Sample records for technology lifecycle analysis

  1. Second NASA Technical Interchange Meeting (TIM): Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box (TTB)

    NASA Technical Reports Server (NTRS)

    ONeil, D. A.; Mankins, J. C.; Christensen, C. B.; Gresham, E. C.

    2005-01-01

    The Advanced Technology Lifecycle Analysis System (ATLAS), a spreadsheet analysis tool suite, applies parametric equations for sizing and lifecycle cost estimation. Performance, operation, and programmatic data used by the equations come from a Technology Tool Box (TTB) database. In this second TTB Technical Interchange Meeting (TIM), technologists, system model developers, and architecture analysts discussed methods for modeling technology decisions in spreadsheet models, identified specific technology parameters, and defined detailed development requirements. This Conference Publication captures the consensus of the discussions and provides narrative explanations of the tool suite, the database, and applications of ATLAS within NASA s changing environment.

  2. Cost-effectiveness Analysis for Technology Acquisition.

    PubMed

    Chakravarty, A; Naware, S S

    2008-01-01

    In a developing country with limited resources, it is important to utilize the total cost visibility approach over the entire life-cycle of the technology and then analyse alternative options for acquiring technology. The present study analysed cost-effectiveness of an "In-house" magnetic resonance imaging (MRI) scan facility of a large service hospital against outsourcing possibilities. Cost per unit scan was calculated by operating costing method and break-even volume was calculated. Then life-cycle cost analysis was performed to enable total cost visibility of the MRI scan in both "In-house" and "outsourcing of facility" configuration. Finally, cost-effectiveness analysis was performed to identify the more acceptable decision option. Total cost for performing unit MRI scan was found to be Rs 3,875 for scans without contrast and Rs 4,129 with contrast. On life-cycle cost analysis, net present value (NPV) of the "In-house" configuration was found to be Rs-(4,09,06,265) while that of "outsourcing of facility" configuration was Rs-(5,70,23,315). Subsequently, cost-effectiveness analysis across eight Figures of Merit showed the "In-house" facility to be the more acceptable option for the system. Every decision for acquiring high-end technology must be subjected to life-cycle cost analysis.

  3. Make or Buy: An Analysis of the Impacts of 3D Printing Operations, 3D Laser Scanning Technology, and Collaborative Product Lifecycle Management on Ship Maintenance and Modernization Cost Savings

    DTIC Science & Technology

    2016-01-30

    SPONSORED REPORT SERIES Make or Buy: An Analysis of the Impacts of 3D Printing Operations, 3D Laser Scanning Technology, and Collaborative...Report Series Make or Buy: An Analysis of the Impacts of 3D Printing Operations, 3D Laser Scanning Technology, and Collaborative Product Lifecycle...Application Areas for 3D Printing ........................................................ 36 Figure 15. Potential Applications of 3D

  4. Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box (TTB)

    NASA Technical Reports Server (NTRS)

    Doyle, Monica; ONeil, Daniel A.; Christensen, Carissa B.

    2005-01-01

    The Advanced Technology Lifecycle Analysis System (ATLAS) is a decision support tool designed to aid program managers and strategic planners in determining how to invest technology research and development dollars. It is an Excel-based modeling package that allows a user to build complex space architectures and evaluate the impact of various technology choices. ATLAS contains system models, cost and operations models, a campaign timeline and a centralized technology database. Technology data for all system models is drawn from a common database, the ATLAS Technology Tool Box (TTB). The TTB provides a comprehensive, architecture-independent technology database that is keyed to current and future timeframes.

  5. System-of-Systems Technology-Portfolio-Analysis Tool

    NASA Technical Reports Server (NTRS)

    O'Neil, Daniel; Mankins, John; Feingold, Harvey; Johnson, Wayne

    2012-01-01

    Advanced Technology Life-cycle Analysis System (ATLAS) is a system-of-systems technology-portfolio-analysis software tool. ATLAS affords capabilities to (1) compare estimates of the mass and cost of an engineering system based on competing technological concepts; (2) estimate life-cycle costs of an outer-space-exploration architecture for a specified technology portfolio; (3) collect data on state-of-the-art and forecasted technology performance, and on operations and programs; and (4) calculate an index of the relative programmatic value of a technology portfolio. ATLAS facilitates analysis by providing a library of analytical spreadsheet models for a variety of systems. A single analyst can assemble a representation of a system of systems from the models and build a technology portfolio. Each system model estimates mass, and life-cycle costs are estimated by a common set of cost models. Other components of ATLAS include graphical-user-interface (GUI) software, algorithms for calculating the aforementioned index, a technology database, a report generator, and a form generator for creating the GUI for the system models. At the time of this reporting, ATLAS is a prototype, embodied in Microsoft Excel and several thousand lines of Visual Basic for Applications that run on both Windows and Macintosh computers.

  6. NASA Technical Interchange Meeting (TIM): Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box

    NASA Technical Reports Server (NTRS)

    ONeil, D. A.; Craig, D. A.; Christensen, C. B.; Gresham, E. C.

    2005-01-01

    The objective of this Technical Interchange Meeting was to increase the quantity and quality of technical, cost, and programmatic data used to model the impact of investing in different technologies. The focus of this meeting was the Technology Tool Box (TTB), a database of performance, operations, and programmatic parameters provided by technologists and used by systems engineers. The TTB is the data repository used by a system of models known as the Advanced Technology Lifecycle Analysis System (ATLAS). This report describes the result of the November meeting, and also provides background information on ATLAS and the TTB.

  7. LED street lighting evaluation -- phase II : LED specification and life-cycle cost analysis.

    DOT National Transportation Integrated Search

    2015-01-01

    Phase II of this study focused on developing a draft specification for LED luminaires to be used by IDOT : and a life-cycle cost analysis (LCCA) tool for solid state lighting technologies. The team also researched the : latest developments related to...

  8. [Design of medical devices management system supporting full life-cycle process management].

    PubMed

    Su, Peng; Zhong, Jianping

    2014-03-01

    Based on the analysis of the present status of medical devices management, this paper optimized management process, developed a medical devices management system with Web technologies. With information technology to dynamic master the use of state of the entire life-cycle of medical devices. Through the closed-loop management with pre-event budget, mid-event control and after-event analysis, improved the delicacy management level of medical devices, optimized asset allocation, promoted positive operation of devices.

  9. Early Design Energy Analysis Using Building Information Modeling Technology

    DTIC Science & Technology

    2011-11-01

    building, (a) floor plan and (b) 3D image. ....................................... 50 Figure 28. Comparison of different energy estimates...when they make the biggest impact on building life-cycle costs. Traditionally, most building energy analyses have been conducted late in design, by...complete energy analysis. This method enables project teams to make energy conscious decisions early in design when they impact building life-cycle

  10. Towards a Lifecycle Information Framework and Technology in Manufacturing.

    PubMed

    Hedberg, Thomas; Feeney, Allison Barnard; Helu, Moneer; Camelio, Jaime A

    2017-06-01

    Industry has been chasing the dream of integrating and linking data across the product lifecycle and enterprises for decades. However, industry has been challenged by the fact that the context in which data is used varies based on the function / role in the product lifecycle that is interacting with the data. Holistically, the data across the product lifecycle must be considered an unstructured data-set because multiple data repositories and domain-specific schema exist in each phase of the lifecycle. This paper explores a concept called the Lifecycle Information Framework and Technology (LIFT). LIFT is a conceptual framework for lifecycle information management and the integration of emerging and existing technologies, which together form the basis of a research agenda for dynamic information modeling in support of digital-data curation and reuse in manufacturing. This paper provides a discussion of the existing technologies and activities that the LIFT concept leverages. Also, the paper describes the motivation for applying such work to the domain of manufacturing. Then, the LIFT concept is discussed in detail, while underlying technologies are further examined and a use case is detailed. Lastly, potential impacts are explored.

  11. Analysis of the Lifecycle of Mechanical Engineering Products

    NASA Astrophysics Data System (ADS)

    Gubaydulina, R. H.; Gruby, S. V.; Davlatov, G. D.

    2016-08-01

    Principal phases of the lifecycle of mechanical engineering products are analyzed in the paper. The authors have developed methods and procedures to improve designing, manufacturing, operating and recycling of the machine. It has been revealed that economic lifecycle of the product is a base for appropriate organization of mechanical engineering production. This lifecycle is calculated as a minimal sum total of consumer and producer costs. The machine construction and its manufacturing technology are interrelated through a maximal possible company profit. The products are to be recycled by their producer. Recycling should be considered as a feedback phase, necessary to make the whole lifecycle of the product a constantly functioning self-organizing system. The principles, outlined in this paper can be used as fundamentals to develop an automated PLM-system.

  12. Propulsion Technology Lifecycle Operational Analysis

    NASA Technical Reports Server (NTRS)

    Robinson, John W.; Rhodes, Russell E.

    2010-01-01

    The paper presents the results of a focused effort performed by the members of the Space Propulsion Synergy Team (SPST) Functional Requirements Sub-team to develop propulsion data to support Advanced Technology Lifecycle Analysis System (ATLAS). This is a spreadsheet application to analyze the impact of technology decisions at a system-of-systems level. Results are summarized in an Excel workbook we call the Technology Tool Box (TTB). The TTB provides data for technology performance, operations, and programmatic parameters in the form of a library of technical information to support analysis tools and/or models. The lifecycle of technologies can be analyzed from this data and particularly useful for system operations involving long running missions. The propulsion technologies in this paper are listed against Chemical Rocket Engines in a Work Breakdown Structure (WBS) format. The overall effort involved establishing four elements: (1) A general purpose Functional System Breakdown Structure (FSBS). (2) Operational Requirements for Rocket Engines. (3) Technology Metric Values associated with Operating Systems (4) Work Breakdown Structure (WBS) of Chemical Rocket Engines The list of Chemical Rocket Engines identified in the WBS is by no means complete. It is planned to update the TTB with a more complete list of available Chemical Rocket Engines for United States (US) engines and add the Foreign rocket engines to the WBS which are available to NASA and the Aerospace Industry. The Operational Technology Metric Values were derived by the SPST Sub-team in the form of the TTB and establishes a database for users to help evaluate and establish the technology level of each Chemical Rocket Engine in the database. The Technology Metric Values will serve as a guide to help determine which rocket engine to invest technology money in for future development.

  13. Towards a Lifecycle Information Framework and Technology in Manufacturing

    PubMed Central

    Hedberg, Thomas; Feeney, Allison Barnard; Helu, Moneer; Camelio, Jaime A.

    2016-01-01

    Industry has been chasing the dream of integrating and linking data across the product lifecycle and enterprises for decades. However, industry has been challenged by the fact that the context in which data is used varies based on the function / role in the product lifecycle that is interacting with the data. Holistically, the data across the product lifecycle must be considered an unstructured data-set because multiple data repositories and domain-specific schema exist in each phase of the lifecycle. This paper explores a concept called the Lifecycle Information Framework and Technology (LIFT). LIFT is a conceptual framework for lifecycle information management and the integration of emerging and existing technologies, which together form the basis of a research agenda for dynamic information modeling in support of digital-data curation and reuse in manufacturing. This paper provides a discussion of the existing technologies and activities that the LIFT concept leverages. Also, the paper describes the motivation for applying such work to the domain of manufacturing. Then, the LIFT concept is discussed in detail, while underlying technologies are further examined and a use case is detailed. Lastly, potential impacts are explored. PMID:28265224

  14. "ATLAS" Advanced Technology Life-cycle Analysis System

    NASA Technical Reports Server (NTRS)

    Lollar, Louis F.; Mankins, John C.; ONeil, Daniel A.

    2004-01-01

    Making good decisions concerning research and development portfolios-and concerning the best systems concepts to pursue - as early as possible in the life cycle of advanced technologies is a key goal of R&D management This goal depends upon the effective integration of information from a wide variety of sources as well as focused, high-level analyses intended to inform such decisions Life-cycle Analysis System (ATLAS) methodology and tool kit. ATLAS encompasses a wide range of methods and tools. A key foundation for ATLAS is the NASA-created Technology Readiness. The toolkit is largely spreadsheet based (as of August 2003). This product is being funded by the Human and Robotics The presentation provides a summary of the Advanced Technology Level (TRL) systems Technology Program Office, Office of Exploration Systems, NASA Headquarters, Washington D.C. and is being integrated by Dan O Neil of the Advanced Projects Office, NASA/MSFC, Huntsville, AL

  15. Building Information Modeling (BIM) Primer. Report 1: Facility Life-Cycle Process and Technology Innovation

    DTIC Science & Technology

    2012-08-01

    Building Information Modeling ( BIM ) Primer Report 1: Facility Life-cycle Process and Technology Innovation In fo...is unlimited. ERDC/ITL TR-12-2 August 2012 Building Information Modeling ( BIM ) Primer Report 1: Facility Life-cycle Process and Technology...and to enhance the quality of projects through the design, construction, and handover phases. Building Information Modeling ( BIM ) is a

  16. Estimating net changes in life-cycle emissions from adoption of emerging civil infrastructure technologies.

    PubMed

    Amponsah, Isaac; Harrison, Kenneth W; Rizos, Dimitris C; Ziehl, Paul H

    2008-01-01

    There is a net emissions change when adopting new materials for use in civil infrastructure design. To evaluate the total net emissions change, one must consider changes in manufacture and associated life-cycle emissions, as well as changes in the quantity of material required. In addition, in principle one should also consider any differences in costs of the two designs because cost savings can be applied to other economic activities with associated environmental impacts. In this paper, a method is presented that combines these considerations to permit an evaluation of the net change in emissions when considering the adoption of emerging technologies/materials for civil infrastructure. The method factors in data on differences between a standard and new material for civil infrastructure, material requirements as specified in designs using both materials, and price information. The life-cycle assessment approach known as economic input-output life-cycle assessment (EIO-LCA) is utilized. A brief background on EIO-LCA is provided because its use is central to the method. The methodology is demonstrated with analysis of a switch from carbon steel to high-performance steel in military bridge design. The results are compared with a simplistic analysis that accounts for the weight reduction afforded by use of the high-performance steel but assuming no differences in manufacture.

  17. Environmental impact assessment of european non-ferro mining industries through life-cycle assessment

    NASA Astrophysics Data System (ADS)

    Hisan Farjana, Shahjadi; Huda, Nazmul; Parvez Mahmud, M. A.

    2018-05-01

    European mining industries are the vast industrial sector which contributes largely on their economy which constitutes of ferro and non-ferro metals and minerals industries. The non-ferro metals extraction and processing industries require focus of attention due to sustainability concerns as their manufacturing processes are highly energy intensive and impacts globally on environment. This paper analyses major environmental effects caused by European metal industries based on the life-cycle impact analysis technologies. This research work is the first work in considering the comparative environmental impact analysis of European non-ferro metal industries which will reveal their technological similarities and dissimilarities to assess their environmental loads. The life-cycle inventory datasets are collected from the EcoInvent database while the analysis is done using the CML baseline and ReCipe endpoint method using SimaPro software version 8.4. The CML and ReCipe method are chosen because they are specialized impact assessment methods for European continent. The impact categories outlined for discussion here are human health, global warming and ecotoxicity. The analysis results reveal that the gold industry is vulnerable for the environment due to waste emission and similar result retained by silver mines a little bit. But copper, lead, manganese and zinc mining processes and industries are environment friendly in terms of metal extraction technologies and waste emissions.

  18. Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling

    NASA Astrophysics Data System (ADS)

    Pehl, Michaja; Arvesen, Anders; Humpenöder, Florian; Popp, Alexander; Hertwich, Edgar G.; Luderer, Gunnar

    2017-12-01

    Both fossil-fuel and non-fossil-fuel power technologies induce life-cycle greenhouse gas emissions, mainly due to their embodied energy requirements for construction and operation, and upstream CH4 emissions. Here, we integrate prospective life-cycle assessment with global integrated energy-economy-land-use-climate modelling to explore life-cycle emissions of future low-carbon power supply systems and implications for technology choice. Future per-unit life-cycle emissions differ substantially across technologies. For a climate protection scenario, we project life-cycle emissions from fossil fuel carbon capture and sequestration plants of 78-110 gCO2eq kWh-1, compared with 3.5-12 gCO2eq kWh-1 for nuclear, wind and solar power for 2050. Life-cycle emissions from hydropower and bioenergy are substantial (˜100 gCO2eq kWh-1), but highly uncertain. We find that cumulative emissions attributable to upscaling low-carbon power other than hydropower are small compared with direct sectoral fossil fuel emissions and the total carbon budget. Fully considering life-cycle greenhouse gas emissions has only modest effects on the scale and structure of power production in cost-optimal mitigation scenarios.

  19. Emissions from photovoltaic life cycles.

    PubMed

    Fthenakis, Vasilis M; Kim, Hyung Chul; Alsema, Erik

    2008-03-15

    Photovoltaic (PV) technologies have shown remarkable progress recently in terms of annual production capacity and life cycle environmental performances, which necessitate timely updates of environmental indicators. Based on PV production data of 2004-2006, this study presents the life-cycle greenhouse gas emissions, criteria pollutant emissions, and heavy metal emissions from four types of major commercial PV systems: multicrystalline silicon, monocrystalline silicon, ribbon silicon, and thin-film cadmium telluride. Life-cycle emissions were determined by employing average electricity mixtures in Europe and the United States during the materials and module production for each PV system. Among the current vintage of PV technologies, thin-film cadmium telluride (CdTe) PV emits the least amount of harmful air emissions as it requires the least amount of energy during the module production. However, the differences in the emissions between different PV technologies are very small in comparison to the emissions from conventional energy technologies that PV could displace. As a part of prospective analysis, the effect of PV breeder was investigated. Overall, all PV technologies generate far less life-cycle air emissions per GWh than conventional fossil-fuel-based electricity generation technologies. At least 89% of air emissions associated with electricity generation could be prevented if electricity from photovoltaics displaces electricity from the grid.

  20. Lifecycle Industry GreenHouse gas, Technology and Energy through the Use Phase (LIGHTEnUP) – Analysis Tool User’s Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrow, William R.; Shehabi, Arman; Smith, Sarah

    The LIGHTEnUP Analysis Tool (Lifecycle Industry GreenHouse gas, Technology and Energy through the Use Phase) has been developed for The United States Department of Energy’s (U.S. DOE) Advanced Manufacturing Office (AMO) to forecast both the manufacturing sector and product life-cycle energy consumption implications of manufactured products across the U.S. economy. The tool architecture incorporates publicly available historic and projection datasets of U.S. economy-wide energy use including manufacturing, buildings operations, electricity generation and transportation. The tool requires minimal inputs to define alternate scenarios to business-as-usual projection data. The tool is not an optimization or equilibrium model and therefore does not selectmore » technologies or deployment scenarios endogenously. Instead, inputs are developed exogenous to the tool by the user to reflect detailed engineering calculations, future targets and goals, or creative insights. The tool projects the scenario’s energy, CO 2 emissions, and energy expenditure (i.e., economic spending to purchase energy) implications and provides documentation to communicate results. The tool provides a transparent and uniform system of comparing manufacturing and use-phase impacts of technologies. The tool allows the user to create multiple scenarios that can reflect a range of possible future outcomes. However, reasonable scenarios require careful attention to assumptions and details about the future. This tool is part of an emerging set of AMO’s life cycle analysis (LCA) tool such as the Material Flows the Industry (MFI) tool, and the Additive Manufacturing LCA tool.« less

  1. Life-cycle analysis of shale gas and natural gas.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, C.E.; Han, J.; Burnham, A.

    2012-01-27

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results showmore » that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.« less

  2. High-performance concrete : applying life-cycle cost analysis and developing specifications.

    DOT National Transportation Integrated Search

    2016-12-01

    Numerous studies and transportation agency experience across the nation have established that highperformance concrete (HPC) technology improves concrete quality and extends the service life of concrete structures at risk of chlorideinduced cor...

  3. Webinar: Fuzzy Mud and the Future of Alternative Fuels | Argonne National

    Science.gov Websites

    --Energy life-cycle analysis --Energy storage ---Batteries ----Lithium-ion batteries ----Lithium-air Ciatti: Emerging Technologies in Transportation Alternative battery systems for transportation uses

  4. Life Cycle Assessment Harmonization | Energy Analysis | NREL

    Science.gov Websites

    change are excluded from this analysis. The data showed that life cycle greenhouse gas (GHG) emissions Sensitivity Analysis of Biopower Life-Cycle Assessments and Greenhouse Gas Emission, Electric Power Research hydropower, ocean, geothermal, biopower, solar, wind, nuclear, coal, and natural gas technologies. See the

  5. Enabling Smart Manufacturing Research and Development using a Product Lifecycle Test Bed.

    PubMed

    Helu, Moneer; Hedberg, Thomas

    2015-01-01

    Smart manufacturing technologies require a cyber-physical infrastructure to collect and analyze data and information across the manufacturing enterprise. This paper describes a concept for a product lifecycle test bed built on a cyber-physical infrastructure that enables smart manufacturing research and development. The test bed consists of a Computer-Aided Technologies (CAx) Lab and a Manufacturing Lab that interface through the product model creating a "digital thread" of information across the product lifecycle. The proposed structure and architecture of the test bed is presented, which highlights the challenges and requirements of implementing a cyber-physical infrastructure for manufacturing. The novel integration of systems across the product lifecycle also helps identify the technologies and standards needed to enable interoperability between design, fabrication, and inspection. Potential research opportunities enabled by the test bed are also discussed, such as providing publicly accessible CAx and manufacturing reference data, virtual factory data, and a representative industrial environment for creating, prototyping, and validating smart manufacturing technologies.

  6. Enabling Smart Manufacturing Research and Development using a Product Lifecycle Test Bed

    PubMed Central

    Helu, Moneer; Hedberg, Thomas

    2017-01-01

    Smart manufacturing technologies require a cyber-physical infrastructure to collect and analyze data and information across the manufacturing enterprise. This paper describes a concept for a product lifecycle test bed built on a cyber-physical infrastructure that enables smart manufacturing research and development. The test bed consists of a Computer-Aided Technologies (CAx) Lab and a Manufacturing Lab that interface through the product model creating a “digital thread” of information across the product lifecycle. The proposed structure and architecture of the test bed is presented, which highlights the challenges and requirements of implementing a cyber-physical infrastructure for manufacturing. The novel integration of systems across the product lifecycle also helps identify the technologies and standards needed to enable interoperability between design, fabrication, and inspection. Potential research opportunities enabled by the test bed are also discussed, such as providing publicly accessible CAx and manufacturing reference data, virtual factory data, and a representative industrial environment for creating, prototyping, and validating smart manufacturing technologies. PMID:28664167

  7. Fluorescent Lamp Replacement Study

    DTIC Science & Technology

    2017-07-01

    friendly products, advances in efficiency, and lower production costs for lamps. The conversion of fluorescent bulbs to LED technology has many benefits ...of 4727 W. An economic analysis was calculated to compare the various lighting technologies that were implemented at ATC and the cost benefits ...the various lighting technologies that were implemented at ATC and the cost benefits of each, a lifecycle comparison was made between the fluorescent

  8. Supply Chain Sustainability Analysis of Renewable Hydrocarbon Fuels via Indirect Liquefaction, Fast Pyrolysis, and Hydrothermal Liquefaction: Update of the 2016 State-of-Technology Cases and Design Cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Hao; Dunn, Jennifer; Pegallapati, Ambica

    The Department of Energy’s (DOE) Bioenergy Technologies Office (BETO) aims to develop and deploy technologies to transform renewable biomass resources into commercially viable, high-performance biofuels, bioproducts and biopower through public and private partnerships (DOE, 2016). BETO and its national laboratory teams conduct in-depth technoeconomic assessments (TEA) of biomass feedstock supply and logistics and conversion technologies to produce biofuels, and life-cycle analysis of overall system sustainability.

  9. Long-term shifts in life-cycle energy efficiency and carbon intensity.

    PubMed

    Yeh, Sonia; Mishra, Gouri Shankar; Morrison, Geoff; Teter, Jacob; Quiceno, Raul; Gillingham, Kenneth; Riera-Palou, Xavier

    2013-03-19

    The quantity of primary energy needed to support global human activity is in large part determined by how efficiently that energy is converted to a useful form. We estimate the system-level life-cycle energy efficiency (EF) and carbon intensity (CI) across primary resources for 2005-2100. Our results underscore that although technological improvements at each energy conversion process will improve technology efficiency and lead to important reductions in primary energy use, market mediated effects and structural shifts toward less efficient pathways and pathways with multiple stages of conversion will dampen these efficiency gains. System-level life-cycle efficiency may decrease as mitigation efforts intensify, since low-efficiency renewable systems with high output have much lower GHG emissions than some high-efficiency fossil fuel systems. Climate policies accelerate both improvements in EF and the adoption of renewable technologies, resulting in considerably lower primary energy demand and GHG emissions. Life-cycle EF and CI of useful energy provide a useful metric for understanding dynamics of implementing climate policies. The approaches developed here reiterate the necessity of a combination of policies that target efficiency and decarbonized energy technologies. We also examine life-cycle exergy efficiency (ExF) and find that nearly all of the qualitative results hold regardless of whether we use ExF or EF.

  10. Competitive Strategies of States: A Life-Cycle Perspective. EQW Working Papers.

    ERIC Educational Resources Information Center

    Flynn, Patricia M.

    This paper demonstrates that production life-cycle models provide a conceptual framework to analyze systematically the interrelationships between industrial and technological change and human resources. Section II presents the life-cycle model, focusing on its implications for the types and level of employment and skill requirements in an area.…

  11. Life-Cycle Inventory Analysis of Bioproducts from a Modular Advanced Biomass Pyrolysis System

    Treesearch

    Richard Bergman; Hongmei Gu

    2014-01-01

    Expanding bioenergy production has the potential to reduce net greenhouse gas (GHG) emissions and improve energy security. Science-based assessments of new bioenergy technologies are essential tools for policy makers dealing with expanding renewable energy production. Using life cycle inventory (LCI) analysis, this study evaluated a 200-kWe...

  12. Technology Infusion of CodeSonar into the Space Network Ground Segment (RII07)

    NASA Technical Reports Server (NTRS)

    Benson, Markland

    2008-01-01

    The NASA Software Assurance Research Program (in part) performs studies as to the feasibility of technologies for improving the safety, quality, reliability, cost, and performance of NASA software. This study considers the application of commercial automated source code analysis tools to mission critical ground software that is in the operations and sustainment portion of the product lifecycle.

  13. Energy Efficiency in Libraries.

    ERIC Educational Resources Information Center

    Lewis, Eleanor J.; And Others

    1993-01-01

    Shows how libraries can save money and energy with energy-efficient technologies, improving maintenance, and encouraging staff efforts to conserve energy. Specific techniques such as life-cycle cost analysis and energy audits focusing on lighting, heating, ventilation, air conditioning, and water efficiency are described. Funding options and…

  14. Maritime Tactical Command and Control Analysis of Alternatives

    DTIC Science & Technology

    2016-01-01

    JIIM joint, interagency, intergovernmental, and multinational LCC life-cycle cost MANA Map Aware Non-Uniform Automata MDA milestone decision authority...Map Aware Non-Uniform Automata (MANA), a combat and C4I, surveillance, and reconnaissance model developed by the New Zealand Defence Technology

  15. Play Nice Across Time Space

    NASA Technical Reports Server (NTRS)

    Conroy, Michael P.

    2015-01-01

    Lecture is an overview of Simulation technologies, methods and practices, as applied to current and past NASA programs. Focus is on sharing experience and the overall benefits to programs and projects of having appropriate simulation and analysis capabilities available at the correct point in a system lifecycle.

  16. Wake Vortex Systems Cost/Benefits Analysis

    NASA Technical Reports Server (NTRS)

    Crisp, Vicki K.

    1997-01-01

    The goals of cost/benefit assessments are to provide quantitative and qualitative data to aid in the decision-making process. Benefits derived from increased throughput (or decreased delays) used to balance life-cycle costs. Packaging technologies together may provide greater gains (demonstrate higher return on investment).

  17. Nano-Launcher Technologies, Approaches, and Life Cycle Assessment. Phase II

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar

    2014-01-01

    Assist in understanding NASA technology and investment approaches, and other driving factors, necessary for enabling dedicated nano-launchers by industry at a cost and flight rate that (1) could support and be supported by an emerging nano-satellite market and (2) would benefit NASAs needs. Develop life-cycle cost, performance and other NASA analysis tools or models required to understand issues, drivers and challenges.

  18. Make or Buy: Cost Impacts of Additive Manufacturing, 3D Laser Scanning Technology, and Collaborative Product Lifecycle Management on Ship Maintenance and Modernization

    DTIC Science & Technology

    2015-05-01

    management during operations 4 Potential Technology 3: Additive Manufacturing (“ 3D Printing ”) 5 • 3D design/image (e.g. from 3D LS) of final part...1 Make or Buy: Cost Impacts of Additive Manufacturing, 3D Laser Scanning Technology, and Collaborative Product Lifecycle Management on Ship...DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Make or Buy: Cost Impacts of Additive Manufacturing, 3D Laser Scanning Technology

  19. Sodium-sulfur technology evaluation at Argonne National Laboratory

    NASA Astrophysics Data System (ADS)

    Mulcahey, T. P.; Tummillo, A. F.; Hogrefe, R. L.; Christianson, C. C.; Biwer, R.; Webster, C. E.; Lee, J.; Miller, J. F.; Marr, J. J.; Smaga, J. A.

    The Analysis and Diagnostics Laboratory (ADL) at Argonne National Laboratory has completed evaluation of the Ford Aerospace and Communication Corp. (FACC) technology in the form of four load-levelling (LL) cells, five electric vehicle (EV) cells, and a sub-battery of 89 series connected EV cells. The ADL also has initiated evaluation of the Chloride Silent Power Limited (CSPL) sodium-sulfur (PB) battery technology in the form of 8 individual cells. The evaluation of the FACC-LL cells consisted of an abbreviated performance characterization followed by life-cycle tests on two individual cells and life-cycle tests only on the two other individual cells. The evaluation indicated that the technology was improving, but long-term (life) reliability was not yet adequate for utility applications. The cells exhibited individual cycle lives ranging from 659 to over 1366 cycles, which is equivalent to 2 1/2 to 5 1/2 years in utility use. It was also found that full-cell capacity could only be maintained by applying a special charge regime, regularly or periodically, that consisted of a constant-current followed by a constant-voltage.

  20. Process change evaluation framework for allogeneic cell therapies: impact on drug development and commercialization.

    PubMed

    Hassan, Sally; Huang, Hsini; Warren, Kim; Mahdavi, Behzad; Smith, David; Jong, Simcha; Farid, Suzanne S

    2016-04-01

    Some allogeneic cell therapies requiring a high dose of cells for large indication groups demand a change in cell expansion technology, from planar units to microcarriers in single-use bioreactors for the market phase. The aim was to model the optimal timing for making this change. A development lifecycle cash flow framework was created to examine the implications of process changes to microcarrier cultures at different stages of a cell therapy's lifecycle. The analysis performed under assumptions used in the framework predicted that making this switch earlier in development is optimal from a total expected out-of-pocket cost perspective. From a risk-adjusted net present value view, switching at Phase I is economically competitive but a post-approval switch can offer the highest risk-adjusted net present value as the cost of switching is offset by initial market penetration with planar technologies. The framework can facilitate early decision-making during process development.

  1. Cost/benefit analysis of advanced materials technology candidates for the 1980's, part 2

    NASA Technical Reports Server (NTRS)

    Dennis, R. E.; Maertins, H. F.

    1980-01-01

    Cost/benefit analyses to evaluate advanced material technologies projects considered for general aviation and turboprop commuter aircraft through estimated life-cycle costs, direct operating costs, and development costs are discussed. Specifically addressed is the selection of technologies to be evaluated; development of property goals; assessment of candidate technologies on typical engines and aircraft; sensitivity analysis of the changes in property goals on performance and economics, cost, and risk analysis for each technology; and ranking of each technology by relative value. The cost/benefit analysis was applied to a domestic, nonrevenue producing, business-type jet aircraft configured with two TFE731-3 turbofan engines, and to a domestic, nonrevenue producing, business type turboprop aircraft configured with two TPE331-10 turboprop engines. In addition, a cost/benefit analysis was applied to a commercial turboprop aircraft configured with a growth version of the TPE331-10.

  2. Concepts associated with a unified life cycle analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whelan, Gene; Peffers, Melissa S.; Tolle, Duane A.

    There is a risk associated with most things in the world, and all things have a life cycle unto themselves, even brownfields. Many components can be described by a''cycle of life.'' For example, five such components are life-form, chemical, process, activity, and idea, although many more may exist. Brownfields may touch upon several of these life cycles. Each life cycle can be represented as independent software; therefore, a software technology structure is being formulated to allow for the seamless linkage of software products, representing various life-cycle aspects. Because classes of these life cycles tend to be independent of each other,more » the current research programs and efforts do not have to be revamped; therefore, this unified life-cycle paradigm builds upon current technology and is backward compatible while embracing future technology. Only when two of these life cycles coincide and one impacts the other is there connectivity and a transfer of information at the interface. The current framework approaches (e.g., FRAMES, 3MRA, etc.) have a design that is amenable to capturing (1) many of these underlying philosophical concepts to assure backward compatibility of diverse independent assessment frameworks and (2) linkage communication to help transfer the needed information at the points of intersection. The key effort will be to identify (1) linkage points (i.e., portals) between life cycles, (2) the type and form of data passing between life cycles, and (3) conditions when life cycles interact and communicate. This paper discusses design aspects associated with a unified life-cycle analysis, which can support not only brownfields but also other types of assessments.« less

  3. Infrastructure, Components and System Level Testing and Analysis of Electric Vehicles: Cooperative Research and Development Final Report, CRADA Number CRD-09-353

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neubauer, J.

    2013-05-01

    Battery technology is critical for the development of innovative electric vehicle networks, which can enhance transportation sustainability and reduce dependence on petroleum. This cooperative research proposed by Better Place and NREL will focus on predicting the life-cycle economics of batteries, characterizing battery technologies under various operating and usage conditions, and designing optimal usage profiles for battery recharging and use.

  4. The lifecycle of e-learning course in the adaptive educational environment

    NASA Astrophysics Data System (ADS)

    Gustun, O. N.; Budaragin, N. V.

    2017-01-01

    In the article we have considered the lifecycle model of the e-learning course in the electronic educational environment. This model consists of three stages and nine phases. In order to implement the adaptive control of the learning process we have determined the actions which are necessary to undertake at different phases of the e-learning course lifecycle. The general characteristics of the SPACEL-technology is given for creating adaptive educational environments of the next generation.

  5. System Architecture Modeling for Technology Portfolio Management using ATLAS

    NASA Technical Reports Server (NTRS)

    Thompson, Robert W.; O'Neil, Daniel A.

    2006-01-01

    Strategic planners and technology portfolio managers have traditionally relied on consensus-based tools, such as Analytical Hierarchy Process (AHP) and Quality Function Deployment (QFD) in planning the funding of technology development. While useful to a certain extent, these tools are limited in the ability to fully quantify the impact of a technology choice on system mass, system reliability, project schedule, and lifecycle cost. The Advanced Technology Lifecycle Analysis System (ATLAS) aims to provide strategic planners a decision support tool for analyzing technology selections within a Space Exploration Architecture (SEA). Using ATLAS, strategic planners can select physics-based system models from a library, configure the systems with technologies and performance parameters, and plan the deployment of a SEA. Key parameters for current and future technologies have been collected from subject-matter experts and other documented sources in the Technology Tool Box (TTB). ATLAS can be used to compare the technical feasibility and economic viability of a set of technology choices for one SEA, and compare it against another set of technology choices or another SEA. System architecture modeling in ATLAS is a multi-step process. First, the modeler defines the system level requirements. Second, the modeler identifies technologies of interest whose impact on an SEA. Third, the system modeling team creates models of architecture elements (e.g. launch vehicles, in-space transfer vehicles, crew vehicles) if they are not already in the model library. Finally, the architecture modeler develops a script for the ATLAS tool to run, and the results for comparison are generated.

  6. [The Role and Function of Informatics Nurses in Information Technology Decision-Making].

    PubMed

    Lee, Tso-Ying

    2017-08-01

    The medical environment has changed greatly with the coming of the information age, and, increasingly, the operating procedures for medical services have been altered in keeping with the trend toward mobile, paperless services. Informatization has the potential to improve the working efficiency of medical personnel, enhance patient care safety, and give medical organizations a positive image. Informatics nurses play an important role in the decision-making processes that accompany informatization. As one of the decision-making links in the information technology lifecycle, this role affects the success of the development and operation of information systems. The present paper examines the functions and professional knowledge that informatics nurses must possess during the technology lifecycle, the four stages of which include: planning, analysis, design/development/revision, and implementation/assessment/support/maintenance. The present paper further examines the decision-making shortcomings and errors that an informatics nurses may make during the decision-making process. We hope that this paper will serve as an effective and useful reference for informatics nurses during the informatization decision-making process.

  7. 75 FR 29933 - Energy Efficiency and Sustainable Design Standards for New Federal Buildings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-28

    ... guidance, discount rates, and energy price projections are determined annually by FEMP and the Energy... Technology Handbook 135: ``Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis.'' FEMP... DEPARTMENT OF ENERGY 10 CFR Parts 433 and 435 [Docket No. EE-RM/STD-02-112] RIN 1904-AC13 Energy...

  8. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum.

    PubMed

    Burnham, Andrew; Han, Jeongwoo; Clark, Corrie E; Wang, Michael; Dunn, Jennifer B; Palou-Rivera, Ignasi

    2012-01-17

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. It has been debated whether the fugitive methane emissions during natural gas production and transmission outweigh the lower carbon dioxide emissions during combustion when compared to coal and petroleum. Using the current state of knowledge of methane emissions from shale gas, conventional natural gas, coal, and petroleum, we estimated up-to-date life-cycle greenhouse gas emissions. In addition, we developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings that need to be further addressed. Our base case results show that shale gas life-cycle emissions are 6% lower than conventional natural gas, 23% lower than gasoline, and 33% lower than coal. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty whether shale gas emissions are indeed lower than conventional gas. Moreover, this life-cycle analysis, among other work in this area, provides insight on critical stages that the natural gas industry and government agencies can work together on to reduce the greenhouse gas footprint of natural gas.

  9. Visual Analytics Tools for Sustainable Lifecycle Design: Current Status, Challenges, and Future Opportunities.

    PubMed

    Ramanujan, Devarajan; Bernstein, William Z; Chandrasegaran, Senthil K; Ramani, Karthik

    2017-01-01

    The rapid rise in technologies for data collection has created an unmatched opportunity to advance the use of data-rich tools for lifecycle decision-making. However, the usefulness of these technologies is limited by the ability to translate lifecycle data into actionable insights for human decision-makers. This is especially true in the case of sustainable lifecycle design (SLD), as the assessment of environmental impacts, and the feasibility of making corresponding design changes, often relies on human expertise and intuition. Supporting human sense-making in SLD requires the use of both data-driven and user-driven methods while exploring lifecycle data. A promising approach for combining the two is through the use of visual analytics (VA) tools. Such tools can leverage the ability of computer-based tools to gather, process, and summarize data along with the ability of human-experts to guide analyses through domain knowledge or data-driven insight. In this paper, we review previous research that has created VA tools in SLD. We also highlight existing challenges and future opportunities for such tools in different lifecycle stages-design, manufacturing, distribution & supply chain, use-phase, end-of-life, as well as life cycle assessment. Our review shows that while the number of VA tools in SLD is relatively small, researchers are increasingly focusing on the subject matter. Our review also suggests that VA tools can address existing challenges in SLD and that significant future opportunities exist.

  10. Product Lifecycle Management Architecture: A Model Based Systems Engineering Analysis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noonan, Nicholas James

    2015-07-01

    This report is an analysis of the Product Lifecycle Management (PLM) program. The analysis is centered on a need statement generated by a Nuclear Weapons (NW) customer. The need statement captured in this report creates an opportunity for the PLM to provide a robust service as a solution. Lifecycles for both the NW and PLM are analyzed using Model Based System Engineering (MBSE).

  11. 10 CFR 436.42 - Evaluation of Life-Cycle Cost Effectiveness.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the life-cycle cost analysis method in part 436, subpart A, of title 10 of the Code of Federal... 10 Energy 3 2011-01-01 2011-01-01 false Evaluation of Life-Cycle Cost Effectiveness. 436.42... PROGRAMS Agency Procurement of Energy Efficient Products § 436.42 Evaluation of Life-Cycle Cost...

  12. The Chicago Center for Green Technology: life-cycle assessment of a brownfield redevelopment project

    NASA Astrophysics Data System (ADS)

    Brecheisen, Thomas; Theis, Thomas

    2013-03-01

    The sustainable development of brownfields reflects a fundamental, yet logical, shift in thinking and policymaking regarding pollution prevention. Life-cycle assessment (LCA) is a tool that can be used to assist in determining the conformity of brownfield development projects to the sustainability paradigm. LCA was applied to the process of a real brownfield redevelopment project, now known as the Chicago Center for Green Technology, to determine the cumulative energy required to complete the following redevelopment stages: (1) brownfield assessment and remediation, (2) building rehabilitation and site development and (3) ten years of operation. The results of the LCA have shown that operational energy is the dominant life-cycle stage after ten years of operation. The preservation and rehabilitation of the existing building, the installation of renewable energy systems (geothermal and photovoltaic) on-site and the use of more sustainable building products resulted in 72 terajoules (TJ) of avoided energy impacts, which would provide 14 years of operational energy for the site. Methodological note: data for this life-cycle assessment were obtained from project reports, construction blueprints and utility bills.

