Sample records for technology instrument development

  1. Flight Technology Improvement. [spaceborne optical radiometric instruments, attitude control, and electromechanical and power subsystems

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Shortcomings in spaceborne instrumentation technology are analyzed and recommendations are given for corrections and technology development. The technologies discussed are optical radiometric instruments and calibration, attitude control and determination, and electromechanical and power subsystems.

  2. Summary of the Flight Technology Improvement Workshop. [spaceborne optical radiometric instruments, attitude control, and electromechanical and power subsystems

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Spaceborne instrumentation technology deficiencies are summarized. Recommendations are given for technology development, improvements in existing technology, and policy changes needed to facilitate the use of improved technology. Optical radiometric instruments, attitude control, and electromechanical and power subsystems are considered.

  3. The Teaching with Technology Instrument: Effectively Measuring Where Teachers Are and Planning for Staff Development.

    ERIC Educational Resources Information Center

    Atkins, Nancy E.; Vasu, Ellen S.

    1998-01-01

    Presents an instrument for planning for staff development to help identify how much teachers know about technology and its integration into the classroom. The Teaching with Technology Instrument's (TTI's) 46 items are grouped in three areas: writing and communication skills, information access and management, and construction and multimedia. The…

  4. Development and validation of the computer technology literacy self-assessment scale for Taiwanese elementary school students.

    PubMed

    Chang, Chiung-Sui

    2008-01-01

    The purpose of this study was to describe the development and validation of an instrument to identify various dimensions of the computer technology literacy self-assessment scale (CTLS) for elementary school students. The instrument included five CTLS dimensions (subscales): the technology operation skills, the computer usages concepts, the attitudes toward computer technology, the learning with technology, and the Internet operation skills. Participants were 1,539 elementary school students in Taiwan. Data analysis indicated that the instrument developed in the study had satisfactory validity and reliability. Correlations analysis supported the legitimacy of using multiple dimensions in representing students' computer technology literacy. Significant differences were found between male and female students, and between grades on some CTLS dimensions. Suggestions are made for use of the instrument to examine complicated interplays between students' computer behaviors and their computer technology literacy.

  5. Validation of an instrument to measure students' motivation and self-regulation towards technology learning

    NASA Astrophysics Data System (ADS)

    Liou, Pey-Yan; Kuo, Pei-Jung

    2014-05-01

    Background:Few studies have examined students' attitudinal perceptions of technology. There is no appropriate instrument to measure senior high school students' motivation and self-regulation toward technology learning among the current existing instruments in the field of technology education. Purpose:The present study is to validate an instrument for assessing senior high school students' motivation and self-regulation towards technology learning. Sample:A total of 1822 Taiwanese senior high school students (1020 males and 802 females) responded to the newly developed instrument. Design and method:The Motivation and Self-regulation towards Technology Learning (MSRTL) instrument was developed based on the previous instruments measuring students' motivation and self-regulation towards science learning. Exploratory and confirmatory factor analyses were utilized to investigate the structure of the items. Cronbach's alpha was applied for measuring the internal consistency of each scale. Furthermore, multivariate analysis of variance was used to examine gender differences. Results:Seven scales, including 'Technology learning self-efficacy,' 'Technology learning value,' 'Technology active learning strategies,' 'Technology learning environment stimulation,' 'Technology learning goal-orientation,' 'Technology learning self-regulation-triggering,' and 'Technology learning self-regulation-implementing' were confirmed for the MSRTL instrument. Moreover, the results also showed that male and female students did not present the same degree of preference in all of the scales. Conclusions:The MSRTL instrument composed of seven scales corresponding to 39 items was shown to be valid based on validity and reliability analyses. While male students tended to express more positive and active performance in the motivation scales, no gender differences were found in the self-regulation scales.

  6. ECLSS Integration Analysis: Advanced ECLSS Subsystem and Instrumentation Technology Study for the Space Exploration Initiative

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In his July 1989 space policy speech, President Bush proposed a long range continuing commitment to space exploration and development. Included in his goals were the establishment of permanent lunar and Mars habitats and the development of extended duration space transportation. In both cases, a major issue is the availability of qualified sensor technologies for use in real-time monitoring and control of integrated physical/chemical/biological (p/c/b) Environmental Control and Life Support Systems (ECLSS). The purpose of this study is to determine the most promising instrumentation technologies for future ECLSS applications. The study approach is as follows: 1. Precursor ECLSS Subsystem Technology Trade Study - A database of existing and advanced Atmosphere Revitalization (AR) and Water Recovery and Management (WRM) ECLSS subsystem technologies was created. A trade study was performed to recommend AR and WRM subsystem technologies for future lunar and Mars mission scenarios. The purpose of this trade study was to begin defining future ECLSS instrumentation requirements as a precursor to determining the instrumentation technologies that will be applicable to future ECLS systems. 2. Instrumentation Survey - An instrumentation database of Chemical, Microbial, Conductivity, Humidity, Flowrate, Pressure, and Temperature sensors was created. Each page of the sensor database report contains information for one type of sensor, including a description of the operating principles, specifications, and the reference(s) from which the information was obtained. This section includes a cursory look at the history of instrumentation on U.S. spacecraft. 3. Results and Recommendations - Instrumentation technologies were recommended for further research and optimization based on a consideration of both of the above sections. A sensor or monitor technology was recommended based on its applicability to future ECLS systems, as defined by the ECLSS Trade Study (1), and on whether its characteristics were considered favorable relative to similar instrumentation technologies (competitors), as determined from the Instrumentation Survey (2). The instrumentation technologies recommended by this study show considerable potential for development and promise significant returns if research efforts are invested.

  7. Student Interest in Technology and Science (SITS) Survey: Development, Validation, and Use of a New Instrument

    ERIC Educational Resources Information Center

    Romine, William; Sadler, Troy D.; Presley, Morgan; Klosterman, Michelle L.

    2014-01-01

    This study presents the systematic development, validation, and use of a new instrument for measuring student interest in science and technology. The Student Interest in Technology and Science (SITS) survey is composed of 5 sub-sections assessing the following dimensions: interest in learning science, using technology to learn science, science…

  8. Large Instrument Development for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Fisher, J. Richard; Warnick, Karl F.; Jeffs, Brian D.; Norrod, Roger D.; Lockman, Felix J.; Cordes, James M.; Giovanelli, Riccardo

    2009-03-01

    This white paper offers cautionary observations about the planning and development of new, large radio astronomy instruments. Complexity is a strong cost driver so every effort should be made to assign differing science requirements to different instruments and probably different sites. The appeal of shared resources is generally not realized in practice and can often be counterproductive. Instrument optimization is much more difficult with longer lists of requirements, and the development process is longer and less efficient. More complex instruments are necessarily further behind the technology state of the art because of longer development times. Including technology R&D in the construction phase of projects is a growing trend that leads to higher risks, cost overruns, schedule delays, and project de-scoping. There are no technology breakthroughs just over the horizon that will suddenly bring down the cost of collecting area. Advances come largely through careful attention to detail in the adoption of new technology provided by industry and the commercial market. Radio astronomy instrumentation has a very bright future, but a vigorous long-term R&D program not tied directly to specific projects needs to be restored, fostered, and preserved.

  9. Middle School Students' Motivation for Learning Technology in South Korea

    ERIC Educational Resources Information Center

    Kwon, Hyuksoo

    2016-01-01

    This study aims to develop a feasible instrument for determining middle school students' motivation to learn technology in South Korea. The authors translated Glynn's motivational instrument and modified it to measure Korean middle school students' motivation to learn technology. The instrument was applied to 441 students of grade 8 and 9 from six…

  10. Advanced Technologies and Instrumentation at the National Science Foundation

    NASA Astrophysics Data System (ADS)

    Kurczynski, Peter; Neff, James E.

    2018-01-01

    Over its more than thirty-year history, the Advanced Technologies and Instrumentation (ATI) program within the Division of Astronomical Sciences has provided grants to support the development and deployment of detectors and instrumentation for ground-based astronomy. This program has enabled scientific advances in diverse fields from solar physics to exoplanets to cosmology. ATI has provided instrumentation for both small and large observatories from radio through visible wavebands. It has played a role in the early development of major initiatives such as the Large Synoptic Survey Telescope. Technology development for astronomy unfolds over a longer period than the lifetime of a single grant. This review will consider ATI from an historical perspective to assess its impact on astronomy.

  11. DEMONSTRATION AND QUALITY ASSURANCE PROJECT ...

    EPA Pesticide Factsheets

    A demonstration of field portable/mobile technologies for measuring trace elements in soil and sediments was conducted under the U.S. Environmental Protection Agency Superfund Innovative Technology Evaluation (SITE) Program. The demonstration took place from January 24 to 28, 2005, at the Kennedy Athletic, Recreational and Social Park at Kennedy Space Center on Merritt Island, Florida. The purpose of the demonstration was to verify the performance of various instruments that employ X-ray fluorescence (XRF) measurement technologies for the determination of 13 toxic elements in a variety of soil and sediment samples. Instruments from the technology developers listed below were demonstrated. o Innov-X Systems, Inc.o NITON LLC (2 instruments ) o Oxford Instruments Portable Division (formerly Metorex, Inc.) .Oxford Instruments Analytical .Rigaku, Inc.o RONTEC USA Inc.o Xcalibur XRF Services Inc. (Division of Elvatech Ltd. ) This demonstration plan describes the procedures that will be used to verify the performance and cost of the XRF instruments provided by these technology developers. The plan incorporates the quality assurance and quality control elements needed to generate data of sufficient quality to perform this verification. A separate innovative technology verification report (ITVR) will be prepared for each instrument. The objective of this program is to promote the acceptance and use of innovative field technologies by providing well-documented perfor

  12. PREFACE: 4th International Symposium on Instrumentation Science and Technology (ISIST'2006)

    NASA Astrophysics Data System (ADS)

    Jiubin, Tan

    2006-10-01

    On behalf of the International Program Committee of ISIST'2006 and the symposium coordinators, I would like to thank all the participants for their presence at the 4th International Symposium on Instrumentation Science and Technology (ISIST'2006), a platform for scientists, researchers and experts from different parts of the world to present their achievements and to exchange their views on ways and means to further develop modern instrumentation science and technology. In the present information age, instrumentation science and technology is playing a more and more important role, not only in the acquisition and conversion of information at the very beginning of the information transformation chain, but also in the transfer, manipulation and utilization of information. It provides an analysis and test means for bioengineering, medical engineering, life science, environmental engineering and micro/nanometer technology, and integrates these disciplines to form new subdivisions of their own. The major subject of the symposium is crossover and fusion between instrumentation science and technology and other sciences and technologies. ISIST'2006 received more than 800 full papers from 12 countries and regions, from which 300 papers were finally selected by the international program committee for inclusion in the proceedings of ISIST'2006, published in 2 volumes. The major topics include instrumentation basic theory and methodology, sensors and conversion technology, signal and image processing, instruments and systems, laser and optical fiber instrumentation, advanced optical instrumentation, optoelectronics instrumentation, MEMS, nanotechnology and instrumentation, biomedical and environmental instrumentation, automatic test and control. The International Symposium on Instrumentation Science and Technology (ISIST) is sponsored by ICMI, NSFC, CSM, and CIS, and organized by ICMI, HIT and IC-CSM, and held every two years. The 1st symposium was held in LuoYang, China in 1999. The 2nd symposium was held in JiNan, China in 2002. The 3rd symposium was held in Xi'an, China in 2004. The 4th symposium is held in Harbin, China in 2006. The 5th symposium will be held in Hangzhou in 2008. We hope this symposium will further promote the development of instrumentation science and technology and get us all together to create a bright future. Professor Dr Tan Jiubin

  13. AN EIGHT WEEK SUMMER INSTITUTE TRAINING PROGRAM TO TRAIN INSTRUCTORS OF INSTRUMENTATION TECHNOLOGY.

    ERIC Educational Resources Information Center

    MCKEE, DELBERT A.

    A SUMMER INSTITUTE IN INSTRUMENTATION TECHNOLOGY WAS HELD TO PROVIDE TEACHERS WITH CURRENT KNOWLEDGE ON AUTOMATIC, PROCESS-CONTROL INSTRUMENTATION. A PREVIOUSLY DEVELOPED GUIDE FOR A 2-YEAR, POST-HIGH SCHOOL CURRICULUM PROVIDED THE BASIS FOR INSTRUCTION AND DISCUSSION DURING THE INSTITUTE. THREE COURSES IN MEASUREMENT AND INSTRUMENT SHOP…

  14. AIRS-Light Instrument Concept and Critical Technology Development

    NASA Technical Reports Server (NTRS)

    Maschhoff, Kevin

    2001-01-01

    Understanding Earth's climate, atmospheric transport mechanisms, and the hydrologic cycle requires a precise knowledge of global atmospheric circulation, temperature profiles, and water vapor distribution. The accuracy of advanced sounders such as AIRS/AMSU/HSB on NASA's Aqua spacecraft can match radiosonde accuracy. It is essential to fold those capabilities fully into the NPOESS, enabling soundings of radiosonde accuracy, every 6 hours around the globe on an operational basis. However, the size, mass, power demands, and thermal characteristics of the Aqua sounding instrument suite cannot be accommodated on the NPOESS spacecraft. AIRS-Light is an instrument concept, developed under the Instrument Incubator Program, which provides IR sounding performance identical to the AIRS instrument, but uses advances in HgCdTe FPA technology and pulse tube cooler technology, as well as design changes to dramatically reduce the size, mass, and power demand, allowing AIRS-Light to meet all NPOESS spacecraft interface requirements. The instrument concept includes substantial re-use of AIRS component designs, including the complex AIRS FPA, to reduce development risk and cost. The AIRS-Light Instrument Incubator program fostered the development of photovoltaic-mode HgCdTe detector array technology for the 13.5-15.4 micron band covered by photoconductive-mode HgCdTe arrays in AIRS, achieved state of the art results in this band, and substantially reduced the development risk for this last new technology needed for AIRS-Light implementation, A demonstration of a prototype 14.5-15.4 micron band IRFPA in a reduced heat-load dewar together with the IMAS pulse tube cryocooler is in progress.

  15. TH-A-17A-01: Innovation in PET Instrumentation and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casey, M; Miyaoka, R; Shao, Y

    Innovation in PET instrumentation has led to the new millennium revolutionary imaging applications for diagnosis, therapeutic guidance, and development of new molecular imaging probes, etc. However, after several decades innovations, will the advances of PET technology and applications continue with the same trend and pace? What will be the next big thing beyond the PET/CT, PET/MRI, and Time-of-flight PET? How will the PET instrumentation and imaging performance be further improved by novel detector research and advanced imaging system development? Or will the development of new algorithms and methodologies extend the limit of current instrumentation and leapfrog the imaging quality andmore » quantification for practical applications? The objective of this session is to present an overview of current status and advances in the PET instrumentation and applications with speakers from leading academic institutes and a major medical imaging company. Presenting with both academic research projects and commercial technology developments, this session will provide a glimpse of some latest advances and challenges in the field, such as using semiconductor photon-sensor based PET detectors to improve performance and enable new applications, as well as the technology trend that may lead to the next breakthrough in PET imaging for clinical and preclinical applications. Both imaging and image-guided therapy subjects will be discussed. Learning Objectives: Describe the latest innovations in PET instrumentation and applications Understand the driven force behind the PET instrumentation innovation and development Learn the trend of PET technology development for applications.« less

  16. Developing an instrument for assessing students' concepts of the nature of technology

    NASA Astrophysics Data System (ADS)

    Liou, Pey-Yan

    2015-05-01

    Background:The nature of technology has been rarely discussed despite the fact that technology plays an essential role in modern society. It is important to discuss students' concepts of the nature of technology, and further to advance their technological literacy and adaptation to modern society. There is a need to assess high school students' concepts of the nature of technology. Purpose:This study aims to engage in discourse on students' concepts of the nature of technology based on a proposed theoretical framework. Moreover, another goal is to develop an instrument for measuring students' concepts of the nature of technology. Sample:Four hundred and fifty-five high school students' perceptions of technology were qualitatively analyzed. Furthermore, 530 students' responses to a newly developed questionnaire were quantitatively analyzed in the final test. Design and method:First, content analysis was utilized to discuss and categorize students' statements regarding technology and its related issues. The Student Concepts of the Nature of Technology Questionnaire was developed based on the proposed theoretical framework and was supported by the students' qualitative data. Finally, exploratory factor analysis and reliability analysis were applied to determine the structure of the items and the internal consistency of each scale. Results:Through a process of instrument development, the Student Concepts of the Nature of Technology Questionnaire was shown to be a valid and reliable tool for measuring students' concepts of the nature of technology. This newly developed questionnaire is composed of 29 items in six scales, namely 'technology as artifacts,' 'technology as an innovation change,' 'the current role of technology in society,' 'technology as a double-edged sword,' 'technology as a science-based form,' and 'history of technology.' Conclusions:The Student Concepts of the Nature of Technology Questionnaire has been confirmed as a reasonably valid and reliable instrument. This study provides a useful questionnaire for educational researchers and practitioners for measuring students' concepts of the nature of technology.

  17. Technology Use in Science Instruction (TUSI): Aligning the Integration of Technology in Science Instruction in Ways Supportive of Science Education Reform

    ERIC Educational Resources Information Center

    Campbell, Todd; Abd-Hamid, Nor Hashidah

    2013-01-01

    This study describes the development of an instrument to investigate the extent to which technology is integrated in science instruction in ways aligned to science reform outlined in standards documents. The instrument was developed by: (a) creating items consistent with the five dimensions identified in science education literature, (b)…

  18. How Are Alabama's Teachers Integrating the International Society for Technology in Education (ISTE) Standards in the Classroom: Measuring Technology Integration's IMPACT--Roberts Middle School.

    ERIC Educational Resources Information Center

    Ash, Stephanie B.; Sun, Feng; Sundin, Robert

    Alabama's Preparing Tomorrow's Teachers To Use Technology program developed an assessment instrument to measure the level of technology integration into Alabama's classrooms. The instrument asked questions related to five factors: (1) general instruction integration; (2) teaching students to use technology; (3) managing technology resources; (4)…

  19. Utilization of Space Station Freedom for technology research

    NASA Technical Reports Server (NTRS)

    Avery, Don E.

    1992-01-01

    Space Station Freedom presents a unique opportunity for technology developers to conduct research in the space environment. Research can be conducted in the pressurized volume of the Space Station's laboratories or attached to the Space Station truss in the vacuum of space. Technology developers, represented by the Office of Aeronautics and Space Technology (OAST), will have 12 percent of the available Space Station resources (volume, power, data, crew, etc.) to use for their research. Most technologies can benefit from research on Space Station Freedom and all these technologies are represented in the OAST proposed traffic model. This traffic model consists of experiments that have been proposed by technology developers but not necessarily selected for flight. Experiments to be flown in space will be selected through an Announcement of Opportunity (A.O.) process. The A.O. is expected to be released in August, 1992. Experiments will generally fall into one of the 3 following categories: (1) Individual technology experiments; (2) Instrumented Space Station; and (3) Guest investigator program. The individual technology experiments are those that do not instrument the Space Station nor directly relate to the development of technologies for evolution of Space Station or development of advanced space platforms. The Instrumented Space Station category is similar to the Orbiter Experiments Program and allows the technology developer to instrument subsystems on the Station or develop instrumentation packages that measure products or processes of the Space Station for the advancement of space platform technologies. The guest investigator program allows the user to request data from Space Station or other experiments for independent research. When developing an experiment, a developer should consider all the resources and infrastructure that Space Station Freedom can provide and take advantage of these to the maximum extent possible. Things like environment, accommodations, carriers, and integration should all be taken into account. In developing experiments at Langley Research Center, an iterative approach is proving useful. This approach uses Space Station utilization and subsystem experts to advise and critique experiment designs to take advantage of everything the Space Station has to offer. Also, solid object modeling and animation computer tools are used to fully visualize the experiment and its processes. This process is very useful for attached payloads and allows problems to be detected early in the experiment design phase.

  20. Instrumentation Technology. Project Report Phase I with Research Findings.

    ERIC Educational Resources Information Center

    Sappe', Hoyt; Squires, Sheila S.

    This report provides results of Phase I of a project that researched the occupational area of instrumentation technology, established appropriate committees, and conducted task verification. These results are intended to guide development of a program designed to train instrumentation technicians. Section 1 contains general information: purpose of…

  1. Phased Array Feeds

    NASA Astrophysics Data System (ADS)

    Fisher, J. Richard; Bradley, Richard F.; Brisken, Walter F.; Cotton, William D.; Emerson, Darrel T.; Kerr, Anthony R.; Lacasse, Richard J.; Morgan, Matthew A.; Napier, Peter J.; Norrod, Roger D.; Payne, John M.; Pospieszalski, Marian W.; Symmes, Arthur; Thompson, A. Richard; Webber, John C.

    2009-03-01

    This white paper offers cautionary observations about the planning and development of new, large radio astronomy instruments. Complexity is a strong cost driver so every effort should be made to assign differing science requirements to different instruments and probably different sites. The appeal of shared resources is generally not realized in practice and can often be counterproductive. Instrument optimization is much more difficult with longer lists of requirements, and the development process is longer and less efficient. More complex instruments are necessarily further behind the technology state of the art because of longer development times. Including technology R&D in the construction phase of projects is a growing trend that leads to higher risks, cost overruns, schedule delays, and project de-scoping. There are no technology breakthroughs just over the horizon that will suddenly bring down the cost of collecting area. Advances come largely through careful attention to detail in the adoption of new technology provided by industry and the commercial market. Radio astronomy instrumentation has a very bright future, but a vigorous long-term R&D program not tied directly to specific projects needs to be restored, fostered, and preserved.

  2. Technology Use in Science Instruction (TUSI): Aligning the Integration of Technology in Science Instruction in Ways Supportive of Science Education Reform

    NASA Astrophysics Data System (ADS)

    Campbell, Todd; Abd-Hamid, Nor Hashidah

    2013-08-01

    This study describes the development of an instrument to investigate the extent to which technology is integrated in science instruction in ways aligned to science reform outlined in standards documents. The instrument was developed by: (a) creating items consistent with the five dimensions identified in science education literature, (b) establishing content validity with both national and international content experts, (c) refining the item pool based on content expert feedback, (d) piloting testing of the instrument, (e) checking statistical reliability and item analysis, and (f) subsequently refining and finalization of the instrument. The TUSI was administered in a field test across eleven classrooms by three observers, with a total of 33 TUSI ratings completed. The finalized instrument was found to have acceptable inter-rater intraclass correlation reliability estimates. After the final stage of development, the TUSI instrument consisted of 26-items separated into the original five categories, which aligned with the exploratory factor analysis clustering of the items. Additionally, concurrent validity of the TUSI was established with the Reformed Teaching Observation Protocol. Finally, a subsequent set of 17 different classrooms were observed during the spring of 2011, and for the 9 classrooms where technology integration was observed, an overall Cronbach alpha reliability coefficient of 0.913 was found. Based on the analyses completed, the TUSI appears to be a useful instrument for measuring how technology is integrated into science classrooms and is seen as one mechanism for measuring the intersection of technological, pedagogical, and content knowledge in science classrooms.

  3. TESTING, PERFORMANCE VALIDATION AND QUALITY ASSURANCE/QUALITY CONTROL OF FIELD-PORTABLE INSTRUMENTATION

    EPA Science Inventory

    New technologies for field-portable monitoring instruments often have a long lead time in development and authorization. Some obstacles to the acceptance of these pilot technologies include concern about liabilities, reluctance to take risks on new technologies, and uncertainty a...

  4. A Personal Journey of Discovery: Developing Technology and Changing Biology

    NASA Astrophysics Data System (ADS)

    Hood, Lee

    2008-07-01

    This autobiographical article describes my experiences in developing chemically based, biological technologies for deciphering biological information: DNA, RNA, proteins, interactions, and networks. The instruments developed include protein and DNA sequencers and synthesizers, as well as ink-jet technology for synthesizing DNA chips. Diverse new strategies for doing biology also arose from novel applications of these instruments. The functioning of these instruments can be integrated to generate powerful new approaches to cloning and characterizing genes from a small amount of protein sequence or to using gene sequences to synthesize peptide fragments so as to characterize various properties of the proteins. I also discuss the five paradigm changes in which I have participated: the development and integration of biological instrumentation; the human genome project; cross-disciplinary biology; systems biology; and predictive, personalized, preventive, and participatory (P4) medicine. Finally, I discuss the origins, the philosophy, some accomplishments, and the future trajectories of the Institute for Systems Biology.

  5. Innovative technology in hearing instruments: matching needs in the developing world.

    PubMed

    McPherson, Bradley

    2011-12-01

    Hearing instrument technology research is almost entirely focused on the projected needs of the consumer market in the developed world. However, two thirds of the world's population with hearing impairment live in developing countries and this proportion will increase in future, given present demographic trends. In developing regions, amplification and other hearing health needs may differ from those in industrialized nations, for cultural, health, or economic reasons. World Health Organization estimates indicate that at present only a small percentage of individuals in developing countries who are in need of amplification have access to hearing aid provision. New technologies, such as trainable hearing aids, advanced noise reduction algorithms, feedback reduction circuitry, nano coatings for hearing aid components, and innovative power options, may offer considerable potential benefits, both for individuals with hearing impairment in developing countries and for those who provide hearing health care services in these regions. This article considers the possible supporting role of innovative hearing instrument technologies in the provision of affordable hearing health care services in developing countries and highlights the need for research that considers the requirements of the majority of the world population in need of hearing instrument provision.

  6. Commercialization of Kennedy Space Center Instrumentation Developed to Improve Safety, Reliability, Cost Effectiveness of Space Shuttle Processing, Launch, and Landing

    NASA Technical Reports Server (NTRS)

    Helms, William R.; Starr, Stanley O.

    1997-01-01

    Priorities and achievements of the Kennedy Space Center (KSF) Instrumentation Laboratories in improving operational safety and decreasing processing costs associated with the Shuttle vehicle are addressed. Technologies that have been or are in the process of technology transfer are reviewed, and routes by which commercial concerns can obtain licenses to other KSF Instrumentation Laboratory technologies are discussed.

  7. Advanced optical instruments technology

    NASA Technical Reports Server (NTRS)

    Shao, Mike; Chrisp, Michael; Cheng, Li-Jen; Eng, Sverre; Glavich, Thomas; Goad, Larry; Jones, Bill; Kaarat, Philip; Nein, Max; Robinson, William

    1992-01-01

    The science objectives for proposed NASA missions for the next decades push the state of the art in sensitivity and spatial resolution over a wide range of wavelengths, including the x-ray to the submillimeter. While some of the proposed missions are larger and more sensitive versions of familiar concepts, such as the next generation space telescope, others use concepts, common on the Earth, but new to space, such as optical interferometry, in order to provide spatial resolutions impossible with other concepts. However, despite their architecture, the performance of all of the proposed missions depends critically on the back-end instruments that process the collected energy to produce scientifically interesting outputs. The Advanced Optical Instruments Technology panel was chartered with defining technology development plans that would best improve optical instrument performance for future astrophysics missions. At this workshop the optical instrument was defined as the set of optical components that reimage the light from the telescope onto the detectors to provide information about the spatial, spectral, and polarization properties of the light. This definition was used to distinguish the optical instrument technology issues from those associated with the telescope, which were covered by a separate panel. The panel identified several areas for optical component technology development: diffraction gratings; tunable filters; interferometric beam combiners; optical materials; and fiber optics. The panel also determined that stray light suppression instruments, such as coronagraphs and nulling interferometers, were in need of general development to support future astrophysics needs.

  8. Advanced optical instruments technology

    NASA Astrophysics Data System (ADS)

    Shao, Mike; Chrisp, Michael; Cheng, Li-Jen; Eng, Sverre; Glavich, Thomas; Goad, Larry; Jones, Bill; Kaarat, Philip; Nein, Max; Robinson, William

    1992-08-01

    The science objectives for proposed NASA missions for the next decades push the state of the art in sensitivity and spatial resolution over a wide range of wavelengths, including the x-ray to the submillimeter. While some of the proposed missions are larger and more sensitive versions of familiar concepts, such as the next generation space telescope, others use concepts, common on the Earth, but new to space, such as optical interferometry, in order to provide spatial resolutions impossible with other concepts. However, despite their architecture, the performance of all of the proposed missions depends critically on the back-end instruments that process the collected energy to produce scientifically interesting outputs. The Advanced Optical Instruments Technology panel was chartered with defining technology development plans that would best improve optical instrument performance for future astrophysics missions. At this workshop the optical instrument was defined as the set of optical components that reimage the light from the telescope onto the detectors to provide information about the spatial, spectral, and polarization properties of the light. This definition was used to distinguish the optical instrument technology issues from those associated with the telescope, which were covered by a separate panel. The panel identified several areas for optical component technology development: diffraction gratings; tunable filters; interferometric beam combiners; optical materials; and fiber optics. The panel also determined that stray light suppression instruments, such as coronagraphs and nulling interferometers, were in need of general development to support future astrophysics needs.

  9. The infrared imaging radiometer for PICASSO-CENA

    NASA Astrophysics Data System (ADS)

    Corlay, Gilles; Arnolfo, Marie-Christine; Bret-Dibat, Thierry; Lifferman, Anne; Pelon, Jacques

    2017-11-01

    Microbolometers are infrared detectors of an emerging technology mainly developed in US and few other countries for few years. The main targets of these developments are low performing and low cost military and civilian applications like survey cameras. Applications in space are now arising thanks to the design simplification and the associated cost reduction allowed by this new technology. Among the four instruments of the payload of PICASSO-CENA, the Imaging Infrared Radiometer (IIR) is based on the microbolometer technology. An infrared camera in development for the IASI instrument is the core of the IIR. The aim of the paper is to recall the PICASSO-CENA mission goal, to describe the IIR instrument architecture and highlight its main features and performances and to give the its development status.

  10. Evolution of Instrumentation for Detection of the Raman Effect as Driven by Available Technologies and by Developing Applications

    ERIC Educational Resources Information Center

    Adar, Fran; Delhaye, Michel; DaSilva, Edouard

    2007-01-01

    The evolution of Raman instrumentation from the time of the initial report of the phenomenon in 1928 to 2006 is discussed. The first instruments were prism-based spectrographs using lenses for collimation and focusing and the 21st century instruments are also spectrographs, but they use CCD cameras. The Lippmann filter technology that appears to…

  11. Information Technology Implementation and Sustainment Model: Data Collection Instrument

    DTIC Science & Technology

    2005-03-01

    users (Wing and Bettinger , 2003). A GIS is a computerized system for spatial (geographically-referenced) data management (Davis and Schultz, 1990:3...AFIT/GEM/ENV/05M-15 Abstract The goal of this research was to develop a data collection instrument for an existing information technology...implementation and sustsinment model. In 2003, a unique system dynamics model was developed at the Air Force Institute of Technology to predict the

  12. Building a Case for Conducting Technology Surveys On-Line.

    ERIC Educational Resources Information Center

    Denton, Jon J.; Strader, Arlen

    A Technology in Texas Public Schools 1998 Survey instrument was integrated into a Web-based response system enabling the instrument to be accessed, completed, submitted, and instantaneously analyzed over the Internet. A mark-sense or optical scan paper version of the instrument was also developed for mail-out distribution to each school district…

  13. Mars Miniature Science Instruments

    NASA Technical Reports Server (NTRS)

    Kim, Soon Sam; Hayati, Samad; Lavery, David; McBrid, Karen

    2006-01-01

    For robotic Mars missions, all the science information is gathered through on-board miniature instruments that have been developed through many years of R&D. Compared to laboratory counterparts, the rover instruments require miniaturization, such as low mass (1-2 kg), low power (> 10 W) and compact (1-2 liter), yet with comparable sensitivity. Since early 1990's, NASA recognized the need for the miniature instruments and launched several instrument R&D programs, e.g., PIDDP (Planetary Instrument Definition and Development). However, until 1998, most of the instrument R&D programs supported only up to a breadboard level (TRL 3, 4) and there is a need to carry such instruments to flight qualifiable status (TU 5, 6) to respond to flight AOs (Announcement of Opportunity). Most of flight AOs have only limited time and financial resources, and can not afford such instrument development processes. To bridge the gap between instrument R&D programs and the flight instrument needs, NASA's Mars Technology Program (MTP) created advanced instrumentation program, Mars Instrument Development Project (MIDP). MIDP candidate instruments are selected through NASA Research Announcement (NRA) process [l]. For example, MIDP 161998-2000) selected and developed 10 instruments, MIDP II (2003-2005) 16 instruments, and MIDP III (2004-2006) II instruments.Working with PIs, JPL has been managing the MIDP tasks since September 1998. All the instruments being developed under MIDP have been selected through a highly competitive NRA process, and employ state-of-the-art technology. So far, four MIDP funded instruments have been selected by two Mars missions (these instruments have further been discussed in this paper).

  14. On Representative Spaceflight Instrument and Associated Instrument Sensor Web Framework

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Patel, Umeshkumar; Vootukuru, Meg

    2007-01-01

    Sensor Web-based adaptation and sharing of space flight mission resources, including those of the Space-Ground and Control-User communication segment, could greatly benefit from utilization of heritage Internet Protocols and devices applied for Spaceflight (SpaceIP). This had been successfully demonstrated by a few recent spaceflight experiments. However, while terrestrial applications of Internet protocols are well developed and understood (mostly due to billions of dollars in investments by the military and industry), the spaceflight application of Internet protocols is still in its infancy. Progress in the developments of SpaceIP-enabled instrument components will largely determine the SpaceIP utilization of those investments and acceptance in years to come. Likewise SpaceIP, the development of commercial real-time and instrument colocated computational resources, data compression and storage, can be enabled on-board a spacecraft and, in turn, support a powerful application to Sensor Web-based design of a spaceflight instrument. Sensor Web-enabled reconfiguration and adaptation of structures for hardware resources and information systems will commence application of Field Programmable Arrays (FPGA) and other aerospace programmable logic devices for what this technology was intended. These are a few obvious potential benefits of Sensor Web technologies for spaceflight applications. However, they are still waiting to be explored. This is because there is a need for a new approach to spaceflight instrumentation in order to make these mature sensor web technologies applicable for spaceflight. In this paper we present an approach in developing related and enabling spaceflight instrument-level technologies based on the new concept of a representative spaceflight Instrument Sensor Web (ISW).

  15. Instrumentation and Control. Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in instrumentation and controls is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…

  16. Measuring Mathematics Teacher Educators' Knowledge of Technology Integrated Teaching: Instrument Development

    ERIC Educational Resources Information Center

    Getenet, Seyum Tekeher; Beswick, Kim

    2013-01-01

    This study describes the construction of a questionnaire instrument to measure mathematics teacher educators' knowledge for technology integrated mathematics teaching. The study was founded on a reconceptualisation of the generic Technological Pedagogical Content Knowledge framework in the specific context of mathematics teaching. Steps in the…

  17. In-Flight Thermal Performance of the Lidar In-Space Technology Experiment

    NASA Technical Reports Server (NTRS)

    Roettker, William

    1995-01-01

    The Lidar In-Space Technology Experiment (LITE) was developed at NASA s Langley Research Center to explore the applications of lidar operated from an orbital platform. As a technology demonstration experiment, LITE was developed to gain experience designing and building future operational orbiting lidar systems. Since LITE was the first lidar system to be flown in space, an important objective was to validate instrument design principles in such areas as thermal control, laser performance, instrument alignment and control, and autonomous operations. Thermal and structural analysis models of the instrument were developed during the design process to predict the behavior of the instrument during its mission. In order to validate those mathematical models, extensive engineering data was recorded during all phases of LITE's mission. This inflight engineering data was compared with preflight predictions and, when required, adjustments to the thermal and structural models were made to more accurately match the instrument s actual behavior. The results of this process for the thermal analysis and design of LITE are presented in this paper.

  18. Existing Resources, Standards, and Procedures for Precise Monitoring and Analysis of Structural Deformations. Volume 2. Appendices

    DTIC Science & Technology

    1992-09-01

    deformations in underground mines has been developed in Canada in cooperation with the Canada Centre for Mineral and Energy Technology ( CANMET ). The... technological developments in both geodetic and geotechnical instrumentation, at a cost one may achieve almost any, practically needed, instrumental...Due to the ever growing technological progress in all fields of engineering and, connected with it, the growing demand for higher accuracy, efficiency

  19. Thin Film Physical Sensor Instrumentation Research and Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.

    2006-01-01

    A range of thin film sensor technology has been demonstrated enabling measurement of multiple parameters either individually or in sensor arrays including temperature, strain, heat flux, and flow. Multiple techniques exist for refractory thin film fabrication, fabrication and integration on complex surfaces and multilayered thin film insulation. Leveraging expertise in thin films and high temperature materials, investigations for the applications of thin film ceramic sensors has begun. The current challenges of instrumentation technology are to further develop systems packaging and component testing of specialized sensors, further develop instrumentation techniques on complex surfaces, improve sensor durability, and to address needs for extreme temperature applications. The technology research and development ongoing at NASA Glenn for applications to future launch vehicles, space vehicles, and ground systems is outlined.

  20. Psychometric Properties of Patient-Facing eHealth Evaluation Measures: Systematic Review and Analysis

    PubMed Central

    Turvey, Carolyn L; Nazi, Kim M; Holman, John E; Hogan, Timothy P; Shimada, Stephanie L; Kennedy, Diana R

    2017-01-01

    Background Significant resources are being invested into eHealth technology to improve health care. Few resources have focused on evaluating the impact of use on patient outcomes A standardized set of metrics used across health systems and research will enable aggregation of data to inform improved implementation, clinical practice, and ultimately health outcomes associated with use of patient-facing eHealth technologies. Objective The objective of this project was to conduct a systematic review to (1) identify existing instruments for eHealth research and implementation evaluation from the patient’s point of view, (2) characterize measurement components, and (3) assess psychometrics. Methods Concepts from existing models and published studies of technology use and adoption were identified and used to inform a search strategy. Search terms were broadly categorized as platforms (eg, email), measurement (eg, survey), function/information use (eg, self-management), health care occupations (eg, nurse), and eHealth/telemedicine (eg, mHealth). A computerized database search was conducted through June 2014. Included articles (1) described development of an instrument, or (2) used an instrument that could be traced back to its original publication, or (3) modified an instrument, and (4) with full text in English language, and (5) focused on the patient perspective on technology, including patient preferences and satisfaction, engagement with technology, usability, competency and fluency with technology, computer literacy, and trust in and acceptance of technology. The review was limited to instruments that reported at least one psychometric property. Excluded were investigator-developed measures, disease-specific assessments delivered via technology or telephone (eg, a cancer-coping measure delivered via computer survey), and measures focused primarily on clinician use (eg, the electronic health record). Results The search strategy yielded 47,320 articles. Following elimination of duplicates and non-English language publications (n=14,550) and books (n=27), another 31,647 articles were excluded through review of titles. Following a review of the abstracts of the remaining 1096 articles, 68 were retained for full-text review. Of these, 16 described an instrument and six used an instrument; one instrument was drawn from the GEM database, resulting in 23 articles for inclusion. None included a complete psychometric evaluation. The most frequently assessed property was internal consistency (21/23, 91%). Testing for aspects of validity ranged from 48% (11/23) to 78% (18/23). Approximately half (13/23, 57%) reported how to score the instrument. Only six (26%) assessed the readability of the instrument for end users, although all the measures rely on self-report. Conclusions Although most measures identified in this review were published after the year 2000, rapidly changing technology makes instrument development challenging. Platform-agnostic measures need to be developed that focus on concepts important for use of any type of eHealth innovation. At present, there are important gaps in the availability of psychometrically sound measures to evaluate eHealth technologies. PMID:29021128

  1. The development of a computer-assisted instruction system for clinical nursing skills with virtual instruments concepts: A case study for intra-aortic balloon pumping.

    PubMed

    Chang, Ching-I; Yan, Huey-Yeu; Sung, Wen-Hsu; Shen, Shu-Cheng; Chuang, Pao-Yu

    2006-01-01

    The purpose of this research was to develop a computer-aided instruction system for intra-aortic balloon pumping (IABP) skills in clinical nursing with virtual instrument (VI) concepts. Computer graphic technologies were incorporated to provide not only static clinical nursing education, but also the simulated function of operating an expensive medical instrument with VI techniques. The content of nursing knowledge was adapted from current well-accepted clinical training materials. The VI functions were developed using computer graphic technology with photos of real medical instruments taken by digital camera. We wish the system could provide beginners of nursing education important teaching assistance.

  2. Calibrating a Measure of Gender Differences in Motivation for Learning Technology

    ERIC Educational Resources Information Center

    Hwang, Young Suk; Fisher, William; Vrongistinos, Konstantinos

    2009-01-01

    This paper reports on the theory, design, and calibration of an instrument for measuring gender difference in motivation for learning technology. The content of the instrument was developed based upon the motivational theories of Eccles and others. More specifically, the learners' self-concept of ability, perception of technology, perception of…

  3. INNOVATIVE TECHNOLOGY VERIFICATION REPORT "FIELD MEASUREMENT TECHNOLOGIES FOR TOTAL PETROLEUM HYDROCARBONS IN SOIL" HORIBA INSTRUMENTS INCORPORATED OCMA-350 CONTENT ANALYZER

    EPA Science Inventory


    The OCMA-350 Oil Content Analyzer(OCMA-350) developed by Horiba Instruments Incorporated (Horiba), was demonstrated under the U.S. Environmental Protection Agency Superfund Innovative Technology Evaluation Program in June 2000 at the Navy Base Ventura County site in Port Huen...

  4. Workshop on Advanced Technologies for Planetary Instruments, part 1

    NASA Technical Reports Server (NTRS)

    Appleby, John F. (Editor)

    1993-01-01

    This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. This volume contains papers presented at the Workshop on Advanced Technologies for Planetary Instruments on 28-30 Apr. 1993. This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. Over the past several years, SDIO has sponsored a significant technology development program aimed, in part, at the production of instruments with these characteristics. This workshop provided an opportunity for specialists from the planetary science and DoD communities to establish contacts, to explore common technical ground in an open forum, and more specifically, to discuss the applicability of SDIO's technology base to planetary science instruments.

  5. Advancing Technologies for Climate Observation

    NASA Technical Reports Server (NTRS)

    Wu, D.; Esper, J.; Ehsan, N.; Johnson, T.; Mast, W.; Piepmeier, J.; Racette, P.

    2014-01-01

    Climate research needs Accurate global cloud ice measurements Cloud ice properties are fundamental controlling variables of radiative transfer and precipitation Cost-effective, sensitive instruments for diurnal and wide-swath coverage Mature technology for space remote sensing IceCube objectivesDevelop and validate a flight-qualified 883 GHz receiver for future use in ice cloud radiometer missions Raise TRL (57) of 883 GHz receiver technology Reduce instrument cost and risk by developing path to space for COTS sub-mm-wave receiver systems Enable remote sensing of global cloud ice with advanced technologies and techniques

  6. Material Analysis and Identification

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KeyMaster Technologies, Inc., develops and markets specialized, hand-held X-ray fluorescence (XRF) instruments and unique tagging technology used to identify and authenticate materials or processes. NASA first met with this Kennewick, Washington-based company as the Agency began seeking companies to develop a hand-held instrument that would detect data matrix symbols on parts covered by paint and other coatings. Since the Federal Aviation Administration was also searching for methods to detect and eliminate the use of unapproved parts, it recommended that NASA and KeyMaster work together to develop a technology that would benefit both agencies.

  7. Airborne Lidar Surface Topography (LIST) Simulator

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Krainak, Michael A.; Harding, David J.; Abshire, James B.; Sun, Xiaoli; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis; Winkert, Tom; Plants, Michael; hide

    2011-01-01

    In this paper we will discuss our development effort of an airborne instrument as a pathfinder for the Lidar Surface Technology (LIST) mission. This paper will discuss the system approach, enabling technologies, instrument concept and performance of the Airborne LIST Simulator (A-LISTS).

  8. Nursing students' attitudes towards information and communication technology: an exploratory and confirmatory factor analytic approach.

    PubMed

    Lee, Jung Jae; Clarke, Charlotte L

    2015-05-01

    The aim of this study was to develop and psychometrically test a shortened version of the Information Technology Attitude Scales for Health, in the investigation of nursing students with clinical placement experiences. Nurses and nursing students need to develop high levels of competency in information and communication technology. However, they encounter statistically significant barriers in the use of the technology. Although some instruments have been developed to measure factors that influence nurses' attitudes towards technology, the validity is questionable and few studies have been developed to test the attitudes of nursing students, in particular. A cross-sectional survey design was performed. The Information Technology Attitude Scales for Health was used to collect data from October 2012-December 2012. A panel of experts reviewed the content of the instrument and a pilot study was conducted. Following this, a total of 508 nursing students, who were engaged in clinical placements, were recruited from six universities in South Korea. Exploratory and confirmatory factor analyses were performed and reliability and construct validity were assessed. The resulting instrument consisted of 19 items across four factors. Reliability of the four factors was acceptable and the validity was supported. The instrument was shown to be both valid and reliable for measuring nursing students' attitudes towards technology, thus aiding in the current understandings of this aspect. Through these measurements and understandings, nursing educators and students are able to be more reflexive of their attitudes and can thus seek to develop them positively. © 2015 John Wiley & Sons Ltd.

  9. Development and Validation of Information Technology Mentor Teacher Attitude Scale: A Pilot Study

    ERIC Educational Resources Information Center

    Saltan, Fatih

    2015-01-01

    The aim of this study development and validation of a teacher attitude scale toward Information Technology Mentor Teachers (ITMT). ITMTs give technological support to other teachers for integration of technology in their lessons. In the literature, many instruments have been developed to measure teachers' attitudes towards the technological tools…

  10. Technological Pedagogical Content Knowledge (TPACK): The Development and Validation of an Assessment Instrument for Preservice Teachers

    ERIC Educational Resources Information Center

    Schmidt, Denise A.; Baran, Evrim; Thompson, Ann D.; Mishra, Punya; Koehler, Matthew J.; Shin, Tae S.

    2009-01-01

    Based in Shulman's idea of Pedagogical Content Knowledge, Technological Pedagogical Content Knowledge (TPACK) has emerged as a useful frame for describing and understanding the goals for technology use in preservice teacher education. This paper addresses the need for a survey instrument designed to assess TPACK for preservice teachers. The paper…

  11. The NASA modern technology rotors program

    NASA Technical Reports Server (NTRS)

    Watts, M. E.; Cross, J. L.

    1986-01-01

    Existing data bases regarding helicopters are based on work conducted on 'old-technology' rotor systems. The Modern Technology Rotors (MTR) Program is to provide extensive data bases on rotor systems using present and emerging technology. The MTR is concerned with modern, four-bladed, rotor systems presently being manufactured or under development. Aspects of MTR philosophy are considered along with instrumentation, the MTR test program, the BV 360 Rotor, and the UH-60 Black Hawk. The program phases include computer modelling, shake test, model-scale test, minimally instrumented flight test, extensively pressure-instrumented-blade flight test, and full-scale wind tunnel test.

  12. The New Meteor Radar at Penn State: Design and First Observations

    NASA Technical Reports Server (NTRS)

    Urbina, J.; Seal, R.; Dyrud, L.

    2011-01-01

    In an effort to provide new and improved meteor radar sensing capabilities, Penn State has been developing advanced instruments and technologies for future meteor radars, with primary objectives of making such instruments more capable and more cost effective in order to study the basic properties of the global meteor flux, such as average mass, velocity, and chemical composition. Using low-cost field programmable gate arrays (FPGAs), combined with open source software tools, we describe a design methodology enabling one to develop state-of-the art radar instrumentation, by developing a generalized instrumentation core that can be customized using specialized output stage hardware. Furthermore, using object-oriented programming (OOP) techniques and open-source tools, we illustrate a technique to provide a cost-effective, generalized software framework to uniquely define an instrument s functionality through a customizable interface, implemented by the designer. The new instrument is intended to provide instantaneous profiles of atmospheric parameters and climatology on a daily basis throughout the year. An overview of the instrument design concepts and some of the emerging technologies developed for this meteor radar are presented.

  13. Conceptions of the Nature of Science and Technology: a Study with Children and Youths in a Non-Formal Science and Technology Education Setting

    NASA Astrophysics Data System (ADS)

    Rocha Fernandes, Geraldo W.; Rodrigues, António M.; Ferreira, Carlos Alberto

    2017-05-01

    This study investigated some of the aspects that characterise the understanding of the Nature of Science (NOS) and Nature of Technology (NOT) of 20 children and youths from different countries who perform scientific and technological activities in a non-formal teaching and learning setting. Data were collected using a questionnaire and semistructured interviews. A categorical instrument was developed to analyse the participants' conceptions of the following subjects: (1) the role of the scientist, (2) NOS and (3) NOT. The results suggest that the participants had naïve conceptions of NOS that are marked by empirical and technical-instrumental views. They characterised NOT primarily as an instrumental apparatus, an application of knowledge and something important that is part of their lives. They exhibited a stereotypical understanding of the role of the scientist (development of methods, demonstration of facts, relationship with technological devices, etc.).

  14. Psychometric Properties of Patient-Facing eHealth Evaluation Measures: Systematic Review and Analysis.

    PubMed

    Wakefield, Bonnie J; Turvey, Carolyn L; Nazi, Kim M; Holman, John E; Hogan, Timothy P; Shimada, Stephanie L; Kennedy, Diana R

    2017-10-11

    Significant resources are being invested into eHealth technology to improve health care. Few resources have focused on evaluating the impact of use on patient outcomes A standardized set of metrics used across health systems and research will enable aggregation of data to inform improved implementation, clinical practice, and ultimately health outcomes associated with use of patient-facing eHealth technologies. The objective of this project was to conduct a systematic review to (1) identify existing instruments for eHealth research and implementation evaluation from the patient's point of view, (2) characterize measurement components, and (3) assess psychometrics. Concepts from existing models and published studies of technology use and adoption were identified and used to inform a search strategy. Search terms were broadly categorized as platforms (eg, email), measurement (eg, survey), function/information use (eg, self-management), health care occupations (eg, nurse), and eHealth/telemedicine (eg, mHealth). A computerized database search was conducted through June 2014. Included articles (1) described development of an instrument, or (2) used an instrument that could be traced back to its original publication, or (3) modified an instrument, and (4) with full text in English language, and (5) focused on the patient perspective on technology, including patient preferences and satisfaction, engagement with technology, usability, competency and fluency with technology, computer literacy, and trust in and acceptance of technology. The review was limited to instruments that reported at least one psychometric property. Excluded were investigator-developed measures, disease-specific assessments delivered via technology or telephone (eg, a cancer-coping measure delivered via computer survey), and measures focused primarily on clinician use (eg, the electronic health record). The search strategy yielded 47,320 articles. Following elimination of duplicates and non-English language publications (n=14,550) and books (n=27), another 31,647 articles were excluded through review of titles. Following a review of the abstracts of the remaining 1096 articles, 68 were retained for full-text review. Of these, 16 described an instrument and six used an instrument; one instrument was drawn from the GEM database, resulting in 23 articles for inclusion. None included a complete psychometric evaluation. The most frequently assessed property was internal consistency (21/23, 91%). Testing for aspects of validity ranged from 48% (11/23) to 78% (18/23). Approximately half (13/23, 57%) reported how to score the instrument. Only six (26%) assessed the readability of the instrument for end users, although all the measures rely on self-report. Although most measures identified in this review were published after the year 2000, rapidly changing technology makes instrument development challenging. Platform-agnostic measures need to be developed that focus on concepts important for use of any type of eHealth innovation. At present, there are important gaps in the availability of psychometrically sound measures to evaluate eHealth technologies. ©Bonnie J Wakefield, Carolyn L Turvey, Kim M Nazi, John E Holman, Timothy P Hogan, Stephanie L Shimada, Diana R Kennedy. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 11.10.2017.

  15. Wireless Instrumentation Use on Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Sherman, Aaron

    2010-01-01

    This slide presentation reviews the results of a study on the use of wireless instrumentation and sensors on future launch vehicles. The use of wireless technologies would if feasible would allow for fewer wires, and allow for more flexibility. However, it was generally concluded that wireless solutions are not currently ready to replace wired technologies for launch vehicles. The recommendations of the study were to continue to use wired sensors as the primary choice for vehicle instrumentation, and to continue to assess needs and use wireless instrumentation where appropriate. The future work includes support efforts for wireless technologies, and continue to monitor the development of wireless solutions.

  16. Biomedical technology transfer: Bioinstrumentation for cardiology, neurology, and the circulatory system

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Developments in applying aerospace medical technology to the design and production of medical equipment and instrumentation are reported. Projects described include intercranial pressure transducers, leg negative pressure devices, a synthetic speech prosthesis for victims of cerebral palsy, and a Doppler blood flow instrument. Commercialization activities for disseminating and utilizing NASA technology, and new biomedical problem areas are discussed.

  17. The SLICE, CHESS, and SISTINE Ultraviolet Spectrographs: Rocket-Borne Instrumentation Supporting Future Astrophysics Missions

    NASA Astrophysics Data System (ADS)

    France, Kevin; Hoadley, Keri; Fleming, Brian T.; Kane, Robert; Nell, Nicholas; Beasley, Matthew; Green, James C.

    2016-03-01

    NASA’s suborbital program provides an opportunity to conduct unique science experiments above Earth’s atmosphere and is a pipeline for the technology and personnel essential to future space astrophysics, heliophysics, and atmospheric science missions. In this paper, we describe three astronomy payloads developed (or in development) by the Ultraviolet Rocket Group at the University of Colorado. These far-ultraviolet (UV) (100-160nm) spectrographic instruments are used to study a range of scientific topics, from gas in the interstellar medium (accessing diagnostics of material spanning five orders of magnitude in temperature in a single observation) to the energetic radiation environment of nearby exoplanetary systems. The three instruments, Suborbital Local Interstellar Cloud Experiment (SLICE), Colorado High-resolution Echelle Stellar Spectrograph (CHESS), and Suborbital Imaging Spectrograph for Transition region Irradiance from Nearby Exoplanet host stars (SISTINE) form a progression of instrument designs and component-level technology maturation. SLICE is a pathfinder instrument for the development of new data handling, storage, and telemetry techniques. CHESS and SISTINE are testbeds for technology and instrument design enabling high-resolution (R>105) point source spectroscopy and high throughput imaging spectroscopy, respectively, in support of future Explorer, Probe, and Flagship-class missions. The CHESS and SISTINE payloads support the development and flight testing of large-format photon-counting detectors and advanced optical coatings: NASA’s top two technology priorities for enabling a future flagship observatory (e.g. the LUVOIR Surveyor concept) that offers factors of ˜50-100 gain in UV spectroscopy capability over the Hubble Space Telescope. We present the design, component level laboratory characterization, and flight results for these instruments.

  18. Development of the Synthetic Aperture Radiometer ESTAR and the Next Generation

    NASA Technical Reports Server (NTRS)

    LeVine, David M.; Haken, Michael; Swift, Calvin T.

    2004-01-01

    ESTAR is a research instrument built to develop the technology of aperture synthesis for passive remote sensing of Earth from space. Aperture synthesis is an interferometric technology that addresses the problem of putting large antenna apertures in space to achieve the spatial resolution needed for remote sensing at long wavelengths ESTAR was a first step (synthesis only across track and only at horizontal polarization). The development has progressed to a new generation instrument that is dual polarized and does aperture synthesis in two dimensions. Among the plans for the future is technology to combine active and passive remote sensing.

  19. Instrumentation Development for Large Scale Hypersonic Inflatable Aerodynamic Decelerator Characterization

    NASA Technical Reports Server (NTRS)

    Swanson, Gregory T.; Cassell, Alan M.

    2011-01-01

    Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology is currently being considered for multiple atmospheric entry applications as the limitations of traditional entry vehicles have been reached. The Inflatable Re-entry Vehicle Experiment (IRVE) has successfully demonstrated this technology as a viable candidate with a 3.0 m diameter vehicle sub-orbital flight. To further this technology, large scale HIADs (6.0 8.5 m) must be developed and tested. To characterize the performance of large scale HIAD technology new instrumentation concepts must be developed to accommodate the flexible nature inflatable aeroshell. Many of the concepts that are under consideration for the HIAD FY12 subsonic wind tunnel test series are discussed below.

  20. On the measurement of stationary electric fields in air

    NASA Technical Reports Server (NTRS)

    Kirkham, H.

    2002-01-01

    Applications and measurement methods for field measurements are reviewed. Recent developments using optical technology are examined. The various methods are compared. It is concluded that the best general purpose instrument is the isolated cylindrical field mill, but MEMS technology could furnish better instruments in the future.

  1. An Undergraduate Student Instrumentation Project (USIP) to Develop New Instrument Technology to Study the Auroral Ionosphere and Stratospheric Ozone Layer Using Ultralight Balloon Payloads

    NASA Astrophysics Data System (ADS)

    Nowling, M.; Ahmad, H.; Gamblin, R.; Guala, D.; Hermosillo, D.; Pina, M.; Marrero, E.; Canales, D. R. J.; Cao, J.; Ehteshami, A.; Bering, E. A., III; Lefer, B. L.; Dunbar, B.; Bias, C.; Shahid, S.

    2015-12-01

    This project is currently engaging twelve undergraduate students in the process of developing new technology and instrumentation for use in balloon borne geospace investigations in the auroral zone. Motivation stems from advances in microelectronics and consumer electronic technology. Given the technological innovations over the past 20 years it now possible to develop new instrumentation to study the auroral ionosphere and stratospheric ozone layer using ultralight balloon payloads for less than 6lbs and $3K per payload. The University of Houston Undergraduate Student Instrumentation Project (USIP) team has built ten such payloads for launch using 1500 gm latex weather balloons deployed in Houston, TX, Fairbanks, AK, and as well as zero pressure balloons launched from northern Sweden. The latex balloon project will collect vertical profiles of wind velocity, temperature, electrical conductivity, ozone, and odd nitrogen. This instrument payload will also produce profiles of pressure, electric field, and air-earth electric current. The zero pressure balloons will obtain a suite of geophysical measurements including: DC electric field, electric field and magnetic flux, optical imaging, total electron content of ionosphere via dual-channel GPS, X-ray detection, and infrared/UV spectroscopy. Students flew payloads with different combinations of these instruments to determine which packages are successful. Data collected by these instruments will be useful in understanding the nature of electrodynamic coupling in the upper atmosphere and how the global earth system is changing. Twelve out of the launched fifteen payloads were successfully launched and recovered. Results and best practices learned from lab tests and initial Houston test flights will be discussed.

  2. An Undergraduate Student Instrumentation Project (USIP) to Develop New Instrument Technology to Study the Auroral Ionosphere and Stratospheric Ozone Layer Using Ultralight Balloon Payloads

    NASA Astrophysics Data System (ADS)

    Gamblin, R.; Marrero, E.; Bering, E. A., III; Leffer, B.; Dunbar, B.; Ahmad, H.; Canales, D.; Bias, C.; Cao, J.; Pina, M.; Ehteshami, A.; Hermosillo, D.; Siddiqui, A.; Guala, D.

    2014-12-01

    This project is currently engaging tweleve undergraduate students in the process of developing new technology and instrumentation for use in balloon borne geospace investigations in the auroral zone. Motivation stems from advances in microelectronics and consumer electronic technology. Given the technological inovations over the past 20 years it now possible to develop new instrumentation to study the auroral ionosphere and stratospheric ozone layer using ultralight balloon payloads for less than 6lbs and $3K per payload. The UH USIP undergraduate team is currently in the process of build ten such payloads for launch using1500 gm latex weather balloons to be deployed in Houston and Fairbanks, AK as well as zero pressure balloons launched from northern Sweden. The latex balloon project will collect vertical profiles of wind speed, wind direction, temperature, electrical conductivity, ozone and odd nitrogen. This instrument payload will also profiles of pressure, electric field, and air-earth electric current. The zero pressure balloons will obtain a suite of geophysical measurements including: DC electric field, electric field and magnetic flux, optical imaging, total electron content of ionosphere via dual-channel GPS, X-ray detection, and infrared/UV spectroscopy. Students will fly payloads with different combinations of these instruments to determine which packages are successful. Data collected by these instruments will be useful in understanding the nature of electrodynamic coupling in the upper atmosphere and how the global earth system is changing. Results and best practices learned from lab tests and initial Houston test flights will be discussed.

