all-ceramic engine operating in the 2000 to 2250 F temperature regime. Component development continued in the areas of the combustion/fuel injection system, regenerator and seals system, and ceramic turbine rotor attachment design. Component rig testing saw further refinements. Ceramic materials showed continued improvements in required properties for gas turbine applications; however, continued development is needed before performance and reliability goals can be set.

  20. Division Planes Alternate in Spherical Cells of Escherichia coli

    PubMed Central

    Begg, K. J.; Donachie, W. D.

    1998-01-01

    In the spherical cells of Escherichia coli rodA mutants, division is initiated at a single point, from which a furrow extends progressively around the cell. Using “giant” rodA ftsA cells, we confirmed that each new division furrow is initiated at the midpoint of the previous division plane and runs perpendicular to it. PMID:9573213

  1. Annotated Bibliography: Polymers in Concrete.

    DTIC Science & Technology

    1982-10-01

    under the general supervision of Mr. Bryant Mather, Chief, SL, and Mr. John Scanlon, Chief, Concrete Technology Division , SL, and under the direct...Foreign Technology Division , Wright-Patterson Air Force Base, Ohio. The shrinkage effect on concrete is a significant factor in solving the problem of using...Infrared Radiation," p 13, Jun 1974, Foreign Technology Division , Wright-Patterson Air Force Base, Ohio. Infrared irradiation is an effective means of

  2. CDC-25.2, a C. elegans ortholog of cdc25, is essential for the progression of intestinal divisions.

    PubMed

    Lee, Yong-Uk; Son, Miseol; Kim, Jiyoung; Shim, Yhong-Hee; Kawasaki, Ichiro

    2016-01-01

    Intestinal divisions in Caenorhabditis elegans take place in 3 stages: (1) cell divisions during embryogenesis, (2) binucleations at the L1 stage, and (3) endoreduplications at the end of each larval stage. Here, we report that CDC-25.2, a C. elegans ortholog of Cdc25, is required for these specialized division cycles between the 16E cell stage and the onset of endoreduplication. Results of our genetic analyses suggest that CDC-25.2 regulates intestinal cell divisions and binucleations by counteracting WEE-1.3 and by activating the CDK-1/CYB-1 complex. CDC-25.2 activity is then repressed by LIN-23 E3 ubiquitin ligase before the onset of intestinal endoreduplication, and this repression is maintained by LIN-35, the C. elegans ortholog of Retinoblastoma (Rb). These findings indicate that timely regulation of CDC-25.2 activity is essential for the progression of specialized division cycles and development of the C. elegans intestine.

  3. CDC-25.2, a C. elegans ortholog of cdc25, is essential for the progression of intestinal divisions

    PubMed Central

    Lee, Yong-Uk; Son, Miseol; Kim, Jiyoung; Shim, Yhong-Hee; Kawasaki, Ichiro

    2016-01-01

    ABSTRACT Intestinal divisions in Caenorhabditis elegans take place in 3 stages: (1) cell divisions during embryogenesis, (2) binucleations at the L1 stage, and (3) endoreduplications at the end of each larval stage. Here, we report that CDC-25.2, a C. elegans ortholog of Cdc25, is required for these specialized division cycles between the 16E cell stage and the onset of endoreduplication. Results of our genetic analyses suggest that CDC-25.2 regulates intestinal cell divisions and binucleations by counteracting WEE-1.3 and by activating the CDK-1/CYB-1 complex. CDC-25.2 activity is then repressed by LIN-23 E3 ubiquitin ligase before the onset of intestinal endoreduplication, and this repression is maintained by LIN-35, the C. elegans ortholog of Retinoblastoma (Rb). These findings indicate that timely regulation of CDC-25.2 activity is essential for the progression of specialized division cycles and development of the C. elegans intestine. PMID:27104746

  4. 76 FR 66327 - Iron Mountain Information Management, Inc., Corporate Service Group, Information Technology (IT...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ... Management, Inc., Corporate Service Group, Information Technology (IT) Division, Including On-Site Leased... Information Management, Inc., Corporate Service Group, Information Technology (IT) Division, including on-site... location of Iron Mountain Information Management, Inc., Corporate Service Group, Information Technology (IT...

  5. Pilot/Vehicle display development from simulation to flight

    NASA Technical Reports Server (NTRS)

    Dare, Alan R.; Burley, James R., II

    1992-01-01

    The Pilot Vehicle Interface Group, Cockpit Technology Branch, Flight Management Division, at the NASA Langley Research Center is developing display concepts for air combat in the next generation of highly maneuverable aircraft. The High-Alpha Technology Program, under which the research is being done, is involved in flight tests of many new control and display concepts on the High-Alpha Research Vehicle, a highly modified F-18 aircraft. In order to support display concept development through flight testing, a software/hardware system is being developed which will support each phase of the project with little or no software modifications, thus saving thousands of manhours in software development time. Simulation experiments are in progress now and flight tests are slated to begin in FY1994.

  6. DIVISION OF ISOTOPES DEVELOPMENT RESEARCH AND DEVELOPMENT PROJECTS: 1968. Progress Reports on Sponsored Work.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1969-01-01

    This is the second edition of the Division of Isotopes Development project summaries. It presents a short summary of objectives, results, and future plans for each research or development project sponsored by the Division within each of eight program areas.

  7. Cognitive and Neural Sciences Division, 1991 Programs.

    ERIC Educational Resources Information Center

    Vaughan, Willard S., Ed.

    This report documents research and development performed under the sponsorship of the Cognitive and Neural Sciences Division of the Office of Naval Research in fiscal year 1991. It provides abstracts (title, principal investigator, project code, objective, approach, progress, and related reports) of projects of three program divisions (cognitive…

  8. 76 FR 20045 - The Ubs Group, a Division Of Ubs Ag, Also Known as Ubs Financial Services, Inc. and/or Ubs-Glb...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-11

    ... Known as Brinson Partners, Inc., Corporate Center Division; Group Technology Infrastructure Services... Division, Group Technology Infrastructure Services, Distributed Systems and Storage Group, Chicago... Infrastructure Services, Distributed Systems and Storage Group have their wages reported under a separate...

  9. Engineering physics and mathematics division

    NASA Astrophysics Data System (ADS)

    Sincovec, R. F.

    1995-07-01

    This report provides a record of the research activities of the Engineering Physics and Mathematics Division for the period 1 Jan. 1993 - 31 Dec. 1994. This report is the final archival record of the EPM Division. On 1 Oct. 1994, ORELA was transferred to Physics Division and on 1 Jan. 1995, the Engineering Physics and Mathematics Division and the Computer Applications Division reorganized to form the Computer Science and Mathematics Division and the Computational Physics and Engineering Division. Earlier reports in this series are identified on the previous pages, along with the progress reports describing ORNL's research in the mathematical sciences prior to 1984 when those activities moved into the Engineering Physics and Mathematics Division.

  10. 21 CFR 1311.08 - Incorporation by reference.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... of Standards and Technology, Computer Security Division, Information Technology Laboratory, National... standards are available from the National Institute of Standards and Technology, Computer Security Division... 140-2, Security Requirements for Cryptographic Modules, May 25, 2001, as amended by Change Notices 2...

  11. Speeding Up the Drug Review Process: Results Encouraging -- But Progress Slow.

    DTIC Science & Technology

    1981-11-23

    the Division of Biopharma - ceutics, which reviews studies of such things as the drug’s rate of dissolution in the blood. These divisions’ data...BIOPHARMACEUTICAL REVIEWS CONTINUE TO BE DELAYED Efforts to speed up the reviews of the Division of Biopharma - ceutics, which reviews such things as the rate of

  12. MEMS for optical switching: technologies, applications, and perspectives

    NASA Astrophysics Data System (ADS)

    Lin, Lih-Y.; Goldstein, Evan L.

    1999-09-01

    Micro-electro-mechanical-systems (MEMS), due to their unique ability to integrate electrical, mechanical, and optical elements on a single chip, have recently begun to exhibit great potential for realizing optical components and subsystems in compact, lowcost form. Recently, this technology has been applied to wavelength-division-multiplexed (WDM) networks, and resulted in advances in several network elements, including switches, filters, modulators, and wavelength-add/drop multiplexers. Due largely to the exploding capacity demand arising from data traffic, the transmission capacity demanded of and available from WDM networks is anticipated to increase rapidly. For managing such networks, optical switching is of particular interest due to the fact that its complexity is essentially immune to steady advances in the per-channel bit-rate. We will review various micromachined optical-switching technologies, emphasizing studies of their reliability. We then summarizing recent progress in the free-space MEMS optical switch we have demonstrated.

  13. MEMS for optical switching: technologies, applications, and perspectives

    NASA Astrophysics Data System (ADS)

    Lin, Lih-Yuan; Goldstein, Evan L.

    1999-09-01

    Micro-electro-mechanical-systems (MEMS), due to their unique ability to integrate electrical, mechanical, and optical elements on a single chip, have recently begun to exhibit great potential for realizing optical components and subsystems in compact, low-cost form. Recently, this technology has been applied to wavelength-division-multiplexed (WDM) networks, and resulted in advances in several network elements, including switches, filters, modulators, and wavelength-add/drop multiplexers. Due largely to the exploding capacity demand arising from data traffic, the transmission capacity demanded of and available from WDM networks is anticipated to increase rapidly. For managing such networks, optical switching is of particular interest due to the fact that its complexity is essentially immune to steady advances in the per-channel bit-rate. We will review various micromachined optical-switching technologies, emphasizing studies of their reliability. We then summarizing recent progress in the free-space MEMS optical switch we have demonstrated.