  13. A Review of the Application of Lifecycle Analysis to Renewable Energy Systems

    ERIC Educational Resources Information Center

    Lund, Chris; Biswas, Wahidul

    2008-01-01

    The lifecycle concept is a "cradle to grave" approach to thinking about products, processes, and services, recognizing that all stages have environmental and economic impacts. Any rigorous and meaningful comparison of energy supply options must be done using a lifecycle analysis approach. It has been applied to an increasing number of conventional…

  14. Model of the Product Development Lifecycle.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Sunny L.; Roe, Natalie H.; Wood, Evan

    2015-10-01

    While the increased use of Commercial Off-The-Shelf information technology equipment has presented opportunities for improved cost effectiveness and flexibility, the corresponding loss of control over the product's development creates unique vulnerabilities and security concerns. Of particular interest is the possibility of a supply chain attack. A comprehensive model for the lifecycle of hardware and software products is proposed based on a survey of existing literature from academic, government, and industry sources. Seven major lifecycle stages are identified and defined: (1) Requirements, (2) Design, (3) Manufacturing for hardware and Development for software, (4) Testing, (5) Distribution, (6) Use and Maintenance, andmore » (7) Disposal. The model is then applied to examine the risk of attacks at various stages of the lifecycle.« less

  15. A Comparative Analysis of Life-Cycle Assessment Tools for ...

    EPA Pesticide Factsheets

    We identified and evaluated five life-cycle assessment tools that community decision makers can use to assess the environmental and economic impacts of end-of-life (EOL) materials management options. The tools evaluated in this report are waste reduction mode (WARM), municipal solid waste-decision support tool (MSW-DST), solid waste optimization life-cycle framework (SWOLF), environmental assessment system for environmental technologies (EASETECH), and waste and resources assessment for the environment (WRATE). WARM, MSW-DST, and SWOLF were developed for US-specific materials management strategies, while WRATE and EASETECH were developed for European-specific conditions. All of the tools (with the exception of WARM) allow specification of a wide variety of parameters (e.g., materials composition and energy mix) to a varying degree, thus allowing users to model specific EOL materials management methods even outside the geographical domain they are originally intended for. The flexibility to accept user-specified input for a large number of parameters increases the level of complexity and the skill set needed for using these tools. The tools were evaluated and compared based on a series of criteria, including general tool features, the scope of the analysis (e.g., materials and processes included), and the impact categories analyzed (e.g., climate change, acidification). A series of scenarios representing materials management problems currently relevant to c

  16. Multi-Disciplinary Analysis for Future Launch Systems Using NASA's Advanced Engineering Environment (AEE)

    NASA Technical Reports Server (NTRS)

    Monell, D.; Mathias, D.; Reuther, J.; Garn, M.

    2003-01-01

    A new engineering environment constructed for the purposes of analyzing and designing Reusable Launch Vehicles (RLVs) is presented. The new environment has been developed to allow NASA to perform independent analysis and design of emerging RLV architectures and technologies. The new Advanced Engineering Environment (AEE) is both collaborative and distributed. It facilitates integration of the analyses by both vehicle performance disciplines and life-cycle disciplines. Current performance disciplines supported include: weights and sizing, aerodynamics, trajectories, propulsion, structural loads, and CAD-based geometries. Current life-cycle disciplines supported include: DDT&E cost, production costs, operations costs, flight rates, safety and reliability, and system economics. Involving six NASA centers (ARC, LaRC, MSFC, KSC, GRC and JSC), AEE has been tailored to serve as a web-accessed agency-wide source for all of NASA's future launch vehicle systems engineering functions. Thus, it is configured to facilitate (a) data management, (b) automated tool/process integration and execution, and (c) data visualization and presentation. The core components of the integrated framework are a customized PTC Windchill product data management server, a set of RLV analysis and design tools integrated using Phoenix Integration's Model Center, and an XML-based data capture and transfer protocol. The AEE system has seen production use during the Initial Architecture and Technology Review for the NASA 2nd Generation RLV program, and it continues to undergo development and enhancements in support of its current main customer, the NASA Next Generation Launch Technology (NGLT) program.

  17. Life-Cycle environmental impact assessment of mineral industries

    NASA Astrophysics Data System (ADS)

    Hisan Farjana, Shahjadi; Huda, Nazmul; Parvez Mahmud, M. A.

    2018-05-01

    Mining is the extraction and processing of valuable ferro and non-ferro metals and minerals to be further used in manufacturing industries. Valuable metals and minerals are extracted from the geological deposits and ores deep in the surface through complex manufacturing technologies. The extraction and processing of mining industries involve particle emission to air or water, toxicity to the environment, contamination of water resources, ozone layer depletion and most importantly decay of human health. Despite all these negative impacts towards sustainability, mining industries are working throughout the world to facilitate the employment sector, economy and technological growth. The five most important miners in the world are South Africa, Russia, Australia, Ukraine, Guinea. The mining industries contributes to their GDP significantly. However, the most important issue is making the mining world sustainable thus reducing the emissions. To address the environmental impacts caused by the mining sectors, this paper is going to analyse the environmental impacts caused by the 5 major minerals extraction processes, which are bauxite, ilmenite, iron ore, rutile and uranium by using the life-cycle impact assessment technologies. The analysis is done here using SimaPro software version 8.4 using ReCipe, CML and Australian indicator method.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The purpose of this analysis is to provide information necessary for the Department of Energy (DOE) to evaluate the practical utility of the Nitrate to Ammonia and Ceramic or Glass (NAC/NAG/NAX) process, which is under development in the Oak Ridge National Laboratory. The NAC/NACx/NAX process can convert aqueous radioactive nitrate-laden waste to a glass, ceramic, or grout solid waste form. The tasks include, but are not limited to, the following: Identify current commercial technologies to meet hazardous and radiological waste disposal requirements. The technologies may be thermal or non-thermal but must be all inclusive (i.e., must convert a radionuclide-containing nitratemore » waste with a pH around 12 to a stable form that can be disposed at permitted facilities); evaluate and compare DOE-sponsored vitrification, grouting, and minimum additive waste stabilization projects for life-cycle costs; compare the technologies above with respect to material costs, capital equipment costs, operating costs, and operating efficiencies. For the NAC/NAG/NAX process, assume aluminum reactant is government furnished and ammonia gas may be marketed; compare the identified technologies with respect to frequency of use within DOE for environmental management applications with appropriate rationale for use; Assess the potential size of the DOE market for the NAC/NAG/NAX process; assess and off-gas issues; and compare with international technologies, including life-cycle estimates.« less

  19. A Sensitivity Analysis of the Rigid Pavement Life-Cycle Cost Analysis Program

    DOT National Transportation Integrated Search

    2000-12-01

    Original Report Date: September 1999. This report describes the sensitivity analysis performed on the Rigid Pavement Life-Cycle Cost Analysis program, a computer program developed by the Center for Transportation Research for the Texas Department of ...

  20. Life-Cycle Analysis of Aircraft Turbine Engines

    DTIC Science & Technology

    1977-11-01

    actual experience. Mixed but promisng results were obtained in modeling ownership costs for military engines. Depot maintenance costs were more...Acquisition Experience, The Rand Corporation, RM-6072-PR, November 1969. System Acquisition Stategies , The Rand Corporation, R-733-PR/ARPA, June 1971. 98...Paris, 1971I. Phillips. Almarin, Technology and Market Structure, IA•xington Books, D.C. Heath and Company, Lexington, Mass.. 1971. A Position Paper on

  1. Stakeholder requirements for commercially successful wave energy converter farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babarit, Aurélien; Bull, Diana; Dykes, Katherine

    2017-12-01

    In this study, systems engineering techniques are applied to wave energy to identify and specify stakeholders' requirements for a commercially successful wave energy farm. The focus is on the continental scale utility market. Lifecycle stages and stakeholders are identified. Stakeholders' needs across the whole lifecycle of the wave energy farm are analyzed. A list of 33 stakeholder requirements are identified and specified. This list of requirements should serve as components of a technology performance level metric that could be used by investors and funding agencies to make informed decisions when allocating resources. It is hoped that the technology performance levelmore » metric will accelerate wave energy conversion technology convergence.« less

  2. Eric Tan | NREL

    Science.gov Websites

    -economic analysis Sustainability and life-cycle analysis (SimaPro, Greenhouse Gases, Regulated Emissions Laboratory Technical Report (2015) "Techno-economic Analysis of Corn and Corn Stover n-Butanol -economic Analysis and Life-cycle Assessment of Cellulosic iso-Butanol and Comparison with Cellulosic

  3. Approximation Model Building for Reliability & Maintainability Characteristics of Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Unal, Resit; Morris, W. Douglas; White, Nancy H.; Lepsch, Roger A.; Brown, Richard W.

    2000-01-01

    This paper describes the development of parametric models for estimating operational reliability and maintainability (R&M) characteristics for reusable vehicle concepts, based on vehicle size and technology support level. A R&M analysis tool (RMAT) and response surface methods are utilized to build parametric approximation models for rapidly estimating operational R&M characteristics such as mission completion reliability. These models that approximate RMAT, can then be utilized for fast analysis of operational requirements, for lifecycle cost estimating and for multidisciplinary sign optimization.

  4. Water consumption footprint and land requirements of large-scale alternative diesel and jet fuel production.

    PubMed

    Staples, Mark D; Olcay, Hakan; Malina, Robert; Trivedi, Parthsarathi; Pearlson, Matthew N; Strzepek, Kenneth; Paltsev, Sergey V; Wollersheim, Christoph; Barrett, Steven R H

    2013-01-01

    Middle distillate (MD) transportation fuels, including diesel and jet fuel, make up almost 30% of liquid fuel consumption in the United States. Alternative drop-in MD and biodiesel could potentially reduce dependence on crude oil and the greenhouse gas intensity of transportation. However, the water and land resource requirements of these novel fuel production technologies must be better understood. This analysis quantifies the lifecycle green and blue water consumption footprints of producing: MD from conventional crude oil; Fischer-Tropsch MD from natural gas and coal; fermentation and advanced fermentation MD from biomass; and hydroprocessed esters and fatty acids MD and biodiesel from oilseed crops, throughout the contiguous United States. We find that FT MD and alternative MD derived from rainfed biomass have lifecycle blue water consumption footprints of 1.6 to 20.1 Lwater/LMD, comparable to conventional MD, which ranges between 4.1 and 7.4 Lwater/LMD. Alternative MD derived from irrigated biomass has a lifecycle blue water consumption footprint potentially several orders of magnitude larger, between 2.7 and 22 600 Lwater/LMD. Alternative MD derived from biomass has a lifecycle green water consumption footprint between 1.1 and 19 200 Lwater/LMD. Results are disaggregated to characterize the relationship between geo-spatial location and lifecycle water consumption footprint. We also quantify the trade-offs between blue water consumption footprint and areal MD productivity, which ranges from 490 to 4200 LMD/ha, under assumptions of rainfed and irrigated biomass cultivation. Finally, we show that if biomass cultivation for alternative MD is irrigated, the ratio of the increase in areal MD productivity to the increase in blue water consumption footprint is a function of geo-spatial location and feedstock-to-fuel production pathway.

  5. Planning for Cost Effectiveness.

    ERIC Educational Resources Information Center

    Schlaebitz, William D.

    1984-01-01

    A heat pump life-cycle cost analysis is used to explain the technique. Items suggested for the life-cycle analysis approach include lighting, longer-life batteries, site maintenance, and retaining experts to inspect specific building components. (MLF)

  6. Advanced Durability and Damage Tolerance Design and Analysis Methods for Composite Structures: Lessons Learned from NASA Technology Development Programs

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Starnes, James H., Jr.; Shuart, Mark J.

    2003-01-01

    Aerospace vehicles are designed to be durable and damage tolerant. Durability is largely an economic life-cycle design consideration whereas damage tolerance directly addresses the structural airworthiness (safety) of the vehicle. However, both durability and damage tolerance design methodologies must address the deleterious effects of changes in material properties and the initiation and growth of microstructural damage that may occur during the service lifetime of the vehicle. Durability and damage tolerance design and certification requirements are addressed for commercial transport aircraft and NASA manned spacecraft systems. The state-of-the-art in advanced design and analysis methods is illustrated by discussing the results of several recently completed NASA technology development programs. These programs include the NASA Advanced Subsonic Technology Program demonstrating technologies for large transport aircraft and the X-33 hypersonic test vehicle demonstrating technologies for a single-stage-to-orbit space launch vehicle.

  7. Modelling of environmental impacts of solid waste landfilling within the life-cycle analysis program EASEWASTE.

    PubMed

    Kirkeby, Janus T; Birgisdottir, Harpa; Bhander, Gurbakash Singh; Hauschild, Michael; Christensen, Thomas H

    2007-01-01

    A new computer-based life-cycle assessment model (EASEWASTE) has been developed to evaluate resource and environmental consequences of solid waste management systems. This paper describes the landfilling sub-model used in the life-cycle assessment program EASEWASTE, and examines some of the implications of this sub-model. All quantities and concentrations of leachate and landfill gas can be modified by the user in order to bring them in agreement with the actual landfill that is assessed by the model. All emissions, except the generation of landfill gas, are process specific. The landfill gas generation is calculated on the basis of organic matter in the landfilled waste. A landfill assessment example is provided. For this example, the normalised environmental effects of landfill gas on global warming and photochemical smog are much greater than the environmental effects for landfill leachate or for landfill construction. A sensitivity analysis for this example indicates that the overall environmental impact is sensitive to the gas collection efficiency and the use of the gas, but not to the amount of leachate generated, or the amount of soil or liner material used in construction. The landfill model can be used for evaluating different technologies with different liners, gas and leachate collection efficiencies, and to compare the environmental consequences of landfilling with alternative waste treatment options such as incineration or anaerobic digestion.

  8. Enabling Technologies for Unified Life-Cycle Engineering of Structural Components

    DTIC Science & Technology

    1991-03-22

    representations for entities in the ULCE system for unambiguous, reliable, and efficient retrieval, manipulation, and transfer of data. Develop a rapid analysis...approaches to these functions. It is reasonable to assume that program budgets for future systems will be more restrictive and that fixed- price contracting...enemy threats, economics, and politics. The requirements are voluminous and may stipulate firm fixed- price proposals with detailed schedules. At this

  9. Lifecycle greenhouse gas emissions of coal, conventional and unconventional natural gas for electricity generation

    EPA Science Inventory

    An analysis of the lifecycle greenhouse gas (GHG) emissions associated with natural gas use recently published by Howarth et al. (2011) stated that use of natural gas produced from shale formations via hydraulic fracturing would generate greater lifecycle GHG emissions than petro...

  10. Advanced Technology Lifecycle Analysis System (ATLAS)

    NASA Technical Reports Server (NTRS)

    O'Neil, Daniel A.; Mankins, John C.

    2004-01-01

    Developing credible mass and cost estimates for space exploration and development architectures require multidisciplinary analysis based on physics calculations, and parametric estimates derived from historical systems. Within the National Aeronautics and Space Administration (NASA), concurrent engineering environment (CEE) activities integrate discipline oriented analysis tools through a computer network and accumulate the results of a multidisciplinary analysis team via a centralized database or spreadsheet Each minute of a design and analysis study within a concurrent engineering environment is expensive due the size of the team and supporting equipment The Advanced Technology Lifecycle Analysis System (ATLAS) reduces the cost of architecture analysis by capturing the knowledge of discipline experts into system oriented spreadsheet models. A framework with a user interface presents a library of system models to an architecture analyst. The analyst selects models of launchers, in-space transportation systems, and excursion vehicles, as well as space and surface infrastructure such as propellant depots, habitats, and solar power satellites. After assembling the architecture from the selected models, the analyst can create a campaign comprised of missions spanning several years. The ATLAS controller passes analyst specified parameters to the models and data among the models. An integrator workbook calls a history based parametric analysis cost model to determine the costs. Also, the integrator estimates the flight rates, launched masses, and architecture benefits over the years of the campaign. An accumulator workbook presents the analytical results in a series of bar graphs. In no way does ATLAS compete with a CEE; instead, ATLAS complements a CEE by ensuring that the time of the experts is well spent Using ATLAS, an architecture analyst can perform technology sensitivity analysis, study many scenarios, and see the impact of design decisions. When the analyst is satisfied with the system configurations, technology portfolios, and deployment strategies, he or she can present the concepts to a team, which will conduct a detailed, discipline-oriented analysis within a CEE. An analog to this approach is the music industry where a songwriter creates the lyrics and music before entering a recording studio.

  11. How do we evaluate the cost of healthcare technology?

    NASA Astrophysics Data System (ADS)

    Nobel, Joel J.

    1994-12-01

    Five critical questions apply when evaluating the cost of healthcare technology: Who is asking the question (of how to evaluate healthcare costs)? For what purpose? What is the nature of the decision that must be made? At what state of a technology's development and diffusion are the questions being posed? What type of technology is stimulating the questions? A large number of organizations, both national and international, are engaged in technology assessment, and constructive disagreement improves the overall quality of those assessments. Current cost measurements tools such as cost-utility analysis, cost-benefit analysis, cost- effectiveness analysis, and outcomes research are weak and ineffective. Recently, pharmaceutical manufacturers have adopted more global cost-effectiveness studies. Technology assessments will ultimately focus on examining the relative cost-effectiveness of alternative technologies for a specific pathology or examining the relative cost-effectiveness of alternative technologies for a specific pathology or DRG. In addition to the traditional healthcare facility--hospital, outpatient facility, or group practice, group purchasing organizations are also asking about cost-effectiveness of healthcare. ECRI's SELECTTM process, unlike less effective technology assessments, takes into account real-world user experience data and life-cycle cost analysis in addition to detailed comparisons of technical features and performance.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuenge, Jason R.; Hollomon, Brad; Dillon, Heather E.

    This report covers the third part of a larger U.S. Department of Energy (DOE) project to assess the life-cycle environmental and resource impacts in the manufacturing, transport, use, and disposal of light-emitting diode (LED) lighting products in relation to incumbent lighting technologies. All three reports are available on the DOE website (www.ssl.energy.gov/tech_reports.html). • Part 1: Review of the Life-Cycle Energy Consumption of Incandescent, Compact Fluorescent and LED Lamps; • Part 2: LED Manufacturing and Performance; • Part 3: LED Environmental Testing. Parts 1 and 2 were published in February and June 2012, respectively. The Part 1 report included a summarymore » of the life-cycle assessment (LCA) process and methodology, provided a literature review of more than 25 existing LCA studies of various lamp types, and performed a meta-analysis comparing LED lamps with incandescent and compact fluorescent lamps (CFLs). Drawing from the Part 1 findings, Part 2 performed a more detailed assessment of the LED manufacturing process and used these findings to provide a comparative LCA taking into consideration a wider range of environmental impacts. Both reports concluded that the life-cycle environmental impact of a given lamp is dominated by the energy used during lamp operation—the upstream generation of electricity drives the total environmental footprint of the product. However, a more detailed understanding of end-of-life disposal considerations for LED products has become increasingly important as their installation base has grown. The Part 3 study (reported herein) was undertaken to augment the LCA findings with chemical analysis of a variety of LED, CFL, and incandescent lamps using standard testing procedures. A total of 22 samples, representing 11 different models, were tested to determine whether any of 17 elements were present at levels exceeding California or Federal regulatory thresholds for hazardous waste. Key findings include: • The selected models were generally found to be below thresholds for Federally regulated elements; • All CFLs and LED lamps and most incandescent lamps exceeded California thresholds for Copper; • Most CFL samples exceeded California thresholds for Antimony and Nickel, and half of the LED samples exceeded California thresholds for Zinc; • The greatest contributors were the screw bases, drivers, ballasts, and wires or filaments; • Overall concentrations in LED lamps were comparable to cell phones and other types of electronic devices, and were generally attributable to components other than the internal LED light sources; • Although the life-cycle environmental impact of the LED lamps is favorable when compared to CFLs and incandescent lamps, recycling will likely gain importance as consumer adoption increases. This study was exploratory in nature and was not intended to provide a definitive indication of regulatory compliance for any specific lamp model or technology. Further study would be needed to more broadly characterize the various light source technologies; to more accurately and precisely characterize a specific model; or to determine whether product redesign would be appropriate.« less

  13. The NISTmAb Reference Material 8671 lifecycle management and quality plan.

    PubMed

    Schiel, John E; Turner, Abigail

    2018-03-01

    Comprehensive analysis of monoclonal antibody therapeutics involves an ever expanding cadre of technologies. Lifecycle-appropriate application of current and emerging techniques requires rigorous testing followed by discussion between industry and regulators in a pre-competitive space, an effort that may be facilitated by a widely available test metric. Biopharmaceutical quality materials, however, are often difficult to access and/or are protected by intellectual property rights. The NISTmAb, humanized IgG1κ Reference Material 8671 (RM 8671), has been established with the intent of filling that void. The NISTmAb embodies the quality and characteristics of a typical biopharmaceutical product, is widely available to the biopharmaceutical community, and is an open innovation tool for development and dissemination of results. The NISTmAb lifecyle management plan described herein provides a hierarchical strategy for maintenance of quality over time through rigorous method qualification detailed in additional submissions in the current publication series. The NISTmAb RM 8671 is a representative monoclonal antibody material and provides a means to continually evaluate current best practices, promote innovative approaches, and inform regulatory paradigms as technology advances. Graphical abstract The NISTmAb Reference Material (RM) 8671 is intended to be an industry standard monoclonal antibody for pre-competitive harmonization of best practices and designing next generation characterization technologies for identity, quality, and stability testing.

  14. The Process of Life Cycle Cost Analysis: Projecting Economic Consequences of Design Decisions

    ERIC Educational Resources Information Center

    AIA Journal, 1976

    1976-01-01

    Life-cycle cost analysis deals with both present and future costs and attempts to relate the two as a basis for making decisions. This article lays the groundwork for a better understanding of the techniques of life-cycle cost analysis. (Author/MLF)

  15. The US Army Corps of Engineers Roadmap for Life-Cycle Building Information Modeling (BIM). Supplement 2 - BIM Implementation Guide for Military Construction (MILCON) Projects Using the Bentley Platform

    DTIC Science & Technology

    2012-11-01

    Building Information Modeling ( BIM ...12-2, Supplement 2 November 2012 The US Army Corps of Engineers Roadmap for Life-Cycle Building Information Modeling ( BIM ) Supplement 2 – BIM ...39180 ERDC SR-12-2, Supplement 2 (November 2012) ii Abstract Building Information Modeling ( BIM ) technology has rapidly gained ac-

  16. The US Army Corps of Engineers Roadmap for Life-Cycle Building Information Modeling (BIM). Supplement 1- BIM Implementation Guide for Military Construction (MILCON) Projects Using the Autodesk Platform

    DTIC Science & Technology

    2012-11-01

    Building Information Modeling ( BIM ...12-2, Supplement 1 November 2012 The US Army Corps of Engineers Roadmap for Life-Cycle Building Information Modeling ( BIM ) Supplement 1 – BIM ...ERDC SR-12-2, Supplement 1 (November 2012) ii Abstract Building Information Modeling ( BIM ) technology has rapidly gained ac- ceptance throughout

  17. A comprehensive methodology for intelligent systems life-cycle cost modelling

    NASA Technical Reports Server (NTRS)

    Korsmeyer, David J.; Lum, Henry, Jr.

    1993-01-01

    As NASA moves into the last part on the twentieth century, the desire to do 'business as usual' has been replaced with the mantra 'faster, cheaper, better'. Recently, new work has been done to show how the implementation of advanced technologies, such as intelligent systems, will impact the cost of a system design or in the operational cost for a spacecraft mission. The impact of the degree of autonomous or intelligent systems and human participation on a given program is manifested most significantly during the program operational phases, while the decision of who performs what tasks, and how much automation is incorporated into the system are all made during the design and development phases. Employing intelligent systems and automation is not an either/or question, but one of degree. The question is what level of automation and autonomy will provide the optimal trade-off between performance and cost. Conventional costing methodologies, however, are unable to show the significance of technologies like these in terms of traceable cost benefits and reductions in the various phases of the spacecraft's lifecycle. The proposed comprehensive life-cycle methodology can address intelligent system technologies as well as others that impact human-machine operational modes.

  18. Evaluation of life-cycle air emission factors of freight transportation.

    PubMed

    Facanha, Cristiano; Horvath, Arpad

    2007-10-15

    Life-cycle air emission factors associated with road, rail, and air transportation of freight in the United States are analyzed. All life-cycle phases of vehicles, infrastructure, and fuels are accounted for in a hybrid life-cycle assessment (LCA). It includes not only fuel combustion, but also emissions from vehicle manufacturing, maintenance, and end of life, infrastructure construction, operation, maintenance, and end of life, and petroleum exploration, refining, and fuel distribution. Results indicate that total life-cycle emissions of freight transportation modes are underestimated if only tailpipe emissions are accounted for. In the case of CO2 and NOx, tailpipe emissions underestimate total emissions by up to 38%, depending on the mode. Total life-cycle emissions of CO and SO2 are up to seven times higher than tailpipe emissions. Sensitivity analysis considers the effects of vehicle type, geography, and mode efficiency on the final results. Policy implications of this analysis are also discussed. For example, while it is widely assumed that currently proposed regulations will result in substantial reductions in emissions, we find that this is true for NOx, emissions, because fuel combustion is the main cause, and to a lesser extent for SO2, but not for PM10 emissions, which are significantly affected by the other life-cycle phases.

  19. An Analysis of Information Systems Technology Initiatives and Small Businesses in the DoD Small Business Innovation Research (SBIR) Program

    DTIC Science & Technology

    2012-09-01

    PAGE INTENTIONALLY LEFT BLANK xv LIST OF ACRONYMS AND ABBREVIATIONS CAE Component Acquisition Executive COTS Commercial Off-The-Shelf DARPA...and reduce program lifecycle costs by expanding the pool of vendors and incorporating small innovative high -tech businesses in defense IT...acquisition. Particularly within the high -tech IT sector, small businesses have been consistently recognized as exceptional resources for the research and

  20. U.S. EPA'S RESEARCH ON LIFE-CYCLE ANALYSIS

    EPA Science Inventory

    Life-cycle analysis (LCA) consists of looking at a product, process or activity from its inception through its completion. or consumer products, this includes the stages of raw material acquisition, manufacturing and fabrication, distribution, consumer use/reuse and final disposa...

  1. Computational challenges, tools and resources for analyzing co- and post-transcriptional events in high throughput

    PubMed Central

    Bahrami-Samani, Emad; Vo, Dat T.; de Araujo, Patricia Rosa; Vogel, Christine; Smith, Andrew D.; Penalva, Luiz O. F.; Uren, Philip J.

    2014-01-01

    Co- and post-transcriptional regulation of gene expression is complex and multi-faceted, spanning the complete RNA lifecycle from genesis to decay. High-throughput profiling of the constituent events and processes is achieved through a range of technologies that continue to expand and evolve. Fully leveraging the resulting data is non-trivial, and requires the use of computational methods and tools carefully crafted for specific data sources and often intended to probe particular biological processes. Drawing upon databases of information pre-compiled by other researchers can further elevate analyses. Within this review, we describe the major co- and post-transcriptional events in the RNA lifecycle that are amenable to high-throughput profiling. We place specific emphasis on the analysis of the resulting data, in particular the computational tools and resources available, as well as looking towards future challenges that remain to be addressed. PMID:25515586

  2. Make or Buy: An Analysis of the Impacts of 3D Printing Operations, 3D Laser Scanning Technology, and Collaborative Product Life-Cycle Management on Ship Maintenance and Modernization Cost Savings

    DTIC Science & Technology

    2015-04-30

    team from the Naval Postgraduate School conducted a trade -off analysis of in-sourcing (i.e., make) versus outsourcing (i.e., buy) the production of... outsourced , fabricating parts involves an extensive acquisition process in addition to reverse engineering and manufacturing legacy replacement parts...upper left in Figure 1) is outsourcing to the original equipment manufacturer , “Organic” (upper right in Figure 1) is in-sourcing by the U.S

  3. Comparative Lifecycle Energy Analysis: Theory and Practice.

    ERIC Educational Resources Information Center

    Morris, Jeffrey; Canzoneri, Diana

    1992-01-01

    Explores the position that more energy is conserved through recycling secondary materials than is generated from municipal solid waste incineration. Discusses one component of a lifecycle analysis--a comparison of energy requirements for manufacturing competing products. Includes methodological issues, energy cost estimates, and difficulties…

  4. The case for applying an early-lifecycle technology evaluation methodology to comparative evaluation of requirements engineering research

    NASA Technical Reports Server (NTRS)

    Feather, Martin S.

    2003-01-01

    The premise of this paper is taht there is a useful analogy between evaluation of proposed problem solutions and evaluation of requirements engineering research itself. Both of these application areas face the challenges of evaluation early in the lifecycle, of the need to consider a wide variety of factors, and of the need to combine inputs from multiple stakeholders in making thse evaluation and subsequent decisions.

  5. Technology strategy and the balance sheet: 3 points to consider.

    PubMed

    Waldron, David J

    2005-05-01

    Most hospitals use technology strategically to differentiate themselves from their competition. The rapid rate of change in healthcare technologies necessitates development of a technology life-cycle management program. Having access to flexible sources of capital appropriate to each category of technology assets allows liabilities and assets to be matched on a "balanced" balance sheet.

  6. 10 CFR 455.63 - Cost-effectiveness testing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... measure to be determined by life-cycle cost analysis or if the applicant requests such an analysis. (1) A life-cycle cost analysis, showing a savings-to-investment ratio greater than or equal to one over the useful life of the energy conservation measure or 15 years, whichever is less, shall be conducted in...

  7. 10 CFR 455.63 - Cost-effectiveness testing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... measure to be determined by life-cycle cost analysis or if the applicant requests such an analysis. (1) A life-cycle cost analysis, showing a savings-to-investment ratio greater than or equal to one over the useful life of the energy conservation measure or 15 years, whichever is less, shall be conducted in...

  8. 10 CFR 455.63 - Cost-effectiveness testing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... measure to be determined by life-cycle cost analysis or if the applicant requests such an analysis. (1) A life-cycle cost analysis, showing a savings-to-investment ratio greater than or equal to one over the useful life of the energy conservation measure or 15 years, whichever is less, shall be conducted in...

  9. The politics of reproduction.

    PubMed

    Ginsburg, F; Rapp, R

    1991-01-01

    The topic of human reproduction encompasses events throughout the human and especially female life-cycle as well as ideas and practices surrounding fertility, birth, and child care. Most of the scholarship on the subject, up through the 1960s, was based on cross-cultural surveys focused on the beliefs, norms, and values surrounding reproductive behaviors. Multiple methodologies and subspecialties, and fields like social history, human biology, and demography were utilized for the analysis. The concept of the politics of reproduction synthesizes local and global perspectives. The themes investigated include: the concept of reproduction, population control, and the internationalization of state and market interests (new reproductive technologies); social movements and contested domains; medicalization and its discontents; fertility and its control; adolescence and teen pregnancy; birth; birth attendants; the construction of infancy and the politics of child survival; rethinking the demographic transition; networks of nurturance; and meanings of menopause. The medicalization of reproduction is a central issue of studies of birth, midwifery, infertility, and reproductive technologies. Scholars have also analyzed different parts of the female life-cycle as medical problems. Other issues worth analysis include the internationalization of adoption and child care workers; the crisis of infertility of low-income and minority women who are not candidates for expensive reproductive technologies; the concerns of women at high risk for HIV whose cultural status depends on their fertility; questions of reproduction concerning, lesbians and gay men (artificial insemination and discrimination in child rearing); the study of menopause; and fatherhood. New discourse analysis is used to analyze state eugenic policies; conflicts over Western neocolonial influences in which women's status as childbearers represent nationalist interests; fundamentalist attacks on abortion rights; and the AIDS crisis.

  10. Life-cycle inventory of hardwood lumber manufacturing in the Northeastern and North Central United States.

    Treesearch

    Richard Bergman; Scott A. Bowe

    2007-01-01

    The goal of this study was to find the environmental impact of hardwood lumber production through a gate-to-gate Life-Cycle Inventory (LCI) on hardwood sawmills in the northeast and northcentral (NE/NC) United States. Primary mill data was collected per CORRIM Research Guidelines (CORRIM 2001). Lifecycle analysis is beyond the scope of the study.

  11. Carbon footprint of forest and tree utilization technologies in life cycle approach

    NASA Astrophysics Data System (ADS)

    Polgár, András; Pécsinger, Judit

    2017-04-01

    In our research project a suitable method has been developed related the technological aspect of the environmental assessment of land use changes caused by climate change. We have prepared an eco-balance (environmental inventory) to the environmental effects classification in life-cycle approach in connection with the typical agricultural / forest and tree utilization technologies. The use of balances and environmental classification makes possible to compare land-use technologies and their environmental effects per common functional unit. In order to test our environmental analysis model, we carried out surveys in sample of forest stands. We set up an eco-balance of the working systems of intermediate cutting and final harvest in the stands of beech, oak, spruce, acacia, poplar and short rotation energy plantations (willow, poplar). We set up the life-cycle plan of the surveyed working systems by using the GaBi 6.0 Professional software and carried out midpoint and endpoint impact assessment. Out of the results, we applied the values of CML 2001 - Global Warming Potential (GWP 100 years) [kg CO2-Equiv.] and Eco-Indicator 99 - Human health, Climate Change [DALY]. On the basis of the values we set up a ranking of technology. By this, we received the environmental impact classification of the technologies based on carbon footprint. The working systems had the greatest impact on global warming (GWP 100 years) throughout their whole life cycle. This is explained by the amount of carbon dioxide releasing to the atmosphere resulting from the fuel of the technologies. Abiotic depletion (ADP foss) and marine aquatic ecotoxicity (MAETP) emerged also as significant impact categories. These impact categories can be explained by the share of input of fuel and lube. On the basis of the most significant environmental impact category (carbon footprint), we perform the relative life cycle contribution and ranking of each technologies. The technological life cycle stages examined in the stands are the followings: Stage 1. cleaning cutting Stage 2. selection thinning Stage 3. increment thinning Stage 4. final harvest In these priority impact categories, the life cycle contribution of technologies varied according to the life cycle stages. • The spruce stand showed the smallest contribution in the stages 1, 2, 3 alike. • After the large contribution of beech stand at the beginning (stage 1), it continues representing a moderate level in stage 2 and 3, and it shares the smallest rate in final harvest (stage 4). • The oak stand showed the largest contribution in the stages 2, 3, 4 alike. • In the case of acacia and poplar, we have got the same results as in the case of oak stands. • In the case of short rotation energy plantations (willow, poplar), we got the results typical on stage 4 of spruce stands. We can conclude, that in case of the stage of final harvest, which represents the most significant environmental impact, the ranking of working systems showes the increasing order of „energy plantations - beech - spruce - acacia - poplar - oak". The environmental assessment of technological aspects of land use and land use change represent an important added value to the climate research. Acknowledgement: This research has been supported by the Agroclimate.2 VKSZ_12-1- 2013-0034 project. Keywords: life-cycle assessment / forest utilization technology / carbon footprint / life-cycle thinking

  12. Power of a Plan.

    ERIC Educational Resources Information Center

    Mineo, Ronald W.; Stehn, John L.

    1998-01-01

    Discusses the effects of electric power deregulation on an educational facility's planning and purchasing for future power needs. Highlights ways schools can take advantage of deregulation. Examines various chiller technologies and economically assessing these technologies on a life-cycle cost basis. (GR)

  13. Advanced tracking systems design and analysis

    NASA Technical Reports Server (NTRS)

    Potash, R.; Floyd, L.; Jacobsen, A.; Cunningham, K.; Kapoor, A.; Kwadrat, C.; Radel, J.; Mccarthy, J.

    1989-01-01

    The results of an assessment of several types of high-accuracy tracking systems proposed to track the spacecraft in the National Aeronautics and Space Administration (NASA) Advanced Tracking and Data Relay Satellite System (ATDRSS) are summarized. Tracking systems based on the use of interferometry and ranging are investigated. For each system, the top-level system design and operations concept are provided. A comparative system assessment is presented in terms of orbit determination performance, ATDRSS impacts, life-cycle cost, and technological risk.

  14. Assessing the Economic and Environmental Impacts Associated with Current Street Lighting Technologies

    DTIC Science & Technology

    2010-03-01

    AFIT/GEM/ENV/10-M01 Abstract Rising global energy demand and natural disasters continuously threaten energy supplies and prices. As a result , the...light bulbs. The study used the Process-Sum and Economic Input-Output Life-cycle Assessment (EIO- LCA ) methods. The results of the study found that... results for this phase of the analysis. Summary This chapter has detailed the methodology used in this study. Using both LCCA and EIO- LCA allowed for

  15. Streamline Your Project: A Lifecycle Model.

    ERIC Educational Resources Information Center

    Viren, John

    2000-01-01

    Discusses one approach to project organization providing a baseline lifecycle model for multimedia/CBT development. This variation of the standard four-phase model of Analysis, Design, Development, and Implementation includes a Pre-Analysis phase, called Definition, and a Post-Implementation phase, known as Maintenance. Each phase is described.…

  16. Determination of the appropriate use of pavement surface history in the KDOT life-cycle analysis process.

    DOT National Transportation Integrated Search

    2008-09-01

    The primary objective of this study was to evaluate KDOTs pavement surfacing history and recommend : whether or not the departments life-cycle cost analysis (LCCA) procedure should include a surfacing history : component, and, if so, how the LC...

  17. System Evaluation and Life-Cycle Cost Analysis of a Commercial-Scale High-Temperature Electrolysis Hydrogen Production Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

    2012-11-01

    Results of a system evaluation and lifecycle cost analysis are presented for a commercial-scale high-temperature electrolysis (HTE) central hydrogen production plant. The plant design relies on grid electricity to power the electrolysis process and system components, and industrial natural gas to provide process heat. The HYSYS process analysis software was used to evaluate the reference central plant design capable of producing 50,000 kg/day of hydrogen. The HYSYS software performs mass and energy balances across all components to allow optimization of the design using a detailed process flow sheet and realistic operating conditions specified by the analyst. The lifecycle cost analysismore » was performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes Microsoft Excel spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. The results of the lifecycle analyses indicate that for a 10% internal rate of return, a large central commercial-scale hydrogen production plant can produce 50,000 kg/day of hydrogen at an average cost of $2.68/kg. When the cost of carbon sequestration is taken into account, the average cost of hydrogen production increases by $0.40/kg to $3.08/kg.« less

  18. DISPOSITION PATHS FOR ROCKY FLATS GLOVEBOXES: EVALUATING OPTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobdell, D.; Geimer, R.; Larsen, P.

    2003-02-27

    The Kaiser-Hill Company, LLC has the responsibility for closure activities at the Rocky Flats Environmental Technology Site (RFETS). One of the challenges faced for closure is the disposition of radiologically contaminated gloveboxes. Evaluation of the disposition options for gloveboxes included a detailed analysis of available treatment capabilities, disposal facilities, and lifecycle costs. The Kaiser-Hill Company, LLC followed several processes in determining how the gloveboxes would be managed for disposition. Currently, multiple disposition paths have been chosen to accommodate the needs of the varying styles and conditions of the gloveboxes, meet the needs of the decommissioning team, and to best managemore » lifecycle costs. Several challenges associated with developing a disposition path that addresses both the radiological and RCRA concerns as well as offering the most cost-effective solution were encountered. These challenges included meeting the radiological waste acceptance criteria of available disposal facilities, making a RCRA determination, evaluating treatment options and costs, addressing void requirements associated with disposal, and identifying packaging and transportation options. The varying disposal facility requirements affected disposition choices. Facility conditions that impacted decisions included radiological and chemical waste acceptance criteria, physical requirements, and measurement for payment options. The facility requirements also impacted onsite activities including management strategies, decontamination activities, and life-cycle cost.« less

  19. Water conservation implications for decarbonizing non-electric energy supply: A hybrid life-cycle analysis.

    PubMed

    Liu, Shiyuan; Wang, Can; Shi, Lei; Cai, Wenjia; Zhang, Lixiao

    2018-08-01

    Low-carbon transition in the non-electric energy sector, which includes transport and heating energy, is necessary for achieving the 2 °C target. Meanwhile, as non-electric energy accounts for over 60% of total water consumption in the energy supply sector, it is vital to understand future water trends in the context of decarbonization. However, few studies have focused on life-cycle water impacts for non-electric energy; besides, applying conventional LCA methodology to assess non-electric energy has limitations. In this paper, a Multi-Regional Hybrid Life-Cycle Assessment (MRHLCA) model is built to assess total CO 2 emissions and water consumption of 6 non-electric energy technologies - transport energy from biofuel and gasoline, heat supply from natural gas, biogas, coal, and residual biomass, within 7 major emitting economies. We find that a shift to natural gas and residual biomass heating can help economies reduce 14-65% CO 2 and save more than 21% water. However, developed and developing economies should take differentiated technical strategies. Then we apply scenarios from IMAGE model to demonstrate that if economies take cost-effective 2 °C pathways, the water conservation synergy for the whole energy supply sector, including electricity, can also be achieved. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Can technology life-cycles be indicated by diversity in patent classifications? The crucial role of variety.