  3. Laser light scattering instrument advanced technology development

    NASA Technical Reports Server (NTRS)

    Wallace, J. F.

    1993-01-01

    The objective of this advanced technology development (ATD) project has been to provide sturdy, miniaturized laser light scattering (LLS) instrumentation for use in microgravity experiments. To do this, we assessed user requirements, explored the capabilities of existing and prospective laser light scattering hardware, and both coordinated and participated in the hardware and software advances needed for a flight hardware instrument. We have successfully breadboarded and evaluated an engineering version of a single-angle glove-box instrument which uses solid state detectors and lasers, along with fiber optics, for beam delivery and detection. Additionally, we have provided the specifications and written verification procedures necessary for procuring a miniature multi-angle LLS instrument which will be used by the flight hardware project which resulted from this work and from this project's interaction with the laser light scattering community.

  4. Construction of a Virtual Scanning Electron Microscope (VSEM)

    NASA Technical Reports Server (NTRS)

    Fried, Glenn; Grosser, Benjamin

    2004-01-01

    The Imaging Technology Group (ITG) proposed to develop a Virtual SEM (VSEM) application and supporting materials as the first installed instrument in NASA s Virtual Laboratory Project. The instrument was to be a simulator modeled after an existing SEM, and was to mimic that real instrument as closely as possible. Virtual samples would be developed and provided along with the instrument, which would be written in Java.

  5. German activities in optical space instrumentation

    NASA Astrophysics Data System (ADS)

    Hartmann, G.

    2018-04-01

    In the years of space exploration since the mid-sixties, a wide experience in optical space instrumentation has developed in Germany. This experience ranges from large telescopes in the 1 m and larger category with the accompanying focal plane detectors and spectrometers for all regimes of the electromagnetic spectrum (infrared, visible, ultraviolet, x-rays), to miniature cameras for cometary and planetary explorations. The technologies originally developed for space science. are now also utilized in the fields of earth observation and even optical telecommunication. The presentation will cover all these areas, with examples for specific technological or scientific highlights. Special emphasis will be given to the current state-of-the-art instrumentation technologies in scientific institutions and industry, and to the future perspective in approved and planned projects.

  6. Report of the Attitude Control and Attitude Determination Panel. [spacecraft instrumentation technology

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Failures and deficiencies in flight programs are reviewed and suggestions are made for avoiding them. The technology development problem areas considered are control configured vehicle design, gyros, solid state star sensors, control instrumentation, tolerant/accomodating control systems, large momentum exchange devices, and autonomous rendezvous and docking.

  7. Implementation of microchip electrophoresis instrumentation for future spaceflight missions.

    PubMed

    Willis, Peter A; Creamer, Jessica S; Mora, Maria F

    2015-09-01

    We present a comprehensive discussion of the role that microchip electrophoresis (ME) instrumentation could play in future NASA missions of exploration, as well as the current barriers that must be overcome to make this type of chemical investigation possible. We describe how ME would be able to fill fundamental gaps in our knowledge of the potential for past, present, or future life beyond Earth. Despite the great promise of ME for ultrasensitive portable chemical analysis, to date, it has never been used on a robotic mission of exploration to another world. We provide a current snapshot of the technology readiness level (TRL) of ME instrumentation, where the TRL is the NASA systems engineering metric used to evaluate the maturity of technology, and its fitness for implementation on missions. We explain how the NASA flight implementation process would apply specifically to ME instrumentation, and outline the scientific and technology development issues that must be addressed for ME analyses to be performed successfully on another world. We also outline research demonstrations that could be accomplished by independent researchers to help advance the TRL of ME instrumentation for future exploration missions. The overall approach described here for system development could be readily applied to a wide range of other instrumentation development efforts having broad societal and commercial impact.

  8. Identifying Facets of Technology Satisfaction: Measure Development and Application

    ERIC Educational Resources Information Center

    Njoroge, Joyce; Norman, Andrew; Reed, Diana; Suh, Inchul

    2012-01-01

    As institutions of higher learning, universities must devote significant resources in developing intellectual capital in the use of educational technology to sustain their viability. To better understand satisfaction in technology used in classrooms, a psychometric instrument was developed to identify and measure the specific factors of…

  9. Engineering the Lidar In-space Technology Experiment

    NASA Technical Reports Server (NTRS)

    Couch, Richard H.; Moore, Chris L.

    1992-01-01

    The Lidar In-space Technology Experiment (LITE) is being developed by NASA for flight on the Space Shuttle in early 1994. A discussion of the NASA four-phase design process is followed by a short history of the experiment heritage. The instrument is then described at the subsystem level from an engineering point of view, with special emphasis on the laser and the receiver. Some aspects of designing for the space environment are discussed, as well as the importance of contamination control, and product assurance. Finally, the instrument integration and test process is described and the current status of the instrument development is given.

  10. The OPTICON technology roadmap for optical and infrared astronomy

    NASA Astrophysics Data System (ADS)

    Cunningham, Colin; Melotte, David; Molster, Frank

    2010-07-01

    The Key Technology Network (KTN) within the OPTICON programme has been developing a roadmap for the technology needed to meet the challenges of optical and infrared astronomy over the next few years, with particular emphasis on the requirements of Extremely Large Telescopes. The process and methodology so far will be described, along with the most recent roadmap. The roadmap shows the expected progression of ground-based astronomy facilities and the technological developments which will be required to realise these new facilities. The roadmap highlights the key stages in the development of these technologies. In some areas, such as conventional optics, gradual developments in areas such as light-weighting of optics will slowly be adopted into future instruments. In other areas, such as large area IR detectors, more rapid progress can be expected as new processing techniques allow larger and faster arrays. Finally, other areas such as integrated photonics have the potential to revolutionise astronomical instrumentation. Future plans are outlined, in particular our intention to look at longer term development and disruptive technologies.

  11. NASA Space Cryocooler Programs: A 2003 Overview

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.; Boyle, R. F.; Kittel, P.

    2004-01-01

    Mechanical cryocoolers represent a significant enabling technology for NASA's Earth and Space Science missions. An overview is presented of ongoing cryocooler activities within NASA in support of current flight projects, near-term flight instruments, and long-term technology development. NASA programs in Earth and space science observe a wide range of phenomena, from crop dynamics to stellar birth. Many of the instruments require cryogenic refrigeration to improve dynamic range, extend wavelength coverage, and enable the use of advanced detectors. Although, the largest utilization of coolers over the last decade has been for instruments operating at medium to high cryogenic temperatures (55 to 150 K), reflecting the relative maturity of the technology at these temperatures, important new developments are now focusing at the lower temperature range from 4 to 20 K in support of studies of the origin of the universe and the search for planets around distant stars. NASA's development of a 20K cryocooler for the European Planck spacecraft and its new Advanced Cryocooler Technology Development Program (ACTDP) for 6-18 K coolers are examples of the thrust to provide low temperature cooling for this class of missions.

  12. Visible and shortwave infrared focal planes for remote sensing instruments

    NASA Astrophysics Data System (ADS)

    Tower, J. R.; McCarthy, B. M.; Pellon, L. E.; Strong, R. T.; Elabd, H.

    1984-01-01

    The development of solid-state sensor technology for multispectral linear array (MLA) instruments is described. A buttable four-spectral-band linear-format CCD and a buttable two-spectral band linear-format short-wave IR CCD have been designed, and first samples have been demonstrated. In addition, first-sample four-band interference filters have been fabricated, and hybrid packaging technology is being developed. Based on this development work, the design and construction of focal planes for a Shuttle sortie MLA instrument have begun. This work involves a visible and near-IR focal plane with 2048 pixels x 4 spectral bands and a short-wave IR focal plane with 1024 pixels x 2 spectral bands.

  13. Geostationary Operational Environmental Satellites (GOES): R series hyperspectral environmental suite (HES) overview

    NASA Astrophysics Data System (ADS)

    Martin, Gene; Criscione, Joseph C.; Cauffman, Sandra A.; Davis, Martin A.

    2004-11-01

    The Hyperspectral Environmental Suite (HES) instrument is currently under development by the NASA GOES-R Project team within the framework of the GOES Program to fulfill the future needs and requirements of the National Environmental Satellite, Data, and Information Service (NESDIS) Office. As part of the GOES-R instrument complement, HES will provide measurements of the traditional temperature and water vapor vertical profiles with higher accuracy and vertical resolution than obtained through current sounder technologies. HES will provide measurements of the properties of the shelf and coastal waters and back up imaging (at in-situ resolution) for the GOES-R Advanced Baseline Imager (ABI). The HES team is forging the future of remote environmental monitoring with the development of an operational instrument with high temporal, spatial and spectral-resolution and broad hemispheric coverage. The HES development vision includes threshold and goal requirements that encompass potential system solutions. The HES team has defined tasks for the instrument(s) that include a threshold functional complement of Disk Sounding (DS), Severe Weather/Mesoscale Sounding (SW/M), and Shelf and Coastal Waters imaging (CW) and a goal functional complement of Open Ocean (OO) imaging, and back up imaging (at in-situ resolution) for the GOES-R Advanced Baseline Imager (ABI). To achieve the best-value procurement, the GOES-R Project has base-lined a two-phase procurement approach to the HES design and development; a Formulation/study phase and an instrument Implementation phase. During Formulation, currently slated for the FY04-05 timeframe, the developing team(s) will perform Systems Requirements Analysis and evaluation, System Trade and Requirements Baseline Studies, Risk Assessment and Mitigation Strategy and complete a Preliminary Conceptual Design of the HES instrument. The results of the formulation phase will be leveraged to achieve an effective and efficient system solution during the Implementation Phase scheduled to begin FY05 for a resultant FY12 launch. The magnitude of complexity of the HES development requires an appreciation of the technologies required to achieve the functional objectives. To this end, the GOES-R project team is making available all NASA developed technologies to potential HES vendors, including, the NASA New Millennium Program"s (NMP) Earth Observing-3, Geostationary Imaging Fourier Transform Spectrometer (GIFTS) instrument developed technologies, as applicable. It is anticipated that the instrument(s) meeting the HES requirements will be either a dispersive spectrometer or an interferometric spectrometer or perhaps a combination. No instrument configuration is preferred or favored by the Government. This paper outlines the HES development plan; including an overview of current requirements, existing partnerships and the GOES-R project methodologies to achieve the advanced functional objectives of the GOES Program partnership.

  14. High Data Rate Instrument Study

    NASA Technical Reports Server (NTRS)

    Schober, Wayne; Lansing, Faiza; Wilson, Keith; Webb, Evan

    1999-01-01

    The High Data Rate Instrument Study was a joint effort between the Jet Propulsion Laboratory (JPL) and the Goddard Space Flight Center (GSFC). The objectives were to assess the characteristics of future high data rate Earth observing science instruments and then to assess the feasibility of developing data processing systems and communications systems required to meet those data rates. Instruments and technology were assessed for technology readiness dates of 2000, 2003, and 2006. The highest data rate instruments are hyperspectral and synthetic aperture radar instruments which are capable of generating 3.2 Gigabits per second (Gbps) and 1.3 Gbps, respectively, with a technology readiness date of 2003. These instruments would require storage of 16.2 Terebits (Tb) of information (RF communications case of two orbits of data) or 40.5 Tb of information (optical communications case of five orbits of data) with a technology readiness date of 2003. Onboard storage capability in 2003 is estimated at 4 Tb; therefore, all the data created cannot be stored without processing or compression. Of the 4 Tb of stored data, RF communications can only send about one third of the data to the ground, while optical communications is estimated at 6.4 Tb across all three technology readiness dates of 2000, 2003, and 2006 which were used in the study. The study includes analysis of the onboard processing and communications technologies at these three dates and potential systems to meet the high data rate requirements. In the 2003 case, 7.8% of the data can be stored and downlinked by RF communications while 10% of the data can be stored and downlinked with optical communications. The study conclusion is that only 1 to 10% of the data generated by high data rate instruments will be sent to the ground from now through 2006 unless revolutionary changes in spacecraft design and operations such as intelligent data extraction are developed.

  15. Review of the Technology-Utilization Level of String Instrument Teachers

    ERIC Educational Resources Information Center

    Döger, Didem; Kiliç, Ilgim

    2016-01-01

    The purpose of this study is to determine the technology-utilization level of Fine Arts High School string instrument teachers. A pattern based on descriptive method has been used to conduct the researchers. Research data has been collected via literature review and questionnaire developed and prepared by the researcher. SPSS program has been…

  16. NASA-JPL overview, space technology and relevance to medicine (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    van Zyl, Jakob

    2017-05-01

    There is special synergy between NASA space instruments and medical devices, especially those that may be implanted in the human body. For example, in both cases instruments have to be small, typically have to consume little power and often have to operate in harsh environments. JPL has a long history in using this synergy to leverage from the technology developed for space missions for application in medical fields. In this talk, we discuss the general overlap of technological requirements in the medical field and space science. We will highlight some examples where JPL instrumentation and engineering has been transferred successfully.

  17. Smart focal-plane technology for micro-instruments and micro-rovers

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.

    1993-01-01

    It is inevitable that micro-instruments and micro-rovers for space exploration will contain one or more focal-plane arrays for imaging, spectroscopy, or navigation. In this paper, we explore the state-of-the-art in focal-plane technology for visible sensors. Also discussed is present research activity in advanced focal-plane technology with particular emphasis on the development of smart sensors. The paper concludes with a discussion of possible future directions for the advancement of the technology.

  18. MEMS Using SOI Substrate

    NASA Technical Reports Server (NTRS)

    Tang, Tony K.

    1999-01-01

    At NASA, the focus for smaller, less costly missions has given impetus for the development of microspacecraft. MicroElectroMechanical System (MEMS) technology advances in the area of sensor, propulsion systems, and instruments, make the notion of a specialized microspacecraft feasible in the immediate future. Similar to the micro-electronics revolution,the emerging MEMS technology offers the integration of recent advances in micromachining and nanofabrication techniques with microelectronics in a mass-producible format,is viewed as the next step in device and instrument miniaturization. MEMS technology offers the potential of enabling or enhancing NASA missions in a variety of ways. This new technology allows the miniaturization of components and systems, where the primary benefit is a reduction in size, mass and power. MEMS technology also provides new capabilities and enhanced performance, where the most significant impact is in performance, regardless of system size. Finally,with the availability of mass-produced, miniature MEMS instrumentation comes the opportunity to rethink our fundamental measurement paradigms. It is now possible to expand our horizons from a single instrument perspective to one involving multi-node distributed systems. In the distributed systems and missions, a new system in which the functionality is enabled through a multiplicity of elements. Further in the future, the integration of electronics, photonics, and micromechanical functionalities into "instruments-on-a-chip" will provide the ultimate size, cost, function, and performance advantage. In this presentation, I will discuss recent development, requirement, and applications of various MEMS technologies and devices for space applications.

  19. Development of the PRE-HIT instrument: patient readiness to engage in health information technology.

    PubMed

    Koopman, Richelle J; Petroski, Gregory F; Canfield, Shannon M; Stuppy, Julie A; Mehr, David R

    2014-01-28

    Technology-based aids for lifestyle change are becoming more prevalent for chronic conditions. Important "digital divides" remain, as well as concerns about privacy, data security, and lack of motivation. Researchers need a way to characterize participants' readiness to use health technologies. To address this need, we created an instrument to measure patient readiness to engage with health technologies among adult patients with chronic conditions. Initial focus groups to determine domains, followed by item development and refinement, and exploratory factor analysis to determine final items and factor structure. The development sample included 200 patients with chronic conditions from 6 family medicine clinics. From 98 potential items, 53 best candidate items were examined using exploratory factor analysis. Pearson's Correlation for Test/Retest reliability at 3 months. The final instrument had 28 items that sorted into 8 factors with associated Cronbach's alpha: 1) Health Information Need (0.84), 2) Computer/Internet Experience (0.87), 3) Computer Anxiety (0.82), 4) Preferred Mode of Interaction (0.73), 5) Relationship with Doctor (0.65), 6) Cell Phone Expertise (0.75), 7) Internet Privacy (0.71), and 8) No News is Good News (0.57). Test-retest reliability for the 8 subscales ranged from (0.60 to 0.85). The Patient Readiness to Engage in Health Internet Technology (PRE-HIT) instrument has good psychometric properties and will be an aid to researchers investigating technology-based health interventions. Future work will examine predictive validity.

  20. Development of the PRE-HIT instrument: patient readiness to engage in health information technology

    PubMed Central

    2014-01-01

    Background Technology-based aids for lifestyle change are becoming more prevalent for chronic conditions. Important “digital divides” remain, as well as concerns about privacy, data security, and lack of motivation. Researchers need a way to characterize participants’ readiness to use health technologies. To address this need, we created an instrument to measure patient readiness to engage with health technologies among adult patients with chronic conditions. Methods Initial focus groups to determine domains, followed by item development and refinement, and exploratory factor analysis to determine final items and factor structure. The development sample included 200 patients with chronic conditions from 6 family medicine clinics. From 98 potential items, 53 best candidate items were examined using exploratory factor analysis. Pearson’s Correlation for Test/Retest reliability at 3 months. Results The final instrument had 28 items that sorted into 8 factors with associated Cronbach’s alpha: 1) Health Information Need (0.84), 2) Computer/Internet Experience (0.87), 3) Computer Anxiety (0.82), 4) Preferred Mode of Interaction (0.73), 5) Relationship with Doctor (0.65), 6) Cell Phone Expertise (0.75), 7) Internet Privacy (0.71), and 8) No News is Good News (0.57). Test-retest reliability for the 8 subscales ranged from (0.60 to 0.85). Conclusion The Patient Readiness to Engage in Health Internet Technology (PRE-HIT) instrument has good psychometric properties and will be an aid to researchers investigating technology-based health interventions. Future work will examine predictive validity. PMID:24472182

  1. Fiber-Based, Trace-Gas, Laser Transmitter Technology Development for Space

    NASA Technical Reports Server (NTRS)

    Stephen, Mark; Yu, Anthony; Chen, Jeffrey; Nicholson, Jeffrey; Engin, Doruk; Mathason, Brian; Wu, Stewart; Allan, Graham; Hasselbrack, William; Gonzalez, Brayler; hide

    2015-01-01

    NASA’s Goddard Space Flight Center (GSFC) is working on maturing the technology readiness of a laser transmitter designed for use in atmospheric CO2 remote-sensing. GSFC has been developing an airplane-based CO2 lidar instrument over several years to demonstrate the efficacy of the instrumentation and measurement technique and to link the science models to the instrument performance. The ultimate goal is to make space-based satellite measurements with global coverage. In order to accomplish this, we must demonstrate the technology readiness and performance of the components as well as demonstrate the required power-scaling to make the link with the required signal-to-noise-ratio (SNR). To date, all the instrument components have been shown to have the required performance with the exception of the laser transmitter.In this program we are working on a fiber-based master oscillator power amplifier (MOPA) laser transmitter architecture where we will develop a ruggedized package and perform the relevant environmental tests to demonstrate TRL-6. In this paper we will review our transmitter architecture and progress on the performance and packaging of the laser transmitter.

  2. Fiber-based, trace-gas, laser transmitter technology development for space

    NASA Astrophysics Data System (ADS)

    Stephen, Mark; Yu, Anthony; Chen, Jeffrey; Nicholson, Jeffrey; Engin, Doruk; Mathason, Brian; Wu, Stewart; Allan, Graham; Hasselbrack, William; Gonzales, Brayler; Han, Lawrence; Numata, Kenji; Storm, Mark; Abshire, James

    2015-09-01

    NASA's Goddard Space Flight Center (GSFC) is working on maturing the technology readiness of a laser transmitter designed for use in atmospheric CO2 remote-sensing. GSFC has been developing an airplane-based CO2 lidar instrument over several years to demonstrate the efficacy of the instrumentation and measurement technique and to link the science models to the instrument performance. The ultimate goal is to make space-based satellite measurements with global coverage. In order to accomplish this, we must demonstrate the technology readiness and performance of the components as well as demonstrate the required power-scaling to make the link with the required signal-to-noise-ratio (SNR). To date, all the instrument components have been shown to have the required performance with the exception of the laser transmitter. In this program we are working on a fiber-based master oscillator power amplifier (MOPA) laser transmitter architecture where we will develop a ruggedized package and perform the relevant environmental tests to demonstrate TRL-6. In this paper we will review our transmitter architecture and progress on the performance and packaging of the laser transmitter.

  3. Technician Program Uses Advanced Instruments.

    ERIC Educational Resources Information Center

    Stinson, Stephen

    1981-01-01

    Describes various aspects of a newly-developed computer-assisted drafting/computer-assisted manufacture (CAD/CAM) facility in the chemical engineering technology department at Broome Community College, Binghamton, New York. Stresses the use of new instruments such as microcomputers and microprocessor-equipped instruments. (CS)

  4. Development of a prototype version of an embeddable corrosivity measuring instrument for reinforced concrete.

    DOT National Transportation Integrated Search

    2002-01-01

    To address the problem of safely and quantifiably detecting corrosion in a cost-effective and timely manner, the University of Virginia and Virginia Technologies, Inc. have developed a remotely accessible, networked, embedded corrosion instrument. Th...

  5. Advanced sensors and instrumentation

    NASA Technical Reports Server (NTRS)

    Calloway, Raymond S.; Zimmerman, Joe E.; Douglas, Kevin R.; Morrison, Rusty

    1990-01-01

    NASA is currently investigating the readiness of Advanced Sensors and Instrumentation to meet the requirements of new initiatives in space. The following technical objectives and technologies are briefly discussed: smart and nonintrusive sensors; onboard signal and data processing; high capacity and rate adaptive data acquisition systems; onboard computing; high capacity and rate onboard storage; efficient onboard data distribution; high capacity telemetry; ground and flight test support instrumentation; power distribution; and workstations, video/lighting. The requirements for high fidelity data (accuracy, frequency, quantity, spatial resolution) in hostile environments will continue to push the technology developers and users to extend the performance of their products and to develop new generations.

  6. Robotics and systems technology for advanced endoscopic procedures: experiences in general surgery.

    PubMed

    Schurr, M O; Arezzo, A; Buess, G F

    1999-11-01

    The advent of endoscopic techniques changed surgery in many regards. This paper intends to describe an overview about technologies to facilitate endoscopic surgery. The systems described have been developed for the use in general surgery, but an easy application also in the field of cardiac surgery seems realistic. The introduction of system technology and robotic technology enables today to design a highly ergonomic solo-surgery platform. To relief the surgeon from fatigue we developed a new chair dedicated to the functional needs of endoscopic surgery. The foot pedals for high frequency, suction and irrigation are integrated into the basis of the chair. The chair is driven by electric motors controlled with an additional foot pedal joystick to achieve the desired position in the OR. A major enhancement for endoscopic technology is the introduction of robotic technology to design assisting devices for solo-surgery and manipulators for microsurgical instrumentation. A further step in the employment of robotic technology is the design of 'master-slave manipulators' to provide the surgeon with additional degrees of freedom of instrumentation. In 1996 a first prototype of an endoscopic manipulator system. named ARTEMIS, could be used in experimental applications. The system consists of a user station (master) and an instrument station (slave). The surgeon sits at a console which integrates endoscopic monitors, communication facilities and two master devices to control the two slave arms which are mounted to the operating table. Clinical use of the system, however, will require further development in the area of slave mechanics and the control system. Finally the implementation of telecommunication technology in combination with robotic instruments will open new frontiers, such as teleconsulting, teleassistance and telemanipulation.

  7. The Challenges of Integrating Instrumentation with Inflatable Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    Swanson, Gregory T.; Cassell, Alan M.

    2013-01-01

    To realize the National Aeronautics and Space Administration s (NASA) goal of landing humans on Mars, development of technologies to facilitate the landing of heavy payloads are being explored. Current entry, decent, and landing technologies are not practical when utilizing these heavy payloads due to mass and volume constraints dictated by limitations imposed by current launch vehicle fairings. Therefore, past and present technologies are now being considered to provide a mass and volume efficient solution, including Inflatable Aerodynamic Decelerators (IADs) [1]. IAD ground and flight tests are currently being conducted to develop and characterize their performance under flight-like conditions. The integrated instrumentation systems, which are key to the performance characterization in each of these tests, have proven to be a challenge compared to the instrumentation of traditional rigid aeroshells. To overcome these challenges, flexible and embedded sensing systems have been developed, along with improved instrumenting techniques. This development opportunity faces many difficult aspects specific to inflatable structures in extreme environments. These include but are not limited to: physical flexibility, packaging, temperature, structural integration and data acquisition [2]. To better define the instrumentation challenges posed by IAD technology development, a survey was conducted to identify valuable measurements for ground and flight testing. From this survey many sensing technologies were explored, resulting in a down-selection to the most viable prospects. These systems were then iterated upon in design to determine the best integration techniques specific to a 3m and 6m stacked torus IAD. Each sensing system was then integrated and employed to support the IAD testing in the National Full-Scale Aerodynamics Complex 40 x 80 wind tunnel at NASA Ames Research Center in the summer of 2012. Another challenge that has been explored is the data acquisition of IAD sensing technologies. Traditionally all space based sensing systems transmit their data through a wired interface. This limits the amount of sensors able to be integrated within the IAD due to volume and routing restrictions of the supporting signal and excitation wires. To alleviate this situation, multiple wireless data acquisition technologies have been researched and developed through rapid prototyping efforts. The final custom multi-nodal wireless system utilized during the summer 2012 IAD test series consisted of four remote nodes and one receiving base station. The system reliably conditioned and acquired 20+ sensors over the course of the wind tunnel test series. These developments in wireless data acquisition techniques can eliminate the need for structural feedthroughs and reduce system mass associated with wiring and wire harnesses. This makes the utilization of flight instrumentation more attractive to future missions, which would result in further improved characterization of IAD technology, and overall, increased scientific knowledge regarding the response of inflatable structures to extreme entry environments. [

  8. Marshall Space Flight Center Research and Technology Report 2015

    NASA Technical Reports Server (NTRS)

    Keys, A. S. (Compiler); Tinker, M. L. (Compiler); Sivak, A. D. (Compiler); Morris, H. C. (Compiler)

    2015-01-01

    The investments in technology development we made in 2015 not only support the Agency's current missions, but they will also enable new missions. Some of these projects will allow us to develop an in-space architecture for human space exploration; Marshall employees are developing and testing cutting-edge propulsion solutions that will propel humans in-space and land them on Mars. Others are working on technologies that could support a deep space habitat, which will be critical to enable humans to live and work in deep space and on other worlds. Still others are maturing technologies that will help new scientific instruments study the outer edge of the universe-instruments that will provide valuable information as we seek to explore the outer planets and search for life.

  9. Theoretical and practical considerations for teaching diagnostic electronic-nose technologies to clinical laboratory technicians

    Treesearch

    Alphus D. Wilson

    2012-01-01

    The rapid development of new electronic technologies and instruments, utilized to perform many current clinical operations in the biomedical field, is changing the way medical health care is delivered to patients. The majority of test results from laboratory analyses, performed with these analytical instruments often prior to clinical examinations, are frequently used...

  10. Evaluating Handheld X-Ray Fluorescence (XRF) Technology in Planetary Exploration: Demonstrating Instrument Stability and Understanding Analytical Constraints and Limits for Basaltic Rocks

    NASA Technical Reports Server (NTRS)

    Young, K. E.; Hodges, K. V.; Evans, C. A.

    2012-01-01

    While large-footprint X-ray fluorescence (XRF) instruments are reliable providers of elemental information about geologic samples, handheld XRF instruments are currently being developed that enable the collection of geochemical data in the field in short time periods (approx.60 seconds) [1]. These detectors are lightweight (1.3kg) and can provide elemental abundances of major rock forming elements heavier than Na. While handheld XRF detectors were originally developed for use in mining, we are working with commercially available instruments as prototypes to explore how portable XRF technology may enable planetary field science [2,3,4]. If an astronaut or robotic explorer visited another planetary surface, the ability to obtain and evaluate geochemical data in real-time would be invaluable, especially in the high-grading of samples to determine which should be returned to Earth. We present our results on the evaluation of handheld XRF technology as a geochemical tool in the context of planetary exploration.

  11. Chemical Detection and Identification Techniques for Exobiology Flight Experiments

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Sheverev, Valery A.; Khromov, Nikolai A.

    2002-01-01

    Exobiology flight experiments require highly sensitive instrumentation for in situ analysis of the volatile chemical species that occur in the atmospheres and surfaces of various bodies within the solar system. The complex mixtures encountered place a heavy burden on the analytical Instrumentation to detect and identify all species present. The minimal resources available onboard for such missions mandate that the instruments provide maximum analytical capabilities with minimal requirements of volume, weight and consumables. Advances in technology may be achieved by increasing the amount of information acquired by a given technique with greater analytical capabilities and miniaturization of proven terrestrial technology. We describe here methods to develop analytical instruments for the detection and identification of a wide range of chemical species using Gas Chromatography. These efforts to expand the analytical capabilities of GC technology are focused on the development of detectors for the GC which provide sample identification independent of the GC retention time data. A novel new approach employs Penning Ionization Electron Spectroscopy (PIES).

  12. Wideband Instrument for Snow Measurements (WISM)

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Lambert, Kevin M.; Romanofsky, Robert R.; Durham, Tim; Speed, Kerry; Lange, Robert; Olsen, Art; Smith, Brett; Taylor, Robert; Schmidt, Mark; hide

    2016-01-01

    This presentation discusses current efforts to develop a Wideband Instrument for Snow Measurements (WISM). The objective of the effort are as follows: to advance the utility of a wideband active and passive instrument (8-40 gigahertz) to support the snow science community; improve snow measurements through advanced calibration and expanded frequency of active and passive sensors; demonstrate science utility through airborne retrievals of snow water equivalent (SWE); and advance the technology readiness of broadband current sheet array (CSA) antenna technology for spaceflight applications.

  13. The Ecosystems SAR (EcoSAR) an Airborne P-band Polarimetric InSAR for the Measurement of Vegetation Structure, Biomass and Permafrost

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.; Fatoyinbo, Temilola; Ranson, K. Jon; Osmanoglu, Batuhan; Sun, Guoqing; Deshpande, Manohar D.; Perrine, Martin L.; Du Toit, Cornelis F.; Bonds, Quenton; Beck, Jaclyn; hide

    2014-01-01

    EcoSAR is a new synthetic aperture radar (SAR) instrument being developed at the NASA/ Goddard Space Flight Center (GSFC) for the polarimetric and interferometric measurements of ecosystem structure and biomass. The instrument uses a phased-array beamforming architecture and supports full polarimetric measurements and single pass interferometry. This Instrument development is part of NASA's Earth Science Technology Office Instrument Incubator Program (ESTO IIP).

  14. A new approach for instrument software at Gemini

    NASA Astrophysics Data System (ADS)

    Gillies, Kim; Nunez, Arturo; Dunn, Jennifer

    2008-07-01

    Gemini Observatory is now developing its next generation of astronomical instruments, the Aspen instruments. These new instruments are sophisticated and costly requiring large distributed, collaborative teams. Instrument software groups often include experienced team members with existing mature code. Gemini has taken its experience from the previous generation of instruments and current hardware and software technology to create an approach for developing instrument software that takes advantage of the strengths of our instrument builders and our own operations needs. This paper describes this new software approach that couples a lightweight infrastructure and software library with aspects of modern agile software development. The Gemini Planet Imager instrument project, which is currently approaching its critical design review, is used to demonstrate aspects of this approach. New facilities under development will face similar issues in the future, and the approach presented here can be applied to other projects.

  15. JPL Advanced Thermal Control Technology Roadmap - 2012

    NASA Technical Reports Server (NTRS)

    Birur, Gaj; Rodriguez, Jose I.

    2012-01-01

    NASA's new emphasis on human exploration program for missions beyond LEO requires development of innovative and revolutionary technologies. Thermal control requirements of future NASA science instruments and missions are very challenging and require advanced thermal control technologies. Limited resources requires organizations to cooperate and collaborate; government, industry, universities all need to work together for the successful development of these technologies.

  16. Learning Mathematics in a CAS Environment: The Genesis of a Reflection about Instrumentation and the Dialectics between Technical and Conceptual Work.

    ERIC Educational Resources Information Center

    Artigue, Michele

    2002-01-01

    Presents an anthropological approach used in French research and the theory of instrumentation developed in cognitive ergonomics. Shows how these frameworks allow an approach to the educational use of CAS technology, focusing on the unexpected complexity of instrumental genesis, mathematical needs of instrumentation, status of instrumented…

  17. Technology Readiness Level Assessment Process as Applied to NASA Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Leete, Stephen J.; Romero, Raul A.; Dempsey, James A.; Carey, John P.; Cline, Helmut P.; Lively, Carey F.

    2015-01-01

    Technology assessments of fourteen science instruments were conducted within NASA using the NASA Technology Readiness Level (TRL) Metric. The instruments were part of three NASA Earth Science Decadal Survey missions in pre-formulation. The Earth Systematic Missions Program (ESMP) Systems Engineering Working Group (SEWG), composed of members of three NASA Centers, provided a newly modified electronic workbook to be completed, with instructions. Each instrument development team performed an internal assessment of its technology status, prepared an overview of its instrument, and completed the workbook with the results of its assessment. A team from the ESMP SEWG met with each instrument team and provided feedback. The instrument teams then reported through the Program Scientist for their respective missions to NASA's Earth Science Division (ESD) on technology readiness, taking the SEWG input into account. The instruments were found to have a range of TRL from 4 to 7. Lessons Learned are presented; however, due to the competition-sensitive nature of the assessments, the results for specific missions are not presented. The assessments were generally successful, and produced useful results for the agency. The SEWG team identified a number of potential improvements to the process. Particular focus was on ensuring traceability to guiding NASA documents, including the NASA Systems Engineering Handbook. The TRL Workbook has been substantially modified, and the revised workbook is described.

  18. Perceptions and Practice: The Relationship between Teacher Perceptions of Technology Use and Level of Classroom Technology Integration

    ERIC Educational Resources Information Center

    Sawyer, Laura M.

    2017-01-01

    This correlational-predictive study investigated the relationship between teacher perceptions of technology use and observed classroom technology integration level using the "Technology Uses and Perceptions Survey" (TUPS) and the "Technology Integration Matrix-Observation" (TIM-O) instruments, developed by the Florida Center…

  19. National Aeronautics and Space Administration's research program in earth remote sensing instrumentation

    NASA Technical Reports Server (NTRS)

    Plotkin, Henry H.; Sokoloski, Martin M.; Rubin, Bernard

    1991-01-01

    Terrestrial and atmospheric missions of NASA's program to develop remote sensing instrumentation are described along with several of the instruments and related mission. Systems such as lidar and radar, passive coherent sensors, passive noncoherent sensors, as well as cryogenic cooler technology are discussed.

  20. Development of HANAA to Achieve Commercialization Final Report CRADA No. TC-2025-01

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koopman, R. P.; Schmidt, J. C.

    The objective of this project was to provide DOD and the intelligence agencies with highly portable, advanced, bio-detection instruments and to further the DOE objective of putting advanced instrumentation for the detection of biological terrorism agents into the hands of first responders. All sponsors of the HANAA development work at LLNL believed that the technology must be commercialized to fully contribute to their missions. Intelligence organizations, military teams, and first responders must be able to purchase the instruments for a reasonable price and obtain maintenance services and support equipment from a reliable supplier in order for the instrument to bemore » useful to them. The goal was to efficiently transfer HANAA technology from LLNL to ETG, a company that would manufacture the instrument and make it commercially available to the constituencies important to our sponsors. This was to include a current beta test instrument and all knowledge of problems with the instrument and recommendations for solving those problems in a commercial version. The following tasks were to be completed under this CRADA.« less

  1. Increased Science Instrumentation Funding Strengthens Mars Program

    NASA Technical Reports Server (NTRS)

    Graham, Lee D.; Graff, T. G.

    2012-01-01

    As the strategic knowledge gaps mature for the exploration of Mars, Mars sample return (MSR), and Phobos/Deimos missions, one approach that becomes more probable involves smaller science instrumentation and integrated science suites. Recent technological advances provide the foundation for a significant evolution of instrumentation; however, the funding support is currently too small to fully utilize these advances. We propose that an increase in funding for instrumentation development occur in the near-term so that these foundational technologies can be applied. These instruments would directly address the significant knowledge gaps for humans to Mars orbit, humans to the Martian surface, and humans to Phobos/ Deimos. They would also address the topics covered by the Decadal Survey and the Mars scientific goals, objectives, investigations and priorities as stated by the MEPAG. We argue that an increase of science instrumentation funding would be of great benefit to the Mars program as well as the potential for human exploration of the Mars system. If the total non-Earth-related planetary science instrumentation budget were increased 100% it would not add an appreciable amount to the overall NASA budget and would provide the real potential for future breakthroughs. If such an approach were implemented in the near-term, NASA would benefit greatly in terms of science knowledge of the Mars, Phobos/Deimos system, exploration risk mitigation, technology development, and public interest.

  2. Development and Current Status of Skull-Image Superimposition - Methodology and Instrumentation.

    PubMed

    Lan, Y

    1992-12-01

    This article presents a review of the literature and an evaluation on the development and application of skull-image superimposition technology - both instrumentation and methodology - contributed by a number of scholars since 1935. Along with a comparison of the methodologies involved in the two superimposition techniques - photographic and video - the author characterized the techniques in action and the recent advances in computer image superimposition processing technology. The major disadvantage of conventional approaches is its relying on subjective interpretation. Through painstaking comparison and analysis, computer image processing technology can make more conclusive identifications by direct testing and evaluating the various programmed indices. Copyright © 1992 Central Police University.

  3. Perspective on the National Aero-Space Plane Program instrumentation development

    NASA Technical Reports Server (NTRS)

    Bogue, Rodney K.; Erbland, Peter

    1993-01-01

    A review of the requirement for, and development of, advanced measurement technology for the National Aerospace Plane program is presented. The objective is to discuss the technical need and the program commitment required to ensure that adequate and timely measurement capabilities are provided for ground and flight testing in the NASP program. The scope of the measurement problem is presented, the measurement process is described, how instrumentation technology development has been affected by NASP program evolution is examined, the national effort to define measurement requirements and assess the adequacy of current technology to support the NASP program is discussed, and the measurement requirements are summarized. The unique features of the NASP program that complicate the understanding of requirements and the development of viable solutions are illustrated.

  4. A Technology Development Roadmap for a Near-Term Probe-Class X-ray Astrophysics Mission

    NASA Technical Reports Server (NTRS)

    Daelemans, Gerard J.; Petre, Robert; Bookbinder, Jay; Ptak, Andrew; Smith, Randall

    2013-01-01

    This document presents a roadmap, including proposed budget and schedule, for maturing the instrumentation needed for an X-ray astrophysics Probe-class mission. The Physics of the Cosmos (PCOS) Program Office was directed to create this roadmap following the December 2012 NASA Astrophysics Implementation Plan (AIP). Definition of this mission is called for in the AIP, with the possibility of selection in 2015 for a start in 2017. The overall mission capabilities and instrument performance requirements were defined in the 2010 Astronomy and Astrophysics Decadal Survey report, New Worlds, New Horizons in Astronomy and Astrophysics (NWNH), in connection with the highly ranked International X-ray Observatory (IXO). In NWNH, recommendations were provided regarding the size of, and instrumentation needed by, the next large X-ray observatory. Specifically, the key instrumental capability would be an X-ray calorimeter spectrometer at the focus of a large mirror with angular resolution of 10 arc seconds (arcsec) or better. If possible, a grating spectrometer should also be incorporated into the instrument complement. In response to these recommendations, four instrumentation technologies are included in this roadmap. Three of these are critical for an X-ray mission designed to address NWNH questions: segmented X-ray mirrors, transition edge sensor calorimeters, and gratings. Two approaches are described for gratings, which represent the least mature technology and thus most in need of a parallel path for risk reduction. Also, while current CCD detectors would likely meet the mission needs for grating spectrum readout, specific improvements are included as an additional approach for achieving the grating system effective area requirement. The technical steps needed for these technologies to attain technology readiness levels (TRL) of 5 and 6 are described, as well as desirable modest risk reduction steps beyond TRL-6. All of the technology development efforts are currently funded through the NASA Physics of the Cosmos (PCOS) Strategic Astrophysics Technology (SAT) program; some through the end of FY13, others though FY14. These technology needs are those identified as critical for a near-term mission and briefly described in the 2012 NASA X-ray Mission Concepts Study. This Technology Development Roadmap (TDR) provides a more complete description of each, updates the status, and describes the steps to mature them. For each technology, a roadmap is presented for attaining TRL-6 by 2020 at the latest, and 2018 for most. The funding required for each technology to attain TRL-5 and TRL-6 is presented and justified through a description of the steps needing completion. The total funding required for these technologies to reach TRL-6 is relatively modest, and is consistent with the planned PCOS SAT funding over the next several years. The approximate annual cost through 2018 is $8M. The total cost for all technologies to be matured is $62M (including funding already awarded for FY13 and FY14). This can be contrasted to the $180M recommended by NWNH for technology development for IXO, primarily for the maturation of the mirror technology. The technology described in Section 3 of this document is exclusively that needed for a near-term Probe-class mission, to start in 2017, or for a mission that can be recommended by the next Decadal survey committee for an immediate start. It is important to note that there are other critical X-ray instrumentation technologies under development that are less mature than the ones discussed here, but are essential for a major X-ray mission that might start in the late 2020s. These technologies, described briefly in Section 4, are more appropriately funded through the Astronomy and Physics Research and Analysis (APRA) program.

  5. Development of multimedia resource and short courses for LRFD design.

    DOT National Transportation Integrated Search

    2011-03-01

    Multimedia technology is an essential instrument in the development of graduate engineers. This : multimedia package provides an exclusive background and an in-depth understanding of the new : technological advances in the design of concrete, steel a...

  6. Development of an Instrument to Measure Preservice Teachers' Technology Skills, Technology Beliefs, and Technology Barriers

    ERIC Educational Resources Information Center

    Brush, Thomas; Glazewski, Krista D.; Hew, Khe Foon

    2008-01-01

    The purpose of this study was to develop and field-test the Technology Skills, Beliefs, and Barriers scale and to determine its validity and reliability for use with preservice teachers. Data were collected from 176 preservice teachers enrolled in a field-based teacher education program located at a major Southwestern university in the United…

  7. Workshop on advanced technologies for planetary instruments

    NASA Technical Reports Server (NTRS)

    Appleby, J. (Editor)

    1993-01-01

    NASA's robotic solar system exploration program requires a new generation of science instruments. Design concepts are now judged against stringent mass, power, and size constraints--yet future instruments must be highly capable, reliable, and, in some applications, they must operate for many years. The most important single constraint, however, is cost: new instruments must be developed in a tightly controlled design-to-cost environment. Technical innovation is the key to success and will enable the sophisticated measurements needed for future scientific exploration. As a fundamental benefit, the incorporation of breakthrough technologies in planetary flight hardware will contribute to U.S. industrial competitiveness and will strengthen the U.S. technology base. The Workshop on Advanced Technologies for Planetary Instruments was conceived to address these challenges, to provide an open forum in which the NASA and DoD space communities could become better acquainted at the working level, and to assess future collaborative efforts. Over 300 space scientists and engineers participated in the two-and-a-half-day meeting held April 28-30, 1993, in Fairfax, Virginia. It was jointly sponsored by NASA's Solar System Exploration Division (SSED), within the Office of Space Science (OSS); NASA's Office of Advanced Concepts and Technology (OACT); DoD's Strategic Defense Initiative Organization (SDIO), now called the Ballistic Missile Defense Organization (BMDO); and the Lunar and Planetary Institute (LPI). The meeting included invited oral and contributed poster presentations, working group sessions in four sub-disciplines, and a wrap-up panel discussion. On the first day, the planetary science community described instrumentation needed for missions that may go into development during the next 5 to 10 years. Most of the second day was set aside for the DoD community to inform their counterparts in planetary science about their interests and capabilities, and to describe the BMDO technology base, flight programs, and future directions. The working group sessions and the panel discussion synthesized technical and programmatic issues from all the presentations, with a specific goal of assessing the applicability of BMDO technologies to science instrumentation for planetary exploration.

  8. Technology transfer of NASA microwave remote sensing system

    NASA Technical Reports Server (NTRS)

    Akey, N. D.

    1981-01-01

    Viable techniques for effecting the transfer from NASA to a user agency of state-of-the-art airborne microwave remote sensing technology for oceanographic applications were studied. A detailed analysis of potential users, their needs and priorities; platform options; airborne microwave instrument candidates; ancillary instrumentation; and other, less obvious factors that must be considered were studied. Conclusions and recommendations for the development of an orderly and effective technology transfer of an airborne microwave system that could meet the specific needs of the selected user agencies are reported.

  9. Evaluation of the VTI ECI-1 corrosion monitoring device.

    DOT National Transportation Integrated Search

    2006-01-01

    This report describes an evaluation performed by the California Department of Transportation (Department) of the : ECI-1 Embedded Corrosion Instrument, developed by Virginia Technologies, Incorporated (VTI). : The ECI-1 Embedded Corrosion Instrument ...

  10. Instrumental and Documentational Approaches: From Technology Use to Documentation Systems in University Mathematics Education

    ERIC Educational Resources Information Center

    Gueudet, Ghislaine; Buteau, Chantal; Mesa, Vilma; Misfeldt, Morten

    2014-01-01

    In this article we present an "instrumental approach" in mathematics education, which focuses on the interactions between students, teachers, and "artefacts." This approach analyses "mediations" attached to the use of a given artefact and "instruments" developed by the subjects from this artefact along…

  11. Designing for the Barely Imaginable

    ERIC Educational Resources Information Center

    Fisher, Diane

    2007-01-01

    National Aeronautics and Space Administration (NASA) has already sent many technological instruments into outer space. All these instruments were designed and built especially to operate in harsh and alien environments. How do NASA engineers know what kinds of planetary instruments to develop in the first place? Well, they ask. Once engineers…

  12. Teaching in the Knowledge Society: New Skills and Instruments for Teachers

    ERIC Educational Resources Information Center

    Cartelli, Antonio, Ed.

    2006-01-01

    "Teaching in the Knowledge Society: New Skills and Instruments for Teachers" covers a pedagogical survey of the changes induced by information and communication technology (ICT) in today's society and education. It critically analyzes facts, instruments, solutions, and strategies while suggesting interpretations and hypotheses to develop a new way…

  13. Development of a near-infrared spectroscopy instrument for applications in urology.

    PubMed

    Macnab, Andrew J; Stothers, Lynn

    2008-10-01

    Near infrared spectroscopy (NIRS) is an established technology using photons of light in the near infrared spectrum to monitor changes in tissue of naturally occurring chromophores, including oxygenated and deoxygenated hemoglobin. Technology and methodology have been validated for measurement of a range of physiologic parameters. NIRS has been applied successfully in urology research; however current instruments are designed principally for brain and muscle study. To describe development of a NIRS instrument specifically designed for monitoring changes in chromophore concentration in the bladder detrusor in real time, to facilitate research to establish the role of this non-invasive technology in the evaluation of patients with voiding dysfunction The portable continuous wave NIRS instrument has a 3 laser diode light source (785, 808 and 830 nanometers), fiber optic cables for light transmission, a self adhesive patient interface patch with an emitter and sensor, and software to detect the difference between the light transmitted and received by the instrument. Software incorporated auto-attenuates the optical signals and converts raw optical data into chromophore concentrations displayed graphically. The prototype was designed, tested, and iteratively developed to achieve optimal suprapubic transcutaneous monitoring of the detrusor in human subjects during bladder filling and emptying. Evaluation with simultaneous invasive urodynamic measurement in men and women indicates good specificity and sensitivity of NIRS chromophore concentration changes by receiver operator curve analysis, and correlation between NIRS data and urodynamic pressures. Urological monitoring with this NIRS instrument is feasible and generates data of potential diagnostic value.

  14. The Importance of Technology Readiness in NASA Earth Venture Missions

    NASA Technical Reports Server (NTRS)

    Wells, James E.; Komar, George J.

    2009-01-01

    The first set of Venture-class investigations share the characteristic that the technology should be mature and all investigations must use mature technology that has been modeled or demonstrated in a relevant environment (Technology Readiness Level (TRL) >5). Technology Readiness Levels are a systematic metric/measurement system that supports assessments of the maturity of a particular technology and the consistent comparison of maturity between different types of technology. The TRL is used in NASA technology planning. A major step in the level of fidelity of the technology demonstration follows the completion of TRL 5. At TRL 6, a system or subsystem model or prototype must be demonstrated in a relevant environment (ground or space) representative model or prototype system or system, which would go well beyond ad hoc, "patch-cord," or discrete component level breadboarding. These TRL levels are chosen as target objectives for the Program. The challenge for offerors is that they must identify key aspects (uncertainty, multi subsystem complexity, etc) of the TRL estimate that should be properly explained in a submitted proposal. Risk minimization is a key component of the Earth Venture missions. Experiences of prior airborne missions will be shared. The discussion will address aspects of uncertainty and issues surrounding three areas of airborne earth science missions: (1) Aircraft or proposed flight platform -- Expressing the capability of the aircraft in terms of the supporting mission requirements. These issues include airplane performance characteristics (duration, range, altitude, among others) and multiship complexities. (2) Instruments -- Establishing that the instruments have been demonstrated in a relevant environment. Instruments with heritage in prior space missions meet this requirement, as do instruments tested on the ground. Evidence that the instruments have demonstrated the ability to collect data as advertised will be described. The complexity of the integration of multiple subsystems will also be addressed. Issues associated with tailoring the instrument to meet the specific Venture mission objectives must be thoroughly explained and justified. (3) Aircraft/Instrument Integration -- Explicitly defining what development may be required to harden the instrument and integrate the instrument. The challenges associated with this key aspect of major airborne earth science investigations will be presented.

  15. Use of Information and Communication Technologies in Sign Language Test Development: Results of an International Survey

    ERIC Educational Resources Information Center

    Haug, Tobias

    2015-01-01

    Sign language test development is a relatively new field within sign linguistics, motivated by the practical need for assessment instruments to evaluate language development in different groups of learners (L1, L2). Due to the lack of research on the structure and acquisition of many sign languages, developing an assessment instrument poses…

  16. Icing Sensor Probe

    NASA Technical Reports Server (NTRS)

    Emery, Edward; Kok, Gregory L.

    2002-01-01

    Aircraft icing is a serious safety problem for the general aviation and some commuter transport airplanes. There has been tremendous growth in the commuter aviation industry in the last few years, Since these type of aircraft generally operate at lower altitudes they consequently spend a far greater proportion of their time operating in icing conditions. For the past thirty years airborne and ground based facilities have relied primarily on two types of cloud physics instrumentation to measure the characteristics of icing clouds: hot wire liquid water content probes and laser based particle sizing probes for the measurement of water droplet size. The instrumentation is severely limited by the technology that was developed during the 1970's and is quite large in size. The goal of this research is to develop one instrument with a wide bandwidth, better response time, higher resolution, user selectability, and small and lightweight. NASA Glenn Research Center, Droplet Measurement Technology, and Meteorology Society of Canada have developed a collaborative effort to develop such an instrument. This paper describes the development and test results of the prototype Icing Sensor Probe.

  17. Harsh Environment Silicon Carbide Sensor Technology for Geothermal Instrumentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pisano, Albert P.

    2013-04-26

    This project utilizes Silicon Carbide (SiC) materials platform to fabricate advanced sensors to be used as high-temperature downhole instrumentation for the DOE’s Geothermal Technologies Program on Enhanced Geothermal Systems. The scope of the proposed research is to 1) develop a SiC pressure sensor that can operate in harsh supercritical conditions, 2) develop a SiC temperature sensor that can operate in harsh supercritical conditions, 3) develop a bonding process for adhering SiC sensor die to well casing couplers, and 4) perform experimental exposure testing of sensor materials and the sensor devices.

  18. Developing a Scale for Teacher Integration of Information and Communication Technology in Grades 1-9

    ERIC Educational Resources Information Center

    Hsu, S.

    2010-01-01

    There is no unified view about how teachers' integration of information and communication technology (ICT) should be measured. While many instruments have focused on the technological aspects, recent studies have suggested teachers' pedagogical considerations, professional development, and emerging ethical and safety issues should be included when…

  19. Advanced instrumentation for next-generation aerospace propulsion control systems

    NASA Technical Reports Server (NTRS)

    Barkhoudarian, S.; Cross, G. S.; Lorenzo, Carl F.

    1993-01-01

    New control concepts for the next generation of advanced air-breathing and rocket engines and hypersonic combined-cycle propulsion systems are analyzed. The analysis provides a database on the instrumentation technologies for advanced control systems and cross matches the available technologies for each type of engine to the control needs and applications of the other two types of engines. Measurement technologies that are considered to be ready for implementation include optical surface temperature sensors, an isotope wear detector, a brushless torquemeter, a fiberoptic deflectometer, an optical absorption leak detector, the nonintrusive speed sensor, and an ultrasonic triducer. It is concluded that all 30 advanced instrumentation technologies considered can be recommended for further development to meet need of the next generation of jet-, rocket-, and hypersonic-engine control systems.

  20. Spaceborne Gravity Gradiometers. Part 3: Instrument status and prospects

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Various technologies incorporated in the development of gravity gradiometers are demonstrated through descriptions of specific instruments. Concepts covered include: rotating, spherical, cryogenic, and superconducting gravity gradiometers with and without accelerometers. The application of superconducting cavity oscillators to mass-spring gradiometers, and cooperation of Italy's Piano Spaziale Nazionale with the Smithsonian Astrophysics Observatory in the design and development of a high sensitivity gradiometer are described. Schematics are provided for each instrument.

  1. Spectrographs for astrophotonics.

    PubMed

    Blind, N; Le Coarer, E; Kern, P; Gousset, S

    2017-10-30

    The next generation of extremely large telescopes (ELT), with diameters up to 39 meters, is planned to begin operation in the next decade and promises new challenges in the development of instruments since the instrument size increases in proportion to the telescope diameter D, and the cost as D 2 or faster. The growing field of astrophotonics (the use of photonic technologies in astronomy) could solve this problem by allowing mass production of fully integrated and robust instruments combining various optical functions, with the potential to reduce the size, complexity and cost of instruments. Astrophotonics allows for a broad range of new optical functions, with applications ranging from sky background filtering, high spatial and spectral resolution imaging and spectroscopy. In this paper, we want to provide astronomers with valuable keys to understand how photonics solutions can be implemented (or not) according to the foreseen applications. The paper introduces first key concepts linked to the characteristics of photonics technologies, placed in the framework of astronomy and spectroscopy. We then describe a series of merit criteria that help us determine the potential of a given micro-spectrograph technology for astronomy applications, and then take an inventory of the recent developments in integrated micro-spectrographs with potential for astronomy. We finally compare their performance, to finally draw a map of typical science requirements and pin the identified integrated technologies on it. We finally emphasize the necessary developments that must support micro-spectrograph in the coming years.

  2. The Development of an Instrument to Measure the Project Competences of College Students in Online Project-Based Learning

    NASA Astrophysics Data System (ADS)

    Lin, Chien-Liang

    2018-02-01

    This study sought to develop a self-report instrument to be used in the assessment of the project competences of college students engaged in online project-based learning. Three scales of the KIPSSE instrument developed for this study, namely, the knowledge integration, project skills, and self-efficacy scales, were based on related theories and the analysis results of three project advisor interviews. Those items of knowledge integration and project skill scales focused on the integration of different disciplines and technological skills separately. Two samples of data were collected from information technology-related courses taught with an online project-based learning strategy over different semesters at a college in southern Taiwan. The validity and reliability of the KIPSSE instrument were confirmed through item analysis and confirmatory factor analysis using structural equation modeling of two samples of students' online response sets separately. The Cronbach's alpha reliability coefficient for the entire instrument was 0.931; for each scale, the alpha ranged from 0.832 to 0.907. There was also a significant correlation ( r = 0.55, p < 0.01) between the KIPSSE instrument results and the students' product evaluation scores. The findings of this study confirmed the validity and reliability of the KIPSSE instrument. The confirmation process and related implications are also discussed.

  3. FHR Process Instruments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holcomb, David Eugene

    2015-01-01

    Fluoride salt-cooled High temperature Reactors (FHRs) are entering into early phase engineering development. Initial candidate technologies have been identified to measure all of the required process variables. The purpose of this paper is to describe the proposed measurement techniques in sufficient detail to enable assessment of the proposed instrumentation suite and to support development of the component technologies. This paper builds upon the instrumentation chapter of the recently published FHR technology development roadmap. Locating instruments outside of the intense core radiation and high-temperature fluoride salt environment significantly decreases their environmental tolerance requirements. Under operating conditions, FHR primary coolant salt ismore » a transparent, low-vapor-pressure liquid. Consequently, FHRs can employ standoff optical measurements from above the salt pool to assess in-vessel conditions. For example, the core outlet temperature can be measured by observing the fuel s blackbody emission. Similarly, the intensity of the core s Cerenkov glow indicates the fission power level. Short-lived activation of the primary coolant provides another means for standoff measurements of process variables. The primary coolant flow and neutron flux can be measured using gamma spectroscopy along the primary coolant piping. FHR operation entails a number of process measurements. Reactor thermal power and core reactivity are the most significant variables for process control. Thermal power can be determined by measuring the primary coolant mass flow rate and temperature rise across the core. The leading candidate technologies for primary coolant temperature measurement are Au-Pt thermocouples and Johnson noise thermometry. Clamp-on ultrasonic flow measurement, that includes high-temperature tolerant standoffs, is a potential coolant flow measurement technique. Also, the salt redox condition will be monitored as an indicator of its corrosiveness. Both electrochemical techniques and optical spectroscopy are candidate fluoride salt redox measurement methods. Coolant level measurement can be performed using radar-level gauges located in standpipes above the reactor vessel. While substantial technical development remains for most of the instruments, industrially compatible instruments based upon proven technology can be reasonably extrapolated from the current state of the art.« less

  4. Optical Technologies for UV Remote Sensing Instruments

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, R. A. M.; Osantowski, J. F.; Leviton, D. B.; Saha, T. T.; Content, D. A.; Boucarut, R. A.; Gum, J. S.; Wright, G. A.; Fleetwood, C. M.; Madison, T. J.

    1993-01-01

    Over the last decade significant advances in technology have made possible development of instruments with substantially improved efficiency in the UV spectral region. In the area of optical coatings and materials, the importance of recent developments in chemical vapor deposited (CVD) silicon carbide (SiC) mirrors, SiC films, and multilayer coatings in the context of ultraviolet instrumentation design are discussed. For example, the development of chemically vapor deposited (CVD) silicon carbide (SiC) mirrors, with high ultraviolet (UV) reflectance and low scatter surfaces, provides the opportunity to extend higher spectral/spatial resolution capability into the 50-nm region. Optical coatings for normal incidence diffraction gratings are particularly important for the evolution of efficient extreme ultraviolet (EUV) spectrographs. SiC films are important for optimizing the spectrograph performance in the 90 nm spectral region. The performance evaluation of the flight optical components for the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) instrument, a spectroscopic instrument to fly aboard the Solar and Heliospheric Observatory (SOHO) mission, designed to study dynamic processes, temperatures, and densities in the plasma of the upper atmosphere of the Sun in the wavelength range from 50 nm to 160 nm, is discussed. The optical components were evaluated for imaging and scatter in the UV. The performance evaluation of SOHO/CDS (Coronal Diagnostic Spectrometer) flight gratings tested for spectral resolution and scatter in the DGEF is reviewed and preliminary results on resolution and scatter testing of Space Telescope Imaging Spectrograph (STIS) technology development diffraction gratings are presented.