  14. Phosphorylation of histone H3 on Ser-10 by Aurora B is essential for chromosome condensation in porcine embryos during the first mitotic division.

    PubMed

    Chen, Changchao; Zhang, Zixiao; Cui, Panpan; Liao, Yaya; Zhang, Yue; Yao, Lingyun; Rui, Rong; Ju, Shiqiang

    2017-07-01

    Phosphorylation of histone H3 on Ser-10 (H3S10ph) is involved in regulating mitotic chromosome condensation and decondensation, which plays an important regulatory role during mitotic cell cycle progression in mammalian cells. However, whether H3S10ph plays a similar role in early porcine embryos during the first mitotic division remains uncertain. In this study, the subcellular localization and possible roles of H3S10ph were evaluated in the first mitotic cell cycle progression of porcine embryos using western blot, indirect immunofluorescence and barasertib (H3S10ph upstream regulator Aurora-B inhibitor) treatments. H3S10ph exhibited a dynamic localization pattern and was localized to chromosomes from prometaphase to anaphase stages. Treatment of porcine embryos with barasertib inhibited mitotic division at the prophase stage and was associated with a defect in chromosome condensation accompanied by the reduction of H3S10ph. These results indicated that H3S10ph is involved in the first mitotic division in porcine embryos through its regulatory function in chromosome condensation, which further affects porcine embryo cell cycle progression during mitotic division.

  15. Progress in speckle-shift strain measurement

    NASA Technical Reports Server (NTRS)

    Lant, Christian T.; Barranger, John P.; Oberle, Lawrence G.; Greer, Lawrence C., III

    1991-01-01

    The Instrumentation and Control Technology Division of the Lewis Research Center has been developing an in-house capability to make one dimensional and two dimensional optical strain measurements on high temperature test specimens. The measurements are based on a two-beam speckle-shift technique. The development of composite materials for use in high temperature applications is generating interest in using the speckle-shift technique to measure strains on small diameter fibers and wires of various compositions. The results of preliminary speckle correlation tests on wire and fiber specimens are covered, and the advanced system currently under development is described.

  16. MANTECH project book

    NASA Astrophysics Data System (ADS)

    The effective integration of processes, systems, and procedures used in the production of aerospace systems using computer technology is managed by the Integration Technology Division (MTI). Under its auspices are the Information Management Branch, which is actively involved with information management, information sciences and integration, and the Implementation Branch, whose technology areas include computer integrated manufacturing, engineering design, operations research, and material handling and assembly. The Integration Technology Division combines design, manufacturing, and supportability functions within the same organization. The Processing and Fabrication Division manages programs to improve structural and nonstructural materials processing and fabrication. Within this division, the Metals Branch directs the manufacturing methods program for metals and metal matrix composites processing and fabrication. The Nonmetals Branch directs the manufacturing methods programs, which include all manufacturing processes for producing and utilizing propellants, plastics, resins, fibers, composites, fluid elastomers, ceramics, glasses, and coatings. The objective of the Industrial Base Analysis Division is to act as focal point for the USAF industrial base program for productivity, responsiveness, and preparedness planning.

  17. The Physics of Information Technology

    NASA Astrophysics Data System (ADS)

    Gershenfeld, Neil

    2000-10-01

    The Physics of Information Technology explores the familiar devices that we use to collect, transform, transmit, and interact with electronic information. Many such devices operate surprisingly close to very many fundamental physical limits. Understanding how such devices work, and how they can (and cannot) be improved, requires deep insight into the character of physical law as well as engineering practice. The book starts with an introduction to units, forces, and the probabilistic foundations of noise and signaling, then progresses through the electromagnetics of wired and wireless communications, and the quantum mechanics of electronic, optical, and magnetic materials, to discussions of mechanisms for computation, storage, sensing, and display. This self-contained volume will help both physical scientists and computer scientists see beyond the conventional division between hardware and software to understand the implications of physical theory for information manipulation.

  18. Optical Gripper

    NASA Astrophysics Data System (ADS)

    Jalba, C. K.; Muminovic, A.; Epple, S.; Barz, C.; Nasui, V.

    2017-05-01

    With increasing automation, many work processes become more and more complex. Most technical products can no longer be developed and manufactured by a single department. They are often the product of different divisions and require cooperation from different specialist areas. For example, in the Western world, a simple coffee maker is no longer so much in demand. If the buyer has the possibility to choose between a simple coffee maker and a coffee machine with very complex functions, the choice will probably fall to the more complex variant. Technical progress also applies to other technical products, such as grippers and manipulators. In this paper, it is shown how grasping processes can be redefined and developed with interdisciplinary technical approaches. Both conventional and latest developments in mechanical engineering, production technology, mechatronics and sensor technology will be considered.

  19. Research and technology, 1990

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Selected research and technology activities at Ames Research Center, including the Moffett Field site and the Dryden Flight Research Facility, are summarized. These accomplishments exemplify the Center's varied and highly productive research efforts for 1990. The activities addressed are under the directories of: (1) aerospace systems which contains aircraft technology, full-scale aerodynamics research, information sciences, aerospace human factors research, and flight systems and simulation research divisions; (2) Dryden flight research facility which contains research engineering division; (3) aerophysics which contains aerodynamics, fluid dynamics, and thermosciences divisions; and (4) space research which contains advanced life support, space projects, earth system science, life science, and space science divisions, and search for extraterrestrial intelligence and space life sciences payloads offices.

  20. Separation science and technology. Semiannual progress report, October 1993--March 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vandegrift, G.F.; Aase, S.B.; Buchholz, B.

    1997-12-01

    This document reports on the work done by the Separations Science and Technology Programs of the Chemical Technology Division, Argonne National Laboratory (ANL), in the period October 1993-March 1994. This effort is mainly concerned with developing the TRUEX process for removing and concentrating actinides from acidic waste streams contaminated with transuranic (TRU) elements. The objectives of TRUEX processing are to recover valuable TRU elements and to lower disposal costs for the nonTRU waste product of the process. Other projects are underway with the objective of developing (1) evaporation technology for concentrating radioactive waste and product streams such as those generatedmore » by the TRUEX process, (2) treatment schemes for liquid wastes stored are being generated at ANL, (3) a process based on sorbing modified TRUEX solvent on magnetic beads to be used for separation of contaminants from radioactive and hazardous waste streams, and (4) a process that uses low-enriched uranium targets for production of {sup 99}Mo for nuclear medicine uses.« less

  1. Physics division annual report 2005.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glover, J.; Physics

    2007-03-12

    This report highlights the research performed in 2005 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The mission of Nuclear Physics is to understand the origin, evolution and structure of baryonic matter in the universe--the matter that makes up stars, planets and human life itself. The Division's research focuses on innovative new ways to address this mission and 2005 was a year of great progress. One of the most exciting developments ismore » the initiation of the Californium Rare Ion Breeder Upgrade, CARIBU. By combining a Cf-252 fission source, the gas catcher technology developed for rare isotope beams, a high-resolution isobar separator, and charge breeding ECR technology, CARIBU will make hundreds of new neutron-rich isotope beams available for research. The cover illustration shows the anticipated intensities of low-energy beams that become available for low-energy experiments and for injection into ATLAS for reacceleration. CARIBU will be completed in early 2009 and provide us with considerable experience in many of the technologies developed for a future high intensity exotic beam facility. Notable results in research at ATLAS include a measurement of the isomeric states in {sup 252}No that helps pin down the single particle structure expected for superheavy elements, and a new low-background measurement of {sup 16}N beta-decay to determine the {sup 12}C({alpha},{gamma}){sup 16}O reaction rate that is so important in astrophysical environments. Precise mass measurements shed new light on the unitarity of the quark weak-mixing matrix in the search for physics beyond the standard model. ATLAS operated for 4686 hours of research in FY2005 while achieving 95% efficiency of beam delivery for experiments. In Medium-Energy Physics, radium isotopes were trapped in an atom trap for the first time, a major milestone in an innovative search for the violation of time-reversal symmetry. New results from HERMES establish that strange quarks carry little of the spin of the proton and precise results have been obtained at JLAB on the changes in quark distributions in light nuclei. New theoretical results reveal that the nature of the surfaces of strange quark stars. Green's function Monte Carlo techniques have been extended to scattering problems and show great promise for the accurate calculation, from first principles, of important astrophysical reactions. Flame propagation in type 1A supernova has been simulated, a numerical process that requires considering length scales that vary by factors of eight to twelve orders of magnitude. Argonne continues to lead in the development and exploitation of the new technical concepts that will truly make an advanced exotic beam facility, in the words of NSAC, 'the world-leading facility for research in nuclear structure and nuclear astrophysics'. Our science and our technology continue to point the way to this major advance. It is a tremendously exciting time in science for these new capabilities hold the keys to unlocking important secrets of nature. The great progress that has been made in meeting the exciting intellectual challenges of modern nuclear physics reflects the talents and dedication of the Physics Division staff and the visitors, guests and students who bring so much to the research.« less

  2. Laboratory directed research and development program FY 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-03-01

    This report compiles the annual reports of Laboratory Directed Research and Development projects supported by the Berkeley Lab. Projects are arranged under the following topical sections: (1) Accelerator and fusion research division; (2) Chemical sciences division; (3) Computing Sciences; (4) Earth sciences division; (5) Environmental energy technologies division; (6) life sciences division; (7) Materials sciences division; (8) Nuclear science division; (9) Physics division; (10) Structural biology division; and (11) Cross-divisional. A total of 66 projects are summarized.