    PubMed

    Leydesdorff, Loet

    In a previous study of patent classifications in nine material technologies for photovoltaic cells, Leydesdorff et al. (Scientometrics 102(1):629-651, 2015) reported cyclical patterns in the longitudinal development of Rao-Stirling diversity. We suggested that these cyclical patterns can be used to indicate technological life-cycles. Upon decomposition, however, the cycles are exclusively due to increases and decreases in the variety of the classifications, and not to disparity or technological distance, measured as (1 -  cosine ). A single frequency component can accordingly be shown in the periodogram. Furthermore, the cyclical patterns are associated with the numbers of inventors in the respective technologies. Sometimes increased variety leads to a boost in the number of inventors, but in early phases-when the technology is still under construction-it can also be the other way round. Since the development of the cycles thus seems independent of technological distances among the patents, the visualization in terms of patent maps, can be considered as addressing an analytically different set of research questions.

  1. Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Runze; Riddle, Matthew; Graziano, Diane

    Additive manufacturing (AM) holds great potential for improving materials efficiency, reducing life-cycle impacts, and enabling greater engineering functionality compared to conventional manufacturing (CM), and AM has been increasingly adopted by aircraft component manufacturers for lightweight, cost-effective designs. This study estimates the net changes in life-cycle primary energy and greenhouse gas emissions associated with AM technologies for lightweight metallic aircraft components through the year 2050, to shed light on the environmental benefits of a shift from CM to AM processes in the U.S. aircraft industry. A systems modeling framework is presented, with integrates engineering criteria, life-cycle environmental data, aircraft fleet stockmore » and fuel use models under different AM adoption scenarios. Estimated fleet-wide life-cycle primary energy savings at most reach 70-173 million GJ/year in 2050, with cumulative savings of 1.2–2.8 billion GJ. Associated cumulative GHG emission reductions were estimated at 92.1–215.0 million metric tons. In addition, thousands of tons of aluminum, titanium and nickel alloys could be potentially saved per year in 2050. The results indicate a significant role of AM technologies in helping society meet its long-term energy use and GHG emissions reduction goals, and highlight barriers and opportunities for AM adoption for the aircraft industry.« less

  2. \\t Capital Planning and Investment Control (CPIC) for the Management of Information Technology Investments

    EPA Pesticide Factsheets

    Capital Planning and Investment Control (CPIC) is the Information Technology (IT) governance and management methodology in use at EPA for selecting, controlling and evaluating the performance of EPA IT investments throughout the full lifecycle.

  3. Environmental evaluation of high-value agricultural produce with diverse water sources: case study from Southern California

    NASA Astrophysics Data System (ADS)

    Bell, Eric M.; Stokes-Draut, Jennifer R.; Horvath, Arpad

    2018-02-01

    Meeting agricultural demand in the face of a changing climate will be one of the major challenges of the 21st century. California is the single largest agricultural producer in the United States but is prone to extreme hydrologic events, including multi-year droughts. Ventura County is one of California’s most productive growing regions but faces water shortages and deteriorating water quality. The future of California’s agriculture is dependent on our ability to identify and implement alternative irrigation water sources and technologies. Two such alternative water sources are recycled and desalinated water. The proximity of high-value crops in Ventura County to both dense population centers and the Pacific Ocean makes it a prime candidate for alternative water sources. This study uses highly localized spatial and temporal data to assess life-cycle energy use, life-cycle greenhouse gas emissions, operational costs, applied water demand, and on-farm labor requirements for four high-value crops. A complete switch from conventional irrigation with groundwater and surface water to recycled water would increase the life-cycle greenhouse gas emissions associated with strawberry, lemon, celery, and avocado production by approximately 14%, 7%, 59%, and 9%, respectively. Switching from groundwater and surface water to desalinated water would increase life-cycle greenhouse gas emissions by 33%, 210%, 140%, and 270%, respectively. The use of recycled or desalinated water for irrigation is most financially tenable for strawberries due to their relatively high value and close proximity to water treatment facilities. However, changing strawberry packaging has a greater potential impact on life-cycle energy use and greenhouse gas emissions than switching the water source. While this analysis does not consider the impact of water quality on crop yields, previous studies suggest that switching to recycled water could result in significant yield increases due to its lower salinity.

  4. Benefit-Risk Analysis for Decision-Making: An Approach.

    PubMed

    Raju, G K; Gurumurthi, K; Domike, R

    2016-12-01

    The analysis of benefit and risk is an important aspect of decision-making throughout the drug lifecycle. In this work, the use of a benefit-risk analysis approach to support decision-making was explored. The proposed approach builds on the qualitative US Food and Drug Administration (FDA) approach to include a more explicit analysis based on international standards and guidance that enables aggregation and comparison of benefit and risk on a common basis and a lifecycle focus. The approach is demonstrated on six decisions over the lifecycle (e.g., accelerated approval, withdrawal, and traditional approval) using two case studies: natalizumab for multiple sclerosis (MS) and bedaquiline for multidrug-resistant tuberculosis (MDR-TB). © 2016 American Society for Clinical Pharmacology and Therapeutics.

  5. Illustrative national scale scenarios of environmental and human health impacts of Carbon Capture and Storage.

    PubMed

    Tzanidakis, Konstantinos; Oxley, Tim; Cockerill, Tim; ApSimon, Helen

    2013-06-01

    Integrated Assessment, and the development of strategies to reduce the impacts of air pollution, has tended to focus only upon the direct emissions from different sources, with the indirect emissions associated with the full life-cycle of a technology often overlooked. Carbon Capture and Storage (CCS) reflects a number of new technologies designed to reduce CO2 emissions, but which may have much broader environmental implications than greenhouse gas emissions. This paper considers a wider range of pollutants from a full life-cycle perspective, illustrating a methodology for assessing environmental impacts using source-apportioned effects based impact factors calculated by the national scale UK Integrated Assessment Model (UKIAM). Contrasting illustrative scenarios for the deployment of CCS towards 2050 are presented which compare the life-cycle effects of air pollutant emissions upon human health and ecosystems of business-as-usual, deployment of CCS and widespread uptake of IGCC for power generation. Together with estimation of the transboundary impacts we discuss the benefits of an effects based approach to such assessments in relation to emissions based techniques. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. [A Medical Devices Management Information System Supporting Full Life-Cycle Process Management].

    PubMed

    Tang, Guoping; Hu, Liang

    2015-07-01

    Medical equipments are essential supplies to carry out medical work. How to ensure the safety and reliability of the medical equipments in diagnosis, and reduce procurement and maintenance costs is a topic of concern to everyone. In this paper, product lifecycle management (PLM) and enterprise resource planning (ERP) are cited to establish a lifecycle management information system. Through integrative and analysis of the various stages of the relevant data in life-cycle, it can ensure safety and reliability of medical equipments in the operation and provide the convincing data for meticulous management.

  7. ENABLING SMART MANUFACTURING TECHNOLOGIES FOR DECISION-MAKING SUPPORT

    PubMed Central

    Helu, Moneer; Libes, Don; Lubell, Joshua; Lyons, Kevin; Morris, KC

    2017-01-01

    Smart manufacturing combines advanced manufacturing capabilities and digital technologies throughout the product lifecycle. These technologies can provide decision-making support to manufacturers through improved monitoring, analysis, modeling, and simulation that generate more and better intelligence about manufacturing systems. However, challenges and barriers have impeded the adoption of smart manufacturing technologies. To begin to address this need, this paper defines requirements for data-driven decision making in manufacturing based on a generalized description of decision making. Using these requirements, we then focus on identifying key barriers that prevent the development and use of data-driven decision making in industry as well as examples of technologies and standards that have the potential to overcome these barriers. The goal of this research is to promote a common understanding among the manufacturing community that can enable standardization efforts and innovation needed to continue adoption and use of smart manufacturing technologies. PMID:28649678

  8. Life-cycle assessment of Nebraska bridges.

    DOT National Transportation Integrated Search

    2013-05-01

    Life-cycle cost analysis (LCCA) is a necessary component in bridge management systems (BMSs) for : assessing investment decisions and identifying the most cost-effective improvement alternatives. The : LCCA helps to identify the lowest cost alternati...

  9. The Chain-Link Fence Model: A Framework for Creating Security Procedures

    ERIC Educational Resources Information Center

    Houghton, Robert F.

    2013-01-01

    A long standing problem in information technology security is how to help reduce the security footprint. Many specific proposals exist to address specific problems in information technology security. Most information technology solutions need to be repeatable throughout the course of an information systems lifecycle. The Chain-Link Fence Model is…

  10. 48 CFR 231.205-18 - Independent research and development and bid and proposal costs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... development of technologies identified as critical under 10 U.S.C. 2522. (6) Increase the development and promotion of efficient and effective applications of dual-use technologies. (7) Provide efficient and... and life-cycle costs of military systems. (3) Strengthen the defense industrial and technology base of...

  11. 48 CFR 231.205-18 - Independent research and development and bid and proposal costs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... development of technologies identified as critical under 10 U.S.C. 2522. (6) Increase the development and promotion of efficient and effective applications of dual-use technologies. (7) Provide efficient and... and life-cycle costs of military systems. (3) Strengthen the defense industrial and technology base of...

  12. 48 CFR 231.205-18 - Independent research and development and bid and proposal costs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... development of technologies identified as critical under 10 U.S.C. 2522. (6) Increase the development and promotion of efficient and effective applications of dual-use technologies. (7) Provide efficient and... and life-cycle costs of military systems. (3) Strengthen the defense industrial and technology base of...

  13. 48 CFR 231.205-18 - Independent research and development and bid and proposal costs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... development of technologies identified as critical under 10 U.S.C. 2522. (6) Increase the development and promotion of efficient and effective applications of dual-use technologies. (7) Provide efficient and... and life-cycle costs of military systems. (3) Strengthen the defense industrial and technology base of...

  14. 48 CFR 231.205-18 - Independent research and development and bid and proposal costs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... development of technologies identified as critical under 10 U.S.C. 2522. (6) Increase the development and promotion of efficient and effective applications of dual-use technologies. (7) Provide efficient and... and life-cycle costs of military systems. (3) Strengthen the defense industrial and technology base of...

  15. The space station assembly phase: Flight telerobotic servicer feasibility. Volume 2: Methodology and case study

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.; Gyamfi, Max A.; Volkmer, Kent; Zimmerman, Wayne F.

    1987-01-01

    A methodology is described for examining the feasibility of a Flight Telerobotic Servicer (FTS) using two assembly scenarios, defined at the EVA task level, for the 30 shuttle flights (beginning with MB-1) over a four-year period. Performing all EVA tasks by crew only is compared to a scenario in which crew EVA is augmented by FTS. A reference FTS concept is used as a technology baseline and life-cycle cost analysis is performed to highlight cost tradeoffs. The methodology, procedure, and data used to complete the analysis are documented in detail.

  16. Make or Buy: An Analysis of the Impacts of 3D Printing Operations, 3D Laser Scanning Technology, and Collaborative Product Lifecycle Management on Ship Maintenance and Modernization Cost Savings

    DTIC Science & Technology

    2015-03-21

    3 Navy Depot Maintenance Strategic Plan (2014– 2019 ... Tech Center in-sourcing initiative saves between $52 and $203 million in data system costs over the life of the project. The Army claims in...maintenance budgets at the DOD and the Navy are highlighted, and the Navy Depot Maintenance Strategic Plan (2014– 2019 ) is introduced. The Problem

  17. An Analysis of the United States Naval Aviation Schedule Removal Component (SRC) Card Process

    DTIC Science & Technology

    2009-12-01

    JSF has the ability to communicate in flight with its maintenance system , ALIS. Its Prognostic Health Management (PHM) System abilities allow it to...end-users. PLCS allows users of the system , through a central database, visibility of a component’s history and lifecycle data . Since both OOMA...used in PLM systems .2 This research recommends a PLM system that is Web-based and uses DoD- mandated UID technology as the future for data

  18. Life-Cycle Analysis and Inquiry-Based Learning in Chemistry Teaching

    ERIC Educational Resources Information Center

    Juntunen, Marianne; Aksela, Maija

    2013-01-01

    The purpose of this design research is to improve the quality of environmental literacy and sustainability education in chemistry teaching through combining a socio-scientific issue, life-cycle analysis (LCA), with inquiry-based learning (IBL). This first phase of the cyclic design research involved 20 inservice trained chemistry teachers from…

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob

    This study provides a comprehensive lifecycle analysis (LCA), or cradle-to-grave (C2G) analysis, of the cost and greenhouse gas (GHG) emissions of a variety of vehicle-fuel pathways, as well as the levelized cost of driving (LCD) and cost of avoided GHG emissions. This study also estimates the technology readiness levels (TRLs) of key fuel and vehicle technologies along the pathways. The C2G analysis spans a full portfolio of midsize light-duty vehicles (LDVs), including conventional internal combustion engine vehicles (ICEVs), flexible fuel vehicles (FFVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), battery electric vehicles (BEVs), and fuel cell electric vehiclesmore » (FCEVs). In evaluating the vehicle-fuel combinations, this study considers both low-volume and high-volume “CURRENT TECHNOLOGY” cases (nominally 2015) and a high-volume “FUTURE TECHNOLOGY” lower-carbon case (nominally 2025–2030). For the CURRENT TECHNOLOGY case, low-volume vehicle and fuel production pathways are examined to determine costs in the near term.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob

    This study provides a comprehensive life-cycle analysis (LCA), or cradle-to-grave (C2G) analysis, of the cost and greenhouse gas (GHG) emissions of a variety of vehicle-fuel pathways, as well as the levelized cost of driving (LCD) and cost of avoided GHG emissions. This study also estimates the technology readiness levels (TRLs) of key fuel and vehicle technologies along the pathways. The C2G analysis spans a full portfolio of midsize light-duty vehicles (LDVs), including conventional internal combustion engine vehicles (ICEVs), flexible fuel vehicles (FFVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), battery electric vehicles (BEVs), and fuel cell electric vehiclesmore » (FCEVs). In evaluating the vehicle-fuel combinations, this study considers both low-volume and high-volume “CURRENT TECHNOLOGY” cases (nominally 2015) and a high-volume “FUTURE TECHNOLOGY” lower-carbon case (nominally 2025–2030). For the CURRENT TECHNOLOGY case, low-volume vehicle and fuel production pathways are examined to determine costs in the near term.« less

  1. Reusable Rocket Engine Advanced Health Management System. Architecture and Technology Evaluation: Summary

    NASA Technical Reports Server (NTRS)

    Pettit, C. D.; Barkhoudarian, S.; Daumann, A. G., Jr.; Provan, G. M.; ElFattah, Y. M.; Glover, D. E.

    1999-01-01

    In this study, we proposed an Advanced Health Management System (AHMS) functional architecture and conducted a technology assessment for liquid propellant rocket engine lifecycle health management. The purpose of the AHMS is to improve reusable rocket engine safety and to reduce between-flight maintenance. During the study, past and current reusable rocket engine health management-related projects were reviewed, data structures and health management processes of current rocket engine programs were assessed, and in-depth interviews with rocket engine lifecycle and system experts were conducted. A generic AHMS functional architecture, with primary focus on real-time health monitoring, was developed. Fourteen categories of technology tasks and development needs for implementation of the AHMS were identified, based on the functional architecture and our assessment of current rocket engine programs. Five key technology areas were recommended for immediate development, which (1) would provide immediate benefits to current engine programs, and (2) could be implemented with minimal impact on the current Space Shuttle Main Engine (SSME) and Reusable Launch Vehicle (RLV) engine controllers.

  2. Infrastructure and automobile shifts: positioning transit to reduce life-cycle environmental impacts for urban sustainability goals

    NASA Astrophysics Data System (ADS)

    Chester, Mikhail; Pincetl, Stephanie; Elizabeth, Zoe; Eisenstein, William; Matute, Juan

    2013-03-01

    Public transportation systems are often part of strategies to reduce urban environmental impacts from passenger transportation, yet comprehensive energy and environmental life-cycle measures, including upfront infrastructure effects and indirect and supply chain processes, are rarely considered. Using the new bus rapid transit and light rail lines in Los Angeles, near-term and long-term life-cycle impact assessments are developed, including consideration of reduced automobile travel. Energy consumption and emissions of greenhouse gases and criteria pollutants are assessed, as well the potential for smog and respiratory impacts. Results show that life-cycle infrastructure, vehicle, and energy production components significantly increase the footprint of each mode (by 48-100% for energy and greenhouse gases, and up to 6200% for environmental impacts), and emerging technologies and renewable electricity standards will significantly reduce impacts. Life-cycle results are identified as either local (in Los Angeles) or remote, and show how the decision to build and operate a transit system in a city produces environmental impacts far outside of geopolitical boundaries. Ensuring shifts of between 20-30% of transit riders from automobiles will result in passenger transportation greenhouse gas reductions for the city, and the larger the shift, the quicker the payback, which should be considered for time-specific environmental goals.

  3. Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation.

    PubMed

    Jaramillo, Paulina; Griffin, W Michael; Matthews, H Scott

    2007-09-01

    The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/ LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG.

  4. An evaluation of very large airplanes and alternative fuels. Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikolowsky, W.T.; Noggle, L.W.; Hederman, W.F.

    1976-12-01

    Very large airplanes using alternative fuels are examined in the context of existing and possible future Air Force missions. Synthetic jet fuel (JP), liquid methane, liquid hydrogen, and nuclear propulsion are the fuel alternatives selected for detailed analysis. Conceptual designs of airplanes using each of these fuels were developed and estimates were made of their lifecycle cost and life-cycle energy consumption. Mission analyses were performed to determine the effectiveness of the alternative airplanes in strategic airlift specifically and in the station-keeping role in general. Results indicate that for most military applications airplanes with gross weights in excess of one millionmore » pounds promise to be superior to any comtemporary airplanes in terms of cost-effectiveness and energy-hydrocarbon jet fuel, whether manufactured from oil shale, coal or crude oil, remains the most attractive aviation fuel for future Air Force use. Policy recommendations are made pertaining both to alternative fuels and to advanced-technology large airplanes. Future research and developments are also identified.« less

  5. Automation life-cycle cost model

    NASA Technical Reports Server (NTRS)

    Gathmann, Thomas P.; Reeves, Arlinda J.; Cline, Rick; Henrion, Max; Ruokangas, Corinne

    1992-01-01

    The problem domain being addressed by this contractual effort can be summarized by the following list: Automation and Robotics (A&R) technologies appear to be viable alternatives to current, manual operations; Life-cycle cost models are typically judged with suspicion due to implicit assumptions and little associated documentation; and Uncertainty is a reality for increasingly complex problems and few models explicitly account for its affect on the solution space. The objectives for this effort range from the near-term (1-2 years) to far-term (3-5 years). In the near-term, the envisioned capabilities of the modeling tool are annotated. In addition, a framework is defined and developed in the Decision Modelling System (DEMOS) environment. Our approach is summarized as follows: Assess desirable capabilities (structure into near- and far-term); Identify useful existing models/data; Identify parameters for utility analysis; Define tool framework; Encode scenario thread for model validation; and Provide transition path for tool development. This report contains all relevant, technical progress made on this contractual effort.

  6. Life-cycle cost as basis to optimize waste collection in space and time: A methodology for obtaining a detailed cost breakdown structure.

    PubMed

    Sousa, Vitor; Dias-Ferreira, Celia; Vaz, João M; Meireles, Inês

    2018-05-01

    Extensive research has been carried out on waste collection costs mainly to differentiate costs of distinct waste streams and spatial optimization of waste collection services (e.g. routes, number, and location of waste facilities). However, waste collection managers also face the challenge of optimizing assets in time, for instance deciding when to replace and how to maintain, or which technological solution to adopt. These issues require a more detailed knowledge about the waste collection services' cost breakdown structure. The present research adjusts the methodology for buildings' life-cycle cost (LCC) analysis, detailed in the ISO 15686-5:2008, to the waste collection assets. The proposed methodology is then applied to the waste collection assets owned and operated by a real municipality in Portugal (Cascais Ambiente - EMAC). The goal is to highlight the potential of the LCC tool in providing a baseline for time optimization of the waste collection service and assets, namely assisting on decisions regarding equipment operation and replacement.

  7. Lifecycle Assessment of Biofuel Production from Wood Pyrolysis Technology

    ERIC Educational Resources Information Center

    Manyele, S. V.

    2007-01-01

    Due to a stronger dependency on biomass for energy, there is a need for improved technologies in biomass-to-energy conversion in Tanzania. This paper presents a life cycle assessment (LCA) of pyrolysis technology used for conversion of wood and wood waste to liquid biofuel. In particular, a survey of environmental impacts of the process is…

  8. Integration of a Portfolio-based Approach to Evaluate Aerospace R and D Problem Formulation Into a Parametric Synthesis Tool

    NASA Astrophysics Data System (ADS)

    Oza, Amit R.

    The focus of this study is to improve R&D effectiveness towards aerospace and defense planning in the early stages of the product development lifecycle. Emphasis is on: correct formulation of a decision problem, with special attention to account for data relationships between the individual design problem and the system capability required to size the aircraft, understanding of the meaning of the acquisition strategy objective and subjective data requirements that are required to arrive at a balanced analysis and/or "correct" mix of technology projects, understanding the meaning of the outputs that can be created from the technology analysis, and methods the researcher can use at effectively support decisions at the acquisition and conceptual design levels through utilization of a research and development portfolio strategy. The primary objectives of this study are to: (1) determine what strategy should be used to initialize conceptual design parametric sizing processes during requirements analysis for the materiel solution analysis stage of the product development lifecycle when utilizing data already constructed in the latter phase when working with a generic database management system synthesis tool integration architecture for aircraft design , and (2) assess how these new data relationships can contribute for innovative decision-making when solving acquisition hardware/technology portfolio problems. As such, an automated composable problem formulation system is developed to consider data interactions for the system architecture that manages acquisition pre-design concept refinement portfolio management, and conceptual design parametric sizing requirements. The research includes a way to: • Formalize the data storage and implement the data relationship structure with a system architecture automated through a database management system. • Allow for composable modeling, in terms of level of hardware abstraction, for the product model, mission model, and operational constraint model data blocks in the pre-design stages. • Allow the product model, mission model, and operational constraint model to be cross referenced with a generic aircraft synthesis capability to identify disciplinary analysis methods and processes. • Allow for matching, comparison, and balancing of the aircraft hardware portfolio to the associated developmental and technology risk metrics. • Allow for visualization technology portfolio decision space. The problem formulation architecture is finally implemented and verified for a generic hypersonic vehicle research demonstrator where a portfolio of technology hardware are measured for developmental and technology risks, prioritized by the researcher risk constraints, and the data generated delivered to a novel aircraft synthesis tool to confirm vehicle feasibility.

  9. Life-cycle analysis of fuels from post-use non-recycled plastics

    DOE PAGES

    Benavides, Pahola Thathiana; Sun, Pingping; Han, Jeongwoo; ...

    2017-04-27

    Plastic-to-fuel (PTF) technology uses pyrolysis to convert plastic waste—especially non-recycled plastics (NRP)—into ultra-low sulfur diesel (ULSD) fuel. To assess the potential energy and environmental benefits associated with PTF technology, we calculated the energy, water consumption, and greenhouse gas emissions of NRP-derived ULSD and compared the results to those metrics for conventional ULSD fuel. For these analyses, we used the Greenhouse gases, Regulated Emissions and Energy use in Transportation (GREET®) model. Five companies provided pyrolysis process product yields and material and energy consumption data. Co-products of the process included char and fuel gas. Char can be landfilled, which, per the companymore » responses, is the most common practice for this co-product, or it may be sold as an energy product. Fuel gas can be combusted to internally generate process heat and electricity. Sensitivity analyses investigated the influence of co-product handling methodology, product yield, electric grid composition, and assumed efficiency of char combustion technology on life-cycle greenhouse gas emissions. The sensitivity analysis indicates that the GHG emissions would likely be reduced up to 14% when it is compared to conventional ULSD, depending on the co-product treatment method used. NRP-derived ULSD fuel could therefore be considered at a minimum carbon neutral with the potential to offer a modest GHG reduction. Moreover, this waste-derived fuel had 58% lower water consumption and up to 96% lower fossil fuel consumption than conventional ULSD fuel in the base case. In addition to the comparison of PTF fuels with conventional transportation fuels, we also compare the results with alternative scenarios for managing NRP including power generation and landfilling in the United States.« less

  10. Life-cycle analysis of fuels from post-use non-recycled plastics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benavides, Pahola Thathiana; Sun, Pingping; Han, Jeongwoo

    Plastic-to-fuel (PTF) technology uses pyrolysis to convert plastic waste—especially non-recycled plastics (NRP)—into ultra-low sulfur diesel (ULSD) fuel. To assess the potential energy and environmental benefits associated with PTF technology, we calculated the energy, water consumption, and greenhouse gas emissions of NRP-derived ULSD and compared the results to those metrics for conventional ULSD fuel. For these analyses, we used the Greenhouse gases, Regulated Emissions and Energy use in Transportation (GREET®) model. Five companies provided pyrolysis process product yields and material and energy consumption data. Co-products of the process included char and fuel gas. Char can be landfilled, which, per the companymore » responses, is the most common practice for this co-product, or it may be sold as an energy product. Fuel gas can be combusted to internally generate process heat and electricity. Sensitivity analyses investigated the influence of co-product handling methodology, product yield, electric grid composition, and assumed efficiency of char combustion technology on life-cycle greenhouse gas emissions. The sensitivity analysis indicates that the GHG emissions would likely be reduced up to 14% when it is compared to conventional ULSD, depending on the co-product treatment method used. NRP-derived ULSD fuel could therefore be considered at a minimum carbon neutral with the potential to offer a modest GHG reduction. Moreover, this waste-derived fuel had 58% lower water consumption and up to 96% lower fossil fuel consumption than conventional ULSD fuel in the base case. In addition to the comparison of PTF fuels with conventional transportation fuels, we also compare the results with alternative scenarios for managing NRP including power generation and landfilling in the United States.« less

  11. Operational Changes in a Shared Resource Laboratory with the Use of a Product Lifecycle Management Approach: A Case Study.

    PubMed

    Hexley, Philip; Smith, Victoria; Wall, Samantha

    2016-04-01

    Shared Resource Laboratories (SRLs) provide investigators access to necessary scientific and resource expertise to leverage complex technologies fully for advancing high-quality biomedical research in a cost-effective manner. At the University of Nebraska Medical Center, the Flow Cytometry Research Facility (FCRF) offered access to exceptional technology, but the methods of operation were outdated and unsustainable. Whereas technology has advanced and the institute has expanded, the operations at the facility remained unchanged for 35 yr. To rectify this, at the end of 2013, we took a product lifecycle management approach to affect large operational changes and align the services offered with the SRL goal of education, as well as to provide service to researchers. These disruptive operational changes took over 10 mo to complete and allowed for independent end-user acquisition of flow cytometry data. The results have been monitored for the past 12 mo. The operational changes have had a positive impact on the quality of research, increased investigator-facility interaction, reduced stress of facility staff, and increased overall use of the resources. This product lifecycle management approach to facility operations allowed us to conceive of, design, implement, and monitor effectively the changes at the FCRF. This approach should be considered by SRL management when faced with the need for operationally disruptive measures.

  12. Procurement tool kit.

    DOT National Transportation Integrated Search

    2009-09-30

    Todays 9-1-1 emergency communications professionals face challenges on multiple frontsa : fundamental lack of resources, aging equipment operating past its intended lifecycle, emerging : consumer technology that has outpaced public safety answe...

  13. Extending the life-cycle of reverse osmosis membranes: A review.

    PubMed

    Coutinho de Paula, Eduardo; Amaral, Míriam Cristina Santos

    2017-05-01

    The reverse osmosis (RO) technology for desalination and demineralization serves the global water crisis context, both technically and economically, and its market is growing. However, RO membranes have a limited life-cycle and are often disposed of in landfills. The impacts caused by the disposal of thousands of tonnes per annum of RO membranes have grown dramatically around the world. Waste prevention should have a high priority and take effect before the end-of-life phase of a product is reached. In this review, a summary is presented of the main advances in the performance of the RO technology and the membrane lifespan. Afterwards, this paper reviews the most important relevant literature and summarizes the key findings of the research on reusing and recycling the discarded modules for the purpose of extending the life-cycle of the RO membranes. In addtion, there are some recent researches that indicated recycling RO membranes for use by the microfiltration or ultrafiltration separation processes is a promising solution to the disposal problem. However, there are many gaps and differences in procedures and results. This article also discusses and brings to light key parameters involved and controversies about oxidative treatment of discarded RO membranes.

  14. SCRL-Model for Human Space Flight Operations Enterprise Supply Chain

    NASA Technical Reports Server (NTRS)

    Tucker, Brian; Paxton, Joseph

    2010-01-01

    This paper will present a Supply Chain Readiness Level (SCRL) model that can be used to evaluate and configure adaptable and sustainable program and mission supply chains at an enterprise level. It will also show that using SCRL in conjunction with Technology Readiness Levels (TRLs), Manufacturing Readiness Levels (MRLs) and National Aeronautics Space Administrations (NASA s) Project Lifecycle Process will provide a more complete means of developing and evaluating a robust sustainable supply chain that encompasses the entire product, system and mission lifecycle. In addition, it will be shown that by implementing the SCRL model, NASA can additionally define supplier requirements to enable effective supply chain management (SCM). Developing and evaluating overall supply chain readiness for any product, system and mission lifecycle is critical for mission success. Readiness levels are presently being used to evaluate the maturity of technology and manufacturing capability during development and deployment phases of products and systems. For example, TRLs are used to support the assessment of the maturity of a particular technology and compare maturity of different types of technologies. MRLs are designed to assess the maturity and risk of a given technology from a manufacturing perspective. In addition, when these measurement systems are used collectively they can offer a more comprehensive view of the maturity of the system. While some aspects of the supply chain and supply chain planning are considered in these familiar metric systems, certain characteristics of an effective supply chain, when evaluated in more detail, will provide an improved insight into the readiness and risk throughout the supply chain. Therefore, a system that concentrates particularly on supply chain attributes is required to better assess enterprise supply chain readiness.

  15. Analysis of the Seismic Performance of Isolated Buildings according to Life-Cycle Cost

    PubMed Central

    Dang, Yu; Han, Jian-ping; Li, Yong-tao

    2015-01-01

    This paper proposes an indicator of seismic performance based on life-cycle cost of a building. It is expressed as a ratio of lifetime damage loss to life-cycle cost and determines the seismic performance of isolated buildings. Major factors are considered, including uncertainty in hazard demand and structural capacity, initial costs, and expected loss during earthquakes. Thus, a high indicator value indicates poor building seismic performance. Moreover, random vibration analysis is conducted to measure structural reliability and evaluate the expected loss and life-cycle cost of isolated buildings. The expected loss of an actual, seven-story isolated hospital building is only 37% of that of a fixed-base building. Furthermore, the indicator of the structural seismic performance of the isolated building is much lower in value than that of the structural seismic performance of the fixed-base building. Therefore, isolated buildings are safer and less risky than fixed-base buildings. The indicator based on life-cycle cost assists owners and engineers in making investment decisions in consideration of structural design, construction, and expected loss. It also helps optimize the balance between building reliability and building investment. PMID:25653677

  16. Analysis of the seismic performance of isolated buildings according to life-cycle cost.

    PubMed

    Dang, Yu; Han, Jian-Ping; Li, Yong-Tao

    2015-01-01

    This paper proposes an indicator of seismic performance based on life-cycle cost of a building. It is expressed as a ratio of lifetime damage loss to life-cycle cost and determines the seismic performance of isolated buildings. Major factors are considered, including uncertainty in hazard demand and structural capacity, initial costs, and expected loss during earthquakes. Thus, a high indicator value indicates poor building seismic performance. Moreover, random vibration analysis is conducted to measure structural reliability and evaluate the expected loss and life-cycle cost of isolated buildings. The expected loss of an actual, seven-story isolated hospital building is only 37% of that of a fixed-base building. Furthermore, the indicator of the structural seismic performance of the isolated building is much lower in value than that of the structural seismic performance of the fixed-base building. Therefore, isolated buildings are safer and less risky than fixed-base buildings. The indicator based on life-cycle cost assists owners and engineers in making investment decisions in consideration of structural design, construction, and expected loss. It also helps optimize the balance between building reliability and building investment.

  17. Employing Service Oriented Architecture Technologies to Bind a Thousand Ship Navy

    DTIC Science & Technology

    2008-06-01

    critical of the software lifecycle ( Pressman , 272). This remains true with SOA technologies. Theoretically, SOA provides a rapid development and... Pressman , R. S., “Software Engineering, A Practitioner’s Approach Fifth Edition”, McGraw-Hill, New York, 2001 4. Space and Naval Warfare Systems Center

  18. 76 FR 43983 - Request for Information on How To Structure Proposed New Program: Advanced Manufacturing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ... agenda most likely to achieve high rates of technological innovation. The goals of AMTech include...; Collapsing the time scale of technological innovation; Fostering a robust U.S. innovation system through... key players across the entire innovation lifecycle, AMTech consortia will work toward eliminating...

  19. Life-cycle environmental performance of renewable building materials in the context of residential construction : phase II research report : an extension to the 2005 phase I research report. Module N, Life-cycle inventory of manufacturing prefinished engineered wood flooring in the eastern United States

    Treesearch

    Richard D. Bergman; Scott A. Bowe

    2011-01-01

    This study summarizes the environmental performance of prefinished engineered wood flooring using life-cycle inventory (LCI) analysis. Using primary mill data gathered from manufacturers in the eastern United States and applying the methods found in Consortium for Research on Renewable Industrial Materials (CORRIM) Research Guidelines and International Organization of...

  20. Structures Technology for Future Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Venneri, Samuel L.; Paul, Donald B.; Hopkins, Mark A.

    2000-01-01

    An overview of structures technology for future aerospace systems is given. Discussion focuses on developments in component technologies that will improve the vehicle performance, advance the technology exploitation process, and reduce system life-cycle costs. The component technologies described are smart materials and structures, multifunctional materials and structures, affordable composite structures, extreme environment structures, flexible load bearing structures, and computational methods and simulation-based design. The trends in each of the component technologies are discussed and the applicability of these technologies to future aerospace vehicles is described.

  1. Lifecycle Analysis of Different Motors from the Standpoint of Environmental Impact

    NASA Astrophysics Data System (ADS)

    Orlova, S.; Rassõlkin, A.; Kallaste, A.; Vaimann, T.; Belahcen, A.

    2016-12-01

    Comparative analysis is performed for different motors from the standpoint of damage inflicted by them during their lifecycle. Three types of motors have been considered: the synchronous reluctance motor, the permanent magnet assisted synchronous reluctance motor and the induction motor. The assessment of lifecycle has been made in terms of its four stages: manufacturing, distribution, use and end of life. The results show that the production costs of synchronous reluctance motor are lower compared to that of permanent magnet assisted motors, but due to their low efficiency they exert the greatest environmental impact. The main conclusion is that the assessment made at the early designing stage for the related environmental impact enables its reduction.

  2. Environmental and economic assessment methods for waste management decision-support: possibilities and limitations.

    PubMed

    Finnveden, Göran; Björklund, Anna; Moberg, Asa; Ekvall, Tomas

    2007-06-01

    A large number of methods and approaches that can be used for supporting waste management decisions at different levels in society have been developed. In this paper an overview of methods is provided and preliminary guidelines for the choice of methods are presented. The methods introduced include: Environmental Impact Assessment, Strategic Environmental Assessment, Life Cycle Assessment, Cost-Benefit Analysis, Cost-effectiveness Analysis, Life-cycle Costing, Risk Assessment, Material Flow Accounting, Substance Flow Analysis, Energy Analysis, Exergy Analysis, Entropy Analysis, Environmental Management Systems, and Environmental Auditing. The characteristics used are the types of impacts included, the objects under study and whether the method is procedural or analytical. The different methods can be described as systems analysis methods. Waste management systems thinking is receiving increasing attention. This is, for example, evidenced by the suggested thematic strategy on waste by the European Commission where life-cycle analysis and life-cycle thinking get prominent positions. Indeed, life-cycle analyses have been shown to provide policy-relevant and consistent results. However, it is also clear that the studies will always be open to criticism since they are simplifications of reality and include uncertainties. This is something all systems analysis methods have in common. Assumptions can be challenged and it may be difficult to generalize from case studies to policies. This suggests that if decisions are going to be made, they are likely to be made on a less than perfect basis.

  3. Evaluation of a Game to Teach Requirements Collection and Analysis in Software Engineering at Tertiary Education Level

    ERIC Educational Resources Information Center

    Hainey, Thomas; Connolly, Thomas M.; Stansfield, Mark; Boyle, Elizabeth A.

    2011-01-01

    A highly important part of software engineering education is requirements collection and analysis which is one of the initial stages of the Database Application Lifecycle and arguably the most important stage of the Software Development Lifecycle. No other conceptual work is as difficult to rectify at a later stage or as damaging to the overall…

  4. Improving Students' Argumentation Skills through a Product Life-Cycle Analysis Project in Chemistry Education

    ERIC Educational Resources Information Center

    Juntunen, M. K.; Aksela, M. K.

    2014-01-01

    The aim of the study discussed in this paper was to link existing research about the argumentation skills of students to the teaching of life-cycle analysis (LCA) in order to promote an evidence-based approach to the teaching of and learning about materials used in consumer products. This case-study is part of a larger design research project that…

  5. Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components

    DOE PAGES

    Huang, Runze; Riddle, Matthew; Graziano, Diane; ...

    2015-05-08

    Additive manufacturing (AM) holds great potential for improving materials efficiency, reducing life-cycle impacts, and enabling greater engineering functionality compared to conventional manufacturing (CM) processes. For these reasons, AM has been adopted by a growing number of aircraft component manufacturers to achieve more lightweight, cost-effective designs. This study estimates the net changes in life-cycle primary energy and greenhouse gas emissions associated with AM technologies for lightweight metallic aircraft components through the year 2050, to shed light on the environmental benefits of a shift from CM to AM processes in the U.S. aircraft industry. A systems modeling framework is presented, with integratesmore » engineering criteria, life-cycle environmental data, and aircraft fleet stock and fuel use models under different AM adoption scenarios. Estimated fleetwide life-cycle primary energy savings in a rapid adoption scenario reach 70-174 million GJ/year in 2050, with cumulative savings of 1.2-2.8 billion GJ. Associated cumulative emission reduction potentials of CO2e were estimated at 92.8-217.4 million metric tons. About 95% of the savings is attributed to airplane fuel consumption reductions due to lightweighting. In addition, about 4050 tons aluminum, 7600 tons titanium and 8100 tons of nickel alloys could be saved per year in 2050. The results indicate a significant role of AM technologies in helping society meet its long-term energy use and GHG emissions reduction goals, and highlight barriers and opportunities for AM adoption for the aircraft industry.« less

  6. Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Runze; Riddle, Matthew; Graziano, Diane

    Additive manufacturing (AM) holds great potential for improving materials efficiency, reducing life-cycle impacts, and enabling greater engineering functionality compared to conventional manufacturing (CM) processes. For these reasons, AM has been adopted by a growing number of aircraft component manufacturers to achieve more lightweight, cost-effective designs. This study estimates the net changes in life-cycle primary energy and greenhouse gas emissions associated with AM technologies for lightweight metallic aircraft components through the year 2050, to shed light on the environmental benefits of a shift from CM to AM processes in the U.S. aircraft industry. A systems modeling framework is presented, with integratesmore » engineering criteria, life-cycle environmental data, and aircraft fleet stock and fuel use models under different AM adoption scenarios. Estimated fleetwide life-cycle primary energy savings in a rapid adoption scenario reach 70-174 million GJ/year in 2050, with cumulative savings of 1.2-2.8 billion GJ. Associated cumulative emission reduction potentials of CO2e were estimated at 92.8-217.4 million metric tons. About 95% of the savings is attributed to airplane fuel consumption reductions due to lightweighting. In addition, about 4050 tons aluminum, 7600 tons titanium and 8100 tons of nickel alloys could be saved per year in 2050. The results indicate a significant role of AM technologies in helping society meet its long-term energy use and GHG emissions reduction goals, and highlight barriers and opportunities for AM adoption for the aircraft industry.« less

  7. Sizing and Lifecycle Cost Analysis of an Ares V Composite Interstage

    NASA Technical Reports Server (NTRS)

    Mann, Troy; Smeltzer, Stan; Grenoble, Ray; Mason, Brian; Rosario, Sev; Fairbairn, Bob

    2012-01-01

    The Interstage Element of the Ares V launch vehicle was sized using a commercially available structural sizing software tool. Two different concepts were considered, a metallic design and a composite design. Both concepts were sized using similar levels of analysis fidelity and included the influence of design details on each concept. Additionally, the impact of the different manufacturing techniques and failure mechanisms for composite and metallic construction were considered. Significant details were included in analysis models of each concept, including penetrations for human access, joint connections, as well as secondary loading effects. The designs and results of the analysis were used to determine lifecycle cost estimates for the two Interstage designs. Lifecycle cost estimates were based on industry provided cost data for similar launch vehicle components. The results indicated that significant mass as well as cost savings are attainable for the chosen composite concept as compared with a metallic option.