  5. Evaluation of Discrimination Technologies and Classification Results Live Site Demonstration: Former Waikoloa Maneuver Area

    DTIC Science & Technology

    2015-06-01

    National Instruments. The National Instruments DAQ is a full-featured PC running Windows 7. The DAQ, electromagnetic transmitter , and batteries for the... electromagnetic induction Environet Environet, Inc. ESTCP Environmental Security Technology Certification Program ftp file transfer protocol FUDS formerly used...capabilities of a currently available advanced electromagnetic induction sensor developed specifically for discrimination on real sites under operational

  6. Using MIDI: A Staff Development Program Designed To Increase Teacher Awareness of the Technological Applications of Musical Instrument Digital Interface in the Classroom.

    ERIC Educational Resources Information Center

    Neese, Charles Glen

    This practicum report describes an instructional program designed to increase teacher awareness of the technological applications of musical instrument digital interface (MIDI) in the classroom. The primary goal of the study was to assist music teachers in becoming more informed about MIDI, and to enable them to effectively select the appropriate…

  7. Teaching and Technologies for Human Development.

    ERIC Educational Resources Information Center

    Chickering, Arthur W.; Payne, Carla; Poitras, Gail

    2001-01-01

    Discusses the potential of emerging communication and information technologies in terms of human development. Topics include distinctions between training and education, instrumental and developmental purposes, and differentiation and integration; developmental stages theory; a leadership seminar based on developmental stages; and uses of…

  8. The Development of the STEM Career Interest Survey (STEM-CIS)

    NASA Astrophysics Data System (ADS)

    Kier, Meredith W.; Blanchard, Margaret R.; Osborne, Jason W.; Albert, Jennifer L.

    2014-06-01

    Internationally, efforts to increase student interest in science, technology, engineering, and mathematics (STEM) careers have been on the rise. It is often the goal of such efforts that increased interest in STEM careers should stimulate economic growth and enhance innovation. Scientific and educational organizations recommend that efforts to interest students in STEM majors and careers begin at the middle school level, a time when students are developing their own interests and recognizing their academic strengths. These factors have led scholars to call for instruments that effectively measure interest in STEM classes and careers, particularly for middle school students. In response, we leveraged the social cognitive career theory to develop a survey with subscales in science, technology, engineering, and mathematics. In this manuscript, we detail the six stages of development of the STEM Career Interest Survey. To investigate the instrument's reliability and psychometric properties, we administered this 44-item survey to over 1,000 middle school students (grades 6-8) who primarily were in rural, high-poverty districts in the southeastern USA. Confirmatory factor analyses indicate that the STEM-CIS is a strong, single factor instrument and also has four strong, discipline-specific subscales, which allow for the science, technology, engineering, and mathematics subscales to be administered separately or in combination. This instrument should prove helpful in research, evaluation, and professional development to measure STEM career interest in secondary level students.

  9. TEMPEST-D MM-Wave Radiometer

    NASA Astrophysics Data System (ADS)

    Padmanabhan, S.; Gaier, T.; Reising, S. C.; Lim, B.; Stachnik, R. A.; Jarnot, R.; Berg, W. K.; Kummerow, C. D.; Chandrasekar, V.

    2016-12-01

    The TEMPEST-D radiometer is a five-frequency millimeter-wave radiometer at 89, 165, 176, 180, and 182 GHz. The direct-detection architecture of the radiometer reduces its power consumption and eliminates the need for a local oscillator, reducing complexity. The Instrument includes a blackbody calibrator and a scanning reflector, which enable precision calibration and cross-track scanning. The MMIC-based millimeter-wave radiometers take advantage of the technology developed under extensive investment by the NASA Earth Science Technology Office (ESTO). The five-frequency millimeter-wave radiometer is built by Jet Propulsion Laboratory (JPL), which has produced a number of state-of-the-art spaceborne microwave radiometers, such as the Microwave Limb Sounder (MLS), Advanced Microwave Radiometer (AMR) for Jason-2/OSTM, Jason-3, and the Juno Microwave Radiometer (MWR). The TEMPEST-D Instrument design is based on a 165 to 182 GHz radiometer design inherited from RACE and an 89 GHz receiver developed under the ESTO ACT-08 and IIP-10 programs at Colorado State University (CSU) and JPL. The TEMPEST reflector scan and calibration methodology is adapted from the Advanced Technology Microwave Sounder (ATMS) and has been validated on the Global Hawk unmanned aerial vehicle (UAV) using the High Altitude MMIC Sounding radiometer (HAMSR) instrument. This presentation will focus on the design, development and performance of the TEMPEST-D radiometer instrument. The flow-down of the TEMPEST-D mission objectives to instrument level requirements will also be discussed.

  10. Polarimetric Multispectral Imaging Technology

    NASA Technical Reports Server (NTRS)

    Cheng, L.-J.; Chao, T.-H.; Dowdy, M.; Mahoney, C.; Reyes, G.

    1993-01-01

    The Jet Propulsion Laboratory is developing a remote sensing technology on which a new generation of compact, lightweight, high-resolution, low-power, reliable, versatile, programmable scientific polarimetric multispectral imaging instruments can be built to meet the challenge of future planetary exploration missions. The instrument is based on the fast programmable acousto-optic tunable filter (AOTF) of tellurium dioxide (TeO2) that operates in the wavelength range of 0.4-5 microns. Basically, the AOTF multispectral imaging instrument measures incoming light intensity as a function of spatial coordinates, wavelength, and polarization. Its operation can be in either sequential, random access, or multiwavelength mode as required. This provides observation flexibility, allowing real-time alternation among desired observations, collecting needed data only, minimizing data transmission, and permitting implementation of new experiments. These will result in optimization of the mission performance with minimal resources. Recently we completed a polarimetric multispectral imaging prototype instrument and performed outdoor field experiments for evaluating application potentials of the technology. We also investigated potential improvements on AOTF performance to strengthen technology readiness for applications. This paper will give a status report on the technology and a prospect toward future planetary exploration.

  11. Aerothermal Instrumentation Loads To Implement Aeroassist Technology in Future Robotic and Human Missions to MARS and Other Locations Within the Solar System

    NASA Technical Reports Server (NTRS)

    Parmar, Devendra S.; Shams, Qamar A.

    2002-01-01

    The strategy of NASA to explore space objects in the vicinity of Earth and other planets of the solar system includes robotic and human missions. This strategy requires a road map for technology development that will support the robotic exploration and provide safety for the humans traveling to other celestial bodies. Aeroassist is one of the key elements of technology planning for the success of future robot and human exploration missions to other celestial bodies. Measurement of aerothermodynamic parameters such as temperature, pressure, and acceleration is of prime importance for aeroassist technology implementation and for the safety and affordability of the mission. Instrumentation and methods to measure such parameters have been reviewed in this report in view of past practices, current commercial availability of instrumentation technology, and the prospects of improvement and upgrade according to the requirements. Analysis of the usability of each identified instruments in terms of cost for efficient weight-volume ratio, power requirement, accuracy, sample rates, and other appropriate metrics such as harsh environment survivability has been reported.

  12. WTEC panel report on European nuclear instrumentation and controls

    NASA Technical Reports Server (NTRS)

    White, James D.; Lanning, David D.; Beltracchi, Leo; Best, Fred R.; Easter, James R.; Oakes, Lester C.; Sudduth, A. L.

    1991-01-01

    Control and instrumentation systems might be called the 'brain' and 'senses' of a nuclear power plant. As such they become the key elements in the integrated operation of these plants. Recent developments in digital equipment have allowed a dramatic change in the design of these instrument and control (I&C) systems. New designs are evolving with cathode ray tube (CRT)-based control rooms, more automation, and better logical information for the human operators. As these new advanced systems are developed, various decisions must be made about the degree of automation and the human-to-machine interface. Different stages of the development of control automation and of advanced digital systems can be found in various countries. The purpose of this technology assessment is to make a comparative evaluation of the control and instrumentation systems that are being used for commercial nuclear power plants in Europe and the United States. This study is limited to pressurized water reactors (PWR's). Part of the evaluation includes comparisons with a previous similar study assessing Japanese technology.

  13. Study of alternative probe technologies

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A number of implied technologies for a deep probe mission was examined; i.e., one that would provide the capability to scientifically examine planetary atmospheres at the 1000 bar level. Conditions imposed by current Jupiter, Saturn, and Uranus atmospheric models were considered. The major thrust of the measurements was to determine lower atmosphere composition, even to trace constituents of one part per billion. Two types of instruments having the necessary accuracy to meet the science objectives were considered and integrated into a deep probe configuration. One deep probe option that resulted was identified as a Minimum Technology Development approach. The significant feature of this option is that only three technology developments are required to enable the mission, i.e., (1) science instrument development, (2) advanced data processing, and (3) external high pressure/thermal insulation. It is concluded that a probe designed for a Jupiter mission could, with minor changes, be used for a Saturn or Uranus mission.

  14. Raman Laser Spectrometer Development for ExoMars

    NASA Astrophysics Data System (ADS)

    Pérez, C.; Colombo, M.; Díaz, C.; Santamaría, P.; Ingley, R.; Parrot, Y.; Maurice, S.; Popp, J.; Tarcea, N.; Edwards, H. G. M.

    2013-09-01

    The Raman Laser Spectrometer is one of the Pasteur Payload instruments, within the ESA's ExoMars mission. The aim of the work presented here is to provide a summary of the instrument design and performances. For that the instrument current characteristics and performances, and its technological ass assessment program main results are presented and discussed.

  15. The 1973 report and recommendations of the NASA Science Advisory Committee on Comets and Asteroids

    NASA Technical Reports Server (NTRS)

    Atkins, K. (Editor)

    1973-01-01

    The present day knowledge is reported of comets and asteroids and recommendations for a development program needed to provide instruments to achieve certain scientific objectives are also presented. Discussions include reports on the primary experiments and instruments, the instruments of potential applicability, mission classes and parameters, mission opportunities, and vehicular technology. An annotated bibliography and recommendations for flight projects, propulsion systems, and experiment development are included.

  16. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - LEAD IN DUST WIPE MEASUREMENT TECHNOLOGY, KEYMASTER TECHNOLOGIES, X-RAY FLUORESCENCE INSTRUMENT PB-TEST

    EPA Science Inventory

    ETV works in partnership with recognized standards and testing organizations and stakeholder groups consisting of regulators, buyers, and vendor organizations, with the full participation of individual technology developers. The program evaluates the performance of innovative

  17. Spaceborne sensors (1983-2000 AD): A forecast of technology

    NASA Technical Reports Server (NTRS)

    Kostiuk, T.; Clark, B. P.

    1984-01-01

    A technical review and forecast of space technology as it applies to spaceborne sensors for future NASA missions is presented. A format for categorization of sensor systems covering the entire electromagnetic spectrum, including particles and fields is developed. Major generic sensor systems are related to their subsystems, components, and to basic research and development. General supporting technologies such as cryogenics, optical design, and data processing electronics are addressed where appropriate. The dependence of many classes of instruments on common components, basic R&D and support technologies is also illustrated. A forecast of important system designs and instrument and component performance parameters is provided for the 1983-2000 AD time frame. Some insight into the scientific and applications capabilities and goals of the sensor systems is also given.

  18. Testing a potential national strategy for cost-effective medical technology

    NASA Astrophysics Data System (ADS)

    Fitch, J. Patrick

    1995-10-01

    The Center for Healthcare Technologies at Lawrence Livermore National Laboratory is a partnership among government, industry, and universities that focuses on improving healthcare through development of cost-effective technology. With the guidance of healthcare providers, medical institutions, and medical instrument manufacturers, technology can be harnessed to reduce healthcare costs. The partnership is a miniature test case for a potential national strategy for development and adoption of technology specifically to reduce costs.

  19. Examining Volcanic Terrains Using In Situ Geochemical Technologies; Implications for Planetary Field Geology

    NASA Technical Reports Server (NTRS)

    Young, K. E.; Bleacher, J. E.; Evans, C. A.; Rogers, A. D.; Ito, G.; Arzoumanian, Z.; Gendreau, K.

    2015-01-01

    Regardless of the target destination for the next manned planetary mission, the crew will require technology with which to select samples for return to Earth. The six Apollo lunar surface missions crews had only the tools to enable them to physically pick samples up off the surface or from a boulder and store those samples for return to the Lunar Module and eventually to Earth. Sample characterization was dependent upon visual inspection and relied upon their extensive geology training. In the four decades since Apollo however, great advances have been made in traditionally laboratory-based instrument technologies that enable miniaturization to a field-portable configuration. The implications of these advancements extend past traditional terrestrial field geology and into planetary surface exploration. With tools that will allow for real-time geochemical analysis, an astronaut can better develop a series of working hypotheses that are testable during surface science operations. One such technology is x-ray fluorescence (XRF). Traditionally used in a laboratory configuration, these instruments have now been developed and marketed commercially in a field-portable mode. We examine this technology in the context of geologic sample analysis and discuss current and future plans for instrument deployment. We also discuss the development of the Chromatic Mineral Identification and Surface Texture (CMIST) instrument at the NASA Goddard Space Flight Center (GSFC). Testing is taking place in conjunction with the RIS4E (Remote, In Situ, and Synchrotron Studies for Science and Exploration) SSERVI (Solar System Exploration and Research Virtual Institute) team activities, including field testing at Kilauea Volcano, HI..

  20. Development of Curricula for Nuclear Radiation Protection, Nuclear Instrumentation, and Nuclear Materials Processing Technologies. Final Report.

    ERIC Educational Resources Information Center

    Hull, Daniel M.

    A study was conducted to assist two-year postsecondary educational institutions in providing technical specialty courses for preparing nuclear technicians. As a result of project activities, curricula have been developed for five categories of nuclear technicians and operators: (1) radiation protection technician, (2) nuclear instrumentation and…

  1. Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Mike; Cipiti, Ben; Demuth, Scott Francis

    2017-01-30

    The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. Thesemore » tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.« less

  2. Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durkee, Joe W.; Cipiti, Ben; Demuth, Scott Francis

    The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. Thesemore » tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.« less

  3. Instrument for assessing mobile technology acceptability in diabetes self-management: a validation and reliability study.

    PubMed

    Frandes, Mirela; Deiac, Anca V; Timar, Bogdan; Lungeanu, Diana

    2017-01-01

    Nowadays, mobile technologies are part of everyday life, but the lack of instruments to assess their acceptability for the management of chronic diseases makes their actual adoption for this purpose slow. The objective of this study was to develop a survey instrument for assessing patients' attitude toward and intention to use mobile technology for diabetes mellitus (DM) self-management, as well as to identify sociodemographic characteristics and quality of life factors that affect them. We first conducted the documentation and instrument design phases, which were subsequently followed by the pilot study and instrument validation. Afterward, the instrument was administered 103 patients (median age: 37 years; range: 18-65 years) diagnosed with type 1 or type 2 DM, who accepted to participate in the study. The reliability and construct validity were assessed by computing Cronbach's alpha and using factor analysis, respectively. The instrument included statements about the actual use of electronic devices for DM management, interaction between patient and physician, attitude toward using mobile technology, and quality of life evaluation. Cronbach's alpha was 0.9 for attitude toward using mobile technology and 0.97 for attitude toward using mobile device applications for DM self-management. Younger patients (Spearman's ρ =-0.429; P <0.001) with better glycemic control (Spearman's ρ =-0.322; P <0.001) and higher education level (Kendall's τ =0.51; P <0.001) had significantly more favorable attitude toward using mobile assistive applications for DM control. Moreover, patients with a higher quality of life presented a significantly more positive attitude toward using modern technology (Spearman's ρ =0.466; P <0.001). The instrument showed good reliability and internal consistency, making it suitable for measuring the acceptability of mobile technology for DM self-management. Additionally, we found that even if most of the patients showed positive attitude toward mobile applications, only a moderate level of intention to indeed use them was observed. Moreover, the study indicated that barriers were truthfulness and easiness to use.

  4. 2017 Marine Hydrokinetic Instrumentation Workshop Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Driscoll, Frederick R; Mauer, Erik; Rieks, Jeff

    The third Marine Hydrokinetic Instrumentation Workshop was held at Florida Atlantic University's Sea Tech Campus in Dania Beach, Florida, from February 28 to March 1, 2017. The workshop brought together 37 experts in marine energy measurement, testing, and technology development to present and discuss the instrumentation and data-processing needs of the marine energy industry. The workshop was comprised of a plenary session followed by two focused breakout sessions. The half-day plenary session reviewed findings from prior instrumentation workshops, presented research activities that aim to fill previously identified gaps, and had industry experts present the state of the marine energy measurementmore » technologies. This report provides further detail on the workshop, objectives, and findings.« less

  5. Technology-enhanced focus groups as a component of instrument development.

    PubMed

    Strout, Tania D; DiFazio, Rachel L; Vessey, Judith A

    2017-06-22

    Background Bullying is a critical public health problem and a screening tool for use in healthcare is needed. Focus groups are a common tool for generating qualitative data when developing an instrument and evidence suggests that technology-enhanced focus groups can be effective in simultaneously engaging participants from diverse settings. Aim To examine the use of technology-enhanced focus groups in generating an item pool to develop a youth-bullying screening tool. Discussion The authors explore methodological and ethical issues related to conducting technology-enhanced focus groups, drawing on their experience in developing a youth-bullying measure. They conducted qualitative focus groups with professionals from the front lines of bullying response and intervention. They describe the experience of conducting technology-enhanced focus group sessions, focusing on the methodological and ethical issues that researchers engaging in similar work may encounter. Challenges associated with this methodology include establishing rapport among participants, privacy concerns and limited non-verbal communication. Conclusion The use of technology-enhanced focus groups can be valuable in obtaining rich data from a wide variety of disciplines and contexts. Organising these focus groups was inexpensive and preferred by the study's participants. Implications for practice Researchers should consider using technology-enhanced focus groups to generate data to develop health-related measurement tools.

  6. Pupils' Attitudes toward Technology--PATT-USA.

    ERIC Educational Resources Information Center

    Bame, E. Allen; And Others

    1993-01-01

    A survey of students' knowledge of and attitudes toward technology used an adaptation of the Pupil's Attitudes toward Technology instrument that was developed in the Netherlands. Results indicate that, although students (n=10,349) are aware of the importance of technology and are interested in it, their concept of it is narrow. (JOW)

  7. 5.8 X-ray Calorimeters

    NASA Technical Reports Server (NTRS)

    Porter, F. Scott

    2008-01-01

    X-ray calorimeter instruments for astrophysics have seen rapid development since they were invented in 1984. The prime instrument on all currently planned X-ray spectroscopic observatories is based on calorimeter technology. This relatively simple detection concept that senses the energy of an incident photon by measuring the temperature rise of an absorber material at very low temperatures, can form the basis of a very high performance, non-dispersive spectrometer. State-of-the-art calorimeter instruments have resolving powers of over 3000, large simultaneous band-passes, and near unit efficiency. This coupled with the intrinsic imaging capability of a pixilated x-ray calorimeter array, allows true spectral-spatial instruments to be constructed. In this chapter I briefly review the detection scheme, the state-of-the-art in X-ray calorimeter instruments and the future outlook for this technology.

  8. LIDAR technology developments in support of ESA Earth observation missions

    NASA Astrophysics Data System (ADS)

    Durand, Yannig; Caron, Jérôme; Hélière, Arnaud; Bézy, Jean-Loup; Meynart, Roland

    2017-11-01

    Critical lidar technology developments have been ongoing at the European Space Agency (ESA) in support of EarthCARE (Earth Clouds, Aerosols, and Radiation Explorer), the 6th Earth Explorer mission, and A-SCOPE (Advanced Space Carbon and Climate Observation of Planet Earth), one of the candidates for the 7th Earth Explorer mission. EarthCARE is embarking an Atmospheric backscatter Lidar (ATLID) while A-SCOPE is based on a Total Column Differential Absorption Lidar. As EarthCARE phase B has just started, the pre-development activities, aiming at validating the technologies used in the flight design and at verifying the overall instrument performance, are almost completed. On the other hand, A-SCOPE pre-phase A has just finished. Therefore technology developments are in progress, addressing critical subsystems or components with the lowest TRL, selected in the proposed instrument concepts. The activities described in this paper span over a broad range, addressing all critical elements of a lidar from the transmitter to the receiver.

  9. A layered approach to technology transfer of AVIRIS between Earth Search Sciences, Inc. and the Idaho National Engineering Laboratory

    NASA Technical Reports Server (NTRS)

    Ferguson, James S.; Ferguson, Joanne E.; Peel, John, III; Vance, Larry

    1995-01-01

    Since initial contact between Earth Search Sciences, Inc. (ESSI) and the Idaho National Engineering Laboratory (INEL) in February, 1994, at least seven proposals have been submitted in response to a variety of solicitations to commercialize and improve the AVIRIS instrument. These proposals, matching ESSI's unique position with respect to agreements with the National Aeronautics and Space Administration (NASA) and the Jet Propulsion Laboratory (JPL) to utilize, miniaturize, and commercialize the AVIRIS instrument and platform, are combined with the applied engineering of the INEL. Teaming ESSI, NASA/JPL, and INEL with diverse industrial partners has strengthened the respective proposals. These efforts carefully structure the overall project plans to ensure the development, demonstration, and deployment of this concept to the national and international arenas. The objectives of these efforts include: (1) developing a miniaturized commercial, real-time, cost effective version of the AVIRIS instrument; (2) identifying multiple users for AVIRIS; (3) integrating the AVIRIS technology with other technologies; (4) gaining the confidence/acceptance of other government agencies and private industry in AVIRIS; and (5) increasing the technology base of U.S. industry.

  10. NASA Applications of Molecular Adsorber Coatings

    NASA Technical Reports Server (NTRS)

    Abraham, Nithin S.

    2015-01-01

    The Molecular Adsorber Coating (MAC) is a new, innovative technology that was developed to reduce the risk of molecular contamination on spaceflight applications. Outgassing from materials, such as plastics, adhesives, lubricants, silicones, epoxies, and potting compounds, pose a significant threat to the spacecraft and the lifetime of missions. As a coating made of highly porous inorganic materials, MAC offers impressive adsorptive capabilities that help capture and trap contaminants. Past research efforts have demonstrated the coating's promising adhesion performance, optical properties, acoustic durability, and thermal stability. These results advocate its use near or on surfaces that are targeted by outgassed materials, such as internal optics, electronics, detectors, baffles, sensitive instruments, thermal control coatings, and vacuum chamber test environments. The MAC technology has significantly progressed in development over the recent years. This presentation summarizes the many NASA spaceflight applications of MAC and how the coatings technology has been integrated as a mitigation tool for outgassed contaminants. For example, this sprayable paint technology has been beneficial for use in various vacuum chambers for contamination control and hardware bake-outs. The coating has also been used in small instrument cavities within spaceflight instrument for NASA missions.

  11. Advanced Fiber Optic-Based Sensing Technology for Unmanned Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen R.; Piazza, Anthony; Ko, William L.; Chan, Patrick; Bakalyar, John

    2011-01-01

    This presentation provides an overview of fiber optic sensing technology development activities performed at NASA Dryden in support of Unmanned Aircraft Systems. Examples of current and previous work are presented in the following categories: algorithm development, system development, instrumentation installation, ground R&D, and flight testing. Examples of current research and development activities are provided.

  12. Role of superconducting electronics in advancing science and technology (invited) (abstract)

    NASA Astrophysics Data System (ADS)

    Faris, S. M.

    1988-08-01

    The promises of the ultrahigh-performance properties of superconductivity and Josephson junction technologies have been known for quite some time. This presentation describes the first superconducting electronics and measurement system and its important role as a major tool to advance microwave and millimeter wave technologies. This breakthrough tool is a sampling oscilloscope with 5-ps rise time, 50-μV sensitivity, and a time domain reflectometer with 8-ps rise time. In order to achieve these performance goals, several technological hurdles had to be overcome including perfecting a manufacturing process for building Josephson junction IC chips, developing an innovative cooling technique, developing interfaces and interconnections with bandwidths in excess of 70 GHz, and developing the room-temperature hardware and software necessary to make the instruments convenient, easy to use, easy to learn, in addition to making available functions and features users have come to expect from sophisticated digital test instrumentation. These technological developments are stepping stones leading to the realization of more sophisticated and complex electronic systems satisfying the needs of scientists, technologists, and engineers. The unprecedented speed and sensitivity make it possible to attack new frontiers.

  13. Innovative technologies (DIY instruments and data sonification) for engaging volunteers to participate in marine environmental monitoring programs.

    NASA Astrophysics Data System (ADS)

    Piera, J.

    2016-02-01

    In recent years the promotion of marine observations based on volunteer participation, known as Citizen Science, has provided environmental data with unprecedented resolution and coverage. The Citizen Science based approach has the additional advantage to engage people by raising awareness and knowledge of marine environmental problems. The technological advances in embedded systems and sensors, enables citizens to create their own devices (known as DIY, Do-It-Yourself, technologies) for monitoring the marine environment. Within the context of the CITCLOPS project (www.citclops.eu), a DIY instrument was developed to monitor changes on water transparency as a water quality indicator. The instrument, named KdUINO, is based on quasi-digital sensors controlled by an open-hardware (Arduino) board. The sensors measure light irradiance at different depth and the instrument automatically calculates the light diffuse attenuation Kd coefficient to quantify the water transparency. The buoy construction is an ideal activity for creative STEM programming. Several workshops in high schools were done to show to the students how to construct their own buoy. Some of them used the buoy to develop their own scientific experiments. In order to engage students more motivated in artistic disciplines, the research group developed also a sonification system that allows creating music and graphics using KdUINO measurements as input data.

  14. Optical Manufacturing and Testing Requirements Identified by the NASA Science Instruments, Observatories and Sensor Systems Technology Assessment

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Barney, Rich; Bauman, Jill; Feinberg, Lee; Mcleese, Dan; Singh, Upendra

    2011-01-01

    In August 2010, the NASA Office of Chief Technologist (OCT) commissioned an assessment of 15 different technology areas of importance to the future of NASA. Technology assessment #8 (TA8) was Science Instruments, Observatories and Sensor Systems (SIOSS). SIOSS assess the needs for optical technology ranging from detectors to lasers, x-ray mirrors to microwave antenna, in-situ spectrographs for on-surface planetary sample characterization to large space telescopes. The needs assessment looked across the entirety of NASA and not just the Science Mission Directorate. This paper reviews the optical manufacturing and testing technologies identified by SIOSS which require development in order to enable future NASA high priority missions.

  15. Aerospace Measurements: Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Conway, Bruce A.

    1992-01-01

    New aerospace research initiatives offer both challenges and opportunities to rapidly-emerging electronics and electro-optics technology. Defining and implementing appropriate measurement technology development programs in response to the aeronautical ground facility research and testing needs of the new initiatives poses some particularly important problems. This paper discusses today's measurement challenges along with some of the technological opportunities which offer some hope for meeting the challenges, and describes measurement technology activities currently underway in the Langley Research Center's Instrument Research Division to address modern aerospace research and design engineering requirements. Projected and realized benefits and payoffs from the ongoing measurement and instrumentation efforts will be emphasized. A discussion of future trends in the aerospace measurement technology field will be included.

  16. The Mediator Effect of Career Development between Personality Traits and Organizational Commitment: The Example of Sport Communication Technology Talents

    ERIC Educational Resources Information Center

    Lo, Hung-Jen; Lin, Chun-Hung; Tung-Hsing, Lin; Tu, Peng-Fei

    2014-01-01

    This paper explored the relationships among career development, personality trait, and organizational commitment and examines whether career development mediates the relationship between personality trait and organizational commitment. The sample was 275 sport communication technology talents in Taiwan. The instrument included the Personality…

  17. Potential of Future Hurricane Imaging Radiometer (HIRAD) Ocean Surface Wind Observations for Determining Tropical Storm Vortex Intensity and Structure

    NASA Technical Reports Server (NTRS)

    Atlas, Robert; Bailey, M. C.; Black, Peter; James, Mark; Johnson, James; Jones, Linwood; Miller, Timothy; Ruf, Christopher; Uhlhorn, Eric

    2008-01-01

    The Hurricane Imaging Radiometer (HIRAD) is an innovative technology development, which offers the potential of new and unique remotely sensed observations of both extreme oceanic wind events and strong precipitation from either UAS or satellite platforms. It is based on the airborne Stepped Frequency Microwave Radiometer (SFMR), which is a proven aircraft remote sensing technique for observing tropical cyclone ocean surface wind speeds and rain rates, including those of major hurricane intensity. The proposed HIRAD instrument advances beyond the current nadir viewing SFMR to an equivalent wide-swath SFMR imager using passive microwave synthetic thinned aperture radiometer technology. This sensor will operate over 4-7 GHz (C-band frequencies) where the required tropical cyclone remote sensing physics has been validated by both SFMR and WindSat radiometers. HIRAD incorporates a unique, technologically advanced array antenna and several other technologies successfully demonstrated by the NASA's Instrument Incubator Program. A brassboard version of the instrument is complete and has been successfully tested in an anechoic chamber, and development of the aircraft instrument is well underway. HIRAD will be a compact, lightweight, low-power instrument with no moving parts that will produce wide-swath imagery of ocean vector winds and rain during hurricane conditions when existing microwave sensors (radiometers or scatterometers) are hindered. Preliminary studies show that HIRAD will have a significant positive impact on analyses as either a new aircraft or satellite sensor.

  18. Standard NIM Instrumentation System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costrell, Louis; Lenkszus, Frank R.; Rudnick, Stanley J.

    NIM is a standard modular instrumentation system that is in wide use throughout the world. As the NIM system developed and accommodations were made to a dynamic instrumentation field and a rapidly advancing technology, additions, revisions and clarifications were made. These were incorporated into the standard in the form of addenda and errata. This standard is a revision of the NIM document, AEC Report TID-20893 (Rev 4) dated July 1974. It includes all the addenda and errata items that were previously issued as well as numerous additional items to make the standard current with modern technology and manufacturing practice.

  19. Continuing evolution of in-vitro diagnostic instrumentation

    NASA Astrophysics Data System (ADS)

    Cohn, Gerald E.

    2000-04-01

    The synthesis of analytical instrumentation and analytical biochemistry technologies in modern in vitro diagnostic instrumentation continues to generate new systems with improved performance and expanded capability. Detection modalities have expanded to include multichip modes of fluorescence, scattering, luminescence and reflectance so as to accommodate increasingly sophisticated immunochemical and nucleic acid based reagent systems. The time line graph of system development now extends from the earliest automated clinical spectrophotometers through molecule recognition assays and biosensors to the new breakthroughs of biochip and DNA diagnostics. This brief review traces some of the major innovations in the evolution of system technologies and previews the conference program.

  20. The technology acceptance model: predicting nurses' intention to use telemedicine technology (eICU).

    PubMed

    Kowitlawakul, Yanika

    2011-07-01

    The purposes of this study were to determine factors and predictors that influence nurses' intention to use the eICU technology, to examine the applicability of the Technology Acceptance Model in explaining nurses' intention to use the eICU technology in healthcare settings, and to provide psychometric evidence of the measurement scales used in the study. The study involved 117 participants from two healthcare systems. The Telemedicine Technology Acceptance Model was developed based on the original Technology Acceptance Model that was initially developed by Fred Davis in 1986. The eICU Acceptance Survey was used as an instrument for the study. Content validity was examined, and the reliability of the instrument was tested. The results show that perceived usefulness is the most influential factor that influences nurses' intention to use the eICU technology. The principal factors that influence perceived usefulness are perceived ease of use, support from physicians, and years working in the hospital. The model fit was reasonably adequate and able to explain 58% of the variance (R = 0.58) in intention to use the eICU technology with the nursing sample.

  1. Sources Sought for Innovative Scientific Instrumentation for Scientific Lunar Rovers

    NASA Technical Reports Server (NTRS)

    Meyer, C.

    1993-01-01

    Lunar rovers should be designed as integrated scientific measurement systems that address scientific goals as their main objective. Scientific goals for lunar rovers are presented. Teleoperated robotic field geologists will allow the science team to make discoveries using a wide range of sensory data collected by electronic 'eyes' and sophisticated scientific instrumentation. rovers need to operate in geologically interesting terrain (rock outcrops) and to identify and closely examine interesting rock samples. Enough flight-ready instruments are available to fly on the first mission, but additional instrument development based on emerging technology is desirable. Various instruments that need to be developed for later missions are described.

  2. Development of a Wearable Instrumented Vest for Posture Monitoring and System Usability Verification Based on the Technology Acceptance Model.

    PubMed

    Lin, Wen-Yen; Chou, Wen-Cheng; Tsai, Tsai-Hsuan; Lin, Chung-Chih; Lee, Ming-Yih

    2016-12-17

    Body posture and activity are important indices for assessing health and quality of life, especially for elderly people. Therefore, an easily wearable device or instrumented garment would be valuable for monitoring elderly people's postures and activities to facilitate healthy aging. In particular, such devices should be accepted by elderly people so that they are willing to wear it all the time. This paper presents the design and development of a novel, textile-based, intelligent wearable vest for real-time posture monitoring and emergency warnings. The vest provides a highly portable and low-cost solution that can be used both indoors and outdoors in order to provide long-term care at home, including health promotion, healthy aging assessments, and health abnormality alerts. The usability of the system was verified using a technology acceptance model-based study of 50 elderly people. The results indicated that although elderly people are anxious about some newly developed wearable technologies, they look forward to wearing this instrumented posture-monitoring vest in the future.

  3. Development of a Wearable Instrumented Vest for Posture Monitoring and System Usability Verification Based on the Technology Acceptance Model

    PubMed Central

    Lin, Wen-Yen; Chou, Wen-Cheng; Tsai, Tsai-Hsuan; Lin, Chung-Chih; Lee, Ming-Yih

    2016-01-01

    Body posture and activity are important indices for assessing health and quality of life, especially for elderly people. Therefore, an easily wearable device or instrumented garment would be valuable for monitoring elderly people’s postures and activities to facilitate healthy aging. In particular, such devices should be accepted by elderly people so that they are willing to wear it all the time. This paper presents the design and development of a novel, textile-based, intelligent wearable vest for real-time posture monitoring and emergency warnings. The vest provides a highly portable and low-cost solution that can be used both indoors and outdoors in order to provide long-term care at home, including health promotion, healthy aging assessments, and health abnormality alerts. The usability of the system was verified using a technology acceptance model-based study of 50 elderly people. The results indicated that although elderly people are anxious about some newly developed wearable technologies, they look forward to wearing this instrumented posture-monitoring vest in the future. PMID:27999324

  4. High Resolution Mass Spectrometry for future space instrumentation : current development within the French Space Orbitrap Consortium

    NASA Astrophysics Data System (ADS)

    Briois, Christelle; Lebreton, Jean-Pierre; Szopa, Cyril; Thirkell, Laurent; Aradj, Kenzi; Bouabdellah, Abdel; Boukrara, Amirouche; Carrasco, Nathalie; Chalumeau, Gilles; Chapelon, Olivier; Colin, Fabrice; Cottin, Hervé; Engrand, Cécile; Grand, Noel; Kukui, Alexandre; Pennanech, Cyril; Thissen, Roland; Vuitton, Véronique; Zapf, Pascal; Makarov, Alexander

    2014-05-01

    Mass spectrometry has been used for years in space exploration to characterise the chemical composition of solar system bodies and their environment. Because of the harsh constraints imposed to the space probe instruments, their mass resolution is quite limited compared to laboratory instruments, sometimes leading to significant limitations in the treatment of the data collected with this type of instrumentation. Future in situ solar system exploration missions would significantly benefit from High Resolution Mass Spectrometry (HRMS). For a few years, 5 French laboratories (LPC2E, IPAG, LATMOS, LISA, CSNSM) involved in the chemical investigation of solar system bodies formed a Consortium to develop HRMS for future space exploration, based on the use of the Orbitrap technology (C. Briois et al., 2014, to be submitted). This development is carried out in the frame of a Research and Technology (R&T) development programme partly funded by the French Space Agency (CNES). The work is undertaken in close collaboration with the Thermo Fisher Scientific Company, which commercialises Orbitrap-based laboratory instruments. The R&T activities are currently concentrating on the core elements of the Orbitrap analyser that are required to reach a sufficient maturity level for allowing design studies of future space instruments. We are indeed pursuing, within international collaborations, the definition of several instrument concepts based on the core elements that are subject of our R&T programme. In this talk, we briefly discuss science applications for future orbitrap-based HRMS space instruments. We highlight present results of our R&T programme.

  5. Speech systems research at Texas Instruments

    NASA Technical Reports Server (NTRS)

    Doddington, George R.

    1977-01-01

    An assessment of automatic speech processing technology is presented. Fundamental problems in the development and the deployment of automatic speech processing systems are defined and a technology forecast for speech systems is presented.

  6. A laser tracking dynamic robot metrology instrument

    NASA Technical Reports Server (NTRS)

    Parker, G. A.; Mayer, J. R. R.

    1989-01-01

    Research work over several years has resulted in the development of a laser tracking instrument capable of dynamic 3-D measurements of robot end-effector trajectories. The instrument characteristics and experiments to measure the static and dynamic performance of a robot in an industrial manufacturing environment are described. The use of this technology for space applications is examined.

  7. Integrating Technology, Pedagogy and Content in Mathematics Education

    ERIC Educational Resources Information Center

    Handal, Boris; Campbell, Chris; Cavanagh, Michael; Petocz, Peter; Kelly, Nick

    2012-01-01

    The need for appraising the effective integration of technologies into teaching and learning within a disciplinary context is crucial for upholding quality teaching standards in schools and formulating professional development programs. This paper describes the development and validation of an instrument aimed at characterising the integration of…

  8. Infrared Spectroscopic Imaging: The Next Generation

    PubMed Central

    Bhargava, Rohit

    2013-01-01

    Infrared (IR) spectroscopic imaging seemingly matured as a technology in the mid-2000s, with commercially successful instrumentation and reports in numerous applications. Recent developments, however, have transformed our understanding of the recorded data, provided capability for new instrumentation, and greatly enhanced the ability to extract more useful information in less time. These developments are summarized here in three broad areas— data recording, interpretation of recorded data, and information extraction—and their critical review is employed to project emerging trends. Overall, the convergence of selected components from hardware, theory, algorithms, and applications is one trend. Instead of similar, general-purpose instrumentation, another trend is likely to be diverse and application-targeted designs of instrumentation driven by emerging component technologies. The recent renaissance in both fundamental science and instrumentation will likely spur investigations at the confluence of conventional spectroscopic analyses and optical physics for improved data interpretation. While chemometrics has dominated data processing, a trend will likely lie in the development of signal processing algorithms to optimally extract spectral and spatial information prior to conventional chemometric analyses. Finally, the sum of these recent advances is likely to provide unprecedented capability in measurement and scientific insight, which will present new opportunities for the applied spectroscopist. PMID:23031693

  9. Developing an Instrument for Assessing Students' Concepts of the Nature of Technology

    ERIC Educational Resources Information Center

    Liou, Pey-Yan

    2015-01-01

    Background: The nature of technology has been rarely discussed despite the fact that technology plays an essential role in modern society. It is important to discuss students' concepts of the nature of technology, and further to advance their technological literacy and adaptation to modern society. There is a need to assess high school students'…

  10. Review of manual control methods for handheld maneuverable instruments.

    PubMed

    Fan, Chunman; Dodou, Dimitra; Breedveld, Paul

    2013-06-01

    By the introduction of new technologies, surgical procedures have been varying from free access in open surgery towards limited access in minimal access surgery. Improving access to difficult-to-reach anatomic sites, e.g. in neurosurgery or percutaneous interventions, needs advanced maneuverable instrumentation. Advances in maneuverable technology require the development of dedicated methods enabling surgeons to stay in direct, manual control of these complex instruments. This article gives an overview of the state-of-the-art in the development of manual control methods for handheld maneuverable instruments. It categorizes the manual control methods in three levels: a) number of steerable segments, b) number of Degrees Of Freedom (DOF), and c) coupling between control motion of the handle and steering motion of the tip. The literature research was completed by using Web of Science, Scopus and PubMed. The study shows that in controlling single steerable segments, direct as well as indirect control methods have been developed, whereas in controlling multiple steerable segments, a gradual shift can be noticed from parallel and serial control to integrated control. The development of multi-segmented maneuverable instruments is still at an early stage, and an intuitive and effective method to control them has to become a primary focus in the domain of minimal access surgery.

  11. Application of Fiber Optic Instrumentation

    NASA Technical Reports Server (NTRS)

    Richards, William Lance; Parker, Allen R., Jr.; Ko, William L.; Piazza, Anthony; Chan, Patrick

    2012-01-01

    Fiber optic sensing technology has emerged in recent years offering tremendous advantages over conventional aircraft instrumentation systems. The advantages of fiber optic sensors over their conventional counterparts are well established; they are lighter, smaller, and can provide enormous numbers of measurements at a fraction of the total sensor weight. After a brief overview of conventional and fiber-optic sensing technology, this paper presents an overview of the research that has been conducted at NASA Dryden Flight Research Center in recent years to advance this promising new technology. Research and development areas include system and algorithm development, sensor characterization and attachment, and real-time experimentally-derived parameter monitoring for ground- and flight-based applications. The vision of fiber optic smart structure technology is presented and its potential benefits to aerospace vehicles throughout the lifecycle, from preliminary design to final retirement, are presented.

  12. Design of a Parachute Canopy Instrumentation Platform

    NASA Technical Reports Server (NTRS)

    Alshahin, Wahab M.; Daum, Jared S.; Holley, James J.; Litteken, Douglas A.; Vandewalle, Michael T.

    2015-01-01

    This paper discusses the current technology available to design and develop a reliable and compact instrumentation platform for parachute system data collection and command actuation. Wireless communication with a parachute canopy will be an advancement to the state of the art of parachute design, development, and testing. Embedded instrumentation of the parachute canopy will provide reefing line tension, skirt position data, parachute health monitoring, and other telemetry, further validating computer models and giving engineering insight into parachute dynamics for both Earth and Mars entry that is currently unavailable. This will allow for more robust designs which are more optimally designed in terms of structural loading, less susceptible to adverse dynamics, and may eventually pave the way to currently unattainable advanced concepts of operations. The development of this technology has dual use potential for a variety of other applications including inflatable habitats, aerodynamic decelerators, heat shields, and other high stress environments.

  13. Proposal of optical farming: development of several optical sensing instruments for agricultural use

    NASA Astrophysics Data System (ADS)

    Saito, Y.; Kobayashi, K.

    2013-05-01

    We propose the use of "Optical Farming," which is the leading application of all types of optical technologies, in agriculture and agriculture-related industries. This paper focuses on the optical sensing instruments named "Agriserver," "Agrigadget" and "LIFS Monitor" developed in our laboratory. They are considered major factors in utilizing Optical Farming. Agriserver is a sensor network system that uses the Internet to collect information on agricultural products growing in fields. Agrigadget contains several optical devices, such as a smartphone-based spectroscopic device and a hand framing camera. LIFS Monitor is an advanced monitoring instrument that makes it possible to obtain physiological information of living plants. They are strongly associated with information communication technology. Their field and data usage performance in agricultural industries are reported.

  14. NASA Programs in Advanced Sensors and Measurement Technology for Aeronautical Applications

    NASA Technical Reports Server (NTRS)

    Conway, Bruce A.

    2004-01-01

    There are many challenges facing designers and operators of our next-generation aircraft in meeting the demands for efficiency, safety, and reliability which are will be imposed. This paper discusses aeronautical sensor requirements for a number of research and applications areas pertinent to the demands listed above. A brief overview will be given of aeronautical research measurements, along with a discussion of requirements for advanced technology. Also included will be descriptions of emerging sensors and instrumentation technology which may be exploited for enhanced research and operational capabilities. Finally, renewed emphasis of the National Aeronautics and Space Administration in advanced sensor and instrumentation technology development will be discussed, including project of technology advances over the next 5 years. Emphasis on NASA efforts to more actively advance the state-of-the-art in sensors and measurement techniques is timely in light of exciting new opportunities in airspace development and operation. An up-to-date summary of the measurement technology programs being established to respond to these opportunities is provided.

  15. LAWS (Laser Atmospheric Wind Sounder) earth observing system

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Wind profiles can be measured from space using current technology. These wind profiles are essential for answering many of the interdisciplinary scientific questions to be addressed by EOS, the Earth Observing System. This report provides guidance for the development of a spaceborne wind sounder, the Laser Atmospheric Wind Sounder (LAWS), discussing the current state of the technology and reviewing the scientific rationale for the instrument. Whether obtained globally from the EOS polar platform or in the tropics and subtropics from the Space Station, wind profiles from space will provide essential information for advancing the skill of numerical weather prediction, furthering knowledge of large-scale atmospheric circulation and climate dynamics, and improving understanding of the global biogeochemical and hydrologic cycles. The LAWS Instrument Panel recommends that it be given high priority for new instrument development because of the pressing scientific need and the availability of the necessary technology. LAWS is to measure wind profiles with an accuracy of a few meters per second and to sample at intervals of 100 km horizontally for layers km thick.

  16. Quantitative Analysis of Transnasal Anterior Skull Base Approach: Report of Technology for Intraoperative Assessment of Instrument Motion.

    PubMed

    Berens, Angelique M; Harbison, Richard Alex; Li, Yangming; Bly, Randall A; Aghdasi, Nava; Ferreira, Manuel; Hannaford, Blake; Moe, Kris S

    2017-08-01

    To develop a method to measure intraoperative surgical instrument motion. This model will be applicable to the study of surgical instrument kinematics including surgical training, skill verification, and the development of surgical warning systems that detect aberrant instrument motion that may result in patient injury. We developed an algorithm to automate derivation of surgical instrument kinematics in an endoscopic endonasal skull base surgery model. Surgical instrument motion was recorded during a cadaveric endoscopic transnasal approach to the pituitary using a navigation system modified to record intraoperative time-stamped Euclidian coordinates and Euler angles. Microdebrider tip coordinates and angles were referenced to the cadaver's preoperative computed tomography scan allowing us to assess surgical instrument kinematics over time. A representative cadaveric endoscopic endonasal approach to the pituitary was performed to demonstrate feasibility of our algorithm for deriving surgical instrument kinematics. Technical feasibility of automatically measuring intraoperative surgical instrument motion and deriving kinematics measurements was demonstrated using standard navigation equipment.

  17. Measuring the Influences That Affect Technological Literacy in Rhode Island High Schools

    ERIC Educational Resources Information Center

    Walach, Michael

    2015-01-01

    This study sampled the current state of technological literacy in Rhode Island high schools using a new instrument, the Technological Literacy Assessment, which was developed for this study. Gender inequalities in technological literacy were discovered, and possible causes and solutions are presented. This study suggests possible next steps for…

  18. Advanced High Pressure O2/H2 Technology

    NASA Technical Reports Server (NTRS)

    Morea, S. F. (Editor); Wu, S. T. (Editor)

    1985-01-01

    Activities in the development of advanced high pressure oxygen-hydrogen stage combustion rocket engines are reported. Particular emphasis is given to the Space Shuttle main engine. The areas of engine technology discussed include fracture and fatigue in engine components, manufacturing and producibility engineering, materials, bearing technology, structure dynamics, fluid dynamics, and instrumentation technology.

  19. Next generation of spaceborne rain radars: science rationales and technology status

    NASA Astrophysics Data System (ADS)

    Im, Eastwood; Durden, Stephen L.; Kakar, Ramesh K.; Kummerow, Christian D.; Smith, Eric A.

    2003-04-01

    Global rainfall is the primary distributor of latent heat through atmospheric circulation. This important atmospheric parameter can only be measured reliably from space. The on-going Tropical Rainfall Measuring Mission (TRMM) is the first space based mission dedicated to advance our understanding of tropical precipitation patterns and their implications on global climate and its change. The Precipitation Radar (PR) aboard the satellite is the first radar ever flown in space and has provided exciting, new data on the 3-D rain structures for a variety of scientific applications. The continuous success of TRMM has led to new development of the next generation of spaceborne satellites and sensors for global rainfall and hydrological parameter measurements. From science and cost efficiency prospective, these new sensing instruments are expected to provide enhanced capabilities and reduced consumption on the spacecraft resources. At NASA, the Earth Science Enterprise has strengthened its investment on instrument technologies to help achieving these two main goals and to obtain the best science values from the new earth science instruments. It is with this spirit that a notional instrument concept, using a dual-frequency rain radar with a deployable 5-meter electronically-scanned membrane antenna and real-time digital signal processing, is developed. This new system, the Second Generation Precipitation Radar (PR-2), has the potential of offering greatly enhanced performance accuracy while using only a fraction of the mass of the current TRMM PR. During the last two years, several of the technology items associated with this notional instrument have also been prototyped. In this paper, the science rationales, the instrument design concept, and the technology status for the PR-2 notional system will be presented.

  20. Information technology in health promotion.

    PubMed

    Lintonen, T P; Konu, A I; Seedhouse, D

    2008-06-01

    eHealth, the use of information technology to improve or enable health and health care, has recently been high on the health care development agenda. Given the vivid interest in eHealth, little reference has been made to the use of these technologies in the promotion of health. The aim of this present study was to conduct a review on recent uses of information technology in health promotion through looking at research articles published in peer-reviewed journals. Fifteen relevant journals with issues published between 2003 and June 2005 yielded altogether 1352 articles, 56 of which contained content related to the use of information technology in the context of health promotion. As reflected by this rather small proportion, research on the role of information technology is only starting to emerge. Four broad thematic application areas within health promotion were identified: use of information technology as an intervention medium, use of information technology as a research focus, use of information technology as a research instrument and use of information technology for professional development. In line with this rather instrumental focus, the concepts 'ePromotion of Health' or 'Health ePromotion' would come close to describing the role of information technology in health promotion.

  1. The challenges of integrating instrumentation with inflatable aerodynamic decelerators

    NASA Astrophysics Data System (ADS)

    Swanson, Gregory T.; Cassell, Alan M.; Hughes, Stephen J.; Johnson, R. Keith; Calomino, Anthony M.

    New Entry, Decent, and Landing (EDL) technologies are being explored to facilitate the landing of high mass vehicles. Current EDL technologies are limited due to mass and volume constraints dictated by launch vehicle fairings. Therefore, past and present technologies are now being considered to provide a mass and volume efficient solution, including Inflatable Aerodynamic Decelerators (IADs). To better define the instrumentation challenges posed by IAD technology development, a survey was conducted to identify valuable measurements for ground and flight testing of the flexible materials and structures used in their design. From this survey many sensing technologies and systems were explored specific to the stacked torus IAD, resulting in a down-selection to the most viable prospects. The majority of these systems, including wireless data acquisition, were then rapid prototyped and evaluated during component level testing to determine the best integration techniques specific to a 3m and 6m diameter stacked toroid IAD. Each sensing system was then integrated in support of the Hypersonic Inflatable Aerodynamic Decelerator ground test campaign. In this paper these IAD instrumentation systems are described along with their challenges in comparison to traditional rigid aeroshell systems. Requirements resulting from the survey are listed and instrumentation integration techniques and data acquisition are discussed.

  2. Development and Validation of the Educational Technologist Multimedia Competency Survey

    ERIC Educational Resources Information Center

    Ritzhaupt, Albert D.; Martin, Florence

    2014-01-01

    The purpose of this research study was to identify the multimedia competencies of an educational technologist by creating a valid and reliable survey instrument to administer to educational technology professionals. The educational technology multimedia competency survey developed through this research is based on a conceptual framework that…

  3. An Overview of Communications Technology and Development Efforts for 2015 SBIR Phase I

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2017-01-01

    This report highlights innovative SBIR 2015 Phase I projects specifically addressing areas in Communications Technology and Development which is one of six core competencies at NASA Glenn Research Center. There are fifteen technologies featured with emphasis on a wide spectrum of applications such as novel solid state lasers for space-based water vapor dial; wide temperature, high voltage and energy density capacitors for aerospace exploration; instrument for airborne measurement of carbonyl sulfide; high-power tunable seed laser for methane Lidar transmitter; ROC-rib deployable ka-band antenna for nanosatellites; a SIC-based microcontroller for high-temperature in-situ instruments and systems; improved yield, performance and reliability of high-actuator-count deformable mirrors; embedded multifunctional optical sensor system; switching electronics for space-based telescopes with advanced AO systems; integrated miniature DBR laser module for Lidar instruments; and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. space-based water vapor dial; wide temperature, high voltage and energy density capacitors foraerospace exploration; instrument for airborne measurement of carbonyl sulfide; high-power tunable seed laser formethane Lidar transmitter; ROC-rib deployable ka-band antenna for nanosatellites.

  4. NIST display colorimeter calibration facility

    NASA Astrophysics Data System (ADS)

    Brown, Steven W.; Ohno, Yoshihiro

    2003-07-01

    A facility has been developed at the National Institute of Standards and Technology (NIST) to provide calibration services for color-measuring instruments to address the need for improving and certifying the measurement uncertainties of this type of instrument. While NIST has active programs in photometry, flat panel display metrology, and color and appearance measurements, these are the first services offered by NIST tailored to color-measuring instruments for displays. An overview of the facility, the calibration approach, and associated uncertainties are presented. Details of a new tunable colorimetric source and the development of new transfer standard instruments are discussed.

  5. Sensor Systems for Space Life Sciences

    NASA Technical Reports Server (NTRS)

    Somps, Chris J.; Hines, John W.; Connolly, John P. (Technical Monitor)

    1995-01-01

    Sensors 2000! (S2K!) is a NASA Ames Research Center engineering initiative designed to provide biosensor and bio-instrumentation systems technology expertise to NASA's life sciences spaceflight programs. S2K! covers the full spectrum of sensor technology applications, ranging from spaceflight hardware design and fabrication to advanced technology development, transfer and commercialization. S2K! is currently developing sensor systems for space biomedical applications on BION (a Russian biosatellite focused on Rhesus Monkey physiology) and NEUROLAB (a Space Shuttle flight devoted to neuroscience). It's Advanced Technology Development-Biosensors (ATD-B) project focuses efforts in five principle areas: biotelemetry Systems, chemical and biological sensors, physiological sensors, advanced instrumentation architectures, and data and information management. Technologies already developed and tested included, application-specific sensors, preamplifier hybrids, modular programmable signal conditioners, power conditioning and distribution systems, and a fully implantable dual channel biotelemeter. Systems currently under development include a portable receiver system compatible with an off-the-shelf analog biotelemeter, a 4 channel digital biotelemetry system which monitors pH, a multichannel, g-processor based PCM biotelemetry system, and hand-held personal monitoring systems. S2K! technology easily lends itself to telescience and telemedicine applications as a front-end measurement and data acquisition device, suitable for obtaining and configuring physiological information, and processing that information under control from a remote location.

  6. ILEWG technology roadmap for Moon exploration

    NASA Astrophysics Data System (ADS)

    Foing, Bernard H.

    2008-04-01

    We discuss the charter and activities of the International Lunar Exploration Working Group (ILEWG), and give an update from the related ILEWG task groups. We discuss the different rationale and technology roadmap for Moon exploration, as debated in previous ILEWG conferences. The Technology rationale includes: 1) The advancement of instrumentation: 2) Technologies in robotic and human exploration 3) Moon-Mars Exploration can inspire solutions to global Earth sustained development. We finally discuss a possible roadmap for development of technologies necessary for Moon and Mars exploration.

  7. Concept for a Micro Autonomous Ultrasonic Instrument (MAUI)

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.

    2002-01-01

    We investigate a concept for the construction a mobile Micro Optical ElectroMechanical Systems (MOEMS) based laser ultrasonic instrument to serve as a Micro Autonomous Ultrasonic Instrument (MAUI). The system will consist of a laser ultrasonic instrument fabricated using Micro Electro-Mechanical Systems (MEMS) technology, and a MEMS based walking platform like those developed by Pister et al. at Berkeley. This small system will allow for automated remote Non-Destructive Evaluation (NDE) of aerospace vehicles.

  8. Development of a Portable, Ground-Based Ozone Lidar Instrument for Tropospheric Ozone Research and Educational Training

    NASA Technical Reports Server (NTRS)

    Chyba, Thomas; Zenker, Thomas

    1998-01-01

    The objective of this project is to develop a portable, eye-safe, ground-based ozone lidar instrument specialized for ozone differential absorption lidar (DIAL) measurements in the troposphere. This prototype instrument is intended to operate at remote field sites and to serve as the basic unit for monitoring projects requiring multi-instrument networks, such as that discussed in the science plan for the Global Tropospheric Ozone Project (GTOP). This instrument will be based at HU for student training in lidar technology as well as atmospheric ozone data analysis and interpretation. It will be also available for off-site measurement campaigns and will serve as a test bed for further instrument development. Later development beyond this grant to extend the scientific usefulness of the instrument may include incorporation of an aerosol channel and upgrading the laser to make stratospheric ozone measurements. Undergraduate and graduate students have been and will be active participants in this research effort.

  9. Concept of Science Data Management for the Korea Pathfinder Lunar Orbiter

    NASA Astrophysics Data System (ADS)

    Kim, Joo Hyeon

    2016-10-01

    South Korea has a plan to explore the Moon in 2018 or 2019. For the plan, the Korea Aerospace Research Institute which is a government funded research institute kicked off the Korea Lunar Exploration Development Program in January, 2016 in support of Ministry of Science, ICT and Future Planning, South Korea.As the 1st stage mission of the program, named as the Korea Pathfinder Lunar Orbiter(KPLO), will perform acquisition of high resolution images and science data for investigation of lunar environment as well as the core technology demonstration and validation for space explorations. The scientific instruments consists of three Korean domestic developed science instruments except an imaging instrument and several foreign provided instruments. We are developing a science data management plan to encourage scientific activities using science data acquired by the science instruments.I introduce the Korean domestic developed science instruments and present concept of the science data management plan for data delivery, processing, and distribution for the science instruments.

  10. A Tale of Two Regimes: Instrumentality and Commons Access

    ERIC Educational Resources Information Center

    Toly, Noah J.

    2005-01-01

    Technical developments have profound social and environmental impacts. Both are observed in the implications of regimes of instrumentality for commons access regimes. Establishing social, material, ecological, intellectual, and moral infrastructures, technologies are partly constitutive of commons access and may militate against governance…

  11. Considerations of How to Study Learning Processes when Students Use GIS as an Instrument for Developing Spatial Thinking Skills

    ERIC Educational Resources Information Center

    Madsen, Lene Moller; Rump, Camilla

    2012-01-01

    Within the last 30 years, geographical information systems (GIS) have been used increasingly in the training of geographers. On the basis of the philosophy of technology and instrumental genesis, we sketch how the use of instruments interacts with learning processes and outline how this can be studied. We empirically analyse students' learning…

  12. Neutron detectors for the ESS diffractometers

    NASA Astrophysics Data System (ADS)

    Stefanescu, I.; Christensen, M.; Fenske, J.; Hall-Wilton, R.; Henry, P. F.; Kirstein, O.; Müller, M.; Nowak, G.; Pooley, D.; Raspino, D.; Rhodes, N.; Šaroun, J.; Schefer, J.; Schooneveld, E.; Sykora, J.; Schweika, W.