  3. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, C. LEE COOK DIVISION, DOVER CORPORATION, STATIC PAC (TM) SYSTEM, PHASE II REPORT

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Static Pac System, Phase II, natural gas reciprocating compressor rod packing manufactured by the C. Lee Cook Division, Dover Corporation. The Static Pac System is designed to seal th...

  4. 2017 Air Force Global Strike Command Innovation and Technology Symposium

    DTIC Science & Technology

    2017-11-15

    and technological changes that may have occurred within American society and therefore may have different expectations, motivations and values...Participate in a discussion on hypersonic technology as a national imperative and what are government, industry and academia doing to accelerate this...USAF Deputy Chief, Weapons Requirements Division HAF/A5RW Mr. Robert B. Addis Defense Technologies Engineering Division, Lawrence Livermore National

  5. The Division of Labor, Technology, and Education: Cross-National Evidence

    ERIC Educational Resources Information Center

    Grandjean, Burke D.

    1974-01-01

    The author provides data on 29 countries to test the hypothesis of Durkheim, Marx, and Adam Smith that the division of labor and technological development lead to expanded education. The results support the above thesis. (Author/DE)

  6. Microlaser-based compact optical neuro-processors (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Paek, Eung Gi; Chan, Winston K.; Zah, Chung-En; Cheung, Kwok-wai; Curtis, L.; Chang-Hasnain, Constance J.

    1992-10-01

    This paper reviews the recent progress in the development of holographic neural networks using surface-emitting laser diode arrays (SELDAs). Since the previous work on ultrafast holographic memory readout system and a robust incoherent correlator, progress has been made in several areas: the use of an array of monolithic `neurons' to reconstruct holographic memories; two-dimensional (2-D) wavelength-division multiplexing (WDM) for image transmission through a single-mode fiber; and finally, an associative memory using time- division multiplexing (TDM). Experimental demonstrations on these are presented.

  7. Maintaining Adequate CO2 Washout for an Advanced EMU via a New Rapid Cycle Amine Technology

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda

    2011-01-01

    Over the past several years, NASA has realized tremendous progress in Extravehicular Activity (EVA) technology development. This has been evidenced by the progressive development of a new Rapic Cycle Amine (RCA) system for the Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support Subsystem (PLSS). The PLSS is responsible for the life support of the crew member in the spacesuit. The RCA technology is responsible for carbon dioxide (CO2) and humidity control. Another aspect of the RCA is that it is on-back vacuum-regenerable, efficient, and reliable. The RCA also simplifies the PLSS schematic by eliminating the need for a condensing heat exchanger for humidity control in the current EMU. As development progresses on the RCA, it is important that the sizing be optimized so that the demand on the PLSS battery is minimized. As well, maintaining the CO2 washout at adequate levels during an EVA is an absolute requirement of the RCA and associated ventilation system. Testing has been underway in-house at NASA Johnson Space Center and analysis has been initiated to evaluate whether the technology provides exemplary performance in ensuring that the CO2 is removed sufficiently enough and the ventilation flow is adequate enough to maintain CO2 1 Project Engineer, Space Suit and Crew Survival Systems Branch, Crew and Thermal Systems Division, 2101 NASA Parkway, Houston, TX 77058/EC5. washout in the AEMU spacesuit helmet of the crew member during an EVA. This paper will review the recent developments of the RCA unit, the testing results performed in-house with a spacesuit simulator, and the associated analytical work along with insights from the medical aspect on the testing.

  8. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: October-December 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jubin, R.T.

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period October--December 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within six major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contactmore » is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of Hot Cell Operations included efforts to optimize the processing conditions for Enhanced Sludge Washing of Hanford tank sludge, the testing of candidate absorbers and ion exchangers under continuous-flow conditions using actual supernatant from the Melton Valley Storage Tanks, and attempts to develop a cesium-specific spherical inorganic sorbent for the treatment of acidic high-salt waste solutions. Within the area of Process Chemistry and Thermodynamics, the problem of solids formation in process solutions from caustic treatment of Hanford sludge was addressed and experimental collaborative efforts with Russian scientists to determine the solidification conditions of yttrium barium, and copper oxides from their melts were completed.« less

  9. Software Sharing Enables Smarter Content Management

    NASA Technical Reports Server (NTRS)

    2007-01-01

    In 2004, NASA established a technology partnership with Xerox Corporation to develop high-tech knowledge management systems while providing new tools and applications that support the Vision for Space Exploration. In return, NASA provides research and development assistance to Xerox to progress its product line. The first result of the technology partnership was a new system called the NX Knowledge Network (based on Xerox DocuShare CPX). Created specifically for NASA's purposes, this system combines Netmark-practical database content management software created by the Intelligent Systems Division of NASA's Ames Research Center-with complementary software from Xerox's global research centers and DocuShare. NX Knowledge Network was tested at the NASA Astrobiology Institute, and is widely used for document management at Ames, Langley Research Center, within the Mission Operations Directorate at Johnson Space Center, and at the Jet Propulsion Laboratory, for mission-related tasks.

  10. Quantitative biological surface science: challenges and recent advances.

    PubMed

    Höök, Fredrik; Kasemo, Bengt; Grunze, Michael; Zauscher, Stefan

    2008-12-23

    Biological surface science is a broad, interdisciplinary subfield of surface science, where properties and processes at biological and synthetic surfaces and interfaces are investigated, and where biofunctional surfaces are fabricated. The need to study and to understand biological surfaces and interfaces in liquid environments provides sizable challenges as well as fascinating opportunities. Here, we report on recent progress in biological surface science that was described within the program assembled by the Biomaterial Interface Division of the Science and Technology of Materials, Interfaces and Processes (www.avs.org) during their 55th International Symposium and Exhibition held in Boston, October 19-24, 2008. The selected examples show that the rapid progress in nanoscience and nanotechnology, hand-in-hand with theory and simulation, provides increasingly sophisticated methods and tools to unravel the mechanisms and details of complex processes at biological surfaces and in-depth understanding of biomolecular surface interactions.

  11. Aeroelasticity at the NASA Langley Research Center Recent progress, new challenges

    NASA Technical Reports Server (NTRS)

    Hanson, P. W.

    1985-01-01

    Recent progress in aeroelasticity, particularly at the NASA Langley Research Center is reviewed to look at the questions answered and questions raised, and to attempt to define appropriate research emphasis needed in the near future and beyond. The paper is focused primarily on the NASA Langley Research Center (LaRC) Program because Langley is the lead NASA center for aerospace structures research, and essentially is the only one working in depth in the area of aeroelasticity. Historical trends in aeroelasticity are reviewed broadly in terms of technology and staffing particularly at the LaRC. Then, selected studies of the Loads and Aeroelasticity Division at LaRC and others over the past three years are presented with attention paid to unresolved questions. Finally, based on the results of these studies and on perceptions of design trends and aircraft operational requirements, future research needs in aeroelasticity are discussed.

  12. PUBLICATIONS (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The Air Pollution Technology Branch (APTB) of NRMRL's Air Pollution Prevention and Control Division produces and publishes highly specialized technical and scientific documents related to APTB's research. Areas of research covered include artificial intelligence, CFC destruction,...

  13. Titanium 󈨠: Science and Technology. Proceedings of a Symposium Sponsored by the Titanium Committee of the Minerals, Metals and Materials Structural Metals Division Held at the World Titanium Conference (7th) in San Diego, California on June 29-July 2, 1992. Volume 3.

    DTIC Science & Technology

    1993-01-01

    alterative to Mi-&-4 The alloy design set out to overcome the pecie harafu biolo~ical, At r t of vanadium, by its replacement with the non -toic e=met...C) are still In progress. But according to a preliminary experimental result, the process (C) seemed to Increase the UTS of the designed alloys by...209 A.K. Chakrabarti, R. Pishko, V.M. Sample, and G.W Kuhlman Theoretical Design of f-Type Titanium Alloys

  14. Microgravity science and applications. Program tasks and bibliography for FY 1994

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This annual report includes research projects funded by the Office of Life and Microgravity Sciences and Applications, Microgravity Science and Applications Division, during FY 1994. It is a compilation of program tasks (objective, description, significance, progress, students funded under research, and bibliographic citations) for flight research and ground-based research in five major scientific disciplines: benchmark science, biotechnology, combustion science, fluid physics, and materials science. ATD (Advanced Technology Development) program task descriptions are also included. The bibliography cites the related PI (Principal Investigator) publications and presentations for these program tasks in FY 1994. Three appendices include Table of Acronyms, Guest Investigator Index, and Principal Investigator Index.

  15. Microgravity science & applications. Program tasks and bibliography for FY 1995

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This annual report includes research projects funded by the Office of Life and Microgravity Sciences and Applications, Microgravity Science and Applications Division, during FY 1994. It is a compilation of program tasks (objective, description, significance, progress, students funded under research, and bibliographic citations) for flight research and ground based research in five major scientific disciplines: benchmark science, biotechnology, combustion science, fluid physics, and materials science. Advanced technology development (ATD) program task descriptions are also included. The bibliography cites the related principle investigator (PI) publications and presentations for these program tasks in FY 1994. Three appendices include a Table of Acronyms, a Guest Investigator index and a Principle Investigator index.

  16. NASA Communications Division (NASCOM) Tracking and Data Relay Satellite System (TDRSS) shuttle multiplexer-demultiplexer data system (MDM) and supporting items

    NASA Technical Reports Server (NTRS)

    New, S. R.