  8. Can Carbon Nanomaterials Improve CZTS Photovoltaic Devices? Evaluation of Performance and Impacts Using Integrated Life-Cycle Assessment and Decision Analysis.

    PubMed

    Scott, Ryan P; Cullen, Alison C; Fox-Lent, Cate; Linkov, Igor

    2016-10-01

    In emergent photovoltaics, nanoscale materials hold promise for optimizing device characteristics; however, the related impacts remain uncertain, resulting in challenges to decisions on strategic investment in technology innovation. We integrate multi-criteria decision analysis (MCDA) and life-cycle assessment (LCA) results (LCA-MCDA) as a method of incorporating values of a hypothetical federal acquisition manager into the assessment of risks and benefits of emerging photovoltaic materials. Specifically, we compare adoption of copper zinc tin sulfide (CZTS) devices with molybdenum back contacts to alternative devices employing graphite or graphene instead of molybdenum. LCA impact results are interpreted alongside benefits of substitution including cost reductions and performance improvements through application of multi-attribute utility theory. To assess the role of uncertainty we apply Monte Carlo simulation and sensitivity analysis. We find that graphene or graphite back contacts outperform molybdenum under most scenarios and assumptions. The use of decision analysis clarifies potential advantages of adopting graphite as a back contact while emphasizing the importance of mitigating conventional impacts of graphene production processes if graphene is used in emerging CZTS devices. Our research further demonstrates that a combination of LCA and MCDA increases the usability of LCA in assessing product sustainability. In particular, this approach identifies the most influential assumptions and data gaps in the analysis and the areas in which either engineering controls or further data collection may be necessary. © 2016 Society for Risk Analysis.

  9. Factors affecting calculation of L

    NASA Astrophysics Data System (ADS)

    Ciotola, Mark P.

    2001-08-01

    A detectable extraterrestrial civilization can be modeled as a series of successive regimes over time each of which is detectable for a certain proportion of its lifecycle. This methodology can be utilized to produce an estimate for L. Potential components of L include quantity of fossil fuel reserves, solar energy potential, quantity of regimes over time, lifecycle patterns of regimes, proportion of lifecycle regime is actually detectable, and downtime between regimes. Relationships between these components provide a means of calculating the lifetime of communicative species in a detectable state, L. An example of how these factors interact is provided, utilizing values that are reasonable given known astronomical data for components such as solar energy potential while existing knowledge about the terrestrial case is used as a baseline for other components including fossil fuel reserves, quantity of regimes over time, and lifecycle patterns of regimes, proportion of lifecycle regime is actually detectable, and gaps of time between regimes due to recovery from catastrophic war or resource exhaustion. A range of values is calculated for L when parameters are established for each component so as to determine the lowest and highest values of L. roadmap for SETI research at the SETI Institute for the next few decades. Three different approaches were identified. 1) Continue the radio search: build an affordable array incorporating consumer market technologies, expand the search frequency, and increase the target list to 100,000 stars. This array will also serve as a technology demonstration and enable the international radio astronomy community to realize an array that is a hundred times larger and capable (among other things) of searching a million stars. 2) Begin searches for very fast optical pulses from a million stars. 3) As Moore's Law delivers increased computational capacity, build an omni-directional sky survey array capable of detecting strong, transient, radio signals from billions of stars. SETI could succeed tomorrow, or it may be an endeavor for multiple generations. We are a very young technology in a very old galaxy. While our own leakage radiation continues to outshine the Sun at many frequencies, we remain detectable to others. When our use of the spectrum becomes more efficient, it will be time to consider deliberate transmissions and the really tough questions: Who will speak for Earth? What will they say?

  10. Assessment of potential life-cycle energy and greenhouse gas emission effects from using corn-based butanol as a transportation fuel.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, M.; Wang, M.; Liu, J.

    2008-01-01

    Since advances in the ABE (acetone-butanol-ethanol) fermentation process in recent years have led to significant increases in its productivity and yields, the production of butanol and its use in motor vehicles have become an option worth evaluating. This study estimates the potential life-cycle energy and emission effects associated with using bio-butanol as a transportation fuel. It employs a well-to-wheels (WTW) analysis tool: the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The estimates of life-cycle energy use and greenhouse gas (GHG) emissions are based on an Aspen Plus(reg. sign) simulation for a corn-to-butanol production process, which describesmore » grain processing, fermentation, and product separation. Bio-butanol-related WTW activities include corn farming, corn transportation, butanol production, butanol transportation, and vehicle operation. In this study, we also analyzed the bio-acetone that is coproduced with bio-butanol as an alternative to petroleum-based acetone. We then compared the results for bio-butanol with those of conventional gasoline. Our study shows that driving vehicles fueled with corn-based butanol produced by the current ABE fermentation process could result in substantial fossil energy savings (39%-56%) and avoid large percentage of the GHG emission burden, yielding a 32%-48% reduction relative to using conventional gasoline. On energy basis, a bushel of corn produces less liquid fuel from the ABE process than that from the corn ethanol dry mill process. The coproduction of a significant portion of acetone from the current ABE fermentation presents a challenge. A market analysis of acetone, as well as research and development on robust alternative technologies and processes that minimize acetone while increase the butanol yield, should be conducted.« less

  11. Assessment of potential life-cycle energy and greenhouse gas emission effects from using corn-based butanol as a transportation fuel.

    PubMed

    Wu, May; Wang, Michael; Liu, Jiahong; Huo, Hong

    2008-01-01

    Since advances in the ABE (acetone-butanol-ethanol) fermentation process in recent years have led to significant increases in its productivity and yields, the production of butanol and its use in motor vehicles have become an option worth evaluating. This study estimates the potential life-cycle energy and emission effects associated with using bio-butanol as a transportation fuel. It employs a well-to-wheels (WTW) analysis tool: the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The estimates of life-cycle energy use and greenhouse gas (GHG) emissions are based on an Aspen Plus(R) simulation for a corn-to-butanol production process, which describes grain processing, fermentation, and product separation. Bio-butanol-related WTW activities include corn farming, corn transportation, butanol production, butanol transportation, and vehicle operation. In this study, we also analyzed the bio-acetone that is coproduced with bio-butanol as an alternative to petroleum-based acetone. We then compared the results for bio-butanol with those of conventional gasoline. Our study shows that driving vehicles fueled with corn-based butanol produced by the current ABE fermentation process could result in substantial fossil energy savings (39%-56%) and avoid large percentage of the GHG emission burden, yielding a 32%-48% reduction relative to using conventional gasoline. On energy basis, a bushel of corn produces less liquid fuel from the ABE process than that from the corn ethanol dry mill process. The coproduction of a significant portion of acetone from the current ABE fermentation presents a challenge. A market analysis of acetone, as well as research and development on robust alternative technologies and processes that minimize acetone while increase the butanol yield, should be conducted.

  12. Improving sustainability by technology assessment and systems analysis: the case of IWRM Indonesia

    NASA Astrophysics Data System (ADS)

    Nayono, S.; Lehmann, A.; Kopfmüller, J.; Lehn, H.

    2016-09-01

    To support the implementation of the IWRM-Indonesia process in a water scarce and sanitation poor region of Central Java (Indonesia), sustainability assessments of several technology options of water supply and sanitation were carried out based on the conceptual framework of the integrative sustainability concept of the German Helmholtz association. In the case of water supply, the assessment was based on the life-cycle analysis and life-cycle-costing approach. In the sanitation sector, the focus was set on developing an analytical tool to improve planning procedures in the area of investigation, which can be applied in general to developing and newly emerging countries. Because sanitation systems in particular can be regarded as socio-technical systems, their permanent operability is closely related to cultural or religious preferences which influence acceptability. Therefore, the design of the tool and the assessment of sanitation technologies took into account the views of relevant stakeholders. The key results of the analyses are presented in this article.

  13. Evolution of RFID Applications in Construction: A Literature Review

    PubMed Central

    Valero, Enrique; Adán, Antonio; Cerrada, Carlos

    2015-01-01

    Radio frequency identification (RFID) technology has been widely used in the field of construction during the last two decades. Basically, RFID facilitates the control on a wide variety of processes in different stages of the lifecycle of a building, from its conception to its inhabitance. The main objective of this paper is to present a review of RFID applications in the construction industry, pointing out the existing developments, limitations and gaps. The paper presents the establishment of the RFID technology in four main stages of the lifecycle of a facility: planning and design, construction and commission and operation and maintenance. Concerning this last stage, an RFID application aiming to facilitate the identification of pieces of furniture in scanned inhabited environments is presented. Conclusions and future advances are presented at the end of the paper. PMID:26151210

  14. Life cycle environmental performance of renewable building materials in the context of residential construction : phase II research report: an extension to the 2005 phase I research report. Module C, Life-cycle inventory of hardwood lumber manufacturing in the Northeast and North Central United States.

    Treesearch

    Richard Bergman; Scott A. Bowe

    2008-01-01

    The goal of this study was to find the environmental impact of hardwood lumber production through a gate-to-gate Life-Cycle Inventory (LCI) on hardwood sawmills in the northeast and northcentral (NE/NC) United States. Primary mill data was collected per CORRIM Research Guidelines (CORRIM 2001). Life-cycle analysis is beyond the scope of the study.

  15. A Comparative Analysis of Life-Cycle Assessment Tools for End-of-Life Materials Management Systems

    EPA Science Inventory

    We identified and evaluated five life-cycle assessment tools that community decision makers can use to assess the environmental and economic impacts of end-of-life (EOL) materials management options. The tools evaluated in this report are waste reduction mode (WARM), municipal s...

  16. Teaching Green Engineering: The Case of Ethanol Lifecycle Analysis

    ERIC Educational Resources Information Center

    Vallero, Daniel A.; Braiser, Chris

    2008-01-01

    Lifecycle assessment (LCA) is a valuable tool in teaching green engineering and has been used to assess biofuels, including ethanol. An undergraduate engineering course at Duke University has integrated LCA with other interactive teaching techniques to enhance awareness and to inform engineering decision making related to societal issues, such as…

  17. Analysis of Technological Innovation and Environmental Performance Improvement in Aviation Sector

    PubMed Central

    Lee, Joosung; Mo, Jeonghoon

    2011-01-01

    The past oil crises have caused dramatic improvements in fuel efficiency in all industrial sectors. The aviation sector—aircraft manufacturers and airlines—has also made significant efforts to improve the fuel efficiency through more advanced jet engines, high-lift wing designs, and lighter airframe materials. However, the innovations in energy-saving aircraft technologies do not coincide with the oil crisis periods. The largest improvement in aircraft fuel efficiency took place in the 1960s while the high oil prices in the 1970s and on did not induce manufacturers or airlines to achieve a faster rate of innovation. In this paper, we employ a historical analysis to examine the socio-economic reasons behind the relatively slow technological innovation in aircraft fuel efficiency over the last 40 years. Based on the industry and passenger behaviors studied and prospects for alternative fuel options, this paper offers insights for the aviation sector to shift toward more sustainable technological options in the medium term. Second-generation biofuels could be the feasible option with a meaningful reduction in aviation’s lifecycle environmental impact if they can achieve sufficient economies of scale. PMID:22016716

  18. Analysis of technological innovation and environmental performance improvement in aviation sector.

    PubMed

    Lee, Joosung; Mo, Jeonghoon

    2011-09-01

    The past oil crises have caused dramatic improvements in fuel efficiency in all industrial sectors. The aviation sector-aircraft manufacturers and airlines-has also made significant efforts to improve the fuel efficiency through more advanced jet engines, high-lift wing designs, and lighter airframe materials. However, the innovations in energy-saving aircraft technologies do not coincide with the oil crisis periods. The largest improvement in aircraft fuel efficiency took place in the 1960s while the high oil prices in the 1970s and on did not induce manufacturers or airlines to achieve a faster rate of innovation. In this paper, we employ a historical analysis to examine the socio-economic reasons behind the relatively slow technological innovation in aircraft fuel efficiency over the last 40 years. Based on the industry and passenger behaviors studied and prospects for alternative fuel options, this paper offers insights for the aviation sector to shift toward more sustainable technological options in the medium term. Second-generation biofuels could be the feasible option with a meaningful reduction in aviation's lifecycle environmental impact if they can achieve sufficient economies of scale.

  19. Overcoming the Range Limitation of Medium-Duty Battery Electric Vehicles through the use of Hydrogen Fuel-Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, E.; Wang, L.; Gonder, J.

    2013-10-01

    Battery electric vehicles possess great potential for decreasing lifecycle costs in medium-duty applications, a market segment currently dominated by internal combustion technology. Characterized by frequent repetition of similar routes and daily return to a central depot, medium-duty vocations are well positioned to leverage the low operating costs of battery electric vehicles. Unfortunately, the range limitation of commercially available battery electric vehicles acts as a barrier to widespread adoption. This paper describes the National Renewable Energy Laboratory's collaboration with the U.S. Department of Energy and industry partners to analyze the use of small hydrogen fuel-cell stacks to extend the range ofmore » battery electric vehicles as a means of improving utility, and presumably, increasing market adoption. This analysis employs real-world vocational data and near-term economic assumptions to (1) identify optimal component configurations for minimizing lifecycle costs, (2) benchmark economic performance relative to both battery electric and conventional powertrains, and (3) understand how the optimal design and its competitiveness change with respect to duty cycle and economic climate. It is found that small fuel-cell power units provide extended range at significantly lower capital and lifecycle costs than additional battery capacity alone. And while fuel-cell range-extended vehicles are not deemed economically competitive with conventional vehicles given present-day economic conditions, this paper identifies potential future scenarios where cost equivalency is achieved.« less

  20. Parts Quality Management: Direct Part Marking via Data Matrix Symbols for Mission Assurance

    NASA Technical Reports Server (NTRS)

    Moss, Chantrice

    2013-01-01

    A United States Government Accountability Office (GAO) review of twelve NASA programs found widespread parts quality problems contributing to significant cost overruns, schedule delays, and reduced system reliability. Direct part-marking with Data Matrix symbols could significantly improve the quality of inventory control and parts lifecycle management. This paper examines the feasibility of using 15 marking technologies for use in future NASA programs. A structural analysis is based on marked material type, operational environment (e.g., ground, suborbital, orbital), durability of marks, ease of operation, reliability, and affordability. A cost-benefits analysis considers marking technology (data plates, label printing, direct part marking) and marking types (two-dimensional machine-readable, human-readable). Previous NASA parts marking efforts and historical cost data are accounted for, including in-house vs. outsourced marking. Some marking methods are still under development. While this paper focuses on NASA programs, results may be applicable to a variety of industrial environments.

  1. Product Lifecycle Management and the Quest for Sustainable Space Exploration Solutions

    NASA Technical Reports Server (NTRS)

    Caruso, Pamela W.; Dumbacher, Daniel L.; Grieves, Michael

    2011-01-01

    Product Lifecycle Management (PLM) is an outcome of lean thinking to eliminate waste and increase productivity. PLM is inextricably tied to the systems engineering business philosophy, coupled with a methodology by which personnel, processes and practices, and information technology combine to form an architecture platform for product design, development, manufacturing, operations, and decommissioning. In this model, which is being implemented by the Marshall Space Flight Center (MSFC) Engineering Directorate, total lifecycle costs are important variables for critical decision-making. With the ultimate goal to deliver quality products that meet or exceed requirements on time and within budget, PLM is a powerful concept to shape everything from engineering trade studies and testing goals, to integrated vehicle operations and retirement scenarios. This briefing will demonstrate how the MSFC Engineering Directorate is implementing PLM as part of an overall strategy to deliver safe, reliable, and affordable space exploration solutions and how that strategy aligns with the Agency and Center systems engineering policies and processes. Sustainable space exploration solutions demand that all lifecycle phases be optimized, and engineering the next generation space transportation system requires a paradigm shift such that digital tools and knowledge management, which are central elements of PLM, are used consistently to maximum effect. Adopting PLM, which has been used by the aerospace and automotive industry for many years, for spacecraft applications provides a foundation for strong, disciplined systems engineering and accountable return on investment. PLM enables better solutions using fewer resources by making lifecycle considerations in an integrative decision-making process.

  2. Comparison of efficiency degradation in polycrystalline-Si and CdTe thin-film PV modules via accelerated lifecycle testing

    NASA Astrophysics Data System (ADS)

    Lai, T.; Potter, B. G.; Simmons-Potter, K.

    2017-08-01

    Thin-film solar cells normally have the shortest energy payback time due to their simpler mass-production process compared to polycrystalline-Si photovoltaic (PV) modules, despite the fact that crystalline-Si-based technology typically has a longer total lifetime and a higher initial power conversion efficiency. For both types of modules, significant aging occurs during the first two years of usage with slower long-term aging over the module lifetime. The PV lifetime and the return-on-investment for local PV system installations rely on long-term device performance. Understanding the efficiency degradation behavior under a given set of environmental conditions is, therefore, a primary goal for experimental research and economic analysis. In the present work, in-situ measurements of key electrical characteristics (J, V, Pmax, etc.) in polycrystalline-Si and CdTe thin-film PV modules have been analyzed. The modules were subjected to identical environmental conditions, representative of southern Arizona, in a full-scale, industrial-standard, environmental degradation chamber, equipped with a single-sun irradiance source, temperature, and humidity controls, and operating an accelerated lifecycle test (ALT) sequence. Initial results highlight differences in module performance with environmental conditions, including temperature de-rating effects, for the two technologies. Notably, the thin-film CdTe PV module was shown to be approximately 15% less sensitive to ambient temperature variation. After exposure to a seven-month equivalent compressed night-day weather cycling regimen the efficiency degradation rates of both PV technology types were obtained and will be discussed.

  3. Obtaining Life-Cycle Cost-Effective Facilities in the Department of Defense

    DTIC Science & Technology

    2013-01-01

    8 Step 3: Regional, Service- Level , and OSD Project Ranking...13 2.3. Actors and Barriers to Life-Cycle Cost-Effective Facilities in the Regional, Service- Level , and OSD Project Ranking...Congressional authorization and appropriation OMB evaluation Regional, service- level , and OSD project ranking Economic analysis and DD form 1391 completed

  4. Life-Cycle Inventory Analysis of Manufacturing Redwood Decking

    Treesearch

    Richard D. Bergman; Han-Sup Han; Elaine Oneil; Ivan L. Eastin

    2012-01-01

    Green building has become increasingly important. Therefore, consumers and builders often take into account the environmental attributes of a building material. This study determined the environmental attributes associated with manufacturing 38-mm × 138-mm (nominal 2 × 6) redwood decking in northern California using the life-cycle inventory method. Primary data...

  5. Systems Engineering Provides Successful High Temperature Steam Electrolysis Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles V. Park; Emmanuel Ohene Opare, Jr.

    2011-06-01

    This paper describes two Systems Engineering Studies completed at the Idaho National Laboratory (INL) to support development of the High Temperature Stream Electrolysis (HTSE) process. HTSE produces hydrogen from water using nuclear power and was selected by the Department of Energy (DOE) for integration with the Next Generation Nuclear Plant (NGNP). The first study was a reliability, availability and maintainability (RAM) analysis to identify critical areas for technology development based on available information regarding expected component performance. An HTSE process baseline flowsheet at commercial scale was used as a basis. The NGNP project also established a process and capability tomore » perform future RAM analyses. The analysis identified which components had the greatest impact on HTSE process availability and indicated that the HTSE process could achieve over 90% availability. The second study developed a series of life-cycle cost estimates for the various scale-ups required to demonstrate the HTSE process. Both studies were useful in identifying near- and long-term efforts necessary for successful HTSE process deployment. The size of demonstrations to support scale-up was refined, which is essential to estimate near- and long-term cost and schedule. The life-cycle funding profile, with high-level allocations, was identified as the program transitions from experiment scale R&D to engineering scale demonstration.« less

  6. Technology assessment of solar-energy systems. Part 1: An analysis of life-cycle costs of solar facilities. Part 2: Minerals critical to the development of future energy technologies in high and low solar scenarios

    NASA Astrophysics Data System (ADS)

    Sathaye, J.; Ruderman, H.

    1981-09-01

    Solar and renewable technologies account for most of the increase in material requirements for energy technologies. The analysis identified 20 minerals where domestic reserves are inadequate to meet the demand. Domestic mine capacity is inadequate for 23 minerals. However, the world wide mine production capacity is adequate to meet the US demand for all the minerals. Energy related demand can therefore provide a potential market for some of these 23 minerals provided the US has deposits that can be exploited at worldwide competitive prices. For some critical and strategic minerals such as chromium the US demand peaks during a time period different than the period during which world demand peaks. The time period differences will help smooth market fluctuations and reduce the US vulnerability. Alternative technology designs can help mitigate diverse supply disruptions or sharp price increases. Alternatives may not always be available for a specific strategic and critical mineral. Each mineral may have to be analyzed and evaluated on its own merits before comparative options can be completely analyzed.

  7. FUEL-EFFICIENT SEWAGE SLUDGE INCINERATION

    EPA Science Inventory

    A study was performed to evaluate the status of incineration with low fuel use as a sludge disposal technology. The energy requirements, life-cycle costs, operation and maintenance requirements, and process capabilities of four sludge incineration facilities were evaluated. These...

  8. Life-cycle economics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lunde, P.J.

    1982-09-01

    In a continuation of previous economic analyses, life-cycle economics of solar projects are discussed using the concept of net present value (NPV) or net worth. The discount rate is defined and illustrated and a life-cycle analysis is worked out based on no down payment and a 25-year loan. The advantages of rising NPV are discussed and illustrated using an energy conserving $100 storm window as an example. Real payback period is discussed and it is concluded that NPV is the only valid method for the evaluation of an investment. Return on investment is cited as a satisfactory alternative method. (MJJ)

  9. Scheduling structural health monitoring activities for optimizing life-cycle costs and reliability of wind turbines

    NASA Astrophysics Data System (ADS)

    Hanish Nithin, Anu; Omenzetter, Piotr

    2017-04-01

    Optimization of the life-cycle costs and reliability of offshore wind turbines (OWTs) is an area of immense interest due to the widespread increase in wind power generation across the world. Most of the existing studies have used structural reliability and the Bayesian pre-posterior analysis for optimization. This paper proposes an extension to the previous approaches in a framework for probabilistic optimization of the total life-cycle costs and reliability of OWTs by combining the elements of structural reliability/risk analysis (SRA), the Bayesian pre-posterior analysis with optimization through a genetic algorithm (GA). The SRA techniques are adopted to compute the probabilities of damage occurrence and failure associated with the deterioration model. The probabilities are used in the decision tree and are updated using the Bayesian analysis. The output of this framework would determine the optimal structural health monitoring and maintenance schedules to be implemented during the life span of OWTs while maintaining a trade-off between the life-cycle costs and risk of the structural failure. Numerical illustrations with a generic deterioration model for one monitoring exercise in the life cycle of a system are demonstrated. Two case scenarios, namely to build initially an expensive and robust or a cheaper but more quickly deteriorating structures and to adopt expensive monitoring system, are presented to aid in the decision-making process.

  10. Towards greener and more sustainable batteries for electrical energy storage

    NASA Astrophysics Data System (ADS)

    Larcher, D.; Tarascon, J.-M.

    2015-01-01

    Ever-growing energy needs and depleting fossil-fuel resources demand the pursuit of sustainable energy alternatives, including both renewable energy sources and sustainable storage technologies. It is therefore essential to incorporate material abundance, eco-efficient synthetic processes and life-cycle analysis into the design of new electrochemical storage systems. At present, a few existing technologies address these issues, but in each case, fundamental and technological hurdles remain to be overcome. Here we provide an overview of the current state of energy storage from a sustainability perspective. We introduce the notion of sustainability through discussion of the energy and environmental costs of state-of-the-art lithium-ion batteries, considering elemental abundance, toxicity, synthetic methods and scalability. With the same themes in mind, we also highlight current and future electrochemical storage systems beyond lithium-ion batteries. The complexity and importance of recycling battery materials is also discussed.

  11. Considerations for Solar Energy Technologies to Make Progress Towards Grid Price Parity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodhouse, Michael; Fu, Ran; Chung, Donald

    2015-11-07

    In this seminar the component costs for solar photovoltaics module and system prices will be highlighted. As a basis for comparison to other renewable and traditional energy options, the metric of focus will be total lifecycle cost-of-energy (LCOE). Several innovations to traditional photovoltaics technologies (including crystalline silicon, CdTe, and CIGS) and developing technologies (including organics and perovskites) that may close the gaps in LCOE will be discussed.

  12. A life-cycle description of underground coal mining

    NASA Technical Reports Server (NTRS)

    Lavin, M. L.; Borden, C. S.; Duda, J. R.

    1978-01-01

    An initial effort to relate the major technological and economic variables which impact conventional underground coal mining systems, in order to help identify promising areas for advanced mining technology is described. The point of departure is a series of investment analyses published by the United States Bureau of Mines, which provide both the analytical framework and guidance on a choice of variables.

  13. The Development of Lifecycle Data for Hydrogen Fuel Production and Delivery

    DOT National Transportation Integrated Search

    2017-10-01

    An evaluation of renewable hydrogen production technologies anticipated to be available in the short, mid- and long-term timeframes was conducted. Renewable conversion pathways often rely on a combination of renewable and fossil energy sources, with ...

  14. Alternative Approaches to the Family Life Cycle in the Analysis of Housing Consumption.

    ERIC Educational Resources Information Center

    McLeod, P. B.; Ellis, J. R.

    1983-01-01

    Used loan-approval data to analyze the effects of life-cycle stage on housing consumption. The detailed typologies were not generally superior to the more simplified approaches, except for per capita consumption. For per capita consumption, price, and quality, clear evidence is found for structural nonhomogeneity across life-cycle stages. (JAC)

  15. 14 CFR 170.23 - LORAN-C establishment criteria.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ratio of the present value of the LORAN-C life-cycle benefits (PVB) to the present value of LORAN-C life-cycle costs (PVC): PVB/PVC ≥ 1.0 (c) The criteria do not cover all situations that may arise and are not... acceptable for instrument flight rules operations as a result of an airport airspace analysis conducted in...

  16. Defining and Applying Limits for Test and Flight Through the Project Lifecycle GSFC Standard. [Scope: Non-Cryogenic Systems Tested in Vacuum

    NASA Technical Reports Server (NTRS)

    Mosier, Carol

    2015-01-01

    The presentation will be given at the Annual Thermal Fluids Analysis Workshop (TFAWS 2015, NCTS 21070-15) hosted by the Goddard SpaceFlight Center (GSFC) Thermal Engineering Branch (Code 545). The powerpoint presentation details the process of defining limits throughout the lifecycle of a flight project.

  17. The evolution, approval and implementation of the U.S. Geological Survey Science Data Lifecycle Model

    USGS Publications Warehouse

    Faundeen, John L.; Hutchison, Vivian

    2017-01-01

    This paper details how the United States Geological Survey (USGS) Community for Data Integration (CDI) Data Management Working Group developed a Science Data Lifecycle Model, and the role the Model plays in shaping agency-wide policies. Starting with an extensive literature review of existing data Lifecycle models, representatives from various backgrounds in USGS attended a two-day meeting where the basic elements for the Science Data Lifecycle Model were determined. Refinements and reviews spanned two years, leading to finalization of the model and documentation in a formal agency publication . The Model serves as a critical framework for data management policy, instructional resources, and tools. The Model helps the USGS address both the Office of Science and Technology Policy (OSTP) for increased public access to federally funded research, and the Office of Management and Budget (OMB) 2013 Open Data directives, as the foundation for a series of agency policies related to data management planning, metadata development, data release procedures, and the long-term preservation of data. Additionally, the agency website devoted to data management instruction and best practices (www2.usgs.gov/datamanagement) is designed around the Model’s structure and concepts. This paper also illustrates how the Model is being used to develop tools for supporting USGS research and data management processes.

  18. Single-stage-to-orbit versus two-stage-two-orbit: A cost perspective

    NASA Astrophysics Data System (ADS)

    Hamaker, Joseph W.

    1996-03-01

    This paper considers the possible life-cycle costs of single-stage-to-orbit (SSTO) and two-stage-to-orbit (TSTO) reusable launch vehicles (RLV's). The analysis parametrically addresses the issue such that the preferred economic choice comes down to the relative complexity of the TSTO compared to the SSTO. The analysis defines the boundary complexity conditions at which the two configurations have equal life-cycle costs, and finally, makes a case for the economic preference of SSTO over TSTO.

  19. Advancing Clouds Lifecycle Representation in Numerical Models Using Innovative Analysis Methods that Bridge ARM Observations and Models Over a Breadth of Scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kollias, Pavlos

    2016-09-06

    This the final report for the DE-SC0007096 - Advancing Clouds Lifecycle Representation in Numerical Models Using Innovative Analysis Methods that Bridge ARM Observations and Models Over a Breadth of Scales - PI: Pavlos Kollias. The final report outline the main findings of the research conducted using the aforementioned award in the area of cloud research from the cloud scale (10-100 m) to the mesoscale (20-50 km).

  20. Application Analysis of BIM Technology in Metro Rail Transit

    NASA Astrophysics Data System (ADS)

    Liu, Bei; Sun, Xianbin

    2018-03-01

    With the rapid development of urban roads, especially the construction of subway rail transit, it is an effective way to alleviate urban traffic congestion. There are limited site space, complex resource allocation, tight schedule, underground pipeline complex engineering problems. BIM technology, three-dimensional visualization, parameterization, virtual simulation and many other advantages can effectively solve these technical problems. Based on the project of Shenzhen Metro Line 9, BIM technology is innovatively researched throughout the lifecycle of BIM technology in the context of the metro rail transit project rarely used at this stage. The model information file is imported into Navisworks for four-dimensional animation simulation to determine the optimum construction scheme of the shield machine. Subway construction management application platform based on BIM and private cloud technology, the use of cameras and sensors to achieve electronic integration, dynamic monitoring of the operation and maintenance of underground facilities. Make full use of the many advantages of BIM technology to improve the engineering quality and construction efficiency of the subway rail transit project and to complete the operation and maintenance.

  1. Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing.

    PubMed

    Esmonde-White, Karen A; Cuellar, Maryann; Uerpmann, Carsten; Lenain, Bruno; Lewis, Ian R

    2017-01-01

    Adoption of Quality by Design (QbD) principles, regulatory support of QbD, process analytical technology (PAT), and continuous manufacturing are major factors effecting new approaches to pharmaceutical manufacturing and bioprocessing. In this review, we highlight new technology developments, data analysis models, and applications of Raman spectroscopy, which have expanded the scope of Raman spectroscopy as a process analytical technology. Emerging technologies such as transmission and enhanced reflection Raman, and new approaches to using available technologies, expand the scope of Raman spectroscopy in pharmaceutical manufacturing, and now Raman spectroscopy is successfully integrated into real-time release testing, continuous manufacturing, and statistical process control. Since the last major review of Raman as a pharmaceutical PAT in 2010, many new Raman applications in bioprocessing have emerged. Exciting reports of in situ Raman spectroscopy in bioprocesses complement a growing scientific field of biological and biomedical Raman spectroscopy. Raman spectroscopy has made a positive impact as a process analytical and control tool for pharmaceutical manufacturing and bioprocessing, with demonstrated scientific and financial benefits throughout a product's lifecycle.

  2. Application of IT-technologies in visualization of innovation project life-cycle stages during the study of the course "Management of innovation projects"

    NASA Astrophysics Data System (ADS)

    Kolychev, V. D.; Prokhorov, I. V.

    2017-01-01

    The article presents a methodology for the application of IT-technologies in teaching discipline "Management of innovation projects," which helps students to be more competitive and gather the useful skills for their future specialization in high-tech areas. IT-technologies are widely used nowadays in educational and training spheres especially in knowledge-intensive disciplines such as systems analysis, the theory of games, operations research, theory of risks, innovation management etc. For studying such courses it is necessary to combine both mathematical models and information technology approaches for the clear understanding of the investigated object. That is why this article comprises both the framework of research and the IT-tools for investigation in the educational process. Taking into consideration the importance of the IT-system implementation especially for the university we assume to suggest the methods of research in the area of innovation projects with the help of IT-support.

  3. Looking to the Future.

    ERIC Educational Resources Information Center

    College Planning & Management, 1999

    1999-01-01

    Presents administrator's views on possible trends in college and universities. Addresses: hazardous waste disposal; privatization of custodial services; libraries and technology; building product purchases based on life-cycle cost; continuing education for employees; armed campus security; fees and tuition collection via online transactions; and…

  4. Water Consumption in the Production of Ethanol and Petroleum Gasoline

    NASA Astrophysics Data System (ADS)

    Wu, May; Mintz, Marianne; Wang, Michael; Arora, Salil

    2009-11-01

    We assessed current water consumption during liquid fuel production, evaluating major steps of fuel lifecycle for five fuel pathways: bioethanol from corn, bioethanol from cellulosic feedstocks, gasoline from U.S. conventional crude obtained from onshore wells, gasoline from Saudi Arabian crude, and gasoline from Canadian oil sands. Our analysis revealed that the amount of irrigation water used to grow biofuel feedstocks varies significantly from one region to another and that water consumption for biofuel production varies with processing technology. In oil exploration and production, water consumption depends on the source and location of crude, the recovery technology, and the amount of produced water re-injected for oil recovery. Our results also indicate that crop irrigation is the most important factor determining water consumption in the production of corn ethanol. Nearly 70% of U.S. corn used for ethanol is produced in regions where 10-17 liters of water are consumed to produce one liter of ethanol. Ethanol production plants are less water intensive and there is a downward trend in water consumption. Water requirements for switchgrass ethanol production vary from 1.9 to 9.8 liters for each liter of ethanol produced. We found that water is consumed at a rate of 2.8-6.6 liters for each liter of gasoline produced for more than 90% of crude oil obtained from conventional onshore sources in the U.S. and more than half of crude oil imported from Saudi Arabia. For more than 55% of crude oil from Canadian oil sands, about 5.2 liters of water are consumed for each liter of gasoline produced. Our analysis highlighted the vital importance of water management during the feedstock production and conversion stage of the fuel lifecycle.

  5. Life-Cycle Inventory Analysis of Laminated Veneer Lumber Production in the United States

    Treesearch

    Richard D. Bergman

    2015-01-01

    Documenting the environmental performance of building products is becoming increasingly common. Developing environmental product declarations (EPDs) based on life-cycle assessment (LCA) data is one way to provide scientific documentation. Many U.S. structural wood products have LCA-based “eco-labels” using the ISO standard. However, the standard requires underlying...

  6. Life-Cycle Inventory Analysis of I-joist Production in the United States

    Treesearch

    Richard D. Bergman

    2015-01-01

    Documenting the environmental performance of building products is becoming increasingly common. Creating environmental product declarations (EPDs) based on life-cycle assessment (LCA) data is one approach to provide scientific documentation of the products’ environmental performance. Many U.S. structural wood products have LCA-based “eco-labels” developed under the ISO...

  7. Hybrid life-cycle assessment of natural gas based fuel chains for transportation.

    PubMed

    Strømman, Anders Hammer; Solli, Christian; Hertwich, Edgar G

    2006-04-15

    This research compares the use of natural gas, methanol, and hydrogen as transportation fuels. These three fuel chains start with the extraction and processing of natural gas in the Norwegian North Sea and end with final use in Central Europe. The end use is passenger transportation with a sub-compact car that has an internal combustion engine for the natural gas case and a fuel cell for the methanol and hydrogen cases. The life cycle assessment is performed by combining a process based life-cycle inventory with economic input-output data. The analysis shows that the potential climate impacts are lowest for the hydrogen fuel scenario with CO2 deposition. The hydrogen fuel chain scenario has no significant environmental disadvantage compared to the other fuel chains. Detailed analysis shows that the construction of the car contributes significantly to most impact categories. Finally, it is shown how the application of a hybrid inventory model ensures a more complete inventory description compared to standard process-based life-cycle assessment. This is particularly significant for car construction which would have been significantly underestimated in this study using standard process life-cycle assessment alone.

  8. Modern information and telecommunication technologies in educational process as the element of ongoing personnel training for high-tech Russian industry

    NASA Astrophysics Data System (ADS)

    Matyatina, A. N.; Isaev, A. A.; Samovarschikov, Y. V.

    2017-01-01

    In the current work the issues of staffing high-tech sectors of Russian industry are considered in the context of global geopolitical instability, the comparative analysis of the age structure of domestic companies with the leading Western industrial organizations was conducted, "growth points" of human resources development were defined. For the purpose of informational and telecommunicational implementation in the educational process the analysis of normative-legal documents regulating the requirements to the electronic educational environment and distance learning technologies is presented. The basic models of distance learning technologies and remote resources as part of teaching materials are used. Taking into account the specifics and requirements of industrial enterprises a number of tools and methodology of e-learning based on the identified needs of the industrial sector were offered. The basis of the proposed model is built on one-parameter model through a three-tier learning: kindergarten - secondary - higher education (professional) where the lifecycle of parameter is a list of the industrial enterprises demands to the educational process.

  9. Conclusion (The Mobile Future)

    NASA Astrophysics Data System (ADS)

    Marcus, Aaron; Sala, Riccardo; Roibás, Anxo Cereijo

    There are a couple of fundamental beliefs that I hold about the future of technology and media. First, I believe that, absolutely, most, if not all, media will be delivered, at least intermittently in its lifecycle, over an IP network. It is an efficient carrier, it is scalable, and it can be organically evolved. Whether this is IPV6 or some other technology is inconsequential, it will just work.

  10. Temperature fine-tunes Mediterranean Arabidopsis thaliana life-cycle phenology geographically.

    PubMed

    Marcer, A; Vidigal, D S; James, P M A; Fortin, M-J; Méndez-Vigo, B; Hilhorst, H W M; Bentsink, L; Alonso-Blanco, C; Picó, F X

    2018-01-01

    To understand how adaptive evolution in life-cycle phenology operates in plants, we need to unravel the effects of geographic variation in putative agents of natural selection on life-cycle phenology by considering all key developmental transitions and their co-variation patterns. We address this goal by quantifying the temperature-driven and geographically varying relationship between seed dormancy and flowering time in the annual Arabidopsis thaliana across the Iberian Peninsula. We used data on genetic variation in two major life-cycle traits, seed dormancy (DSDS50) and flowering time (FT), in a collection of 300 A. thaliana accessions from the Iberian Peninsula. The geographically varying relationship between life-cycle traits and minimum temperature, a major driver of variation in DSDS50 and FT, was explored with geographically weighted regressions (GWR). The environmentally varying correlation between DSDS50 and FT was analysed by means of sliding window analysis across a minimum temperature gradient. Maximum local adjustments between minimum temperature and life-cycle traits were obtained in the southwest Iberian Peninsula, an area with the highest minimum temperatures. In contrast, in off-southwest locations, the effects of minimum temperature on DSDS50 were rather constant across the region, whereas those of minimum temperature on FT were more variable, with peaks of strong local adjustments of GWR models in central and northwest Spain. Sliding window analysis identified a minimum temperature turning point in the relationship between DSDS50 and FT around a minimum temperature of 7.2 °C. Above this minimum temperature turning point, the variation in the FT/DSDS50 ratio became rapidly constrained and the negative correlation between FT and DSDS50 did not increase any further with increasing minimum temperatures. The southwest Iberian Peninsula emerges as an area where variation in life-cycle phenology appears to be restricted by the duration and severity of the hot summer drought. The temperature-driven varying relationship between DSDS50 and FT detected environmental boundaries for the co-evolution between FT and DSDS50 in A. thaliana. In the context of global warming, we conclude that A. thaliana phenology from the southwest Iberian Peninsula, determined by early flowering and deep seed dormancy, might become the most common life-cycle phenotype for this annual plant in the region. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  11. Method of Data storing, collection and aggregation for definition of life-cycle resources of electromechanical equipment

    NASA Astrophysics Data System (ADS)

    Zhukovskiy, Y.; Koteleva, N.

    2017-10-01

    Analysis of technical and technological conditions for the emergence of emergency situations during the operation of electromechanical equipment of enterprises of the mineral and raw materials complex shows that when developing the basis for ensuring safe operation, it is necessary to take into account not only the technical condition, but also the non-stationary operation of the operating conditions of equipment, and the nonstationarity of operational operating parameters of technological processes. Violations of the operation of individual parts of the machine, not detected in time, can lead to severe accidents at work, as well as to unplanned downtime and loss of profits. That is why, the issues of obtaining and processing Big data obtained during the life cycle of electromechanical equipment, for assessing the current state of the electromechanical equipment used, timely diagnostics of emergency and pre-emergency modes of its operation, estimating the residual resource, as well as prediction the technical state on the basis of machine learning are very important. This article is dedicated to developing the special method of data storing, collection and aggregation for definition of life-cycle resources of electromechanical equipment. This method can be used in working with big data and can allow extracting the knowledge from different data types: the plants’ historical data and the factory historical data. The data of the plants contains the information about electromechanical equipment operation and the data of the factory contains the information about a production of electromechanical equipment.