    2017-01-01

    The ambitious instrument suite for the future European Spallation Source whose civil construction started recently in Lund, Sweden, demands a set of diverse and challenging requirements for the neutron detectors. For instance, the unprecedented high flux expected on the samples to be investigated in neutron diffraction or reflectometry experiments requires detectors that can handle high counting rates, while the investigation of sub-millimeter protein crystals will only be possible with large-area detectors that can achieve a position resolution as low as 200 μm. This has motivated an extensive research and development campaign to advance the state-of-the-art detector and to find new technologies that can reach maturity by the time the ESS will operate at full potential. This paper presents the key detector requirements for three of the Time-of-Flight (TOF) diffraction instrument concepts selected by the Scientific Advisory Committee to advance into the phase of preliminary engineering design. We discuss the detector technologies commonly employed at the existing similar instruments and their major challenges for ESS. The detector technologies selected by the instrument teams to collect the diffraction patterns are also presented. Analytical calculations, Monte-Carlo simulations, and real experimental data are used to develop a generic method to estimate the event rate in the diffraction detectors. We apply this method to make predictions for the future diffraction instruments, and thus provide additional information that can help the instrument teams with the optimisation of the detector designs.

  13. 48 CFR 52.250-4 - SAFETY Act Pre-qualification Designation Notice.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... attempts to use instrumentalities, weapons or other methods designed or intended to cause mass destruction... Technology (QATT) means any technology designed, developed, modified, procured, or sold for the purpose of... (including information technology) or any combination of the foregoing. Design services, consulting services...

  14. University of Washington/ Northwest National Marine Renewable Energy Center Tidal Current Technology Test Protocol, Instrumentation, Design Code, and Oceanographic Modeling Collaboration: Cooperative Research and Development Final Report, CRADA Number CRD-11-452

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Driscoll, Frederick R.

    The University of Washington (UW) - Northwest National Marine Renewable Energy Center (UW-NNMREC) and the National Renewable Energy Laboratory (NREL) will collaborate to advance research and development (R&D) of Marine Hydrokinetic (MHK) renewable energy technology, specifically renewable energy captured from ocean tidal currents. UW-NNMREC is endeavoring to establish infrastructure, capabilities and tools to support in-water testing of marine energy technology. NREL is leveraging its experience and capabilities in field testing of wind systems to develop protocols and instrumentation to advance field testing of MHK systems. Under this work, UW-NNMREC and NREL will work together to develop a common instrumentation systemmore » and testing methodologies, standards and protocols. UW-NNMREC is also establishing simulation capabilities for MHK turbine and turbine arrays. NREL has extensive experience in wind turbine array modeling and is developing several computer based numerical simulation capabilities for MHK systems. Under this CRADA, UW-NNMREC and NREL will work together to augment single device and array modeling codes. As part of this effort UW NNMREC will also work with NREL to run simulations on NREL's high performance computer system.« less

  15. Multiwalled carbon nanotubes for stray light suppression in space flight instruments

    NASA Astrophysics Data System (ADS)

    Hagopian, John G.; Getty, Stephanie A.; Quijada, Manuel; Tveekrem, June; Shiri, Ron; Roman, Patrick; Butler, James; Georgiev, Georgi; Livas, Jeff; Hunt, Cleophus; Maldonado, Alejandro; Talapatra, Saikat; Zhang, Xianfeng; Papadakis, Stergios J.; Monica, Andrew H.; Deglau, David

    2010-08-01

    Observations of the Earth are extremely challenging; its large angular extent floods scientific instruments with high flux within and adjacent to the desired field of view. This bright light diffracts from instrument structures, rattles around and invariably contaminates measurements. Astrophysical observations also are impacted by stray light that obscures very dim objects and degrades signal to noise in spectroscopic measurements. Stray light is controlled by utilizing low reflectance structural surface treatments and by using baffles and stops to limit this background noise. In 2007 GSFC researchers discovered that Multiwalled Carbon Nanotubes (MWCNTs) are exceptionally good absorbers, with potential to provide order-of-magnitude improvement over current surface treatments and a resulting factor of 10,000 reduction in stray light when applied to an entire optical train. Development of this technology will provide numerous benefits including: a.) simplification of instrument stray light controls to achieve equivalent performance, b.) increasing observational efficiencies by recovering currently unusable scenes in high contrast regions, and c.) enabling low-noise observations that are beyond current capabilities. Our objective was to develop and apply MWCNTs to instrument components to realize these benefits. We have addressed the technical challenges to advance the technology by tuning the MWCNT geometry using a variety of methods to provide a factor of 10 improvement over current surface treatments used in space flight hardware. Techniques are being developed to apply the optimized geometry to typical instrument components such as spiders, baffles and tubes. Application of the nanostructures to alternate materials (or by contact transfer) is also being investigated. In addition, candidate geometries have been tested and optimized for robustness to survive integration, testing, launch and operations associated with space flight hardware. The benefits of this technology extend to space science where observations of extremely dim objects require suppression of stray light.

  16. Instrument concepts and technologies for future spaceborne atmospheric radars

    NASA Astrophysics Data System (ADS)

    Im, Eastwood; Durden, Stephen L.

    2005-01-01

    In conjunction with the implementation of spaceborne atmospheric radar flight missions, NASA is developing advanced instrument concepts and technologies for future spaceborne atmospheric radars, with the over-arching objectives of making such instruments more capable in supporting future science needs, and more cost effective. Two such examples are the Second-Generation Precipitation Radar (PR-2) and the Nexrad-In-Space (NIS). PR-2 is a 14/35-GHz dual-frequency rain radar with a deployable 5-meter, wide-swath scanned membrane antenna, a dual-polarized/dual-frequency receiver, and a real-time digital signal processor. It is intended for Low Earth Orbit (LEO) operations to provide greatly enhanced rainfall profile retrieval accuracy while using only a fraction of the mass of the current TRMM PR. NIS is designed to be a 35-GHz Geostationary Earth Orbiting (GEO) radar with the intent of providing hourly monitoring of the life cycle of hurricanes and tropical storms. It uses a 35-m, spherical, lightweight membrane antenna and Doppler processing to acquire 3-dimensional information on the intensity and vertical motion of hurricane rainfall. Technologies for NIS are synergistic with those for PR-2. During the last two years, several of the technology items associated with these notional instruments have also been prototyped. This paper will give an overview of these instrument design concepts and their associated technologies.

  17. Fundamentals of Materials, Techniques, and Instrumentation for OSL and FNTD Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akselrod, M. S.

    The optically stimulated luminescence (OSL) technique has already become a successful commercial tool in personal radiation dosimetry, medical dosimetry, diagnostic imaging, geological and archeological dating. This review briefly describes the history and fundamental principles of OSL materials, methods and instrumentation. The advantages of OSL technology and instrumentation in comparison with thermoluminescent technique are analyzed. Progress in material and detector engineering has allowed new and promising developments regarding OSL applications in the medical field. Special attention is dedicated to Al{sub 2}O{sub 3}:C as a material of choice for many dosimetric applications. Different aspects of OSL theory, materials optical and dosimetric properties,more » instrumentation, and data processing algorithms are described. The next technological breakthrough was done with Fluorescent Nuclear Track Detectors (FNTD) that have some important advantages in measuring fast neutron and high energy heavy charge particles that have become the latest tool in radiation therapy. New Mg-doped aluminum oxide crystals and novel type of imaging instrumentation for FNTD technology are discussed with regard to application in mixed neutron-gamma fields, medical dosimetry and radiobiological research.« less

  18. Fundamentals of Materials, Techniques, and Instrumentation for OSL and FNTD Dosimetry

    NASA Astrophysics Data System (ADS)

    Akselrod, M. S.

    2011-05-01

    The optically stimulated luminescence (OSL) technique has already become a successful commercial tool in personal radiation dosimetry, medical dosimetry, diagnostic imaging, geological and archeological dating. This review briefly describes the history and fundamental principles of OSL materials, methods and instrumentation. The advantages of OSL technology and instrumentation in comparison with thermoluminescent technique are analyzed. Progress in material and detector engineering has allowed new and promising developments regarding OSL applications in the medical field. Special attention is dedicated to Al2O3:C as a material of choice for many dosimetric applications. Different aspects of OSL theory, materials optical and dosimetric properties, instrumentation, and data processing algorithms are described. The next technological breakthrough was done with Fluorescent Nuclear Track Detectors (FNTD) that have some important advantages in measuring fast neutron and high energy heavy charge particles that have become the latest tool in radiation therapy. New Mg-doped aluminum oxide crystals and novel type of imaging instrumentation for FNTD technology are discussed with regard to application in mixed neutron-gamma fields, medical dosimetry and radiobiological research.

  19. Developing an Instrument to Characterise Peer-Led Groups in Collaborative Learning Environments: Assessing Problem-Solving Approach and Group Interaction

    ERIC Educational Resources Information Center

    Pazos, Pilar; Micari, Marina; Light, Gregory

    2010-01-01

    Collaborative learning is being used extensively by educators at all levels. Peer-led team learning in a version of collaborative learning that has shown consistent success in science, technology, engineering and mathematics disciplines. Using a multi-phase research study we describe the development of an observation instrument that can be used to…

  20. Chromosome Analysis

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Perceptive Scientific Instruments, Inc., provides the foundation for the Powergene line of chromosome analysis and molecular genetic instrumentation. This product employs image processing technology from NASA's Jet Propulsion Laboratory and image enhancement techniques from Johnson Space Center. Originally developed to send pictures back to earth from space probes, digital imaging techniques have been developed and refined for use in a variety of medical applications, including diagnosis of disease.

  1. Programmable wide field spectrograph for earth observation

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frédéric; Lanzoni, Patrick; Liotard, Arnaud; Viard, Thierry; Costes, Vincent; Hébert, Philippe-Jean

    2017-11-01

    In Earth Observation, Universe Observation and Planet Exploration, scientific return of the instruments must be optimized in future missions. Micro-Opto-Electro-Mechanical Systems (MOEMS) could be key components in future generation of space instruments. These devices are based on the mature micro-electronics technology and in addition to their compactness, scalability, and specific task customization, they could generate new functions not available with current technologies. French and European space agencies, the Centre National d'Etudes Spatiales (CNES) and the European Space Agency (ESA) have initiated several studies with LAM and TAS for listing the new functions associated with several types of MEMS, and developing new ideas of instruments.

  2. Miniature GC-Minicell Ion Mobility Spectrometer (IMS) for In Situ Measurements in Astrobiology Planetary Missions

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Stimac, Robert M.; Kaye, William J.; Holland, Paul M.; Takeuchi, Norishige

    2006-01-01

    Astrobiology flight experiments require highly sensitive instrumentation for in situ analysis of volatile chemical species and minerals present in the atmospheres and surfaces of planets, moons, and asteroids. The complex mixtures encountered place a heavy burden on the analytical instrumentation to detect and identify all species present. The use of land rovers and balloon aero-rovers place additional emphasis on miniaturization of the analytical instrumentation. In addition, smaller instruments, using tiny amounts of consumables, allow the use of more instrumentation and/or ionger mission life for stationary landers/laboratories. The miniCometary Ice and Dust Experiment (miniCIDEX), which combined Gas Chromatography (GC) with helium Ion Mobility Spectrometry (IMS), was capable of providing the wide range of analytical information required for Astrobiology missions. The IMS used here was based on the PCP model 111 IMS. A similar system, the Titan Ice and Dust Experiment (TIDE), was proposed as part of the Titan Orbiter Aerorover Mission (TOAM). Newer GC systems employing Micro Electro- Mechanical System (MEMS) based technology have greatly reduced both the size and resource requirements for space GCs. These smaller GCs, as well as the continuing miniaturization of Astrobiology analytical instruments in general, has highlighted the need for smaller, dry helium IMS systems. We describe here the development of a miniature, MEMS GC-IMS system (MEMS GC developed by Thorleaf Research Inc.), employing the MiniCell Ion Mobility Spectrometer (IMS), from Ion Applications Inc., developed through NASA's Astrobiology Science and Technology Instrument Development (ASTID) Program and NASA s Small Business Innovative Research (SBIR) Program.

  3. Life Science Research in Outer Space: New Platform Technologies for Low-Cost, Autonomous Small Satellite Missions

    NASA Technical Reports Server (NTRS)

    Ricco, Antonio J.; Parra, Macarena P.; Niesel, David; McGinnis, Michael; Ehrenfreund, Pascale; Nicholson, Wayne; Mancinelli, Rocco; Piccini, Matthew E.; Beasley, Christopher C.; Timucin, Linda R.; hide

    2009-01-01

    We develop integrated instruments and platforms suitable for economical, frequent space access for autonomous life science experiments and processes in outer space. The technologies represented by three of our recent free-flyer small-satellite missions are the basis of a rapidly growing toolbox of miniaturized biologically/biochemically-oriented instrumentation now enabling a new generation of in-situ space experiments. Autonomous small satellites ( 1 50 kg) are less expensive to develop and build than fullsize spacecraft and not subject to the comparatively high costs and scheduling challenges of human-tended experimentation on the International Space Station, Space Shuttle, and comparable platforms. A growing number of commercial, government, military, and civilian space launches now carry small secondary science payloads at far lower cost than dedicated missions; the number of opportunities is particularly large for so-called cube-sat and multicube satellites in the 1 10 kg range. The recent explosion in nano-, micro-, and miniature technologies, spanning fields from telecommunications to materials to bio/chemical analysis, enables development of remarkably capable autonomous miniaturized instruments to accomplish remote biological experimentation. High-throughput drug discovery, point-of-care medical diagnostics, and genetic analysis are applications driving rapid progress in autonomous bioanalytical technology. Three of our recent missions exemplify the development of miniaturized analytical payload instrumentation: GeneSat-1 (launched: December 2006), PharmaSat (launched: May 2009), and O/OREOS (organism/organics exposure to orbital stresses; scheduled launch: May 2010). We will highlight the overall architecture and integration of fluidic, optical, sensor, thermal, and electronic technologies and subsystems to support and monitor the growth of microorganisms in culture in these small autonomous space satellites, including real-time tracking of their culture density, gene expression, and metabolic activity while in the space environment. Flight data and results will be presented from GeneSat-1, which tracked gene expression levels of GFP-labeled E. coli and from PharmaSat, which monitored the dose dependency of an antifungal agent against S. cerevisiae. The O/OREOS SESLO instrument, which will study the effects of radiation and microgravity upon the viability and growth characteristics of B. subtilis and the halophile Halorubrum chaoviatoris for periods of 0 - 6 months in space, will be described as well. The ongoing expansion of the small satellite toolbox of biological technologies will be summarized.

  4. Development of multimedia resource and short courses for LRFR rating.

    DOT National Transportation Integrated Search

    2011-09-01

    Multimedia technology is an important instrument in the training of graduate engineers. This multimedia package : provides an exclusive background and an in-depth understanding of recent technological advances in the evaluation : and rating of highwa...

  5. Evaluation of Affective Traits of Medical Technology Students.

    ERIC Educational Resources Information Center

    Fogleman, Janice M.

    An observational rating instrument was developed to measure affective traits of medical technology students. Fourteen categories of behavioral traits evaluated by medical technology programs were identified, based on results of a national survey. These traits were then grouped according to the affective domains established by Krathwohl, Bloom, and…

  6. Music, Technology, and an Evolving Curriculum.

    ERIC Educational Resources Information Center

    Moore, Brian

    1992-01-01

    Mechanical examples of musical technology, like the Steinway piano, are well known and accepted. Use of computers and electronic technology is the next logical step in developing art of music. MIDI (Musical Instrument Digital Interface) is explained, along with digital devices (such as synthesizers, sequencers, music notation software, multimedia,…

  7. Instrument for assessing mobile technology acceptability in diabetes self-management: a validation and reliability study

    PubMed Central

    Frandes, Mirela; Deiac, Anca V; Timar, Bogdan; Lungeanu, Diana

    2017-01-01

    Background Nowadays, mobile technologies are part of everyday life, but the lack of instruments to assess their acceptability for the management of chronic diseases makes their actual adoption for this purpose slow. Objective The objective of this study was to develop a survey instrument for assessing patients’ attitude toward and intention to use mobile technology for diabetes mellitus (DM) self-management, as well as to identify sociodemographic characteristics and quality of life factors that affect them. Methods We first conducted the documentation and instrument design phases, which were subsequently followed by the pilot study and instrument validation. Afterward, the instrument was administered 103 patients (median age: 37 years; range: 18–65 years) diagnosed with type 1 or type 2 DM, who accepted to participate in the study. The reliability and construct validity were assessed by computing Cronbach’s alpha and using factor analysis, respectively. Results The instrument included statements about the actual use of electronic devices for DM management, interaction between patient and physician, attitude toward using mobile technology, and quality of life evaluation. Cronbach’s alpha was 0.9 for attitude toward using mobile technology and 0.97 for attitude toward using mobile device applications for DM self-management. Younger patients (Spearman’s ρ=−0.429; P<0.001) with better glycemic control (Spearman’s ρ=−0.322; P<0.001) and higher education level (Kendall’s τ=0.51; P<0.001) had significantly more favorable attitude toward using mobile assistive applications for DM control. Moreover, patients with a higher quality of life presented a significantly more positive attitude toward using modern technology (Spearman’s ρ=0.466; P<0.001). Conclusion The instrument showed good reliability and internal consistency, making it suitable for measuring the acceptability of mobile technology for DM self-management. Additionally, we found that even if most of the patients showed positive attitude toward mobile applications, only a moderate level of intention to indeed use them was observed. Moreover, the study indicated that barriers were truthfulness and easiness to use. PMID:28243069

  8. Mid-Atlantic Technology Applications Center. Quarters 1-4

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mid-atlantic Technology Application Center (MTAC) pursued a number of initiatives designed to enhance the strategic position of the Langley Research Center (LaRC) and NASA in industry. Among these was a closer association with the ISA, International Society for Measurement and Control. During 1997, MTAC placed articles regarding NASA-developed technologies in each In Tech magazine. The monthly magazine is sent to 46,000 sensors and instrumentation professionals. In addition, MTAC coordinated NASXs participation in the ISA Tech 97 Conference, securing $112,000 of free exhibit space, 1500 NASA sensors posters at no cost to NASA, and thousands of dollars of free publicity. MTAC was awarded a contract by ISA to operate its Technical Resource Center (TRC). The goal of this project is to determine what user needs are in order to identify opportunities for collaboration between NASA centers and companies. In addition, the TRC work will lay the groundwork for the Technology Development Consortium (TDC) proposed by MTAC. The purpose of the TDC is to: match current industry needs with NASA technologies available now, and to identify future needs of NASA and industry which may lead to dual use projects. The goal of these activities is twofold: to infuse NASA technologies into the sensors and instrumentation industry and to secure industry funds to support NASA technology development projects. The instrumentation and sensors industry is valued at $30 billion worldwide, with $12 billion in sales in the United States. The growth rate averages 13.5%, so that by the year 2000, the industry will produce products worth $49 billion. More than 80% of instruments, sensors and control systems are currently manufactured in the United States. NASA and the industry do not have a history of collaborative projects; MTAC's initiatives in this area are designed to foster working relationships between the two parties that will help maintain U.S. leadership in this field. Mid-atlantic Technology Applications Center (MTAC) continued to work on LaRC-SI and Thin Layer Unimorph Driver and Sensor activities. MTAC helped develop the "master license" concept and identified additional applications and potential clients. The goal of these activities was to increase the financial return to Langley Research Center, to ensure the diffusion of the technologies throughout the economy, and to attract partners for future NASA technology development efforts. In an attempt to market LaRC-SI and the Thin Layer Unimorph Driver and Sensor, MTAC developed and pioneered the use of the USRTTC Technology Commercialization Team. As a result, MTAC's sister RTTCs identified both applications and potential users for the two technologies. MTAC also benefitted from its affiliate network to locate companies throughout the region that were interested in the two technologies. MTAC is working with Allegheny Ludlum to monitor the progress of the installation and testing of ultrasonic equipment purchased as a result of Langley Research Center's assistance.

  9. Best Practices of Online Professional Development for K-12 Teachers: A Quantitative Study

    ERIC Educational Resources Information Center

    Smirniotis-Giambatista, Cynthia

    2017-01-01

    Online flipped professional development allows direct instruction to take place through an interactive learning setting and allows the face-to-face contact to provide guidance and apply the concept. As technology advances, education needs instruments and tools used for effectively teaching using the enhanced technology to increase student…

  10. The Impact of Project Role on Perceptions of Risk and Performance in Information Technology Software Development: A Comparative Analysis

    ERIC Educational Resources Information Center

    Okongo, James

    2014-01-01

    The failure rate of information technology (IT) development projects is a significant concern for today's organizations. Perceptions of IT project risk and project performance have been identified as important factors by scholars studying the topic, and Wallace, Keil, and Rai (2004a) developed a survey instrument to measure how dimensions of…

  11. Educational technology: a facilitating instrument for the elderly care.

    PubMed

    Cardoso, Rachel da Silva Serejo; Sá, Selma Petra Chaves; Domingos, Ana Maria; Sabóia, Vera Maria; Maia, Tauan Nunes; Padilha, Joviria Marcia Ferreira de Oliveira; Nogueira, Glycia de Almeida

    2018-01-01

    To develop educational technology with caregivers of older people based on the needs, difficulties and concerns related to the elderly care expressed by the caregivers themselves. Research of qualitative nature, with participant observation, based on concepts used by Paulo Freire. Data collection and analysis used the "World Cafe" methodology and the thematic content analysis, respectively. The needs of these caregivers refer to their training and information on aging. The difficulties highlighted are deterrents to quality assistance to older adults, such as: insufficient resources, environmental factor and relationship with the family. The interests are evident in relation to the care and to its more subjective relationship. Final considerations: Educational technologies, printed matter and media, developed along with the caregivers, contribute to orientation and information of caregiver, population and professionals as facilitating instruments, regarding elderly care.

  12. 32 CFR 37.110 - What type of instruments are technology investment agreements (TIAs)?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 1 2011-07-01 2011-07-01 false What type of instruments are technology... SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS General § 37.110 What type of instruments are technology investment agreements (TIAs)? TIAs are assistance instruments...

  13. Spinoff, 1991

    NASA Technical Reports Server (NTRS)

    Haggerty, James J.

    1991-01-01

    This is an instrument of the Technology Utilization Program and is designed to heighten awareness of the technology available for transfer and its potential for public benefit. NASA's mainline programs, whose objectives require development of new technology and therefore expand the bank of technology available for transfer in future years, are summarized. Focus is on the representative sampling of spinoffs (spinoff, in this context, means products and processes developed as secondary applications of existing NASA technology) that resulted from NASA's mainline programs. The various mechanisms NASA employs to stimulate technology transfer are described and contact sources are listed in the appendix for further information about the Technology Utilization Program.

  14. Fine Collimator Grids Using Silicon Metering Structure

    NASA Technical Reports Server (NTRS)

    Eberhard, Carol

    1998-01-01

    The project Fine Collimator Grids Using Silicon Metering Structure was managed by Dr. Carol Eberhard of the Electromagnetic Systems & Technology Department (Space & Technology Division) of TRW who also wrote this final report. The KOH chemical etching of the silicon wafers was primarily done by Dr. Simon Prussin of the Electrical Engineering Department of UCLA at the laboratory on campus. Moshe Sergant of the Superconductor Electronics Technology Department (Electronics Systems & Technology Division) of TRW and Dr. Prussin were instrumental in developing the low temperature silicon etching processes. Moshe Sergant and George G. Pinneo of the Microelectronics Production Department (Electronics Systems & Technology Division) of TRW were instrumental in developing the processes for filling the slots etched in the silicon wafers with metal-filled materials. Their work was carried out in the laboratories at the Space Park facility. Moshe Sergant is also responsible for the impressive array of Scanning Electron Microscope images with which the various processes were monitored. Many others also contributed their time and expertise to the project. I wish to thank them all.

  15. Computer aided statistical process control for on-line instrumentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meils, D.E.

    1995-01-01

    On-line chemical process instrumentation historically has been used for trending. Recent technological advances in on-line instrumentation have improved the accuracy and reliability of on-line instrumentation. However, little attention has been given to validating and verifying on-line instrumentation. This paper presents two practical approaches for validating instrument performance by comparison of on-line instrument response to either another portable instrument or another bench instrument. Because the comparison of two instruments` performance to each other requires somewhat complex statistical calculations, a computer code (Lab Stats Pack{reg_sign}) is used to simplify the calculations. Lab Stats Pack{reg_sign} also develops control charts that may be usedmore » for continuous verification of on-line instrument performance.« less

  16. Instrumentation and Controls Division Overview: Sensors Development for Harsh Environments at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Zeller, Mary V.; Lei, Jih-Fen

    2002-01-01

    The Instrumentation and Controls Division is responsible for planning, conducting and directing basic and applied research on advanced instrumentation and controls technologies for aerospace propulsion and power applications. The Division's advanced research in harsh environment sensors, high temperature high power electronics, MEMS (microelectromechanical systems), nanotechnology, high data rate optical instrumentation, active and intelligent controls, and health monitoring and management will enable self-feeling, self-thinking, self-reconfiguring and self-healing Aerospace Propulsion Systems. These research areas address Agency challenges to deliver aerospace systems with reduced size and weight, and increased functionality and intelligence for future NASA missions in advanced aeronautics, economical space transportation, and pioneering space exploration. The Division also actively supports educational and technology transfer activities aimed at benefiting all humankind.

  17. Compact Instruments Measure Heat Potential

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Based in Huntsville, Alabama, AZ Technology Inc. is a woman- and veteran-owned business that offers expertise in electromechanical-optical design and advanced coatings. AZ Technology has received eight Small Business Innovation Research (SBIR) contracts with Marshall Space Flight Center for the development of spectral reflectometers and the measurement of surface thermal properties. The company uses a variety of measurement services and instruments, including the Spectrafire, a portable spectral emissometer it used to assist General Electric with the design of its award-winning Giraffe Warmer for neonatal intensive care units.

  18. Quantum Gravity Gradiometer Development for Space

    NASA Technical Reports Server (NTRS)

    Kohel, James M.; Yu, Nan; Kellogg, James R.; Thompson, Robert J.; Aveline, David C.; Maleki, Lute

    2006-01-01

    Funded by the Advanced Technology Component Program, we have completed the development of a laboratory-based quantum gravity gradiometer based on atom interferometer technology. This is our first step towards a new spaceborne gradiometer instrument, which can significantly contribute to global gravity mapping and monitoring important in the understanding of the solid earth, ice and oceans, and dynamic processes. In this paper, we will briefly review the principles and technical benefits of atom-wave interferometer-based inertial sensors in space. We will then describe the technical implementation of the laboratory setup and report its status. We will also discuss our implementation plan for the next generation instrument.

  19. Research pressure instrumentation for NASA space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Anderson, P. J.; Nussbaum, P.; Gustafson, G.

    1985-01-01

    The breadboard feasibility model of a silicon piezoresistive pressure transducer suitable for space shuttle main engine (SSME) applications was demonstrated. The development of pressure instrumentation for the SSME was examined. The objective is to develop prototype pressure transducers which are targeted to meet the SSME performance design goals and to fabricate, test and deliver a total of 10 prototype units. Effective utilization of the many advantages of silicon piezoresistive strain sensing technology to achieve the objectives of advanced state-of-the-art pressure sensors for reliability, accuracy and ease of manufacture is analyzed. Integration of multiple functions on a single chip is the key attribute of the technology.

  20. Instrumentation for Kinetic-Inductance-Detector-Based Submillimeter Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Duan, Ran

    A substantial amount of important scientific information is contained within astronomical data at the submillimeter and far-infrared (FIR) wavelengths, including information regarding dusty galaxies, galaxy clusters, and star-forming regions; however, these wavelengths are among the least-explored fields in astronomy because of the technological difficulties involved in such research. Over the past 20 years, considerable efforts have been devoted to developing submillimeter- and millimeter-wavelength astronomical instruments and telescopes. The number of detectors is an important property of such instruments and is the subject of the current study. Future telescopes will require as many as hundreds of thousands of detectors to meet the necessary requirements in terms of the field of view, scan speed, and resolution. A large pixel count is one benefit of the development of multiplexable detectors that use kinetic inductance detector (KID) technology. This dissertation presents the development of a KID-based instrument including a portion of the millimeter-wave bandpass filters and all aspects of the readout electronics, which together enabled one of the largest detector counts achieved to date in submillimeter-/millimeter-wavelength imaging arrays: a total of 2304 detectors. The work presented in this dissertation has been implemented in the MUltiwavelength Submillimeter Inductance Camera (MUSIC), a new instrument for the Caltech Submillimeter Observatory (CSO).

  1. 6 CFR 25.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...; and (3) Uses or attempts to use instrumentalities, weapons or other methods designed or intended to... Technology” or “QATT” means any Technology (including information technology) designed, developed, modified... Department under this part (including Applications, Pre-Applications, other forms, supporting documents and...

  2. 6 CFR 25.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...; and (3) Uses or attempts to use instrumentalities, weapons or other methods designed or intended to... Technology” or “QATT” means any Technology (including information technology) designed, developed, modified... Department under this part (including Applications, Pre-Applications, other forms, supporting documents and...

  3. 6 CFR 25.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...; and (3) Uses or attempts to use instrumentalities, weapons or other methods designed or intended to... Technology” or “QATT” means any Technology (including information technology) designed, developed, modified... Department under this part (including Applications, Pre-Applications, other forms, supporting documents and...

  4. NASA Ames Science Instrument Launches Aboard New Mars Rover (CheMin)

    NASA Image and Video Library

    2011-11-23

    When NASA's Mars Science Laboratory lands in a region known as Gale Crater in August of 2012, it will be poised to carry out the most sophisticated chemical analysis of the Martian surface to date. One of the 10 instruments on board the rover Curiosity will be CheMin - short for chemistry and mineralogy. Developed by Ames researcher David Blake and his team, it will use new technology to analyze and identify minerals in the Martian rocks and soil. Youtube: NASA Ames Scientists Develop MSL Science Instrument

  5. Atomic Force Microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Day, R.D.; Russell, P.E.

    The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.

  6. Automated control and data acquisition for a tunable diode laser heterodyne spectrometer

    NASA Technical Reports Server (NTRS)

    Shull, T. S.; Rinsland, P. L.

    1983-01-01

    This paper describes the hardware and software design, development, and implementation of the control and data electronics of a laser heterodyne spectrometer instrument being built at NASA Langley Research Center for a technology demonstration. Functional partitioning, applied at all levels of hardware and software, has been found to provide expedient design, development, and testing of the instrument. The instrument is composed of distributed microprocessor-based units. A master/slave protocol is presented which can be simulated by a terminal for unit checkout. All but one of the units are implemented using a set of core boards, plus unique boards where necessary. This design has led to reduced hardware development, reduced parts inventory, and replication of software modules, while providing the flexibility needed for a development instrument. The development tools and documentation guidelines are discussed.

  7. Research and technology. [in development of space shuttle

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Summaries are presented of the research in the development of the space shuttle. Propulsion, materials, spacecraft and thermal control, payloads, instrumentation, data systems, and mission planning are included.

  8. Impact of surface chemistry

    PubMed Central

    Somorjai, Gabor A.; Li, Yimin

    2011-01-01

    The applications of molecular surface chemistry in heterogeneous catalyst technology, semiconductor-based technology, medical technology, anticorrosion and lubricant technology, and nanotechnology are highlighted in this perspective. The evolution of surface chemistry at the molecular level is reviewed, and the key roles of surface instrumentation developments for in situ studies of the gas–solid, liquid–solid, and solid–solid interfaces under reaction conditions are emphasized. PMID:20880833

  9. A New Mirror for the Classroom: A Technology-Based Tool for Documenting the Impact of Technology on Instruction.

    ERIC Educational Resources Information Center

    Gearhart, Maryl; And Others

    One of the new measures developed as part of the Apple Classrooms of Tomorrow (ACOT) program is described. The ACOT project examines the impact of access to educational technology on the kindergarten through grade 12 classroom environments. The new measure is a technology-based classroom observation instrument for documenting the impact of…

  10. The light-sheet microscopy revolution

    NASA Astrophysics Data System (ADS)

    Girkin, J. M.; Carvalho, M. T.

    2018-05-01

    This paper reviews the rapid advances that have been made in one form of optical biological imaging in the last decade, namely that of light sheet microscopy. Although the concept was originally presented over one hundred years ago, at the time it was a methodology that lacked the technology to really make it a viable tool for practical everyday imaging in the biologist’s laboratory. However, since its re-discovery, it has started to transform in vivo and increasingly intact organ imaging in a number of areas of biology. This review looks back at the beginning of the method and then the crucial role that modern optical technology, frequently developed for other fields, has played in advancing the instrumentation. This paper will also look at the OpenSPIM route that was developed whereby, through the purchase of a few optical components, researchers have been able to develop their own bespoke instruments and we consider if this may be a route forward for the rapid development of other technological breakthroughs.

  11. Adapting the Media and Technology Usage and Attitudes Scale to Turkish

    ERIC Educational Resources Information Center

    Özgür, Hasan

    2016-01-01

    Due to the requirement of a current, valid, and reliable assessment instrument for determining usage frequencies of technology-based media and the attitudes towards these, this study intends to determine the validity and reliability of the Media and Technology Usage and Attitudes Scale, developed by researchers from California State University,…

  12. Diverse Applications of Electronic-Nose Technologies in Agriculture and Forestry

    Treesearch

    Alphus D. Wilson

    2013-01-01

    Electronic-nose (e-nose) instruments, derived from numerous types of aroma-sensor technologies, have been developed for a diversity of applications in the broad fields of agriculture and forestry. Recent advances in e-nose technologies within the plant sciences, including improvements in gas-sensor designs, innovations in data analysis and pattern-recognition...

  13. An IRT Analysis of Preservice Teacher Self-Efficacy in Technology Integration

    ERIC Educational Resources Information Center

    Browne, Jeremy

    2011-01-01

    The need for rigorously developed measures of preservice teacher traits regarding technology integration training has been acknowledged (Kay 2006), but such instruments are still extremely rare. The Technology Integration Confidence Scale (TICS) represents one such measure, but past analyses of its functioning have been limited by sample size and…

  14. The Information Society: Towards an Iron Cage of e-Learning?

    ERIC Educational Resources Information Center

    Hautakangas, Sami; Kiilakoski, Tomi

    2004-01-01

    The purpose of this article is to analyse the meaning of different cultural paradigms in the development of educational technology. The article analyses technology critically from the perspective of the philosophy of technology, examines the manifestations of instrumentalism in the curriculum theory and analyses its effects on the different levels…

  15. Music Teacher Perceptions of a Model of Technology Training and Support in Virginia

    ERIC Educational Resources Information Center

    Welch, Lee Arthur

    2013-01-01

    A plethora of technology resources currently exists for the music classroom of the twenty-first century, including digital audio and video, music software, electronic instruments, Web 2.0 tools and more. Research shows a strong need for professional development for teachers to properly implement and integrate instructional technology resources…

  16. Space Telescope optics. [large aperture astronomical instrument

    NASA Technical Reports Server (NTRS)

    Jones, C. O.

    1979-01-01

    The paper reviews the optical technology that has been developed over the last decade for the Space Telescope. The optical design of the telescope, the optical performance control system, and the anticipated optical performance are all presented. Consideration is also given to the initial complement of focal plane instruments.

  17. OD Technology for the Future.

    ERIC Educational Resources Information Center

    Blake, Robert R.; Mouton, Jane Srygley

    1979-01-01

    The authors state that organizational development (OD) consultants are reluctant to rely upon instruments because this would diminish their sense of usefulness. They discuss 15 OD issues and conclude that OD instruments must be based on sound principles of behavior and sequenced in a planned way in order to implement organizational change and…

  18. Design and Application of New Low-Cost Instruments for Marine Environmental Research

    PubMed Central

    Marcelli, Marco; Piermattei, Viviana; Madonia, Alice; Mainardi, Umberto

    2014-01-01

    The development of low-cost instrumentation plays a key role in marine environmental studies and represents one of the most innovative aspects of current oceanographic research. These kinds of devices can be used for several applications, ranging from vertical profilers to stand-alone systems, and can be installed on different platforms (buoys, Voluntary Observing Ships, underwater vehicles, etc.). The availability of low-cost technologies enables the realization of extended observatory networks for the study of marine physical and biological processes through an integrated approach merging in situ observations, forecasting models and remotely sensed data. We present new low-cost sensors and probes developed to measure marine temperature, conductivity, chlorophyll a and Chromophoric Dissolved Organic Matter fluorescence, focusing on sensing strategies, general architecture, laboratory trials, in situ tests and comparison with standard instruments. Furthermore, we report the expendable (New T-FLaP), vertical profiler (T-FLaPpro) and stand-alone (Spectra) applications of these technological developments that were tested during several oceanographic surveys in the Mediterranean Sea. PMID:25490594

  19. Design and application of new low-cost instruments for marine environmental research.

    PubMed

    Marcelli, Marco; Piermattei, Viviana; Madonia, Alice; Mainardi, Umberto

    2014-12-05

    The development of low-cost instrumentation plays a key role in marine environmental studies and represents one of the most innovative aspects of current oceanographic research. These kinds of devices can be used for several applications, ranging from vertical profilers to stand-alone systems, and can be installed on different platforms (buoys, Voluntary Observing Ships, underwater vehicles, etc.). The availability of low-cost technologies enables the realization of extended observatory networks for the study of marine physical and biological processes through an integrated approach merging in situ observations, forecasting models and remotely sensed data. We present new low-cost sensors and probes developed to measure marine temperature, conductivity, chlorophyll a and Chromophoric Dissolved Organic Matter fluorescence, focusing on sensing strategies, general architecture, laboratory trials, in situ tests and comparison with standard instruments. Furthermore, we report the expendable (New T-FLaP), vertical profiler (T-FLaPpro) and stand-alone (Spectra) applications of these technological developments that were tested during several oceanographic surveys in the Mediterranean Sea.

  20. New Jersey's Thomas Edison and the fluoroscope.

    PubMed

    Tselos, G D

    1995-11-01

    Thomas Edison played a major role in the development of early x-ray technology in 1896, notably increasing tube power and reliability and making the fluoroscope a practical instrument. Eventually, Edison would move x-ray technology from the laboratory to the marketplace.

  1. Outline of the survey on the development of earth observation satellites

    NASA Technical Reports Server (NTRS)

    1977-01-01

    An independent earth observation system with land and sea satellites to be developed by Japan is described. Visible and infrared radiometers, microwave radiometers, microwave scattermeters, synthetic aperture radar, and laser sensors are among the instrumentation discussed. Triaxial attitude control, basic technology common to sea and land observation satellites as well as land data analytical technology developed for U.S. LANDSAT data are reviewed.

  2. Ozone--the latest advance in sterilization of medical devices.

    PubMed

    Murphy, Lorna

    2006-06-01

    How many times have procedures in your operating rooms been delayed because the instruments needed were still in the sterilizer? As Perioperative nurses you are likely to be quite familiar with the constant pressure to ensure that scarce instrumentation is available when needed. In 2003, a Canadian company developed a unique sterilization process employing ozone as the sterilizing agent. This technology is a safe, rapid and economical alternative to other low temperature sterilization modalities and may relieve some of the pressure experienced when instruments in short supply are in high demand. This article will discuss the principles of the sterilizer and the cycle and will explore the advantages of using this sterilization technology.

  3. The Mind Research Network - Mental Illness Neuroscience Discovery Grant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, J.; Calhoun, V.

    The scientific and technological programs of the Mind Research Network (MRN), reflect DOE missions in basic science and associated instrumentation, computational modeling, and experimental techniques. MRN's technical goals over the course of this project have been to develop and apply integrated, multi-modality functional imaging techniques derived from a decade of DOE-support research and technology development.

  4. Development of a Self-Efficacy Scale of Technology Usage in Education

    ERIC Educational Resources Information Center

    Dogru, Mustafa

    2017-01-01

    The purpose of this study was to develop a scale instrument to allow us to establish the self-efficacies of elementary education teachers regarding their use of information technologies when educating their students. The study group comprised a total of 924 teachers from different branches working in central Ankara elementary schools. Based on the…

  5. Future of uniportal video-assisted thoracoscopic surgery-emerging technology.

    PubMed

    Li, Zheng; Ng, Calvin S H

    2016-03-01

    Uniportal VATS poses unique difficulties to the surgeon, mainly as a consequence of operating through a small single incision. The instruments in uniportal VATS have limited movement through the small incision. In addition, the approach to the surgical operating site is unidirectional, which may restrict vision and retraction, and unavoidably suffers from instrument fencing. Recent thoracoscopic technology in the form of a wide variable angled lens has to some extent improved these shortcomings. The development of an extendable flexible thoracoscope and wireless steerable endoscope (WSE) systems can further improve the visualization for surgery and reduce or even remove fencing between endoscope and instruments. New single incision access platforms both derived from Natural orifice transluminal endoscopic surgery (NOTES) and robotic surgery approaches are on the horizon. These may allow uniportal VATS to be performed through an even smaller ultra-minimally invasive incision, with improved vision, more freedom of movement of the instruments and greater precision. However, a number of problems remain to be resolved, including provision of a stable platform and payload, applied force limitations and equipment sterilization. Advances in uniportal VATS major lung resection techniques have not only challenged the surgeon to acquire new skills and knowledge, but at the same time have rekindled the collaborative spirit between industry and clinician in developing novel equipment and technology to push the boundaries of minimally invasive surgery. These technological improvements and innovations may improve operating efficiency and safety during uniportal VATS surgery.

  6. Recent developments in dimensional nanometrology using AFMs

    NASA Astrophysics Data System (ADS)

    Yacoot, Andrew; Koenders, Ludger

    2011-12-01

    Scanning probe microscopes, in particular the atomic force microscope (AFM), have developed into sophisticated instruments that, throughout the world, are no longer used just for imaging, but for quantitative measurements. A role of the national measurement institutes has been to provide traceable metrology for these instruments. This paper presents a brief overview as to how this has been achieved, highlights the future requirements for metrology to support developments in AFM technology and describes work in progress to meet this need.

  7. Galileo Avionica's technologies and instruments for planetary exploration.

    PubMed

    Battistelli, E; Falciani, P; Magnani, P; Midollini, B; Preti, G; Re, E

    2006-12-01

    Several missions for planetary exploration, including comets and asteroids, are ongoing or planned by the European Space Agencies: Rosetta, Venus Express, Bepi Colombo, Dawn, Aurora and all Mars Programme (in its past and next missions) are good examples. The satisfaction of the scientific request for the mentioned programmes calls for the development of new instruments and facilities devoted to investigate the body (planet, asteroid or comet) both remotely and by in situ measurements. The paper is an overview of some instruments for remote sensing and in situ planetary exploration already developed or under study by Galileo Avionica Space & Electro-Optics B.U. (in the following shortened as Galileo Avionica) for both the Italian Space Agency (ASI) and for the European Space Agency (ESA). Main technologies and specifications are outlined; for more detailed information please refer to Galileo Avionica's web-site at: http://www.galileoavionica.com .

  8. Policy instruments for pollution control in developing countries.

    PubMed

    Eskeland, G S; Jimenez, E

    1992-07-01

    Economic development in developing countries must be accomplished in a manner that does not harm the environment with pollution. Pollution harms human health and productivity. Thus appropriate strategies must be developed that promote growth, reduce poverty, and protect the environment. A review of the current literature is performed with attention paid to cost-effective interventions i.e., comparisons of regulatory and fiscal instruments that can reduce pollution. Both direct instruments (like effluent charges, tradable permits, deposit refund systems, emission regulations and regulatory agency funding for purification, cleanup, waste disposal, and enforcement) and indirect instruments (like input/output taxes and subsidies, substitution subsidies, abatement inputs, regulation of equipment and processes, and development of clean technologies) are examined. Examples are used to show how indirect instruments can be successful when monitoring and enforcement is too costly. A careful examination of distributive concerns illustrate how the effect on the poor may need particular consideration and how groups with vested interests can help evaluate the probable success of such interventions.

  9. Instrument technology for remote-surface exploration, prospecting and assaying, part 2

    NASA Technical Reports Server (NTRS)

    Brereton, R. G.

    1977-01-01

    The capability to specify new instrument/mechanism technology needs, for effective remote surface exploration, prospecting and assaying (EPA), requires first, an understanding of the functions or major elements of such a task, and second an understanding of the scientific instruments and support mechanisms that may be involved. An analog or task model was developed from which the various functions, operational procedures, scientific instruments, and support mechanisms for an automated mission could be derived. The task model led to the definition of nine major functions or categories of discrete operational elements that may have to be accomplished on a mission of this type. Each major function may stand alone as an element of an EPA mission, but more probably a major function will require the support of other functions, so they are inter-related.

  10. The Effect of Perceived Privacy Breaches on Continued Technology Use and Individual Psychology: The Construct, Instrument Development, and an Application Using Internet Search Engines

    ERIC Educational Resources Information Center

    Ahmad, Altaf

    2010-01-01

    This dissertation involved the development of a new construct, perceived privacy breach (PPB), to evaluate how a person perceives breaches of privacy in terms of whether they perceive any exchange of information was fair or not and how they believe it will impact people whose information has been shared. . This instrument assists researchers to…

  11. Instrumentation and Controls Division progress report for the period July 1, 1986 to June 30, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klobe, L.E.

    1988-12-01

    The Instrumentation and Controls (IandC) Division of Oak Ridge National Laboratory (ORNL) performs basic and applied instrumentation and controls research, development and design engineering, specialized instrument design and fabrication, and maintenance services for instruments, electronics, and computers. The IandC Division is one of the largest RandD organizations of its type among government laboratories, and it exists as the result of an organizational strategy to integrate ORNL's instrumentation and controls-related disciplines into one dedicated functional organization to increase the Laboratory's expertise and capabilities in these rapidly expanding, innovative areas of technology. The Division participates in the programs and projects of ORNLmore » by applying its expertise and capabilities in concert with other divisions to perform basic research and mission-oriented technology development. Many of the Division's RandD tasks that are a part of a larger ORNL program are of sufficient scope that the IandC effort constitutes a separate program element with direct funding and management responsibility within the Division. The activities of IandC include performance of an RandD task in IandC facilities, the participation of from one of many IandC engineers and scientists in a multidisciplinary team working in a specific research area or development project, design and fabrication of a special instrument or instrumentation system, or a few hours of maintenance service. In its support and maintenance work, the role of the IandC Division is to provide a level of expertise appropriate to complete a job successfully at minimum overall cost and time schedule---a role which involves IandC in almost all ORNL activities.« less

  12. Air-condition Control System of Weaving Workshop Based on LabVIEW

    NASA Astrophysics Data System (ADS)

    Song, Jian

    The project of air-condition measurement and control system based on LabVIEW is put forward for the sake of controlling effectively the environmental targets in the weaving workshop. In this project, which is based on the virtual instrument technology and in which LabVIEW development platform by NI is adopted, the system is constructed on the basis of the virtual instrument technology. It is composed of the upper PC, central control nodes based on CC2530, sensor nodes, sensor modules and executive device. Fuzzy control algorithm is employed to achieve the accuracy control of the temperature and humidity. A user-friendly man-machine interaction interface is designed with virtual instrument technology at the core of the software. It is shown by experiments that the measurement and control system can run stably and reliably and meet the functional requirements for controlling the weaving workshop.

  13. Verifax: Biometric instruments measuring neuromuscular disorders/performance impairments

    NASA Astrophysics Data System (ADS)

    Morgenthaler, George W.; Shrairman, Ruth; Landau, Alexander

    1998-01-01

    VeriFax, founded in 1990 by Dr. Ruth Shrairman and Mr. Alex Landau, began operations with the aim of developing a biometric tool for the verification of signatures from a distance. In the course of developing this VeriFax Autograph technology, two other related applications for the technologies under development at VeriFax became apparent. The first application was in the use of biometric measurements as clinical monitoring tools for physicians investigating neuromuscular diseases (embodied in VeriFax's Neuroskill technology). The second application was to evaluate persons with critical skills (e.g., airline pilots, bus drivers) for physical and mental performance impairments caused by stress, physiological disorders, alcohol, drug abuse, etc. (represented by VeriFax's Impairoscope prototype instrument). This last application raised the possibility of using a space-qualified Impairoscope variant to evaluate astronaut performance with respect to the impacts of stress, fatigue, excessive workload, build-up of toxic chemicals within the space habitat, etc. The three applications of VeriFax's patented technology are accomplished by application-specific modifications of the customized VeriFax software. Strong commercial market potentials exist for all three VeriFax technology applications, and market progress will be presented in more detail below.

  14. Summary of laser speckle photogrammetry for HOST

    NASA Technical Reports Server (NTRS)

    Pollack, Frank G.

    1986-01-01

    High temperature static strain measurement capability is important for the success of the HOST program. As part of the NASA Lewis effort to develop the technology for improved hot-section durability, the HOST instrumentation program has, as a major goal, the development of methods for measuring strain at high temperature. Development work includes both improvements in resistance strain-gauge technology and, as an alternative approach, the development of optical techniques for high temperature strain measurement.

  15. Interdisciplinary Approach to the Development of Accessible Computer-Administered Measurement Instruments.

    PubMed

    Magasi, Susan; Harniss, Mark; Heinemann, Allen W

    2018-01-01

    Principles of fairness in testing require that all test takers, including people with disabilities, have an equal opportunity to demonstrate their capacity on the construct being measured. Measurement design features and assessment protocols can pose barriers for people with disabilities. Fairness in testing is a fundamental validity issue at all phases in the design, administration, and interpretation of measurement instruments in clinical practice and research. There is limited guidance for instrument developers on how to develop and evaluate the accessibility and usability of measurement instruments. This article describes a 6-stage iterative process for developing accessible computer-administered measurement instruments grounded in the procedures implemented across several major measurement initiatives. A key component of this process is interdisciplinary teams of accessibility experts, content and measurement experts, information technology experts, and people with disabilities working together to ensure that measurement instruments are accessible and usable by a wide range of users. The development of accessible measurement instruments is not only an ethical requirement, it also ensures better science by minimizing measurement bias, missing data, and attrition due to mismatches between the target population and test administration platform and protocols. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  16. Center for Nanoscale Science and Technology

    National Institute of Standards and Technology Data Gateway

    NIST Center for Nanoscale Science and Technology (Program website, free access)   Currently there is no database matching your keyword search, but the NIST Center for Nanoscale Science and Technology website may be of interest. The Center for Nanoscale Science and Technology enables science and industry by providing essential measurement methods, instrumentation, and standards to support all phases of nanotechnology development, from discovery to production.

  17. The Development and Validation of an Instrument for Assessing College Students' Perceptions of Faculty Knowledge in Technology-Supported Class Environments

    ERIC Educational Resources Information Center

    Shih, Ching-Lin; Chuang, Hsueh-Hua

    2013-01-01

    Research in the area of educational technology has argued that the technological pedagogical content knowledge of faculty is crucial to addressing the challenge of teaching in higher education in the digital age, which is characterized by the common use of instructional technology in college classrooms and the ubiquitous presence of computing on…

  18. Maturity Models of Healthcare Information Systems and Technologies: a Literature Review.

    PubMed

    Carvalho, João Vidal; Rocha, Álvaro; Abreu, António

    2016-06-01

    The maturity models are instruments to facilitate organizational management, including the management of its information systems function. These instruments are used also in hospitals. The objective of this article is to identify and compare the maturity models for management of information systems and technologies (IST) in healthcare. For each maturity model, it is identified the methodology of development and validation, as well as the scope, stages and their characteristics by dimensions or influence factors. This study resulted in the need to develop a maturity model based on a holistic approach. It will include a comprehensive set of influencing factors to reach all areas and subsystems of health care organizations.

  19. Progress along the E-ELT instrumentation roadmap

    NASA Astrophysics Data System (ADS)

    Ramsay, Suzanne; Casali, Mark; Cirasuolo, Michele; Egner, Sebastian; Gray, Peter; Gonzáles Herrera, Juan Carlos; Hammersley, Peter; Haupt, Christoph; Ives, Derek; Jochum, Lieselotte; Kasper, Markus; Kerber, Florian; Lewis, Steffan; Mainieri, Vincenzo; Manescau, Antonio; Marchetti, Enrico; Oberti, Sylvain; Padovani, Paolo; Schmid, Christian; Schimpelsberger, Johannes; Siebenmorgen, Ralf; Szecsenyi, Orsolya; Tamai, Roberto; Vernet, Joël.

    2016-08-01

    A suite of seven instruments and associated AO systems have been planned as the "E-ELT Instrumentation Roadmap". Following the E-ELT project approval in December 2014, rapid progress has been made in organising and signing the agreements for construction with European universities and institutes. Three instruments (HARMONI, MICADO and METIS) and one MCAO module (MAORY) have now been approved for construction. In addition, Phase-A studies have begun for the next two instruments - a multi-object spectrograph and high-resolution spectrograph. Technology development is also ongoing in preparation for the final instrument in the roadmap, the planetary camera and spectrograph. We present a summary of the status and capabilities of this first set of instruments for the E-ELT.

  20. Development of a Transportable Gravity Gradiometer Based on Atom Interferometry

    NASA Astrophysics Data System (ADS)

    Yu, N.; Kohel, J. M.; Aveline, D. C.; Kellogg, J. R.; Thompson, R. J.; Maleki, L.

    2007-12-01

    JPL is developing a transportable gravity gradiometer based on light-pulse atom interferometers for NASA's Earth Science Technology Office's Instrument Incubator Program. The inertial sensors in this instrument employ a quantum interference measurement technique, analogous to the precise phase measurements in atomic clocks, which offers increased sensitivity and improved long-term stability over traditional mechanical devices. We report on the implementation of this technique in JPL's gravity gradiometer, and on the current performance of the mobile instrument. We also discuss the prospects for satellite-based gravity field mapping, including high-resolution monitoring of time-varying fields from a single satellite platform and multi-component measurements of the gravitational gradient tensor, using atom interferometer-based instruments.

  1. Evaluation of Engineering and Technology Activities in Primary Schools in Terms of Learning Environment, Attitudes and Understanding

    ERIC Educational Resources Information Center

    Koul, Rekha B.; Fraser, Barry J.; Maynard, Nicoleta; Tade, Moses

    2018-01-01

    Because the importance of science, technology, engineering and mathematics (STEM) education continues to be recognised around the world, we developed and validated an instrument to assess the learning environment and student attitudes in STEM classrooms, with a specific focus on engineering and technology (E&T) activities in primary schools.…

  2. Ocean Instruments Web Site for Undergraduate, Secondary and Informal Education

    NASA Astrophysics Data System (ADS)

    Farrington, J. W.; Nevala, A.; Dolby, L. A.

    2004-12-01

    An Ocean Instruments web site has been developed that makes available information about ocean sampling and measurement instruments and platforms. The site features text, pictures, diagrams and background information written or edited by experts in ocean science and engineering and contains links to glossaries and multimedia technologies including video streaming, audio packages, and searchable databases. The site was developed after advisory meetings with selected professors teaching undergraduate classes who responded to the question, what could Woods Hole Oceanographic Institution supply to enhance undergraduate education in ocean sciences, life sciences, and geosciences? Prototypes were developed and tested with students, potential users, and potential contributors. The site is hosted by WHOI. The initial five instruments featured were provided by four WHOI scientists and engineers and by one Sea Education Association faculty member. The site is now open to contributions from scientists and engineers worldwide. The site will not advertise or promote the use of individual ocean instruments.

  3. Instrumental Appropriation of a Collaborative, Dynamic-Geometry Environment and Geometrical Understanding

    ERIC Educational Resources Information Center

    Alqahtani, Muteb M.; Powell, Arthur B.

    2016-01-01

    To understand learners' appropriation of technological tools and geometrical understanding, we draw on the theory of instrumental genesis (Lonchamp, 2012; Rabardel & Beguin, 2005), which seeks to explain how learners accomplish tasks interacting with tools. To appropriate a tool, learners develop their own knowledge of how to use it, which…

  4. 77 FR 46094 - Proposed Data Collections Submitted for Public Comment and Recommendations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-02

    ... that occurs before a program is designed and implemented, or while a program is being conducted and is... behavioral but most often they are cycles of interviews and focus groups designed to inform the development... instruments, (3) methodological research, (4) usability testing of technology-based instruments and materials...

  5. New developments in measurements technology relevant to the studies of deep geological repositories in bedded salt

    NASA Astrophysics Data System (ADS)

    Mao, N. H.; Ramirez, A. L.

    1980-10-01

    Developments in measurement technology are presented which are relevant to the studies of deep geological repositories for nuclear waste disposal during all phases of development, i.e., site selection, site characterization, construction, operation, and decommission. Emphasis was placed on geophysics and geotechnics with special attention to those techniques applicable to bedded salt. The techniques are grouped into sections as follows: tectonic environment, state of stress, subsurface structures, fractures, stress changes, deformation, thermal properties, fluid transport properties, and other approaches. Several areas that merit further research and developments are identified. These areas are: in situ thermal measurement techniques, fracture detection and characterization, in situ stress measurements, and creep behavior. The available instrumentations should generally be improved to have better resolution and accuracy, enhanced instrument survivability, and reliability for extended time periods in a hostile environment.

  6. Commercial Instrumentation Technology Associates, Biomedical Experiments

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Experiments to seek solutions for a range of biomedical issues are at the heart of several investigations that will be hosted by the Commercial Instrumentation Technology Associates (ITA), Inc. Biomedical Experiments (CIBX-2) payload. CIBX-2 is unique, encompassing more than 20 separate experiments including cancer research, commercial experiments, and student hands-on experiments from 10 schools as part of ITA's ongoing University Among the Stars program. A number of Liquids Mixing Apparatus (LMA) syringes like this one will be used in the experiments. The experiments are sponsored by NASA's Space Product Development Program (SPD).

  7. Ultra-Trace and Vapor Detection of Explosives and Narcotics Finalist for R&D 100 Award

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewing, Robert

    An instrument more sensitive than a canine’s nose identifies explosives and narcotics vapors in real time and at levels previously undetectable than any other sampling technology. The instrument is one among five PNNL-developed technologies in the running for an R&D 100 Award. Known as VP-IDENT, the tool coupled with a mass spectrometer, is ideal for aviation security, cargo screening, and broader counter-terrorism and national security activities where discovering dangerous substances is of utmost importance. Listen as researcher Robert Ewing explains.

  8. Ultra-Trace and Vapor Detection of Explosives and Narcotics Finalist for R&D 100 Award

    ScienceCinema

    Ewing, Robert

    2018-06-13

    An instrument more sensitive than a canine’s nose identifies explosives and narcotics vapors in real time and at levels previously undetectable than any other sampling technology. The instrument is one among five PNNL-developed technologies in the running for an R&D 100 Award. Known as VP-IDENT, the tool coupled with a mass spectrometer, is ideal for aviation security, cargo screening, and broader counter-terrorism and national security activities where discovering dangerous substances is of utmost importance. Listen as researcher Robert Ewing explains.

  9. Scoping study to expedite development of a field deployable and portable instrument for UF6 enrichment assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, George; Valentine, John D.; Russo, Richard E.