    1981-01-01

    The multiplexer-demultiplexer (MDM) project included the design, documentation, manufacture, and testing of three MDM Data Systems. The equipment is contained in 59 racks, and includes more than 3,000 circuit boards and 600 microprocessors. Spares, circuit card testers, a master set of programmable integrated circuits, and a program development system were included as deliverables. All three MDM's were installed, and were operationally tested. The systems performed well with no major problems. The progress and problems analysis, addresses schedule conformance, new technology, items awaiting government approval, and project conclusions are summarized. All contract modifications are described.

  17. NASA Communications Division (NASCOM) Tracking and Data Relay Satellite System (TDRSS) shuttle multiplexer-demultiplexer data system (MDM) and supporting items

    NASA Astrophysics Data System (ADS)

    New, S. R.

    1981-06-01

    The multiplexer-demultiplexer (MDM) project included the design, documentation, manufacture, and testing of three MDM Data Systems. The equipment is contained in 59 racks, and includes more than 3,000 circuit boards and 600 microprocessors. Spares, circuit card testers, a master set of programmable integrated circuits, and a program development system were included as deliverables. All three MDM's were installed, and were operationally tested. The systems performed well with no major problems. The progress and problems analysis, addresses schedule conformance, new technology, items awaiting government approval, and project conclusions are summarized. All contract modifications are described.

  18. Photonic Doppler Velocimetry Multiplexing Techniques: Evaluation of Photonic Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edward Daykin

    This poster reports progress related to photonic technologies. Specifically, the authors developed diagnostic system architecture for a Multiplexed Photonic Doppler Velocimetry (MPDV) that incorporates frequency and time-division multiplexing into existing PDV methodology to provide increased channel count. Current MPDV design increases number of data records per digitizer channel 8x, and also operates as a laser-safe (Class 3a) system. Further, they applied heterodyne interferometry to allow for direction-of-travel determination and enable high-velocity measurements (>10 km/s) via optical downshifting. They also leveraged commercially available, inexpensive and robust components originally developed for telecom applications. Proposed MPDV architectures employ only commercially available, fiber-coupled hardware.

  19. Space-division multiplexing in optical fibres

    NASA Astrophysics Data System (ADS)

    Richardson, D. J.; Fini, J. M.; Nelson, L. E.

    2013-05-01

    Optical communication technology has been advancing rapidly for several decades, supporting our increasingly information-driven society and economy. Much of this progress has been in finding innovative ways to increase the data-carrying capacity of a single optical fibre. To achieve this, researchers have explored and attempted to optimize multiplexing in time, wavelength, polarization and phase. Commercial systems now utilize all four dimensions to send more information through a single fibre than ever before. The spatial dimension has, however, remained untapped in single fibres, despite it being possible to manufacture fibres supporting hundreds of spatial modes or containing multiple cores, which could be exploited as parallel channels for independent signals.

  20. Dnmt1-dependent Chk1 pathway suppression is protective against neuron division.

    PubMed

    Oshikawa, Mio; Okada, Kei; Tabata, Hidenori; Nagata, Koh-Ichi; Ajioka, Itsuki

    2017-09-15

    Neuronal differentiation and cell-cycle exit are tightly coordinated, even in pathological situations. When pathological neurons re-enter the cell cycle and progress through the S phase, they undergo cell death instead of division. However, the mechanisms underlying mitotic resistance are mostly unknown. Here, we have found that acute inactivation of retinoblastoma (Rb) family proteins (Rb, p107 and p130) in mouse postmitotic neurons leads to cell death after S-phase progression. Checkpoint kinase 1 (Chk1) pathway activation during the S phase prevented the cell death, and allowed the division of cortical neurons that had undergone acute Rb family inactivation, oxygen-glucose deprivation (OGD) or in vivo hypoxia-ischemia. During neurogenesis, cortical neurons became protected from S-phase Chk1 pathway activation by the DNA methyltransferase Dnmt1, and underwent cell death after S-phase progression. Our results indicate that Chk1 pathway activation overrides mitotic safeguards and uncouples neuronal differentiation from mitotic resistance. © 2017. Published by The Company of Biologists Ltd.

  1. An Investigation into the Effects of Roll Gyradius on Experimental Testing and Numerical Simulation: Troubleshooting Emergent Issues

    DTIC Science & Technology

    2015-01-01

    Troubleshooting Emergent Issues Edward Dawson Maritime Division Defence Science and Technology Organisation DSTO-TN-1402 ABSTRACT This...UNCLASSIFIED UNCLASSIFIED Published by Maritime Division DSTO Defence Science and Technology Organisation 506...tools used by the Defence Science and Technology Organisation (DSTO) are an efficient and effective means to determine and evaluate the motion

  2. Solid State Division progress report for period ending September 30, 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, P.H.; Watson, D.M.

    1985-03-01

    During the reporting period, relatively minor changes have occurred in the research areas of interest to the Division. Nearly all the research of the Division can be classified broadly as mission-oriented basic research. Topics covered include: theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; and preparation and characterization of research materials. (GHT)

  3. IFLA General Conference, 1987. Division of Bibliographic Control. Cataloging Section. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    The five papers in this collection focus on bibliographic control: (1) "Developments and Progress in Bibliography" (B. C. Bloomfield, Chairman, Section on Bibliography); (2) "Developments and Progress in Cataloguing" (Tom Delsey, Chairman, Section on Cataloging); (3) "Developments and Progress in Classification and…

  4. Progress making the top end optical assembly (TEOA) for the 4-meter Advanced Technology Solar Telescope

    NASA Astrophysics Data System (ADS)

    Canzian, Blaise; Barentine, J.; Arendt, J.; Bader, S.; Danyo, G.; Heller, C.

    2012-09-01

    L-3 Integrated Optical Systems (IOS) Division has been selected by the National Solar Observatory (NSO) to design and produce the Top End Optical Assembly (TEOA) for the 4-meter Advanced Technology Solar Telescope (ATST) to operate at Haleakal', Maui. ATST will perform to a very high optical performance level in a difficult thermal environment. The TEOA, containing the 0.65-meter silicon carbide secondary mirror and support, mirror thermal management system, mirror positioning and fast tip-tilt system, field stop with thermally managed heat dump, thermally managed Lyot stop, safety interlock and control system, and support frame, operates in the "hot spot" at the prime focus of the ATST and so presents special challenges. In this paper, we describe progress in the L-3 technical approach to meeting these challenges, including silicon carbide off-axis mirror design, fabrication, and high accuracy figuring and polishing all within L-3; mirror support design; the design for stray light control; subsystems for opto-mechanical positioning and high accuracy absolute mirror orientation sensing; Lyot stop design; and thermal management of all design elements to remain close to ambient temperature despite the imposed solar irradiance load.

  5. Progress report No. 2, design of new pile area {open_quotes}G,{close_quotes} Project C-300, Atomic Energy Commission Directive HW-104

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, P.E.

    1950-01-16

    This document is the progress report for the design and development of Pile Area {open_quotes}G{close_quotes}, to cover the period June 1, 1949 to December 31, 1949. This project represents the major effort of the Reactor Division of the Design and Construction Divisions. It is being pursued with the aim of being able to incorporate the major project objectives in a finished pile design if that design is begun about January, 1951.

  6. Prologue: ventricular assist devices and total artificial hearts. A historical perspective.

    PubMed

    Frazier, O H

    2003-02-01

    In the 1960s, when LVADs and TAHs were introduced into clinical use, researchers estimated that, with this technology, the problem of heart failure could be solved within 20 years. Unfortunately, the evolution of these devices has taken much longer than anticipated. Nevertheless, significant advances have been achieved in both cardiac assistance and replacement, and today's cardiac surgeons have a wide range of devices from which to choose (Table 4). This progress has largely been due to the support of the NHLBI, especially the Devices and Technology Division headed by John Watson, and of the devoted commitment of the investigators. Because of the long-term commitment required for both basic and clinical research, commercial medical technology companies are unable to assume this burden. Advances in mechanical circulatory support and replacement have benefited numerous patients worldwide who would otherwise have died of heart failure, and devices now exist for use as bridges to recovery, bridges to transplant, and destination therapy. The current challenge is to refine what we have and to apply these technologies to broader patient populations with maximal safety and at a reasonable cost.

  7. 76 FR 59166 - Navistar Truck Development and Technology Center, a Subsidiary of Navistar International...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-23

    ... Development and Technology Center, a Subsidiary of Navistar International Corporation Truck Division, Fort... International Corporation, Truck Division, Fort Wayne, Indiana (subject firm). The negative determination was... is a headcount reduction across the nation, made possible by the Global Outsourcing. * * * '' The...

  8. 75 FR 11920 - Agilent Technologies, Eesof Division, Including On-Site Leased Workers From Volt and Managed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... software and related services including quality assurance and learning products, marketing, product development, marketing and administration. The company reports that on-site leased workers from Managed..., Santa Clara, California, and the Everett, Washington locations of Agilent Technologies, EEsof Division...

  9. The Peoples Republic of China High-Frequency Gravitational Wave Research Program

    NASA Astrophysics Data System (ADS)

    Baker, Robert M. L.