  12. Comparisons of four categories of waste recycling in China's paper industry based on physical input-output life-cycle assessment model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang Sai; Zhang, Tianzhu, E-mail: zhangtz@mail.tsinghua.edu.cn; Xu Yijian

    Highlights: Black-Right-Pointing-Pointer Using crop straws and wood wastes for paper production should be promoted. Black-Right-Pointing-Pointer Bagasse and textile waste recycling should be properly limited. Black-Right-Pointing-Pointer Imports of scrap paper should be encouraged. Black-Right-Pointing-Pointer Sensitivity analysis, uncertainties and policy implications are discussed. - Abstract: Waste recycling for paper production is an important component of waste management. This study constructs a physical input-output life-cycle assessment (PIO-LCA) model. The PIO-LCA model is used to investigate environmental impacts of four categories of waste recycling in China's paper industry: crop straws, bagasse, textile wastes and scrap paper. Crop straw recycling and wood utilization for papermore » production have small total intensity of environmental impacts. Moreover, environmental impacts reduction of crop straw recycling and wood utilization benefits the most from technology development. Thus, using crop straws and wood (including wood wastes) for paper production should be promoted. Technology development has small effects on environmental impacts reduction of bagasse recycling, textile waste recycling and scrap paper recycling. In addition, bagasse recycling and textile waste recycling have big total intensity of environmental impacts. Thus, the development of bagasse recycling and textile waste recycling should be properly limited. Other pathways for reusing bagasse and textile wastes should be explored and evaluated. Moreover, imports of scrap paper should be encouraged to reduce large indirect impacts of scrap paper recycling on domestic environment.« less

  13. Garnering Support

    ERIC Educational Resources Information Center

    Kincaid, Douglas W.; Dillinger, Eric T.; Clayton, Michael

    2006-01-01

    Maintenance and operations (M&O) requirements dominate the life-cycle cost of a school facility. Historically, facility managers have struggled to secure funding to meet these requirements. Many deferred-maintenance issues result directly from M&O underfunding. However, new approaches and technologies now enable facility managers to use…

  14. Content Management and the Future of Academic Libraries.

    ERIC Educational Resources Information Center

    Wu, Yuhfen Diana; Liu, Mengxiong

    2001-01-01

    Discusses Internet-based electronic content management in digital libraries and considers the future of academic libraries. Topics include digital technologies; content management systems; standards; bandwidth; security and privacy concerns; legal matters, including copyrights and ownership; lifecycle; and multilingual access and interface. (LRW)

  15. Hydrogen Pathways: Updated Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Ten Hydrogen Production, Delivery, and Distribution Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramsden, T.; Ruth, M.; Diakov, V.

    2013-03-01

    This report describes a life-cycle assessment conducted by the National Renewable Energy Laboratory (NREL) of 10 hydrogen production, delivery, dispensing, and use pathways that were evaluated for cost, energy use, and greenhouse gas (GHG) emissions. This evaluation updates and expands on a previous assessment of seven pathways conducted in 2009. This study summarizes key results, parameters, and sensitivities to those parameters for the 10 hydrogen pathways, reporting on the levelized cost of hydrogen in 2007 U.S. dollars as well as life-cycle well-to-wheels energy use and GHG emissions associated with the pathways.

  16. Integrating legal liabilities in nanomanufacturing risk management.

    PubMed

    Mohan, Mayank; Trump, Benjamin D; Bates, Matthew E; Monica, John C; Linkov, Igor

    2012-08-07

    Among other things, the wide-scale development and use of nanomaterials is expected to produce costly regulatory and civil liabilities for nanomanufacturers due to lingering uncertainties, unanticipated effects, and potential toxicity. The life-cycle environmental, health, and safety (EHS) risks of nanomaterials are currently being studied, but the corresponding legal risks have not been systematically addressed. With the aid of a systematic approach that holistically evaluates and accounts for uncertainties about the inherent properties of nanomaterials, it is possible to provide an order of magnitude estimate of liability risks from regulatory and litigious sources based on current knowledge. In this work, we present a conceptual framework for integrating estimated legal liabilities with EHS risks across nanomaterial life-cycle stages using empirical knowledge in the field, scientific and legal judgment, probabilistic risk assessment, and multicriteria decision analysis. Such estimates will provide investors and operators with a basis to compare different technologies and practices and will also inform regulatory and legislative bodies in determining standards that balance risks with technical advancement. We illustrate the framework through the hypothetical case of a manufacturer of nanoscale titanium dioxide and use the resulting expected legal costs to evaluate alternative risk-management actions.

  17. Life-cycle assessment of diesel, natural gas and hydrogen fuel cell bus transportation systems

    NASA Astrophysics Data System (ADS)

    Ally, Jamie; Pryor, Trevor

    The Sustainable Transport Energy Programme (STEP) is an initiative of the Government of Western Australia, to explore hydrogen fuel cell technology as an alternative to the existing diesel and natural gas public transit infrastructure in Perth. This project includes three buses manufactured by DaimlerChrysler with Ballard fuel cell power sources operating in regular service alongside the existing natural gas and diesel bus fleets. The life-cycle assessment (LCA) of the fuel cell bus trial in Perth determines the overall environmental footprint and energy demand by studying all phases of the complete transportation system, including the hydrogen infrastructure, bus manufacturing, operation, and end-of-life disposal. The LCAs of the existing diesel and natural gas transportation systems are developed in parallel. The findings show that the trial is competitive with the diesel and natural gas bus systems in terms of global warming potential and eutrophication. Emissions that contribute to acidification and photochemical ozone are greater for the fuel cell buses. Scenario analysis quantifies the improvements that can be expected in future generations of fuel cell vehicles and shows that a reduction of greater than 50% is achievable in the greenhouse gas, photochemical ozone creation and primary energy demand impact categories.

  18. Role of Knowledge Management in Development and Lifecycle Management of Biopharmaceuticals.

    PubMed

    Rathore, Anurag S; Garcia-Aponte, Oscar Fabián; Golabgir, Aydin; Vallejo-Diaz, Bibiana Margarita; Herwig, Christoph

    2017-02-01

    Knowledge Management (KM) is a key enabler for achieving quality in a lifecycle approach for production of biopharmaceuticals. Due to the important role that it plays towards successful implementation of Quality by Design (QbD), an analysis of KM solutions is needed. This work provides a comprehensive review of the interface between KM and QbD-driven biopharmaceutical production systems as perceived by academic as well as industrial viewpoints. A comprehensive set of 356 publications addressing the applications of KM tools to QbD-related tasks were screened and a query to gather industrial inputs from 17 major biopharmaceutical organizations was performed. Three KM tool classes were identified as having high relevance for biopharmaceutical production systems and have been further explored: knowledge indicators, ontologies, and process modeling. A proposed categorization of 16 distinct KM tool classes allowed for the identification of holistic technologies supporting QbD. In addition, the classification allowed for addressing the disparity between industrial and academic expectations regarding the application of KM methodologies. This is a first of a kind attempt and thus we think that this paper would be of considerable interest to those in academia and industry that are engaged in accelerating development and commercialization of biopharmaceuticals.

  19. Benchmarking Dutch and U.S. Naval Shipbuilding: Reducing U.S. Naval Shipbuilding Costs Using Collaborative PLM and 3D Imaging

    DTIC Science & Technology

    2012-11-02

    Scanning Technology (3D LST) and Collaborative Product Lifecycle Management (CPLM) are two technologies that are currently being leveraged by international ... international ship construction organizations to achieve significant cost savings. 3D LST dramatically reduces the time required to scan ship surfaces as...technology does not meet the accuracy requirements, 0.030” accuracy minimum , for naval shipbuilding. The report delivered to the CSNT shows that if the

  20. Reference Model for Project Support Environments Version 1.0

    DTIC Science & Technology

    1993-02-28

    relationship with the framework’s Process Support services and with the Lifecycle Process Engineering services. Examples: "* ORCA (Object-based...Design services. Examples: "* ORCA (Object-based Requirements Capture and Analysis). "* RETRAC (REquirements TRACeability). 4.3 Life-Cycle Process...34traditional" computer tools. Operations: Examples of audio and video processing operations include: "* Create, modify, and delete sound and video data

  1. Evaluation of landfill gas emissions from municipal solid waste landfills for the life-cycle analysis of waste-to-energy pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Uisung; Han, Jeongwoo; Wang, Michael

    Various waste-to-energy (WTE) conversion technologies can generate energy products from municipal solid waste (MSW). Accurately evaluating landfill gas (LFG, mainly methane) emissions from base case landfills is critical to conducting a WTE life-cycle analysis (LCA) of their greenhouse gas (GHG) emissions. To reduce uncertainties in estimating LFG, this study investigated key parameters for its generation, based on updated experimental results. These results showed that the updated parameters changed the calculated GHG emissions from landfills significantly depending on waste stream; they resulted in a 65% reduction for wood (from 2412 to 848 t CO 2e/dry t) to a 4% increase formore » food waste (from 2603 to 2708 t CO 2e/dry t). Landfill GHG emissions also vary significantly based on LFG management practices and climate. In LCAs of WTE conversion, generating electricity from LFG helps reduce GHG emissions indirectly by displacing regional electricity. When both active LFG collection and power generation are considered, GHG emissions are 44% less for food waste (from 2708 to 1524 t CO 2e/dry t), relative to conventional MSW landfilling. The method developed and data collected in this study can help improve the assessment of GHG impacts from landfills, which supports transparent decision-making regarding the sustainable treatment, management, and utilization of MSW.« less

  2. Evaluation of landfill gas emissions from municipal solid waste landfills for the life-cycle analysis of waste-to-energy pathways

    DOE PAGES

    Lee, Uisung; Han, Jeongwoo; Wang, Michael

    2017-08-05

    Various waste-to-energy (WTE) conversion technologies can generate energy products from municipal solid waste (MSW). Accurately evaluating landfill gas (LFG, mainly methane) emissions from base case landfills is critical to conducting a WTE life-cycle analysis (LCA) of their greenhouse gas (GHG) emissions. To reduce uncertainties in estimating LFG, this study investigated key parameters for its generation, based on updated experimental results. These results showed that the updated parameters changed the calculated GHG emissions from landfills significantly depending on waste stream; they resulted in a 65% reduction for wood (from 2412 to 848 t CO 2e/dry t) to a 4% increase formore » food waste (from 2603 to 2708 t CO 2e/dry t). Landfill GHG emissions also vary significantly based on LFG management practices and climate. In LCAs of WTE conversion, generating electricity from LFG helps reduce GHG emissions indirectly by displacing regional electricity. When both active LFG collection and power generation are considered, GHG emissions are 44% less for food waste (from 2708 to 1524 t CO 2e/dry t), relative to conventional MSW landfilling. The method developed and data collected in this study can help improve the assessment of GHG impacts from landfills, which supports transparent decision-making regarding the sustainable treatment, management, and utilization of MSW.« less

  3. [Development of medical supplies management system].

    PubMed

    Zhong, Jianping; Shen, Beijun; Zhu, Huili

    2012-11-01

    This paper adopts advanced information technology to manage medical supplies, in order to improve the medical supplies management level and reduce material cost. It develops a Medical Supplies Management System with B/S and C/S mixed structure, optimizing material management process, building large equipment performance evaluation model, providing interface solution with HIS, and realizing real-time information briefing of high value material's consumption. The medical materials are managed during its full life-cycle. The material consumption of the clinical departments is monitored real-timely. Through the closed-loop management with pre-event budget, mid-event control and after-event analysis, it realizes the final purpose of management yielding benefit.

  4. Analysis and Preliminary Design of an Advanced Technology Transport Flight Control System

    NASA Technical Reports Server (NTRS)

    Frazzini, R.; Vaughn, D.

    1975-01-01

    The analysis and preliminary design of an advanced technology transport aircraft flight control system using avionics and flight control concepts appropriate to the 1980-1985 time period are discussed. Specifically, the techniques and requirements of the flight control system were established, a number of candidate configurations were defined, and an evaluation of these configurations was performed to establish a recommended approach. Candidate configurations based on redundant integration of various sensor types, computational methods, servo actuator arrangements and data-transfer techniques were defined to the functional module and piece-part level. Life-cycle costs, for the flight control configurations, as determined in an operational environment model for 200 aircraft over a 15-year service life, were the basis of the optimum configuration selection tradeoff. The recommended system concept is a quad digital computer configuration utilizing a small microprocessor for input/output control, a hexad skewed set of conventional sensors for body rate and body acceleration, and triple integrated actuators.

  5. IEA Wind Task 26. Wind Technology, Cost and Performance Trends in Denmark, Germany, Ireland, Norway, the European Union, and the United States. 2007 - 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitina, Aisma; Luers, Silke; Wallasch, Anna-Kathrin

    This report builds from a similar previous analysis (Schwabe et al., 2011) exploring the differences in cost of wind energy in 2008 among countries participating in IEA Wind Task 26 at that time. The levelized cost of energy (LCOE) is a widely recognized metric for understanding how technology, capital investment, operations, and financing impact the life-cycle cost of building and operating a wind plant. Schwabe et al. (2011) apply a spreadsheet-based cash flow model developed by the Energy Research Centre of the Netherlands (ECN) to estimate LCOE. This model is a detailed, discounted cash flow model used to represent themore » various cost structures in each of the participating countries from the perspective of a financial investor in a domestic wind energy project. This model is used for the present analysis as well, and comparisons are made for those countries who contributed to both reports, Denmark, Germany, and the United States.« less

  6. Parts quality management: Direct part marking of data matrix symbol for mission assurance

    NASA Astrophysics Data System (ADS)

    Moss, Chantrice; Chakrabarti, Suman; Scott, David W.

    A United States Government Accountability Office (GAO) review of twelve NASA programs found widespread parts quality problems contributing to significant cost overruns, schedule delays, and reduced system reliability. Direct part marking with Data Matrix symbols could significantly improve the quality of inventory control and parts lifecycle management. This paper examines the feasibility of using direct part marking technologies for use in future NASA programs. A structural analysis is based on marked material type, operational environment (e.g., ground, suborbital, Low Earth Orbit), durability of marks, ease of operation, reliability, and affordability. A cost-benefits analysis considers marking technology (label printing, data plates, and direct part marking) and marking types (two-dimensional machine-readable, human-readable). Previous NASA parts marking efforts and historical cost data are accounted for, including in-house vs. outsourced marking. Some marking methods are still under development. While this paper focuses on NASA programs, results may be applicable to a variety of industrial environments.

  7. Parts Quality Management: Direct Part Marking of Data Matrix Symbol for Mission Assurance

    NASA Technical Reports Server (NTRS)

    Moss, Chantrice; Chakrabarti, Suman; Scott, David W.

    2013-01-01

    A United States Government Accountability Office (GAO) review of twelve NASA programs found widespread parts quality problems contributing to significant cost overruns, schedule delays, and reduced system reliability. Direct part marking with Data Matrix symbols could significantly improve the quality of inventory control and parts lifecycle management. This paper examines the feasibility of using direct part marking technologies for use in future NASA programs. A structural analysis is based on marked material type, operational environment (e.g., ground, suborbital, Low Earth Orbit), durability of marks, ease of operation, reliability, and affordability. A cost-benefits analysis considers marking technology (label printing, data plates, and direct part marking) and marking types (two-dimensional machine-readable, human-readable). Previous NASA parts marking efforts and historical cost data are accounted for, including inhouse vs. outsourced marking. Some marking methods are still under development. While this paper focuses on NASA programs, results may be applicable to a variety of industrial environments.

  8. Distilling Design Patterns From Agile Curation Case Studies

    NASA Astrophysics Data System (ADS)

    Benedict, K. K.; Lenhardt, W. C.; Young, J. W.

    2016-12-01

    In previous work the authors have argued that there is a need to take a new look at the data management lifecycle. Our core argument is that the data management lifecycle needs to be in essence deconstructed and rebuilt. As part of this process we also argue that much can be gained from applying ideas, concepts, and principles from agile software development methods. To be sure we are not arguing for a rote application of these agile software approaches, however, given various trends related to data and technology, it is imperative to update our thinking about how to approach the data management lifecycle, recognize differing project scales, corresponding variations in structure, and alternative models for solving the problems of scientific data curation. In this paper we will describe what we term agile curation design patterns, borrowing the concept of design patterns from the software world and we will present some initial thoughts on agile curation design patterns as informed by a sample of data curation case studies solicited from participants in agile data curation meeting sessions conducted in 2015-16.

  9. Low Temperature Life-Cycle Testing of a Lithium-Ion Battery for Low-Earth-Orbiting Spacecraft

    NASA Technical Reports Server (NTRS)

    Reid, Concha

    2006-01-01

    A flight-qualified, lithium-ion (Li-ion) battery developed for the Mars Surveyor Program 2001 Landeris undergoing life-testing at low temperature under a low-Earth-orbit (LEO) profile to assess its capability to provide long term energy storage for aerospace missions. NASA has embarked upon an ambitious course to return humans to the moon by 2015-2020 in preparation for robotic and human exploration of Mars and robotic exploration of the moons of outer planets. Li-ion batteries are excellent candidates to provide power and energy storage for multiple aspects of these missions due to their high specific energy, high energy density, and excellent low temperature performance. Laboratory testing of Li-ion technology is necessary in order to assess lifetime, characterize multi-cell battery-level performance under aerospace conditions, and to gauge safety aspects of the technology. Life-cycle testing provides an opportunity to examine battery-level performance and the dynamics of individual cells in the stack over the entire life of the battery. Data generated through this testing will be critical to establish confidence in the technology for its widespread use in manned and unmanned missions.

  10. CRM Meets the Campus

    ERIC Educational Resources Information Center

    Villano, Matt

    2007-01-01

    In the corporate world, the notion of customer relationship management (CRM) is nothing new. That particular technology sector is now jam-packed with software that enables organizations to monitor and manage every interaction with a customer, from the very first experience on, throughout the lifecycle of the relationship. That relationship spans…

  11. Consideration of black carbon and primary organic carbon emissions in life-cycle analysis of Greenhouse gas emissions of vehicle systems and fuels.

    PubMed

    Cai, Hao; Wang, Michael Q

    2014-10-21

    The climate impact assessment of vehicle/fuel systems may be incomplete without considering short-lived climate forcers of black carbon (BC) and primary organic carbon (POC). We quantified life-cycle BC and POC emissions of a large variety of vehicle/fuel systems with an expanded Greenhouse gases, Regulated Emissions, and Energy use in Transportation model developed at Argonne National Laboratory. Life-cycle BC and POC emissions have small impacts on life-cycle greenhouse gas (GHG) emissions of gasoline, diesel, and other fuel vehicles, but would add 34, 16, and 16 g CO2 equivalent (CO2e)/mile, or 125, 56, and 56 g CO2e/mile with the 100 or 20 year Global Warming Potentials of BC and POC emissions, respectively, for vehicles fueled with corn stover-, willow tree-, and Brazilian sugarcane-derived ethanol, mostly due to BC- and POC-intensive biomass-fired boilers in cellulosic and sugarcane ethanol plants for steam and electricity production, biomass open burning in sugarcane fields, and diesel-powered agricultural equipment for biomass feedstock production/harvest. As a result, life-cycle GHG emission reduction potentials of these ethanol types, though still significant, are reduced from those without considering BC and POC emissions. These findings, together with a newly expanded GREET version, help quantify the previously unknown impacts of BC and POC emissions on life-cycle GHG emissions of U.S. vehicle/fuel systems.

  12. BeefTracker: Spatial Tracking and Geodatabase for Beef Herd Sustainability and Lifecycle Analysis

    NASA Astrophysics Data System (ADS)

    Oltjen, J. W.; Stackhouse, J.; Forero, L.; Stackhouse-Lawson, K.

    2015-12-01

    We have developed a web-based mapping platform named "BeefTracker" to provide beef cattle ranchers a tool to determine how cattle production fits within sustainable ecosystems and to provide regional data to update beef sustainability lifecycle analysis. After initial identification and mapping of pastures, herd data (class and number of animals) are input on a mobile device in the field with a graphical pasture interface, stored in the cloud, and linked via the web to a personal computer for inventory tracking and analysis. Pasture use calculated on an animal basis provides quantifiable data regarding carrying capacity and subsequent beef production to provide more accurate data inputs for beef sustainability lifecycle analysis. After initial testing by university range scientists and ranchers we have enhanced the BeefTracker application to work when cell service is unavailable and to improve automation for increased ease of use. Thus far experiences with BeefTracker have been largely positive, due to livestock producers' perception of the need for this type of software application and its intuitive interface. We are now in the process of education to increase its use throughout the U.S.

  13. Recyclable organic solar cells on cellulose nanocrystal substrates

    Treesearch

    Yinhua Zhou; Canek Fuentes-Hernandez; Talha M. Khan; Jen-Chieh Liu; James Hsu; Jae Won Shim; Amir Dindar; Jeffrey P. Youngblood; Robert J. Moon; Bernard Kippelen

    2013-01-01

    Solar energy is potentially the largest source of renewable energy at our disposal, but significant advances are required to make photovoltaic technologies economically viable and, from a life-cycle perspective, environmentally friendly, and consequently scalable. Cellulose nanomaterials are emerging high-value nanoparticles extracted from plants that are abundant,...

  14. Capstone Report - The Technology Readiness of Alternative Fuels : Alternative Fuels & Life-Cycle Engineering Program : November 29, 2006 to November 28, 2011

    DOT National Transportation Integrated Search

    2011-12-20

    The Assistant Secretary of Defense for Networks and Information Integration (ASD/NII) and the Under Secretary of Transportation for Policy (UST/P) sponsored a National Positioning, Navigation, and Timing (PNT) Architecture Study to "provide more effe...

  15. The economics, technology, and neuroscience of human capability formation

    PubMed Central

    Heckman, James J.

    2007-01-01

    This article begins the synthesis of two currently unrelated literatures: the human capital approach to health economics and the economics of cognitive and noncognitive skill formation. A lifecycle investment framework is the foundation for understanding the origins of human inequality and for devising policies to reduce it. PMID:17686985

  16. An Analysis of the President’s Budgetary Proposals for Fiscal Year 2006

    DTIC Science & Technology

    2005-03-01

    Domestic Product (Average percentage change from CBO’s baseline) Source: Congressional Budget Office. Notes: The “textbook” growth model is an...Global Insight Closed-Economy Life-Cycle Model Open-Economy Life-Cycle Model Textbook Model Memorandum: Gross National Product Open-Economy Life-Cycle...domestic product in the models . 2. Over time, however, increased investment will enlarge the capital stock, in turn reducing the pretax rate of return and

  17. 5 CFR 1601.40 - Lifecycle Funds.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 3 2011-01-01 2011-01-01 false Lifecycle Funds. 1601.40 Section 1601.40 Administrative Personnel FEDERAL RETIREMENT THRIFT INVESTMENT BOARD PARTICIPANTS' CHOICES OF TSP FUNDS Lifecycle Funds § 1601.40 Lifecycle Funds. The Executive Director will establish TSP Lifecycle Funds, which are...

  18. 5 CFR 1601.40 - Lifecycle Funds.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Lifecycle Funds. 1601.40 Section 1601.40 Administrative Personnel FEDERAL RETIREMENT THRIFT INVESTMENT BOARD PARTICIPANTS' CHOICES OF TSP FUNDS Lifecycle Funds § 1601.40 Lifecycle Funds. The Executive Director will establish TSP Lifecycle Funds, which are...

  19. Research and Development of Hepatitis B Drugs: An Analysis Based on Technology Flows Measured by Patent Citations

    PubMed Central

    Wan, Jian-bo; He, Chengwei; Hu, Yuanjia

    2016-01-01

    Despite the existence of available therapies, the Hepatitis B virus infection continues to be one of the most serious threats to human health, especially in developing countries such as China and India. To shed light on the improvement of current therapies and development of novel anti-HBV drugs, we thoroughly investigated 212 US patents of anti-HBV drugs and analyzed the technology flow in research and development of anti-HBV drugs based on data from IMS LifeCycle databases. Moreover, utilizing the patent citation method, which is an effective indicator of technology flow, we constructed patent citation network models and performed network analysis in order to reveal the features of different technology clusters. As a result, we identified the stagnant status of anti-HBV drug development and pointed the way for development of domestic pharmaceuticals in developing countries. We also discussed about therapeutic vaccines as the potential next generation therapy for HBV infection. Lastly, we depicted the cooperation between entities and found that novel forms of cooperation added diversity to the conventional form of cooperation within the pharmaceutical industry. In summary, our study provides inspiring insights for investors, policy makers, researchers, and other readers interested in anti-HBV drug development. PMID:27727319

  20. Improving Life-Cycle Cost Management of Spacecraft Missions

    NASA Technical Reports Server (NTRS)

    Clardy, Dennon

    2010-01-01

    This presentation will explore the results of a recent NASA Life-Cycle Cost study and how project managers can use the findings and recommendations to improve planning and coordination early in the formulation cycle and avoid common pitfalls resulting in cost overruns. The typical NASA space science mission will exceed both the initial estimated and the confirmed life-cycle costs by the end of the mission. In a fixed-budget environment, these overruns translate to delays in starting or launching future missions, or in the worst case can lead to cancelled missions. Some of these overruns are due to issues outside the control of the project; others are due to the unpredictable problems (unknown unknowns) that can affect any development project. However, a recent study of life-cycle cost growth by the Discovery and New Frontiers Program Office identified a number of areas that are within the scope of project management to address. The study also found that the majority of the underlying causes for cost overruns are embedded in the project approach during the formulation and early design phases, but the actual impacts typically are not experienced until late in the project life cycle. Thus, project management focus in key areas such as integrated schedule development, management structure and contractor communications processes, heritage and technology assumptions, and operations planning, can be used to validate initial cost assumptions and set in place management processes to avoid the common pitfalls resulting in cost overruns.

  1. ATR evaluation through the synthesis of multiple performance measures

    NASA Astrophysics Data System (ADS)

    Bassham, Christopher B.; Klimack, William K.; Bauer, Kenneth W., Jr.

    2002-07-01

    This research demonstrates the application of decision analysis (DA) techniques to decisions made within Automatic Target Recognition (ATR) technology development. This work is accomplished to improve the means by which ATR technologies are evaluated. The first step in this research was to create a flexible decision analysis framework that could be applied to several decisions across different ATR programs evaluated by the Comprehensive ATR Scientific Evaluation (COMPASE) Center of the Air Force Research Laboratory (AFRL). For the purposes of this research, a single COMPASE Center representative provided the value, utility, and preference functions for the DA framework. The DA framework employs performance measures collected during ATR classification system (CS) testing to calculate value and utility scores. The authors gathered data from the Moving and Stationary Target Acquisition and Recognition (MSTAR) program to demonstrate how the decision framework could be used to evaluate three different ATR CSs. A decision-maker may use the resultant scores to gain insight into any of the decisions that occur throughout the lifecycle of ATR technologies. Additionally, a means of evaluating ATR CS self-assessment ability is presented. This represents a new criterion that emerged from this study, and no present evaluation metric is known.

  2. Technological substitution: the potential of plastic as primary packaging material in the US brewing industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roeleveld, J.J.

    1985-01-01

    This dissertation develops a general model of technological substitution that could be of help to planners and decision makers in industry who are faced with the problems created by continual technological change. The model as presented differs from existing models in the theoretical literature because of its emphasis on analyzing current and potential technologies in an attempt to understand the underlying factors contributing to technological substitution. The general model and the cost model that is part of it belong to that step in the interactive planning cycle called the formulation of the mess. The methodology underlying the cost model ismore » a combination of life-cycle analysis (i.e., from raw materials in nature, through all intermediate products, to waste returned to the environment) and resoumetrics, which is an engineering approach to measuring all physical inputs required to produce a certain level of output. The models are illustrated with a specific field of interest: substitution of primary packaging technologies in the US brewing industry. The physical costs of packaging beer in different containers are compared. Strategic considerations for a brewery deciding to adopt plastic packaging technology are discussed. Attention is given to another potential fruitful application of the model in the field of technology transfer to developing countries.« less

  3. Costs and benefits of future heavy Space Freighters

    NASA Astrophysics Data System (ADS)

    Arend, H.

    1987-10-01

    A class of two-stage reusable ballistic Space Freighters with nominal launch masses of 7000 metric tons for transport of heavy payloads into low earth orbits is investigated in this paper with spcial regard to vehicle cost efficiency. A life-cycle cost analysis shows that Space Freighters with a conventional aluminum structure offer significantly lower specific transportation costs than today's systems for large payload markets and high launch rates. Advanced structural materials and thermal protection systems offer further important reductions not only with regard to vehicle mass but also with respect to specific transportation cost. A phased introduction of these technologies is cost efficient for larger programs with more than 100 vehicles.

  4. Motility, Force Generation, and Energy Consumption of Unicellular Parasites.

    PubMed

    Hochstetter, Axel; Pfohl, Thomas

    2016-07-01

    Motility is a key factor for pathogenicity of unicellular parasites, enabling them to infiltrate and evade host cells, and perform several of their life-cycle events. State-of-the-art methods of motility analysis rely on a combination of optical tweezers with high-resolution microscopy and microfluidics. With this technology, propulsion forces, energies, and power generation can be determined so as to shed light on the motion mechanisms, chemotactic behavior, and specific survival strategies of unicellular parasites. With these new tools in hand, we can elucidate the mechanisms of motility and force generation of unicellular parasites, and identify ways to manipulate and eventually inhibit them. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. SAVANT: Solar Array Verification and Analysis Tool Demonstrated

    NASA Technical Reports Server (NTRS)

    Chock, Ricaurte

    2000-01-01

    The photovoltaics (PV) industry is now being held to strict specifications, such as end-oflife power requirements, that force them to overengineer their products to avoid contractual penalties. Such overengineering has been the only reliable way to meet such specifications. Unfortunately, it also results in a more costly process than is probably necessary. In our conversations with the PV industry, the issue of cost has been raised again and again. Consequently, the Photovoltaics and Space Environment Effects branch at the NASA Glenn Research Center at Lewis Field has been developing a software tool to address this problem. SAVANT, Glenn's tool for solar array verification and analysis is in the technology demonstration phase. Ongoing work has proven that more efficient and less costly PV designs should be possible by using SAVANT to predict the on-orbit life-cycle performance. The ultimate goal of the SAVANT project is to provide a user-friendly computer tool to predict PV on-orbit life-cycle performance. This should greatly simplify the tasks of scaling and designing the PV power component of any given flight or mission. By being able to predict how a particular PV article will perform, designers will be able to balance mission power requirements (both beginning-of-life and end-of-life) with survivability concerns such as power degradation due to radiation and/or contamination. Recent comparisons with actual flight data from the Photovoltaic Array Space Power Plus Diagnostics (PASP Plus) mission validate this approach.

  6. Commercial Discount Rate Estimation for Efficiency Standards Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujita, K. Sydny

    2016-04-13

    Underlying each of the Department of Energy's (DOE's) federal appliance and equipment standards are a set of complex analyses of the projected costs and benefits of regulation. Any new or amended standard must be designed to achieve significant additional energy conservation, provided that it is technologically feasible and economically justified (42 U.S.C. 6295(o)(2)(A)). A proposed standard is considered economically justified when its benefits exceed its burdens, as represented by the projected net present value of costs and benefits. DOE performs multiple analyses to evaluate the balance of costs and benefits of commercial appliance and equipment e efficiency standards, at themore » national and individual building or business level, each framed to capture different nuances of the complex impact of standards on the commercial end user population. The Life-Cycle Cost (LCC) analysis models the combined impact of appliance first cost and operating cost changes on a representative commercial building sample in order to identify the fraction of customers achieving LCC savings or incurring net cost at the considered efficiency levels.1 Thus, the choice of commercial discount rate value(s) used to calculate the present value of energy cost savings within the Life-Cycle Cost model implicitly plays a key role in estimating the economic impact of potential standard levels.2 This report is intended to provide a more in-depth discussion of the commercial discount rate estimation process than can be readily included in standard rulemaking Technical Support Documents (TSDs).« less

  7. Linking Science Analysis with Observation Planning: A Full Circle Data Lifecycle

    NASA Technical Reports Server (NTRS)

    Grosvenor, Sandy; Jones, Jeremy; Koratkar, Anuradha; Li, Connie; Mackey, Jennifer; Neher, Ken; Wolf, Karl; Obenschain, Arthur F. (Technical Monitor)

    2001-01-01

    A clear goal of the Virtual Observatory (VO) is to enable new science through analysis of integrated astronomical archives. An additional and powerful possibility of the VO is to link and integrate these new analyses with planning of new observations. By providing tools that can be used for observation planning in the VO, the VO will allow the data lifecycle to come full circle: from theory to observations to data and back around to new theories and new observations. The Scientist's Expert Assistant (SEA) Simulation Facility (SSF) is working to combine the ability to access existing archives with the ability to model and visualize new observations. Integrating the two will allow astronomers to better use the integrated archives of the VO to plan and predict the success of potential new observations more efficiently, The full circle lifecycle enabled by SEA can allow astronomers to make substantial leaps in the quality of data and science returns on new observations. Our paper examines the exciting potential of integrating archival analysis with new observation planning, such as performing data calibration analysis on archival images and using that analysis to predict the success of new observations, or performing dynamic signal-to-noise analysis combining historical results with modeling of new instruments or targets. We will also describe how the development of the SSF is progressing and what have been its successes and challenges.

  8. Linking Science Analysis with Observation Planning: A Full Circle Data Lifecycle

    NASA Technical Reports Server (NTRS)

    Jones, Jeremy; Grosvenor, Sandy; Wolf, Karl; Li, Connie; Koratkar, Anuradha; Powers, Edward I. (Technical Monitor)

    2001-01-01

    A clear goal of the Virtual Observatory (VO) is to enable new science through analysis of integrated astronomical archives. An additional and powerful possibility of the VO is to link and integrate these new analyses with planning of new observations. By providing tools that can be used for observation planning in the VO, the VO will allow the data lifecycle to come full circle: from theory to observations to data and back around to new theories and new observations. The Scientist's Expert Assistant (SEA) Simulation Facility (SSF) is working to combine the ability to access existing archives with the ability to model and visualize new observations. Integrating the two will allow astronomers to better use the integrated archives of the VO to plan and predict the success of potential new observations. The full circle lifecycle enabled by SEA can allow astronomers to make substantial leaps in the quality of data and science returns on new observations. Our paper will examine the exciting potential of integrating archival analysis with new observation planning, such as performing data calibration analysis on archival images and using that analysis to predict the success of new observations, or performing dynamic signal-to-noise analysis combining historical results with modeling of new instruments or targets. We will also describe how the development of the SSF is progressing and what has been its successes and challenges.

  9. Multiscale design and life-cycle based sustainability assessment of polymer nanocomposite coatings

    NASA Astrophysics Data System (ADS)

    Uttarwar, Rohan G.

    In recent years, nanocoatings with exceptionally improved and new performance properties have found numerous applications in the automotive, aerospace, ship-making, chemical, electronics, steel, construction, and many other industries. Especially the formulations providing multiple functionalities to cured paint films are believed to dominate the coatings market in the near future. It has shifted the focus of research towards building sustainable coating recipes which can deliver multiple functionalities through applied films. The challenge to this exciting area of research arrives from the insufficient knowledge about structure-property correlations of nanocoating materials and their design complexity. Experimental efforts have been successful in developing certain types of nanopaints exhibiting improved properties. However, multifunctional nanopaint design optimality is extremely difficult to address if not impossible solely through experiments. In addition to this, the environmental implications and societal risks associated with this growing field of nanotechnology raise several questions related to its sustainable development. This research focuses on the study of a multiscale sustainable nanocoating design which can have the application from novel function envisioning and idea refinement point of view, to knowledge discovery and design solution derivation, and further to performance testing in industrial applications. The nanocoating design is studied using computational simulations of nano- to macro- scale models and sustainability assessment study over the life-cycle. Computational simulations aim at integrating top-down, goals/means, inductive systems engineering and bottom-up, cause and effect, deductive systems engineering approaches for material development. The in-silico paint resin system is a water-dispersible acrylic polymer with hydrophilic nanoparticles incorporated into it. The nano-scale atomistic and micro-scale coarse-grained (CG) level simulations are performed using molecular dynamics methodology to study several structural and morphological features such as effect of polymer molecular weight, polydispersity, rheology, nanoparticle volume fraction, size, shape and chemical nature on the bulk mechanical and self-cleaning properties of the coating film. At macro-scale, a paint spray system which is used for automotive coating application is studied by using CFD-based simulation methodology to generate crucial information about the effects of nanocoating technology on environmental emissions and coating film quality. The cradle-to-grave life-cycle based sustainability assessment study address all the critical issues related to economic benefits, environmental implications and societal effects of nanocoating technology through case studies of automotive coating systems. It is accomplished by identifying crucial correlations among measurable parameters at different stages and developing sustainability indicator matrices for analysis of each stage of life-cycle. The findings from the research can have great potential to draft useful conclusions in favor of future development of coating systems with novel functionalities and improved sustainability.

  10. Assessing Location and Scale of Urban Nonpotable Water Reuse Systems for Life-Cycle Energy Consumption and Greenhouse Gas Emissions.

    PubMed

    Kavvada, Olga; Horvath, Arpad; Stokes-Draut, Jennifer R; Hendrickson, Thomas P; Eisenstein, William A; Nelson, Kara L

    2016-12-20

    Nonpotable water reuse (NPR) is one option for conserving valuable freshwater resources. Decentralization can improve distribution system efficiency by locating treatment closer to the consumer; however, small treatment systems may have higher unit energy and greenhouse-gas (GHG) emissions. This research explored the trade-off between residential NPR systems using a life-cycle approach to analyze the energy use and GHG emissions. Decentralized and centralized NPR options are compared to identify where decentralized systems achieve environmental advantages over centralized reuse alternatives, and vice versa, over a range of scales and spatial and demographic conditions. For high-elevation areas far from the centralized treatment plant, decentralized NPR could lower energy use by 29% and GHG emissions by 28%, but in low-elevation areas close to the centralized treatment plant, decentralized reuse could be higher by up to 85% (energy) and 49% (GHG emissions) for the scales assessed (20-2000 m 3 /day). Direct GHG emissions from the treatment processes were found to be highly uncertain and variable and were not included in the analysis. The framework presented can be used as a planning support tool to reveal the environmental impacts of integrating decentralized NPR with existing centralized wastewater infrastructure and can be adapted to evaluate different treatment technology scales for reuse.

  11. Climate change and health costs of air emissions from biofuels and gasoline

    PubMed Central

    Hill, Jason; Polasky, Stephen; Nelson, Erik; Tilman, David; Huo, Hong; Ludwig, Lindsay; Neumann, James; Zheng, Haochi; Bonta, Diego

    2009-01-01

    Environmental impacts of energy use can impose large costs on society. We quantify and monetize the life-cycle climate-change and health effects of greenhouse gas (GHG) and fine particulate matter (PM2.5) emissions from gasoline, corn ethanol, and cellulosic ethanol. For each billion ethanol-equivalent gallons of fuel produced and combusted in the US, the combined climate-change and health costs are $469 million for gasoline, $472–952 million for corn ethanol depending on biorefinery heat source (natural gas, corn stover, or coal) and technology, but only $123–208 million for cellulosic ethanol depending on feedstock (prairie biomass, Miscanthus, corn stover, or switchgrass). Moreover, a geographically explicit life-cycle analysis that tracks PM2.5 emissions and exposure relative to U.S. population shows regional shifts in health costs dependent on fuel production systems. Because cellulosic ethanol can offer health benefits from PM2.5 reduction that are of comparable importance to its climate-change benefits from GHG reduction, a shift from gasoline to cellulosic ethanol has greater advantages than previously recognized. These advantages are critically dependent on the source of land used to produce biomass for biofuels, on the magnitude of any indirect land use that may result, and on other as yet unmeasured environmental impacts of biofuels. PMID:19188587

  12. Renewable Energy Optimization Report for Naval Station Newport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robichaud, R.; Mosey, G.; Olis, D.

    2012-02-01

    In 2008, the U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage the development of renewable energy (RE) on potentially contaminated land and mine sites. As part of this effort, EPA is collaborating with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to evaluate RE options at Naval Station (NAVSTA) Newport in Newport, Rhode Island. NREL's Renewable Energy Optimization (REO) tool was utilized to identify RE technologies that present the best opportunity for life-cycle cost-effective implementation while also serving to reduce energy-related carbon dioxide emissions and increase the percentage of RE used atmore » NAVSTA Newport. The technologies included in REO are daylighting, wind, solar ventilation preheating (SVP), solar water heating, photovoltaics (PV), solar thermal (heating and electric), and biomass (gasification and cogeneration). The optimal mix of RE technologies depends on several factors including RE resources; technology cost and performance; state, utility, and federal incentives; and economic parameters (discount and inflation rates). Each of these factors was considered in this analysis. Technologies not included in REO that were investigated separately per NAVSTA Newport request include biofuels from algae, tidal power, and ground source heat pumps (GSHP).« less

  13. Systems Engineering Model for ART Energy Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendez Cruz, Carmen Margarita; Rochau, Gary E.; Wilson, Mollye C.