    The primary objective of the present study is to identity the most promising, viable technologies that are likely to culminate in an expedited development of the next-generation, field-deployable instrument for providing rapid, accurate, and precise enrichment assay of uranium hexafluoride (UF6). UF6 is typically involved, and is arguably the most important uranium compound, in uranium enrichment processes. As the first line of defense against proliferation, accurate analytical techniques to determine the uranium isotopic distribution in UF6 are critical for materials verification, accounting, and safeguards at enrichment plants. As nuclear fuel cycle technology becomes more prevalent around the world, international nuclearmore » safeguards and interest in UF6 enrichment assay has been growing. At present, laboratory-based mass spectrometry (MS), which offers the highest attainable analytical accuracy and precision, is the technique of choice for the analysis of stable and long-lived isotopes. Currently, the International Atomic Energy Agency (IAEA) monitors the production of enriched UF6 at declared facilities by collecting a small amount (between 1 to 10 g) of gaseous UF6 into a sample bottle, which is then shipped under chain of custody to a central laboratory (IAEA’s Nuclear Materials Analysis Laboratory) for high-precision isotopic assay by MS. The logistics are cumbersome and new shipping regulations are making it more difficult to transport UF6. Furthermore, the analysis is costly, and results are not available for some time after sample collection. Hence, the IAEA is challenged to develop effective safeguards approaches at enrichment plants. In-field isotopic analysis of UF6 has the potential to substantially reduce the time, logistics and expense of sample handling. However, current laboratory-based MS techniques require too much infrastructure and operator expertise for field deployment and operation. As outlined in the IAEA Department of Safeguards Long-Term R&D Plan, 2012–2023, one of the IAEA long-term R&D needs is to “develop tools and techniques to enable timely, potentially real-time, detection of HEU (Highly Enriched Uranium) production in LEU (Lowly Enriched Uranium) enrichment facilities” (Milestone 5.2). Because it is common that the next generation of analytical instruments is driven by technologies that are either currently available or just now emerging, one reasonable and practical approach to project the next generation of chemical instrumentation is to track the recent trends and to extrapolate them. This study adopted a similar approach, and an extensive literature review on existing and emerging technologies for UF6 enrichment assay was performed. The competitive advantages and current limitations of different analytical techniques for in-field UF6 enrichment assay were then compared, and the main gaps between needs and capabilities for their field use were examined. Subsequently, based on these results, technologies for the next-generation field-deployable instrument for UF6 enrichment assay were recommended. The study was organized in a way that a suite of assessment metric was first identified. Criteria used in this evaluation are presented in Section 1 of this report, and the most important ones are described briefly in the next few paragraphs. Because one driving force for in-field UF6 enrichment assay is related to the demanding transportation regulation for gaseous UF6, Section 2 contains a review of solid sorbents that convert and immobilized gaseous UF6 to a solid state, which is regarded as more transportation friendly and is less regulated. Furthermore, candidate solid sorbents, which show promise in mating with existing and emerging assay technologies, also factor into technology recommendations. Extensive literature reviews on existing and emerging technologies for UF6 enrichment assay, covering their scientific principles, instrument options, and current limitations are detailed in Sections 3 and 4, respectively. In Section 5, the technological gaps as well as start-of-the-art and commercial off-the-shelf components that can be adopted to expedite the development of a fieldable or portable UF6 enrichment-assay instrument are identified and discussed. Finally, based on the results of the review, requirements and recommendations for developing the next-generation field-deployable instrument for UF6 enrichment assay are presented in Section 6.« less

  10. The MIT high resolution X-ray spectroscopy instruments on AXAF

    NASA Technical Reports Server (NTRS)

    Canizares, C. R.; Dewey, D.; Galton, E. B.; Markert, T. H.; Smith, Henry I.; Schattenburg, M. L.; Woodgate, B. E.; Jordan, S.

    1992-01-01

    The general design and performance characteristics of MIT's two dispersive spectrometers, the Bragg Crystal Spectrometer (BCS) and the High Energy Transmission Grating Spectrometer (HETG), now being developed for the Advanced X-ray Astrophysics Facility (AXAF), are described. Particular attention is given to the development of the critical technologies incorporated into these instruments, including BCS diffractors, imaging gas flow proportional counters, and grating elements for the HETG. The principal stages and the current status of the developments are reviewed.

  11. Investigating the Use of Web 2.0 Technology by Malaysian Students

    ERIC Educational Resources Information Center

    Zakaria, Mohd Hafiz; Watson, Jason; Edwards, Sylvia L.

    2010-01-01

    Purpose: Many research have uncovered the use of Web 2.0 technology by students from various countries. Yet, limited studies have been done from the context of developing country such as Malaysia. This paper aims to highlight the development of a survey instrument that captured the use of Web 2.0 applications by Malaysian students for learning.…

  12. Assessing the costs of photovoltaic and wind power in six developing countries

    NASA Astrophysics Data System (ADS)

    Schmidt, Tobias S.; Born, Robin; Schneider, Malte

    2012-07-01

    To support developing countries in greenhouse-gas emission abatement the 2010 Cancún Agreement established various institutions, among others a financial mechanism administered by the Green Climate Fund. However, the instruments for delivering the support and the magnitude of different countries' financial needs are strongly debated. Both debates are predominantly underpinned by rather aggregate and strongly varying top-down cost estimates. To complement these numbers, we provide a more fine-grained bottom-up approach, comparing the cost of the renewable-energy technologies photovoltaics and wind in six developing countries with those of conventional technologies. Our results unveil large cost variations across specific technology-country combinations and show to what extent fossil-fuel subsidies can negatively affect the competitiveness of renewable-energy technologies. Regarding the instrument debate, our results indicate that to foster transformative changes, nationally appropriate mitigation actions are often more suited than a reformed clean development mechanism. Regarding the debate on financial needs, our results highlight the need for a decision on a fair baseline calculation methodology. To this end, we propose a new methodology that incentivizes changes in the baseline through subsidy phase-out. Finally, we contribute to the debate on domestic versus international support for these measures.

  13. Biomedicine: A compilation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Developments in NASA technology of possible interest to outside users are reported. Complied are descriptions of a number of instruments that have proven useful in monitoring and treating patients. Described are several diagnostic, prosthetic, and therapeutic devices as well as patent information on new innovations in aerospace medicine technology.

  14. The telecommunications and data acquisition report

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A. (Editor)

    1981-01-01

    Developments in Earth-based ratio technology as applied to the Deep Space Network are reported. Topics include ratio astronomy and spacecraft tracking networks. Telemetric methods and instrumentation are described. Station control and system technology for space communication is discussed. Special emphasis is placed on network data processing.

  15. 78 FR 27241 - Agency Information Collection Activities; Proposed Collection: Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-09

    ... the data collection plans and draft instruments, email [email protected] or call the HRSA Information... technology to minimize the information collection burden. Information Collection Request Title... instructions; to develop, acquire, install and utilize technology and systems for the purpose of collecting...

  16. New Styles, New Technologies, New Possibilities in Jazz.

    ERIC Educational Resources Information Center

    Kuzmich, John, Jr.

    1989-01-01

    Focuses on the growth of jazz-related ensembles and jazz education. Covers trends that parallel technological developments including electronic keyboards, Musical Instrument Digital Interface (MIDI) systems, the computer, computer assisted instruction, interactive video, and the compact disc. Urges teachers to update their knowledge and experience…

  17. Laser transmitter for space-based sodium lidar instrument

    NASA Astrophysics Data System (ADS)

    Yu, Anthony W.; Krainak, Michael A.; Janches, Diego; Konoplev, Oleg

    2016-05-01

    We are currently developing a laser transmitter to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage. The developed instrumentation will serve as the core for the planning of a Heliophysics mission targeted to study the composition and dynamics of Earth's mesosphere based on a spaceborne lidar that will measure the mesospheric Na layer. We present performance results from our laser transmitter development effort with emphasis on wavelength tuning and power scaling of a diode-pumped Q-switched self-Raman c-cut Nd:YVO4 laser with intra-cavity frequency doubling that could produce multi-watt 589 nm wavelength output. We will review technologies that provide strong leverage for the sodium lidar laser system with strong heritage from past and current space flight missions.

  18. Seeking the Tricorder: Report on Workshops on Advanced Technologies for Life Detection

    NASA Astrophysics Data System (ADS)

    Reiss-Bubenheim, D.; Boston, P. J.; Partridge, H.; Lindensmith, C.; Nadeau, J. L.

    2017-12-01

    There's great excitement about life prospects on icy fluid-containing moons orbiting our Solar System's gas giant planets, newly discovered planet candidates and continuing long-term interest in possible Mars life. The astrobiology/planetary research communities require advanced technologies to explore and study both Solar System bodies and exoplanets for evidence of life. The Tricorder Workshop, held at Ames Research Center May 19-20, 2017, explored technology topics focused on non-invasive or minimally invasive methods for life detection. The workshop goal was to tease out promising ideas for low TRL concepts for advanced life detection technologies that could be applied to the surface and near-subsurface of Mars and Ocean Worlds (such as Europa and Enceladus) dominated by icy terrain. The workshop technology focus centered on mid-to-far term instrument concepts or other enabling technologies (e.g. robotics, machine learning, etc.) primarily for landed missions, which could detect evidence of extant, extinct and/or "weird" life including the notion of "universal biosignatures". Emphasis was placed on simultaneous and serial sample measurements using a suite of instruments and technological approaches with planetary protection in mind. A follow-on workshop, held July 24 at Caltech, sought to develop a generic flowchart of in situ observations and measurements to provide sufficient information to determine if extant life is present in an environment. The process didn't require participant agreement as to definition of extant life, but instead developed agreement on necessary observations and instruments. The flowchart of measurements was designed to maximize the number of simultaneous observations on a single sample where possible, serializing where necessary, and finally dividing it into parts for the most destructive analyses at the end. Selected concepts from the workshops outlined in this poster provide those technology areas necessary to solicit and develop for future life detection exploration via fly-by missions, orbiters, and landers.

  19. Integrated Payload Data Handling Systems Using Software Partitioning

    NASA Astrophysics Data System (ADS)

    Taylor, Alun; Hann, Mark; Wishart, Alex

    2015-09-01

    An integrated Payload Data Handling System (I-PDHS) is one in which multiple instruments share a central payload processor for their on-board data processing tasks. This offers a number of advantages over the conventional decentralised architecture. Savings in payload mass and power can be realised because the total processing resource is matched to the requirements, as opposed to the decentralised architecture here the processing resource is in effect the sum of all the applications. Overall development cost can be reduced using a common processor. At individual instrument level the potential benefits include a standardised application development environment, and the opportunity to run the instrument data handling application on a fully redundant and more powerful processing platform [1]. This paper describes a joint program by SCISYS UK Limited, Airbus Defence and Space, Imperial College London and RAL Space to implement a realistic demonstration of an I-PDHS using engineering models of flight instruments (a magnetometer and camera) and a laboratory demonstrator of a central payload processor which is functionally representative of a flight design. The objective is to raise the Technology Readiness Level of the centralised data processing technique by address the key areas of task partitioning to prevent fault propagation and the use of a common development process for the instrument applications. The project is supported by a UK Space Agency grant awarded under the National Space Technology Program SpaceCITI scheme. [1].

  20. Technology Estimating 2: A Process to Determine the Cost and Schedule of Space Technology Research and Development

    NASA Technical Reports Server (NTRS)

    Cole, Stuart K.; Wallace, Jon; Schaffer, Mark; May, M. Scott; Greenberg, Marc W.

    2014-01-01

    As a leader in space technology research and development, NASA is continuing in the development of the Technology Estimating process, initiated in 2012, for estimating the cost and schedule of low maturity technology research and development, where the Technology Readiness Level is less than TRL 6. NASA' s Technology Roadmap areas consist of 14 technology areas. The focus of this continuing Technology Estimating effort included four Technology Areas (TA): TA3 Space Power and Energy Storage, TA4 Robotics, TA8 Instruments, and TA12 Materials, to confine the research to the most abundant data pool. This research report continues the development of technology estimating efforts completed during 2013-2014, and addresses the refinement of parameters selected and recommended for use in the estimating process, where the parameters developed are applicable to Cost Estimating Relationships (CERs) used in the parametric cost estimating analysis. This research addresses the architecture for administration of the Technology Cost and Scheduling Estimating tool, the parameters suggested for computer software adjunct to any technology area, and the identification of gaps in the Technology Estimating process.

  1. Advanced Technologies For Heterodyne Radio Astronomy Instrumentation - Part1 By A. Pavolotsky, And Advanced Technologies For Heterodyne Radio Astronomy Instrumentation - Part2 By V. Desmaris

    NASA Astrophysics Data System (ADS)

    Pavolotsky, Alexey

    2018-01-01

    Modern and future heterodyne radio astronomy instrumentation critically depends on availability of advanced fabrication technologies and components. In Part1 of the Poster, we present the thin film fabrication process for SIS mixer receivers, utilizing either AlOx, or AlN barrier superconducting tunnel junctions developed and supported by GARD. The summary of the process design rules is presented. It is well known that performance of waveguide mixer components critically depends on accuracy of their geometrical dimensions. At GARD, all critical mechanical parts are 3D-mapped with a sub-um accuracy. Further progress of heterodyne instrumentation requires new efficient and compact sources of LO signal. We present SIS-based frequency multiplier, which could become a new option for LO source. Future radio astronomy THz receivers will need waveguide components, which fabricating due to their tiny dimensions is not feasible by traditional mechanical machining. We present the alternative micromachining technique for fabricating waveguide component for up 5 THz band and probably beyond.

  2. [Application of micro-power system in the surgery of tooth extraction].

    PubMed

    Kaijin, Hu; Yongfeng, Li

    2015-02-01

    Tooth extraction is a common operation in oral surgery. Traditional-extraction instruments, such as bone chisel, elevator, and bone hammer, lead to not only severe trauma but also unnecessary complications, and patients easily become nervous and apprehensive if tooth extraction is performed using these violent instruments. In recent years, with the develop- ment of minimally invasive concept and technology, various micro-power instruments have been used for tooth extraction. This innovative technology can reduce the iatrogenic trauma and complications of tooth extraction. Additionally, this technology can greatly decrease the patient's physical and mental pressure. The new equipment compensates for the deficiency of traditional tooth extraction equipment and facilitates the gradual replacement of the latter. Diverse micro-power systems have distinct strengths and weaknesses, so some auxiliary instruments are still needed during tooth extraction. This paper focuses on the various micro-power systems for tooth extraction and tries to compare the advantages and disadvantages of these systems. Selection and usage of auxiliary equipment are also introduced. Thus, this paper provides reference for the proper application of the micro-power systems in tooth extraction.

  3. The Hydrologic Instrumentation Facility of the U.S. Geological Survey

    USGS Publications Warehouse

    Wagner, C.R.; Jeffers, Sharon

    1984-01-01

    The U.S. Geological Survey Water Resources Division has improved support to the agencies field offices by the consolidation of all instrumentation support services in a single facility. This facility known as the Hydrologic Instrumentation Facility (HIF) is located at the National Space Technology Laboratory, Mississippi, about 50 miles east of New Orleans, Louisiana. The HIF is responsible for design and development, testing, evaluation, procurement, warehousing, distribution and repair of a variety of specialized hydrologic instrumentation. The centralization has resulted in more efficient and effective support of the Survey 's hydrologic programs. (USGS)

  4. Instrumentation for In-Flight SSME Rocket Engine Plume Spectroscopy

    NASA Technical Reports Server (NTRS)

    Madzsar, George C.; Bickford, Randall L.; Duncan, David B.

    1994-01-01

    This paper describes instrumentation that is under development for an in-flight demonstration of a plume spectroscopy system on the space shuttle main engine. The instrumentation consists of a nozzle mounted optical probe for observation of the plume, and a spectrometer for identification and quantification of plume content. This instrumentation, which is intended for use as a diagnostic tool to detect wear and incipient failure in rocket engines, will be validated by a hardware demonstration on the Technology Test Bed engine at the Marshall Space Flight Center.

  5. The NGST Science Instrument Procurement Plan

    NASA Astrophysics Data System (ADS)

    NGST Project Office Team

    1999-05-01

    The NGST will carry approximately 3 science instruments (SI) that together enable the wide field imaging and spectroscopic capability needed to perform the Design Reference Mission (http://www.ngst.nasa.gov/science/drm.html). The NGST telescope will permit these instruments to achieve Zodiacal light limited sensitivity over a wavelength range of 0.6 - 10+ microns. During April 2000, responsibility to provide these instruments will be allocated among the NGST partner agencies: NASA, ESA, and CSA. Instruments allocated to NASA will be solicited via a NASA Announcement of Opportunity (AO) during June 2001. This AO will be open to university, government, and industry scientists. At the present time, 11 science instrument concept studies are being conducted by US, European, and Canadian teams. Final results from these 1 year studies will be presented at the NGST Science and Technology Exposition at Woods Hole MA during September 1999 (http://ngst.gsfc.nasa.gov/science/meetings/WHannouncement.html). It is not necessary to have participated in these pre-Phase A activities in order to answer the up coming instrument technologies NRA or the flight instrument AO. In this poster, we present the process by which SI concepts will be allocated among NASA, ESA, and CSA prior to the AO solicitation as well as top level time lines for instrument acquisition and development.

  6. A Modular Instrumentation System for NASA's Habitat Demonstration Unit

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Kennedy, Kriss; Yim, Hester; Wagner, Raymond S.; Hong, Todd; Studor, George; Delaune, Paul

    2010-01-01

    NASA's human spaceflight program is focused on developing technologies to expand the reaches of human exploration and science activities beyond low earth orbit. A critical aspect of living in space or on planetary surfaces is habitation, which provides a safe and comfortable space in which humans can live and work. NASA is seeking out the best option for habitation by exploring several different concepts through the Habitat Demonstration Unit (HDU) project. The purpose of this HDU is to develop a fully autonomous habitation system that enables human exploration of space. One critical feature of the HDU project that helps to accomplish its mission of autonomy is the instrumentation system that monitors key subsystems operating within a Habitat configuration. The following paper will discuss previous instrumentation systems used in analog habitat concepts and how the current instrumentation system being implemented on the HDU1-PEM, or pressurized excursion module, is building upon the lessons learned of those previous systems. Additionally, this paper will discuss the benefits and the limitations of implementing a wireless sensor network (WSN) as the basis for data transport in the instrumentation system. Finally, this paper will address the experiences and lessons learned with integration, testing prior to deployment, and field testing at the JSC rock yard. NASA is developing the HDU1-PEM as a step towards a fully autonomous habitation system that enables human exploration of space. To accomplish this purpose, the HDU project is focusing on development, integration, testing, and evaluation of habitation systems. The HDU will be used as a technology pull, testbed, and integration environment in which to advance NASA's understanding of alternative mission architectures, requirements, and operations concepts definition and validation. This project is a multi-year effort. In 2010, the HDU1-PEM will be in a pressurized excursion module configuration, and in 2011 the module will be reconfigured for a pressurized core module configuration. Each year the HDU configurations will undergo testing at NASA's Desert Research and Technology Studies (D-RaTS) in Arizona [1]. As part of this project, a modular instrumentation system is developed to meet the monitoring needs of the HDU subsystems and to integrate with the current command and data handling infrastructure that has been developed for the project. The main objective of this study is to provide for the monitoring needs of the HDU. The requirements necessary to meet this objective are developed by working with the subsystem managers of the HDU to understand their monitoring needs. Additionally, the instrumentation system design leverages knowledge and lessons learned from previous studies, such as the inflatable habitat health monitoring system that was deployed in Antarctica [2], the integrated health monitoring system developed for NASA's Microhab [3], and the JSC Lunar Habitat Wireless Testbed to demonstrate a "standardsbased" approach to a wireless instrumentation system [4]. The HDU also requires flexibility in reconfiguration options, and it is necessary to demonstrate and evaluate a modular approach to an instrumentation system. Thus, the instrumentation system is designed in two parts: the primary system employs a standard WSN configuration, and the secondary system employs a wired USB hub. The WSN design provides for reconfiguration or replacement of sensors due to malfunctions or upgrades by using a wireless node that accepts ten instrument inputs and wirelessly transmits the data to the command and data handling system. The USB hub is necessary for those instruments that operate using a wired USB connection, although the design attempts to limit the amount of sensors that need to be wired connections.

  7. Instrumentation for optimizing an underground coal-gasification process

    NASA Astrophysics Data System (ADS)

    Seabaugh, W.; Zielinski, R. E.

    1982-06-01

    While the United States has a coal resource base of 6.4 trillion tons, only seven percent is presently recoverable by mining. The process of in-situ gasification can recover another twenty-eight percent of the vast resource, however, viable technology must be developed for effective in-situ recovery. The key to this technology is system that can optimize and control the process in real-time. An instrumentation system is described that optimizes the composition of the injection gas, controls the in-situ process and conditions the product gas for maximum utilization. The key elements of this system are Monsanto PRISM Systems, a real-time analytical system, and a real-time data acquisition and control system. This system provides from complete automation of the process but can easily be overridden by manual control. The use of this cost effective system can provide process optimization and is an effective element in developing a viable in-situ technology.

  8. Research pressure instrumentation for NASA Space Shuttle main engine, modification no. 5

    NASA Technical Reports Server (NTRS)

    Anderson, P. J.; Nussbaum, P.; Gustafson, G.

    1984-01-01

    The purpose of Modification No. 5 of this contract is to expand the scope of work (Task C) of this research study effort to develop pressure instrumentation for the SSME. The objective of this contract (Task C) is to direct Honeywell's Solid State Electronics Division's (SSED) extensive experience and expertise in solid state sensor technology to develop prototype pressure transducers which are targeted to meet the SSME performance design goals and to fabricate, test and deliver a total of 10 prototype units. SSED's basic approach is to effectively utilize the many advantages of silicon piezoresistive strain sensing technology to achieve the objectives of advanced state-of-the-art pressure sensors in terms of reliability, accuracy and ease of manufacture. More specifically, integration of multiple functions on a single chip is the key attribute of this technology which will be exploited during this research study.

  9. Advanced CO2 removal process control and monitor instrumentation development

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Dalhausen, M. J.; Klimes, R.

    1982-01-01

    A progam to evaluate, design and demonstrate major advances in control and monitor instrumentation was undertaken. A carbon dioxide removal process, one whose maturity level makes it a prime candidate for early flight demonstration was investigated. The instrumentation design incorporates features which are compatible with anticipated flight requirements. Current electronics technology and projected advances are included. In addition, the program established commonality of components for all advanced life support subsystems. It was concluded from the studies and design activities conducted under this program that the next generation of instrumentation will be greatly smaller than the prior one. Not only physical size but weight, power and heat rejection requirements were reduced in the range of 80 to 85% from the former level of research and development instrumentation. Using a microprocessor based computer, a standard computer bus structure and nonvolatile memory, improved fabrication techniques and aerospace packaging this instrumentation will greatly enhance overall reliability and total system availability.

  10. AstroMadrid: Astrophysics and technological developments in Comunidad de Madrid

    NASA Astrophysics Data System (ADS)

    Mas-Hesse, J. M.

    2011-11-01

    AstroMadrid is a network constituted by different research groups in the Comunidad de Madrid area, with the objective of coordinating the activities related to the development of astronomical instrumentation in the various centres. AstroMadrid is a multidisciplinar team which benefits from the synergies provided by the different participating groups, optimizing our capabilities to develop instrumentation, and minimizing the problems related to the geographical dispersion within our region. AstroMadrid is also participated by several aerospace industries, which complement the capabilities and facilities available in the research centres. In addition to optimizing the development of instrumentation, AstroMadrid plays an essential role in the formation of new engineers and scientists, by actively contributing to some Master degree courses organized by different Universities in Madrid.

  11. Research and Technology: Fiscal year 1982 report

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Accomplishments and research objectives are described in the following areas: (1) space sciences; (2) space and terrestrial applications; (3) flight projects and mission definition studies; (4) space tracking and data systems; and (5) space technology. Data analysis efforts, instrument development, and measurement projects are among the aspects considered.

  12. Wastewater Treatment and Reuse by Land Application, Volume II.

    ERIC Educational Resources Information Center

    Pound, Charles E.; Crites, Ronald W.

    This report is included in the Environmental Protection Agency's (EPA) environmental protection technology series which describes research performed to develop and demonstrate instrumentation, equipment and methodology. This work provides the new or improved technology required for the control and treatment of pollution sources to meet…

  13. Developing and validating an instrument for measuring mobile computing self-efficacy.

    PubMed

    Wang, Yi-Shun; Wang, Hsiu-Yuan

    2008-08-01

    IT-related self-efficacy has been found to have a critical influence on system use. However, traditional measures of computer self-efficacy and Internet-related self-efficacy are perceived to be inapplicable in the context of mobile computing and commerce because they are targeted primarily at either desktop computer or wire-based technology contexts. Based on previous research, this study develops and validates a multidimensional instrument for measuring mobile computing self-efficacy (MCSE). This empirically validated instrument will be useful to researchers in developing and testing the theories of mobile user behavior, and to practitioners in assessing the mobile computing self-efficacy of users and promoting the use of mobile commerce systems.

  14. The Tropospheric Wind Lidar Technology Experiment (TWiLiTE): An Airborne Direct Detection Doppler Lidar Instrument Development Program

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce; McGill, Matthew; Schwemmer, Geary; Hardesty, Michael; Brewer, Alan; Wilkerson, Thomas; Atlas, Robert; Sirota, Marcos; Lindemann, Scott

    2006-01-01

    Global measurement of tropospheric winds is a key measurement for understanding atmospheric dynamics and improving numerical weather prediction. Global wind profiles remain a high priority for the operational weather community and also for a variety of research applications including studies of the global hydrologic cycle and transport studies of aerosols and trace species. In addition to space based winds, a high altitude airborne system flown on UAV or other advanced platforms would be of great interest for studying mesoscale dynamics and hurricanes. The Tropospheric Wind Lidar Technology Experiment (TWiLiTE) project was selected in 2005 by the NASA Earth Sun Technology Office as part of the Instrument Incubator Program. TWiLiTE will leverage significant research and development investments in key technologies made in the past several years. The primary focus will be on integrating these sub-systems into a complete molecular direct detection Doppler wind lidar system designed for autonomous operation on a high altitude aircraft, such as the NASA WB57, so that the nadir viewing lidar will be able to profile winds through the full troposphere. TWiLiTE is a collaboration involving scientists and technologists from NASA Goddard, NOAA ESRL, Utah State University Space Dynamics Lab and industry partners Michigan Aerospace Corporation and Sigma Space Corporation. NASA Goddard and it's partners have been at the forefront in the development of key lidar technologies (lasers, telescopes, scanning systems, detectors and receivers) required to enable spaceborne global wind lidar measurement. The TWiLiTE integrated airborne Doppler lidar instrument will be the first demonstration of a airborne scanning direct detection Doppler lidar and will serve as a critical milestone on the path to a fixture spaceborne tropospheric wind system. The completed system will have the capability to profile winds in clear air from the aircraft altitude of 18 h to the surface with 250 m vertical resolution and less than 2 meters per second velocity accuracy. The instrument design, technologies and predicted performance will be presented.

  15. A Magnetron Sputter Deposition System for the Development of Multilayer X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Broadway, David; Ramsey, Brian; Gubarev, Mikhail

    2014-01-01

    The proposal objective is to establish the capability to deposit multilayer structures for x-ray, neutron, and EUV optic applications through the development of a magnetron sputtering deposition system. A specific goal of this endeavor is to combine multilayer deposition technology with the replication process in order to enhance the MSFC's position as a world leader in the design of innovative X-ray instrumentation through the development of full shell replicated multilayer optics. The development of multilayer structures is absolutely necessary in order to advance the field of X-ray astronomy by pushing the limit for observing the universe to ever increasing photon energies (i. e. up to 200 keV or higher); well beyond Chandra (approx. 10 keV) and NuStar's (approx. 75 keV) capability. The addition of multilayer technology would significantly enhance the X-ray optics capability at MSFC and allow NASA to maintain its world leadership position in the development, fabrication and design of innovative X-ray instrumentation which would be the first of its kind by combining multilayer technology with the mirror replication process. This marriage of these technologies would allow astronomers to see the universe in a new light by pushing to higher energies that are out of reach with today's instruments.To this aim, a magnetron vacum sputter deposition system for the deposition of novel multilayer thin film X-ray optics is proposed. A significant secondary use of the vacuum deposition system includes the capability to fabricate multilayers for applications in the field of EUV optics for solar physics, neutron optics, and X-ray optics for a broad range of applications including medical imaging.

  16. A Magnetron Sputter Deposition System for the Development of X-Ray Multilayer Optics

    NASA Technical Reports Server (NTRS)

    Broadway, David

    2015-01-01

    The project objective is to establish the capability to deposit multilayer structures for x-ray, neutron, and extreme ultraviolet (EUV) optic applications through the development of a magnetron sputtering deposition system. A specific goal of this endeavor is to combine multilayer deposition technology with the replication process in order to enhance NASA Marshall Space Flight Center's (MSFC's) position as a world leader in the design of innovative x-ray instrumentation through the development of full shell replicated multilayer optics. The development of multilayer structures are absolutely necessary in order to advance the field of x-ray astronomy by pushing the limit for observing the universe to ever-increasing photon energies (i.e., up to 200 keV or higher), well beyond Chandra's (approx.10 keV) and NuStar's (approx.75 keV) capability. The addition of multilayer technology would significantly enhance the x-ray optics capability at MSFC and allow NASA to maintain its world leadership position in the development, fabrication, and design of innovative x-ray instrumentation, which would be the first of its kind by combining multilayer technology with the mirror replication process. This marriage of these technologies would allow astronomers to see the universe in a new light by pushing to higher energies that are out of reach with today's instruments. To this aim, a magnetron vacuum sputter deposition system for the deposition of novel multilayer thin film x-ray optics is proposed. A significant secondary use of the vacuum deposition system includes the capability to fabricate multilayers for applications in the field of EUV optics for solar physics, neutron optics, and x-ray optics for a broad range of applications including medical imaging.

  17. 3min. poster presentations of B01

    NASA Astrophysics Data System (ADS)

    Foing, Bernard H.

    We give a report on recommendations from ILEWG International conferences held at Cape Canaveral in 2008 (ICEUM10), and in Beijing in May 2010 with IAF (GLUC -ICEUM11). We discuss the different rationale for Moon exploration. Priorities for scientific investigations include: clues on the formation and evolution of rocky planets, accretion and bombardment in the inner solar system, comparative planetology processes (tectonic, volcanic, impact cratering, volatile delivery), historical records, astrobiology, survival of organics; past, present and future life. The ILEWG technology task group set priorities for the advancement of instrumenta-tion: Remote sensing miniaturised instruments; Surface geophysical and geochemistry package; Instrument deployment and robotic arm, nano-rover, sampling, drilling; Sample finder and collector. Regional mobility rover; Autonomy and Navigation; Artificially intelligent robots, Complex systems. The ILEWG ExogeoLab pilot project was developed as support for instru-ments, landers, rovers,and preparation for cooperative robotic village. The ILEWG lunar base task group looked at minimal design concepts, technologies in robotic and human exploration with Tele control, telepresence, virtual reality; Man-Machine interface and performances. The ILEWG ExoHab pilot project has been started with support from agencies and partners. We discuss ILEWG terrestrial Moon-Mars campaigns for validation of technologies, research and human operations. We indicate how Moon-Mars Exploration can inspire solutions to global Earth sustained development: In-Situ Utilisation of resources; Establishment of permanent robotic infrastructures, Environmental protection aspects; Life sciences laboratories; Support to human exploration. Co-Authors: ILEWG Task Groups on: Science, Technology, Robotic village, Lunar Bases , Commercial and Societal aspects, Roadmap synergies with other programmes, Public en-gagemnet and Outreach, Young Lunar Explorers.

  18. Quantum Sensing and Communications Being Developed for Nanotechnology

    NASA Technical Reports Server (NTRS)

    Lekki, John D.; Nguyen, Quang-Viet

    2005-01-01

    An interdisciplinary quantum communications and sensing research effort for application in microdevices has been underway at the NASA Glenn Research Center since 2000. Researchers in Glenn's Instrumentation and Controls, Communications Technology, and Propulsion and Turbomachinery Divisions have been working together to study and develop techniques that utilize quantum effects for sensing and communications. The emerging technology provides an innovative way to communicate faster and farther using less power and to sense, measure, and image environmental properties in ways that are not possible with existing technology.

  19. Boring in the Big City - part 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giuliani, A.J.

    This paper describes technologies being utilized or tested by Brooklyn Union for gas main installation. Trenchless technologies described include pipe splitting, key holes to minimize excavations, and boring. Areas in lining system technology which require further development by vendors and manufacturers of trenchless equipment are also addressed. Specific needs identified include: (1) improving instrumentation for locating and controlling underground boring; (2) repairing soft and hard lining systems; and (3) developing a window cutter to safely remove the old carrier pipes without damaging the newly fitted internal plastic pipes.

  20. Low Power Camera-on-a-Chip Using CMOS Active Pixel Sensor Technology

    NASA Technical Reports Server (NTRS)

    Fossum, E. R.

    1995-01-01

    A second generation image sensor technology has been developed at the NASA Jet Propulsion Laboratory as a result of the continuing need to miniaturize space science imaging instruments. Implemented using standard CMOS, the active pixel sensor (APS) technology permits the integration of the detector array with on-chip timing, control and signal chain electronics, including analog-to-digital conversion.

  1. NASA AETC Test Technology Subproject

    NASA Technical Reports Server (NTRS)

    Bell, James

    2017-01-01

    Funds directed to improve measurement capabilities (pressure, force, flow, and temperature), test techniques and processes, and develop technologies critical to meeting NASA research needs and applicable to a multitude of facilities. Primarily works by funding small ($40K - $400K) tasks which result in a demonstration or initial capability of a new technology in an AETC facility.TT research and development tasks are generally TRL 3-6; they should be things which work in small scale or lab environments but need further development for use in production facilities.TT differs from CA in its focus on smaller-scale tasks and on instrumentation. Technologies developed by TT may become CA projects in order be fully realized within a facility.

  2. Instrumentation for the Characterization of Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Swanson, Gregory T.; Cassell, Alan M.; Johnson, R. Keith

    2012-01-01

    Current entry, descent, and landing technologies are not practical for heavy payloads due to mass and volume constraints dictated by limitations imposed by launch vehicle fairings. Therefore, new technologies are now being explored to provide a mass- and volume-efficient solution for heavy payload capabilities, including Inflatable Aerodynamic Decelerators (IAD) [1]. Consideration of IADs for space applications has prompted the development of instrumentation systems for integration with flexible structures to characterize system response to flight-like environment testing. This development opportunity faces many challenges specific to inflatable structures in extreme environments, including but not limited to physical flexibility, packaging, temperature, structural integration and data acquisition [2]. In the spring of 2012, two large scale Hypersonic Inflatable Aerodynamic Decelerators (HIAD) will be tested in the National Full-Scale Aerodynamics Complex s 40 by 80 wind tunnel at NASA Ames Research Center. The test series will characterize the performance of a 3.0 m and 6.0 m HIAD at various angles of attack and levels of inflation during flight-like loading. To analyze the performance of these inflatable test articles as they undergo aerodynamic loading, many instrumentation systems have been researched and developed. These systems will utilize new experimental sensing systems developed by the HIAD ground test campaign instrumentation team, in addition to traditional wind tunnel sensing techniques in an effort to improve test article characterization and model validation. During the 2012 test series the instrumentation systems will target inflatable aeroshell static and dynamic deformation, structural strap loading, surface pressure distribution, localized skin deflection, and torus inflation pressure. This paper will offer an overview of inflatable structure instrumentation, and provide detail into the design and implementation of the sensors systems that will be utilized during the 2012 HIAD ground test campaign.

  3. Design and development of the 2m resolution camera for ROCSAT-2

    NASA Astrophysics Data System (ADS)

    Uguen, Gilbert; Luquet, Philippe; Chassat, François

    2017-11-01

    EADS-Astrium has recently completed the development of a 2m-resolution camera, so-called RSI (Remote Sensing Instrument), for the small-satellite ROCSAT-2, which is the second component of the long-term space program of the Republic of China. The National Space Program Office of Taïwan selected EADS-Astrium as the Prime Contractor for the development of the spacecraft, including the bus and the main instrument RSI. The main challenges for the RSI development were: - to introduce innovative technologies in order to meet the high performance requirements while achieving the design simplicity necessary for the mission (low mass, low power) - to have a development approach and verification compatible with the very tight development schedule This paper describes the instrument design together with the development and verification logic that were implemented to successfully meet these objectives.

  4. Portable Chemical Sterilizer (PCS) for Surgical Instruments

    DTIC Science & Technology

    2004-12-01

    PORTABLE CHEMICAL STERILIZER (PCS) FOR SURGICAL INSTRUMENTS CJ Doona*, FE Feeherry, MA Curtin‡, K Kustin‡, S Kandlikar‡ U.S. Army-Soldier...denotes Contractors) Biomedical Technologies ABSTRACT A novel device called the Portable Chemical Sterilizer (PCS) has been developed for the...rapid, safe, portable, power-free, and convenient sterilization of objects or surfaces contaminated with pathogenic microorganisms that cause

  5. Tropospheric Emission Spectrometer and Airborne Emission Spectrometer

    NASA Technical Reports Server (NTRS)

    Glavich, T.; Beer, R.

    1996-01-01

    The Tropospheric Emission Spectrometer (TES) is an instrument being developed for the NASA Earth Observing System Chemistry Platform. TES will measure the distribution of ozone and its precursors in the lower atmosphere. The Airborne Emission Spectrometer (AES) is an aircraft precursor to TES. Applicable descriptions are given of instrument design, technology challenges, implementation and operations for both.

  6. A Comparative Analysis of New Governance Instruments in the Transnational Educational Space: A Shift to Knowledge-Based Instruments?

    ERIC Educational Resources Information Center

    Ioannidou, Alexandra

    2007-01-01

    In recent years, the ongoing development towards a knowledge-based society--associated with globalization, an aging population, new technologies and organizational changes--has led to a more intensive analysis of education and learning throughout life with regard to quantitative, qualitative and financial aspects. In this framework, education…

  7. Application of the Molecular Adsorber Coating Technology on the Ionospheric Connection Explorer Program

    NASA Technical Reports Server (NTRS)

    Abraham, Nithin S.; Hasegawa, Mark M.; Secunda, Mark S.

    2016-01-01

    The Molecular Adsorber Coating (MAC) is a zeolite based highly porous coating technology that was developed by NASA Goddard Space Flight Center (GSFC) to capture outgassed contaminants, such as plastics, adhesives, lubricants, silicones, epoxies, potting compounds, and other similar materials. This paper describes the use of the MAC technology to address molecular contamination concerns on NASAs Ionospheric Connection Explorer (ICON) program led by the University of California (UC) Berkeleys Space Sciences Laboratory. The sprayable paint technology was applied onto plates that were installed within the instrument cavity of ICONs Far Ultraviolet Imaging Spectrograph (FUV). However, due to the instruments particulate sensitivity, the coating surface was vibrationally cleaned through simulated acoustics to reduce the risk of particle fall-out contamination. This paper summarizes the coating application efforts on the FUV adsorber plates, the simulated laboratory acoustic level cleaning test methods, particulation characteristics, and future plans for the MAC technology.

  8. Application of the Molecular Adsorber Coating technology on the Ionospheric Connection Explorer program

    NASA Astrophysics Data System (ADS)

    Abraham, Nithin S.; Hasegawa, Mark M.; Secunda, Mark S.

    2016-09-01

    The Molecular Adsorber Coating (MAC) is a zeolite based highly porous coating technology that was developed by NASA Goddard Space Flight Center (GSFC) to capture outgassed contaminants, such as plastics, adhesives, lubricants, silicones, epoxies, potting compounds, and other similar materials. This paper describes the use of the MAC technology to address molecular contamination concerns on NASA's Ionospheric Connection Explorer (ICON) program led by the University of California (UC) Berkeley's Space Sciences Laboratory. The sprayable paint technology was applied onto plates that were installed within the instrument cavity of ICON's Far Ultraviolet Imaging Spectrograph (FUV). However, due to the instrument's particulate sensitivity, the coating surface was vibrationally cleaned through simulated acoustics to reduce the risk of particle fall-out contamination. This paper summarizes the coating application efforts on the FUV adsorber plates, the simulated laboratory acoustic level cleaning test methods, particulation characteristics, and future plans for the MAC technology.

  9. An Instrumental Innovation

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Think of guitars and you think of rock and country music, or the vigorous rhythms of the gypsy flamenco, or perhaps the classical strumming of a Segovia. About the last thing you would associate with guitars is aerospace technology. Yet there is a connection. A whole family of quality guitars is an outgrowth of helicopter rotor research conducted for the military services and NASA by an aerospace contractor. These musical spinoffs, commercially available and rapidly gaining in popularity, are the Ovation guitar line, manufactured by Ovation Instruments, Inc., Bloomfield, Connecticut. Ovation Instruments is a subsidiary of Kaman Corporation, a diversified company originally formed to develop and build helicopters. A helicopter's rotor system, with thousands of moving parts, is highly susceptible to vibration. For rotor efficiency, vibration must be "dampened," or reduced. Like other helicopter builders, Kaman Corporation spent years of research toward that end. The technology thus developed, together with the availability of staff experts in vibration engineering, sparked an idea in the mind of the company's president and founder, Charles H. Karnan. A guitarist of professional caliber, Kaman reasoned that vibration-dampening technology could be turned around to enhance vibration and thereby produce a guitar with superior sound.

  10. Material Protection, Accounting, and Control Technologies (MPACT): Modeling and Simulation Roadmap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cipiti, Benjamin; Dunn, Timothy; Durbin, Samual

    The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal. This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. These tools willmore » consist of instrumentation and devices as well as computer software for modeling. To aid in framing its long-term goal, during FY16, a modeling and simulation roadmap is being developed for three major areas of investigation: (1) radiation transport and sensors, (2) process and chemical models, and (3) shock physics and assessments. For each area, current modeling approaches are described, and gaps and needs are identified.« less

  11. Capability assessment and challenges for quantum technology gravity sensors for near surface terrestrial geophysical surveying

    NASA Astrophysics Data System (ADS)

    Boddice, Daniel; Metje, Nicole; Tuckwell, George

    2017-11-01

    Geophysical surveying is widely used for the location of subsurface features. Current technology is limited in terms of its resolution (thus size of features it can detect) and penetration depth and a suitable technique is needed to bridge the gap between shallow near surface investigation using techniques such as EM conductivity mapping and GPR commonly used to map the upper 5 m below ground surface, and large features at greater depths detectable using conventional microgravity (> 5 m below ground surface). This will minimise the risks from unknown features buried in and conditions of the ground during civil engineering work. Quantum technology (QT) gravity sensors potentially offer a step-change in technology for locating features which lie outside of the currently detectable range in terms of size and depth, but that potential is currently unknown as field instruments have not been developed. To overcome this, a novel computer simulation was developed for a large range of different targets of interest. The simulation included realistic noise modelling of instrumental, environmental and location sources of noise which limit the accuracy of current microgravity measurements, in order to assess the potential capability of the new QT instruments in realistic situations and determine some of the likely limitations on their implementation. The results of the simulations for near surface features showed that the new technology is best employed in a gradiometer configuration as opposed to the traditional single sensor gravimeter used by current instruments due to the ability to suppress vibrational environmental noise effects due to common mode rejection between the sensors. A significant improvement in detection capability of 1.5-2 times was observed, putting targets such as mineshafts into the detectability zone which would be a major advantage for subsurface surveying. Thus this research, for the first time, has demonstrated clearly the benefits of QT gravity gradiometer sensors thereby increasing industry's confidence in this new technology.

  12. Acousto-Optic Tunable Filter Spectroscopic Instrumentation for Quantitative Near-Ir Analysis of Organic Materials.

    NASA Astrophysics Data System (ADS)

    Eilert, Arnold James

    1995-01-01

    The utility of near-IR spectroscopy for routine quantitative analyses of a wide variety of compositional, chemical, or physical parameters of organic materials is well understood. It can be used for relatively fast and inexpensive non-destructive bulk material analysis before, during, and after processing. It has been demonstrated as being a particularly useful technique for numerous analytical applications in cereal (food and feed) science and industry. Further fulfillment of the potential of near-IR spectroscopic analysis, both in the process and laboratory environment, is reliant upon the development of instrumentation that is capable of meeting the challenges of increasingly difficult applications. One approach to the development of near-IR spectroscopic instrumentation that holds a great deal of promise is acousto-optic tunable filter (AOTF) technology. A combination of attributes offered by AOTF spectrometry, including speed, optical throughput, wavelength reproducibility, ruggedness (no -moving-parts operation) and flexibility, make it particularly desirable for numerous applications. A series of prototype (research model) acousto -optic tunable filter instruments were developed and tested in order to investigate the feasibility of the technology for quantitative near-IR spectrometry. Development included design, component procurement, assembly and/or configuration of the optical and electronic subsystems of which each functional spectrometer arrangement was comprised, as well as computer interfacing and acquisition/control software development. Investigation of this technology involved an evolution of several operational spectrometer systems, each of which offered improvements over its predecessor. Appropriate testing was conducted at various stages of development. Demonstrations of the potential applicability of our AOTF spectrometer to quantitative process monitoring or laboratory analysis of numerous organic substances, including food materials, were performed. Lipid determination in foods by spectroscopic analysis of a solvent used after cold batch extraction and simulated supercritical fluid extraction monitoring were among the applications tested. The ultimate performance specifications of our instrument included full-range wavelength coverage from 1250 to 2400 nm (with random, segmented range, or continuous range wavelength access capability), real -time quantitative analysis rates in excess of 150 determinations per second, and full range (2 nm increment) scanning speeds of 200 milliseconds.

  13. The design and development of a third generation OSEE instrument

    NASA Technical Reports Server (NTRS)

    Perey, D. F.; Yost, W. T.; Stone, F. D.; Welch, C. S.; Scales, E.; Gasser, E. S.; Joe, E.; Goodman, T.; Pascual, X.; Hefner, B.

    1995-01-01

    Optically Stimulated Electron Emission (OSEE) has been used to quantify surface contamination in the aerospace community. As advances are made towards the understanding of OSEE, it is desirable to incorporate technological advances with succeeding generations of instrumentation, so that improvements in the practical application of OSEE may be disseminated among the user community. Several studies undertaken by Yost, Welch, Abedin and others have expanded the knowledge base related to the underlying principles of OSEE. The conclusions of these studies, together with inputs from the user community were the foundation upon which the development of a third generation OSEE instrument was based. This manuscript describes the significant improvements incorporated into a third generation OSEE instrument as well as the elements unique to its design.

  14. Reusing Joint Polar Satellite System (jpss) Ground System Components to Process AURA Ozone Monitoring Instrument (omi) Science Products

    NASA Astrophysics Data System (ADS)

    Moses, J. F.; Jain, P.; Johnson, J.; Doiron, J. A.

    2017-12-01

    New Earth observation instruments are planned to enable advancements in Earth science research over the next decade. Diversity of Earth observing instruments and their observing platforms will continue to increase as new instrument technologies emerge and are deployed as part of National programs such as Joint Polar Satellite System (JPSS), Geostationary Operational Environmental Satellite system (GOES), Landsat as well as the potential for many CubeSat and aircraft missions. The practical use and value of these observational data often extends well beyond their original purpose. The practicing community needs intuitive and standardized tools to enable quick unfettered development of tailored products for specific applications and decision support systems. However, the associated data processing system can take years to develop and requires inherent knowledge and the ability to integrate increasingly diverse data types from multiple sources. This paper describes the adaptation of a large-scale data processing system built for supporting JPSS algorithm calibration and validation (Cal/Val) node to a simplified science data system for rapid application. The new configurable data system reuses scalable JAVA technologies built for the JPSS Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) system to run within a laptop environment and support product generation and data processing of AURA Ozone Monitoring Instrument (OMI) science products. Of particular interest are the root requirements necessary for integrating experimental algorithms and Hierarchical Data Format (HDF) data access libraries into a science data production system. This study demonstrates the ability to reuse existing Ground System technologies to support future missions with minimal changes.

  15. A preview of a microgravity laser light scattering instrument

    NASA Astrophysics Data System (ADS)

    Meyer, W. V.; Ansari, R. R.

    1991-01-01

    The development of a versatile, miniature, modular light scattering instrument to be used in microgravity is described. The instrument will measure microscopic particles in the size range of thirty angstroms to above three microns. This modular instrument permits several configurations, each optimized for a particular experiment. In particular, a multiangle instrument will probably be mounted in a rack in the Space Shuttle and on the Space Station. It is possible that a Space Shuttle glove-box and a lap-top computer containing a correlator card can be used to perform a number of experiments and to demonstrate the technology needed for more elaborate investigations.

  16. Validation of an Instrument to Measure Students' Motivation and Self-Regulation towards Technology Learning

    ERIC Educational Resources Information Center

    Liou, Pey-Yan; Kuo, Pei-Jung

    2014-01-01

    Background: Few studies have examined students' attitudinal perceptions of technology. There is no appropriate instrument to measure senior high school students' motivation and self-regulation toward technology learning among the current existing instruments in the field of technology education. Purpose: The present study is to validate an…

  17. The Slope Imaging Multi-Polarization Photon-Counting Lidar: Development and Performance Results

    NASA Technical Reports Server (NTRS)

    Dabney, Phillip

    2010-01-01

    The Slope Imaging Multi-polarization Photon-counting Lidar is an airborne instrument developed to demonstrate laser altimetry measurement methods that will enable more efficient observations of topography and surface properties from space. The instrument was developed through the NASA Earth Science Technology Office Instrument Incubator Program with a focus on cryosphere remote sensing. The SIMPL transmitter is an 11 KHz, 1064 nm, plane-polarized micropulse laser transmitter that is frequency doubled to 532 nm and split into four push-broom beams. The receiver employs single-photon, polarimetric ranging at 532 and 1064 nm using Single Photon Counting Modules in order to achieve simultaneous sampling of surface elevation, slope, roughness and depolarizing scattering properties, the latter used to differentiate surface types. Data acquired over ice-covered Lake Erie in February, 2009 are documenting SIMPL s measurement performance and capabilities, demonstrating differentiation of open water and several ice cover types. ICESat-2 will employ several of the technologies advanced by SIMPL, including micropulse, single photon ranging in a multi-beam, push-broom configuration operating at 532 nm.

  18. First results of the wind evaluation breadboard for ELT primary mirror design

    NASA Astrophysics Data System (ADS)

    Reyes García-Talavera, Marcos; Viera, Teodora; Núñez, Miguel

    2010-07-01

    The Wind Evaluation Breadboard (WEB) is a primary mirror and telescope simulator formed by seven aluminium segments, including position sensors, electromechanical support systems and support structures. WEB has been developed to evaluate technologies for primary mirror wavefront control and to evaluate the performance of the control of wind buffeting disturbance on ELT segmented mirrors. For this purpose WEB electro-mechanical set-up simulates the real operational constrains applied to large segmented mirrors. This paper describes the WEB assembly, integration and verification, the instrument characterisation and close loop control design, including the dynamical characterization of the instrument and the control architecture. The performance of the new technologies developed for position sensing, acting and controlling is evaluated. The integration of the instrument in the observatory and the results of the first experiments are summarised, with different wind conditions, elevation and azimuth angles of incidence. Conclusions are extracted with respect the wind rejection performance and the control strategy for an ELT. WEB has been designed and developed by IAC, ESO, ALTRAN and JUPASA, with the integration of subsystems of FOGALE and TNO.

  19. Minimally invasive surgery. Future developments.

    PubMed

    Wickham, J E

    1994-01-15

    The rapid development of minimally invasive surgery means that there will be fundamental changes in interventional treatment. Technological advances will allow new minimally invasive procedures to be developed. Application of robotics will allow some procedures to be done automatically, and coupling of slave robotic instruments with virtual reality images will allow surgeons to perform operations by remote control. Miniature motors and instruments designed by microengineering could be introduced into body cavities to perform operations that are currently impossible. New materials will allow changes in instrument construction, such as use of memory metals to make heat activated scissors or forceps. With the reduced trauma associated with minimally invasive surgery, fewer operations will require long hospital stays. Traditional surgical wards will become largely redundant, and hospitals will need to cope with increased through-put of patients. Operating theatres will have to be equipped with complex high technology equipment, and hospital staff will need to be trained to manage it. Conventional nursing care will be carried out more in the community. Many traditional specialties will be merged, and surgical training will need fundamental revision to ensure that surgeons are competent to carry out the new procedures.

  20. Easily cracked: scientific instruments in states of disrepair.

    PubMed

    Schaffer, Simon

    2011-12-01

    There has been much scholarly attention to definitions of the term "scientific instrument." Rather more mundane work by makers, curators, and users is devoted to instruments' maintenance and repair. A familiar argument holds that when a tool breaks, its character and recalcitrance become evident. Much can be gained from historical study of instruments' breakages, defects, and recuperation. Maintenance and repair technologies have been a vital aspect of relations between makers and other users. Their history illuminates systems of instruction, support, and abuse. These systems were, for example, evident in the development of astronomical instruments around 1800 within and beyond the European sphere. Episodes from that milieu are used to explore how instrument users sought autonomy, how instruments' mutable character was defined, and how judgments of instruments' failure or success were ever secured.

  1. Recent Status of SIM Lite Astrometric Observatory Mission: Flight Engineering Risk Reduction Activities

    NASA Technical Reports Server (NTRS)

    Goullioud, Renaud; Dekens, Frank; Nemati, Bijan; An, Xin; Carson, Johnathan

    2010-01-01

    The SIM Lite Astrometric Observatory is a mission concept for a space-borne instrument to perform micro-arc-second narrow-angle astrometry to search 60 to 100 nearby stars for Earth-like planets, and to perform global astrometry for a broad astrophysics program. The instrument consists of two Michelson stellar interferometers and a telescope. The first interferometer chops between the target star and a set of reference stars. The second interferometer monitors the attitude of the instrument in the direction of the target star. The telescope monitors the attitude of the instrument in the other two directions. The main enabling technology development for the mission was completed during phases A & B. The project is currently implementing the developed technology onto flight-ready engineering models. These key engineering tasks will significantly reduce the implementation risks during the flight phases C & D of the mission. The main optical interferometer components, including the astrometric beam combiner, the fine steering optical mechanism, the path-length-control and modulation optical mechanisms, focal-plane camera electronics and cooling heat pipe, are currently under development. Main assemblies are built to meet flight requirements and will be subjected to flight qualification level environmental testing (random vibration and thermal cycling) and performance testing. This paper summarizes recent progress in engineering risk reduction activities.

  2. Together We Can...

    ERIC Educational Resources Information Center

    Dotson, Kaye B.; Clark, Christine

    2015-01-01

    Using technology in the classroom for learning is no longer new and innovative; it is expected and even demanded. K-12 teachers have a responsibility to employ technology tools in multiple ways to teach and foster students' development of 21st-century skills and enhance researching, learning, and creating. School librarians can be instrumental in…

  3. Fundamentals of materials, techniques and instrumentation for OSL and FNTD dosimetry

    NASA Astrophysics Data System (ADS)

    Akselrod, M. S.

    2013-02-01

    The optically stimulated luminescence (OSL) technique has already become a successful commercial tool in personal radiation dosimetry, medical dosimetry, diagnostic imaging, geological and archeological dating. This review briefly describes the history and fundamental principles of OSL materials, methods and instrumentation. The advantages of OSL technology and instrumentation in comparison with thermoluminescent technique are analyzed. Progress in material and detector engineering has allowed new and promising developments regarding OSL applications in the medical field. Special attention is dedicated to Al2O3:C as a material of choice for many dosimetric applications including fiberoptic OSL/RL sensors with diameters as small as 300 μm. A new RL/OSL fiberoptic system has a high potential for in vivo and in vitro dosimetry in both radiation therapy and diagnostic mammography. Different aspects of instrumentation, data processing algorithms, post-irradiation and real-time measurements are described. The next technological breakthrough was done with Fluorescent Nuclear Track detectors (FNTD) that has some important advantages in measuring fast neutron and high energy heavy charge particles that became the latest tool in radiation therapy. New Mg-doped aluminum oxide crystals and novel type of imaging instrumentation for FNTD technology were engineered and successfully demonstrated for occupational and accident dosimetry, for medical dosimetry and radiobiological research.

  4. The ``Micro'' Aethalometer - an enabling technology for new applications in the measurement of Aerosol Black Carbon

    NASA Astrophysics Data System (ADS)

    Hansen, A. D.; Močnik, G.

    2010-12-01

    Aerosol Black Carbon (BC) is a tracer for combustion emissions; a primary indicator of adverse health effects; and the second leading contributor to Global Climate Change. The “Micro” Aethalometer is a recently-developed miniature instrument that makes a real-time measurement of BC on a very short timebase in a self-contained, battery-powered package that is lightweight and pocket sized. This technological development critically enables new areas of research: Measurements of the vertical profile of BC, by carrying the sampler aloft on a balloon (tethered or released) or aircraft (piloted or UAV); Estimates of the concentration of BC in the troposphere and lower stratosphere in the 8 - 12 km. altitude range, by measurements in the passenger cabin during commercial air travel; Epidemiological studies of personal exposure to BC, by carrying the sampler on a subject person in health studies; Measurements of the concentration of BC in rural and remote regions, by means of a small, battery-powered instrument that is convenient to deploy; measurements of high concentrations of “smoke” in indoor and outdoor environments in developing countries; Unobtrusive monitoring of BC infiltration into indoor environments, by means of a small, quiet instrument that can be placed in publicly-used spaces, school classrooms, museums, and other potentially-impacted locations; Adaptation of the technology to the direct source measurement of BC concentrations in emissions from diesel exhausts, combustion plumes, and other sources. We will show examples of data from various recent projects to illustrate the capabilities and applications of this new instrument.

  5. Robot-like dexterity without computers and motors: a review of hand-held laparoscopic instruments with wrist-like tip articulation

    PubMed Central

    Anderson, Patrick L.; Lathrop, Ray A.; Webster, Robert J.

    2018-01-01

    Introduction Conventional manual laparoscopic instruments for minimally invasive surgery have limited dexterity within the patient, making procedures challenging. Surgical robotic systems offer enhanced articulation, but at substantial financial costs. This has motivated the development of high-dexterity, low-cost laparoscopic instruments. Areas covered This article reviews both commercial and academic results on creating fully mechanical (i.e. non-robotic) laparoscopic instruments that provide wrists or wrist-like dexterity within the patient. We review the state of the art in the development of these mechanical instruments, focusing on the surgeon interface, wrist mechanism, and the kinematic mapping between the two. Expert commentary Current articulated mechanical laparoscopic instruments exhibit a wide range of designs, with no clear consensus on what makes such devices easy to use. As these technologies mature, user studies are needed to determine surgeon preferences. Articulated, low-cost instruments have the potential to impact the minimally invasive surgery market if they provide compelling benefits to surgeons. PMID:26808896

  6. Robot-like dexterity without computers and motors: a review of hand-held laparoscopic instruments with wrist-like tip articulation.

    PubMed

    Anderson, Patrick L; Lathrop, Ray A; Webster, Robert J

    2016-07-01

    Conventional manual laparoscopic instruments for minimally invasive surgery have limited dexterity within the patient, making procedures challenging. Surgical robotic systems offer enhanced articulation, but at substantial financial costs. This has motivated the development of high-dexterity, low-cost laparoscopic instruments. This article reviews both commercial and academic results on creating fully mechanical (i.e. non-robotic) laparoscopic instruments that provide wrists or wrist-like dexterity within the patient. We review the state of the art in the development of these mechanical instruments, focusing on the surgeon interface, wrist mechanism, and the kinematic mapping between the two. Expert commentary: Current articulated mechanical laparoscopic instruments exhibit a wide range of designs, with no clear consensus on what makes such devices easy to use. As these technologies mature, user studies are needed to determine surgeon preferences. Articulated, low-cost instruments have the potential to impact the minimally invasive surgery market if they provide compelling benefits to surgeons.