    2009-03-01

    For the past decade the Peoples Republic of China has been increasingly active in the pursuit of High-Frequency Gravitational Wave (HFGW) research. Much of their progress has been during 2008. An epochal achievement was the publication of the theoretical analysis of the Li-Baker HFGW detector in the European Physical Journal C (Li, et al., 2008), "Perturbative Photon Fluxes Generated by High-Frequency Gravitational Waves and Their Physical Effects"). Many Chinese scientists and graduate students have participated in these HFGW studies and their contributions are briefly discussed. Some of the key scientists and their institutions are as follows: first from Chongqing University: Zhenyun Fang, Director of the Institute of Theoretical Physics, Xing gang Wu, The Institute of Theoretical Physics, Nan Yang, The Institute of Gravitational Physics; Jun Luo, Huazhong University of Science and Technology (HUST), Wuhan, China, the Head of Gravitational Laboratory, Yang Zhang, University of Science and Technology of China, Associate Dean of the College of Sciences, Biao Li, Institute of Electronic Engineering of China Academy of Engineering Physics (CAEP), Chief of Microwave Antenna Division, Chuan-Ming Zhou, Technology Committee of Institute of Electronic Engineering of the CAEP, Jie Zhou, Institute of Electronic Engineering of the CAEP, Chief of the Signal Processing Division; Weijia Wen, Department of Physics, The Hong Kong University of Science and Technology. This Chinese HFGW team includes two parts: (1) Theoretical study and (2) Experimental investigation. These two parts have closed relations, and many cross projects, including cooperation between the American GravWave and Chinese HFGW teams. Referring to financial support, The Institute of Electronic Engineering (i.e., Microwave Laboratory) has already (June 2008) provided support more than three million Yuan for the HFGW detection project and this activity is discussed.

  10. Cognitive and Neural Sciences Division, 1988 Programs.

    ERIC Educational Resources Information Center

    Vaughan, Willard S., Ed.

    The research and development efforts performed by principal investigators under sponsorship of the Office of Naval Research Cognitive and Neural Sciences Division during 1988 are documented. The title, name and affiliation of the principal investigator, project code, contract number, current end date, technical objective, approach, and progress of…

  11. Instrumentation and Controls Division Progress Report for the Period of July 1, 1994 to December 31, 1997: Publications, Presentations, Activities, and Awards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, D.W.

    This report contains a record of publishing and other activities in the Oak Ridge National Laboratory (ORNL) Instrumentation and Controls (I&C) Division for the period of July 1, 1994, to December31, 1997. It is a companion volume to Working Together on New Horizons: Instrumentation and Controls Division Progress Report for the Period of July 1, 1994, to December 31, 1997 (OR.NLA4-6530). Working Together on New Horizons contains illustrated summaries of some of the projects under way in I&C Division. Both books can be obtained by contacting C. R. Brittain (brittain@ornl. gov), P.O. Box 2008, Oak Ridge, TN 37831-6005. l&C Divisionmore » Mission and Vision I&C Division develops and maintains techniques, instruments, and systems that lead to a better understanding of nature and harnessing of natural phenomena for the benefit of humankind. We have dedicated ourselves to accelerating the advancement of science and the transfer of those advancements into products and processes that benefit U.S. industry and enhance the security of our citizens.« less

  12. Operationalising United Nations Security Council Resolution 1325 within the Australian Defence Force

    DTIC Science & Technology

    2016-01-01

    Hutchinson Joint & Operations Analysis Division Defence Science and Technology Group DST- Group -GD-0909 ABSTRACT This literature...LIMITATION UNCLASSIFIED UNCLASSIFIED Published by Joint & Operations Analysis Division Defence Science and Technology Group 506 Lorimer St...This page intentionally blank UNCLASSIFIED DST- Group -GD-0909 UNCLASSIFIED Contents 1. INTRODUCTION

  13. 75 FR 65517 - Western Digital Technologies, Inc., Corporate Headquarters/Hard Drive Development Division, Lake...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-25

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-72,949] Western Digital Technologies, Inc., Corporate Headquarters/Hard Drive Development Division, Lake Forest, CA; Notice of... application, I conclude that the claim is of sufficient weight to justify reconsideration of the U.S...

  14. RESEARCH AREA -- ARTIFICIAL INTELLIGENCE CONTROL (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The Air Pollution Technology Branch (APTB) of NRMRL's Air Pollution Prevention and Control Division in Research Triangle Park, NC, has conducted several research projects for evaluating the use of artificial intelligence (AI) to improve the control of pollution control systems an...

  15. The Association for Educational Communications and Technology: Division of School Media Specialists.

    ERIC Educational Resources Information Center

    Miller, Mary Mock

    1993-01-01

    Reports on the Division of School Media Specialists of the Association for Educational Communications and Technology (AECT). Highlights include the mission statement; publications; board members and committee chairs; activities at the AECT conferences; and future concerns, including public relations and marketing plans for media specialists and…

  16. 47 CFR 27.50 - Power limits and duty cycle.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... supporting frequency division duplex (FDD) mobile and portable operations are restricted to transmitting in... duty cycle must not exceed 38 percent; for WCS CPE using FDD technology, the duty cycle must not exceed... stations using frequency division duplex (FDD) technology, the duty cycle must not exceed 12.5 percent in...

  17. 47 CFR 27.50 - Power limits and duty cycle.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... supporting frequency division duplex (FDD) mobile and portable operations are restricted to transmitting in... duty cycle must not exceed 38 percent; for WCS CPE using FDD technology, the duty cycle must not exceed... stations using frequency division duplex (FDD) technology, the duty cycle must not exceed 12.5 percent in...

  18. United States Automotive Materials Partnership LLC (USAMP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    United States Automotive Materials Partnership

    2011-01-31

    The United States Automotive Materials Partnership LLC (USAMP) was formed in 1993 as a partnership between Chrysler Corporation, Ford Motor Company, and General Motors Corporation. Since then the U.S. Department of Energy (DOE) has supported its activities with funding and technical support. The mission of the USAMP is to conduct vehicle-oriented research and development in materials and materials processing to improve the competitiveness of the U.S. Auto Industry. Its specific goals are: (1) To conduct joint research to further the development of lightweight materials for improved automotive fuel economy; and (2) To work with the Federal government to explore opportunitiesmore » for cooperative programs with the national laboratories, Federal agencies such as the DOE and universities. As a major component of the DOE's Office of FreedomCAR and Vehicle Technologies Program (FCVT) collaboration with the USAMP, the Automotive Lightweighting Materials (ALM) program focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. The FCVT was announced in FY 2002 and implemented in FY 2003, as a successor of the Partnership for a New Generation of Vehicles (PNGV), largely addressed under the first Cooperative Agreement. This second USAMP Cooperative Agreement with the DOE has expanded a unique and valuable framework for collaboratively directing industry and government research efforts toward the development of technologies capable of solving important societal problems related to automobile transportation. USAMP efforts are conducted by the domestic automobile manufacturers, in collaboration with materials and manufacturing suppliers, national laboratories, universities, and other technology or trade organizations. These interactions provide a direct route for implementing newly developed materials and technologies, and have resulted in significant technical successes to date, as discussed in the individual project summary final reports. Over 70 materials-focused projects have been established by USAMP, in collaboration with participating suppliers, academic/non-profit organizations and national laboratories, and executed through its original three divisions: the Automotive Composites Consortium (ACC), the Automotive Metals Division (AMD), and Auto/Steel Partnership (A/SP). Two new divisions were formed by USAMP in 2006 to drive research emphasis on integration of structures incorporating dissimilar lightweighting materials, and on enabling technology for nondestructive evaluation of structures and joints. These new USAMP divisions are: Multi-Material Vehicle Research and Development Initiative (MMV), and the Non-Destructive Evaluation Steering Committee (NDE). In cooperation with USAMP and the FreedomCAR Materials Technical Team, a consensus process has been established to facilitate the development of projects to help move leveraged research to targeted development projects that eventually migrate to the original equipment manufacturers (OEMs) as application engineering projects. Research projects are assigned to one of three phases: concept feasibility, technical feasibility, and demonstration feasibility. Projects are guided through ongoing monitoring and USAMP offsite reviews, so as to meet the requirements of each phase before they are allowed to move on to the next phase. As progress is made on these projects, the benefits of lightweight construction and enabling technologies will be transferred to the supply base and implemented in production vehicles. The single greatest barrier to automotive use of lightweight materials is their high cost; therefore, priority is given to activities aimed at reducing costs through development of new materials, forming technologies, and manufacturing processes. The emphasis of the research projects reported in this document was largely on applied research and evaluation of mass savings opportunities through the aggressive application of lightweight materials, advanced computational methods, and the demonstration of production capable manufacturing processes intended for high-volume applications, all directed towards the FreedomCAR Program goals. Priority lightweighting materials include advanced high-strength steels (AHSS), aluminum, magnesium, titanium, and composites such as metal-matrix materials, and glass- and carbon-fiber-reinforced thermosets and thermoplastics. Besides developing valuable new design and material property information, several projects have extensively used computer-based product modeling and simulation technologies to optimize designs and materials usage while addressing the cost-performance issues. The purpose of this Summary Final Closeout Report is to document the successes, degree of progress, technology dissemination efforts, and lessons learned.« less

  19. Data Access, Interoperability and Sustainability: Key Challenges for the Evolution of Science Capabilities

    NASA Astrophysics Data System (ADS)

    Walton, A. L.