    The near-term objective of the EC team is to establish an operating, commercially scalable Recompression Closed Brayton Cycle (RCBC) to be constructed for the NE - STEP demonstration system (demo) with the lowest risk possible. A systems engineering approach is recommended to ensure adequate requirements gathering, documentation, and mode ling that supports technology development relevant to advanced reactors while supporting crosscut interests in potential applications. A holistic systems engineering model was designed for the ART Energy Conversion program by leveraging Concurrent Engineering, Balance Model, Simplified V Model, and Project Management principles. The resulting model supports the identification and validation ofmore » lifecycle Brayton systems requirements, and allows designers to detail system-specific components relevant to the current stage in the lifecycle, while maintaining a holistic view of all system elements.« less

  14. 2007 Munitions Executive Summit

    DTIC Science & Technology

    2007-02-07

    production “anomalies” still occur regarding quality production that ripples throughout the munitions’ lifecycle, leaving the services to fund for...PEO Cross: Service Panel Chair: MG Paul S. Izzo, USA, PEO Ammunition Panel: - Brig Gen(S) Ken Merchant, USAF...and Munitions Congressional Perspective – Mr. Dick Ladd, CEO, Robinson International , Inc. Munitions Manufacturing Technology Panel Chair

  15. ICW eHealth Framework.

    PubMed

    Klein, Karsten; Wolff, Astrid C; Ziebold, Oliver; Liebscher, Thomas

    2008-01-01

    The ICW eHealth Framework (eHF) is a powerful infrastructure and platform for the development of service-oriented solutions in the health care business. It is the culmination of many years of experience of ICW in the development and use of in-house health care solutions and represents the foundation of ICW product developments based on the Java Enterprise Edition (Java EE). The ICW eHealth Framework has been leveraged to allow development by external partners - enabling adopters a straightforward integration into ICW solutions. The ICW eHealth Framework consists of reusable software components, development tools, architectural guidelines and conventions defining a full software-development and product lifecycle. From the perspective of a partner, the framework provides services and infrastructure capabilities for integrating applications within an eHF-based solution. This article introduces the ICW eHealth Framework's basic architectural concepts and technologies. It provides an overview of its module and component model, describes the development platform that supports the complete software development lifecycle of health care applications and outlines technological aspects, mainly focusing on application development frameworks and open standards.

  16. Testing Conducted for Lithium-Ion Cell and Battery Verification

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Miller, Thomas B.; Manzo, Michelle A.

    2004-01-01

    The NASA Glenn Research Center has been conducting in-house testing in support of NASA's Lithium-Ion Cell Verification Test Program, which is evaluating the performance of lithium-ion cells and batteries for NASA mission operations. The test program is supported by NASA's Office of Aerospace Technology under the NASA Aerospace Flight Battery Systems Program, which serves to bridge the gap between the development of technology advances and the realization of these advances into mission applications. During fiscal year 2003, much of the in-house testing effort focused on the evaluation of a flight battery originally intended for use on the Mars Surveyor Program 2001 Lander. Results of this testing will be compared with the results for similar batteries being tested at the Jet Propulsion Laboratory, the Air Force Research Laboratory, and the Naval Research Laboratory. Ultimately, this work will be used to validate lithium-ion battery technology for future space missions. The Mars Surveyor Program 2001 Lander battery was characterized at several different voltages and temperatures before life-cycle testing was begun. During characterization, the battery displayed excellent capacity and efficiency characteristics across a range of temperatures and charge/discharge conditions. Currently, the battery is undergoing lifecycle testing at 0 C and 40-percent depth of discharge under low-Earth-orbit (LEO) conditions.

  17. Design and operations technologies - Integrating the pieces. [for future space systems design

    NASA Technical Reports Server (NTRS)

    Eldred, C. H.

    1979-01-01

    As major elements of life-cycle costs (LCC) having critical impacts on the initiation and utilization of future space programs, the areas of vehicle design and operations are reviewed in order to identify technology requirements. Common to both areas is the requirement for efficient integration of broad, complex systems. Operations technologies focus on the extension of space-based capabilities and cost reduction through the combination of innovative design, low-maintenance hardware, and increased manpower productivity. Design technologies focus on computer-aided techniques which increase productivity while maintaining a high degree of flexibility which enhances creativity and permits graceful design changes.

  18. Application of BIM Technology in Prefabricated Buildings

    NASA Astrophysics Data System (ADS)

    Zhanglin, Guo; Si, Gao; Jun-e, Liu

    2017-08-01

    The development of fabricated buildings has become the main trend of the developm ent of modern construction industry in China. As the main tool of building information, BIM (b uilding information modeling) has greatly promoted the development of construction industry. Based on the review of the papers about the fabricated buildings and BIM technology in recent years, this paper analyzes the advantages of fabricated buildings and BIM technology, then exp lores the application of BIM technology in fabricated buildings. It aims to realize the rationaliz ation and scientification of project lifecycle management in fabricated construction project, and finally form a coherent information platform in the fabricated building.

  19. Argonne's Michael Wang talks about the GREET Model for reducing vehicle emi

    ScienceCinema

    Wang, Michael

    2018-05-11

    To fully evaluate energy and emission impacts of advanced vehicle technologies and new transportation fuels, the fuel cycle from wells to wheels and the vehicle cycle through material recovery and vehicle disposal need to be considered. Sponsored by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE), Argonne has developed a full life-cycle model called GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation). It allows researchers and analysts to evaluate various vehicle and fuel combinations on a full fuel-cycle/vehicle-cycle basis. The first version of GREET was released in 1996. Since then, Argonne has continued to update and expand the model. The most recent GREET versions are the GREET 1 2012 version for fuel-cycle analysis and GREET 2.7 version for vehicle-cycle analysis.

  20. A system management methodology for building successful resource management systems

    NASA Technical Reports Server (NTRS)

    Hornstein, Rhoda Shaller; Willoughby, John K.

    1989-01-01

    This paper presents a system management methodology for building successful resource management systems that possess lifecycle effectiveness. This methodology is based on an analysis of the traditional practice of Systems Engineering Management as it applies to the development of resource management systems. The analysis produced fifteen significant findings presented as recommended adaptations to the traditional practice of Systems Engineering Management to accommodate system development when the requirements are incomplete, unquantifiable, ambiguous and dynamic. Ten recommended adaptations to achieve operational effectiveness when requirements are incomplete, unquantifiable or ambiguous are presented and discussed. Five recommended adaptations to achieve system extensibility when requirements are dynamic are also presented and discussed. The authors conclude that the recommended adaptations to the traditional practice of Systems Engineering Management should be implemented for future resource management systems and that the technology exists to build these systems extensibly.

  1. The use of smart technologies in enabling construction components reuse: A viable method or a problem creating solution?

    PubMed

    Iacovidou, Eleni; Purnell, Phil; Lim, Ming K

    2018-06-15

    The exploitation of Radio Frequency Identification (RFID) for tracking and archiving the properties of structural construction components could be a potentially innovative disruption for the construction sector. This is because RFID can stimulate the reuse of construction components and reduce their wastage, hence addressing sustainability issues in the construction sector. To test the plausibility of that idea, this study explores the potential pre-conditions for RFID to facilitate construction components reuse, and develops a guidance for promoting their redistribution back to the supply chain. It also looks at how integrating RFID with Building Information Modelling (BIM) can possibly be a valuable extension of its capabilities, providing the opportunity for tracked components to be incorporated into new structures in an informed, sound way. A preliminary assessment of the strengths, weaknesses, opportunities and threats of the RFID technology is presented in order to depict its current and future potential in promoting construction components' sustainable lifecycle management, while emphasis has been laid on capturing their technical, environmental, economic and social value. Findings suggest that the collection of the right amount of information at the design-construction-deconstruction-reuse-disposal stage is crucial for RFID to become a successful innovation in the construction sector. Although a number of limitations related to the technical operability and recycling of RFID tags seem to currently hinder its uptake for structural components' lifecycle management, future technological innovations could provide solutions that would enable it to become a mainstream practice. Taken together these proposals advocate that the use of RFID and its integration with BIM can create the right environment for the development of new business models focused on sustainable resource management. These models may then unlock multiple values that are otherwise dissipated in the system. If the rapid technological development of RFID capability can be allied to policy interventions that control and manage its uptake along the supply chain, the sustainable lifecycle management of construction components could be radically enhanced. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Enabling Data-Driven Methodologies Across the Data Lifecycle and Ecosystem

    NASA Astrophysics Data System (ADS)

    Doyle, R. J.; Crichton, D.

    2017-12-01

    NASA has unlocked unprecedented scientific knowledge through exploration of the Earth, our solar system, and the larger universe. NASA is generating enormous amounts of data that are challenging traditional approaches to capturing, managing, analyzing and ultimately gaining scientific understanding from science data. New architectures, capabilities and methodologies are needed to span the entire observing system, from spacecraft to archive, while integrating data-driven discovery and analytic capabilities. NASA data have a definable lifecycle, from remote collection point to validated accessibility in multiple archives. Data challenges must be addressed across this lifecycle, to capture opportunities and avoid decisions that may limit or compromise what is achievable once data arrives at the archive. Data triage may be necessary when the collection capacity of the sensor or instrument overwhelms data transport or storage capacity. By migrating computational and analytic capability to the point of data collection, informed decisions can be made about which data to keep; in some cases, to close observational decision loops onboard, to enable attending to unexpected or transient phenomena. Along a different dimension than the data lifecycle, scientists and other end-users must work across an increasingly complex data ecosystem, where the range of relevant data is rarely owned by a single institution. To operate effectively, scalable data architectures and community-owned information models become essential. NASA's Planetary Data System is having success with this approach. Finally, there is the difficult challenge of reproducibility and trust. While data provenance techniques will be part of the solution, future interactive analytics environments must support an ability to provide a basis for a result: relevant data source and algorithms, uncertainty tracking, etc., to assure scientific integrity and to enable confident decision making. Advances in data science offer opportunities to gain new insights from space missions and their vast data collections. We are working to innovate new architectures, exploit emerging technologies, develop new data-driven methodologies, and transfer them across disciplines, while working across the dual dimensions of the data lifecycle and the data ecosystem.

  3. A Study on Watt-hour Meter Data Acquisition Method Based on RFID Technology

    NASA Astrophysics Data System (ADS)

    Chen, Xiangqun; Huang, Rui; Shen, Liman; Chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng

    2018-03-01

    Considering that traditional watt-hour meter data acquisition was subjected to the influence of distance and occlusion, a watt-hour meter data acquisition method based on RFID technology was proposed in this paper. In detail, RFID electronic tag was embedded in the watt-hour meter to identify the meter and record electric energy information, which made RFID based wireless data acquisition for watt-hour meter come true. Eventually, overall lifecycle management of watt-hour meter is realized.

  4. Impact of Life-Cycle Stage and Gender on the Ability to Balance Work and Family Responsibilities.

    ERIC Educational Resources Information Center

    Higgins, Christopher; And Others

    1994-01-01

    Examined impact of gender and life-cycle stage on three components of work-family conflict using sample of 3,616 respondents. For men, levels of work-family conflict were moderately lower in each successive life-cycle stage. For women, levels were similar in two early life-cycle stages but were significantly lower in later life-cycle stage.…

  5. Evaluation of Composite Structures Technologies for Application to NASA's Vision for Space Exploration (CoSTS)

    NASA Technical Reports Server (NTRS)

    Deo, Ravi; Wang, Donny; Bohlen, Jim; Fukuda, Cliff

    2008-01-01

    A trade study was conducted to determine the suitability of composite structures for weight and life cycle cost savings in primary and secondary structural systems for crew exploration vehicles, crew and cargo launch vehicles, landers, rovers, and habitats. The results of the trade study were used to identify and rank order composite material technologies that can have a near-term impact on a broad range of exploration mission applications. This report recommends technologies that should be developed to enable usage of composites on Vision for Space Exploration vehicles towards mass and life-cycle cost savings.

  6. Life-cycle energy impacts for adapting an urban water supply system to droughts.

    PubMed

    Lam, Ka Leung; Stokes-Draut, Jennifer R; Horvath, Arpad; Lane, Joe L; Kenway, Steven J; Lant, Paul A

    2017-12-15

    In recent years, cities in some water stressed regions have explored alternative water sources such as seawater desalination and potable water recycling in spite of concerns over increasing energy consumption. In this study, we evaluate the current and future life-cycle energy impacts of four alternative water supply strategies introduced during a decade-long drought in South East Queensland (SEQ), Australia. These strategies were: seawater desalination, indirect potable water recycling, network integration, and rainwater tanks. Our work highlights the energy burden of alternative water supply strategies which added approximately 24% life-cycle energy use to the existing supply system (with surface water sources) in SEQ even for a current post-drought low utilisation status. Over half of this additional life-cycle energy use was from the centralised alternative supply strategies. Rainwater tanks contributed an estimated 3% to regional water supply, but added over 10% life-cycle energy use to the existing system. In the future scenario analysis, we compare the life-cycle energy use between "Normal", "Dry", "High water demand" and "Design capacity" scenarios. In the "Normal" scenario, a long-term low utilisation of the desalination system and the water recycling system has greatly reduced the energy burden of these centralised strategies to only 13%. In contrast, higher utilisation in the unlikely "Dry" and "Design capacity" scenarios add 86% and 140% to life-cycle energy use of the existing system respectively. In the "High water demand" scenario, a 20% increase in per capita water use over 20 years "consumes" more energy than is used by the four alternative strategies in the "Normal" scenario. This research provides insight for developing more realistic long-term scenarios to evaluate and compare life-cycle energy impacts of drought-adaptation infrastructure and regional decentralised water sources. Scenario building for life-cycle assessments of water supply systems should consider i) climate variability and, therefore, infrastructure utilisation rate, ii) potential under-utilisation for both installed centralised and decentralised sources, and iii) the potential energy penalty for operating infrastructure well below its design capacity (e.g., the operational energy intensity of the desalination system is three times higher at low utilisation rates). This study illustrates that evaluating the life-cycle energy use and intensity of these type of supply sources without considering their realistic long-term operating scenario(s) can potentially distort and overemphasise their energy implications. To other water stressed regions, this work shows that managing long-term water demand is also important, in addition to acknowledging the energy-intensive nature of some alternative water sources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Support for life-cycle product reuse in NASA's SSE

    NASA Technical Reports Server (NTRS)

    Shotton, Charles

    1989-01-01

    The Software Support Environment (SSE) is a software factory for the production of Space Station Freedom Program operational software. The SSE is to be centrally developed and maintained and used to configure software production facilities in the field. The PRC product TTCQF provides for an automated qualification process and analysis of existing code that can be used for software reuse. The interrogation subsystem permits user queries of the reusable data and components which have been identified by an analyzer and qualified with associated metrics. The concept includes reuse of non-code life-cycle components such as requirements and designs. Possible types of reusable life-cycle components include templates, generics, and as-is items. Qualification of reusable elements requires analysis (separation of candidate components into primitives), qualification (evaluation of primitives for reusability according to reusability criteria) and loading (placing qualified elements into appropriate libraries). There can be different qualifications for different installations, methodologies, applications and components. Identifying reusable software and related components is labor-intensive and is best carried out as an integrated function of an SSE.

  8. 78 FR 40945 - Energy Efficiency Design Standards for New Federal Commercial and Multi-Family High-Rise...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ... Management. The life-cycle cost guidance and required discount rates and energy price projections are... Supplement to The National Institute of Standards and Technology Handbook 135: ``Energy Price Indices and... DEPARTMENT OF ENERGY 10 CFR Part 433 [Docket No. EERE-2011-BT-STD-0055] RIN 1904-AC60 Energy...

  9. 76 FR 49279 - Energy Efficiency Design Standards for New Federal Commercial and Multi-Family High-Rise...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ... Management. The life-cycle cost guidance and required discount rates and energy price projections are... Supplement to The National Institute of Standards and Technology Handbook 135: ``Energy Price Indices and...;Prices of new books are listed in the first FEDERAL REGISTER issue of each #0;week. #0; #0; #0; #0;#0...

  10. Reducing Lifecycle Sustainment Costs

    DTIC Science & Technology

    2015-05-01

    ahead of government systems – Specific O&S needs in government: depots, software centers, VAMOSC/ ERP interfaces Implications of ERP Systems...funding is not allocated for its implementation .  Technology Refresh often requires non-recurring engineering investment, but the Working Capital Funds...VAMOSC Systems – Cost and Software Data Reports (CSDRs) • Contractor Logistics Support Contracts • Includes subcontractor reporting – Effects of

  11. A Workflow for Learning Objects Lifecycle and Reuse: Towards Evaluating Cost Effective Reuse

    ERIC Educational Resources Information Center

    Sampson, Demetrios G.; Zervas, Panagiotis

    2011-01-01

    Over the last decade Learning Objects (LOs) have gained a lot of attention as a common format for developing and sharing digital educational content in the field of technology-enhanced learning. The main advantage of LOs is considered to be their potential for component-based reuse in different learning settings supporting different learning…

  12. Standards for space automation and robotics

    NASA Technical Reports Server (NTRS)

    Kader, Jac B.; Loftin, R. B.

    1992-01-01

    The AIAA's Committee on Standards for Space Automation and Robotics (COS/SAR) is charged with the identification of key functions and critical technologies applicable to multiple missions that reflect fundamental consideration of environmental factors. COS/SAR's standards/practices/guidelines implementation methods will be based on reliability, performance, and operations, as well as economic viability and life-cycle costs, simplicity, and modularity.

  13. Evaluating Managerial Styles for System Development Life Cycle Stages to Ensure Software Project Success

    ERIC Educational Resources Information Center

    Kocherla, Showry

    2012-01-01

    Information technology (IT) projects are considered successful if they are completed on time, within budget, and within scope. Even though, the required tools and methodologies are in place, IT projects continue to fail at a higher rate. Current literature lacks explanation for success within the stages of system development life-cycle (SDLC) such…

  14. The Lived Experiences of Professional Engineers over the Life-Cycle of a Technological Device

    ERIC Educational Resources Information Center

    Gandara, Guillermo F.

    2012-01-01

    One of the goals of this study was to pose the engineering role in a way that allows engineers to understand the impact that professional requirements have on their career. For engineers making medical devices, requirements come from three principal sources, professional engineering, regulatory agencies, and their own organization. Engineering…

  15. The US Army Corps of Engineers Roadmap for Life-Cycle Building Information Modeling (BIM)

    DTIC Science & Technology

    2012-11-01

    Building Information Modeling ( BIM ) En gi ne er R es ea rc h an...Abstract Building Information Modeling ( BIM ) technology has rapidly gained ac- ceptance throughout the planning, architecture, engineering...the Industry Foundation Class (IFC) definitions to create vendor-neutral data exchanges for use in BIM software tools. Building Information Modeling

  16. Enriching step-based product information models to support product life-cycle activities

    NASA Astrophysics Data System (ADS)

    Sarigecili, Mehmet Ilteris

    The representation and management of product information in its life-cycle requires standardized data exchange protocols. Standard for Exchange of Product Model Data (STEP) is such a standard that has been used widely by the industries. Even though STEP-based product models are well defined and syntactically correct, populating product data according to these models is not easy because they are too big and disorganized. Data exchange specifications (DEXs) and templates provide re-organized information models required in data exchange of specific activities for various businesses. DEXs show us it would be possible to organize STEP-based product models in order to support different engineering activities at various stages of product life-cycle. In this study, STEP-based models are enriched and organized to support two engineering activities: materials information declaration and tolerance analysis. Due to new environmental regulations, the substance and materials information in products have to be screened closely by manufacturing industries. This requires a fast, unambiguous and complete product information exchange between the members of a supply chain. Tolerance analysis activity, on the other hand, is used to verify the functional requirements of an assembly considering the worst case (i.e., maximum and minimum) conditions for the part/assembly dimensions. Another issue with STEP-based product models is that the semantics of product data are represented implicitly. Hence, it is difficult to interpret the semantics of data for different product life-cycle phases for various application domains. OntoSTEP, developed at NIST, provides semantically enriched product models in OWL. In this thesis, we would like to present how to interpret the GD & T specifications in STEP for tolerance analysis by utilizing OntoSTEP.

  17. On-orbit servicing system assessment and optimization methods based on lifecycle simulation under mixed aleatory and epistemic uncertainties

    NASA Astrophysics Data System (ADS)

    Yao, Wen; Chen, Xiaoqian; Huang, Yiyong; van Tooren, Michel

    2013-06-01

    To assess the on-orbit servicing (OOS) paradigm and optimize its utilities by taking advantage of its inherent flexibility and responsiveness, the OOS system assessment and optimization methods based on lifecycle simulation under uncertainties are studied. The uncertainty sources considered in this paper include both the aleatory (random launch/OOS operation failure and on-orbit component failure) and the epistemic (the unknown trend of the end-used market price) types. Firstly, the lifecycle simulation under uncertainties is discussed. The chronological flowchart is presented. The cost and benefit models are established, and the uncertainties thereof are modeled. The dynamic programming method to make optimal decision in face of the uncertain events is introduced. Secondly, the method to analyze the propagation effects of the uncertainties on the OOS utilities is studied. With combined probability and evidence theory, a Monte Carlo lifecycle Simulation based Unified Uncertainty Analysis (MCS-UUA) approach is proposed, based on which the OOS utility assessment tool under mixed uncertainties is developed. Thirdly, to further optimize the OOS system under mixed uncertainties, the reliability-based optimization (RBO) method is studied. To alleviate the computational burden of the traditional RBO method which involves nested optimum search and uncertainty analysis, the framework of Sequential Optimization and Mixed Uncertainty Analysis (SOMUA) is employed to integrate MCS-UUA, and the RBO algorithm SOMUA-MCS is developed. Fourthly, a case study on the OOS system for a hypothetical GEO commercial communication satellite is investigated with the proposed assessment tool. Furthermore, the OOS system is optimized with SOMUA-MCS. Lastly, some conclusions are given and future research prospects are highlighted.

  18. Integrating Materials, Manufacturing, Design and Validation for Sustainability in Future Transport Systems

    NASA Astrophysics Data System (ADS)

    Price, M. A.; Murphy, A.; Butterfield, J.; McCool, R.; Fleck, R.

    2011-05-01

    The predictive methods currently used for material specification, component design and the development of manufacturing processes, need to evolve beyond the current `metal centric' state of the art, if advanced composites are to realise their potential in delivering sustainable transport solutions. There are however, significant technical challenges associated with this process. Deteriorating environmental, political, economic and social conditions across the globe have resulted in unprecedented pressures to improve the operational efficiency of the manufacturing sector generally and to change perceptions regarding the environmental credentials of transport systems in particular. There is a need to apply new technologies and develop new capabilities to ensure commercial sustainability in the face of twenty first century economic and climatic conditions as well as transport market demands. A major technology gap exists between design, analysis and manufacturing processes in both the OEMs, and the smaller companies that make up the SME based supply chain. As regulatory requirements align with environmental needs, manufacturers are increasingly responsible for the broader lifecycle aspects of vehicle performance. These include not only manufacture and supply but disposal and re-use or re-cycling. In order to make advances in the reduction of emissions coupled with improved economic efficiency through the provision of advanced lightweight vehicles, four key challenges are identified as follows: Material systems, Manufacturing systems, Integrated design methods using digital manufacturing tools and Validation systems. This paper presents a project which has been designed to address these four key issues, using at its core, a digital framework for the creation and management of key parameters related to the lifecycle performance of thermoplastic composite parts and structures. It aims to provide capability for the proposition, definition, evaluation and demonstration of advanced lightweight structures for new generation vehicles in the context of whole life performance parameters.

  19. Exploratory technology research program for electrochemical energy storage, annual report for 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinoshita, K.

    The US Department of Energy`s (DOE) Office of Transportation Technologies provides support for an Electrochemical Energy Storage Program, that includes research and development on advanced rechargeable batteries. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs) and hybrid systems. The program centers on advanced electrochemical systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electric Vehicle Technology Program is divided into two project areas: the US Advanced Battery Consortium (USABC) and Advanced Batterymore » R and D which includes the Exploratory Technology Research (ETR) Program managed by the Lawrence Berkeley National Laboratory (LBNL). The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or other Government agencies for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1997. This is a continuing program, and reports for prior years have been published; they are listed at the end of this Executive Summary. The general R and D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, and establishment of engineering principles applicable to electrochemical energy storage. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs.« less

  20. Energy and life-cycle cost analysis of a six-story office building

    NASA Astrophysics Data System (ADS)

    Turiel, I.

    1981-10-01

    An energy analysis computer program, DOE-2, was used to compute annual energy use for a typical office building as originally designed and with several energy conserving design modifications. The largest energy use reductions were obtained with the incorporation of daylighting techniques, the use of double pane windows, night temperature setback, and the reduction of artificial lighting levels. A life-cycle cost model was developed to assess the cost-effectiveness of the design modifications discussed. The model incorporates such features as inclusion of taxes, depreciation, and financing of conservation investments. The energy conserving strategies are ranked according to economic criteria such as net present benefit, discounted payback period, and benefit to cost ratio.

  1. Mass cytometry: a highly multiplexed single-cell technology for advancing drug development.

    PubMed

    Atkuri, Kondala R; Stevens, Jeffrey C; Neubert, Hendrik

    2015-02-01

    Advanced single-cell analysis technologies (e.g., mass cytometry) that help in multiplexing cellular measurements in limited-volume primary samples are critical in bridging discovery efforts to successful drug approval. Mass cytometry is the state-of-the-art technology in multiparametric single-cell analysis. Mass cytometers (also known as cytometry by time-of-flight or CyTOF) combine the cellular analysis principles of traditional fluorescence-based flow cytometry with the selectivity and quantitative power of inductively coupled plasma-mass spectrometry. Standard flow cytometry is limited in the number of parameters that can be measured owing to the overlap in signal when detecting fluorescently labeled antibodies. Mass cytometry uses antibodies tagged to stable isotopes of rare earth metals, which requires minimal signal compensation between the different metal tags. This unique feature enables researchers to seamlessly multiplex up to 40 independent measurements on single cells. In this overview we first present an overview of mass cytometry and compare it with traditional flow cytometry. We then discuss the emerging and potential applications of CyTOF technology in the pharmaceutical industry, including quantitative and qualitative deep profiling of immune cells and their applications in assessing drug immunogenicity, extensive mapping of signaling networks in single cells, cell surface receptor quantification and multiplexed internalization kinetics, multiplexing sample analysis by barcoding, and establishing cell ontologies on the basis of phenotype and/or function. We end with a discussion of the anticipated impact of this technology on drug development lifecycle with special emphasis on the utility of mass cytometry in deciphering a drug's pharmacokinetics and pharmacodynamics relationship. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  2. Dynamic modeling and optimization for space logistics using time-expanded networks

    NASA Astrophysics Data System (ADS)

    Ho, Koki; de Weck, Olivier L.; Hoffman, Jeffrey A.; Shishko, Robert

    2014-12-01

    This research develops a dynamic logistics network formulation for lifecycle optimization of mission sequences as a system-level integrated method to find an optimal combination of technologies to be used at each stage of the campaign. This formulation can find the optimal transportation architecture considering its technology trades over time. The proposed methodologies are inspired by the ground logistics analysis techniques based on linear programming network optimization. Particularly, the time-expanded network and its extension are developed for dynamic space logistics network optimization trading the quality of the solution with the computational load. In this paper, the methodologies are applied to a human Mars exploration architecture design problem. The results reveal multiple dynamic system-level trades over time and give recommendation of the optimal strategy for the human Mars exploration architecture. The considered trades include those between In-Situ Resource Utilization (ISRU) and propulsion technologies as well as the orbit and depot location selections over time. This research serves as a precursor for eventual permanent settlement and colonization of other planets by humans and us becoming a multi-planet species.

  3. 10 CFR 435.8 - Life-cycle costing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Life-cycle costing. 435.8 Section 435.8 Energy DEPARTMENT...-cycle costing. Each Federal agency shall determine life-cycle cost-effectiveness by using the procedures..., including lower life-cycle costs, positive net savings, savings-to-investment ratio that is estimated to be...

  4. 10 CFR 435.8 - Life-cycle costing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Life-cycle costing. 435.8 Section 435.8 Energy DEPARTMENT...-cycle costing. Each Federal agency shall determine life-cycle cost-effectiveness by using the procedures..., including lower life-cycle costs, positive net savings, savings-to-investment ratio that is estimated to be...

  5. 10 CFR 435.8 - Life-cycle costing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Life-cycle costing. 435.8 Section 435.8 Energy DEPARTMENT...-cycle costing. Each Federal agency shall determine life-cycle cost-effectiveness by using the procedures..., including lower life-cycle costs, positive net savings, savings-to-investment ratio that is estimated to be...

  6. 77 FR 38766 - Proposed Information Collection; Comment Request; International Client Life-Cycle Multi-Purpose...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... Request; International Client Life-Cycle Multi-Purpose Forms AGENCY: International Trade Administration... aspects of an international organization's life-cycle with CS. CS is mandated by Congress to help U.S... trade events to U.S. organizations. The International Client Life-cycle Multi-Purpose Forms, previously...

  7. 10 CFR 435.8 - Life-cycle costing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Life-cycle costing. 435.8 Section 435.8 Energy DEPARTMENT... BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise Residential Buildings. § 435.8 Life-cycle costing. Each Federal agency shall determine life-cycle cost-effectiveness by using the procedures...

  8. 77 FR 38582 - Proposed Information Collection; Comment Request; Domestic Client Life-Cycle Multi-Purpose Forms

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ... Request; Domestic Client Life-Cycle Multi-Purpose Forms AGENCY: International Trade Administration. ACTION... life-cycle with CS. CS is mandated by Congress to help U.S. organizations, particularly small and... Client Life-cycle Multi-Purpose Forms, previously titled Export Information Services Order Forms, are...

  9. 10 CFR 435.8 - Life-cycle costing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Life-cycle costing. 435.8 Section 435.8 Energy DEPARTMENT... BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise Residential Buildings. § 435.8 Life-cycle costing. Each Federal agency shall determine life-cycle cost-effectiveness by using the procedures...

  10. Alternative Fuels Data Center: Lifecycle Energy Balance

    Science.gov Websites

    Energy Balance to someone by E-mail Share Alternative Fuels Data Center: Lifecycle Energy Balance on Facebook Tweet about Alternative Fuels Data Center: Lifecycle Energy Balance on Twitter Bookmark Alternative Fuels Data Center: Lifecycle Energy Balance on Google Bookmark Alternative Fuels Data Center

  11. Cybersecurity and the Medical Device Product Development Lifecycle.

    PubMed

    Jones, Richard W; Katzis, Konstantinos

    2017-01-01

    Protecting connected medical devices from evolving cyber related threats, requires a continuous lifecycle approach whereby cybersecurity is integrated within the product development lifecycle and both complements and re-enforces the safety risk management processes therein. This contribution reviews the guidance relating to medical device cybersecurity within the product development lifecycle.

  12. Analysis of Science and Technology Trend Based on Word Usage in Digitized Books

    NASA Astrophysics Data System (ADS)

    Yun, Jinhyuk; Kim, Pan-Jun; Jeong, Hawoong

    2013-03-01

    Throughout mankind's history, forecasting and predicting future has been a long-lasting interest to our society. Many fortune-tellers have tried to forecast the future by ``divine'' items. Sci-fi writers have also imagined what the future would look like. However most of them have been illogical and unscientific. Meanwhile, scientists have also attempted to discover future trend of science. Many researchers have used quantitative models to study how new ideas are used and spread. Besides the modeling works, in the early 21st century, the rise of data science has provided another prospect of forecasting future. However many studies have focused on very limited set of period or age, due to the limitations of dataset. Hence, many questions still remained unanswered. Fortunately, Google released a new dataset named ``Google N-Gram Dataset.'' This dataset provides us with 5 million words worth of literature dating from 1520 to 2008, and this is nearly 4% of publications ever printed. With this new time-varying dataset, we studied the spread and development of technologies by searching ``Science and Technology'' related words from 1800 to 2000. By statistical analysis, some general scaling laws were discovered. And finally, we determined factors that strongly affect the lifecycle of a word.

  13. Methods Used to Support a Life Cycle of Complex Engineering Products

    NASA Astrophysics Data System (ADS)

    Zakharova, Alexandra A.; Kolegova, Olga A.; Nekrasova, Maria E.; Eremenko, Andrey O.

    2016-08-01

    Management of companies involved in the design, development and operation of complex engineering products recognize the relevance of creating systems for product lifecycle management. A system of methods is proposed to support life cycles of complex engineering products, based on fuzzy set theory and hierarchical analysis. The system of methods serves to demonstrate the grounds for making strategic decisions in an environment of uncertainty, allows the use of expert knowledge, and provides interconnection of decisions at all phases of strategic management and all stages of a complex engineering product lifecycle.

  14. Argonne's Michael Wang talks about the GREET Model for reducing vehicle emi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Michael

    2012-07-25

    To fully evaluate energy and emission impacts of advanced vehicle technologies and new transportation fuels, the fuel cycle from wells to wheels and the vehicle cycle through material recovery and vehicle disposal need to be considered. Sponsored by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE), Argonne has developed a full life-cycle model called GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation). It allows researchers and analysts to evaluate various vehicle and fuel combinations on a full fuel-cycle/vehicle-cycle basis. The first version of GREET was released in 1996. Since then, Argonne has continuedmore » to update and expand the model. The most recent GREET versions are the GREET 1 2012 version for fuel-cycle analysis and GREET 2.7 version for vehicle-cycle analysis.« less

  15. 32 CFR Appendix to Part 162 - Reporting Procedures

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... generated. e. Projected Life-Cycle Savings. For each PIF project provide the estimated amount of savings the project is projected to earn over the project's economic life. f. Projected Life-Cycle Cost Avoidance. For... Projected Life-Cycle Savings. e. Total Projected Life-Cycle Cost Avoidance. 3. CSI. Each DoD Component that...

  16. 10 CFR 433.8 - Life-cycle costing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Life-cycle costing. 433.8 Section 433.8 Energy DEPARTMENT... HIGH-RISE RESIDENTIAL BUILDINGS § 433.8 Life-cycle costing. Each Federal agency shall determine life... choose to use any of four methods, including lower life-cycle costs, positive net savings, savings-to...

  17. 10 CFR 436.42 - Evaluation of Life-Cycle Cost Effectiveness.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Evaluation of Life-Cycle Cost Effectiveness. 436.42... PROGRAMS Agency Procurement of Energy Efficient Products § 436.42 Evaluation of Life-Cycle Cost...) ENERGY STAR qualified and FEMP designated products may be assumed to be life-cycle cost-effective. (b) In...

  18. 10 CFR 433.8 - Life-cycle costing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Life-cycle costing. 433.8 Section 433.8 Energy DEPARTMENT... HIGH-RISE RESIDENTIAL BUILDINGS § 433.8 Life-cycle costing. Each Federal agency shall determine life... choose to use any of four methods, including lower life-cycle costs, positive net savings, savings-to...

  19. 10 CFR 436.42 - Evaluation of Life-Cycle Cost Effectiveness.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Evaluation of Life-Cycle Cost Effectiveness. 436.42... PROGRAMS Agency Procurement of Energy Efficient Products § 436.42 Evaluation of Life-Cycle Cost...) ENERGY STAR qualified and FEMP designated products may be assumed to be life-cycle cost-effective. (b) In...

  20. 10 CFR 436.42 - Evaluation of Life-Cycle Cost Effectiveness.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Evaluation of Life-Cycle Cost Effectiveness. 436.42... PROGRAMS Agency Procurement of Energy Efficient Products § 436.42 Evaluation of Life-Cycle Cost...) ENERGY STAR qualified and FEMP designated products may be assumed to be life-cycle cost-effective. (b) In...

  1. 10 CFR 433.8 - Life-cycle costing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Life-cycle costing. 433.8 Section 433.8 Energy DEPARTMENT... HIGH-RISE RESIDENTIAL BUILDINGS § 433.8 Life-cycle costing. Each Federal agency shall determine life... choose to use any of four methods, including lower life-cycle costs, positive net savings, savings-to...

  2. 10 CFR 433.8 - Life-cycle costing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Life-cycle costing. 433.8 Section 433.8 Energy DEPARTMENT... FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.8 Life-cycle costing. Each Federal agency shall determine life-cycle cost-effectiveness by using the procedures set out in subpart A...

  3. 10 CFR 433.8 - Life-cycle costing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Life-cycle costing. 433.8 Section 433.8 Energy DEPARTMENT... FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.8 Life-cycle costing. Each Federal agency shall determine life-cycle cost-effectiveness by using the procedures set out in subpart A...

  4. 10 CFR 436.42 - Evaluation of Life-Cycle Cost Effectiveness.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Evaluation of Life-Cycle Cost Effectiveness. 436.42... PROGRAMS Agency Procurement of Energy Efficient Products § 436.42 Evaluation of Life-Cycle Cost...) ENERGY STAR qualified and FEMP designated products may be assumed to be life-cycle cost-effective. (b) In...

  5. Life-cycle analysis of alternative aviation fuels in GREET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elgowainy, A.; Han, J.; Wang, M.

    2012-07-23

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) formore » (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet fuel production unless carbon management practices, such as carbon capture and storage, are used.« less

  6. Life-Cycle Analysis of Alternative Aviation Fuels in GREET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elgowainy, A.; Han, J.; Wang, M.

    2012-06-01

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1_2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) formore » (1) each unit of energy (lower heating value) consumed by the aircraft or(2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55–85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources — such as natural gas and coal — could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet fuel production unless carbon management practices, such as carbon capture and storage, are used.« less

  7. General Education, Vocational Education, and Labor-Market Outcomes over the Life-Cycle. NBER Working Paper No. 17504

    ERIC Educational Resources Information Center

    Hanushek, Eric A.; Woessmann, Ludger; Zhang, Lei

    2011-01-01

    Policy debates about the balance of vocational and general education programs focus on the school-to-work transition. But with rapid technological change, gains in youth employment from vocational education may be offset by less adaptability and thus diminished employment later in life. To test our main hypothesis that any relative labor-market…

  8. 24 CFR 941.606 - Proposal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Life cycle analysis. For new construction and substantial rehabilitation, the criteria to be used in equipping the proposed development with heating and cooling systems, which shall include a life-cycle cost... the proposed site, site plan, and neighborhood. (f) Market analysis. An analysis of the projected...

  9. Comparisons of four categories of waste recycling in China's paper industry based on physical input-output life-cycle assessment model.

    PubMed

    Liang, Sai; Zhang, Tianzhu; Xu, Yijian

    2012-03-01

    Waste recycling for paper production is an important component of waste management. This study constructs a physical input-output life-cycle assessment (PIO-LCA) model. The PIO-LCA model is used to investigate environmental impacts of four categories of waste recycling in China's paper industry: crop straws, bagasse, textile wastes and scrap paper. Crop straw recycling and wood utilization for paper production have small total intensity of environmental impacts. Moreover, environmental impacts reduction of crop straw recycling and wood utilization benefits the most from technology development. Thus, using crop straws and wood (including wood wastes) for paper production should be promoted. Technology development has small effects on environmental impacts reduction of bagasse recycling, textile waste recycling and scrap paper recycling. In addition, bagasse recycling and textile waste recycling have big total intensity of environmental impacts. Thus, the development of bagasse recycling and textile waste recycling should be properly limited. Other pathways for reusing bagasse and textile wastes should be explored and evaluated. Moreover, imports of scrap paper should be encouraged to reduce large indirect impacts of scrap paper recycling on domestic environment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Field to fuel: developing sustainable biorefineries.