  7. Lidar instruments for ESA Earth observation missions

    NASA Astrophysics Data System (ADS)

    Hélière, Arnaud; Armandillo, Errico; Durand, Yannig; Culoma, Alain; Meynart, Roland

    2017-11-01

    The idea of deploying a lidar system on an Earthorbiting satellite stems from the need for continuously providing profiles of our atmospheric structure with high accuracy and resolution and global coverage. Interest in this information for climatology, meteorology and the atmospheric sciences in general is huge. Areas of application range from the determination of global warming and greenhouse effects, to monitoring the transport and accumulation of pollutants in the different atmospheric regions (such as the recent fires in Southeast Asia), to the assessment of the largely unknown microphysical properties and the structural dynamics of the atmosphere itself. Spaceborne lidar systems have been the subject of extensive investigations by the European Space Agency since mid 1970's, resulting in mission and instrument concepts, such as ATLID, the cloud backscatter lidar payload of the EarthCARE mission, ALADIN, the Doppler wind lidar of the Atmospheric Dynamics Mission (ADM) and more recently a water vapour Differential Absorption Lidar considered for the WALES mission. These studies have shown the basic scientific and technical feasibility of spaceborne lidars, but they have also demonstrated their complexity from the instrument viewpoint. As a result, the Agency undertook technology development in order to strengthen the instrument maturity. This is the case for ATLID, which benefited from a decade of technology development and supporting studies and is now studied in the frame of the EarthCARE mission. ALADIN, a Direct Detection Doppler Wind Lidar operating in the Ultra -Violet, will be the 1st European lidar to fly in 2007 as payload of the Earth Explorer Core Mission ADM. WALES currently studied at the level of a phase A, is based upon a lidar operating at 4 wavelengths in near infrared and aims to profile the water vapour in the lower part of the atmosphere with high accuracy and low bias. Lastly, the European Space Agency is extending the lidar instrument field for Earth Observation by initiating feasibility studies of a spaceborne concept to monitor atmospheric CO2 and other greenhouse gases. The purpose of this paper is to present the instruments concept and related technology/instrument developments that are currently running at the European Space Agency. The paper will also outline the development planning proposed for future lidar systems.

  8. Roving Vehicles for Lunar and Planetary Exploration

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This special bibliography includes the design, development, and application of lunar and Mars rovers; vehicle instrumentation and power supplies; navigation and control technologies; and site selection.

  9. Policy Considerations for Commercializing Natural Gas and Biomass CCUS

    NASA Astrophysics Data System (ADS)

    Abrahams, L.; Clavin, C.

    2017-12-01

    Captured CO2 from power generation has been discussed as an opportunity to improve the environmental sustainability of fossil fuel-based electricity generation and likely necessary technological solution necessary for meeting long-term climate change mitigation goals. In our presentation, we review the findings of a study of natural gas CCUS technology research and development and discuss their applications to biomass CCUS technology potential. Based on interviews conducted with key stakeholders in CCUS technology development and operations, this presentation will discuss these technical and economic challenges and potential policy opportunities to support commercial scale CCUS deployment. In current domestic and electricity and oil markets, CCUS faces economic challenges for commercial deployment. In particular, the economic viability of CCUS has been impacted by the sustained low oil prices that have limited the potential for enhanced oil recovery (EOR) to serve as a near-term utilization opportunity for the captured CO2. In addition, large scale commercial adoption of CCUS is constrained by regulatory inconsistencies and uncertainties across the United States, high initial capital costs, achieving familiarity with new technology applications to existing markets, developing a successful performance track record to acquire financing agreements, and competing against well-established incumbent technologies. CCUS also has additional technical hurdles for measurement, verification, and reporting within states that have existing policy and regulatory frameworks for climate change mitigation. In addition to fossil-fuel based CCUS, we will discuss emerging opportunities to utilize CCUS fueled by gasified biomass resulting in carbon negative power generation with expanded economic opportunities associated with the enhanced carbon sequestration. Successful technology development of CCUS technology requires a portfolio of research leading to technical advances, advances in financial instruments to leverage the benefits of multiple commodity markets (e.g. natural gas, oil, biomass), and policy instruments that address regulatory hurdles posed CCUS technology deployment.

  10. Advanced In-Pile Instrumentation for Materials Testing Reactors

    NASA Astrophysics Data System (ADS)

    Rempe, J. L.; Knudson, D. L.; Daw, J. E.; Unruh, T. C.; Chase, B. M.; Davis, K. L.; Palmer, A. J.; Schley, R. S.

    2014-08-01

    The U.S. Department of Energy sponsors the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) program to promote U.S. research in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR NSUF facilitates basic and applied nuclear research and development, advancing U.S. energy security needs. A key component of the ATR NSUF effort is to design, develop, and deploy new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. This paper describes the strategy developed by the Idaho National Laboratory (INL) for identifying instrumentation needed for ATR irradiation tests and the program initiated to obtain these sensors. New sensors developed from this effort are identified, and the progress of other development efforts is summarized. As reported in this paper, INL researchers are currently involved in several tasks to deploy real-time length and flux detection sensors, and efforts have been initiated to develop a crack growth test rig. Tasks evaluating `advanced' technologies, such as fiber-optics based length detection and ultrasonic thermometers, are also underway. In addition, specialized sensors for real-time detection of temperature and thermal conductivity are not only being provided to NSUF reactors, but are also being provided to several international test reactors.

  11. Global change technology architecture trade study

    NASA Technical Reports Server (NTRS)

    Garrett, L. Bernard (Editor); Hypes, Warren D. (Editor); Wright, Robert L. (Editor)

    1991-01-01

    Described here is an architecture trade study conducted by the Langley Research Center to develop a representative mix of advanced space science instrumentation, spacecraft, and mission orbits to assist in the technology selection processes. The analyses concentrated on the highest priority classes of global change measurements which are the global climate changes. Issues addressed in the tradeoffs includes assessments of the economics of scale of large platforms with multiple instruments relative to smaller spacecraft; the influences of current and possible future launch vehicles on payload sizes, and on-orbit assembly decisions; and the respective roles of low-Earth versus geostationary Earth orbiting systems.

  12. Deploying Object Oriented Data Technology to the Planetary Data System

    NASA Technical Reports Server (NTRS)

    Kelly, S.; Crichton, D.; Hughes, J. S.

    2003-01-01

    How do you provide more than 350 scientists and researchers access to data from every instrument in Odyssey when the data is curated across half a dozen institutions and in different formats and is too big to mail on a CD-ROM anymore? The Planetary Data System (PDS) faced this exact question. The solution was to use a metadata-based middleware framework developed by the Object Oriented Data Technology task at NASA s Jet Propulsion Laboratory. Using OODT, PDS provided - for the first time ever - data from all mission instruments through a single system immediately upon data delivery.

  13. An Overview of NASA Space Cryocooler Programs--2006

    NASA Technical Reports Server (NTRS)

    Ross, Ronald G., Jr.; Boyle, R. F.

    2006-01-01

    Mechanical cryocoolers represent a significant enabling technology for NASA's Earth and Space Science Enterprises. Many of NASA's space instruments require cryogenic refrigeration to improve dynamic range, extend wavelength coverage, or enable the use of advanced detectors to observe a wide range of phenomena--from crop dynamics to stellar birth. Reflecting the relative maturity of the technology at these temperatures, the largest utilization of coolers over the last fifteen years has been for instruments operating at medium to high cryogenic temperatures (55 to 150K). For the future, important new developments are focusing on the lower temperature range, from 6 to 20 K, in support of studies of the origin of the Universe and the search for planets around distant stars. NASA's development of a 20K cryocooler for the European Planck spacecraft and a 6 K cryocooler for the MIRI instrument on the James Webb Space Telescope (JWST) are examples of the thrust to provide low-temperature cooling for this class of future missions.

  14. Towards non- and minimally instrumented, microfluidics-based diagnostic devices†

    PubMed Central

    Weigl, Bernhard; Domingo, Gonzalo; LaBarre, Paul; Gerlach, Jay

    2009-01-01

    In many health care settings, it is uneconomical, impractical, or unaffordable to maintain and access a fully equipped diagnostics laboratory. Examples include home health care, developing-country health care, and emergency situations in which first responders are dealing with pandemics or biowarfare agent release. In those settings, fully disposable diagnostic devices that require no instrument support, reagent, or significant training are well suited. Although the only such technology to have found widespread adoption so far is the immunochromatographic rapid assay strip test, microfluidics holds promise to expand the range of assay technologies that can be performed in formats similar to that of a strip test. In this paper, we review progress toward development of disposable, low-cost, easy-to-use microfluidics-based diagnostics that require no instrument at all. We also present examples of microfluidic functional elements—including mixers, separators, and detectors—as well as complete microfluidic devices that function entirely without any moving parts and external power sources. PMID:19023463

  15. Normal incidence spectrophotometer using high density transmission grating technology and highly efficiency silicon photodiodes for absolute solar EUV irradiance measurements

    NASA Technical Reports Server (NTRS)

    Ogawa, H. S.; Mcmullin, D.; Judge, D. L.; Korde, R.

    1992-01-01

    New developments in transmission grating and photodiode technology now make it possible to realize spectrometers in the extreme ultraviolet (EUV) spectral region (wavelengths less than 1000 A) which are expected to be virtually constant in their diffraction and detector properties. Time dependent effects associated with reflection gratings are eliminated through the use of free standing transmission gratings. These gratings together with recently developed and highly stable EUV photodiodes have been utilized to construct a highly stable normal incidence spectrophotometer to monitor the variability and absolute intensity of the solar 304 A line. Owing to its low weight and compactness, such a spectrometer will be a valuable tool for providing absolute solar irradiance throughout the EUV. This novel instrument will also be useful for cross-calibrating other EUV flight instruments and will be flown on a series of Hitchhiker Shuttle Flights and on SOHO. A preliminary version of this instrument has been fabricated and characterized, and the results are described.

  16. Office flexible cystoscopy.

    PubMed

    Kavoussi, L R; Clayman, R V

    1988-11-01

    Since the development of the first purpose-built flexible cystoscope in 1984, flexible cystoscopy has become an accepted diagnostic and therapeutic modality. Indeed, it is estimated that more than 10 per cent of practicing urologists are already familiar with this technology. The flexible cystoscope has markedly extended the urologist's ability to examine the bladder, and it has become a valuable adjunct to the rigid cystoscope. Although the operation of this instrument is vastly different from that of its rigid counterpart, with practice, the technique can be learned. After experience is obtained with diagnostic flexible cystoscopy, the urologist will likely prefer this new instrument for bladder inspection, as it provides for a more thorough yet less morbid and less expensive examination. In the future, the development of improved and smaller instrumentation will further extend the therapeutic indications for flexible cystoscopy. Indeed, advances in laser technology are already providing the urologist with 300- to 600-micron (0.9 to 1.8F) flexible probes capable of incision (KTP laser), fulguration (Nd:YAG laser), and stone disintegration (tunable dye laser). Lastly, the skills obtained in using the flexible cystoscope are all readily applicable to the development of dexterity with the already available flexible nephroscope and the more recently developed flexible ureteroscope.

  17. In-Situ XRF Measurements in Lunar Surface Exploration Using Apollo Samples as a Standard

    NASA Technical Reports Server (NTRS)

    Young, Kelsey E.; Evans, C.; Allen, C.; Mosie, A.; Hodges, K. V.

    2011-01-01

    Samples collected during the Apollo lunar surface missions were sampled and returned to Earth by astronauts with varying degrees of geological experience. The technology used in these EVAs, or extravehicular activities, included nothing more advanced than traditional terrestrial field instruments: rock hammer, scoop, claw tool, and sample bags. 40 years after Apollo, technology is being developed that will allow for a high-resolution geochemical map to be created in the field real-time. Handheld x-ray fluorescence (XRF) technology is one such technology. We use handheld XRF to enable a broad in-situ characterization of a geologic site of interest based on fairly rapid techniques that can be implemented by either an astronaut or a robotic explorer. The handheld XRF instrument we used for this study was the Innov-X Systems Delta XRF spectrometer.

  18. development of a neutral mass spectrometer dedicated to the analysis of planetary envelopes (NIMEIS)

    NASA Astrophysics Data System (ADS)

    Becker, J.

    2012-12-01

    LATMOS worked for several years on a newly designed instrument suitable for measuring neutral environments as rarefied exosphere of Mars, Venus, Europa, asteroids or Titan for example. This instrument NIMEIS for Neutral and Ion Mass and Energy Imaging Spectrometer has as main features the ability to measure low densities of neutral but also conduct an analysis of mass and energy in an energy range covering the thermal and suprathermal between ~ 1 eV and 20 eV far unexplored. My thesis is divided into two independent parts. First, we optimize the ionization source, that is an innovative concept, and secondly we design the optics of the instrument based on an electrostatic optimization. The ionization source is based on the use of carbon nanotubes and to extract the electrons and ionize the neutral. Employing this technology we can significantly reduce the power, because previously we were using heated filaments. We develop this technology in close collaboration with a laboratory Ajou University (South Korea) that provides us with carbon nanotubes. I did a simulation study of the mode of extraction of electrons from initial tests, from an assembly developed by our laboratory in South Korea. The instrument has been optimized so that the impact on the detector gives us the one hand the energy of the particle and on the other hand the mass of the particle simultaneously and in continuous time. I developed the optics of the instrument using an electrostatic optical software. A comprehensive numerical model has been defined and a prototype is being manufactured.

  19. CORSAIR-Calibrated Observations of Radiance Spectra from the Atmosphere in the Far- Infrared

    NASA Astrophysics Data System (ADS)

    Mlynczak, M. G.; Johnson, D.; Abedin, N.; Liu, X.; Kratz, D.; Jordan, D.; Wang, J.; Bingham, G.; Latvakoski, H.; Bowman, K.; Kaplan, S.

    2008-12-01

    The CORSAIR project is a new NASA Instrument Incubator Project (IIP) whose primary goal is to develop and demonstrate the necessary technologies to achieve SI-traceable, on-orbit measurements of Earth's spectral radiance in the far-infrared (far-IR). The far-IR plays a vital role in the energy balance of the Earth yet its spectrum has not been comprehensively observed from space for the purposes of climate sensing. The specific technologies being developed under CORSAIR include: passively cooled, antenna-coupled terahertz detectors for the far-IR (by Raytheon Vision Systems); accurately calibrated, SI-traceable blackbody sources for the far-IR (by Space Dynamics Laboratory); and high-performance broad bandpass beamsplitters (by ITT). These technologies complement those already developed under past Langley IIP projects (FIRST; INFLAME) in the areas of Fourier Transform Spectrometers and dedicated far-IR beamsplitters. The antenna-coupled far-IR detectors will be validated in the FIRST instrument at Langley. The SI-traceable far-IR blackbodies will be developed in conjunction with the National Institute of Standards and Technology (NIST). An overview of the CORSAIR technologies will be presented as well as their larger role in the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission. Upon successful completion of CORSAIR these IIP efforts will provide the necessary technologies to achieve the first comprehensive, accurate, high-resolution measurements from a satellite of the far-IR spectrum of the Earth and its atmosphere, enabling major advances in our understanding of Earth's climate.

  20. Early Validity and Reliability Data for Two Instruments Assessing the Predispositions People Have toward Technology Use: Continued Integration of Quantitative and Qualitative Methods.

    ERIC Educational Resources Information Center

    Scherer, Marcia J.; McKee, Barbara G.

    Validity and reliability data are presented for two instruments for assessing the predispositions that people have toward the use of assistive and educational technologies. The two instruments, the Assistive Technology Device Predisposition Assessment (ATDPA) and the Educational Technology Predisposition Assessment (ETPA), are self-report…

  1. Federal Technology Catalog 1982: Summaries of practical technology

    NASA Astrophysics Data System (ADS)

    The catalog presents summaries of practical technology selected for commercial potential and/or promising applications to the fields of computer technology, electrotechnology, energy, engineering, life sciences, machinery and tools, manufacturing, materials, physical sciences, and testing and instrumentation. Each summary not only describes a technology, but gives a source for further information. This publication describes some 1,100 new processes, inventions, equipment, software, and techniques developed by and for dozens of Federal agencies during 1982. Included is coverage of NASA Tech Briefs, DOE Energygrams, and Army Manufacturing Notes.

  2. Can smartphones enhance telephone-based cognitive assessment (TBCA)?

    PubMed

    Kwan, Rick Yiu-Cho; Lai, Claudia Kam-Yuk

    2013-12-12

    TBCA has emerged to solve the limitations of administering cognitive assessments face-to-face. The recent development of telephones and knowledge advances in the area of cognitive impairment may affect the development of TBCA. The purpose of this paper is to discuss how smartphones can be used to enhance the applicability of TBCA, which has previously been administered by conventional telephone. This paper will first review, describe and critique the existing TBCA instruments. It will then discuss the recent developments in tele-technology, the popularity of tele-technology among the elderly, potential benefits and challenges in using smartphones for cognitive assessment, and possible future developments in this technology. In the systematic review, eighteen TBCA instruments were identified. They were found to be valid in differentiating between people with and without dementia. TBCA was previously found to be launched on a conventional telephone platform. The advances in understanding of cognitive impairment may demand that telephones be equipped with more advanced features. Recently, the development and penetration of smartphones among the elderly has been rapid. This may allow the smartphone to enhance its TBCA applicability by overcoming the limitations of the conventional telephone, rendering the TBCA more efficient in addressing the increasing demand and complexity of cognitive assessments in the future. However, more research and technology developments are needed before smartphones can become a valid platform for TBCA.

  3. Development of high resolution NMR spectroscopy as a structural tool

    NASA Astrophysics Data System (ADS)

    Feeney, James

    1992-06-01

    The discovery of the nuclear magnetic resonance (NMR) phenomenon and its development and exploitation as a scientific tool provide an excellent basis for a case-study for examining the factors which control the evolution of scientific techniques. Since the detection of the NMR phenomenon and the subsequent rapid discovery of all the important NMR spectral parameters in the late 1940s, the method has emerged as one of the most powerful techniques for determining structures of molecules in solution and for analysis of complex mixtures. The method has made a dramatic impact on the development of structural chemistry over the last 30 years and is now one of the key techniques in this area. Support for NMR instrumentation attracts a dominant slice of public funding in most scientifically developed countries. The technique is an excellent example of how instrumentation and technology have revolutionised structural chemistry and it is worth exploring how it has been developed so successfully. Clearly its wide range of application and the relatively direct connection between the NMR data and molecular structure has created a major market for the instrumentation. This has provided several competing manufacturers with the incentive to develop better and better instruments. Understanding the complexity of the basics of NMR spectroscopy has been an ongoing challenge attracting the attention of physicists. The well-organised specialist NMR literature and regular scientific meetings have ensured rapid exploitation of any theoretical advances that have a practical relevance. In parallel, the commercial development of the technology has allowed the fruits of such theoretical advances to be enjoyed by the wider scientific community.

  4. AlGaInN laser diode technology for systems applications

    NASA Astrophysics Data System (ADS)

    Najda, S. P.; Perlin, P.; Suski, T.; Marona, L.; Bockowski, M.; Leszczyński, M.; Wisniewski, P.; Czernecki, R.; Kucharski, R.; Targowski, G.; Watson, S.; Kelly, A. E.

    2016-02-01

    Gallium Nitride (GaN) laser diodes fabricated from the AlGaInN material system is an emerging technology that allows laser diodes to be fabricated over a very wide wavelength range from u.v. to the visible, and is a key enabler for the development of new system applications such as (underwater and terrestrial) telecommunications, quantum technologies, display sources and medical instrumentation.

  5. A survey of mass analyzers. [characteristics and features of various instruments and techniques

    NASA Technical Reports Server (NTRS)

    Moore, W. W., Jr.; Tashbar, P. W.

    1973-01-01

    With the increasing applications of mass spectrometry technology to diverse services areas, a need has developed for a consolidated survey of the essential characteristics and features of the various instruments and techniques. This report is one approach to satisfying this need. Information has been collected and consolidated into a format which includes for each approach: (1) a general technique description, (2) instrument features information, and (3) a summary of pertinent advantages and disadvantages. With this information, the potential mass spectrometer user should be able to more efficiently select the most appropriate instrument.

  6. Investigation of Space Based Solid State Coherent Lidar

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin

    2002-01-01

    This report describes the work performed over the period of October 1, 1997 through March 31, 2001. Under this contract, UAH/CAO participated in defining and designing the SPAce Readiness Coherent Lidar Experiment (SPARCLE) mission, and developed the instrument's optical subsystem. This work was performed in collaborative fashion with NASA/MSFC engineers at both UAH/CAO and NASA/MSFC facilities. Earlier work by the UAH/CAO had produced a preliminary top-level system design for the Shuttle lidar instrument meeting the proposed mission performance requirements and the Space Shuttle Hitchhiker canister volume constraints. The UAH/CAO system design efforts had concentrated on the optical and mechanical designs of the instrument. The instrument electronics were also addressed, and the major electronic components and their interfaces defined. The instrument design concept was mainly based on the state of the transmitter and local oscillator laser development at NASA Langley Research Center and Jet Propulsion Laboratory, and utilized several lidar-related technologies that were either developed or evaluated by the NASA/MSFC and UAH/CAO scientists. UAH/CAO has developed a comprehensive coherent lidar numerical model capable of analyzing the performance of different instrument and mission concepts. This model uses the instrument configuration, atmospheric conditions and current velocity estimation theory to provide prediction of instrument performance during different phases of operation. This model can also optimize the design parameters of the instrument.

  7. Research and Technology at the John F. Kennedy Space Center 1993

    NASA Technical Reports Server (NTRS)

    1993-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1993 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as our technology transfer activities. Major areas of research include material science, advanced software, industrial engineering, nondestructive evaluation, life sciences, atmospheric sciences, environmental technology, robotics, and electronics and instrumentation.

  8. Development of a measure of knowledge use by stakeholders in rehabilitation technology

    PubMed Central

    Nobrega, Amanda R; Lane, Joseph P; Tomita, Machiko R; Usiak, Douglas J; Lockett, Michelle M

    2014-01-01

    Objectives: Uptake of new knowledge by diverse and diffuse stakeholders of health-care technology innovations has been a persistent challenge, as has been measurement of this uptake. This article describes the development of the Level of Knowledge Use Survey instrument, a web-based measure of self-reported knowledge use. Methods: The Level of Knowledge Use Survey instrument was developed in the context of assessing effectiveness of knowledge communication strategies in rehabilitation technology. It was validated on samples representing five stakeholder types: researchers, manufacturers, clinician–practitioners, knowledge brokers, and consumers. Its structure is broadly based on Rogers’ stages of innovation adoption. Its item generation was initially guided by Hall et al’s Levels of Use framework. Item selection was based on content validity indices computed from expert ratings (n 1 = 4; n 2 = 3). Five representative stakeholders established usability of the web version. The version included 47 items (content validity index for individual items >0.78; content validity index for a scale or set of items >0.90) in self-reporting format. Psychometrics were then established for the version. Results: Analyses of data from small (n = 69) and large (n = 215) samples using the Level of Knowledge Use Survey instrument suggested a conceptual model of four levels of knowledge use—Non-awareness, Awareness, Interest, and Use. The levels covered eight dimensions and six user action categories. The sequential nature of levels was inconclusive due to low cell frequencies. The Level of Knowledge Use Survey instrument showed adequate content validity (≈ 0.88; n = 3) and excellent test–retest reliability (1.0; n = 69). It also demonstrated good construct validity (n = 215) for differentiating among new knowledge outputs (p < 0.001) and among stakeholder types (0.001 < p ≤ 0.013). It showed strong responsiveness to change between baseline and follow-up testing (0.001 < p ≤ 0.002; n = 215). Conclusion: The Level of Knowledge Use Survey instrument is valid and reliable for measuring uptake of innovations across diffuse stakeholders of rehabilitation technologies and therefore also for tracking changes in knowledge use. PMID:26770743

  9. Towards testing quantum physics in deep space

    NASA Astrophysics Data System (ADS)

    Kaltenbaek, Rainer

    2016-07-01

    MAQRO is a proposal for a medium-sized space mission to use the unique environment of deep space in combination with novel developments in space technology and quantum technology to test the foundations of physics. The goal is to perform matter-wave interferometry with dielectric particles of up to 10^{11} atomic mass units and testing for deviations from the predictions of quantum theory. Novel techniques from quantum optomechanics with optically trapped particles are to be used for preparing the test particles for these experiments. The core elements of the instrument are placed outside the spacecraft and insulated from the hot spacecraft via multiple thermal shields allowing to achieve cryogenic temperatures via passive cooling and ultra-high vacuum levels by venting to deep space. In combination with low force-noise microthrusters and inertial sensors, this allows realizing an environment well suited for long coherence times of macroscopic quantum superpositions and long integration times. Since the original proposal in 2010, significant progress has been made in terms of technology development and in refining the instrument design. Based on these new developments, we submitted/will submit updated versions of the MAQRO proposal in 2015 and 2016 in response to Cosmic-Vision calls of ESA for a medium-sized mission. A central goal has been to address and overcome potentially critical issues regarding the readiness of core technologies and to provide realistic concepts for further technology development. We present the progress on the road towards realizing this ground-breaking mission harnessing deep space in novel ways for testing the foundations of physics, a technology pathfinder for macroscopic quantum technology and quantum optomechanics in space.

  10. NASA Astrophysics Funds Strategic Technology Development

    NASA Astrophysics Data System (ADS)

    Seery, Bernard D.; Ganel, Opher; Pham, Bruce

    2016-01-01

    The COR and PCOS Program Offices (POs) reside at the NASA Goddard Space Flight Center (GSFC), serving as the NASA Astrophysics Division's implementation arm for matters relating to the two programs. One aspect of the PO's activities is managing the COR and PCOS Strategic Astrophysics Technology (SAT) program, helping mature technologies to enable and enhance future astrophysics missions. For example, the SAT program is expected to fund key technology developments needed to close gaps identified by Science and Technology Definition Teams (STDTs) planned to study several large mission concept studies in preparation for the 2020 Decadal Survey.The POs are guided by the National Research Council's "New Worlds, New Horizons in Astronomy and Astrophysics" Decadal Survey report, NASA's Astrophysics Implementation Plan, and the visionary Astrophysics Roadmap, "Enduring Quests, Daring Visions." Strategic goals include dark energy, gravitational waves, and X-ray observatories. Future missions pursuing these goals include, e.g., US participation in ESA's Euclid, Athena, and L3 missions; Inflation probe; and a large UV/Optical/IR (LUVOIR) telescope.To date, 65 COR and 71 PCOS SAT proposals have been received, of which 15 COR and 22 PCOS projects were funded. Notable successes include maturation of a new far-IR detector, later adopted by the SOFIA HAWC instrument; maturation of the H4RG near-IR detector, adopted by WFIRST; development of an antenna-coupled transition-edge superconducting bolometer, a technology deployed by BICEP2/BICEP3/Keck to measure polarization in the CMB signal; advanced UV reflective coatings implemented on the optics of GOLD and ICON, two heliophysics Explorers; and finally, the REXIS instrument on OSIRIS-REx is incorporating CCDs with directly deposited optical blocking filters developed by another SAT-funded project.We discuss our technology development process, with community input and strategic prioritization informing calls for SAT proposals and guiding investment decisions. We also present results of this year's technology gap prioritization and showcase our current portfolio of technology development projects.

  11. Developing an ICT-Literacy Task-Based Assessment Instrument: The Findings on the Final Testing Phase

    ERIC Educational Resources Information Center

    Mat-jizat, Jessnor Elmy

    2013-01-01

    This paper reports the findings of a study which seeks to identify the information and communications technology (ICT) literacy levels of trainee teachers, by investigating their ICT proficiency using a task-bask assessment instrument. The Delphi technique was used as a primary validation method for the new assessment tool and the ICT literacy…

  12. An overview of measurement solutions for digital systems

    NASA Astrophysics Data System (ADS)

    Lemke, D.

    An overview of digital measurement solutions is presented. A summary of the digital instrumentation that is currently available on the commercial market is given. The technology trends that are driving commercial instrumentation suppliers to provide newer and more advanced features and better measurement solutions for the future is reviewed. The implications of developments in design automation for electrical engineers is discussed.

  13. The Impacts of Intrusive Advising on the Persistence of First-Year Science, Technology, and Mathematics Students Identified Using a Risk Prediction Instrument

    ERIC Educational Resources Information Center

    Campbell, Matthew A.

    2013-01-01

    Set in a large, urban, public university, this study explores the use of an institutionally specific risk instrument developed to identify students who had a high risk of attrition and the effectiveness of subsequent interventions deployed through advising. Though implemented throughout the institution, this study identified control and treatment…

  14. 2005 TACOM APBI - Partnering to Reset, Recapitalize and Restructure the Force

    DTIC Science & Technology

    2005-10-28

    training. 28 Oct 05~APBI ~9~ Force Projection ~ Technology Challenges (cont.) Force Sustainment Systems Develop smart airdrop systems using Global... UART ). General Purpose Electronic Test Equipment (GPETE) Transform multiple conventional GPETE instruments into a single Virtual Instrument with a...Consists of tools and equipment to refill and repair carbon dioxide fire extinguishers. Rapid Runway Repair - Components include sand grid sections

  15. Patient Monitoring

    NASA Technical Reports Server (NTRS)

    1978-01-01

    In photo above, the electrocardiogram of a hospitalized patient is being transmitted by telemetry. Widely employed in space operations, telemetry is a process wherein instrument data is converted to electrical signals and sent to a receiver where the signals are reconverted to usable information. In this instance, heart readings are picked up by the electrode attached to the patient's body and delivered by wire to the small box shown, which is a telemetry transmitter. The signals are relayed wirelessly to the console in the background, which converts them to EKG data. The data is displayed visually and recorded on a printout; at the same time, it is transmitted to a central control station (upper photo) where a nurse can monitor the condition of several patients simultaneously. The Patient Monitoring System was developed by SCI Systems, Inc., Huntsville, Alabama, in conjunction with Abbott Medical Electronics, Houston, Texas. In developing the system, SCI drew upon its extensive experience as a NASA contractor. The company applied telemetry technology developed for the Saturn launch vehicle and the Apollo spacecraft; instrumentation technology developed for heart, blood pressure and sleep monitoring of astronauts aboard NASA's Skylab long duration space station; and communications technology developed for the Space Shuttle.

  16. DRG-based hospital payment systems and technological innovation in 12 European countries.

    PubMed

    Scheller-Kreinsen, David; Quentin, Wilm; Busse, Reinhard

    2011-12-01

    To assess how diagnosis-related group-based (DRG-based) hospital payment systems in 12 European countries participating in the EuroDRG project pay and incorporate technological innovation. A standardized questionnaire was used to guide comprehensive DRG system descriptions. Researchers from each country reviewed relevant materials to complete the questionnaire and drafted standardized country reports. Two characteristics of DRG-based hospital payment systems were identified as particularly important: the existence of short-term payment instruments encouraging technological innovation in different countries, and the characteristics of long-term updating mechanisms that assure technological innovation is ultimately incorporated into DRG-based hospital payment systems. Short-term payment instruments and long-term updating mechanisms differ greatly among the 12 European countries included in this study. Some countries operate generous short-term payment instruments that provide additional payments to hospitals for making use of technological innovation (e.g., France). Other countries update their DRG-based hospital payment systems very frequently and use more recent data for updates. Generous short-term payment instruments to promote technological innovation should be applied carefully as they may imply rapidly increasing health-care expenditures. In general, they should be granted only if rigorous analyses have demonstrated their benefits. If the evidence remains uncertain, coverage with evidence development frameworks or frequent updates of the DRG-based hospital systems may provide policy alternatives. Once the data and evidence base is substantially improved, future research should empirically investigate how different policy arrangements affect the adoption and use of technological innovation and health-care expenditures. Copyright © 2011 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  17. AstroBioLab: A Mobile Biotic and Soil Analysis Laboratory

    NASA Technical Reports Server (NTRS)

    Bada, J. L.; Zent, A. P.; Grunthaner, F. J.; Quinn, R. C.; Navarro-Gonzalex, R.; Gonez-Silva, B.; McKay, C. P.

    2003-01-01

    The Jet Propulsion Laboratory, Scripps Institution of Oceanography, and NASA Ames Research Center are currently developing a mobile Astrobiology Laboratory (AstroBioLab) for a series of field campaigns using the Chilean Atacama Desert as a Martian surface analog site. The Astrobiology Science and Technology for Exploring Planets (ASTEP) program funded AstroBioLab is designed around the Mars Organic Detector (MOD) instrument and the Mars Oxidant Instrument (MOI) which provide complementary data sets. Using this suite of Mars Instrument Development Program (MIDP) and Planetary Instrument Definition and Development Program (PIDDP) derived in situ instruments, which provide state-of-the-art organic compound detection (attomolar sensitivity) and depth profiling of oxidation chemistry, we measure and correlate the interplay of organic compounds, inorganic oxidants, UV irradiation and water abundance. This mobile laboratory studies the proposition that intense UV irradiation coupled with low levels of liquid water generates metastable oxidizing species that can consume moderate amounts of seeded organic compounds. Results from the initial spring 2003 field campaign will be presented.

  18. The development of and experiments on electromagnetic measurement while a drilling system is used for deep exploration

    NASA Astrophysics Data System (ADS)

    Lu, Chunhua; Jiang, Guosheng; Wang, Ziqi; Wang, Jiahao; Wang, Chenli

    2016-10-01

    An electromagnetic measurement while drilling system (EM-MWD) can transfer well track state parameters to the ground in real time, which makes it an indispensable technology for deep-hole drilling. This paper introduces the development of and experiments on an EM-MWD system used for deep exploration in the People’s Republic of China. The designed EM-MWD system is composed of a downhole instrument and a ground instrument, and we elaborate on the structural design of the downhole instrument, the design of the transmission and control circuits and the signal modulation. This work also covers the software and hardware design of the ground instrument and signal demodulation technologies. Finally, some indoor signal decoding experiments and some in-hole signal transmission experiments are performed. This study indicates that the designed EM-MWD system can measure information for downhole drilling parameters and send it to the ground effectively, while the ground receiver can decode the signal accurately and reliably, and the desired signal can be obtained. Furthermore, the strength of the received signal is not affected by the polar distance within a certain polar distance.

  19. SOFIA Science Instruments: Commissioning, Upgrades and Future Opportunities

    NASA Technical Reports Server (NTRS)

    Smith, Erin C.

    2014-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is the world's largest airborne observatory, featuring a 2.5 meter telescope housed in the aft section of a Boeing 747sp aircraft. SOFIA's current instrument suite includes: FORCAST (Faint Object InfraRed CAmera for the SOFIA Telescope), a 5-40 µm dual band imager/grism spectrometer developed at Cornell University; HIPO (High-speed Imaging Photometer for Occultations), a 0.3-1.1 micron imager built by Lowell Observatory; FLITECAM (First Light Infrared Test Experiment CAMera), a 1-5 micron wide-field imager/grism spectrometer developed at UCLA; FIFI-LS (Far-Infrared Field-Imaging Line Spectrometer), a 42-210 micron IFU grating spectrograph completed by University Stuttgart; and EXES (Echelon-Cross- Echelle Spectrograph), a 5-28 micron high-resolution spectrometer being completed by UC Davis and NASA Ames. A second generation instrument, HAWC+ (Highresolution Airborne Wideband Camera), is a 50-240 micron imager being upgraded at JPL to add polarimetry and new detectors developed at GSFC. SOFIA will continually update its instrument suite with new instrumentation, technology demonstration experiments and upgrades to the existing instrument suite. This paper details instrument capabilities and status as well as plans for future instrumentation, including the call for proposals for 3rd generation SOFIA science instruments.

  20. An ESA roadmap for geobiology in space exploration

    NASA Astrophysics Data System (ADS)

    Cousins, Claire R.; Cockell, Charles S.

    2016-01-01

    Geobiology, and in particular mineral-microbe interactions, has a significant role to play in current and future space exploration. This includes the search for biosignatures in extraterrestrial environments, and the human exploration of space. Microorganisms can be exploited to advance such exploration, such as through biomining, maintenance of life-support systems, and testing of life-detection instrumentation. In view of these potential applications, a European Space Agency (ESA) Topical Team "Geobiology in Space Exploration" was developed to explore these applications, and identify research avenues to be investigated to support this endeavour. Through community workshops, a roadmap was produced, with which to define future research directions via a set of 15 recommendations spanning three key areas: Science, Technology, and Community. These roadmap recommendations identify the need for research into: (1) new terrestrial space-analogue environments; (2) community level microbial-mineral interactions; (3) response of biofilms to the space environment; (4) enzymatic and biochemical mineral interaction; (5) technical refinement of instrumentation for space-based microbiology experiments, including precursor flight tests; (6) integration of existing ground-based planetary simulation facilities; (7) integration of fieldsite biogeography with laboratory- and field-based research; (8) modification of existing planetary instruments for new geobiological investigations; (9) development of in situ sample preparation techniques; (10) miniaturisation of existing analytical methods, such as DNA sequencing technology; (11) new sensor technology to analyse chemical interaction in small volume samples; (12) development of reusable Lunar and Near Earth Object experimental platforms; (13) utility of Earth-based research to enable the realistic pursuit of extraterrestrial biosignatures; (14) terrestrial benefits and technological spin-off from existing and future space-based geobiology investigations; and (15) new communication avenues between space agencies and terrestrial research organisations to enable this impact to be developed.

  1. A preview of a modular surface light scattering instrument with autotracking optics

    NASA Technical Reports Server (NTRS)

    Meyer, William V.; Tin, Padetha; Mann, J. Adin, Jr.; Cheung, H. Michael; Rogers, Richard B.; Lading, Lars

    1994-01-01

    NASA's Advanced Technology Development (ATD) program is sponsoring the development of a new generation of surface light scattering hardware. This instrument is designed to non-invasively measure the surface response function of liquids over a wide range of operating conditions while automatically compensating for a sloshing surface. The surface response function can be used to compute surface tension, properties of monolayers present, viscosity, surface tension gradient and surface temperature. The instrument uses optical and electronic building blocks developed for the laser light scattering program at NASA Lewis along with several unique surface light scattering components. The emphasis of this paper is the compensation for bulk surface motion (slosh). Some data processing background information is also included.

  2. In-flight performance of the solar UV radiometer LYRA/PROBA-2

    NASA Astrophysics Data System (ADS)

    Stockman, Y.; BenMoussa, A.; Dammasch, I.; Defise, J.-M.; Dominique, M.; Halain, J.-P.; Hochedez, J.-F.; Koller, S.; Schmutz, W.; Schühle, U.

    2017-11-01

    LYRA is a solar radiometer, part of the PROBA-2 micro-satellite payload (Fig. 1). The PROBA-2 [1] mission has been launched on 02 November 2009 with a Rockot launcher to a Sun-synchronous orbit at an altitude of 725 km. Its nominal operation duration is two years with possible extension of 2 years. PROBA-2 is a small satellite developed under an ESA General Support Technology Program (GSTP) contract to perform an in-flight demonstration of new space technologies and support a scientific mission for a set of selected instruments [2]. PROBA-2 host 17 technological demonstrators and 4 scientific instruments. The mission is tracked by the ESA Redu Mission Operation Center. One of the four scientific instruments is LYRA that monitors the solar irradiance at a high cadence (> 20 Hz) in four soft X-Ray to VUV large passbands: the "Lyman-Alpha" channel, the "Herzberg" continuum range, the "Aluminium" and "Zirconium" filter channels. The radiometric calibration is traceable to synchrotron source standards [3]. LYRA benefits from wide bandgap detectors based on diamond. It is the first space assessment of these revolutionary UV detectors for astrophysics. Diamond sensors make the instruments radiation-hard and solar-blind (insensitive to the strong solar visible light) and, therefore, visible light blocking filters become superfluous. To correlate the data of this new detector technology, silicon detectors with well known characteristics are also embarked. Due to the strict allocated mass and power budget (5 kg, 5W), and poor priority to the payload needs on such platform, an optimization and a robustness of the instrument was necessary. The first switch-on occured on 16 November 2009. Since then the instrument performances have been monitored and analyzed during the commissioning period. This paper presents the first-light and preliminary performance analysis.

  3. Automated Miniaturized Instrument for Space Biology Applications and the Monitoring of the Astronauts Health Onboard the ISS

    NASA Technical Reports Server (NTRS)

    Karouia, Fathi; Peyvan, Kia; Danley, David; Ricco, Antonio J.; Santos, Orlando; Pohorille, Andrew

    2011-01-01

    Human space travelers experience a unique environment that affects homeostasis and physiologic adaptation. The spacecraft environment subjects the traveler to noise, chemical and microbiological contaminants, increased radiation, and variable gravity forces. As humans prepare for long-duration missions to the International Space Station (ISS) and beyond, effective measures must be developed, verified and implemented to ensure mission success. Limited biomedical quantitative capabilities are currently available onboard the ISS. Therefore, the development of versatile instruments to perform space biological analysis and to monitor astronauts' health is needed. We are developing a fully automated, miniaturized system for measuring gene expression on small spacecraft in order to better understand the influence of the space environment on biological systems. This low-cost, low-power, multi-purpose instrument represents a major scientific and technological advancement by providing data on cellular metabolism and regulation. The current system will support growth of microorganisms, extract and purify the RNA, hybridize it to the array, read the expression levels of a large number of genes by microarray analysis, and transmit the measurements to Earth. The system will help discover how bacteria develop resistance to antibiotics and how pathogenic bacteria sometimes increase their virulence in space, facilitating the development of adequate countermeasures to decrease risks associated with human spaceflight. The current stand-alone technology could be used as an integrated platform onboard the ISS to perform similar genetic analyses on any biological systems from the tree of life. Additionally, with some modification the system could be implemented to perform real-time in-situ microbial monitoring of the ISS environment (air, surface and water samples) and the astronaut's microbiome using 16SrRNA microarray technology. Furthermore, the current system can be enhanced substantially by combining it with other technologies for automated, miniaturized, high-throughput biological measurements, such as fast sequencing, protein identification (proteomics) and metabolite profiling (metabolomics). Thus, the system can be integrated with other biomedical instruments in order to support and enhance telemedicine capability onboard ISS. NASA's mission includes sustained investment in critical research leading to effective countermeasures to minimize the risks associated with human spaceflight, and the use of appropriate technology to sustain space exploration at reasonable cost. Our integrated microarray technology is expected to fulfill these two critical requirements and to enable the scientific community to better understand and monitor the effects of the space environment on microorganisms and on the astronaut, in the process leveraging current capabilities and overcoming present limitations.

  4. High reflectance coatings for space applications in the EUV

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, Ritva A. M.; Gum, Jeffrey S.; Osantowski, John F.; Fleetwood, Charles M.

    1993-01-01

    Advances in optical coating and materials technology have made possible the development of instruments with substantially improved efficiency and made possible to consider more complex optical designs in the EUV. The importance of recent developments in chemical vapor deposited silicon carbide (CVD-SiC), SiC films and multilayer coatings is discussed in the context of EUV instrumentation design. The EUV performance of these coatings as well as some strengths and problem areas for their use in space will be addressed.

  5. Advanced instrumentation for aeronautical propulsion research

    NASA Technical Reports Server (NTRS)

    Hartmann, M. J.

    1986-01-01

    The development and use of advanced instrumentation and measurement systems are key to extending the understanding of the physical phenomena that limit the advancement of aeropropulsion systems. The data collected by using these systems are necessary to verify numerical models and to increase the technologists' intuition into the physical phenomena. The systems must be versatile enough to allow their use with older technology measurement systems, with computer-based data reduction systems, and with existing test facilities. Researchers in all aeropropulsion fields contribute to the development of these systems.

  6. NASA Astrophysics Cosmic Origins (COR) and Physics of the Cosmos (PCOS) Strategic Technology Development Program

    NASA Astrophysics Data System (ADS)

    Pham, Thai; Seery, Bernard D.

    2015-01-01

    The COR and PCOS Program Offices (PO) reside at the NASA Goddard Space Flight Center (GSFC), serving as the NASA Astrophysics Division's implementation arm for matters relating to the two programs. One aspect of the PO's activities is managing the COR and PCOS Strategic Astrophysics Technology (SAT) program, helping mature technologies to enable and enhance future astrophysics missions.The PO is guided by the National Research Council's 'New Worlds, New Horizons in Astronomy and Astrophysics' Decadal Survey report, and NASA's Astrophysics Implementation Plan. Strategic goals include dark energy; gravitational waves; X-ray observatories, e.g., US participation in ATHENA; Inflation probe; and a large UV/Visible telescope.To date, 51 COR and 65 PCOS SAT proposals have been received, of which 11 COR and 18 PCOS projects were funded. Notable successes include maturation of a new far-IR detector, later adopted by the SOFIA HAWC instrument; maturation of the H4RG near-IR detector, adopted by WFIRST; development of an antenna-coupled transition-edge superconducting bolometer, a technology deployed by BICEP2 that allowed measurement of B-mode polarization in the CMB signal, a possible signature of Inflation; and finally, the REXIS instrument on OSIRIS-REx is incorporating CCDs with directly deposited optical blocking filters developed by another SAT-funded project.We discuss our technology development process, with community input and strategic prioritization informing calls for SAT proposals and guiding investment decisions. We also present results of this year's technology gap prioritization and showcase our current portfolio of technology development projects. These include five newly selected projects, kicking off in FY 2015.For more information, visit the COR Program website at cor.gsfc.nasa.gov and the PCOS website at pcos.gsfc.nasa.gov.

  7. Electronic circuits

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Twenty-nine circuits and circuit techniques developed for communications and instrumentation technology are described. Topics include pulse-code modulation, phase-locked loops, data coding, data recording, detection circuits, logic circuits, oscillators, and amplifiers.

  8. A comparative review of measurement instruments to inform and evaluate effectiveness of disability inclusive development.

    PubMed

    Goujon, Nicolas; Devine, Alexandra; Baker, Sally M; Sprunt, Beth; Edmonds, Tanya J; Booth, Jennifer K; Keeffe, Jill E

    2014-01-01

    A review of existing measurement instruments was conducted to examine their suitability to measure disability prevalence and assess quality of life, protection of disability rights and community participation by people with disabilities, specifically within the context of development programs in low and middle-income countries. From a search of PubMed and the grey literature, potentially relevant measurement instruments were identified and examined for their content and psychometric properties, where possible. Criteria for inclusion were: based on the WHO's International Classification of Functioning Disability and Health (ICF), used quantitative methods, suitable for population-based studies of disability inclusive development in English and published after 1990. Characteristics of existing instruments were analysed according to components of the ICF and quality of life domains. Ten instruments were identified and reviewed according to the criteria listed above. Each version of instruments was analysed separately. Only three instruments included a component on quality of life. Domains from the ICF that were addressed by some but not all instruments included the environment, technology and communication. The measurement instruments reviewed covered the range of elements required to measure disability-inclusion within development contexts. However no single measurement instrument has the capacity to measure both disability prevalence and changes in quality of life according to contemporary disability paradigms. The review of measurement instruments supports the need for developing an instrument specifically intended to measure disability inclusive practice within development programs. Implications for Rehabilitation Surveys and tools are needed to plan disability inclusive development. Existing measurement tools to determine prevalence of disability, wellbeing, rights and access to the community were reviewed. No single validated tool exists for population-based studies, uses quantitative methods and the components of the ICF to measure prevalence of disability, well-being of people with disability and their access to their communities. A measurement tool that reflects the UNCRPD and addresses all components of the ICF is needed to assist in disability inclusive development, especially in low and mid resource countries.

  9. Development of chemistry attitudes and experiences questionnaire (CAEQ)

    NASA Astrophysics Data System (ADS)

    Dalgety, Jacinta; Coll, Richard K.; Jones, Alister

    2003-09-01

    In this article we describe the development of the Chemistry Attitudes and Experiences Questionnaire (CAEQ) that measures first-year university chemistry students' attitude toward chemistry, chemistry self-efficacy, and learning experiences. The instrument was developed as part of a larger study and sought to fulfill a need for an instrument to investigate factors that influence student enrollment choice. We set out to design the instrument in a manner that would maximize construct validity. The CAEQ was piloted with a cohort of science and technology students (n = 129) at the end of their first year. Based on statistical analysis the instrument was modified and subsequently administered on two occasions at two tertiary institutions (n = 669). Statistical data along with additional data gathered from interviews suggest that the CAEQ possesses good construct validity and will prove a useful tool for tertiary level educators who wish to gain an understanding of factors that influence student choice of chemistry enrolment.

  10. Satellite-instrument system engineering best practices and lessons

    NASA Astrophysics Data System (ADS)

    Schueler, Carl F.

    2009-08-01

    This paper focuses on system engineering development issues driving satellite remote sensing instrumentation cost and schedule. A key best practice is early assessment of mission and instrumentation requirements priorities driving performance trades among major instrumentation measurements: Radiometry, spatial field of view and image quality, and spectral performance. Key lessons include attention to technology availability and applicability to prioritized requirements, care in applying heritage, approaching fixed-price and cost-plus contracts with appropriate attention to risk, and assessing design options with attention to customer preference as well as design performance, and development cost and schedule. A key element of success either in contract competition or execution is team experience. Perhaps the most crucial aspect of success, however, is thorough requirements analysis and flowdown to specifications driving design performance with sufficient parameter margin to allow for mistakes or oversights - the province of system engineering from design inception to development, test and delivery.

  11. Overview of NASA Cryocooler Programs

    NASA Technical Reports Server (NTRS)

    Boyle, R. F.; Ross, R. G., Jr.; Krebs, Carolyn A. (Technical Monitor)

    2001-01-01

    Mechanical cryocoolers represent a significant enabling technology for NASA's Earth and Space Science Enterprises, as well as augmenting existing capabilities in space exploration. An over-view is presented of on-going efforts at the Goddard Space Flight Center and the Jet Propulsion Laboratory in support of current flight projects, near-term flight instruments, and long-term technology development.

  12. Validation and Measurement Invariance of the Computer Attitude Measure for Young Students (CAMYS)

    ERIC Educational Resources Information Center

    Asil, Mustafa; Teo, Timothy; Noyes, Jan

    2014-01-01

    Students' attitudes toward technology, especially computers, play a key role in the effective integration of Information and Communication Technologies (ICT). Although numerous attitude scales have been developed to measure attitude toward computers, we found only a few instruments designed for young students aged 11-13 years. Among these attitude…

  13. Measuring Integration of Information and Communication Technology in Education: An Item Response Modeling Approach

    ERIC Educational Resources Information Center

    Peeraer, Jef; Van Petegem, Peter

    2012-01-01

    This research describes the development and validation of an instrument to measure integration of Information and Communication Technology (ICT) in education. After literature research on definitions of integration of ICT in education, a comparison is made between the classical test theory and the item response modeling approach for the…

  14. Usage, Barriers, and Training of Web 2.0 Technology Applications

    ERIC Educational Resources Information Center

    Pritchett, Christopher G.; Pritchett, Christal C.; Wohleb, Elisha C.

    2013-01-01

    This research study was designed to determine the degree of use of Web 2.0 technology applications by certified education professionals and examine differences among various groups as well as reasons for these differences. A quantitative survey instrument was developed to gather demographic information and data. Participants reported they would be…

  15. Evaluating ATM Technology for Distance Education in Library and Information Science.

    ERIC Educational Resources Information Center

    Stanford, Serena W.

    1997-01-01

    Investigates the impact of asynchronous transfer mode (ATM) technology in an interactive environment providing distance education in library and information science at two San Jose State University (California) sites. The main purpose of the study was to develop a reliable and valid evaluation instrument. Contains 6 tables. (Author/AEF)

  16. Development of a versatile laser light scattering instrument

    NASA Astrophysics Data System (ADS)

    Meyer, William V.; Ansari, Rafat R.

    1990-10-01

    A versatile laser light scattering (LLS) instrument is developed for use in microgravity to measure microscopic particles of 30 A to above 3 microns. Since it is an optical technique, LLS does not affect the sample being studied. A LLS instrument built from modules allows several configurations, each optimized for a particular experiment. The multiangle LLS instrument can be mounted in the rack in the Space Shuttle and on Space Station Freedom. It is possible that a Space Shuttle glove-box and a lap-top computer containing a correlator card can be used to perform a number of experiments and to demonstrate the technology needed for more elaborate investigations. This offers simple means of flying a great number of experiments without the additional requirements of full-scale flight hardware experiments.

  17. Development of a versatile laser light scattering instrument

    NASA Technical Reports Server (NTRS)

    Meyer, William V.; Ansari, Rafat R.

    1990-01-01

    A versatile laser light scattering (LLS) instrument is developed for use in microgravity to measure microscopic particles of 30 A to above 3 microns. Since it is an optical technique, LLS does not affect the sample being studied. A LLS instrument built from modules allows several configurations, each optimized for a particular experiment. The multiangle LLS instrument can be mounted in the rack in the Space Shuttle and on Space Station Freedom. It is possible that a Space Shuttle glove-box and a lap-top computer containing a correlator card can be used to perform a number of experiments and to demonstrate the technology needed for more elaborate investigations. This offers simple means of flying a great number of experiments without the additional requirements of full-scale flight hardware experiments.

  18. Latest trends in craniomaxillofacial surgical instrumentation.

    PubMed

    Yim, Michael; Demke, Joshua

    2012-08-01

    To review the past year's literature regarding recent innovations in surgical instrumentation for craniomaxillofacial surgery. Current advances in surgical instrumentation have led to many improvements in the field, allowing greater visualization and precision both before and during procedures. One of the common goals is to achieve excellent outcomes with minimal complications, while at the same time minimizing invasiveness of surgery. Highlighted innovations include greater capacities for acquisition of data, leading to improved imaging modalities and expansion of computer-assisted surgical techniques; continued developments in biomaterials used in various reconstructions; and novel uses of bone cutting and bone fixation instrumentation. Technology in the field of craniomaxillofacial surgery is developing rapidly, leading to novel instrumentation being utilized across a broad spectrum of areas. Published data have been encouraging to date, indicating an ever increasing adaptation of these innovations in clinical practice. Future efforts need to focus on cost-benefit analysis and constructing larger-scale studies to better understand effectiveness and patient outcomes.

  19. Design and Development of a Scanning Airborne Direct Detection Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce; McGill, Matthew; Schwemmer, Geary; Hardesty, Michael; Brewer, Alan; Wilkerson, Thomas; Atlas, Robert; Sirota, Marcos; Lindemann, Scott

    2006-01-01

    In the fall of 2005 we began developing an airborne scanning direct detection molecular Doppler lidar. The instrument is being built as part of the Tropospheric Wind Lidar Technology Experiment (TWiLiTE), a three year project selected by the NASA Earth Sun Technology Office under the Instrument Incubator Program. The TWiLiTE project is a collaboration involving scientists and engineers from NASA Goddard Space Flight Center, NOAA ESRL, Utah State University Space Dynamics Lab, Michigan Aerospace Corporation and Sigma Space Corporation. The TWiLiTE instrument will leverage significant research and development investments made by NASA Goddard and it's partners in the past several years in key lidar technologies and sub-systems (lasers, telescopes, scanning systems, detectors and receivers) required to enable spaceborne global wind lidar measurement. These sub-systems will be integrated into a complete molecular direct detection Doppler wind lidar system designed for autonomous operation on a high altitude aircraft, such as the NASA WB57. The WB57 flies at an altitude of 18 km and from this vantage point the nadir viewing Doppler lidar will be able to profile winds through the full troposphere. The TWiLiTE integrated airborne Doppler lidar instrument will be the first demonstration of a airborne scanning direct detection Doppler lidar and will serve as a critical milestone on the path to a future spaceborne tropospheric wind system. In addition to being a technology testbed for space based tropospheric wind lidar, when completed the TWiLiTE high altitude airborne lidar will be used for studying mesoscale dynamics and storm research (e.g. winter storms, hurricanes) and could be used for calibration and validation of satellite based wind systems such as ESA's Aeolus Atmospheric Dynamics Mission. The TWiLiTE Doppler lidar will have the capability to profile winds in clear air from the aircraft altitude of 18 km to the surface with 250 m vertical resolution and < 2mls velocity accuracy.

  20. INVESTIGATION OF RESPONSE DIFFERENCES BETWEEN ...

    EPA Pesticide Factsheets

    Total organic carbon (TOC) and dissolved organic carbon (DOC) have long been used to estimate the amount of natural organic matter (NOM) found in raw and finished drinking water. In recent years, computer automation and improved instrumental analysis technologies have created a variety of TOC instrument systems. However, the amount of organic carbon (OC) measured in a sample has been found to depend upon the way a specific TOC instrument treats the sample and the way the OC is calculated and reported. Specifically, relative instrument response differences for TOC/DOC, ranging between 15 to 62%, were documented when five different source waters were each analyzed by five different TOC instrument systems operated according to the manufacturer's specifications. Problems and possible solutions for minimizing these differences are discussed. Establish optimum performance criteria for current TOC technologies for application to Stage 2 D/DBP Rule.Develop a TOC and SUVA (incorporating DOC and UV254) method to be published in the Stage 2 D/DBP Rule that will meet requirements as stated in the Stage 1 D/DBP Rule (Revise Method 415.3,

  1. Design and Requirements Creep In A Build-To-Print Mission

    NASA Technical Reports Server (NTRS)

    Peabody, Sharon A.; Otero, Veronica

    2017-01-01

    Build-to-Print designs, or rebuilds of flight proven designs, are attractive to mission stakeholders, as they give the appearance of minimal engineering development cost, risk, and schedule. The reality is that seldom is a project an exact duplicate of a predecessor. Mission reclassification, improvements in hardware, and science objective changes can all serve as a source of requirements and design creep and have ramifications often not fully anticipated during initial proposals. The Thermal Infrared Sensor Instrument (TIRS) was a late addition to the LandSat-8 program to provide infrared imaging to measure evapotranspiration for water cycle management. To meet the launch requirements for LandSat-8, instrument design life requirements were relaxed, the sensor development expedited, and technology development was minimized. Consequently, TIRS was designed as a higher risk instrument, with less redundancy than an instrument critical to mission success. After the successful LandSat-8 launch in 2013 and instrument performance, a rebuild of the instrument for the next LandSat spacecraft was included in the baseline mission success criteria. This paper discusses the technical challenges encountered during the rebuild of the TIRS-2 (Thermal Infrared Sensor 2) instrument and the resultant impacts on the thermal system design.

  2. Thirty Years of Innovation in Seismology with the IRIS Consortium

    NASA Astrophysics Data System (ADS)

    Sumy, D. F.; Woodward, R.; Aderhold, K.; Ahern, T. K.; Anderson, K. R.; Busby, R.; Detrick, R. S.; Evers, B.; Frassetto, A.; Hafner, K.; Simpson, D. W.; Sweet, J. R.; Taber, J.

    2015-12-01

    The United States academic seismology community, through the National Science Foundation (NSF)-funded Incorporated Research Institutions for Seismology (IRIS) Consortium, has promoted and encouraged a rich environment of innovation and experimentation in areas such as seismic instrumentation, data processing and analysis, teaching and curriculum development, and academic science. As the science continually evolves, IRIS helps drive the market for new research tools that enable science by establishing a variety of standards and goals. This has often involved working directly with manufacturers to better define the technology required, co-funding key development work or early production prototypes, and purchasing initial production runs. IRIS activities have helped establish de-facto international standards and impacted the commercial sector in areas such as seismic instrumentation, open-access data management, and professional development. Key institutional practices, conducted and refined over IRIS' thirty-year history of operations, have focused on open-access data availability, full retention of maximum-bandwidth, continuous data, and direct community access to state-of-the-art seismological instrumentation and software. These practices have helped to cultivate and support a thriving commercial ecosystem, and have been a key element in the professional development of multiple generations of seismologists who now work in both industry and academia. Looking toward the future, IRIS is increasing its engagement with industry to better enable bi-directional exchange of techniques and technology, and enhancing the development of tomorrow's workforce. In this presentation, we will illustrate how IRIS has promoted innovations grown out of the academic community and spurred technological advances in both academia and industry.

  3. Study and simulation results for video landmark acquisition and tracking technology (Vilat-2)

    NASA Technical Reports Server (NTRS)

    Lowrie, J. W.; Tietz, J. C.; Thomas, H. M.; Gremban, K. D.; Hughes, C.; Chang, C. Y.

    1983-01-01

    The results of several investigations and hardware developments which supported new technology for Earth feature recognition and classification are described. Data analysis techniques and procedures were developed for processing the Feature Identification and Location Experiment (FILE) data. This experiment was flown in November 1981, on the second Shuttle flight and a second instrument, designed for aircraft flights, was flown over the United States in 1981. Ground tests were performed to provide the basis for designing a more advanced version (four spectral bands) of the FILE which would be capable of classifying clouds and snow (and possibly ice) as distinct features, in addition to the features classified in the Shuttle experiment (two spectral bands). The Shuttle instrument classifies water, bare land, vegetation, and clouds/snow/ice (grouped).