    2015-12-01

    In 2016, the National Science Foundation (NSF) will support a portfolio of activities and investments focused upon challenges in data access, interoperability, and sustainability. These topics are fundamental to science questions of increasing complexity that require multidisciplinary approaches and expertise. Progress has become tractable because of (and sometimes complicated by) unprecedented growth in data (both simulations and observations) and rapid advances in technology (such as instrumentation in all aspects of the discovery process, together with ubiquitous cyberinfrastructure to connect, compute, visualize, store, and discover). The goal is an evolution of capabilities for the research community based on these investments, scientific priorities, technology advances, and policies. Examples from multiple NSF directorates, including investments by the Advanced Cyberinfrastructure Division, are aimed at these challenges and can provide the geosciences research community with models and opportunities for participation. Implications for the future are highlighted, along with the importance of continued community engagement on key issues.

  20. Phylogenetics, phylogeography and population genetics of North American sea ducks (tribe: Mergini)

    USGS Publications Warehouse

    Talbot, Sandra L.; Sonsthagen, Sarah A.; Pearce, John M.; Scribner, Kim T.

    2015-01-01

    Many environments occupied by North American sea ducks are remote and difficult to access, and as a result, detailed information about life history characteristics that drive population dynamics within and across species is limited. Nevertheless, progress on this front during the past several decades has benefited by the application of genetic technologies, and for several species, these technologies have allowed for concomitant tracking of population trends and genetic diversity, delineation of populations, assessment of gene flow among metapopulations, and understanding of migratory connectivity between breeding and wintering grounds. This chapter provides an overview of phylogenetic, phylogeographic, and population genetics studies of North American sea duck species, many of which have sought to understand the major and minor genetic divisions within and among sea duck species, and most of which have been conducted with the understanding that the maintenance of genetic variation in wild sea duck populations is fundamental to the group’s long-term persistence.

  1. Biology Division progress report, October 1, 1978-May 31, 1980. [Lead abstract

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Separate abstracts were prepared for each of the four sections into which this progress report has been divided. The report also contains sections related to interdivision activities and educational activities. (ERB)

  2. Trial NCT00690924 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  3. Trial NCT02581137 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  4. Trial NCT01382082 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  5. Leslie Ford, MD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  6. Home | Division of Cancer Prevention

    Cancer.gov

    Our Research The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into cancer. |

  7. Trial NCT01391689 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  8. Administrative Resource Center | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  9. Trial NCT02052908 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  10. Trial NCT02116530 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  11. Trial NCT01503632 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  12. Trial NCT01793233 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  13. Trial NCT01406769 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  14. 2016 News Articles | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  15. 2017 News Articles | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  16. 2015 News Articles | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  17. 2014 News Articles | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  18. 2013 News Articles | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  19. Trial NCT01728571 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  20. 2018 News Articles | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  1. Howard Parnes, MD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  2. major_program | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  3. Trial NCT02782949 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  4. Trial NCT02095145 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  5. Trial NCT02326805 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  6. Trial NCT01594502 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  7. Trial NCT01238172 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  8. Trial NCT02933489 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  9. Trial NCT00153816 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  10. Trial NCT00983580 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  11. Trial NCT02743364 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  12. Trial NCT01606124 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  13. Trial NCT00392561 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  14. Trial NCT01968798 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  15. Early Detection Staff | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  16. Trial NCT00641147 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  17. Cancer Biomarkers Staff | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  18. Staff Directory | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  19. Biometry Staff | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  20. Nutritional Science Staff | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  1. Trial NCT00917735 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  2. Trial NCT02063698 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  3. Trial NCT01950403 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  4. clinical_trial | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  5. Trial NCT01781468 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  6. Trial NCT02134925 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  7. Trial NCT02568566 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  8. Trial NCT02382419 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  9. Trial NCT02273362 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  10. Trial NCT02314156 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  11. Trial NCT02155777 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  12. Trial NCT02636582 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  13. Trial NCT02780401 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  14. Trial NCT01550783 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  15. Trial NCT01935960 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  16. Trial NCT02028221 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  17. Meetings and Events | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  18. Trial NCT02521285 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  19. Trial NCT01169259 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  20. | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  1. Clinical Trials | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  2. Active Grants | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  3. Trial NCT01346267 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  4. Trial NCT01141231 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  5. Trial NCT02112188 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  6. Eva Szabo, MD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  7. Trial NCT02002533 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  8. Trial NCT02772003 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  9. Trial NCT02598557 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  10. Trial NCT02965703 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  11. Trial NCT02917629 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  12. Trial NCT01849250 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  13. Sarah Temkin, MD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  14. Shizuko Sei, MD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  15. news_and_event | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  16. research_group | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  17. newsletter | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  18. Trial NCT03063619 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  19. Mark Sherman, MD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  20. Trial NCT02123849 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  1. Trial NCT01556243 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  2. Trial NCT02348203 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  3. Trial NCT02237183 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  4. Trial NCT01824836 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  5. Funded Grants | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  6. Trial NCT02365480 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  7. Clinical Trials Node | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  8. Trial NCT02169284 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  9. Trial NCT02169271 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  10. Trial NCT01661764 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  11. OSD1 promotes meiotic progression via APC/C inhibition and forms a regulatory network with TDM and CYCA1;2/TAM.

    PubMed

    Cromer, Laurence; Heyman, Jefri; Touati, Sandra; Harashima, Hirofumi; Araou, Emilie; Girard, Chloe; Horlow, Christine; Wassmann, Katja; Schnittger, Arp; De Veylder, Lieven; Mercier, Raphael

    2012-01-01

    Cell cycle control is modified at meiosis compared to mitosis, because two divisions follow a single DNA replication event. Cyclin-dependent kinases (CDKs) promote progression through both meiosis and mitosis, and a central regulator of their activity is the APC/C (Anaphase Promoting Complex/Cyclosome) that is especially required for exit from mitosis. We have shown previously that OSD1 is involved in entry into both meiosis I and meiosis II in Arabidopsis thaliana; however, the molecular mechanism by which OSD1 controls these transitions has remained unclear. Here we show that OSD1 promotes meiotic progression through APC/C inhibition. Next, we explored the functional relationships between OSD1 and the genes known to control meiotic cell cycle transitions in Arabidopsis. Like osd1, cyca1;2/tam mutation leads to a premature exit from meiosis after the first division, while tdm mutants perform an aberrant third meiotic division after normal meiosis I and II. Remarkably, while tdm is epistatic to tam, osd1 is epistatic to tdm. We further show that the expression of a non-destructible CYCA1;2/TAM provokes, like tdm, the entry into a third meiotic division. Finally, we show that CYCA1;2/TAM forms an active complex with CDKA;1 that can phosphorylate OSD1 in vitro. We thus propose that a functional network composed of OSD1, CYCA1;2/TAM, and TDM controls three key steps of meiotic progression, in which OSD1 is a meiotic APC/C inhibitor.

  12. Design and implementation of a Windows NT network to support CNC activities

    NASA Technical Reports Server (NTRS)

    Shearrow, C. A.

    1996-01-01

    The Manufacturing, Materials, & Processes Technology Division is undergoing dramatic changes to bring it's manufacturing practices current with today's technological revolution. The Division is developing Computer Automated Design and Computer Automated Manufacturing (CAD/CAM) abilities. The development of resource tracking is underway in the form of an accounting software package called Infisy. These two efforts will bring the division into the 1980's in relationship to manufacturing processes. Computer Integrated Manufacturing (CIM) is the final phase of change to be implemented. This document is a qualitative study and application of a CIM application capable of finishing the changes necessary to bring the manufacturing practices into the 1990's. The documentation provided in this qualitative research effort includes discovery of the current status of manufacturing in the Manufacturing, Materials, & Processes Technology Division including the software, hardware, network and mode of operation. The proposed direction of research included a network design, computers to be used, software to be used, machine to computer connections, estimate a timeline for implementation, and a cost estimate. Recommendation for the division's improvement include action to be taken, software to utilize, and computer configurations.

  13. Industrial Technology Modernization Program. Project 28. Automation of Receiving, Receiving Inspection and Stores

    DTIC Science & Technology

    1987-06-15

    001 GENERAL DYNAMICS 00 FORT WORTH DIVISION INDUSTRIAL TECHNOLOGY MODERNIZATION PROGRAM Phase 2 Final Project Repc t JUNG 0 ?7 PROJECT 28 AUTOMATION...DYNAMICS FORT WORTH DIVISION INDUSTRIAL TECHNOLOGY MODERNIZATION PROGRAM Phase 2 Final Project Report PROJECT 28 AUTOMATION OF RECEIVING, RECEIVING...13 6 PROJECT ASSUMPTIONS 20 7 PRELIMINARY/FINAL DESIGN AND FINDINGS 21 8 SYSTEM/EQUIPMENT/MACHINING SPECIFICATIONS 37 9 VENDOR/ INDUSTRY ANALYSIS

  14. Slotted Waveguide Antenna Stiffened Structures (SWASS) Development for Commercial Off-the-Shelf (COTS) Radar (Briefing Charts)

    DTIC Science & Technology

    2016-10-01

    BRIEFING CHARTS) D. Zeppettella Structures Technology Branch Aerospace Vehicles Division Steve Bucca and Thomas Gage BerrieHill Research...R. WIPPERMAN, Chief Program Manager Structures Technology Branch Structures Technology Branch Aerospace Vehicles Division Aerospace Vehicles...Corporation) 5d. PROJECT NUMBER 4920 5e. TASK NUMBER 5f. WORK UNIT NUMBER Q06A 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING

  15. Assessing the use of Low Voltage UV-light Emitting Miniature LEDs for Marine Biofouling Control

    DTIC Science & Technology

    2016-07-01

    Piola, 1Bart Salters, Clare Grandison, Mark Ciacic and 1Roelant Hietbrink Maritime Division Defence Science and Technology Group 1Philips...uniformly all over the coating layer. In this report, we present a description of the technology and experimental setup, as well as the results of...UNCLASSIFIED Published by Maritime Division Defence Science and Technology Group 506 Lorimer St Fishermans Bend, Victoria 3207 Australia