    PubMed

    Jenkins, Robin; Alles, Carina

    2011-06-01

    Life-cycle assessment (LCA) can be used as a scientific decision support technique to quantify the environmental implications of various biorefinery process, feedstock, and integration options. The goal of DuPont's integrated corn biorefinery (ICBR) project, a cost-share project with the United States Department of Energy, was to demonstrate the feasibility of a cellulosic ethanol biorefinery concept. DuPont used LCA to guide research and development to the most sustainable cellulosic ethanol biorefinery design in its ICBR project and will continue to apply LCA in support of its ongoing effort with joint venture partners. Cellulosic ethanol is a biofuel which has the potential to provide a sustainable solution to the nation's growing concerns around energy supply and climate change. A successful biorefinery begins with sustainable removal of biomass from the field. Michigan State University (MSU) used LCA to estimate the environmental performance of corn grain, corn stover, and the corn cob portion of the stover, grown under various farming practices for several corn growing locations in the United States Corn Belt. In order to benchmark the future technology options for producing cellulosic ethanol with existing technologies, LCA results for fossil energy consumption and greenhouse gas (GHG) emissions are compared to alternative ethanol processes and conventional gasoline. Preliminary results show that the DuPont ICBR outperforms gasoline and other ethanol technologies in the life-cycle impact categories considered here.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Iain; Regnier, Cindy

    Science at the Theater: Berkeley Lab scientists reveal the latest research on how to reduce your carbon footprint at home, work, and when you shop. Learn how even small choices can have a big impact. Iain Walker's research focuses on optimizing the energy use and comfort of buildings. He's a staff scientist in the Energy Performance of Buildings Group, which is part of Berkeley Lab's Environmen...tal Energy Technologies Division. He's also executive editor of Home Energy Magazine. Cindy Regnier is a Project Manager in the Environmental Energy Technologies Division at Berkeley Lab. She has over 13 years of mechanical engineeringmore » design experience, with a focus on low-energy buildings. Her projects have included several LEED Platinum buildings and the design of a 200,000 sf carbon neutral, net-zero energy science museum in San Francisco. Eric Masanet is Acting Deputy Leader of the International Energy Studies Group at Berkeley Lab. His research focuses on life-cycle assessments and energy efficiency analysis. He holds a joint research appointment in the Institute of Transportation Studies at UC Berkeley.« less

  12. 10 CFR 455.64 - Life-cycle cost methodology.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Life-cycle cost methodology. 455.64 Section 455.64 Energy..., Hospitals, Units of Local Government, and Public Care Institutions § 455.64 Life-cycle cost methodology. (a) The life-cycle cost methodology under § 455.63(b) of this part is a systematic comparison of the...

  13. 10 CFR 455.64 - Life-cycle cost methodology.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Life-cycle cost methodology. 455.64 Section 455.64 Energy..., Hospitals, Units of Local Government, and Public Care Institutions § 455.64 Life-cycle cost methodology. (a) The life-cycle cost methodology under § 455.63(b) of this part is a systematic comparison of the...

  14. UTILITY OF A FULL LIFE-CYCLE COPEPOD BIOASSAY APPROACH FOR ASSESSMENT OF SEDIMENT-ASSOCIATED CONTAMINANT MIXTURES. (R825279)

    EPA Science Inventory

    Abstract

    We compared a 21 day full life-cycle bioassay with an existing 14 day partial life-cycle bioassay for two species of meiobenthic copepods, Microarthridion littorale and Amphiascus tenuiremis. We hypothesized that full life-cycle tests would bette...

  15. Green Logistics Management

    NASA Astrophysics Data System (ADS)

    Chang, Yoon S.; Oh, Chang H.

    Nowadays, environmental management becomes a critical business consideration for companies to survive from many regulations and tough business requirements. Most of world-leading companies are now aware that environment friendly technology and management are critical to the sustainable growth of the company. The environment market has seen continuous growth marking 532B in 2000, and 590B in 2004. This growth rate is expected to grow to 700B in 2010. It is not hard to see the environment-friendly efforts in almost all aspects of business operations. Such trends can be easily found in logistics area. Green logistics aims to make environmental friendly decisions throughout a product lifecycle. Therefore for the success of green logistics, it is critical to have real time tracking capability on the product throughout the product lifecycle and smart solution service architecture. In this chapter, we introduce an RFID based green logistics solution and service.

  16. A data management life-cycle

    USGS Publications Warehouse

    Ferderer, David A.

    2001-01-01

    Documented, reliable, and accessible data and information are essential building blocks supporting scientific research and applications that enhance society's knowledge base (fig. 1). The U.S. Geological Survey (USGS), a leading provider of science data, information, and knowledge, is uniquely positioned to integrate science and natural resource information to address societal needs. The USGS Central Energy Resources Team (USGS-CERT) provides critical information and knowledge on the quantity, quality, and distribution of the Nation's and the world's oil, gas, and coal resources. By using a life-cycle model, the USGS-CERT Data Management Project is developing an integrated data management system to (1) promote access to energy data and information, (2) increase data documentation, and (3) streamline product delivery to the public, scientists, and decision makers. The project incorporates web-based technology, data cataloging systems, data processing routines, and metadata documentation tools to improve data access, enhance data consistency, and increase office efficiency

  17. Space Transportation Operations: Assessment of Methodologies and Models

    NASA Technical Reports Server (NTRS)

    Joglekar, Prafulla

    2001-01-01

    The systems design process for future space transportation involves understanding multiple variables and their effect on lifecycle metrics. Variables such as technology readiness or potential environmental impact are qualitative, while variables such as reliability, operations costs or flight rates are quantitative. In deciding what new design concepts to fund, NASA needs a methodology that would assess the sum total of all relevant qualitative and quantitative lifecycle metrics resulting from each proposed concept. The objective of this research was to review the state of operations assessment methodologies and models used to evaluate proposed space transportation systems and to develop recommendations for improving them. It was found that, compared to the models available from other sources, the operations assessment methodology recently developed at Kennedy Space Center has the potential to produce a decision support tool that will serve as the industry standard. Towards that goal, a number of areas of improvement in the Kennedy Space Center's methodology are identified.

  18. Space Transportation Operations: Assessment of Methodologies and Models

    NASA Technical Reports Server (NTRS)

    Joglekar, Prafulla

    2002-01-01

    The systems design process for future space transportation involves understanding multiple variables and their effect on lifecycle metrics. Variables such as technology readiness or potential environmental impact are qualitative, while variables such as reliability, operations costs or flight rates are quantitative. In deciding what new design concepts to fund, NASA needs a methodology that would assess the sum total of all relevant qualitative and quantitative lifecycle metrics resulting from each proposed concept. The objective of this research was to review the state of operations assessment methodologies and models used to evaluate proposed space transportation systems and to develop recommendations for improving them. It was found that, compared to the models available from other sources, the operations assessment methodology recently developed at Kennedy Space Center has the potential to produce a decision support tool that will serve as the industry standard. Towards that goal, a number of areas of improvement in the Kennedy Space Center's methodology are identified.

  19. Proteomic Analysis of the Schistosoma mansoni Miracidium.

    PubMed

    Wang, Tianfang; Zhao, Min; Rotgans, Bronwyn A; Strong, April; Liang, Di; Ni, Guoying; Limpanont, Yanin; Ramasoota, Pongrama; McManus, Donald P; Cummins, Scott F

    2016-01-01

    Despite extensive control efforts, schistosomiasis continues to be a major public health problem in developing nations in the tropics and sub-tropics. The miracidium, along with the cercaria, both of which are water-borne and free-living, are the only two stages in the life-cycle of Schistosoma mansoni which are involved in host invasion. Miracidia penetrate intermediate host snails and develop into sporocysts, which lead to cercariae that can infect humans. Infection of the snail host by the miracidium represents an ideal point at which to interrupt the parasite's life-cycle. This research focuses on an analysis of the miracidium proteome, including those proteins that are secreted. We have identified a repertoire of proteins in the S. mansoni miracidium at 2 hours post-hatch, including proteases, venom allergen-like proteins, receptors and HSP70, which might play roles in snail-parasite interplay. Proteins involved in energy production and conservation were prevalent, as were proteins predicted to be associated with defence. This study also provides a strong foundation for further understanding the roles that neurohormones play in host-seeking by schistosomes, with the potential for development of novel anthelmintics that interfere with its various life-cycle stages.

  20. Quantifying the climate impacts of albedo changes due to biofuel production: a comparison with biogeochemical effects

    NASA Astrophysics Data System (ADS)

    Caiazzo, Fabio; Malina, Robert; Staples, Mark D.; Wolfe, Philip J.; Yim, Steve H. L.; Barrett, Steven R. H.

    2014-01-01

    Lifecycle analysis is a tool widely used to evaluate the climate impact of greenhouse gas emissions attributable to the production and use of biofuels. In this paper we employ an augmented lifecycle framework that includes climate impacts from changes in surface albedo due to land use change. We consider eleven land-use change scenarios for the cultivation of biomass for middle distillate fuel production, and compare our results to previous estimates of lifecycle greenhouse gas emissions for the same set of land-use change scenarios in terms of CO2e per unit of fuel energy. We find that two of the land-use change scenarios considered demonstrate a warming effect due to changes in surface albedo, compared to conventional fuel, the largest of which is for replacement of desert land with salicornia cultivation. This corresponds to 222 gCO2e/MJ, equivalent to 3890% and 247% of the lifecycle GHG emissions of fuels derived from salicornia and crude oil, respectively. Nine of the land-use change scenarios considered demonstrate a cooling effect, the largest of which is for the replacement of tropical rainforests with soybean cultivation. This corresponds to - 161 gCO2e/MJ, or - 28% and - 178% of the lifecycle greenhouse gas emissions of fuels derived from soybean and crude oil, respectively. These results indicate that changes in surface albedo have the potential to dominate the climate impact of biofuels, and we conclude that accounting for changes in surface albedo is necessary for a complete assessment of the aggregate climate impacts of biofuel production and use.

  1. Health technology reassessment of non-drug technologies: current practices.

    PubMed

    Leggett, Laura; Noseworthy, Tom W; Zarrabi, Mahmood; Lorenzetti, Diane; Sutherland, Lloyd R; Clement, Fiona M

    2012-07-01

    Obsolescence is a natural phase of the lifecycle of health technologies. Given increasing cost of health expenditures worldwide, health organizations have little choice but to engage in health technology reassessment (HTR); a structured, evidence-based assessment of the medical, social, ethical, and economic effects of a technology, currently used within the healthcare system, to inform optimal use of that technology in comparison to its alternatives. This research was completed to identify and summarize international HTR initiatives for non-drug technologies. A systematic review was performed using the terms disinvestment, obsolescence, obsolete technology, ineffective, reassessment, reinvestment, reallocation, program budgeting, and marginal analysis to search PubMED, MEDLINE, EMBASE, and CINAHL until November 2011. Websites of organizations listed as members of INAHTA and HTAi were hand-searched for gray literature. Documents were excluded if they were unavailable in English, if the title/abstract was irrelevant to HTR, and/or if the document made no mention of current practices. All citations were screened in duplicate with disagreements resolved by consensus. Sixty full-text documents were reviewed and forty were included. One model for reassessment was identified; however, it has never been put into practice. Eight countries have some evidence of past or current work related to reassessment; seven have shown evidence of continued work in HTR. There is negligible focus on monitoring and implementation. HTR is in its infancy. Although health technology reassessments are being conducted, there is no standardized approach. Future work should focus on developing and piloting a comprehensive methodology for completing HTR.

  2. Overview of the TriBITS Lifecycle Model: Lean/Agile Software Lifecycle Model for Research-based Computational Science and Engineering Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartlett, Roscoe A; Heroux, Dr. Michael A; Willenbring, James

    2012-01-01

    Software lifecycles are becoming an increasingly important issue for computational science & engineering (CSE) software. The process by which a piece of CSE software begins life as a set of research requirements and then matures into a trusted high-quality capability is both commonplace and extremely challenging. Although an implicit lifecycle is obviously being used in any effort, the challenges of this process--respecting the competing needs of research vs. production--cannot be overstated. Here we describe a proposal for a well-defined software lifecycle process based on modern Lean/Agile software engineering principles. What we propose is appropriate for many CSE software projects thatmore » are initially heavily focused on research but also are expected to eventually produce usable high-quality capabilities. The model is related to TriBITS, a build, integration and testing system, which serves as a strong foundation for this lifecycle model, and aspects of this lifecycle model are ingrained in the TriBITS system. Indeed this lifecycle process, if followed, will enable large-scale sustainable integration of many complex CSE software efforts across several institutions.« less

  3. Environmental life-cycle comparisons of two polychlorinated biphenyl remediation technologies: incineration and base catalyzed decomposition.

    PubMed

    Hu, Xintao; Zhu, Jianxin; Ding, Qiong

    2011-07-15

    Remediation action is critical for the management of polychlorinated biphenyl (PCB) contaminated sites. Dozens of remediation technologies developed internationally could be divided in two general categories incineration and non-incineration. In this paper, life cycle assessment (LCA) was carried out to study the environmental impacts of these two kinds of remediation technologies in selected PCB contaminated sites, where Infrared High Temperature Incineration (IHTI) and Base Catalyzed Decomposition (BCD) were selected as representatives of incineration and non-incineration. A combined midpoint/damage approach was adopted by using SimaPro 7.2 and IMPACTA2002+ to assess the human toxicity, ecotoxicity, climate change impact, and resource consumption from the five subsystems of IHTI and BCD technologies, respectively. It was found that the major environmental impacts through the whole lifecycle arose from energy consumption in both IHTI and BCD processes. For IHTI, primary and secondary combustion subsystem contributes more than 50% of midpoint impacts concerning with carcinogens, respiratory inorganics, respiratory organics, terrestrial ecotoxity, terrestrial acidification/eutrophication and global warming. In BCD process, the rotary kiln reactor subsystem presents the highest contribution to almost all the midpoint impacts including global warming, non-renewable energy, non-carcinogens, terrestrial ecotoxity and respiratory inorganics. In the view of midpoint impacts, the characterization values for global warming from IHTI and BCD were about 432.35 and 38.5 kg CO(2)-eq per ton PCB-containing soils, respectively. LCA results showed that the single score of BCD environmental impact was 1468.97 Pt while IHTI's score is 2785.15 Pt, which indicates BCD potentially has a lower environmental impact than IHTI technology in the PCB contaminated soil remediation process. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. An exploratory study of lead recovery in lead-acid battery lifecycle in US market: an evidence-based approach.

    PubMed

    Genaidy, A M; Sequeira, R; Tolaymat, T; Kohler, J; Rinder, M

    2008-12-15

    This research examines lead recovery and recycling in lead-acid batteries (LAB) which account for 88% of US lead consumption. We explore strategies to maximize lead recovery and recycling in the LAB lifecycle. Currently, there is limited information on recycling rates for LAB in the published literature and is derived from a single source. Therefore, its recycling efforts in the US has been unclear so as to determine the maximum opportunities for metal recovery and recycling in the face of significant demands for LAB particularly in the auto industry. The research utilizes an evidence-based approach to: (1) determine recycling rates for lead recovery in the LAB product lifecycle for the US market; and (2) quantify and identify opportunities where lead recovery and recycling can be improved. A comprehensive electronic search of the published literature was conducted to gather information on different LAB recycling models and actual data used to calculate recycling rates based on product lifecycle for the US market to identify strategies for increasing lead recovery and recycling. The electronic search yielded five models for calculating LAB recycling rates. The description of evidence was documented for each model. Furthermore, an integrated model was developed to identify and quantify the maximum opportunities for lead recovery and recycling. Results showed that recycling rates declined during the period spanning from 1999 to 2006. Opportunities were identified for recovery and recycling of lead in the LAB product lifecycle. One can deduce the following from the analyses undertaken in this report: (1) lead recovery and recycling has been stable between 1999 and 2006; (2) lead consumption has increased at an annual rate of 2.25%, thus, the values derived in this study for opportunities dealing with lead recovery and recycling underestimate the amount of lead in scrap and waste generated; and (3) the opportunities for maximizing lead recovery and recycling are centered on spent batteries left with consumers, mishandled LAB sent to auto wreckers, slag resulting from recycling technology process inefficiencies, and lead lost in municipal waste.

  5. Incorporating Agricultural Management Practices into the Assessment of Soil Carbon Change and Life-Cycle Greenhouse Gas Emissions of Corn Stover Ethanol Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Zhangcai; Canter, Christina E.; Dunn, Jennifer B.

    Land management practices such as cover crop adoption or manure application that can increase soil organic carbon (SOC) may provide a way to counter SOC loss upon removal of stover from corn fields for use as a biofuel feedstock. This report documents the data, methodology, and assumptions behind the incorporation of land management practices into corn-soybean systems that dominate U.S. grain production using varying levels of stover removal in the GREETTM (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model and its CCLUB (Carbon Calculator for Land Use change from Biofuels production) module. Tillage (i.e., conventional, reduced and nomore » tillage), corn stover removal (i.e., at 0, 30% and 60% removal rate), and organic matter input techniques (i.e., cover crop and manure application) are included in the analysis as major land management practices. Soil carbon changes associated with land management changes were modeled with a surrogate CENTURY model. The resulting SOC changes were incorporated into CCLUB while GREET was expanded to include energy and material consumption associated with cover crop adoption and manure application. Life-cycle greenhouse gas (GHG) emissions of stover ethanol were estimated using a marginal approach (all burdens and benefits assigned to corn stover ethanol) and an energy allocation approach (burdens and benefits divided between grain and stover ethanol). In the latter case, we considered corn grain and corn stover ethanol to be produced at an integrated facility. Life-cycle GHG emissions of corn stover ethanol are dependent upon the analysis approach selected (marginal versus allocation) and the land management techniques applied. The expansion of CCLUB and GREET to accommodate land management techniques can produce a wide range of results because users can select from multiple scenario options such as choosing tillage levels, stover removal rates, and whether crop yields increase annually or remain constant. In a scenario with conventional tillage and a 30% stover removal rate, life-cycle GHG emissions for a combined gallon of corn grain and stover ethanol without cover crop adoption or manure application are 49 g CO2eq MJ-1, in comparison with 91 g CO2eq MJ-1 for petroleum gasoline. Adopting a cover crop or applying manure reduces the former ethanol life-cycle GHG emissions by 8% and 10%, respectively. We considered two different life cycle analysis approaches to develop estimates of life-cycle GHG emissions for corn stover ethanol, marginal analysis and energy allocation. In the same scenario, this fuel has GHG emissions of 12 – 20 g CO2eq MJ-1 (for manure and cover crop application, respectively) and 45 – 48 g CO2eq MJ-1 with the marginal approach and the energy allocation approach, respectively.« less

  6. Life-Cycle Analysis of Greenhouse Gas Emissions and Water Consumption – Effects of Coal and Biomass Conversion to Liquid Fuels as Analyzed with the GREET Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Qianfeng; Cai, Hao; Han, Jeongwoo

    The vast reserves of coal in the U.S. provide a significant incentive for the development of processes for coal conversion to liquid fuels (CTL). Also, CTL using domestic coal can help move the U.S. toward greater energy independence and security. However, current conversion technologies are less economically competitive and generate greater greenhouse gas (GHG) emissions than production of petroleum fuels. Altex Technologies Corporation (Altex, hereinafter) and Pennsylvania State University have developed a hybrid technology to produce jet fuel from a feedstock blend of coal and biomass. Collaborating with Altex, Argonne National Laboratory has expanded and used the Greenhouse gases, Regulatedmore » Emissions, and Energy use in Transportation (GREET®) model to assess the life-cycle GHG emissions and water consumption of this hybrid technology. Biomass feedstocks include corn stover, switchgrass, and wheat straw. The option of biomass densification (bales to pellets) is also evaluated in this study. The results show that the densification process generates additional GHG emissions as a result of additional biomass process energy demand. This process coproduces a large amount of char, and this study investigates two scenarios to treat char: landfill disposal (Char-LF) and combustion for combined heat and power (CHP). Since the CHP scenarios export excess heat and electricity as coproducts, two coproduct handling methods are used for well-to-wake (WTWa) analysis: displacement (Char-CHP-Disp) and energy allocation (Char-CHP-EnAllo). When the feedstock contains 15 wt% densified wheat straw and 85 wt% lignite coal, WTWa GHG emissions of the coal-and-biomass-to-liquid pathways are 116, 97, and 137 gCO2e per megajoule (MJ) under the Char-LF, Char-CHP-Disp, and Char-CHP-EnAllo scenarios, respectively, as compared to conventional jet fuel production at 84 gCO2e/MJ. WTWa water consumption values are 0.072, -0.046, and 0.044 gal/MJ for Char-LF, Char-CHP-Disp, and Char-CHP-EnAllo, respectively, as compared to conventional jet fuel production at 0.028 gal/MJ. To reach the break-even point of 84 gCO2e/MJ, under the assumptions of constant product yields and energy demands regardless of the share of biomass and coal feedstocks, 31 wt%, 23 wt%, and 53 wt% of the feedstock blend need to be biomass under the Char-LF, Char-CHP-Disp, and Char-CHP-EnAllo scenarios, respectively.« less

  7. Technology needs for lunar and Mars space transfer systems

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon R.; Cothran, Bradley C.; Donahue, Benjamin; Mcghee, Jerry

    1991-01-01

    The determination of appropriate space transportation technologies and operating modes is discussed with respect to both lunar and Mars missions. Three levels of activity are set forth to examine the sensitivity of transportation preferences including 'minimum,' 'full science,' and 'industrialization and settlement' categories. High-thrust-profile missions for lunar and Mars transportation are considered in terms of their relative advantages, and transportation options are defined in terms of propulsion and braking technologies. Costs and life-cycle cost estimates are prepared for the transportation preferences by using a parametric cost model, and a return-on-investment summary is given. Major technological needs for the programs are listed and include storable propulsion systems; cryogenic engines and fluids management; aerobraking; and nuclear thermal, nuclear electric, electric, and solar electric propulsion technologies.

  8. 77 FR 7281 - Energy Conservation Program: Energy Conservation Standards for Distribution Transformers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    ... Manufacturing Transformers H. Customer Subgroup Analysis I. Manufacturer Impact Analysis 1. Overview 2... Justification and Energy Savings 1. Economic Impacts on Customers a. Life-Cycle Cost and Payback Period b. Customer Subgroup Analysis c. Rebuttable-Presumption Payback 2. Economic Impact on Manufacturers a...

  9. Main propulsion system design recommendations for an advanced Orbit Transfer Vehicle

    NASA Technical Reports Server (NTRS)

    Redd, L.

    1985-01-01

    Various main propulsion system configurations of an advanced OTV are evaluated with respect to the probability of nonindependent failures, i.e., engine failures that disable the entire main propulsion system. Analysis of the life-cycle cost (LCC) indicates that LCC is sensitive to the main propulsion system reliability, vehicle dry weight, and propellant cost; it is relatively insensitive to the number of missions/overhaul, failures per mission, and EVA and IVA cost. In conclusion, two or three engines are recommended in view of their highest reliability, minimum life-cycle cost, and fail operational/fail safe capability.

  10. The Model Life-cycle: Training Module

    EPA Pesticide Factsheets

    Model Life-Cycle includes identification of problems & the subsequent development, evaluation, & application of the model. Objectives: define ‘model life-cycle’, explore stages of model life-cycle, & strategies for development, evaluation, & applications.

  11. Environmental Assessment of the General Plan and Maintenance of Patrick Air Force Base, Florida

    DTIC Science & Technology

    2012-07-17

    water consumption . Per the National Energy Conservation Policy Act, sustainable design principles and life-cycle cost- effective technologies will...attached EA concluded that no significant adverse effects will result. No significant adverse cumulative impacts will result from activities associated...resources will be considered an adverse effect , however, sufficient documentation had been received for Facilities 1322, 1327, 1330, 1425, 1432, 1437 and

  12. Fly-by-light technology development plan

    NASA Technical Reports Server (NTRS)

    Todd, J. R.; Williams, T.; Goldthorpe, S.; Hay, J.; Brennan, M.; Sherman, B.; Chen, J.; Yount, Larry J.; Hess, Richard F.; Kravetz, J.

    1990-01-01

    The driving factors and developments which make a fly-by-light (FBL) viable are discussed. Documentation, analyses, and recommendations are provided on the major issues pertinent to facilitating the U.S. implementation of commercial FBL aircraft before the turn of the century. Areas of particular concern include ultra-reliable computing (hardware/software); electromagnetic environment (EME); verification and validation; optical techniques; life-cycle maintenance; and basis and procedures for certification.

  13. PEO CS&CSS 2011: Advanced Planning Brief to Industry

    DTIC Science & Technology

    2011-10-28

    technologically-advanced, proven equipment to enable and support the projection of Forces worldwide. • Modular Fuel Systems (MFS) • JAB • Fort Devens ... Fort Devens Base Camp Integration Lab Force Sustainment Systems 28 OCT 2011 22 PEO CS&CSS - APBI Force Sustainment Systems • Lifecycle Challenges...searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments

  14. TriBITS lifecycle model. Version 1.0, a lean/agile software lifecycle model for research-based computational science and engineering and applied mathematical software.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willenbring, James M.; Bartlett, Roscoe Ainsworth; Heroux, Michael Allen

    2012-01-01

    Software lifecycles are becoming an increasingly important issue for computational science and engineering (CSE) software. The process by which a piece of CSE software begins life as a set of research requirements and then matures into a trusted high-quality capability is both commonplace and extremely challenging. Although an implicit lifecycle is obviously being used in any effort, the challenges of this process - respecting the competing needs of research vs. production - cannot be overstated. Here we describe a proposal for a well-defined software lifecycle process based on modern Lean/Agile software engineering principles. What we propose is appropriate for manymore » CSE software projects that are initially heavily focused on research but also are expected to eventually produce usable high-quality capabilities. The model is related to TriBITS, a build, integration and testing system, which serves as a strong foundation for this lifecycle model, and aspects of this lifecycle model are ingrained in the TriBITS system. Here, we advocate three to four phases or maturity levels that address the appropriate handling of many issues associated with the transition from research to production software. The goals of this lifecycle model are to better communicate maturity levels with customers and to help to identify and promote Software Engineering (SE) practices that will help to improve productivity and produce better software. An important collection of software in this domain is Trilinos, which is used as the motivation and the initial target for this lifecycle model. However, many other related and similar CSE (and non-CSE) software projects can also make good use of this lifecycle model, especially those that use the TriBITS system. Indeed this lifecycle process, if followed, will enable large-scale sustainable integration of many complex CSE software efforts across several institutions.« less

  15. Analysis of Life-Cycle Costs and Market Applications of Flywheel Energy-Storage Transit Vehicles

    DOT National Transportation Integrated Search

    1979-07-01

    The Urban Mass Transportation Administration (UMTA) has recently completed the Phase I activities of its Flywheel Energy Storage Program involving an analysis of the operational requirements and the conceptual design of flywheel energy storage vehicl...

  16. Configurable technology development for reusable control and monitor ground systems

    NASA Technical Reports Server (NTRS)

    Uhrlaub, David R.

    1994-01-01

    The control monitor unit (CMU) uses configurable software technology for real-time mission command and control, telemetry processing, simulation, data acquisition, data archiving, and ground operations automation. The base technology is currently planned for the following control and monitor systems: portable Space Station checkout systems; ecological life support systems; Space Station logistics carrier system; and the ground system of the Delta Clipper (SX-2) in the Single-Stage Rocket Technology program. The CMU makes extensive use of commercial technology to increase capability and reduce development and life-cycle costs. The concepts and technology are being developed by McDonnell Douglas Space and Defense Systems for the Real-Time Systems Laboratory at NASA's Kennedy Space Center under the Payload Ground Operations Contract. A second function of the Real-Time Systems Laboratory is development and utilization of advanced software development practices.

  17. A method for improving reliability and relevance of LCA reviews: the case of life-cycle greenhouse gas emissions of tap and bottled water.

    PubMed

    Fantin, Valentina; Scalbi, Simona; Ottaviano, Giuseppe; Masoni, Paolo

    2014-04-01

    The purpose of this study is to propose a method for harmonising Life Cycle Assessment (LCA) literature studies on the same product or on different products fulfilling the same function for a reliable and meaningful comparison of their life-cycle environmental impacts. The method is divided in six main steps which aim to rationalize and quicken the efforts needed to carry out the comparison. The steps include: 1) a clear definition of the goal and scope of the review; 2) critical review of the references; 3) identification of significant parameters that have to be harmonised; 4) harmonisation of the parameters; 5) statistical analysis to support the comparison; 6) results and discussion. This approach was then applied to the comparative analysis of the published LCA studies on tap and bottled water production, focussing on Global Warming Potential (GWP) results, with the aim to identify the environmental preferable alternative. A statistical analysis with Wilcoxon's test confirmed that the difference between harmonised GWP values of tap and bottled water was significant. The results obtained from the comparison of the harmonised mean GWP results showed that tap water always has the best environmental performance, even in case of high energy-consuming technologies for drinking water treatments. The strength of the method is that it enables both performing a deep analysis of the LCA literature and obtaining more consistent comparisons across the published LCAs. For these reasons, it can be a valuable tool which provides useful information for both practitioners and decision makers. Finally, its application to the case study allowed both to supply a description of systems variability and to evaluate the importance of several key parameters for tap and bottled water production. The comparative review of LCA studies, with the inclusion of a statistical decision test, can validate and strengthen the final statements of the comparison. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. The evolutionary ecology of complex lifecycle parasites: linking phenomena with mechanisms

    PubMed Central

    Auld, S KJR; Tinsley, M C

    2015-01-01

    Many parasitic infections, including those of humans, are caused by complex lifecycle parasites (CLPs): parasites that sequentially infect different hosts over the course of their lifecycle. CLPs come from a wide range of taxonomic groups—from single-celled bacteria to multicellular flatworms—yet share many common features in their life histories. Theory tells us when CLPs should be favoured by selection, but more empirical studies are required in order to quantify the costs and benefits of having a complex lifecycle, especially in parasites that facultatively vary their lifecycle complexity. In this article, we identify ecological conditions that favour CLPs over their simple lifecycle counterparts and highlight how a complex lifecycle can alter transmission rate and trade-offs between growth and reproduction. We show that CLPs participate in dynamic host–parasite coevolution, as more mobile hosts can fuel CLP adaptation to less mobile hosts. Then, we argue that a more general understanding of the evolutionary ecology of CLPs is essential for the development of effective frameworks to manage the many diseases they cause. More research is needed identifying the genetics of infection mechanisms used by CLPs, particularly into the role of gene duplication and neofunctionalisation in lifecycle evolution. We propose that testing for signatures of selection in infection genes will reveal much about how and when complex lifecycles evolved, and will help quantify complex patterns of coevolution between CLPs and their various hosts. Finally, we emphasise four key areas where new research approaches will provide fertile opportunities to advance this field. PMID:25227255

  19. Net energy payback and CO2 emissions from three midwestern wind farms: An update

    USGS Publications Warehouse

    White, S.W.

    2006-01-01

    This paper updates a life-cycle net energy analysis and carbon dioxide emissions analysis of three Midwestern utility-scale wind systems. Both the Energy Payback Ratio (EPR) and CO2 analysis results provide useful data for policy discussions regarding an efficient and low-carbon energy mix. The EPR is the amount of electrical energy produced for the lifetime of the power plant divided by the total amount of energy required to procure and transport the materials, build, operate, and decommission the power plants. The CO2 analysis for each power plant was calculated from the life-cycle energy input data. A previous study also analyzed coal and nuclear fission power plants. At the time of that study, two of the three wind systems had less than a full year of generation data to project the life-cycle energy production. This study updates the analysis of three wind systems with an additional four to eight years of operating data. The EPR for the utility-scale wind systems ranges from a low of 11 for a two-turbine system in Wisconsin to 28 for a 143-turbine system in southwestern Minnesota. The EPR is 11 for coal, 25 for fission with gas centrifuge enriched uranium and 7 for gaseous diffusion enriched uranium. The normalized CO2 emissions, in tonnes of CO2 per GW eh, ranges from 14 to 33 for the wind systems, 974 for coal, and 10 and 34 for nuclear fission using gas centrifuge and gaseous diffusion enriched uranium, respectively. ?? Springer Science+Business Media, LLC 2007.

  20. Opinion: Clarifying Two Controversies about Information Mapping's Method.

    ERIC Educational Resources Information Center

    Horn, Robert E.

    1992-01-01

    Describes Information Mapping, a methodology for the analysis, organization, sequencing, and presentation of information and explains three major parts of the method: (1) content analysis, (2) project life-cycle synthesis and integration of the content analysis, and (3) sequencing and formatting. Major criticisms of the methodology are addressed.…

  1. Investigating the ways in which health information technology can promote antimicrobial stewardship: a conceptual overview.

    PubMed

    King, Abby; Cresswell, Kathrin M; Coleman, Jamie J; Pontefract, Sarah K; Slee, Ann; Williams, Robin; Sheikh, Aziz

    2017-08-01

    Antimicrobial resistance is now recognised as a threat to health worldwide. Antimicrobial stewardship aims to promote the responsible use of antibiotics and is high on international and national policy agendas. Health information technology has the potential to support antimicrobial stewardship in a number of ways, but this field is still poorly characterised and understood. Building on a recent systematic review and expert roundtable discussions, we take a lifecycle perspective of antibiotic use in hospitals and identify potential targets for health information technology-based interventions to support antimicrobial stewardship. We aim for this work to help chart a future research agenda in this critically important area.

  2. Commercialization, patents and moral assessment of biotechnology products.

    PubMed

    Hoedemaekers, R

    2001-06-01

    The biotechnology patent debates have revealed deep moral concerns about basic genetics research, R&D and specific biotechnological products, concerns that are seldom taken into consideration in Technology Assessment. In this paper important moral concerns are examined which appear at the various stages of development of a specific genetic product: a predictive genetic test. The purpose is to illustrate the need for a more contextual approach in technology assessment, which integrates the various forms of interaction between bio-technology and society or societal segments. Such an approach will generate greater insight in the moral issues at all stages of a product's life-cycle and this will facilitate decision-making on the 'morality' of a specific biotechnological product.

  3. Integrated Power and Attitude Control System (IPACS) technology developments

    NASA Technical Reports Server (NTRS)

    Eisenhaure, David B.; Bechtel, Robert; Hockney, Richard; Oglevie, Ron; Olszewski, Mitch

    1990-01-01

    Integrated Power and Attitude Control System (IPACS) studies performed over a decade ago established the feasibility of storing electrical energy in flywheels and utilizing the resulting angular momentum for spacecraft attitude control. Such a system has been shown to have numerous attractive features relative to more contemporary technology, and is appropriate to many applications (including high-performance slewing actuators). Technology advances over the last two decades in composite rotors, motor/generator/electronics, and magnetic bearings are found to support the use of IPACS for increasingly sophisticated applications. It is concluded that the concept offers potential performance advantages as well as savings in mass and life-cycle cost. Viewgraphs and discussion on IPACS are included.

  4. Life-cycle environmental inventory of passenger transportation modes in the United States

    NASA Astrophysics Data System (ADS)

    Chester, Mikhail Vin

    To appropriately mitigate environmental impacts from transportation, it is necessary for decision makers to consider the life-cycle energy consumption and emissions associated with each mode. A life-cycle energy, greenhouse gas, and criteria air pollutant emissions inventory is created for the passenger transportation modes of automobiles, urban buses, heavy rail transit, light rail transit, and aircraft in the U.S. Each mode's inventory includes an assessment of vehicles, infrastructure, and fuel components. For each component, analysis is performed for material extraction through use and maintenance in both direct and indirect (supply chain) processes. For each mode's life-cycle components, energy inputs and emission outputs are determined. Energy inputs include electricity and petroleum-based fuels. Emission outputs include greenhouse gases (CO2, CH4, and N2O) and criteria pollutants (CO, SO2, NOx , VOCs, and PM). The inputs and outputs are normalized by vehicle lifetime, vehicle mile traveled, and passenger mile traveled. A consistent system boundary is applied to all modal inventories which captures the entire life-cycle, except for end-of-life. For each modal life-cycle component, both direct and indirect processes are included if possible. A hybrid life-cycle assessment approach is used to estimate the components in the inventories. We find that life-cycle energy inputs and emission outputs increase significantly compared to the vehicle operational phase. Life-cycle energy consumption is 39-56% larger than vehicle operation for autos, 38% for buses, 93-160% for rail, and 19-24% for air systems per passenger mile traveled. Life-cycle greenhouse gas emissions are 47-65% larger than vehicle operation for autos, 43% for buses, 39-150% for rail, and 24-31% for air systems per passenger mile traveled. The energy and greenhouse gas increases are primarily due to vehicle manufacturing and maintenance, infrastructure construction, and fuel production. For criteria air pollutants, life-cycle components often dominate total emissions and can be a magnitude larger than operational counterparts. Per passenger mile traveled, total SO2 emissions (between 350 and 460 mg) are 19-27 times larger than operational emissions as a result of electricity generation in vehicle manufacturing, infrastructure construction, and fuel production. NOx emissions increase 50-73% for automobiles, 24% for buses, 13-1300% for rail, and 19-24% for aircraft. Non-tailpipe VOCs are 27-40% of total automobile, 71-95% of rail, and 51-81% of air total emissions. Infrastructure and parking construction are major components of total PM10 emissions resulting in total emissions over three times larger than operational emissions for autos and even larger for many rail systems and aircraft (the major contributor being emissions from hot-mix asphalt plants and concrete production). Infrastructure construction and operation as well as vehicle manufacturing increase total CO emissions by 5-17 times from tailpipe performance for rail and 3-9 times for air. A case study comparing the environmental performance of metropolitan regions is presented as an application of the inventory results. The San Francisco Bay Area, Chicago, and New York City are evaluated capturing passenger transportation life-cycle energy inputs and greenhouse gas and criteria air pollutant emissions. The regions are compared between off-peak and peak travel as well as personal and public transit. Additionally, healthcare externalities are computed from vehicle emissions. It is estimated that life-cycle energy varies from 6.3 MJ/PMT in the Bay Area to 5.7 MJ/PMT in Chicago and 5.3 MJ/PMT in New York for an average trip. Life-cycle GHG emissions range from 480 g CO2e/PMT in the Bay Area to 440 g CO2e/PMT for Chicago and 410 g CO 2e/PMT in New York. CAP emissions vary depending on the pollutant with differences as large as 25% between regions. Life-cycle CAP emissions are between 11% and 380% larger than their operational counterparts. Peak travel, with typical higher riderships, does not necessarily environmentally outperform off-peak travel due to the large share of auto PMT and less than ideal operating conditions during congestion. The social costs of travel range from ¢51 (in ¢2007) per auto passenger per trip during peak in New York to ¢6 per public transit passenger per trip during peak hours in the Bay Area and New York. Average personal transit costs are around ¢30 while public transit ranges from ¢28 to ¢41. (Abstract shortened by UMI.)

  5. Environmental assessment of waste incineration in a life-cycle-perspective (EASEWASTE).

    PubMed

    Riber, Christian; Bhander, Gurbakhash S; Christensen, Thomas H

    2008-02-01

    A model for life-cycle assessment of waste incinerators is described and applied to a case study for illustrative purposes. As life-cycle thinking becomes more integrated into waste management, quantitative tools for assessing waste management technologies are needed. The presented model is a module in the life-cycle assessment model EASEWASTE. The module accounts for all uses of materials and energy and credits the incinerator for electricity and heat recovered. The energy recovered is defined by the user as a percentage of the energy produced, calculated on the lower heating value of the wet waste incinerated. Emissions are either process-specific (related to the amount of waste incinerated) or input-specific (related to the composition of the waste incinerated), while mass transfer to solid outputs are governed by transfer coefficients specified by the user. The waste input is defined by 48 material fractions and their chemical composition. The model was used to quantify the environmental performance of the incineration plant in Aarhus, Denmark before and after its upgrading in terms of improved flue gas cleaning and energy recovery. It demonstrated its usefulness in identifying the various processes and substances that contributed to environmental loadings as well as to environmental savings. The model was instrumental in demonstrating the importance of the energy recovery system not only for electricity but also heat from the incinerator.

  6. Customer-centered careflow modeling based on guidelines.

    PubMed

    Huang, Biqing; Zhu, Peng; Wu, Cheng

    2012-10-01

    In contemporary society, customer-centered health care, which stresses customer participation and long-term tailored care, is inevitably becoming a trend. Compared with the hospital or physician-centered healthcare process, the customer-centered healthcare process requires more knowledge and modeling such a process is extremely complex. Thus, building a care process model for a special customer is cost prohibitive. In addition, during the execution of a care process model, the information system should have flexibility to modify the model so that it adapts to changes in the healthcare process. Therefore, supporting the process in a flexible, cost-effective way is a key challenge for information technology. To meet this challenge, first, we analyze various kinds of knowledge used in process modeling, illustrate their characteristics, and detail their roles and effects in careflow modeling. Secondly, we propose a methodology to manage a lifecycle of the healthcare process modeling, with which models could be built gradually with convenience and efficiency. In this lifecycle, different levels of process models are established based on the kinds of knowledge involved, and the diffusion strategy of these process models is designed. Thirdly, architecture and prototype of the system supporting the process modeling and its lifecycle are given. This careflow system also considers the compatibility of legacy systems and authority problems. Finally, an example is provided to demonstrate implementation of the careflow system.

  7. The circle of life: A cross-cultural comparison of children's attribution of life-cycle traits.

    PubMed

    Burdett, Emily R R; Barrett, Justin L

    2016-06-01

    Do children attribute mortality and other life-cycle traits to all minded beings? The present study examined whether culture influences young children's ability to conceptualize and differentiate human beings from supernatural beings (such as God) in terms of life-cycle traits. Three-to-5-year-old Israeli and British children were questioned whether their mother, a friend, and God would be subject to various life-cycle processes: Birth, death, ageing, existence/longevity, and parentage. Children did not anthropomorphize but differentiated among human and supernatural beings, attributing life-cycle traits to humans, but not to God. Although 3-year-olds differentiated significantly among agents, 5-year-olds attributed correct life-cycle traits more consistently than younger children. The results also indicated some cross-cultural variation in these attributions. Implications for biological conceptual development are discussed. © 2015 The British Psychological Society.

  8. Idea Paper: The Lifecycle of Software for Scientific Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubey, Anshu; McInnes, Lois C.