  4. KENNEDY SPACE CENTER, FLA. - The apparatus shown was designed to hold microcapsules for research on mission STS-107. It is one over several included in the Commercial ITA Biomedical Experiments payload. The box was recently recovered during the search for Columbia debris. The drug delivery system and spaceflight hardware was developed jointly by JSC, the Institute for Research Inc. and Instrumentation Technology Associates Inc. to conduct microencapsulation experiments under microgravity conditions.

    NASA Image and Video Library

    2003-05-06

    KENNEDY SPACE CENTER, FLA. - The apparatus shown was designed to hold microcapsules for research on mission STS-107. It is one over several included in the Commercial ITA Biomedical Experiments payload. The box was recently recovered during the search for Columbia debris. The drug delivery system and spaceflight hardware was developed jointly by JSC, the Institute for Research Inc. and Instrumentation Technology Associates Inc. to conduct microencapsulation experiments under microgravity conditions.

  5. Demonstration of high contrast with an obscured aperture with the WFIRST-AFTA shaped pupil coronagraph

    NASA Astrophysics Data System (ADS)

    Cady, Eric; Prada, Camilo Mejia; An, Xin; Balasubramanian, Kunjithapatham; Diaz, Rosemary; Kasdin, N. Jeremy; Kern, Brian; Kuhnert, Andreas; Nemati, Bijan; Poberezhskiy, Ilya; Eldorado Riggs, A. J.; Zimmer, Robert; Zimmerman, Neil

    2016-01-01

    The coronagraph instrument on the Wide-Field Infrared Survey Telescope-Astrophysics-Focused Telescope Asset (WFIRST-AFTA) mission study has two coronagraphic architectures, shaped pupil and hybrid Lyot, which may be interchanged for use in different observing scenarios. Each architecture relies on newly developed mask components to function in the presence of the AFTA aperture, and so both must be matured to a high technology readiness level in advance of the mission. A series of milestones were set to track the development of the technologies required for the instrument; we report on completion of WFIRST-AFTA coronagraph milestone 2-a narrowband 10-8 contrast test with static aberrations for the shaped pupil-and the plans for the upcoming broadband coronagraph milestone 5.

  6. Development of the Astrobee F sounding rocket system.

    NASA Technical Reports Server (NTRS)

    Jenkins, R. B.; Taylor, J. P.; Honecker, H. J., Jr.

    1973-01-01

    The development of the Astrobee F sounding rocket vehicle through the first flight test at NASA-Wallops Station is described. Design and development of a 15 in. diameter, dual thrust, solid propellant motor demonstrating several new technology features provided the basis for the flight vehicle. The 'F' motor test program described demonstrated the following advanced propulsion technology: tandem dual grain configuration, low burning rate HTPB case-bonded propellant, and molded plastic nozzle. The resultant motor integrated into a flight vehicle was successfully flown with extensive diagnostic instrumentation.-

  7. The Future of Single- to Multi-band Detector Technologies: Review

    NASA Technical Reports Server (NTRS)

    Abedin, M. Nurul; Bhat, Ishwara; Gunapala, Sarath D.; Bandara, Sumith V.; Refaat, Tamer F.; Sandford, Stephen P.; Singh, Upendra N.

    2006-01-01

    Using classical optical components such as filters, prisms and gratings to separate the desired wavelengths before they reach the detectors results in complex optical systems composed of heavy components. A simpler system will result by utilizing a single optical system and a detector that responds separately to each wavelength band. Therefore, a continuous endeavors to develop the capability to reliably fabricate detector arrays that respond to multiple wavelength regions. In this article, we will review the state-of-the-art single and multicolor detector technologies over a wide spectral-range, for use in space-based and airborne remote sensing applications. Discussions will be focused on current and the most recently developed focal plane arrays (FPA) in addition to emphasizing future development in UV-to-Far infrared multicolor FPA detectors for next generation space-based instruments to measure water vapor and greenhouse gases. This novel detector component will make instruments designed for these critical measurements more efficient while reducing complexity and associated electronics and weight. Finally, we will discuss the ongoing multicolor detector technology efforts at NASA Langley Research Center, Jet Propulsion Laboratory, Rensselaer Polytechnic Institute, and others.

  8. WFIRST Coronagraph Technology Development Testbeds: Status and Recent Testbed Results

    NASA Astrophysics Data System (ADS)

    Shi, Fang; An, Xin; Balasubramanian, Kunjithapatham; cady, eric; Gordon, Brian; Greer, Frank; Kasdin, N. Jeremy; Kern, Brian; Lam, Raymond; Marx, David; Moody, Dwight; Patterson, Keith; Poberezhskiy, Ilya; mejia prada, camilo; Gersh-Range, Jessica; Eldorado Riggs, A. J.; Seo, Byoung-Joon; Shields, Joel; Sidick, Erkin; Tang, Hong; Trauger, John Terry; Truong, Tuan; White, Victor; Wilson, Daniel; Zhou, Hanying; JPL WFIRST Testbed Team, Princeton University

    2018-01-01

    As a part of technology development for the WFIRST coronagraph instrument (CGI), dedicated testbeds are built and commissioned at JPL. The coronagraph technology development testbeds include the Occulting Mask Coronagraph (OMC) testbed, the Shaped Pupil Coronagraph/Integral Field Spectrograph (SPC/IFS) testbed, and the Vacuum Surface Gauge (VSG) testbed. With its configuration similar to the WFIRST flight coronagraph instrument the OMC testbed consists of two coronagraph modes, Shaped Pupil Coronagraph (SPC) and Hybrid Lyot Coronagraph (HLC), a low order wavefront sensor (LOWFS), and an optical telescope assembly (OTA) simulator which can generate realistic LoS drift and jitter as well as low order wavefront error that would be induced by the WFIRST telescope’s vibration and thermal changes. The SPC/IFS testbed is a dedicated testbed to test the IFS working with a Shaped Pupil Coronagraph while the VSG testbed is for measuring and calibrating the deformable mirrors, a key component used for WFIRST CGI's wavefront control. In this poster, we will describe the testbed functions and status as well as the highlight of the latest testbed results from OMC, SPC/IFS and VSG testbeds.

  9. Way Forward for High Performance Payload Processing Development

    NASA Astrophysics Data System (ADS)

    Notebaert, Olivier; Franklin, John; Lefftz, Vincent; Moreno, Jose; Patte, Mathieu; Syed, Mohsin; Wagner, Arnaud

    2012-08-01

    Payload processing is facing technological challenges due to the large increase of performance requirements of future scientific, observation and telecom missions as well as the future instruments technologies capturing much larger amount of data. For several years, with the perspective of higher performance together with the planned obsolescence of solutions covering the current needs, ESA and the European space industry has been developing several technology solutions. Silicon technologies, radiation mitigation techniques and innovative functional architectures are developed with the goal of designing future space qualified processing devices with a much higher level of performance than today. The fast growing commercial market application have developed very attractive technologies but which are not fully suitable with respect to their tolerance to space environment. Without the financial capacity to explore and develop all possible technology paths, a specific and global approach is required to cover the future mission needs and their necessary performance targets with effectiveness.The next sections describe main issues and priorities and provides further detailed relevant for this approach covering the high performance processing technology.

  10. CFRP solutions for the innovative telescopes design

    NASA Astrophysics Data System (ADS)

    Rampini, Francesco; Marchiori, Gianpietro

    2006-02-01

    The new frontiers of the research in the astronomic field require the use of more and more advanced high-performance structures. Only an adequate technological innovation of conventional telescopes and radio-telescopes allow to obtain structures able to meet the new specification of the projects. Besides, technological innovation is founded not only on the identification of more and more sophisticated mechanisms and optical instruments, but also on the development of new materials and manufacturing processes for the entire structure that constitute an instrument such as a telescope or a radio-telescope. Among these materials, the use of the carbon fibre is highly important. This material, which is already widely used in the aerospace and automotive fields, shall join also the astronomic field for ground instruments. Thanks to the experience acquired with instruments like ALMA, the industry of composites is now able to guarantee different solutions at relatively low costs that allow the instruments of new generation to move extremely important steps in the development of scientific research. Not just materials, but also processes, through which the materials are worked and manufactured, are extremely important. The use of technologies, such as hand lay-up vacuum bag, compression moulding, table rolling of composite tubes, filament winding, poltrusion and Resin Transfer Moulding (RTM), allow to identify the ideal solution both for big dimension objects, such as backup structure, main mirror structure of quadripod legs, and relatively small objects, such as actuators, adjusters system, etc. The wide choice, concerning the use of composite materials, and their techniques of production, allow the technicians to satisfy the exigencies of astronomers be they addressed to simple control of the weights or of the stiffness of the structures, or to specific thermal behaviour of the piece itself.

  11. Isotope Ratio Mass Spectrometry and Shale Gas - What Is Possible with Current Technology?

    NASA Astrophysics Data System (ADS)

    Barrie, C. D.; Kasson, A.

    2014-12-01

    With ever increasing exploration and exploitation of 'unconventional' hydrocarbon resources, the drive to understand the origins, history and importance of these resources and their effects on the surrounding environment (i.e. ground waters) has never been more important. High-throughput, high-precision isotopic measurements are therefore a key tool in this industry to both understand the gas generated and monitor the development and stability of wells through time. With the advent of cavity ringdown spectroscopy (CRDS) instrumentation, there has been a push in some applications - environmental & atmospheric - to gather more and more data directly at the location of collection or at dedicated field stations. Furthermore, CRDS has resulted in users seeking greater autonomy of instrumentation and so-called black box technology. Traditionally IRMS technology has not met any of these demands, requiring very specific and extensive footprint, power and environmental requirements. This has meant that the 'Oil & Gas' sector, which for natural gases measurements requires GC-IRMS technology - not possible via CRDS - loses time, money and manpower as samples get sent to central facility or contract labs with potentially long lee times. However, recent developments in technology mean that IRMS systems exist which are benchtop, have much lower power requirements, standard power connections and as long as housed in a temperature controlled field stations can be deployed anywhere. Furthermore, with advances in electronics and software IRMS systems are approaching the black box level of newer instrumentation while maintaining the flexibility and abilities of isotope ratio mass spectrometry. This presentation will outline changes in IRMS technology applicable to the Oil & Gas industry, discuss the feasibility of true 'field' deployability and present results from a range of Oil & Gas samples.

  12. Development of the Variable Emittance Thermal Suite for the Space Technology 5 Microsatellite

    NASA Technical Reports Server (NTRS)

    Douglas, Donya M.; Swanson, Theodore; Osiander, Robert; Champion, John; Darrin, Ann Garrison; Biter, William; Chandrasekhar, Prasanna; Obenschain, Arthur (Technical Monitor)

    2001-01-01

    The advent of very small satellites, such as nano and microsatellites, logically leads to a requirement for smaller thermal control subsystems. In addition, the thermal control needs of the smaller spacecraft/instrument may well be different from more traditional situations. For example, power for traditional heaters may be very limited or unavailable, mass allocations may be severely limited, and fleets of nano/microsatellites will require a generic thermal design as the cost of unique designs will be prohibitive. Some applications may require significantly increased power levels while others may require extremely low heat loss for extended periods. Small spacecraft will have low thermal capacitance thus subjecting them to large temperature swings when either the heat generation rate changes or the thermal sink temperature changes. This situation, combined with the need for tighter temperature control, will present a challenging situation during transient operation. The use of "off-the-shelf" commercial spacecraft buses for science instruments will also present challenges. Older thermal technology, such as heaters, thermostats, and heat pipes, will almost certainly not be sufficient to meet the requirements of these new spacecraft/instruments. They are generally too heavy, not scalable to very small sizes, and may consume inordinate amounts of power. Hence there is a strong driver to develop new technology to meet these emerging needs. Variable emittance coatings offer an exciting alternative to traditional control methodologies and are one of the technologies that will be flown on Space Technology 5, a mission of three microsatellites designed to validate "enabling" technologies. Several studies have identified variable emittance coatings as applicable to a wide range of spacecraft, and to potentially offer substantial savings in mass and/or power over traditional approaches. This paper discusses the development of the variable emittance thermal suite for ST-5. More specifically, it provides a description of and the infusion and validation plans for the variable emittance coatings.

  13. Hacking for astronomy: can 3D printers and open-hardware enable low-cost sub-/millimeter instrumentation?

    NASA Astrophysics Data System (ADS)

    Ferkinhoff, Carl

    2014-07-01

    There have been several exciting developments in the technologies commonly used n in the hardware hacking community. Advances in low cost additive-manufacturing processes (i.e. 3D-printers) and the development of openhardware projects, which have produced inexpensive and easily programmable micro-controllers and micro-computers (i.e. Arduino and Raspberry Pi) have opened a new door for individuals seeking to make their own devices. Here we describe the potential for these technologies to reduce costs in construction and development of submillimeter/millimeter astronomical instrumentation. Specifically we have begun a program to measure the optical properties of the custom plastics used in 3D-printers as well as the printer accuracy and resolution to assess the feasibility of directly printing sub- /millimeter transmissive optics. We will also discuss low cost designs for cryogenic temperature measurement and control utilizing Arduino and Raspberry Pi.

  14. Developing Computer-Assisted Instruction Multimedia For Educational Technology Course of Coastal Area Students

    NASA Astrophysics Data System (ADS)

    Idris, Husni; Nurhayati, Nurhayati; Satriani, Satriani

    2018-05-01

    This research aims to a) identify instructional software (interactive multimedia CDs) by developing Computer-Assisted Instruction (CAI) multimedia that is eligible to be used in the instruction of the Educational Technology course; b) analysis the role of instructional software (interactive multimedia CDs) on the Educational Technology course through the development of Computer-Assisted Instruction (CAI) multimedia to improve the quality of education and instructional activities. This is Research and Development (R&D). It employed the descriptive procedural model of development, which outlines the steps to be taken to develop a product, which is instructional multimedia. The number of subjects of the research trial or respondents for each stage was 20 people. To maintain development quality, an expert in materials outside the materials under study, an expert in materials who is also a Educational Technology lecturer, a small groupof 3 students, a medium-sized group of 10 students, and 20 students to participate in the field testing took part in this research. Then, data collection instruments were developed in two stages, namely: a) developing the instruments; and b) trying out instruments. Data on students’ responses were collected using questionnaires and analyzed using descriptive statistics with percentage and categorization techniques. Based on data analysis results, it is revealed that the Computer-Assisted Instruction (CAI) multimedia developed and tried out among students during the preliminary field testing falls into the “Good” category, with the aspects of instruction, materials, and media falling into the “Good” category. Subsequently, results of the main field testing among students also suggest that it falls into the “Good” category, with the aspects of instruction, materials, and media falling into the “Good” category. Similarly, results of the operational field testing among students also suggest that it falls into the “Good” category. Thus, it can be concluded that quality of the Computer-Assisted Instruction (CAI) multimedia developed in this research falls into the “Good” category viewed from the aspects of instruction, materials, and media. In other words, overall, the quality of this multimedia belongs to the “Good” category.

  15. Report of the Power Sub systems Panel. [spacecraft instrumentation technology

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Problems in spacecraft power system design, testing, integration, and operation are identified and solutions are defined. The specific technology development problems discussed include substorm and plasma design data, modeling of the power subsystem and components, power system monitoring and degraded system management, rotary joints for transmission of power and signals, nickel cadmium battery manufacturing and application, on-array power management, high voltage technology, and solar arrays.

  16. Assessment Inventories, Surveys, and Templates for Evaluating Educational Technology Regional and Local Assistance Programs. Phase IV of the Comprehensive Study of Educational Technology Programs Authorized from 1984-1992.

    ERIC Educational Resources Information Center

    Far West Lab. for Educational Research and Development, San Francisco, CA.

    This report on Phase IV, of a four-phase study, provided for the development of evaluation templates and instruments to be used by the California Department of Education to facilitate systematic assessment of state funded educational technology programs and projects. These assessment documents comprised the major data collection sources for the…

  17. [Pay attention to the standardized application of new techniques in surgical treatment of thyroid disease].

    PubMed

    Tian, W; Xi, H Q; Wang, B

    2017-08-01

    The continuous development and application of new technology in thyroid surgery has promoted the rapid improvement of thyroid surgery. New technology in the field of thyroid surgery has developed rapidly. The application of neural monitoring technology has enabled the thyroid surgery to enter an accurate era. Imtraoperative neuromonitoring and continuous intraoperative neuromonitoring have made the recurrent laryngeal nerve protection more secure. Nano-carbon parathyroid gland negative imaging technology could identify parathyroid gland more precise. However, when the nano-carbon was used, the injection time, position and dosage should be grasped so as to achieve the best effect of negative imaging. Endoscopic and robotic thyroid surgery could meet the demand of cosmetic. "Treatment first, beauty second" is still the principle to be strictly followed. Do not blindly expand indications and pursue endoscopic surgery. Energy surgical instruments' update made the operation more efficient, while the instruments have some disadvantages. Thyroid surgeon must correctly understand the working principle of new energy devices and use them rationally. Through grasping the working principle and application skills of new technology in clinical work, definiting its advantages and disadvantages, adhereing to the "reasonable choice, standard application" principle, learning the pioneers' experience, the application of new thyroid diagnosis and treatment technology could be more reasonable and safe.

  18. Development of Laser, Detector, and Receiver Systems for an Atmospheric CO2 Lidar Profiling System

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Koch, Grady; Abedin, Nurul; Refaat, Tamer; Rubio, Manuel; Singh, Upendra

    2008-01-01

    A ground-based Differential Absorption Lidar (DIAL) is being developed with the capability to measure range-resolved and column amounts of atmospheric CO2. This system is also capable of providing high-resolution aerosol profiles and cloud distributions. It is being developed as part of the NASA Earth Science Technology Office s Instrument Incubator Program. This three year program involves the design, development, evaluation, and fielding of a ground-based CO2 profiling system. At the end of a three-year development this instrument is expected to be capable of making measurements in the lower troposphere and boundary layer where the sources and sinks of CO2 are located. It will be a valuable tool in the validation of NASA Orbiting Carbon Observatory (OCO) measurements of column CO2 and suitable for deployment in the North American Carbon Program (NACP) regional intensive field campaigns. The system can also be used as a test-bed for the evaluation of lidar technologies for space-application. This DIAL system leverages 2-micron laser technology developed under a number of NASA programs to develop new solid-state laser technology that provides high pulse energy, tunable, wavelength-stabilized, and double-pulsed lasers that are operable over pre-selected temperature insensitive strong CO2 absorption lines suitable for profiling of lower tropospheric CO2. It also incorporates new high quantum efficiency, high gain, and relatively low noise phototransistors, and a new receiver/signal processor system to achieve high precision DIAL measurements.

  19. Sodium-NaK engineering handbook. Volume III. Sodium systems, safety, handling, and instrumentation. [LMFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foust, O J

    1978-01-01

    The handbook is intended for use by present and future designers in the Liquid Metals Fast Breeder Reactor (LMFBR) Program and by the engineering and scientific community performing other type investigation and exprimentation requiring high-temperature sodium and NaK technology. The arrangement of subject matter progresses from a technological discussion of sodium and sodium--potassium alloy (NaK) to discussions of varius categories and uses of hardware in sodium and NaK systems. Emphasis is placed on sodium and NaK as heat-transport media. Sufficient detail is included for basic understanding of sodium and NaK technology and of technical aspects of sodium and NaK componentsmore » and instrument systems. Information presented is considered adequate for use in feasibility studies and conceptual design, sizing components and systems, developing preliminary component and system descriptions, identifying technological limitations and problem areas, and defining basic constraints and parameters.« less

  20. A Review of Assistive Listening Device and Digital Wireless Technology for Hearing Instruments

    PubMed Central

    Kim, Chun Hyeok

    2014-01-01

    Assistive listening devices (ALDs) refer to various types of amplification equipment designed to improve the communication of individuals with hard of hearing to enhance the accessibility to speech signal when individual hearing instruments are not sufficient. There are many types of ALDs to overcome a triangle of speech to noise ratio (SNR) problems, noise, distance, and reverberation. ALDs vary in their internal electronic mechanisms ranging from simple hard-wire microphone-amplifier units to more sophisticated broadcasting systems. They usually use microphones to capture an audio source and broadcast it wirelessly over a frequency modulation (FM), infra-red, induction loop, or other transmission techniques. The seven types of ALDs are introduced including hardwire devices, FM sound system, infra-red sound system, induction loop system, telephone listening devices, television, and alert/alarm system. Further development of digital wireless technology in hearing instruments will make possible direct communication with ALDs without any accessories in the near future. There are two technology solutions for digital wireless hearing instruments improving SNR and convenience. One is near-field magnetic induction combined with Bluetooth radio frequency (RF) transmission or proprietary RF transmission and the other is proprietary RF transmission alone. Recently launched digital wireless hearing aid applying this new technology can communicate from the hearing instrument to personal computer, phones, Wi-Fi, alert systems, and ALDs via iPhone, iPad, and iPod. However, it comes with its own iOS application offering a range of features but there is no option for Android users as of this moment. PMID:25566400

  1. A review of assistive listening device and digital wireless technology for hearing instruments.

    PubMed

    Kim, Jin Sook; Kim, Chun Hyeok

    2014-12-01

    Assistive listening devices (ALDs) refer to various types of amplification equipment designed to improve the communication of individuals with hard of hearing to enhance the accessibility to speech signal when individual hearing instruments are not sufficient. There are many types of ALDs to overcome a triangle of speech to noise ratio (SNR) problems, noise, distance, and reverberation. ALDs vary in their internal electronic mechanisms ranging from simple hard-wire microphone-amplifier units to more sophisticated broadcasting systems. They usually use microphones to capture an audio source and broadcast it wirelessly over a frequency modulation (FM), infra-red, induction loop, or other transmission techniques. The seven types of ALDs are introduced including hardwire devices, FM sound system, infra-red sound system, induction loop system, telephone listening devices, television, and alert/alarm system. Further development of digital wireless technology in hearing instruments will make possible direct communication with ALDs without any accessories in the near future. There are two technology solutions for digital wireless hearing instruments improving SNR and convenience. One is near-field magnetic induction combined with Bluetooth radio frequency (RF) transmission or proprietary RF transmission and the other is proprietary RF transmission alone. Recently launched digital wireless hearing aid applying this new technology can communicate from the hearing instrument to personal computer, phones, Wi-Fi, alert systems, and ALDs via iPhone, iPad, and iPod. However, it comes with its own iOS application offering a range of features but there is no option for Android users as of this moment.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melin, Alexander M.; Kisner, Roger A.; Drira, Anis

    Embedded instrumentation and control systems that can operate in extreme environments are challenging due to restrictions on sensors and materials. As a part of the Department of Energy's Nuclear Energy Enabling Technology cross-cutting technology development programs Advanced Sensors and Instrumentation topic, this report details the design of a bench-scale embedded instrumentation and control testbed. The design goal of the bench-scale testbed is to build a re-configurable system that can rapidly deploy and test advanced control algorithms in a hardware in the loop setup. The bench-scale testbed will be designed as a fluid pump analog that uses active magnetic bearings tomore » support the shaft. The testbed represents an application that would improve the efficiency and performance of high temperature (700 C) pumps for liquid salt reactors that operate in an extreme environment and provide many engineering challenges that can be overcome with embedded instrumentation and control. This report will give details of the mechanical design, electromagnetic design, geometry optimization, power electronics design, and initial control system design.« less

  3. Toward a Measure of Professional Development for Graduate Student Teaching Assistants

    ERIC Educational Resources Information Center

    DeChenne, Sue Ellen; Lesseig, Kristin; Anderson, Shawn M.; Li, Sissi L.; Staus, Nancy L.; Barthel, Celeste

    2012-01-01

    This study describes the development and validation of an instrument to measure graduate teaching assistants' (GTAs) learning about teaching during professional development. In the pilot study, exploratory factor analysis of data from 239 graduate students indicates a single factor structure. The second study, involving 177 science, technology,…

  4. Advanced technologies demonstrated by the miniature integrated camera and spectrometer (MICAS) aboard deep space 1

    USGS Publications Warehouse

    Rodgers, D.H.; Beauchamp, P.M.; Soderblom, L.A.; Brown, R.H.; Chen, G.-S.; Lee, M.; Sandel, B.R.; Thomas, D.A.; Benoit, R.T.; Yelle, R.V.

    2007-01-01

    MICAS is an integrated multi-channel instrument that includes an ultraviolet imaging spectrometer (80-185 nm), two high-resolution visible imagers (10-20 ??rad/pixel, 400-900 nm), and a short-wavelength infrared imaging spectrometer (1250-2600 nm). The wavelength ranges were chosen to maximize the science data that could be collected using existing semiconductor technologies and avoiding the need for multi-octave spectrometers. It was flown on DS1 to validate technologies derived from the development of PICS (Planetary Imaging Camera Spectrometer). These technologies provided a novel systems approach enabling the miniaturization and integration of four instruments into one entity, spanning a wavelength range from the UV to IR, and from ambient to cryogenic temperatures with optical performance at a fraction of a wavelength. The specific technologies incorporated were: a built-in fly-by sequence; lightweight and ultra-stable, monolithic silicon-carbide construction, which enabled room-temperature alignment for cryogenic (85-140 K) performance, and provided superb optical performance and immunity to thermal distortion; diffraction-limited, shared optics operating from 80 to 2600 nm; advanced detector technologies for the UV, visible and short-wavelength IR; high-performance thermal radiators coupled directly to the short-wave infrared (SWIR) detector optical bench, providing an instrument with a mass less than 10 kg, instrument power less than 10 W, and total instrument cost of less than ten million dollars. The design allows the wavelength range to be extended by at least an octave at the short wavelength end and to 50 microns at the long wavelength end. Testing of the completed instrument demonstrated excellent optical performance down to 77 K, which would enable a greatly reduced background for longer wavelength detectors. During the Deep Space 1 Mission, MICAS successfully collected images and spectra for asteroid 9969 Braille, Mars, and comet 19/P Borrelly. The Borrelly encounter was a scientific hallmark providing the first clear, high resolution images and excellent, short-wavelength infrared spectra of the surface of an active comet's nucleus. ?? 2007 Springer Science+Business Media, Inc.

  5. [Research advances in water quality monitoring technology based on UV-Vis spectrum analysis].

    PubMed

    Wei, Kang-Lin; Wen, Zhi-yu; Wu, Xin; Zhang, Zhong-Wei; Zeng, Tian-Ling

    2011-04-01

    The application of spectral analysis to water quality monitoring is an important developing trend in the field of modern environment monitoring technology. The principle and characteristic of water quality monitoring technology based on UV-Vis spectrum analysis are briefly reviewed. And the research status and advances are introduced from two aspects, on-line monitoring and in-situ monitoring. Moreover, the existent key technical problems are put forward. Finally, the technology trends of multi-parameter water quality monitoring microsystem and microsystem networks based on microspectrometer are prospected, which has certain reference value for the research and development of environmental monitoring technology and modern scientific instrument in the authors' country.

  6. Toward a Wireless Open Source Instrument: Functional Near-infrared Spectroscopy in Mobile Neuroergonomics and BCI Applications

    PubMed Central

    von Lühmann, Alexander; Herff, Christian; Heger, Dominic; Schultz, Tanja

    2015-01-01

    Brain-Computer Interfaces (BCIs) and neuroergonomics research have high requirements regarding robustness and mobility. Additionally, fast applicability and customization are desired. Functional Near-Infrared Spectroscopy (fNIRS) is an increasingly established technology with a potential to satisfy these conditions. EEG acquisition technology, currently one of the main modalities used for mobile brain activity assessment, is widely spread and open for access and thus easily customizable. fNIRS technology on the other hand has either to be bought as a predefined commercial solution or developed from scratch using published literature. To help reducing time and effort of future custom designs for research purposes, we present our approach toward an open source multichannel stand-alone fNIRS instrument for mobile NIRS-based neuroimaging, neuroergonomics and BCI/BMI applications. The instrument is low-cost, miniaturized, wireless and modular and openly documented on www.opennirs.org. It provides features such as scalable channel number, configurable regulated light intensities, programmable gain and lock-in amplification. In this paper, the system concept, hardware, software and mechanical implementation of the lightweight stand-alone instrument are presented and the evaluation and verification results of the instrument's hardware and physiological fNIRS functionality are described. Its capability to measure brain activity is demonstrated by qualitative signal assessments and a quantitative mental arithmetic based BCI study with 12 subjects. PMID:26617510

  7. Electrical Monitoring Devices Save on Time and Cost

    NASA Technical Reports Server (NTRS)

    2015-01-01

    In order to protect the Solar Dynamics Observatory's instruments from blowing their fuses and being rendered unusable, Goddard Space Flight Center worked with Micropac Industries Inc., based in Garland, Texas, to develop solid-state power controllers, which can depower and then resupply power to an instrument in the event of an electric surge. The company is now selling the technology for use in industrial plants.

  8. The influence of the Product Liability Act, governmental regulation, and medical economics on medical devices and their clinical applications.

    PubMed

    Hirose, T T

    1996-12-01

    The advancement of medical technology constantly demands the introduction of safer and more efficient medical instruments and devices. Recent litigation and rulings against the manufacturers of breast implants and the subsequent refusal of major plastic companies to supply materials to them are seriously threatening the production and development of other permanent implants such as ventricular assist devices and even disposable catheters. In addition, government overregulation also discourages and hinders production and clinical applications of new instruments. Current trends such as cost effectiveness measures and economic restraints imposed by government agencies and managed care systems are endangering investments from the medical and industrial communities to exploit more expensive and sophisticated instrument technologies. The resultant lack of grant money and pressure from animal rights advocates also suppress experimentation on primates and domestic laboratory animals.

  9. A Radar/Radiometer Instrument for Mapping Soil Moisture and Ocean Salinity

    NASA Technical Reports Server (NTRS)

    Hildebrand, Peter H.; Hilliard, Laurence; Rincon, Rafael; LeVine, David; Mead, James

    2003-01-01

    The RadSTAR instrument combines an L-band, digital beam-forming radar with an L-band synthetic aperture, thinned array (STAR) radiometer. The RadSTAR development will support NASA Earth science goals by developing a novel, L-band scatterometer/ radiometer that measures Earth surface bulk material properties (surface emissions and backscatter) as well as surface characteristics (backscatter). Present, real aperture airborne L-Band active/passive measurement systems such as the JPUPALS (Wilson, et al, 2000) provide excellent sampling characteristics, but have no scanning capabilities, and are extremely large; the huge JPUPALS horn requires a the C-130 airborne platform, operated with the aft loading door open during flight operation. The approach used for the upcoming Aquarius ocean salinity mission or the proposed Hydros soil mission use real apertures with multiple fixed beams or scanning beams. For real aperture instruments, there is no upgrade path to scanning over a broad swath, except rotation of the whole aperture, which is an approach with obvious difficulties as aperture size increases. RadSTAR will provide polarimetric scatterometer and radiometer measurements over a wide swath, in a highly space-efficient configuration. The electronic scanning approaches provided through STAR technology and digital beam forming will enable the large L-band aperture to scan efficiently over a very wide swath. RadSTAR technology development, which merges an interferometric radiometer with a digital beam forming scatterometer, is an important step in the path to space for an L-band scatterometer/radiometer. RadSTAR couples a patch array antenna with a 1.26 GHz digital beam forming radar scatterometer and a 1.4 GHz STAR radiometer to provide Earth surface backscatter and emission measurements in a compact, cross-track scanning instrument with no moving parts. This technology will provide the first L-band, emission and backscatter measurements in a compact aircraft instrument and will be ideally suited to large apertures, possibly at GEO, and could possibly be implemented on a swarm of micro-satellites. This instrument will have wide application for validation studies, and will have application for other microwave frequencies.

  10. 40 CFR 761.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... screening tests do not usually provide: an identity record generated by an instrument; a quantitative... accordance with subpart D of this part. Research and development (R&D) for PCB disposal means demonstrations... not been approved, development of new disposal technologies, and research on chemical transformation...

  11. An Overview of NASA's SubsoniC Research Aircraft Testbed (SCRAT)

    NASA Technical Reports Server (NTRS)

    Baumann, Ethan; Hernandez, Joe; Ruhf, John

    2013-01-01

    National Aeronautics and Space Administration Dryden Flight Research Center acquired a Gulfstream III (GIII) aircraft to serve as a testbed for aeronautics flight research experiments. The aircraft is referred to as SCRAT, which stands for SubsoniC Research Aircraft Testbed. The aircraft’s mission is to perform aeronautics research; more specifically raising the Technology Readiness Level (TRL) of advanced technologies through flight demonstrations and gathering high-quality research data suitable for verifying the technologies, and validating design and analysis tools. The SCRAT has the ability to conduct a range of flight research experiments throughout a transport class aircraft’s flight envelope. Experiments ranging from flight-testing of a new aircraft system or sensor to those requiring structural and aerodynamic modifications to the aircraft can be accomplished. The aircraft has been modified to include an instrumentation system and sensors necessary to conduct flight research experiments along with a telemetry capability. An instrumentation power distribution system was installed to accommodate the instrumentation system and future experiments. An engineering simulation of the SCRAT has been developed to aid in integrating research experiments. A series of baseline aircraft characterization flights has been flown that gathered flight data to aid in developing and integrating future research experiments. This paper describes the SCRAT’s research systems and capabilities

  12. An Overview of NASA's Subsonic Research Aircraft Testbed (SCRAT)

    NASA Technical Reports Server (NTRS)

    Baumann, Ethan; Hernandez, Joe; Ruhf, John C.

    2013-01-01

    National Aeronautics and Space Administration Dryden Flight Research Center acquired a Gulfstream III (GIII) aircraft to serve as a testbed for aeronautics flight research experiments. The aircraft is referred to as SCRAT, which stands for SubsoniC Research Aircraft Testbed. The aircraft's mission is to perform aeronautics research; more specifically raising the Technology Readiness Level (TRL) of advanced technologies through flight demonstrations and gathering high-quality research data suitable for verifying the technologies, and validating design and analysis tools. The SCRAT has the ability to conduct a range of flight research experiments throughout a transport class aircraft's flight envelope. Experiments ranging from flight-testing of a new aircraft system or sensor to those requiring structural and aerodynamic modifications to the aircraft can be accomplished. The aircraft has been modified to include an instrumentation system and sensors necessary to conduct flight research experiments along with a telemetry capability. An instrumentation power distribution system was installed to accommodate the instrumentation system and future experiments. An engineering simulation of the SCRAT has been developed to aid in integrating research experiments. A series of baseline aircraft characterization flights has been flown that gathered flight data to aid in developing and integrating future research experiments. This paper describes the SCRAT's research systems and capabilities.

  13. Mechanical Technology Development on A 35-m Deployable Radar Antenna for Monitoring Hurricanes

    NASA Technical Reports Server (NTRS)

    Fang, Houfei; Im, Eastwood

    2006-01-01

    The NEXRAD in Space project develops a novel instrument concept and the associated antenna technologies for a 35-GHz Doppler radar to monitor hurricanes, cyclones, and severe storms from a geostationary orbit. Mechanical challenges of this concept include a 35-m diameter lightweight in space deployable spherical reflector and a feeder scanning mechanism. The feasibility of using shape memory polymer material to develop the large deployable reflector has been investigated by this study. A spiral scanning mechanism concept has been developed and demonstrated by an engineering model.

  14. Development and Applications of Portable Gas Chromatography-Mass Spectrometry for Emergency Responders, the Military, and Law-Enforcement Organizations.

    PubMed

    Leary, Pauline E; Dobson, Gareth S; Reffner, John A

    2016-05-01

    Portable gas chromatography-mass spectrometry (GC-MS) systems are being deployed for field use, and are designed with this goal in mind. Performance characteristics of instruments that are successful in the field are different from those of equivalent technologies that are successful in a laboratory setting. These field-portable systems are extending the capabilities of the field user, providing investigative leads and confirmatory identifications in real time. Many different types of users benefit from the availability of this technology including emergency responders, the military, and law-enforcement organizations. This manuscript describes performance characteristics that are important for field-portable instruments, especially field-portable GC-MS systems, and demonstrates the value of this equipment to the disciplines of explosives investigations, fire investigations, and counterfeit-drug detection. This paper describes the current state of portable GC-MS technology, including a review of the development of portable GC-MS, as well as a demonstration of the value of this capability using different examples. © The Author(s) 2016.

  15. Sensors 2000! Program: Advanced Biosensor and Measurement Systems Technologies for Spaceflight Research and Concurrent, Earth-Based Applications

    NASA Technical Reports Server (NTRS)

    Hines, J.

    1999-01-01

    Sensors 2000! (S2K!) is a specialized, integrated projects team organized to provide focused, directed, advanced biosensor and bioinstrumentation systems technology support to NASA's spaceflight and ground-based research and development programs. Specific technology thrusts include telemetry-based sensor systems, chemical/ biological sensors, medical and physiological sensors, miniaturized instrumentation architectures, and data and signal processing systems. A concurrent objective is to promote the mutual use, application, and transition of developed technology by collaborating in academic-commercial-govemment leveraging, joint research, technology utilization and commercialization, and strategic partnering alliances. Sensors 2000! is organized around three primary program elements: Technology and Product Development, Technology infusion and Applications, and Collaborative Activities. Technology and Product Development involves development and demonstration of biosensor and biotelemetry systems for application to NASA Space Life Sciences Programs; production of fully certified spaceflight hardware and payload elements; and sensor/measurement systems development for NASA research and development activities. Technology Infusion and Applications provides technology and program agent support to identify available and applicable technologies from multiple sources for insertion into NASA's strategic enterprises and initiatives. Collaborative Activities involve leveraging of NASA technologies with those of other government agencies, academia, and industry to concurrently provide technology solutions and products of mutual benefit to participating members.

  16. Technology Advancement for Active Remote Sensing of Carbon Dioxide from Space Using the ASCENDS CarbonHawk Experiment Simulator: First Results

    NASA Technical Reports Server (NTRS)

    Obland, Michael D.; Nehrir, Amin R.; Lin, Bing; Harrison, F. Wallace; Kooi, Susan; Choi, Yonghoon; Plant, James; Yang, Melissa; Antill, Charles; Campbell, Joel; hide

    2015-01-01

    The ASCENDS CarbonHawk Experiment Simulator (ACES) is a newly developed lidar developed at NASA Langley Research Center and funded by NASA's Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP) that seeks to advance technologies critical to measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The technology advancements targeted include: (1) increasing the power-aperture product to approach ASCENDS mission requirements by implementing multi-aperture telescopes and multiple co-aligned laser transmitters; (2) incorporating high-efficiency, high-power Erbium-Doped Fiber Amplifiers (EDFAs); (3) developing and incorporating a high-bandwidth, low-noise HgCdTe detector and transimpedence amplifier (TIA) subsystem capable of long-duration autonomous operation on Global Hawk aircraft, and (4) advancing algorithms for cloud and aerosol discrimination. The ACES instrument architecture is being developed for operation on high-altitude aircraft and will be directly scalable to meet the ASCENDS mission requirements. These technologies are critical towards developing not only spaceborne instruments but also their airborne simulators, with lower platform requirements for size, mass, and power, and with improved instrument performance for the ASCENDS mission. ACES transmits five laser beams: three from commercial EDFAs operating near 1.57 microns, and two from the Exelis oxygen (O2) Raman fiber laser amplifier system operating near 1.26 microns. The three EDFAs are capable of transmitting up to 10 watts average optical output power each and are seeded by compact, low noise, stable, narrow-linewidth laser sources stabilized with respect to a CO2 absorption line using a multi-pass gas absorption cell. The Integrated-Path Differential Absorption (IPDA) lidar approach is used at both wavelengths to independently measure the CO2 and O2 column number densities and retrieve the average column CO2 mixing ratio. The ACES receiver uses three fiber-coupled 17.8-cm diameter athermal telescopes. The transmitter assembly consists of five fiber-coupled laser collimators and an associated Risley prism pair for each laser to co-align the outgoing laser beams and to align them with the telescope field of view. The backscattered return signals collected by the three telescopes are combined in a fiber bundle and sent to a single low noise detector. The detector/TIA development has improved the existing detector subsystem by increasing its bandwidth to 4.7 MHz from 500 kHz and increasing the duration of autonomous, service-free operation periods from 4 hours to >24 hours. The new detector subsystem enables the utilization of higher laser modulation rates, which provides greater flexibility for implementing advanced thin-cloud discrimination algorithms as well as improving range-determination resolution and error reduction. The cloud/aerosol discrimination algorithm development by Langley and Exelis features a new suite of algorithms for the minimization/elimination of bias errors in the return signal induced by the presence of intervening thin clouds. Multiple laser modulation schemes are being tested in an effort to significantly mitigate the effects of thin clouds on the retrieved CO2 column amounts. Full instrument development concluded in the spring of 2014. After ground range tests of the instrument, ACES successfully completed six test flights on the Langley Hu-25 aircraft in July, 2014, and recorded data at multiple altitudes over land and ocean surfaces with and without intervening clouds. Preliminary results from these test flights will be presented in this paper.

  17. Instrumented toys for assessing spatial cognition in infants

    NASA Astrophysics Data System (ADS)

    Campolo, Domenico; Taffoni, Fabrizio; Formica, Domenico; Keller, Flavio; Guglielmelli, Eugenio

    2011-03-01

    This paper describes an interdisciplinary approach to the assessment on infants' behavior, with a focus on the technology. The goal is an objective, quantitative analysis of concurrent maturation of sensory, motor and cognitive abilities in young children, in relation to the achievement of developmental milestones. An instrumented block-box toy specifically developed to assess the ability to insert objects into holes is presented. The functional specifications are derived from experimental protocols devised by neuroscientists to assess spatial cognition skills. Technological choices are emphasized with respect to ecological requirements. An ad hoc calibration procedure is also presented which is suitable to unstructured environments. Finally, preliminary tests carried out at a local day-care with 12-24 months old infants are presented which prove the in-field usability of the proposed technology.

  18. Best practices for minimally invasive procedures.

    PubMed

    Ulmer, Brenda C

    2010-05-01

    Techniques and instrumentation for minimally invasive surgical procedures originated in gynecologic surgery, but the benefits of surgery with small incisions or no incisions at all have prompted the expansion of these techniques into numerous specialties. Technologies such as robotic assistance, single-incision laparoscopic surgery, natural orifice transluminal endoscopic surgery, and video-assisted thoracoscopic surgery have led to the continued expansion of minimally invasive surgery into new specialties. With this expansion, perioperative nurses and other members of the surgical team are required to continue to learn about new technology and instrumentation, as well as the techniques and challenges involved in using new technology, to help ensure the safety of their patients. This article explores the development of minimally invasive procedures and offers suggestions for increasing patient safety. Copyright 2010 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  19. CIRiS: Compact Infrared Radiometer in Space

    NASA Astrophysics Data System (ADS)

    Osterman, D. P.; Collins, S.; Ferguson, J.; Good, W.; Kampe, T.; Rohrschneider, R.; Warden, R.

    2016-09-01

    The Compact Infrared Radiometer in Space (CIRiS) is a thermal infrared radiometric imaging instrument under development by Ball Aerospace for a Low Earth Orbit mission on a CubeSat spacecraft. Funded by the NASA Earth Science Technology Office's In-Space Validation of Earth Science Technology (InVEST) program, the mission objective is technology demonstration for improved on-orbit radiometric calibration. The CIRiS calibration approach uses a scene select mirror to direct three calibration views to the focal plane array and to transfer the resulting calibrated response to earth images. The views to deep space and two blackbody sources, including one at a selectable temperature, provide multiple options for calibration optimization. Two new technologies, carbon nanotube blackbody sources and microbolometer focal plane arrays with reduced pixel sizes, enable improved radiometric performance within the constrained 6U CubeSat volume. The CIRiS instrument's modular design facilitates subsystem modifications as required by future mission requirements. CubeSat constellations of CIRiS and derivative instruments offer an affordable approach to achieving revisit times as short as one day for diverse applications including water resource and drought management, cloud, aerosol, and dust studies, and land use and vegetation monitoring. Launch is planned for 2018.

  20. An Instrument to Determine the Technological Literacy Levels of Upper Secondary School Students

    ERIC Educational Resources Information Center

    Luckay, Melanie B.; Collier-Reed, Brandon I.

    2014-01-01

    In this article, an instrument for assessing upper secondary school students' levels of technological literacy is presented. The items making up the instrument emerged from a previous study that employed a phenomenographic research approach to explore students' conceptions of technology in terms of their understanding of the "nature…

  1. Commercial Instrumentation Technology Associates' Biomedical Experiments

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Experiments to seek solutions for a range of biomedical issues are at the heart of several investigations that will be hosted by the Commercial Instrumentation Technology Associates (ITA), Inc. Biomedical Experiments (CIBX-2) payload. CIBX-2 is unique, encompassing more than 20 separate experiments including cancer research, commercial experiments, and student hands-on experiments from 10 schools as part of ITA's ongoing University Among the Stars program. Student Marnix Aklian and ITA's Mark Bem prepare biological samples for flight as part of ITA's hands-on student outreach program on STS-95. Similar activities are a part of the CIBX-2 payload. The experiments are sponsored by NASA's Space Product Development Program (SPD).

  2. Silicon carbide, an emerging high temperature semiconductor

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.; Powell, J. Anthony

    1991-01-01

    In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.

  3. Three common faults in current practice that influence the validity of data obtained from electronic air pollution instrumentation.

    PubMed

    Dowd, G; Thomas, R S; Monkman, J L

    1975-01-01

    Instrumental development is now entering a more logical era, where the former artistic character of electronics is being replaced by cold technology. Because of this, one should be expect more reliability; however, there still exist many weak links in practical application. Digital readout systems and computer processing induce a false sense of security. In reality, it is the sample-measurement relationship that determines an instrument's credibility and not the number of digits on its meter. In describing three faulty practices that greatly influence an instrument's performance, it is hoped that measurement may be more closely related to the sample!

  4. Space infrared telescope facility wide field and diffraction limited array camera (IRAC)

    NASA Technical Reports Server (NTRS)

    Fazio, G. G.

    1986-01-01

    IRAC focal plane detector technology was developed and studies of alternate focal plane configurations were supported. While any of the alternate focal planes under consideration would have a major impact on the Infrared Array Camera, it was possible to proceed with detector development and optical analysis research based on the proposed design since, to a large degree, the studies undertaken are generic to any SIRTF imaging instrument. Development of the proposed instrument was also important in a situation in which none of the alternate configurations has received the approval of the Science Working Group.

  5. Infrared Detector Activities at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Abedin, M. N.; Refaat, T. F.; Sulima, O. V.; Amzajerdian, F.

    2008-01-01

    Infrared detector development and characterization at NASA Langley Research Center will be reviewed. These detectors were intended for ground, airborne, and space borne remote sensing applications. Discussion will be focused on recently developed single-element infrared detector and future development of near-infrared focal plane arrays (FPA). The FPA will be applied to next generation space-based instruments. These activities are based on phototransistor and avalanche photodiode technologies, which offer high internal gain and relatively low noise-equivalent-power. These novel devices will improve the sensitivity of active remote sensing instruments while eliminating the need for a high power laser transmitter.

  6. Technology Thrust for Future Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Habib, Shahid

    2000-01-01

    This paper presents NASA's recent direction to invest in the critical science instrument and platform technologies in order to realize more reliable, frequent and versatile missions for future Earth Science measurements. Traditionally, NASA's Earth Science Enterprise has developed and flown science missions that have been large in size, weight and volume. These missions have taken much longer implementation due to technology development time and have carried a large suite of instruments on a large-size spacecraft. NASA is also facing an era where the budget for the future years is more or less flat and the possibility for any major new start does not vividly appear on the horizon. Unfortunately, the scientific goals have not shrunk to commensurate with the budget constraints. In fact, the challenges and scientific appetite in search of answers to a score of outstanding questions have been gradually expanding. With these factors in mind, for the last three years NASA has been changing its focus to concentrate on how to take advantage of smaller missions by relying on industry, and minimizing the overall life cycle by infusing technologies that are being developed independently of any planned mission's implementation cycle. The major redirection of early investment in the critical technologies should have its rewards and significantly reduce the mission development period. Needless to say, in the long run this approach should save money, minimize risk, promote or encourage partnering, and allow for more frequent missions or earth science measurements to occur. This paper gives an overview of some of the identified crucial technologies and their intended applications for meeting the future Earth Science challenges.

  7. Minimally invasive surgery. Future developments.

    PubMed Central

    Wickham, J. E.

    1994-01-01

    The rapid development of minimally invasive surgery means that there will be fundamental changes in interventional treatment. Technological advances will allow new minimally invasive procedures to be developed. Application of robotics will allow some procedures to be done automatically, and coupling of slave robotic instruments with virtual reality images will allow surgeons to perform operations by remote control. Miniature motors and instruments designed by microengineering could be introduced into body cavities to perform operations that are currently impossible. New materials will allow changes in instrument construction, such as use of memory metals to make heat activated scissors or forceps. With the reduced trauma associated with minimally invasive surgery, fewer operations will require long hospital stays. Traditional surgical wards will become largely redundant, and hospitals will need to cope with increased through-put of patients. Operating theatres will have to be equipped with complex high technology equipment, and hospital staff will need to be trained to manage it. Conventional nursing care will be carried out more in the community. Many traditional specialties will be merged, and surgical training will need fundamental revision to ensure that surgeons are competent to carry out the new procedures. Images Fig 1 Fig 2 Fig 3 Fig 4 Fig 5 PMID:8312776

  8. Engineering Research and Technology Development on the Space Station

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report identifies and assesses the kinds of engineering research and technology development applicable to national, NASA, and commercial needs that can appropriately be performed on the space station. It also identifies the types of instrumentation that should be included in the space station design to support engineering research. The report contains a preliminary assessment of the potential benefits to U.S. competitiveness of engineering research that might be conducted on a space station, reviews NASA's current approach to jointly funded or cooperative experiments, and suggests modifications that might facilitate university and industry participation in engineering research and technology development activities on the space station.

  9. An overview of in-flight plume diagnostics for rocket engines

    NASA Technical Reports Server (NTRS)

    Madzsar, G. C.; Bickford, R. L.; Duncan, D. B.

    1992-01-01

    An overview and progress report of the work performed or sponsored by LeRC toward the development of in-flight plume spectroscopy technology for health and performance monitoring of liquid propellant rocket engines are presented. The primary objective of this effort is to develop technology that can be utilized on any flight engine. This technology will be validated by a hardware demonstration of a system capable of being retrofitted onto the Space Shuttle Main Engines for spectroscopic measurements during flight. The philosophy on system definition and status on the development of instrumentation, optics, and signal processing with respect to implementation on a flight engine are discussed.

  10. The current development status of the Orbiting Carbon Observatory (OCO) instrument optical design

    NASA Technical Reports Server (NTRS)

    Haring, Robert; Sutin, Brian; Crisp, David; Pollock, Randy; Sundstrand, Hamilton

    2005-01-01

    The status of the OCO instrument optical design is presented in this paper. The optical bench assembly comprises three cooled grating spectrometers coupled to an all-reflective telescope/relay system. Dichroic beam splitters are used to separate the light from a common telescope into the three spectral bands. The three bore sighted spectrometers allow the total column CO2 absorption path to be corrected for optical path and surface pressure uncertainties, aerosols, and water vapor. The design of the instrument is based on classic flight proven technologies.

  11. Active Thermal Architecture for Cryogenic Optical Instrumentation (ATACOI)

    NASA Technical Reports Server (NTRS)

    Swenson, Charles; Hunter, Roger C.; Baker, Christopher E.

    2018-01-01

    The Active Thermal Architecture for Cryogenic Optical Instrumentation (ATACOI) project will demonstrate an advanced thermal control system for CubeSats and enable the use of cryogenic electro-optical instrumentation on small satellite platforms. Specifically, the project focuses on the development of a deployable solar tracking radiator, a rotationally flexible rotary union fluid joint, and a thermal/vibrational isolation system for miniature cryogenic detectors. This technology will represent a significant improvement over the current state of the art for CubeSat thermal control, which generally relies on simple passive and conductive methods.

  12. Laser Transmitter Design and Performance for the Slope Imaging Multi-Polarization Photon-Counting Lidar (SIMPL) Instrument

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Harding, David J.; Dabney, Philip W.

    2016-01-01

    The Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) instrument is a polarimetric, two-color, multibeam push broom laser altimeter developed through the NASA Earth Science Technology Office Instrument Incubator Program and has been flown successfully on multiple airborne platforms since 2008. In this talk we will discuss the laser transmitter performance and present recent science data collected over the Greenland ice sheet and sea ice in support of the NASA Ice Cloud and land Elevation Satellite 2 (ICESat-2) mission to be launched in 2017.

  13. Eponymous Instruments in Orthopaedic Surgery

    PubMed Central

    Buraimoh, M. Ayodele; Liu, Jane Z.; Sundberg, Stephen B.; Mott, Michael P.

    2017-01-01

    Abstract Every day surgeons call for instruments devised by surgeon trailblazers. This article aims to give an account of commonly used eponymous instruments in orthopaedic surgery, focusing on the original intent of their designers in order to inform how we use them today. We searched PubMed, the archives of longstanding medical journals, Google, the Internet Archive, and the HathiTrust Digital Library for information regarding the inventors and the developments of 7 instruments: the Steinmann pin, Bovie electrocautery, Metzenbaum scissors, Freer elevator, Cobb periosteal elevator, Kocher clamp, and Verbrugge bone holding forceps. A combination of ingenuity, necessity, circumstance and collaboration produced the inventions of the surgical tools numbered in our review. In some cases, surgical instruments were improvements of already existing technologies. The indications and applications of the orthopaedic devices have changed little. Meanwhile, instruments originally developed for other specialties have been adapted for our use. Although some argue for a transition from eponymous to descriptive terms in medicine, there is value in recognizing those who revolutionized surgical techniques and instrumentation. Through history, we have an opportunity to be inspired and to better understand our tools. PMID:28852360

  14. Integration of today's digital state with tomorrow's visual environment

    NASA Astrophysics Data System (ADS)

    Fritsche, Dennis R.; Liu, Victor; Markandey, Vishal; Heimbuch, Scott

    1996-03-01

    New developments in visual communication technologies, and the increasingly digital nature of the industry infrastructure as a whole, are converging to enable new visual environments with an enhanced visual component in interaction, entertainment, and education. New applications and markets can be created, but this depends on the ability of the visual communications industry to provide market solutions that are cost effective and user friendly. Industry-wide cooperation in the development of integrated, open architecture applications enables the realization of such market solutions. This paper describes the work being done by Texas Instruments, in the development of its Digital Light ProcessingTM technology, to support the development of new visual communications technologies and applications.

  15. Progress in Life Marker Chip Technology for Detection of Life on Mars

    NASA Astrophysics Data System (ADS)

    Sims, M. R.; Cullen, D. C.; Laan, E.; Borst, G.; Prak, A.; Richter, L.; Gaubert, F.; Steele, A.; Parnell, J.; Sephton, M.

    2007-12-01

    Detection of Life on Mars will rely on detection of biomarkers, physical or chemical structures that can be associated with Life. As a possible payload for the ESA ExoMars rover mission planned in 2013 and other future missions a Life Marker Chip instrument is being developed. This instrument uses immuno-assay techniques to detect the relevant biomarkers. This paper describes the typical targets it will search for, its operating principle and the status of development. 63 biomarker targets have been identified and assays have been developed for a limited subset. Assay development includes use of recombinant DNA techniques to generate the molecular receptors (antibodies). This type of instrument has applications in terrestrial research e.g. sub-glacial lakes as well as planetary exploration. Breadboard demonstrators have been built of the assay system and key components of the micro-fluidics. Results from these breadboards will be presented, along with plans for future development.

  16. Introduction of Digital Computer Technology Into the Undergraduate Chemistry Laboratory. Final Technical Report.

    ERIC Educational Resources Information Center

    Perone, Sam P.

    The objective of this project has been the development of a successful approach for the incorporation of on-line computer technology into the undergraduate chemistry laboratory. This approach assumes no prior programing, electronics or instrumental analysis experience on the part of the student; it does not displace the chemistry content with…

  17. The Measurement of Technology Anxiety

    PubMed Central

    Pillar, Barbara

    1985-01-01

    The growing amount of medical technology on nursing units prompted a study of the anxiety experienced by nurses toward medical equipment. A Likert-type instrument was developed as a self-report questionnaire to assess this emotional response. Testing was conducted on two groups of student nurses, and evaluation of the tool determined that it was both reliable and valid.

  18. Teachers' Attitudes toward Technology Integration in Schools: A Four-Year Study

    ERIC Educational Resources Information Center

    Liu, Yuliang; Szabo, Zsuzsanna

    2009-01-01

    This trend study was designed to examine a current trend and pattern, as well as a development of teachers' concerns about technology integration in the curriculum. The study was conducted by repeated cross-sectional studies, applying the same research instrument to different samples of subjects at different points, over a period of four years…

  19. Defense Acquisitions: Assessments of Selected Weapon Programs

    DTIC Science & Technology

    2015-03-01

    offices on technology, design , and manufacturing knowledge; the use of knowledge- based acquisition practices; and the implementation of acquisition...and production maturity using two data-collection instruments, including a questionnaire on issues such as systems engineering reviews, design ...Demonstrating technology maturity is a prerequisite for moving forward into system development, during which the focus should be on design and

  20. Future applications of electronic-nose technologies in healthcare and biomedicine

    Treesearch

    Alphus D. Wilson

    2011-01-01

    The development and utilization of many new electronic-nose (e-nose) applications in the healthcare and biomedical fields have continued to rapidly accelerate over the past 20 years. Innovative e-nose technologies are providing unique solutions to a diversity of complex problems in biomedicine that are now coming to fruition. A wide range of electronic-nose instrument...

  1. LIDAR Remote Sensing Concepts

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.

    1997-01-01

    The primary goal of the NASA New Millennium Program (NMP) is to develop technology for use on future operational missions. The Program consists of two thrust areas, one oriented towards developing technologies for Deep Space Probes and one oriented towards developing technology for Earth Observing Probes. Each thrust area intends to fly several technology demonstrator space designated DS-X and EO-X respectively where X is the mission number. Each mission has an approximately $100 million cap on total mission cost. The EO-1 mission has been selected and is under development. The instrument discussed here was submitted by NASA MSFC as a potential candidate for the EO-2 or EO-3 missions due to launch in 2001 and late 2002 or early 2003 respectively. This report summarizes and follows the format of the material provided to NMP.

  2. LIDAR Remote Sensing Concepts

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.

    1997-01-01

    The primary goal of the NASA New Millennium Program (NMP) is to develop technology for use on future operational missions. The Program consists of two thrust areas, one oriented towards developing technologies for Deep Space Probes and one oriented towards developing technology for Earth Observing Probes. Each thrust area intends to fly several technology demonstrator spacecraft designated DS-X and EO-X respectively where X is the mission number. Each mission has an approximately $100 million cap on total mission cost. The EO-1 mission has been selected and is under development. The instrument discussed here was submitted by NASA MSFC as a potential candidate for the EO-2 or EO-3 missions due to launch in 2001 and late 2002 or early 2003 respectively. This report summarizes and follows the format of the material provided to NMP.

  3. Design and Operational Characteristics of the Shuttle Coherent Wind Lidar

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Spiers, Gary D.; Peters, Bruce R.; Li, Ye; Blackwell, Timothy S.; Geary, Joseph M.