  16. Cell division cycle 45 promotes papillary thyroid cancer progression via regulating cell cycle.

    PubMed

    Sun, Jing; Shi, Run; Zhao, Sha; Li, Xiaona; Lu, Shan; Bu, Hemei; Ma, Xianghua

    2017-05-01

    Cell division cycle 45 was reported to be overexpressed in some cancer-derived cell lines and was predicted to be a candidate oncogene in cervical cancer. However, the clinical and biological significance of cell division cycle 45 in papillary thyroid cancer has never been investigated. We determined the expression level and clinical significance of cell division cycle 45 using The Cancer Genome Atlas, quantitative real-time polymerase chain reaction, and immunohistochemistry. A great upregulation of cell division cycle 45 was observed in papillary thyroid cancer tissues compared with adjacent normal tissues. Furthermore, overexpression of cell division cycle 45 positively correlates with more advanced clinical characteristics. Silence of cell division cycle 45 suppressed proliferation of papillary thyroid cancer cells via G1-phase arrest and inducing apoptosis. The oncogenic activity of cell division cycle 45 was also confirmed in vivo. In conclusion, cell division cycle 45 may serve as a novel biomarker and a potential therapeutic target for papillary thyroid cancer.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Divisionmore » operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division`s activities during 1997 are presented.« less

  18. Materials sciences programs: Fiscal year 1994

    NASA Astrophysics Data System (ADS)

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  19. Materials sciences programs, fiscal year 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance andmore » other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.« less

  20. The SERI solar energy storage program

    NASA Technical Reports Server (NTRS)

    Copeland, R. J.; Wright, J. D.; Wyman, C. E.

    1980-01-01

    In support of the DOE thermal and chemical energy storage program, the solar energy storage program (SERI) provides research on advanced technologies, systems analyses, and assessments of thermal energy storage for solar applications in support of the Thermal and Chemical Energy Storage Program of the DOE Division of Energy Storage Systems. Currently, research is in progress on direct contact latent heat storage and thermochemical energy storage and transport. Systems analyses are being performed of thermal energy storage for solar thermal applications, and surveys and assessments are being prepared of thermal energy storage in solar applications. A ranking methodology for comparing thermal storage systems (performance and cost) is presented. Research in latent heat storage and thermochemical storage and transport is reported.

  1. Mars Science Laboratory Rover Taking Shape

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image taken in August 2008 in a clean room at NASA's Jet Propulsion Laboratory, Pasadena, Calif., shows NASA's next Mars rover, the Mars Science Laboratory, in the course of its assembly, before additions of its arm, mast, laboratory instruments and other equipment.

    The rover is about 9 feet wide and 10 feet long.

    Viewing progress on the assembly are, from left: NASA Associate Administrator for Science Ed Weiler, California Institute of Technology President Jean-Lou Chameau, JPL Director Charles Elachi, and JPL Associate Director for Flight Projects and Mission Success Tom Gavin.

    JPL, a division of Caltech, manages the Mars Science Laboratory project for the NASA Science Mission Directorate, Washington.

  2. 15 CFR 745.1 - Advance notification and annual report of all exports of Schedule 1 chemicals to other States...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... address: Information Technology Team, Treaty Compliance Division, Bureau of Industry and Security, U.S... courier delivery to the following address: Information Technology Team, Treaty Compliance Division, Bureau... Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND...

  3. 77 FR 51064 - Dana Holding Corporation, Power Technologies Group Division, Including On-Site Leased Workers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-23

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-81,317] Dana Holding Corporation, Power Technologies Group Division, Including On-Site Leased Workers From Manpower, Milwaukee, WI; Notice... investigation resulted in a negative determination based on the findings that the subject firm did not shift...

  4. Web-Assisted Instruction in Upper Division Communication Studies Curriculum: A Theoretical and Quantitative Analysis

    ERIC Educational Resources Information Center

    Olaniran, Bolanle; Austin, Katherine A.

    2009-01-01

    Purpose: This paper aims to describe the incorporation of technologies into two upper division Communication Studies courses at Texas Tech University. Design/methodology/approach: The article discusses the methodological and pedagogical rationale used to select the appropriate technologies and to effectively incorporate them into the classroom. An…

  5. TOO MANY MOUTHS promotes cell fate progression in stomatal development of Arabidopsis stems.

    PubMed

    Bhave, Neela S; Veley, Kira M; Nadeau, Jeanette A; Lucas, Jessica R; Bhave, Sanjay L; Sack, Fred D

    2009-01-01

    Mutations in TOO MANY MOUTHS (TMM), which encodes a receptor-like protein, cause stomatal patterning defects in Arabidopsis leaves but eliminate stomatal formation in stems. Stomatal development in wild-type and tmm stems was analyzed to define TMM function. Epidermal cells in young tmm stems underwent many asymmetric divisions characteristic of entry into the stomatal pathway. The resulting precursor cells, meristemoids, appropriately expressed cell fate markers such as pTMM:GFP. However, instead of progressing developmentally by forming a guard mother cell, the meristemoids arrested, dedifferentiated, and enlarged. Thus asymmetric divisions are necessary but not sufficient for stomatal formation in stems, and TMM promotes the fate and developmental progression of early precursor cells. Comparable developmental and mature stomatal phenotypes were also found in tmm hypocotyls and in the proximal flower stalk. TMM is also a positive regulator of meristemoid division in leaves suggesting that TMM generally promotes meristemoid activity. Our results are consistent with a model in which TMM interacts with other proteins to modulate precursor cell fate and progression in an organ and domain-specific manner. Finally, the consistent presence of a small number of dedifferentiated meristemoids in mature wild-type stems suggests that precursor cell arrest is a normal feature of Arabidopsis stem development.

  6. 78 FR 8586 - PEPSICO, Inc., Business & Information Solutions (BIS) Division Including On-Site Leased Workers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-06

    ...., Business & Information Solutions (BIS) Division, including on-site leased workers of Cognizant Technology..., Inc., Business & Information Solutions (BIS) Division Including On-Site Leased Workers From Procurestaff, Cognizant, Infosys, Wipro, and TCS; Plano, TX; PEPSICO, Inc., Business & Information Solutions...

  7. Annual Proceedings of Selected Papers on The Practice of Education Communications and Technology Presented at the Annual Convention of the Association for Educational Communications and Technology (37th, Jacksonville, Florida, 2014). Volume 2

    ERIC Educational Resources Information Center

    Simonson, Michael, Ed.

    2014-01-01

    For the thirty-seventh year, the Research and Theory Division and the Division of Instructional Design of the Association for Educational Communications and Technology (AECT) sponsored the publication of these Proceedings. Papers published in this volume were presented at the annual AECT Convention in Jacksonville, Florida. This year's Proceedings…

  8. IFLA General Conference, 1991. Division of Management and Technology: Section of Conservation; Section of Information Technology; Section of Library Buildings and Equipment; Section of Statistics; Management of Library Associations. Booklet 6.

    ERIC Educational Resources Information Center

    International Federation of Library Associations and Institutions, The Hague (Netherlands).

    The eight papers in this collection were presented at five sections of the Division of Management and Technology: (1) "The State Conservation Programme (Concept Approach)" (Tamara Burtseva and Zinaida Dvoriashina, USSR); (2) "La communication a distance de banques d'images pour le grand public (Public Access to Image Databases via…

  9. 7 CFR 295.8 - Requests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...-1500. (2) Child Nutrition Program records—Director, Child Nutrition Division, Food and Nutrition... to: Freedom of Information Act Officer, Information Technology Division, 3101 Park Center Drive...

  10. 7 CFR 295.8 - Requests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...-1500. (2) Child Nutrition Program records—Director, Child Nutrition Division, Food and Nutrition... to: Freedom of Information Act Officer, Information Technology Division, 3101 Park Center Drive...

  11. 7 CFR 295.8 - Requests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...-1500. (2) Child Nutrition Program records—Director, Child Nutrition Division, Food and Nutrition... to: Freedom of Information Act Officer, Information Technology Division, 3101 Park Center Drive...

  12. 7 CFR 295.8 - Requests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...-1500. (2) Child Nutrition Program records—Director, Child Nutrition Division, Food and Nutrition... to: Freedom of Information Act Officer, Information Technology Division, 3101 Park Center Drive...

  13. 7 CFR 295.8 - Requests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...-1500. (2) Child Nutrition Program records—Director, Child Nutrition Division, Food and Nutrition... to: Freedom of Information Act Officer, Information Technology Division, 3101 Park Center Drive...

  14. Grant R01CA124481 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  15. Grant U01CA200462 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  16. Grant R21CA182941 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  17. Grant R01AT005295 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  18. Grant R01CA205608 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  19. Grant R01AI093723 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  20. Grant R03CA186218 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  1. Grant R01CA164782 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  2. Grant R03CA195143 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  3. Grant U01AG029824 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  4. Grant UG1CA189873 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  5. Grant P50AT002776 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  6. Karl Krueger, PhD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  7. Grant R21CA186853 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  8. Grant R01CA204378 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  9. Grant R01CA163683 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  10. Grant U54CA163059 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  11. Grant U01CA163056 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  12. Grant R21CA191761 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  13. Grant R21CA190021 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  14. Grant R21CA174594 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  15. Grant U01CA200495 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  16. Grant U01CA213330 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  17. Cancer Biomarkers Funding Opportunities | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  18. Grant R21CA182861 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  19. Cancer Prevention Fellowship Program | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  20. Grant R03CA180539 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  1. Grant R01CA154489 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  2. Grant R01CA155297 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  3. Grant R21CA185460 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  4. Grant R21CA184788 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  5. Grant R01CA140605 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  6. Grant R03CA176799 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  7. Grant R03CA171661 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  8. Grant R21CA174541 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  9. Grant R01CA080946 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  10. Grant R01CA204345 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  11. Grant R01CA166557 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  12. Grant U01CA200468 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  13. Barry Kramer, MD, MPH | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  14. Grant R01CA190092 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  15. Grant R21CA196954 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  16. Grant P01CA210946 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  17. Nadarajen Vydelingum, PhD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  18. Goli Samimi, PhD, MPH | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  19. Grant Izmirlian, PhD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  20. Lynn Sorbara, PhD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  1. Active Chemopreventive Agent Development Grants | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  2. Chemopreventive Agent Development Staff | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  3. Chemopreventive Agent Development Clinical Trials | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  4. Chemopreventive Agent Development Funding Opportunities | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  5. Grant R01CA196762 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  6. Grant R01CA200795 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  7. Marge Good, RN, MPH, OCN | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  8. Active Supportive and Palliative Care Research Grants | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  9. Grant R21CA206039 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  10. Grant R21CA190028 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  11. Grant R01CA206026 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  12. Grant R01CA133050 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  13. Grant R21CA124606 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  14. Grant R01CA193522 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  15. Grant R01CA163803 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  16. Grant R01CA196854 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  17. Grant R01CA105266 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  18. Grant R01CA182284 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  19. Grant R21CA137333 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  20. Grant R01CA187160 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  1. Grant R01CA163293 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  2. Grant R01CA162401 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  3. Grant R01CA162139 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  4. Grant R01CA138800 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  5. Grant R01CA169398 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  6. Grant R01CA177562 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  7. Grant R21CA149956 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  8. Grant R01CA026582 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  9. Grant R01CA195723 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  10. Grant R01CA163103 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  11. Grant UG1CA189822 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  12. Grant R01CA148817 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  13. Grant R01CA179949 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  14. Grant U01CA194733 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  15. Grant UG1CA189858 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  16. Active Gastrointestinal and Other Cancers Grants | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  17. Victor Kipnis, PhD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  18. Community Oncology and Prevention Trials Funding Opportunities | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  19. Grant R01AG041869 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  20. Worta McCaskill-Stevens, MD, MS | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  1. Grant R21CA181901 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  2. Community Oncology and Prevention Trials Staff | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  3. Grant R01CA174683 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  4. Grant R01CA196692 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  5. Gastrointestinal and Other Cancers Clinical Trials | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  6. Active Early Detection Grants | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  7. Paul Pinsky, PhD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  8. Grant R01CA107408 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  9. Grant R01CA165309 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  10. Grant R01CA137178 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  11. Grant R01CA184820 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  12. Grant R01CA158319 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  13. Grant UG1CA189804 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  14. Grant R01CA203950 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  15. Grant R01CA181242 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  16. Active Prostate and Urologic Cancer Grants | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  17. NCI Community Oncology Research Program Clinical Trials | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  18. Grant R01CA188038 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  19. Grant UG1CA189867 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  20. Active NCI Community Oncology Research Program Grants | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  1. Active Community Oncology and Prevention Trials Grants | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  2. Grant R21CA220352 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  3. Grant U24CA115102 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  4. Grant U01CA086402 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  5. Jeanne Murphy, PhD, CNM, [F] | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  6. Grant UG1CA189863 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  7. Kelly Yu, PhD, MPH | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  8. Grant R01CA166590 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  9. Gastrointestinal and Other Cancers Staff | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  10. Grant R01CA211996 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  11. Brandy Heckman-Stoddard, PhD, MPH | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  12. Grant P50AT000155 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  13. Supportive and Palliative Care Research Funding Opportunities | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  14. Grant UG1CA189870 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  15. Breast and Gynecologic Cancer Clinical Trials | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  16. Prostate and Urologic Cancer Clinical Trials | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  17. Grant U01CA168878 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  18. Grant U01CA168926 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  19. Grant U01CA168896 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  20. Grant U01CA128454 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  1. Grant R01CA212190 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  2. Grant UG1CA189862 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  3. Sharmistha Ghosh-Janjigian, PhD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  4. Grant R01CA166710 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  5. Grant R01CA193885 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  6. Grant R01CA155301 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  7. Grant R01CA132951 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  8. Grant R01CA182076 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  9. Grant U01DK048411 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  10. Grant R01CA180949 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  11. Grant U01DK048400 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  12. Grant U01DK048514 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  13. Grant U01DK048468 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  14. Grant U01DK048387 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  15. Grant U01DK048485 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  16. Grant U01DK048434 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  17. Grant R01CA140561 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  18. Grant U01DK048377 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  19. Grant U01DK048381 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  20. Vikrant Sahasrabuddhe, MBBS, MPH, DrPH | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  1. Grant R01CA179511 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  2. Grant R01CA208711 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  3. Grant UG1CA189809 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  4. Grant UG1CA189821 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  5. Grant U01CA185094 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  6. Grant U01CA184910 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  7. Grant U01CA182367 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  8. Grant P01CA077839 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  9. Grant R01CA134620 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  10. Grant R01CA098286 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  11. Breast and Gynecologic Cancer Staff | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  12. Vance Berger, PhD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  13. Grant R01CA208303 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  14. Grant R01CA114412 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  15. Grant R01CA183296 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  16. Grant R21CA208610 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  17. Grant R01CA169175 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  18. Office of the Associate Director | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  19. Nutritional Science Meetings and Events | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  20. Active Nutritional Science Grants | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  1. Nutritional Science Clinical Trials | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  2. Nutritional Science Funding Opportunities | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  3. Young Kim, PhD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  4. Grant P01CA073992 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  5. Grant R13DK112400 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  6. Grant R01CA157469 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  7. Grant R13CA216888 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  8. Grant R01CA179992 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  9. Grant U01DK048339 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  10. Grant R01CA177995 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  11. Grant R01CA158668 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  12. Grant R13CA213939 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  13. Grant U01DK048375 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  14. Grant R01CA166011 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  15. Harold Seifried, PhD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  16. Christos Patriotis, PhD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  17. Grant R15CA227946 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  18. Grant R01CA128134 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  19. Grant R01CA200423 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  20. Grant R01CA221260 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  1. Grant R21CA208968 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  2. Grant R21CA173263 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  3. Grant R01CA200417 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  4. Active Cancer Biomarkers Grants | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  5. Grant U01CA207702 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  6. Claire Zhu, PhD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  7. Grant U01CA226055 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  8. Grant R01CA205633 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  9. Grant U01CA214201 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  10. Grant R33CA225380 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  11. Grant UG3CA211415 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  12. Ann O'Mara, PhD, RN, MPH | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  13. Jo Ann Rinaudo, PhD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  14. Barrett's Esophagus Translational Research Network (BETRNet) | Division of Cancer Prevention

    Cancer.gov

    The goal of BETRNet is to reduce the incidence, morbidity, and mortality of esophageal adenocarcinoma by answering key questions related to the progression of the disease, especially in the premalignant stage. In partnership with NCI’s Division of Cancer Biology, multidisciplinary translational research centers collaborate to better understand the biology of Barrett's

  15. Grant R01CA151708 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  16. Grant R01CA190776 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  17. Biometry Meetings and Events | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  18. Grant U01DK048349 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  19. Grant R03CA121827 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  20. Community Oncology and Prevention Trials Clinical Trials | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  1. Lung and Upper Aerodigestive Cancer Staff | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  2. Active Lung and Upper Aerodigestive Cancer Grants | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  3. Lung and Upper Aerodigestive Cancer Clinical Trials | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  4. Grant R01CA195524 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  5. Grant R01CA217180 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  6. Grant R01CA183869 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  7. Grant R01CA194617 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  8. Mark Miller, PhD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  9. Grant UG1CA189852 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  10. Solid State Division progress report for period ending March 31, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, P.H.; Hinton, L.W.

    1992-09-01

    During this period, the division conducted a broad, interdisciplinary materials research program with emphasis on theoretical solid state physics, superconductivity, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. The High Flux Isotope Reactor was returned to full operation.

  11. Grant R35CA197707 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  12. Grant R03CA201962 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  13. Grant U01DK048437 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  14. Grant U01CA086137 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  15. Grant R01CA084233 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  16. Grant U01CA214183 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  17. Grant U01CA214170 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  18. Grant U01CA200464 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  19. Grant U01CA152753 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  20. Grant U01CA214165 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  1. Grant U01CA200466 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  2. Grant UG1CA189997 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  3. Grant UG1CA189816 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  4. Grant UG1CA189974 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  5. Grant UG1CA189823 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  6. Grant R01CA132927 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  7. Richard Mazurchuk, PhD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  8. Grant R01CA120933 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  9. Grant R03CA176738 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  10. Grant R01CA148966 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  11. Office of the Director | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  12. Grant R01CA161534 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  13. Active Breast and Gynecologic Cancer Grants | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  14. Office of the Deputy Director | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  15. Grant R01CA218578 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  16. Grant R01CA112304 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  17. Grant U24CA220242 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  18. Grant U01CA167462 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  19. Grant R21CA188781 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  20. Grant U01CA195603 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

Top