    1998-01-01

    NOAA has identified the measurement of atmospheric wind velocities as one of the key unmet data sets for its next generation of sensing platforms. The merits of coherent lidars for the measurement of atmospheric winds from space platforms have been widely recognized; however, it is only recently that several key technologies have advanced to a point where a compact, high fidelity system could be created. Advances have been made in the areas of the diode-pumped, eye-safe, solid state lasers and room temperature, wide bandwidth, semiconductor detectors operating in the near-infrared region. These new lasers can be integrated into efficient and compact optical systems creating new possibilities for the development of low-cost, reliable, and compact coherent lidar systems for wind measurements. Over the past five years, the University of Alabama in Huntsville (UAH) has been working toward further advancing the solid state coherent lidar technology for the measurement of atmospheric winds from space. As part of this effort, UAH had established the design characteristics and defined the expected performance for three different proposed space-based instruments: a technology demonstrator, an operational prototype, and a 7-year lifetime operational instrument. SPARCLE is an ambitious project that is intended to evaluate the suitability of coherent lidar for wind measurements, demonstrate the maturity of the technology for space application, and provide a useable data set for model development and validation. This paper describes the SPARCLE instrument's major physical and environmental design constraints, optical and mechanical designs, and its operational characteristics.

  4. Developments in the Identification of Glycan Biomarkers for the Detection of Cancer

    PubMed Central

    Ruhaak, L. Renee; Miyamoto, Suzanne; Lebrilla, Carlito B.

    2013-01-01

    Changes in glycosylation readily occur in cancer and other disease states. Thanks to recent advances in the development of analytical techniques and instrumentation, especially in mass spectrometry, it is now possible to identify blood-derived glycan-based biomarkers using glycomics strategies. This review is an overview of the developments made in the search for glycan-based cancer biomarkers and the technologies currently in use. It is anticipated that the progressing instrumental and bioinformatics developments will allow the identification of relevant glycan biomarkers for the diagnosis, early detection, and monitoring of cancer treatment with sufficient sensitivity and specificity for clinical use. PMID:23365456

  5. Methods to Develop the Eye-tem Bank to Measure Ophthalmic Quality of Life.

    PubMed

    Khadka, Jyoti; Fenwick, Eva; Lamoureux, Ecosse; Pesudovs, Konrad

    2016-12-01

    There is an increasing demand for high-standard, comprehensive, and reliable patient-reported outcome (PRO) instruments in all the disciplines of health care including in ophthalmology and optometry. Over the past two decades, a plethora of PRO instruments have been developed to assess the impact of eye diseases and their treatments. Despite this large number of instruments, significant shortcomings exist for the measurement of ophthalmic quality of life (QoL). Most PRO instruments are short-form instruments designed for clinical use, but this limits their content coverage often poorly targeting any study population other than that which they were developed for. Also, existing instruments are static paper and pencil based and unable to be updated easily leading to outdated and irrelevant item content. Scores obtained from different PRO instruments may not be directly comparable. These shortcomings can be addressed using item banking implemented with computer-adaptive testing (CAT). Therefore, we designed a multicenter project (The Eye-tem Bank project) to develop and validate such PROs to enable comprehensive measurement of ophthalmic QoL in eye diseases. Development of the Eye-tem Bank follows four phases: Phase I, Content Development; Phase II, Pilot Testing and Item Calibration; Phase III, Validation; and Phase IV, Evaluation. This project will deliver technologically advanced comprehensive QoL PROs in the form of item banking implemented via a CAT system in eye diseases. Here, we present a detailed methodological framework of this project.

  6. Report on Cosmic Dust Capture Research and Development for the Exobiology Program

    NASA Technical Reports Server (NTRS)

    Nishioka, Kenji

    1997-01-01

    Collaboration with Ames' personnel was in: 1) grant administration, 2) intellectual science support, 3) collaboration with the University of Paris for the Mir flight experiment, and 4) arranging scanning and X-ray probe analytical support from UCB and SUNYP. LNIMS provided access to: 1) analytical research instruments, 2) chemical analyses support, 3) cleanroom facilities, and 4) design and fabrication expertise of hardware and electronics. They also supported the hypervelocity testing along with test data acquisition and its reduction for the breadboard instrument. A&M Associates provided technical expertise and support on determining the expected charges on orbital particles and a conceptual design for a breadboard particle charge detection sensor. University of California provided analytical support for the recovered Mir flight modules using their unique scanning capability to detect particle tracks in the aerogel. SUNYP, along with help from the University of Chicago, analyzed particle tracks found in the aerogel for biogenic compounds using an x-ray probe instrument. Dr. Schultz provided access to his experiments and the benefits of his considerable hyper-velocity testing expertise at the Ames hypervelocity gun facility, and this proved beneficial to our development testing, significantly reducing the test time and cost for the breadboard instrument development testing. The participants in this activity acknowledge and thank the National Aeronautics and Space Administration and its Ames Research Center for providing the necessary support and resources to conduct this investigation on instrument technology for exobiology application and being able to acquire some interesting results. Primarily, the newly identified technology problems for future research are the important results of this research.

  7. Commercialization of Measurement Technologies

    DOT National Transportation Integrated Search

    2012-10-20

    Miniaturized, wireless instrumentation is now a reality and this thesis describes : development of such a system to monitor crack response. Comparison of environmental : (long-term) and blast-induced (dynamic) crack width changes in residential struc...

  8. Medical and surgical applications of space biosensor technology

    NASA Astrophysics Data System (ADS)

    Hines, John W.

    1996-02-01

    Researchers in space life sciences are rapidly approaching a technology impasse. Many of the critical questions on the impact of spaceflight on living systems simply cannot be answered with the limited available technologies. Research subjects, particularly small animal models like the rat, must be allowed to function relatively untended and unrestrained for long periods to fully reflect the impact of microgravity and spaceflight on their behavior and physiology. These requirements preclude the use of present hard-wired instrumentation techniques and limited data acquisition systems. Implantable sensors and miniaturized biotelemetry are the only means of capturing the fundamental and critical data. This same biosensor and biotelemetry technology has direct application to Earth-based medicine and surgery. Continuous, on-line data acquisition and improved measurement capabilities combined with the ease and flexibility offered by automated, wireless, and portable instruments and data systems, should provide a boon to the health care industry. Playing a key role in this technology revolution is the Sensors 2000! (S2K!) Program at NASA Ames Research Center. S2K!, in collaboration with space life sciences researchers and managers, provides an integrated capability for sensor technology development and applications, including advanced biosensor technology development, spaceflight hardware development, and technology transfer and commercialization. S2K! is presently collaborating on several spaceflight projects with dual-use medical applications. One prime example is a collaboration with the Fetal Treatment Center (FTC) at the University of California at San Francisco. The goal is to develop and apply implantable chemical sensor and biotelemetry technology to continuously monitor fetal patients during extra-uterine surgery, replacement into the womb, through birth and beyond. Once validated for ground use, the method will be transitioned to spaceflight applications to remotely monitor key biochemical parameters in flight animals. Successful application of NASA implantable biosensor and biotelemetry technologies should accelerate the advancement of this and other modern medical procedures while furthering the exploration of life in space.

  9. Medical and surgical applications of space biosensor technology

    NASA Technical Reports Server (NTRS)

    Hines, J. W.

    1996-01-01

    Researchers in space life sciences are rapidly approaching a technology impasse. Many of the critical questions on the impact of spaceflight on living systems simply cannot be answered with the limited available technologies. Research subjects, particularly small animal models like the rat, must be allowed to function relatively untended and unrestrained for long periods to fully reflect the impact of microgravity and spaceflight on their behavior and physiology. These requirements preclude the use of present hard-wired instrumentation techniques and limited data acquisition systems. Implantable sensors and miniaturized biotelemetry are the only means of capturing the fundamental and critical data. This same biosensor and biotelemetry technology has direct application to Earth-based medicine and surgery. Continuous, on-line data acquisition and improved measurement capabilities combined with the ease and flexibility offered by automated, wireless, and portable instruments and data systems, should provide a boon to the health care industry. Playing a key role in this technology revolution is the Sensors 2000! (S2K!) Program at NASA Ames Research Center. S2K!, in collaboration with space life sciences researchers and managers, provides an integrated capability for sensor technology development and applications, including advanced biosensor technology development, spaceflight hardware development, and technology transfer and commercialization. S2K! is presently collaborating on several spaceflight projects with dual-use medical applications. One prime example is a collaboration with the Fetal Treatment Center (FTC) at the University of California at San Francisco. The goal is to develop and apply implantable chemical sensor and biotelemetry technology to continuously monitor fetal patients during extra-uterine surgery, replacement into the womb, through birth and beyond. Once validated for ground use, the method will be transitioned to spaceflight applications to remotely monitor key biochemical parameters in flight animals. Successful application of NASA implantable biosensor and biotelemetry technologies should accelerate the advancement of this and other modern medical procedures while furthering the exploration of life in space.

  10. Communication, Education and Empowerment. Manchester Monographs 33.

    ERIC Educational Resources Information Center

    Carmen, Raff

    When considering what type of communication is required for development, the conventional answer of diffusion of technological innovation for modernization and growth is inadequate. Daniel Lerner and Everett Rogers describe traditional people as the greatest obstacle to development. Paulo Freire perceives communication as an instrument for…

  11. The development of an airborne instrumentation computer system for flight test

    NASA Technical Reports Server (NTRS)

    Bever, G. A.

    1984-01-01

    Instrumentation interfacing frequently requires the linking of intelligent systems together, as well as requiring the link itself to be intelligent. The airborne instrumentation computer system (AICS) was developed to address this requirement. Its small size, approximately 254 by 133 by 140 mm (10 by 51/4 by 51/2 in), standard bus, and modular board configuration give it the ability to solve instrumentation interfacing and computation problems without forcing a redesign of the entire unit. This system has been used on the F-15 aircraft digital electronic engine control (DEEC) and its follow on engine model derivative (EMD) project and in an OV-1C Mohawk aircraft stall speed warning system. The AICS is presently undergoing configuration for use on an F-104 pace aircraft and on the advanced fighter technology integration (AFTI) F-111 aircraft.

  12. ExoMars Raman laser spectrometer breadboard overview

    NASA Astrophysics Data System (ADS)

    Díaz, E.; Moral, A. G.; Canora, C. P.; Ramos, G.; Barcos, O.; Prieto, J. A. R.; Hutchinson, I. B.; Ingley, R.; Colombo, M.; Canchal, R.; Dávila, B.; Manfredi, J. A. R.; Jiménez, A.; Gallego, P.; Pla, J.; Margoillés, R.; Rull, F.; Sansano, A.; López, G.; Catalá, A.; Tato, C.

    2011-10-01

    The Raman Laser Spectrometer (RLS) is one of the Pasteur Payload instruments, within the ESA's Aurora Exploration Programme, ExoMars mission. The RLS Instrument will perform Raman spectroscopy on crushed powdered samples deposited on a small container after crushing the cores obtained by the Rover's drill system. In response to ESA requirements for delta-PDR to be held in mid 2012, an instrument BB programme has been developed, by RLS Assembly Integration and Verification (AIV) Team to achieve the Technology Readiness level 5 (TRL5), during last 2010 and whole 2011. Currently RLS instrument is being developed pending its CoDR (Conceptual Design Revision) with ESA, in October 2011. It is planned to have a fully operative breadboard, conformed from different unit and sub-units breadboards that would demonstrate the end-to-end performance of the flight representative units by 2011 Q4.

  13. MEMS-Based Micro Instruments for In-Situ Planetary Exploration

    NASA Technical Reports Server (NTRS)

    George, Thomas; Urgiles, Eduardo R; Toda, Risaku; Wilcox, Jaroslava Z.; Douglas, Susanne; Lee, C-S.; Son, Kyung-Ah; Miller, D.; Myung, N.; Madsen, L.; hide

    2005-01-01

    NASA's planetary exploration strategy is primarily targeted to the detection of extant or extinct signs of life. Thus, the agency is moving towards more in-situ landed missions as evidenced by the recent, successful demonstration of twin Mars Exploration Rovers. Also, future robotic exploration platforms are expected to evolve towards sophisticated analytical laboratories composed of multi-instrument suites. MEMS technology is very attractive for in-situ planetary exploration because of the promise of a diverse and capable set of advanced, low mass and low-power devices and instruments. At JPL, we are exploiting this diversity of MEMS for the development of a new class of miniaturized instruments for planetary exploration. In particular, two examples of this approach are the development of an Electron Luminescence X-ray Spectrometer (ELXS), and a Force-Detected Nuclear Magnetic Resonance (FDNMR) Spectrometer.

  14. Monitoring food pathogens: Novel instrumentation for cassette PCR testing

    PubMed Central

    Hunt, Darin; Figley, Curtis; Lauzon, Jana; Figley, Rachel; Pilarski, Linda M.; McMullen, Lynn M.; Pilarski, Patrick M.

    2018-01-01

    In this manuscript, we report the design and development of a fast, reliable instrument to run gel-based cassette polymerase chain reactions (PCR). Here termed the GelCycler Mark II, our instrument is a miniaturized molecular testing system that is fast, low cost and sensitive. Cassette PCR utilizes capillary reaction units that carry all reagents needed for PCR, including primers and Taq polymerase, except the sample, which is loaded at the time of testing. Cassette PCR carries out real time quantitative PCR followed by melt curve analysis (MCA) to verify amplicon identity at the expected melt temperature (Tm). The cassette PCR technology is well developed, particularly for detecting pathogens, and has been rigorously validated for detecting pathogenic Escherichia coli in meat samples. However, the work has been hindered by the lack of a robust and stable instrument to carry out the PCR, which requires fast and accurate temperature regulation, improved light delivery and fluorescent recording, and faster PCR reactions that maintain a high sensitivity of detection. Here, we report design and testing of a new instrument to address these shortcomings and to enable standardized testing by cassette PCR and commercial manufacture of a robust and accurate instrument that can be mass produced to deliver consistent performance. As a corollary to our new instrument development, we also report the use of an improved design approach using a machined aluminum cassette to meet the new instrument standards, prevent any light bleed across different trenches in each cassette, and allow testing of a larger number of samples for more targets in a single run. The GelCycler Mark II can detect and report E. coli contamination in 41 minutes. Sample positives are defined in as having a melt curve comparable to the internal positive control, with peak height exceeding that of the internal negative control. In a fractional analysis, as little as 1 bacterium per capillary reaction unit is directly detectable, with no enrichment step, in 35 cycles of PCR/MCA, in a total time of 53 minutes, making this instrument and technology among the very best for speed and sensitivity in screening food for pathogenic contamination. PMID:29746561

  15. Laboratory technology and cosmochemistry

    PubMed Central

    Zinner, Ernst K.; Moynier, Frederic; Stroud, Rhonda M.

    2011-01-01

    Recent developments in analytical instrumentation have led to revolutionary discoveries in cosmochemistry. Instrumental advances have been made along two lines: (i) increase in spatial resolution and sensitivity of detection, allowing for the study of increasingly smaller samples, and (ii) increase in the precision of isotopic analysis that allows more precise dating, the study of isotopic heterogeneity in the Solar System, and other studies. A variety of instrumental techniques are discussed, and important examples of discoveries are listed. Instrumental techniques and instruments include the ion microprobe, laser ablation gas MS, Auger EM, resonance ionization MS, accelerator MS, transmission EM, focused ion-beam microscopy, atom probe tomography, X-ray absorption near-edge structure/electron loss near-edge spectroscopy, Raman microprobe, NMR spectroscopy, and inductively coupled plasma MS. PMID:21498689

  16. Building and testing of MIDAS instrument sub-assemblies

    NASA Astrophysics Data System (ADS)

    Lewis, S. D.

    2001-09-01

    The MIDAS instrument is an atomic force microscope developed by ESTEC to fly on Rosetta. The purpose of the instrument is to sample and characterise cometary dust, which impinges upon a facetted wheel contained within the instrument enclosure. Due to its relative complexity, the long cruise phase of the Rosetta mission and the relatively novel use of piezomotors for all drive requirements the instrument has a number of interesting mechanisms engineering challenges. This paper describes the lubricant selection, EM and FM subassembly build and test campaigns carried out by AEA Technology Space in close support of the instrumentlevel activities which ran in parallel at ESTEC. The paper also identifies some lessons learned, which can be generally applied in other mechanism programmes.

  17. Quantitative Analysis of Technological Innovation in Knee Arthroplasty: Using Patent and Publication Metrics to Identify Developments and Trends.

    PubMed

    Dalton, David M; Burke, Thomas P; Kelly, Enda G; Curtin, Paul D

    2016-06-01

    Surgery is in a constant continuum of innovation with refinement of technique and instrumentation. Arthroplasty surgery potentially represents an area with highly innovative process. This study highlights key area of innovation in knee arthroplasty over the past 35 years using patent and publication metrics. Growth rates and patterns are analyzed. Patents are correlated to publications as a measure of scientific support. Electronic patent and publication databases were searched over the interval 1980-2014 for "knee arthroplasty" OR "knee replacement." The resulting patent codes were allocated into technology clusters. Citation analysis was performed to identify any important developments missed on initial analysis. The technology clusters identified were further analyzed, individual repeat searches performed, and growth curves plotted. The initial search revealed 3574 patents and 16,552 publications. The largest technology clusters identified were Unicompartmental, Patient-Specific Instrumentation (PSI), Navigation, and Robotic knee arthroplasties. The growth in patent activity correlated strongly with publication activity (Pearson correlation value 0.892, P < .01), but was growing at a faster rate suggesting a decline in vigilance. PSI, objectively the fastest growing technology in the last 5 years, is currently in a period of exponential growth that began a decade ago. Established technologies in the study have double s-shaped patent curves. Identifying trends in emerging technologies is possible using patent metrics and is useful information for training and regulatory bodies. The decline in ratio of publications to patents and the uninterrupted growth of PSI are developments that may warrant further investigation. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Defense switched network technology and experiments program

    NASA Astrophysics Data System (ADS)

    Weinstein, C. J.

    1983-09-01

    This report documents work performed during FY 1983 on the DCA-sponsored Defense Switched Network Technology and Experiments Program. The areas of work reported are: (1) development of routing algorithms for application in the Defense Switched Network (DSN); (2) instrumentation and integration of the Experimental Integrated Switched Network (EISN) test facility; (3) development and test of data communication techniques using DoD-standard data protocols in an integrated voice/data network; and (4) EISN system coordination and experiment planning.

  19. Emerging digital micromirror device (DMD) applications

    NASA Astrophysics Data System (ADS)

    Dudley, Dana; Duncan, Walter M.; Slaughter, John

    2003-01-01

    For the past six years, Digital Light Processing technology from Texas Instruments has made significant inroads in the projection display market. With products enabling the world"s smallest data and video projectors, HDTVs, and digital cinema, DLP technology is extremely powerful and flexible. At the heart of these display solutions is Texas Instruments Digital Micromirror Device (DMD), a semiconductor-based "light switch" array of thousands of individually addressable, tiltable, mirror-pixels. With success of the DMD as a spatial light modulator for projector applications, dozens of new applications are now being enabled by general-use DMD products that are recently available to developers. The same light switching speed and "on-off" (contrast) ratio that have resulted in superior projector performance, along with the capability of operation outside the visible spectrum, make the DMD very attractive for many applications, including volumetric display, holographic data storage, lithography, scientific instrumentation, and medical imaging. This paper presents an overview of past and future DMD performance in the context of new DMD applications, cites several examples of emerging products, and describes the DMD components and tools now available to developers.

  20. In Situ Aerosol Detector

    NASA Technical Reports Server (NTRS)

    Vakhtin, Andrei; Krasnoperov, Lev

    2011-01-01

    An affordable technology designed to facilitate extensive global atmospheric aerosol measurements has been developed. This lightweight instrument is compatible with newly developed platforms such as tethered balloons, blimps, kites, and even disposable instruments such as dropsondes. This technology is based on detection of light scattered by aerosol particles where an optical layout is used to enhance the performance of the laboratory prototype instrument, which allows detection of smaller aerosol particles and improves the accuracy of aerosol particle size measurement. It has been determined that using focused illumination geometry without any apertures is advantageous over using the originally proposed collimated beam/slit geometry (that is supposed to produce uniform illumination over the beam cross-section). The illumination source is used more efficiently, which allows detection of smaller aerosol particles. Second, the obtained integral scattered light intensity measured for the particle can be corrected for the beam intensity profile inhomogeneity based on the measured beam intensity profile and measured particle location. The particle location (coordinates) in the illuminated sample volume is determined based on the information contained in the image frame. The procedure considerably improves the accuracy of determination of the aerosol particle size.

  1. A Thermal Imaging Instrument with Uncooled Detectors

    NASA Astrophysics Data System (ADS)

    Joseph, A. T.; Barrentine, E. M.; Brown, A. D.

    2017-12-01

    In this work, we perform an instrument concept study for sustainable thermal imaging over land with uncooled detectors. The National Research Council's Committee on Implementation of a Sustained Land Imaging Program has identified the inclusion of a thermal imager as critical for both current and future land imaging missions. Such an imaging instrument operating in two bands located at approximately 11 and 12 microns (for example, in Landsat 8, and also Landsat 9 when launched) will provide essential information for furthering our hydrologic understanding at scales of human influence, and produce field-scale moisture information through accurate retrievals of evapotranspiration (ET). Landsat 9 is slated to recycle the TIRS-2 instrument launched with Landsat 8 that uses cooled quantum well infrared photodetectors (QWIPs), hence requiring expensive and massive cryocooler technology to achieve its required spectral and spatial accuracies. Our goal is to conceptualize and develop a thermal imaging instrument which leverages recent and imminent technology advances in uncooled detectors. Such detector technology will offer the benefit of greatly reduced instrument cost, mass, and power at the expense of some acceptable loss in detector sensitivity. It would also allow a thermal imaging instrument to be fielded on board a low-cost platform, e.g., a CubeSat. Sustained and enhanced land imaging is crucial for providing high-quality science data on change in land use, forest health, crop status, environment, and climate. Accurate satellite mapping of ET at the agricultural field scale (the finest spatial scale of the environmental processes of interest) requires high-quality thermal data to produce the corresponding accurate land surface temperature (LST) retrievals used to drive an ET model. Such an imaging instrument would provide important information on the following: 1) the relationship between land-use and land/water management practices and water use dynamics; 2) the interconnections between anthropogenic water management and changes in hydrologic budget at scales of human influence; and 3) complimentary field-scale moisture values for interpreting coarser resolution datasets. There is a clear need for continuing innovation in thermal remote sensing detector technology.

  2. Optical devices: A compilation

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Technological developments in the field of optics devices which have potential utility outside the aerospace community are described. Optical instrumentation, light generation and transmission, and laser techniques are among the topics covered. Patent information is given.

  3. Development of the Advanced Technology Microwave Sounder (ATMS) for NPOESS C1

    NASA Astrophysics Data System (ADS)

    Brann, C.; Kunkee, D.

    2008-12-01

    The National Polar-orbiting Operational Environmental Satellite System's Advanced Technology Microwave Sounder (ATMS) is planned for flight on the first NPOESS mission (C1) in 2013. The C1 ATMS will be the second instrument of the ATMS series and will provide along with the companion Cross-track Infrared Sounder (CrIS), atmospheric temperature and moisture profiles for NPOESS. The first flight of the ATMS is scheduled in 2010 on the NPOESS Preparatory Project (NPP) satellite, which is an early instrument risk reduction component of the NPOESS mission. This poster will focus on the development of the ATMS for C1 including aspects of the sensor calibration, antenna beam and RF characteristics and scanning. New design aspects of the C1 ATMS, required primarily by parts obsolescence, will also be addressed in this poster.

  4. Determination of technical readiness for an atmospheric carbon imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Mobilia, Joseph; Kumer, John B.; Palmer, Alice; Sawyer, Kevin; Mao, Yalan; Katz, Noah; Mix, Jack; Nast, Ted; Clark, Charles S.; Vanbezooijen, Roel; Magoncelli, Antonio; Baraze, Ronald A.; Chenette, David L.

    2013-09-01

    The geoCARB sensor uses a 4-channel push broom slit-scan infrared imaging grating spectrometer to measure the absorption spectra of sunlight reflected from the ground in narrow wavelength regions. The instrument is designed for flight at geostationary orbit to provide mapping of greenhouse gases over continental scales, several times per day, with a spatial resolution of a few kilometers. The sensor provides multiple daily maps of column-averaged mixing ratios of CO2, CH4, and CO over the regions of interest, which enables flux determination at unprecedented time, space, and accuracy scales. The geoCARB sensor development is based on our experience in successful implementation of advanced space deployed optical instruments for remote sensing. A few recent examples include the Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) on the geostationary Solar Dynamics Observatory (SDO), the Space Based Infrared System (SBIRS GEO-1) and the Interface Region Imaging Spectrograph (IRIS), along with sensors under development, the Near Infared camera (NIRCam) for James Webb (JWST), and the Global Lightning Mapper (GLM) and Solar UltraViolet Imager (SUVI) for the GOES-R series. The Tropospheric Infrared Mapping Spectrometer (TIMS), developed in part through the NASA Instrument Incubator Program (IIP), provides an important part of the strong technological foundation for geoCARB. The paper discusses subsystem heritage and technology readiness levels for these subsystems. The system level flight technology readiness and methods used to determine this level are presented along with plans to enhance the level.

  5. Mars2020 Entry, Descent, and Landing Instrumentation (MEDLI2): Science Objectives and Instrument Requirements

    NASA Technical Reports Server (NTRS)

    Bose, Deepak; White, Todd; Schoenenberger, Mark; Karlgaard, Chris; Wright, Henry

    2015-01-01

    NASAs exploration and technology roadmaps call for capability advancements in Mars entry, descent, and landing (EDL) systems to enable increased landed mass, a higher landing precision, and a wider planetary access. It is also recognized that these ambitious EDL performance goals must be met while maintaining a low mission risk in order to pave the way for future human missions. As NASA is engaged in developing new EDL systems and technologies via testing at Earth, instrumentation of existing Mars missions is providing valuable engineering data for performance improvement, risk reduction, and an improved definition of entry loads and environment. The most notable recent example is the Mars Entry, Descent and Landing Instrument (MEDLI) suite hosted by Mars Science Laboratory for its entry in Aug 2012. The MEDLI suite provided a comprehensive dataset for Mars entry aerodynamics, aerothermodynamics and thermal protection system (TPS) performance. MEDLI data has since been used for unprecedented reconstruction of aerodynamic drag, vehicle attitude, in-situ atmospheric density, aerothermal heating, and transition to turbulence, in-depth TPS performance and TPS ablation. [1,2] In addition to validating predictive models, MEDLI data has demonstrated extra margin available in the MSL forebody TPS, which can potentially be used to reduce vehicle parasitic mass. The presentation will introduce a follow-on MEDLI instrumentation suite (called MEDLI2) that is being developed for Mars-2020 mission. MEDLI2 has an enhanced scope that includes backshell instrumentation, a wider forebody coverage, and instruments that specifically target supersonic aerodynamics. Similar to MEDLI, MEDLI2 uses thermal plugs with embedded thermocouples and ports through the TPS to measure surface pressure. MEDLI2, however, also includes heat flux sensors in the backshell and a low range pressure transducer to measure afterbody pressure.

  6. Control architecture for an adaptive electronically steerable flash lidar and associated instruments

    NASA Astrophysics Data System (ADS)

    Ruppert, Lyle; Craner, Jeremy; Harris, Timothy

    2014-09-01

    An Electronically Steerable Flash Lidar (ESFL), developed by Ball Aerospace & Technologies Corporation, allows realtime adaptive control of configuration and data-collection strategy based on recent or concurrent observations and changing situations. This paper reviews, at a high level, some of the algorithms and control architecture built into ESFL. Using ESFL as an example, it also discusses the merits and utility such adaptable instruments in Earth-system studies.

  7. Aerosol and cloud sensing with the Lidar In-space Technology Experiment (LITE)

    NASA Technical Reports Server (NTRS)

    Winker, D. M.; McCormick, M. P.

    1994-01-01

    The Lidar In-space Technology Experiment (LITE) is a multi-wavelength backscatter lidar developed by NASA Langley Research Center to fly on the Space Shuttle. The LITE instrument is built around a three-wavelength ND:YAG laser and a 1-meter diameter telescope. The laser operates at 10 Hz and produces about 500 mJ per pulse at 1064 nm and 532 nm, and 150 mJ per pulse at 355 nm. The objective of the LITE program is to develop the engineering processes required for space lidar and to demonstrate applications of space-based lidar to remote sensing of the atmosphere. The LITE instrument was designed to study a wide range of cloud and aerosol phenomena. To this end, a comprehensive program of scientific investigations has been planned for the upcoming mission. Simulations of on-orbit performance show the instrument has sufficient sensitivity to detect even thin cirrus on a single-shot basis. Signal averaging provides the capability of measuring the height and structure of the planetary boundary layer, aerosols in the free troposphere, the stratospheric aerosol layer, and density profiles to an altitude of 40 km. The instrument has successfully completed a ground-test phase and is scheduled to fly on the Space Shuttle Discovery for a 9-day mission in September 1994.

  8. Fast multichannel astronomical photometer based on silicon photo multipliers mounted at the Telescopio Nazionale Galileo

    NASA Astrophysics Data System (ADS)

    Ambrosino, Filippo; Meddi, Franco; Rossi, Corinne; Sclavi, Silvia; Nesci, Roberto; Bruni, Ivan; Ghedina, Adriano; Riverol, Luis; Di Fabrizio, Luca

    2014-07-01

    The realization of low-cost instruments with high technical performance is a goal that deserves efforts in an epoch of fast technological developments. Such instruments can be easily reproduced and therefore allow new research programs to be opened in several observatories. We realized a fast optical photometer based on the SiPM (Silicon Photo Multiplier) technology, using commercially available modules. Using low-cost components, we developed a custom electronic chain to extract the signal produced by a commercial MPPC (Multi Pixel Photon Counter) module produced by Hamamatsu Photonics to obtain sub-millisecond sampling of the light curve of astronomical sources (typically pulsars). We built a compact mechanical interface to mount the MPPC at the focal plane of the TNG (Telescopio Nazionale Galileo), using the space available for the slits of the LRS (Low Resolution Spectrograph). On February 2014 we observed the Crab pulsar with the TNG with our prototype photometer, deriving its period and the shape of its light curve, in very good agreement with the results obtained in the past with other much more expensive instruments. After the successful run at the telescope we describe here the lessons learned and the ideas that burst to optimize this instrument and make it more versatile.

  9. Human-In-The-Loop Simulation in Support of Long-Term Sustainability of Light Water Reactors

    DOE PAGES

    Hallbert, Bruce P

    2015-01-01

    Reliable instrumentation, information, and control systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration. The NPP owners and operators realize that this analog technology represents a significant challenge to sustaining the operation of the current fleet of NPPs. Beyond control systems, new technologies are neededmore » to monitor and characterize the effects of aging and degradation in critical areas of key structures, systems, and components. The objective of the efforts sponsored by the U.S. Department of Energy is to develop, demonstrate, and deploy new digital technologies for II&C architectures and provide monitoring capabilities to ensure the continued safe, reliable, and economic operation of the nation’s NPPs.« less

  10. Content validity of governing in Building Information Modelling (BIM) implementation assessment instrument

    NASA Astrophysics Data System (ADS)

    Hadzaman, N. A. H.; Takim, R.; Nawawi, A. H.; Mohamad Yusuwan, N.

    2018-04-01

    BIM governance assessment instrument is a process of analysing the importance in developing BIM governance solution to tackle the existing problems during team collaboration in BIM-based projects. Despite the deployment of integrative technologies in construction industry particularly BIM, it is still insufficient compare to other sectors. Several studies have been established the requirements of BIM implementation concerning all technical and non-technical BIM adoption issues. However, the data are regarded as inadequate to develop a BIM governance framework. Hence, the objective of the paper is to evaluate the content validity of the BIM governance instrument prior to the main data collection. Two methods were employed in the form of literature review and questionnaire survey. Based on the literature review, 273 items with six main constructs are suggested to be incorporated in the BIM governance instrument. The Content Validity Ratio (CVR) scores revealed that 202 out of 273 items are considered as the utmost critical by the content experts. The findings for Item Level Content Validity Index (I-CVI) and Modified Kappa Coefficient however revealed that 257 items in BIM governance instrument are appropriate and excellent. The instrument is highly reliable for future strategies and the development of BIM projects in Malaysia.

  11. The Monterey Ocean Observing System Development Program

    NASA Astrophysics Data System (ADS)

    Chaffey, M.; Graybeal, J. B.; O'Reilly, T.; Ryan, J.

    2004-12-01

    The Monterey Bay Aquarium Research Institute (MBARI) has a major development program underway to design, build, test and apply technology suitable to deep ocean observatories. The Monterey Ocean Observing System (MOOS) program is designed to form a large-scale instrument network that provides generic interfaces, intelligent instrument support, data archiving and near-real-time interaction for observatory experiments. The MOOS mooring system is designed as a portable surface mooring based seafloor observatory that provides data and power connections to both seafloor and ocean surface instruments through a specialty anchor cable. The surface mooring collects solar and wind energy for powering instruments and transmits data to shore-side researchers using a satellite communications modem. The use of a high modulus anchor cable to reach seafloor instrument networks is a high-risk development effort that is critical for the overall success of the portable observatory concept. An aggressive field test program off the California coast is underway to improve anchor cable constructions as well as end-to-end test overall system design. The overall MOOS observatory systems view is presented and the results of our field tests completed to date are summarized.

  12. The Study on Virtual Medical Instrument based on LabVIEW.

    PubMed

    Chengwei, Li; Limei, Zhang; Xiaoming, Hu

    2005-01-01

    With the increasing performance of computer, the virtual instrument technology has greatly advanced over the years, and then virtual medical instrument technology becomes available. This paper presents the virtual medical instrument, and then as an example, an application of a signal acquisition, processing and analysis system using LabVIEW is also given.

  13. Aeroacoustic Research Techniques: Jets to Autos

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.

    1999-01-01

    Aeroacoustic research has benefited from the development of advanced techniques for the study of fluid mechanically generated noise New instrumentation; methodologies, information technologies, and facilities have evolved to help researchers investigate the complexities of aircraft and automobile noise. In this paper, research techniques are reviewed with emphasis on the subject closest to the author s experience: aircraft propulsion and airframe noise in simulated flight. A new technology developed for the study of aircraft airframe noise is described as a potential tool for the study of automobile noise. The important role of information technology in aeroacoustic research is discussed.

  14. Terrestrial Planet Finder Interferometer: Architecture, Mission Design and Technology Development

    NASA Technical Reports Server (NTRS)

    Henry, Curt; Lay, Oliver; Aung, MiMi; Gunter, Steven M.; Dubovitsky, Serge; Blackwood, Gary

    2004-01-01

    This overview paper is a progress report about the system design and technology development of two interferometer concepts studied for the Terrestrial Planet Finder (TPF) project. The two concepts are a structurally-connected interferometer (SCI) intended to fulfill minimum TPF science goals and a formation-flying interferometer (FFI) intended to fulfill full science goals. Described are major trades, analyses, and technology experiments completed. Near term plans are also described. This paper covers progress since August 2003 and serves as an update to a paper presented at that month's SPIE conference, 'Techniques and Instrumentation for Detection of Exoplanets.

  15. NASA Laser Light Scattering Advanced Technology Development Workshop, 1988

    NASA Technical Reports Server (NTRS)

    Meyer, William V. (Editor)

    1989-01-01

    The major objective of the workshop was to explore the capabilities of existing and prospective laser light scattering hardware and to assess user requirements and needs for a laser light scattering instrument in a reduced gravity environment. The workshop addressed experimental needs and stressed hardware development.

  16. SOFIA Education/Public Outreach with the Echelon Cross Echelle Spectrograph (EXES)

    NASA Astrophysics Data System (ADS)

    Hemenway, M. K.; Lacy, J. H.; Jaffe, D. T.; Richter, M. J.; Green, K.; Harkrider, J. L.; Lutsinger, C. L.; Noid, E.; Penn, R.; Shepherd, L.; Suder, R.; Tykoski, M. J.; Willis, M. J.

    1998-12-01

    The integration of science and technology is maximized in the development of a new scientific instrument for SOFIA like EXES. Many teachers with good science backgrounds have never had an experience in which they can learn first-hand about instrument development. The goal of this program is to prepare a cadre of teachers who will promote astronomy within their communities and who will be prepared eventually for a flight experience on SOFIA. This program provides grade 7-12 Central Texas (i.e., work within 100 miles of UT-Austin) teachers an opportunity to learn not only the principles of astronomy, but also the technology behind instrument development. By spreading the experience out over several years, the group may observe the development and construction of EXES through many phases. In addition to traditional laboratory exercises [e.g. the celestial sphere, optics, optical telescopes, spectroscopy, use of CCD cameras, and error analysis], there will be practice in using equipment such as an interferometer for optical alignment, drill press, mill, and lathe. Simultaneous with the teachers' growing understanding of astronomy and technology through their hands-on activities, their knowledge of scientific research - particularly in the area of infrared astronomy - will be enhanced through regular interactive talks by the co-investigators. With careful planning, several important secondary goals are achieved with this program: 1. The activities are aligned with the National Science Education Standards 2. Many of the traditional astronomy activities have been modified for use by secondary school students 3. Information on careers is developed through activities which emphasize the team-work necessary to build and operate EXES 4. Professional links are forged between the EXES team and the teachers

  17. Planetary Geochemistry Techniques: Probing In-Situ with Neutron and Gamma Rays (PING) Instrument

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Burger, D.; Evans, L.; Floyd, S.; Lin, L.; McClanahan, T.; Nankung, M.; Nowicki, S.; Schweitzer, J.; hide

    2011-01-01

    The Probing In situ with Neutrons and Gamma rays (PING) instrument is a promising planetary science application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth. The objective of our technology development program at NASA Goddard Space Flight Center's (NASA/GSFC) Astrochemistry Laboratory is to extend the application of neutron interrogation techniques to landed in situ planetary composition measurements by using a 14 MeV Pulsed Neutron Generator (PNG) combined with neutron and gamma ray detectors, to probe the surface and subsurface of planetary bodies without the need to drill. We are thus working to bring the PING instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asteroids, comets and the satellites of the outer planets.

  18. Real-Time On-Board Airborne Demonstration of High-Speed On-Board Data Processing for Science Instruments (HOPS)

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Ng, Tak-Kwong; Davis, Mitchell J.; Adams, James K.; Bowen, Stephen C.; Fay, James J.; Hutchinson, Mark A.

    2015-01-01

    The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program since April, 2012. The HOPS team recently completed two flight campaigns during the summer of 2014 on two different aircrafts with two different science instruments. The first flight campaign was in July, 2014 based at NASA Langley Research Center (LaRC) in Hampton, VA on the NASA's HU-25 aircraft. The science instrument that flew with HOPS was Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) CarbonHawk Experiment Simulator (ACES) funded by NASA's Instrument Incubator Program (IIP). The second campaign was in August, 2014 based at NASA Armstrong Flight Research Center (AFRC) in Palmdale, CA on the NASA's DC-8 aircraft. HOPS flew with the Multifunctional Fiber Laser Lidar (MFLL) instrument developed by Excelis Inc. The goal of the campaigns was to perform an end-to-end demonstration of the capabilities of the HOPS prototype system (HOPS COTS) while running the most computationally intensive part of the ASCENDS algorithm real-time on-board. The comparison of the two flight campaigns and the results of the functionality tests of the HOPS COTS are presented in this paper.

  19. Development of nanosensors in nuclear technology

    NASA Astrophysics Data System (ADS)

    Hassan, Thamir A. A.

    2017-01-01

    Selectivity, sensitivity, and stability (three S parameters) are developed as a new range of sensor this provided instruments for harsh, radioactive waste polluted environment monitoring. Isotope effect is very effective for nuclear radiation sensors preparation.in this presentation are reviewed of the development of Nanosensors in nuclear technology, such as high temperature boron and its compounds with suitable physical and chemical features as sensitive element for temperature and nuclear sensor, Boron isotopes based semiconductor nanosensors and studies of the mechanism of the removal uranium from radioactive wastewater with graphene oxide (GO).

  20. Transfer of radiation technology to developing countries

    NASA Astrophysics Data System (ADS)

    Markovic, Vitomir; Ridwan, Mohammad

    1993-10-01

    Transfer of technology is a complex process with many facets, options and constraints. While the concept is an important step in bringing industrialization process to agricultural based countries, it is clear, however, that a country will only benefit from a new technology if it addresses a real need, and if it can be absorbed and adapted to suit the existing cultural and technological base. International Atomic Energy Agency, as UN body, has a mandate to promote nuclear applicationsand assist Member States in transfer of technology for peaceful applications. This mandate has been pursued by many different mechanisms developed in the past years: technical assistance, coordinated research programmes, scientific and technical meetings, publications, etc. In all these activities the Agency is the organizer and initiator, but main contributions come from expert services from developed countries and, increasingly, from developing countries themselves. The technical cooperation among developing coutries more and more becomes part of different programmes. In particular, regional cooperation has been demonstrated as an effective instrument for transfer of technology from developed and among developing countries. Some examples of actual programmes are given.

  1. Preliminary Findings of Inflight Icing Field Test to Support Icing Remote Sensing Technology Assessment

    NASA Technical Reports Server (NTRS)

    King, Michael; Reehorst, Andrew; Serke, Dave

    2015-01-01

    NASA and the National Center for Atmospheric Research have developed an icing remote sensing technology that has demonstrated skill at detecting and classifying icing hazards in a vertical column above an instrumented ground station. This technology has recently been extended to provide volumetric coverage surrounding an airport. Building on the existing vertical pointing system, the new method for providing volumetric coverage will utilize a vertical pointing cloud radar, a multifrequency microwave radiometer with azimuth and elevation pointing, and a NEXRAD radar. The new terminal area icing remote sensing system processes the data streams from these instruments to derive temperature, liquid water content, and cloud droplet size for each examined point in space. These data are then combined to ultimately provide icing hazard classification along defined approach paths into an airport.

  2. EUV spectroscopy of high-redshift x-ray objects

    NASA Astrophysics Data System (ADS)

    Kowalski, M. P.; Wolff, M. T.; Wood, K. S.; Barbee, T. W., Jr.; Barstow, M. A.

    2010-07-01

    As astronomical observations are pushed to cosmological distances (z>3) the spectral energy distributions of X-ray objects, AGN for example, will be redshifted into the EUV waveband. Consequently, a wealth of critical spectral diagnostics, provided by, for example, the Fe L-shell complex and the O VII/VIII lines, will be lost to future planned X-ray missions (e.g., IXO, Gen-X) if operated at traditional X-ray energies. This opens up a critical gap in performance located at short EUV wavelengths, where critical X-ray spectral transitions occur in high-z objects. However, normal-incidence multilayer-grating technology, which performs best precisely at such wavelengths, together with advanced nanolaminate replication techniques have been developed and are now mature to the point where advanced EUV instrument designs with performance complementary to IXO and Gen-X are practical. Such EUV instruments could be flown either independently or as secondary instruments on these X-ray missions. We present here a critical examination of the limits placed on extragalactic EUV measurements by ISM absorption, the range where high-z measurements are practical, and the requirements this imposes on next-generation instrument designs. We conclude with a discussion of a breakthrough technology, nanolaminate replication, which enables such instruments.

  3. Active Neutron and Gamma-Ray Instrumentation for In Situ Planetary Science Applications

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, A.; Lim, L.; McClanahan, T.; Namkung, M.; Nowicki, S.; Schweitzer, J.; Starr, R.; hide

    2011-01-01

    We describe the development of an instrument capable of detailed in situ bulk geochemical analysis of the surface of planets, moons, asteroids, and comets. This instrument technology uses a pulsed neutron generator to excite the solid materials of a planet and measures the resulting neutron and gamma-ray emission with its detector system. These time-resolved neutron and gamma-ray data provide detailed information about the bulk elemental composition, chemical context, and density distribution of the soil within 50 cm of the surface. While active neutron scattering and neutron-induced gamma-ray techniques have been used extensively for terrestrial nuclear well logging applications, our goal is to apply these techniques to surface instruments for use on any solid solar system body. As described, experiments at NASA Goddard Space Flight Center use a prototype neutron-induced gamma-ray instrument and the resulting data presented show the promise of this technique for becoming a versatile, robust, workhorse technology for planetary science, and exploration of any of the solid bodies in the solar system. The detection of neutrons at the surface also provides useful information about the material. This paper focuses on the data provided by the gamma-ray detector.

  4. SIRTF Science Operations System Design

    NASA Technical Reports Server (NTRS)

    Green, William

    1999-01-01

    SIRTF Science Operations System Design William B. Green Manager, SIRTF Science Center California Institute of Technology M/S 310-6 1200 E. California Blvd., Pasadena CA 91125 (626) 395 8572 Fax (626) 568 0673 bgreen@ipac.caltech.edu. The Space Infrared Telescope Facility (SIRTF) will be launched in December 2001, and perform an extended series of science observations at wavelengths ranging from 20 to 160 microns for five years or more. The California Institute of Technology has been selected as the home for the SIRTF Science Center (SSC). The SSC will be responsible for evaluating and selecting observation proposals, providing technical support to the science community, performing mission planning and science observation scheduling activities, instrument calibration during operations and instrument health monitoring, production of archival quality data products, and management of science research grants. The science payload consists of three instruments delivered by instrument Principal Investigators located at University of Arizona, Cornell, and Harvard Smithsonian Astrophysical Observatory. The SSC is responsible for design, development, and operation of the Science Operations System (SOS) which will support the functions assigned to the SSC by NASA. The SIRTF spacecraft, mission profile, and science instrument design have undergone almost ten years of refinement. SIRTF development and operations activities are highly cost constrained. The cost constraints have impacted the design of the SOS in several ways. The Science Operations System has been designed to incorporate a set of efficient, easy to use tools which will make it possible for scientists to propose observation sequences in a rapid and automated manner. The use of highly automated tools for requesting observations will simplify the long range observatory scheduling process, and the short term scheduling of science observations. Pipeline data processing will be highly automated and data-driven, utilizing a variety of tools developed at JPL, the instrument development teams, and Space Telescope Science Institute to automate processing. An incremental ground data system development approach has been adopted, featuring periodic deliveries that are validated with the flight hardware throughout the various phases of system level development and testing. This approach minimizes development time and decreases operations risk. This paper will describe the top level architecture of the SOS and the basic design concepts. A summary of the incremental development approach will be presented. Examples of the unique science user tools now under final development prior to the first proposal call scheduled for mid-2000 will be shown.

  5. Jordanian Social Studies Teachers' Perceptions of Competency Needed for Implementing Technology in the Classroom

    ERIC Educational Resources Information Center

    Al Bataineh, Mohammad; Anderson, Sharon

    2015-01-01

    This study used a cross-sectional, ten-point Likert-type scale survey design, to examine the perception of Jordanian seventh to twelfth-grade social studies teachers of the competency needed for technology implementation in their classrooms. The instrument for this study was a modified version of a survey developed by Kelly (2003) called the…

  6. Metastable Intermolecular Composites (MIC) Primers for Small Caliber Cartridges and Cartridge Actuated Devices

    DTIC Science & Technology

    2009-07-01

    24 iii ACRONYMS AND ABBREVIATIONS ATF Armaments Technology Facility ATK Alliant Techsystems, Inc. ARDEC Armament Research...Technology Facility ( ATF ) firings there, and was instrumental in producing the primers and loading the cartridges needed for the supplemental...and CADs known as the percussion primer. The novel properties associated with nanostructure materials have resulted in the development of thermite

  7. Air Force Technical Objective Document, FY89.

    DTIC Science & Technology

    1988-04-01

    threat warning; multimegawatt stand-off jammers; a family of new, broadband , active decoy expendables; E4? subsystems and EW suites for Military...and monolithic integrated circuits. (3) Microwave TWTs Develop microwave tube technology and selected thermionic power sources and amplifiers for ECM...Improved design reliability and multiple application of tube technology are stressed. Improve Traveling Wave Tube ( TWT ) reliability by instrumenting a TWT

  8. Development of an Instrument to Assess Attitudes toward Science, Technology, Engineering, and Mathematics (STEM)

    ERIC Educational Resources Information Center

    Guzey, S. Selcen; Harwell, Michael; Moore, Tamara

    2014-01-01

    There is a need for more students to be interested in science, technology, engineering, and mathematics (STEM) careers to advance U.S. competitiveness and economic growth. A consensus exists that improving STEM education is necessary for motivating more students to pursue STEM careers. In this study, a survey to measure student (grades 4-6)…

  9. Technological innovation in video-assisted thoracic surgery.

    PubMed

    Özyurtkan, Mehmet Oğuzhan; Kaba, Erkan; Toker, Alper

    2017-01-01

    The popularity of video-assisted thoracic surgery (VATS) which increased worldwide due to the recent innovations in thoracic surgical technics, equipment, electronic devices that carry light and vision and high definition monitors. Uniportal VATS (UVATS) is disseminated widely, creating a drive to develop new techniques and instruments, including new graspers and special staplers with more angulation capacities. During the history of VATS, the classical 10 mm 0° or 30° rigid rod lens system, has been replaced by new thoracoscopes providing a variable angle technology and allowing 0° and 120° range of vision. Besides, the tip of these novel thoracoscopes can be positioned away from the operating side minimize fencing with other thoracoscopic instruments. The curved-tip stapler technology, and better designed endostaplers helped better dissection, precision of control, more secure staple lines. UVATS also contributed to the development of embryonic natural orifice transluminal endoscopic surgery. Three-dimensional VATS systems facilitated faster and more accurate grasping, suturing, and dissection of the tissues by restoring natural 3D vision and the perception of depth. Another innovation in VATS is the energy-based coagulative and tissue fusion technology which may be an alternative to endostaplers.

  10. LIDAR and acoustics applications to ocean productivity

    NASA Technical Reports Server (NTRS)

    Collins, D. J.

    1982-01-01

    The requirements for the submersible, the instrumentation necessary to perform these measurements, and the optical and acoustical technology required to develop the ocean color scanner instrumentation are described. The development of a second generation ocean color scanner produced the need for coincident in situ scientific measurements which examine the primary productivity of the upper ocean on time and space scales which are large compared to the environmental scales. The vertical and horizontal variability of the biota, including the relationship between chlorophyll and primary productivity, the productivity of zooplankton, and the dynamic interaction between phytoplankton and zooplankton, and between these populations and the physical environment are investigated. A towed submersible will be constructed which accommodates both an underwater LIDAR instrument and a multifrequency sonar.

  11. SOFIA science instruments: commissioning, upgrades and future opportunities

    NASA Astrophysics Data System (ADS)

    Smith, Erin C.; Miles, John W.; Helton, L. Andrew; Sankrit, Ravi; Andersson, B. G.; Becklin, Eric E.; De Buizer, James M.; Dowell, C. D.; Dunham, Edward W.; Güsten, Rolf; Harper, Doyal A.; Herter, Terry L.; Keller, Luke D.; Klein, Randolf; Krabbe, Alfred; Logsdon, Sarah; Marcum, Pamela M.; McLean, Ian S.; Reach, William T.; Richter, Matthew J.; Roellig, Thomas L.; Sandell, Göran; Savage, Maureen L.; Temi, Pasquale; Vacca, William D.; Vaillancourt, John E.; Van Cleve, Jeffrey E.; Young, Erick T.

    2014-07-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is the world's largest airborne observatory, featuring a 2.5 meter effective aperture telescope housed in the aft section of a Boeing 747SP aircraft. SOFIA's current instrument suite includes: FORCAST (Faint Object InfraRed CAmera for the SOFIA Telescope), a 5-40 μm dual band imager/grism spectrometer developed at Cornell University; HIPO (High-speed Imaging Photometer for Occultations), a 0.3-1.1μm imager built by Lowell Observatory; GREAT (German Receiver for Astronomy at Terahertz Frequencies), a multichannel heterodyne spectrometer from 60-240 μm, developed by a consortium led by the Max Planck Institute for Radio Astronomy; FLITECAM (First Light Infrared Test Experiment CAMera), a 1-5 μm wide-field imager/grism spectrometer developed at UCLA; FIFI-LS (Far-Infrared Field-Imaging Line Spectrometer), a 42-200 μm IFU grating spectrograph completed by University Stuttgart; and EXES (Echelon-Cross-Echelle Spectrograph), a 5-28 μm highresolution spectrometer designed at the University of Texas and being completed by UC Davis and NASA Ames Research Center. HAWC+ (High-resolution Airborne Wideband Camera) is a 50-240 μm imager that was originally developed at the University of Chicago as a first-generation instrument (HAWC), and is being upgraded at JPL to add polarimetry and new detectors developed at Goddard Space Flight Center (GSFC). SOFIA will continually update its instrument suite with new instrumentation, technology demonstration experiments and upgrades to the existing instrument suite. This paper details the current instrument capabilities and status, as well as the plans for future instrumentation.

  12. A review of instrumentation kinematics of engine-driven nickel-titanium instruments.

    PubMed

    Çapar, I D; Arslan, H

    2016-02-01

    Over the years, NiTi alloys have become indispensable materials in endodontic treatment. With technological advancements in metallurgy, manufacturers have attempted to produce instruments with enhanced features. In parallel with these developments, endodontic motors have undergone improvements in terms of torque control and kinematics that are adjustable in different directions. This review presents an overview of the advancements in instrumentation kinematics and the effect of instrumentation kinematics on root canal shaping procedures and instrument performance. The literature search for this narrative review was conducted in Google Scholar, Scopus, PubMed and Web of Science using the keywords 'kinematics and endodontics' and 'reciprocation and endodontics'. In addition, historical literature was searched using the keyword 'nickel-titanium and endodontics'. Overall, 143 articles were included up to 2015. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  13. The silicon chip: A versatile micro-scale platform for micro- and nano-scale systems

    NASA Astrophysics Data System (ADS)

    Choi, Edward

    Cutting-edge advances in micro- and nano-scale technology require instrumentation to interface with the external world. While technology feature sizes are continually being reduced, the size of experimentalists and their instrumentation do not mirror this trend. Hence there is a need for effective application-specific instrumentation to bridge the gap from the micro and nano-scale phenomena being studied to the comparative macro-scale of the human interfaces. This dissertation puts forward the idea that the silicon CMOS integrated circuit, or microchip in short, serves as an excellent platform to perform this functionality. The electronic interfaces designed for the semiconductor industry are particularly attractive as development platforms, and the reduction in feature sizes that has been a hallmark of the industry suggests that chip-scale instrumentation may be more closely coupled to the phenomena of interest, allowing finer control or improved measurement capabilities. Compatibility with commercial processes will further enable economies of scale through mass production, another welcome feature of this approach. Thus chip-scale instrumentation may replace the bulky, expensive, cumbersome-to-operate macro-scale prototypes currently in use for many of these applications. The dissertation examines four specific applications in which the chip may serve as the ideal instrumentation platform. These are nanorod manipulation, polypyrrole bilayer hinge microactuator control, organic transistor hybrid circuits, and contact fluorescence imaging. The thesis is structured around chapters devoted to each of these projects, in addition to a chapter on preliminary work on an RFID system that serves as a wireless interface model. Each of these chapters contains tools and techniques developed for chip-scale instrumentation, from custom scripts for automated layout and data collection to microfabrication processes. Implementation of these tools to develop systems for the applications above is evaluated. The viability of this approach is not limited to the examples listed in this work, and innovative new methodologies beyond those included here may be developed in the future for other systems which would benefit from the versatility of chip-scale platforms.

  14. Continuous GPS : pilot applications - Phase II

    DOT National Transportation Integrated Search

    2003-08-01

    The primary objective of this research was to evaluate the feasibility of applying Global Positioning System (GPS) technology in the study of geotechnical phenomenon by developing, integrating, and test deploying a GPS-based instrumentation package u...

  15. An interstellar precursor mission

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Ivie, C.; Lewis, J. C.; Lipes, R. G.; Norton, H. N.; Stearns, J. W.; Stimpson, L.; Weissman, P.

    1977-01-01

    A mission out of the planetary system, with launch about the year 2000, could provide valuable scientific data as well as test some of the technology for a later mission to another star. Primary scientific objectives for the precursor mission concern characteristics of the heliopause, the interstellar medium, stellar distances (by parallax measurements), low energy cosmic rays, interplanetary gas distribution, and mass of the solar system. Secondary objectives include investigation of Pluto. Candidate science instruments are suggested. Individual spacecraft systems for the mission were considered, technology requirements and problem areas noted, and a number of recommendations made for technology study and advanced development. The most critical technology needs include attainment of 50-yr spacecraft lifetime and development of a long-life NEP system.

  16. Exoplanetary Science: Instrumentation, Observations, and Expectations

    NASA Technical Reports Server (NTRS)

    McElwain, Michael

    2011-01-01

    More than 700 exoplanets have been discovered and studied using indirect techniques, leading our field into the exciting new era of comparative exoplanetology. However, the direct detection of exoplanetary systems still remains at the sensitivity limits of both ground- and space-based observatories. The development of new technologies for adaptive optics systems and high contrast instruments continues to increase the ability to directly study exoplanets. The scientific impact of these developments has promising prospects for both short and long timescales. In my talk, I will discuss recent highlights from the SEEDS survey and the current instrumentation in use at the Subaru telescope. SEEDS is a high contrast imaging strategic observing program with 120 nights of time allocated at the NAOJ's flagship optical and infrared telescope. I will also describe new instrumentation I designed to improve the SEEDS capabilities and efficiency. Finally, I will briefly discuss the conceptual design of a transiting planet camera to fly as a potential second generation instrument on-board NASA's SOFIA observatory.

  17. Cobalt: Development and Maturation of GN&C Technologies for Precision Landing

    NASA Technical Reports Server (NTRS)

    Carson, John M.; Restrepo, Carolina; Seubert, Carl; Amzajerdian, Farzin

    2016-01-01

    The CoOperative Blending of Autonomous Landing Technologies (COBALT) instrument is a terrestrial test platform for development and maturation of guidance, navigation and control (GN&C) technologies for precision landing. The project is developing a third-generation Langley Research Center (LaRC) navigation doppler lidar (NDL) for ultra-precise velocity and range measurements, which will be integrated and tested with the Jet Propulsion Laboratory (JPL) lander vision system (LVS) for terrain relative navigation (TRN) position estimates. These technologies together provide precise navigation knowledge that is critical for a controlled and precise touchdown. The COBALT hardware will be integrated in 2017 into the GN&C subsystem of the Xodiac rocket-propulsive vertical test bed (VTB) developed by Masten Space Systems, and two terrestrial flight campaigns will be conducted: one open-loop (i.e., passive) and one closed-loop (i.e., active).

  18. Fast Response Shape Memory Effect Titanium Nickel (TiNi) Foam Torque Tubes

    NASA Technical Reports Server (NTRS)

    Jardine, Peter

    2014-01-01

    Shape Change Technologies has developed a process to manufacture net-shaped TiNi foam torque tubes that demonstrate the shape memory effect. The torque tubes dramatically reduce response time by a factor of 10. This Phase II project matured the actuator technology by rigorously characterizing the process to optimize the quality of the TiNi and developing a set of metrics to provide ISO 9002 quality assurance. A laboratory virtual instrument engineering workbench (LabVIEW'TM')-based, real-time control of the torsional actuators was developed. These actuators were developed with The Boeing Company for aerospace applications.

  19. Light Water Reactor Sustainability Program Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan for FY 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallbert, Bruce Perry; Thomas, Kenneth David

    2015-10-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  20. Proceedings of a Workshop on Assessment of Techniques for Measuring Tropospheric N sub x O sub y

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Human impact on the troposphere, particularly on the regional to global scale is assessed. One area of required research is instrumentation development, which is aimed at improving the capability to measure important trace gases and aerosols which are key species in the major atmospheric biogeochemical cycles. To focus on specific needs, the Instrumentation Workshop for NxOy Tropospheric Species was conducted. The workshop discussed measurement needs and instrument capabilities for NxOy species, including NO, NO2, HNO3, HNO2, PAN, and NO3 aerosols. The status and measurement capabilities of various techniques (operational as well as conceptual) were discussed, along with future instrument and technology needs.

Top