    The software lifecycle is a well researched topic that has produced many models to meet the needs of different types of software projects. However, one class of projects, software development for scientific computing, has received relatively little attention from lifecycle researchers. In particular, software for end-to-end computations for obtaining scientific results has received few lifecycle proposals and no formalization of a development model. An examination of development approaches employed by the teams implementing large multicomponent codes reveals a great deal of similarity in their strategies. This idea paper formalizes these related approaches into a lifecycle model for end-to-end scientific applicationmore » software, featuring loose coupling between submodels for development of infrastructure and scientific capability. We also invite input from stakeholders to converge on a model that captures the complexity of this development processes and provides needed lifecycle guidance to the scientific software community.« less

  9. ECONOMIC EVALUATION OF CO2 STORAGE AND SINK ENHANCEMENT OPTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bert Bock; Richard Rhudy; Howard Herzog

    2003-02-01

    This project developed life-cycle costs for the major technologies and practices under development for CO{sub 2} storage and sink enhancement. The technologies evaluated included options for storing captured CO{sub 2} in active oil reservoirs, depleted oil and gas reservoirs, deep aquifers, coal beds, and oceans, as well as the enhancement of carbon sequestration in forests and croplands. The capture costs for a nominal 500 MW{sub e} integrated gasification combined cycle plant from an earlier study were combined with the storage costs from this study to allow comparison among capture and storage approaches as well as sink enhancements.

  10. Life-cycle assessment of selected management options for air pollution control residues from waste incineration.

    PubMed

    Fruergaard, Thilde; Hyks, Jiri; Astrup, Thomas

    2010-09-15

    Based on available technology and emission data seven selected management options for air-pollution-control (APC) residues from waste incineration were evaluated by life-cycle assessment (LCA) using the EASEWASTE model. Scenarios were evaluated with respect to both non-toxicity impact categories (e.g. global warming) and toxicity related impact categories (e.g. ecotoxicity and human toxicity). The assessment addressed treatment and final placement of 1 tonne of APC residue in seven scenarios: 1) direct landfilling without treatment (baseline), 2) backfilling in salt mines, 3) neutralization of waste acid, 4) filler material in asphalt, 5) Ferrox stabilization, 6) vitrification, and 7) melting with automobile shredder residues (ASR). The management scenarios were selected as examples of the wide range of different technologies available worldwide while at the same time using realistic technology data. Results from the LCA were discussed with respect to importance of: energy consumption/substitution, material substitution, leaching, air emissions, time horizon aspects for the assessment, and transportation distances. The LCA modeling showed that thermal processes were associated with the highest loads in the non-toxicity categories (energy consumption), while differences between the remaining alternatives were small and generally considered insignificant. In the toxicity categories, all treatment/utilization options were significantly better than direct landfilling without treatment (lower leaching), although the thermal processes had somewhat higher impacts than the others options (air emissions). Transportation distances did not affect the overall ranking of the management alternatives. Copyright 2010 Elsevier B.V. All rights reserved.

  11. 75 FR 14669 - Regulation of Fuels and Fuel Additives: Changes to Renewable Fuel Standard Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-26

    ...Under the Clean Air Act Section 211(o), as amended by the Energy Independence and Security Act of 2007 (EISA), the Environmental Protection Agency is required to promulgate regulations implementing changes to the Renewable Fuel Standard program. The revised statutory requirements specify the volumes of cellulosic biofuel, biomass-based diesel, advanced biofuel, and total renewable fuel that must be used in transportation fuel. This action finalizes the regulations that implement the requirements of EISA, including the cellulosic, biomass- based diesel, advanced biofuel, and renewable fuel standards that will apply to all gasoline and diesel produced or imported in 2010. The final regulations make a number of changes to the current Renewable Fuel Standard program while retaining many elements of the compliance and trading system already in place. This final rule also implements the revised statutory definitions and criteria, most notably the new greenhouse gas emission thresholds for renewable fuels and new limits on renewable biomass feedstocks. This rulemaking marks the first time that greenhouse gas emission performance is being applied in a regulatory context for a nationwide program. As mandated by the statute, our greenhouse gas emission assessments consider the full lifecycle emission impacts of fuel production from both direct and indirect emissions, including significant emissions from land use changes. In carrying out our lifecycle analysis we have taken steps to ensure that the lifecycle estimates are based on the latest and most up-to-date science. The lifecycle greenhouse gas assessments reflected in this rulemaking represent significant improvements in analysis based on information and data received since the proposal. However, we also recognize that lifecycle GHG assessment of biofuels is an evolving discipline and will continue to revisit our lifecycle analyses in the future as new information becomes available. EPA plans to ask the National Academy of Sciences for assistance as we move forward. Based on current analyses we have determined that ethanol from corn starch will be able to comply with the required greenhouse gas (GHG) threshold for renewable fuel. Similarly, biodiesel can be produced to comply with the 50% threshold for biomass-based diesel, sugarcane with the 50% threshold for advanced biofuel and multiple cellulosic-based fuels with their 60% threshold. Additional fuel pathways have also been determined to comply with their thresholds. The assessment for this rulemaking also indicates the increased use of renewable fuels will have important environmental, energy and economic impacts for our Nation.

  12. Materials Lifecycle and Environmental Consideration at NASA

    NASA Technical Reports Server (NTRS)

    Clark-Ingram, Marceia

    2010-01-01

    The aerospace community faces tremendous challenges with continued availability of existing material supply chains during the lifecycle of a program. Many obsolescence drivers affect the availability of materials: environmental safety ahd health regulations, vendor and supply economics, market sector demands,and natural disasters. Materials selection has become increasingly more critical when designing aerospace hardware. NASA and DoD conducted a workshop with subject matter experts to discuss issues and define solutions for materials selections during the lifecycle phases of a product/system/component. The three primary lifecycle phases were: Conceptualization/Design, Production & Sustainment, and End of life / Reclamation. Materials obsolescence and pollution prevention considerations were explored for the aforementioned lifecycle phases. The recommended solutions from the workshop are being presented.

  13. Deep space network software cost estimation model

    NASA Technical Reports Server (NTRS)

    Tausworthe, R. C.

    1981-01-01

    A parametric software cost estimation model prepared for Jet PRopulsion Laboratory (JPL) Deep Space Network (DSN) Data System implementation tasks is described. The resource estimation mdel modifies and combines a number of existing models. The model calibrates the task magnitude and difficulty, development environment, and software technology effects through prompted responses to a set of approximately 50 questions. Parameters in the model are adjusted to fit JPL software life-cycle statistics.

  14. Life-Cycle Costs of Alternative ICBM Second Stage Designs

    DTIC Science & Technology

    1992-09-01

    of Logistics, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, 1992. 34. Horngren , Charles T. and George Foster. Cost Accounting ; A...Managerial Emphasis (Sixth Edition). Englewood Cliffs NJ: Prentice-Hall, Inc., 1987. 35. Horngren , Charles T. and George Foster. Cost Accounting ; A...our research. We would also like to thank those involved with the 1991 Small ICBM Operations and Support cost estimate. Your assistance with the O& S

  15. A program-level management system for the life cycle environmental and economic assessment of complex building projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Chan-Joong; Kim, Jimin; Hong, Taehoon

    Climate change has become one of the most significant environmental issues, of which about 40% come from the building sector. In particular, complex building projects with various functions have increased, which should be managed from a program-level perspective. Therefore, this study aimed to develop a program-level management system for the life-cycle environmental and economic assessment of complex building projects. The developed system consists of three parts: (i) input part: database server and input data; (ii) analysis part: life cycle assessment and life cycle cost; and (iii) result part: microscopic analysis and macroscopic analysis. To analyze the applicability of the developedmore » system, this study selected ‘U’ University, a complex building project consisting of research facility and residential facility. Through value engineering with experts, a total of 137 design alternatives were established. Based on these alternatives, the macroscopic analysis results were as follows: (i) at the program-level, the life-cycle environmental and economic cost in ‘U’ University were reduced by 6.22% and 2.11%, respectively; (ii) at the project-level, the life-cycle environmental and economic cost in research facility were reduced 6.01% and 1.87%, respectively; and those in residential facility, 12.01% and 3.83%, respective; and (iii) for the mechanical work at the work-type-level, the initial cost was increased 2.9%; but the operation and maintenance phase was reduced by 20.0%. As a result, the developed system can allow the facility managers to establish the operation and maintenance strategies for the environmental and economic aspects from a program-level perspective. - Highlights: • A program-level management system for complex building projects was developed. • Life-cycle environmental and economic assessment can be conducted using the system. • The design alternatives can be analyzed from the microscopic perspective. • The system can be used to establish the optimal O&M strategy at the program-level. • It can be applied to any other country or sector in the global environment.« less

  16. Building Maintenance and Repair Data for Life-Cycle Cost Analyses: Electrical Systems.

    DTIC Science & Technology

    1991-05-01

    Repair Data for Life-Cycle Cost Analyses: Electrical Systems by Edgar S. Neely Robert D. Neathammer James R. Stirn Robert P. Winkler This research...systems have been developed to assist planners in preparing DD Form 1391 documentation, designers in life-cycle cost component selection, and maintainers...Maintenance and Repair Data for Life-Cycle Cost Analyses: RDTE dated 1980 Electrical Systems REIMB 1984 - 1989 6. AUTH4OR(S) Edgar S. Neely, Robert D

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, Casey J.; Brigantic, Robert T.; Keating, Douglas H.

    There is a need to develop and demonstrate technical approaches for verifying potential future agreements to limit and reduce total warhead stockpiles. To facilitate this aim, warhead monitoring systems employ both concepts of operations (CONOPS) and technologies. A systems evaluation approach can be used to assess the relative performance of CONOPS and technologies in their ability to achieve monitoring system objectives which include: 1) confidence that a treaty accountable item (TAI) initialized by the monitoring system is as declared; 2) confidence that there is no undetected diversion from the monitoring system; and 3) confidence that a TAI is dismantled asmore » declared. Although there are many quantitative methods that can be used to assess system performance for the above objectives, this paper focuses on a simulation perspective primarily for the ability to support analysis of the probabilities that are used to define operating characteristics of CONOPS and technologies. This paper describes a discrete event simulation (DES) model, comprised of three major sub-models: including TAI lifecycle flow, monitoring activities, and declaration behavior. The DES model seeks to capture all processes and decision points associated with the progressions of virtual TAIs, with notional characteristics, through the monitoring system from initialization through dismantlement. The simulation updates TAI progression (i.e., whether the generated test objects are accepted and rejected at the appropriate points) all the way through dismantlement. Evaluation of TAI lifecycles primarily serves to assess how the order, frequency, and combination of functions in the CONOPS affect system performance as a whole. It is important, however, to note that discrete event simulation is also capable (at a basic level) of addressing vulnerabilities in the CONOPS and interdependencies between individual functions as well. This approach is beneficial because it does not rely on complex mathematical models, but instead attempts to recreate the real world system as a decision and event driven simulation. Finally, because the simulation addresses warhead confirmation, chain of custody, and warhead dismantlement in a modular fashion, a discrete-event model could be easily adapted to multiple CONOPS for the exploration of a large number of “what if” scenarios.« less

  18. An Exploration of the Relationship between Improvements in Energy Efficiency and Life-Cycle Energy and Carbon Emissions using the BIRDS Low-Energy Residential Database.

    PubMed

    Kneifel, Joshua; O'Rear, Eric; Webb, David; O'Fallon, Cheyney

    2018-02-01

    To conduct a more complete analysis of low-energy and net-zero energy buildings that considers both the operating and embodied energy/emissions, members of the building community look to life-cycle assessment (LCA) methods. This paper examines differences in the relative impacts of cost-optimal energy efficiency measure combinations depicting residential buildings up to and beyond net-zero energy consumption on operating and embodied flows using data from the Building Industry Reporting and Design for Sustainability (BIRDS) Low-Energy Residential Database. Results indicate that net-zero performance leads to a large increase in embodied flows (over 40%) that offsets some of the reductions in operational flows, but overall life-cycle flows are still reduced by over 60% relative to the state energy code. Overall, building designs beyond net-zero performance can partially offset embodied flows with negative operational flows by replacing traditional electricity generation with solar production, but would require an additional 8.34 kW (18.54 kW in total) of due south facing solar PV to reach net-zero total life-cycle flows. Such a system would meet over 239% of operational consumption of the most energy efficient design considered in this study and over 116% of a state code-compliant building design in its initial year of operation.

  19. Bus Lifecycle Cost Model for Federal Land Management Agencies.

    DOT National Transportation Integrated Search

    2011-09-30

    The Bus Lifecycle Cost Model is a spreadsheet-based planning tool that estimates capital, operating, and maintenance costs for various bus types over the full lifecycle of the vehicle. The model is based on a number of operating characteristics, incl...

  20. Economics of lifecycle analysis and greenhouse gas regulations

    NASA Astrophysics Data System (ADS)

    Rajagopal, Deepak

    2009-11-01

    Interest in alternatives to fossil fuels has risen significantly during the current decade. Although a variety of different alternative technologies have experienced rapid growth, biofuels have emerged as the main alternative transportation fuel. Energy policies in several countries envision blending biofuels with fossil fuels as the main mechanism to increase energy independence and energy security. Climate change policies in several regions are also riding on the same hope for reducing emissions from transportation. The main advantage of biofuels is that they are technically mature, cheaper to produce and more convenient to use relative to other alternative fuels. However, the impact of current biofuels on the environment and on economic welfare, is controversial. In my dissertation I focus on three topics relevant to future energy and climate policies. The first is the economics of lifecycle analysis and its application to the assessment of environmental impact of biofuel policies. The potential of biofuel for reducing greenhouse gas emissions was brought to the fore by research that relied on the methodology called lifecycle analysis (LCA). Subsequent research however showed that the traditional LCA fails to account for market-mediated effects that will arise when biofuel technologies are scaled up. These effects can increase or decrease emissions at each stage of the lifecycle. I discuss how the LCA will differ depending on the scale, a single firm versus a region and why LCA of the future should be distinguished from LCA of the past. I describe some approaches for extending the LCA methodology so that it can be applied under these different situations. The second topic is the economic impact of biofuels. Biofuels reduce the demand for oil and increase the demand for agricultural goods. To high income countries which tend to be both large importers of oil and large exporters of agricultural goods, this implies two major benefits. One of the one hand it reduces the market power of OPEC (Oil Producing and Exporting Countries), a cartel of nations which is the single largest oil exporting entity in the world, and is an entity considered unreliable. On the other hand, it reduces the demand for domestic farm subsidies. At the same crops comprise a small share of the retail price of food. As a result, the expected negative impact of biofuel was at worst a small increase in the retail price of food. However, the food price inflation in the year 2008 suggests that the negative impact on food consumers was significantly higher than expected and also outweighed the impact fuel consumers. I estimate the effect on biofuels on food and oil prices and compare them to other estimates in the literature and also relate these to prices observed in the real world. The third topic is the economics of greenhouse gas regulations of transportation fuels. Climate change policies such as United Nations' Kyoto protocol, European Union Emission Trading Scheme, and the Regional Greenhouse Gas Initiative in the US north-east mandate an aggregate emission target, called a cap and allow regulated entities to trade responsibilities for abatement. Furthermore, these policies have generally and sometimes exclusively targeted the electricity and industrial sector for emission reduction. However, the Low carbon fuel standard and Renewable fuel standard are two policies about to be implemented by the State of California and the US federal government, which exclusively target the transportation sector for emission reduction. Furthermore, these regulations mandate emission intensity target for fuels rather than aggregate emission reduction. I compare the cost-effectiveness of these two types of regulations, namely, aggregate emission caps versus emission intensity standards and discuss how prices, output and emissions vary between these two types of policies.

  1. Integrating emerging earth science technologies into disaster risk management: an enterprise architecture approach

    NASA Astrophysics Data System (ADS)

    Evans, J. D.; Hao, W.; Chettri, S. R.

    2014-12-01

    Disaster risk management has grown to rely on earth observations, multi-source data analysis, numerical modeling, and interagency information sharing. The practice and outcomes of disaster risk management will likely undergo further change as several emerging earth science technologies come of age: mobile devices; location-based services; ubiquitous sensors; drones; small satellites; satellite direct readout; Big Data analytics; cloud computing; Web services for predictive modeling, semantic reconciliation, and collaboration; and many others. Integrating these new technologies well requires developing and adapting them to meet current needs; but also rethinking current practice to draw on new capabilities to reach additional objectives. This requires a holistic view of the disaster risk management enterprise and of the analytical or operational capabilities afforded by these technologies. One helpful tool for this assessment, the GEOSS Architecture for the Use of Remote Sensing Products in Disaster Management and Risk Assessment (Evans & Moe, 2013), considers all phases of the disaster risk management lifecycle for a comprehensive set of natural hazard types, and outlines common clusters of activities and their use of information and computation resources. We are using these architectural views, together with insights from current practice, to highlight effective, interrelated roles for emerging earth science technologies in disaster risk management. These roles may be helpful in creating roadmaps for research and development investment at national and international levels.

  2. Green and sustainable remediation practices in Federal agency cleanup programs

    DOE PAGES

    Martino, Louis E.; Dona, Carol L.; Dicerbo, Jerry; ...

    2016-10-27

    Federal agencies manage hazardous waste sites under the assumption that environmental restoration will improve the environment by returning contaminated groundwater to beneficial use, removing waste residuals from a site, treating discharges to surface water, and reducing overall risks to human health and the environment. However, the associated time-consuming and expensive operations, extensive performance monitoring, and post-closure care can lead to unanticipated environmental impacts due to both the technological nature of these cleanup activities and the related protracted timelines. These life-cycle impacts can and should be included in the evaluation of remedial alternatives. Increasingly, Federal agencies are considering these life-cycle impacts—more » variously referred to as ‘‘environmental footprint analysis,’’ ‘‘sustainable remediation,’’ ‘‘green remediation,’’ ‘‘greener remediation,’’ and ‘‘green and sustainable remediation’’— when evaluating environmental restoration approaches. For the purposes of this paper, this concept will be referred to as ‘‘green and sustainable remediation’’ (GSR), with application of GSR assumed to take place across the cleanup life cycle, from the investigation phase through site closeout. This paper will discuss the history of GSR, what GSR is, who is implementing GSR, and GSR metrics. Finally, the paper will also discuss two approaches to GSR, using case studies to understand and implement it; the first will be a qualitative approach, and the second a more detailed quantitative approach« less

  3. Green and sustainable remediation practices in Federal agency cleanup programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, Louis E.; Dona, Carol L.; Dicerbo, Jerry

    Federal agencies manage hazardous waste sites under the assumption that environmental restoration will improve the environment by returning contaminated groundwater to beneficial use, removing waste residuals from a site, treating discharges to surface water, and reducing overall risks to human health and the environment. However, the associated time-consuming and expensive operations, extensive performance monitoring, and post-closure care can lead to unanticipated environmental impacts due to both the technological nature of these cleanup activities and the related protracted timelines. These life-cycle impacts can and should be included in the evaluation of remedial alternatives. Increasingly, Federal agencies are considering these life-cycle impacts—more » variously referred to as ‘‘environmental footprint analysis,’’ ‘‘sustainable remediation,’’ ‘‘green remediation,’’ ‘‘greener remediation,’’ and ‘‘green and sustainable remediation’’— when evaluating environmental restoration approaches. For the purposes of this paper, this concept will be referred to as ‘‘green and sustainable remediation’’ (GSR), with application of GSR assumed to take place across the cleanup life cycle, from the investigation phase through site closeout. This paper will discuss the history of GSR, what GSR is, who is implementing GSR, and GSR metrics. Finally, the paper will also discuss two approaches to GSR, using case studies to understand and implement it; the first will be a qualitative approach, and the second a more detailed quantitative approach« less

  4. Basics of Antibody Phage Display Technology.

    PubMed

    Ledsgaard, Line; Kilstrup, Mogens; Karatt-Vellatt, Aneesh; McCafferty, John; Laustsen, Andreas H

    2018-06-09

    Antibody discovery has become increasingly important in almost all areas of modern medicine. Different antibody discovery approaches exist, but one that has gained increasing interest in the field of toxinology and antivenom research is phage display technology. In this review, the lifecycle of the M13 phage and the basics of phage display technology are presented together with important factors influencing the success rates of phage display experiments. Moreover, the pros and cons of different antigen display methods and the use of naïve versus immunized phage display antibody libraries is discussed, and selected examples from the field of antivenom research are highlighted. This review thus provides in-depth knowledge on the principles and use of phage display technology with a special focus on discovery of antibodies that target animal toxins.

  5. Advanced steam power plant concepts with optimized life-cycle costs: A new approach for maximum customer benefit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seiter, C.

    1998-07-01

    The use of coal power generation applications is currently enjoying a renaissance. New highly efficient and cost-effective plant concepts together with environmental protection technologies are the main factors in this development. In addition, coal is available on the world market at attractive prices and in many places it is more readily available than gas. At the economical leading edge, standard power plant concepts have been developed to meet the requirements of emerging power markets. These concepts incorporate the high technological state-of-the-art and are designed to achieve lowest life-cycle costs. Low capital cost, fuel costs and operating costs in combination withmore » shortest lead times are the main assets that make these plants attractive especially for IPPs and Developers. Other aspects of these comprehensive concepts include turnkey construction and the willingness to participate in BOO/BOT projects. One of the various examples of such a concept, the 2 x 610-MW Paiton Private Power Project Phase II in Indonesia, is described in this paper. At the technological leading edge, Siemens has always made a major contribution and was pacemaker for new developments in steam power plant technology. Modern coal-fired steam power plants use computer-optimized process and plant design as well as advanced materials, and achieve efficiencies exceeding 45%. One excellent example of this high technology is the world's largest lignite-fired steam power plant Schwarze Pumpe in Germany, which is equipped with two 800 MW Siemens steam turbine generators with supercritical steam parameters. The world's largest 50-Hz single-shaft turbine generator with supercritical steam parameters rated at 1025 MW for the Niederaussem lignite-fired steam power plant in Germany is a further example of the sophisticated Siemens steam turbine technology and sets a new benchmark in this field.« less

  6. Energy-Efficient Underwater Surveillance by Means of Hybrid Aquacopters

    DTIC Science & Technology

    2014-12-01

    life-cycle analysis, photovoltaic device maximum power point tracking (MPPT), and surface treatments for antifouling of the solar cells can be...108 3. Power Conversion and Storage...15 Figure 10. Shallow Water Analysis and Forecast System product, displaying regional ocean current vectors overlaying a sea surface

  7. Supporting Technology for Chain of Custody of Nuclear Weapons and Materials throughout the Dismantlement and Disposition Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunch, Kyle J.; Jones, Anthony M.; Ramuhalli, Pradeep

    The ratification and ongoing implementation of the New START Treaty have been widely regarded as noteworthy global security achievements for both the Obama Administration and the Putin (formerly Medvedev) regime. But deeper cuts that move beyond the United States and Russia to engage the P-5 and other nuclear weapons possessor states are envisioned under future arms control regimes, and are indeed required for the P-5 in accordance with their Article VI disarmament obligations in the Nuclear Non-Proliferation Treaty. Future verification needs will include monitoring the cessation of production of new fissile material for weapons, monitoring storage of warhead components andmore » fissile materials and verifying dismantlement of warheads, pits, secondary stages, and other materials. A fundamental challenge to implementing a nuclear disarmament regime is the ability to thwart unauthorized material diversion throughout the dismantlement and disposition process through strong chain of custody implementation. Verifying the declared presence, or absence, of nuclear materials and weapons components throughout the dismantlement and disposition lifecycle is a critical aspect of the disarmament process. From both the diplomatic and technical perspectives, verification under these future arms control regimes will require new solutions. Since any acceptable verification technology must protect sensitive design information and attributes to prevent the release of classified or other proliferation-sensitive information, non-nuclear non-sensitive modalities may provide significant new verification tools which do not require the use of additional information barriers. Alternative verification technologies based upon electromagnetic and acoustics could potentially play an important role in fulfilling the challenging requirements of future verification regimes. For example, researchers at the Pacific Northwest National Laboratory (PNNL) have demonstrated that low frequency electromagnetic signatures of sealed metallic containers can be used to rapidly confirm the presence of specific components on a yes/no basis without revealing classified information. PNNL researchers have also used ultrasonic measurements to obtain images of material microstructures which may be used as templates or unique identifiers of treaty-limited items. Such alternative technologies are suitable for application in various stages of weapons dismantlement and often include the advantage of an inherent information barrier due to the inability to extract classified weapon design information from the collected data. As a result, these types of technologies complement radiation-based verification methods for arms control. This article presents an overview of several alternative verification technologies that are suitable for supporting a future, broader and more intrusive arms control regime that spans the nuclear weapons disarmament lifecycle. The general capabilities and limitations of each verification modality are discussed and example technologies are presented. Potential applications are defined in the context of the nuclear material and weapons lifecycle. Example applications range from authentication (e.g., tracking and signatures within the chain of custody from downloading through weapons storage, unclassified templates and unique identification) to verification of absence and final material disposition.« less

  8. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies.

    PubMed

    Hertwich, Edgar G; Gibon, Thomas; Bouman, Evert A; Arvesen, Anders; Suh, Sangwon; Heath, Garvin A; Bergesen, Joseph D; Ramirez, Andrea; Vega, Mabel I; Shi, Lei

    2015-05-19

    Decarbonization of electricity generation can support climate-change mitigation and presents an opportunity to address pollution resulting from fossil-fuel combustion. Generally, renewable technologies require higher initial investments in infrastructure than fossil-based power systems. To assess the tradeoffs of increased up-front emissions and reduced operational emissions, we present, to our knowledge, the first global, integrated life-cycle assessment (LCA) of long-term, wide-scale implementation of electricity generation from renewable sources (i.e., photovoltaic and solar thermal, wind, and hydropower) and of carbon dioxide capture and storage for fossil power generation. We compare emissions causing particulate matter exposure, freshwater ecotoxicity, freshwater eutrophication, and climate change for the climate-change-mitigation (BLUE Map) and business-as-usual (Baseline) scenarios of the International Energy Agency up to 2050. We use a vintage stock model to conduct an LCA of newly installed capacity year-by-year for each region, thus accounting for changes in the energy mix used to manufacture future power plants. Under the Baseline scenario, emissions of air and water pollutants more than double whereas the low-carbon technologies introduced in the BLUE Map scenario allow a doubling of electricity supply while stabilizing or even reducing pollution. Material requirements per unit generation for low-carbon technologies can be higher than for conventional fossil generation: 11-40 times more copper for photovoltaic systems and 6-14 times more iron for wind power plants. However, only two years of current global copper and one year of iron production will suffice to build a low-carbon energy system capable of supplying the world's electricity needs in 2050.

  9. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies

    PubMed Central

    Hertwich, Edgar G.; Gibon, Thomas; Bouman, Evert A.; Arvesen, Anders; Heath, Garvin A.; Bergesen, Joseph D.; Ramirez, Andrea; Vega, Mabel I.; Shi, Lei

    2015-01-01

    Decarbonization of electricity generation can support climate-change mitigation and presents an opportunity to address pollution resulting from fossil-fuel combustion. Generally, renewable technologies require higher initial investments in infrastructure than fossil-based power systems. To assess the tradeoffs of increased up-front emissions and reduced operational emissions, we present, to our knowledge, the first global, integrated life-cycle assessment (LCA) of long-term, wide-scale implementation of electricity generation from renewable sources (i.e., photovoltaic and solar thermal, wind, and hydropower) and of carbon dioxide capture and storage for fossil power generation. We compare emissions causing particulate matter exposure, freshwater ecotoxicity, freshwater eutrophication, and climate change for the climate-change-mitigation (BLUE Map) and business-as-usual (Baseline) scenarios of the International Energy Agency up to 2050. We use a vintage stock model to conduct an LCA of newly installed capacity year-by-year for each region, thus accounting for changes in the energy mix used to manufacture future power plants. Under the Baseline scenario, emissions of air and water pollutants more than double whereas the low-carbon technologies introduced in the BLUE Map scenario allow a doubling of electricity supply while stabilizing or even reducing pollution. Material requirements per unit generation for low-carbon technologies can be higher than for conventional fossil generation: 11–40 times more copper for photovoltaic systems and 6–14 times more iron for wind power plants. However, only two years of current global copper and one year of iron production will suffice to build a low-carbon energy system capable of supplying the world's electricity needs in 2050. PMID:25288741

  10. Information system life-cycle and documentation standards, volume 1

    NASA Technical Reports Server (NTRS)

    Callender, E. David; Steinbacher, Jody

    1989-01-01

    The Software Management and Assurance Program (SMAP) Information System Life-Cycle and Documentation Standards Document describes the Version 4 standard information system life-cycle in terms of processes, products, and reviews. The description of the products includes detailed documentation standards. The standards in this document set can be applied to the life-cycle, i.e., to each phase in the system's development, and to the documentation of all NASA information systems. This provides consistency across the agency as well as visibility into the completeness of the information recorded. An information system is software-intensive, but consists of any combination of software, hardware, and operational procedures required to process, store, or transmit data. This document defines a standard life-cycle model and content for associated documentation.

  11. Real cost : user manual.

    DOT National Transportation Integrated Search

    2004-05-01

    This manual provides basic instruction for using RealCost, software that was developed by the Federal Highway Administration (FHWA) to support the application of life-cycle cost analysis (LCCA) in the pavement project-level decisionmaking process. Th...

  12. Land-Use Requirements for Solar Power Plants in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ong, S.; Campbell, C.; Denholm, P.

    2013-06-01

    This report provides data and analysis of the land use associated with utility-scale ground-mounted solar facilities, defined as installations greater than 1 MW. We begin by discussing standard land-use metrics as established in the life-cycle assessment literature and then discuss their applicability to solar power plants. We present total and direct land-use results for various solar technologies and system configurations, on both a capacity and an electricity-generation basis. The total area corresponds to all land enclosed by the site boundary. The direct area comprises land directly occupied by solar arrays, access roads, substations, service buildings, and other infrastructure. As ofmore » the third quarter of 2012, the solar projects we analyze represent 72% of installed and under-construction utility-scale PV and CSP capacity in the United States.« less

  13. Reducing Life-Cycle Costs.

    ERIC Educational Resources Information Center

    Roodvoets, David L.

    2003-01-01

    Presents factors to consider when determining roofing life-cycle costs, explaining that costs do not tell the whole story; discussing components that should go into the decision (cost, maintenance, energy use, and environmental costs); and concluding that important elements in reducing life-cycle costs include energy savings through increased…

  14. Ensuring Sample Quality for Biomarker Discovery Studies - Use of ICT Tools to Trace Biosample Life-cycle.

    PubMed

    Riondino, Silvia; Ferroni, Patrizia; Spila, Antonella; Alessandroni, Jhessica; D'Alessandro, Roberta; Formica, Vincenzo; Della-Morte, David; Palmirotta, Raffaele; Nanni, Umberto; Roselli, Mario; Guadagni, Fiorella

    2015-01-01

    The growing demand of personalized medicine marked the transition from an empirical medicine to a molecular one, aimed at predicting safer and more effective medical treatment for every patient, while minimizing adverse effects. This passage has emphasized the importance of biomarker discovery studies, and has led sample availability to assume a crucial role in biomedical research. Accordingly, a great interest in Biological Bank science has grown concomitantly. In biobanks, biological material and its accompanying data are collected, handled and stored in accordance with standard operating procedures (SOPs) and existing legislation. Sample quality is ensured by adherence to SOPs and sample whole life-cycle can be recorded by innovative tracking systems employing information technology (IT) tools for monitoring storage conditions and characterization of vast amount of data. All the above will ensure proper sample exchangeability among research facilities and will represent the starting point of all future personalized medicine-based clinical trials. Copyright© 2015, International Institute of Anticancer Research (Dr. John G. Delinasios), All rights reserved.

  15. Life-cycle nitrogen trifluoride emissions from photovoltaics.

    PubMed

    Fthenakis, Vasilis; Clark, Daniel O; Moalem, Mehran; Chandler, Phil; Ridgeway, Robert G; Hulbert, Forrest E; Cooper, David B; Maroulis, Peter J

    2010-11-15

    Amorphous- and nanocrystalline-silicon thin-film photovoltaic modules are made in high-throughput manufacturing lines that necessitate quickly cleaning the reactor. Using NF₃, a potent greenhouse gas, as the cleaning agent triggered concerns as recent reports reveal that the atmospheric concentrations of this gas have increased significantly. We quantified the life-cycle emissions of NF₃ in photovoltaic (PV) manufacturing, on the basis of actual measurements at the facilities of a major producer of NF₃ and of a manufacturer of PV end-use equipment. From these, we defined the best practices and technologies that are the most likely to keep worldwide atmospheric concentrations of NF₃ at very low radiative forcing levels. For the average U.S. insolation and electricity-grid conditions, the greenhouse gas (GHG) emissions from manufacturing and using NF₃ in current PV a-Si and tandem a-Si/nc-Si facilities add 2 and 7 g CO₂(eq)/kWh, which can be displaced within the first 1-4 months of the PV system life.

  16. On knowledge transfer management as a learning process for ad hoc teams

    NASA Astrophysics Data System (ADS)

    Iliescu, D.

    2017-08-01

    Knowledge management represents an emerging domain becoming more and more important. Concepts like knowledge codification and personalisation, knowledge life-cycle, social and technological dimensions, knowledge transfer and learning management are integral parts. Focus goes here in the process of knowledge transfer for the case of ad hoc teams. The social dimension of knowledge transfer plays an important role. No single individual actors involved in the process, but a collective one, representing the organisation. It is critically important for knowledge to be managed from the life-cycle point of view. A complex communication network needs to be in place to supports the process of knowledge transfer. Two particular concepts, the bridge tie and transactive memory, would eventually enhance the communication. The paper focuses on an informational communication platform supporting the collaborative work on knowledge transfer. The platform facilitates the creation of a topic language to be used in knowledge modelling, storage and reuse, by the ad hoc teams.

  17. Integrated Power and Attitude Control Systems for Space Station

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.; Eisenhaure, D. B.

    1985-01-01

    Integrated Power and Attitude Control Systems (IPACS) studies performed over a decade ago established the feasibility of simultaneously storing electrical energy in wheels and utilizing the resulting momentum for spacecraft attitude control. It was shown that such a system possessed many advantages over other contemporary energy storage and attitude control systems in many applications. More recent technology advances in composite rotors, magnetic bearings, and power control electronics have triggered new optimism regarding the feasibility and merits of such a system. The paper presents the results of a recent study whose focus was to define an advanced IPACS and to evaluate its merits for the Space Station application. A system and component design concept is developed to establish the system performance capability. A system level trade study, including life-cycle costing, is performed to define the merits of the system relative to two other candidate systems. It is concluded that an advanced IPACS concept is not only feasible, but offers substantial savings in mass, and life-cycle cost.

  18. Terrestrial Planet Finder Coronagraph Optical Modeling

    NASA Technical Reports Server (NTRS)

    Basinger, Scott A.; Redding, David C.

    2004-01-01

    The Terrestrial Planet Finder Coronagraph will rely heavily on modeling and analysis throughout its mission lifecycle. Optical modeling is especially important, since the tolerances on the optics as well as scattered light suppression are critical for the mission's success. The high contrast imaging necessary to observe a planet orbiting a distant star requires new and innovative technologies to be developed and tested, and detailed optical modeling provides predictions for evaluating design decisions. It also provides a means to develop and test algorithms designed to actively suppress scattered light via deformable mirrors and other techniques. The optical models are used in conjunction with structural and thermal models to create fully integrated optical/structural/thermal models that are used to evaluate dynamic effects of disturbances on the overall performance of the coronagraph. The optical models we have developed have been verified on the High Contrast Imaging Testbed. Results of the optical modeling verification and the methods used to perform full three-dimensional near-field diffraction analysis are presented.

  19. Lignin Valorization: Emerging Approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckham, Gregg T

    Lignin, an aromatic biopolymer found in plant cell walls, is a key component of lignocellulosic biomass and generally utilized for heat and power. However, lignin's chemical composition makes it an attractive source for biological and catalytic conversion to fuels and chemicals. Bringing together experts from biology, catalysis, engineering, analytical chemistry, and techno-economic/life-cycle analysis, Lignin Valorization presents a comprehensive, interdisciplinary picture of how lignocellulosic biorefineries could potentially employ lignin valorization technologies. Chapters will specifically focus on the production of fuels and chemicals from lignin and topics covered include (i) methods for isolating lignin in the context of the lignocellulosic biorefinery, (ii)more » thermal, chemo-catalytic, and biological methods for lignin depolymerization, (iii) chemo-catalytic and biological methods for upgrading lignin, (iv) characterization of lignin, and (v) techno-economic and life-cycle analysis of integrated processes to utilize lignin in an integrated biorefinery. The book provides the latest breakthroughs and challenges in upgrading lignin to fuels and chemicals for graduate students and researchers in academia, governmental laboratories, and industry interested in biomass conversion.« less

  20. Design and Implementation of a Comprehensive Web-based Survey for Ovarian Cancer Survivorship with an Analysis of Prediagnosis Symptoms via Text Mining

    PubMed Central

    Sun, Jiayang; Bogie, Kath M; Teagno, Joe; Sun, Yu-Hsiang (Sam); Carter, Rebecca R; Cui, Licong; Zhang, Guo-Qiang

    2014-01-01

    Ovarian cancer (OvCa) is the most lethal gynecologic disease in the United States, with an overall 5-year survival rate of 44.5%, about half of the 89.2% for all breast cancer patients. To identify factors that possibly contribute to the long-term survivorship of women with OvCa, we conducted a comprehensive online Ovarian Cancer Survivorship Survey from 2009 to 2013. This paper presents the design and implementation of our survey, introduces its resulting data source, the OVA-CRADLE™ (Clinical Research Analytics and Data Lifecycle Environment), and illustrates a sample application of the survey and data by an analysis of prediagnosis symptoms, using text mining and statistics. The OVA-CRADLE™ is an application of our patented Physio-MIMI technology, facilitating Web-based access, online query and exploration of data. The prediagnostic symptoms and association of early-stage OvCa diagnosis with endometriosis provide potentially important indicators for future studies in this field. PMID:25861211

  1. Risk assessment of the National Institute of Standards and Technology petroleum crude oil standard water accommodated fraction: further application of a copepod-based, full life-cycle bioassay.

    PubMed

    Bejarano, Adriana C; Chandler, G Thomas; He, Lijian; Cary, Tawnya L; Ferry, John L

    2006-07-01

    The U.S. National Institute of Standards and Technology (NIST) petroleum crude oil was used to generate NIST water-accommodated hydrocarbon fractions (WAFs) for standardized assessment of crude oil effects on the copepod Amphiascus tenuiremis. Effects were assessed using a 96-well microplate, full life-cycle test. Briefly, nauplii (age, 24 h) were reared individually to adults (n > or =120 nauplii/treatment) in microplate wells containing 200 microl of treatment solution (seawater control [0%] or 10, 30, 50, or 100% NIST-WAF). Nauplii were monitored through development to adulthood, and mature virgin male:female pairs mated in wells containing original treatments (<30 d). A second bioassay using 0, 10, 30, and 50% WAFs (n > or =60 nauplii/treatment) was conducted to assess the effects of ultraviolet (UV) light on naupliar endpoints (<16 d). In the first experiment, nauplius-to-copepodite survival in exposures to 100% WAF was 27% +/- 6% lower than in controls (92% +/- 1%), but copepodite-to-adult survival was greater than 90% across all treatments. Analysis of development curves showed that nauplii in the 10% WAF developed into copepodites 25% faster, whereas nauplii in the 50 and 100% WAFs developed 17% slower, than controls. Copepodite development into male and female copepods was significantly delayed (2 and 4 d, respectively) in the 100% WAF compared to controls. Although none of the WAF exposures had significant effects on fertilization success or total viable production (p > 0.05), embryo hatching in the 100% WAF was significantly less (70.0% +/- 21.2%) than that in controls (87.0% +/- 19.4%). Results from the UV bioassay showed that relatively short exposures (<14 d) to 30 and 50% WAFs in the presence of UV light caused negative effects on copepod survival and development. Naupliar-stage survival and developmental endpoints were the most sensitive indicators of exposure to the NIST crude oil WAF

  2. LIFE-CYCLE IMPACT ASSESSMENT DEMONSTRATION FOR THE BGU-24

    EPA Science Inventory

    The primary goal of this project was to develop and demonstrate a life-cycle impact assessment (LCIA) approach using existing life-cycle inventory (LCI) data on one of the propellants, energetics, and pyrotechnic (PEP) materials of interest to the U.S. Department of Defense (DoD)...

  3. Health economics and outcomes research within drug development: challenges and opportunities for reimbursement and market access within biopharma research.

    PubMed

    van Nooten, Floortje; Holmstrom, Stefan; Green, Julia; Wiklund, Ingela; Odeyemi, Isaac A O; Wilcox, Teresa K

    2012-06-01

    Healthcare decision makers who determine funding for new medical technologies depend on manufacturers to provide evidence of the technology's efficacy, safety and cost-effectiveness. Constrained budgets and increasing reliance on formal health technology assessment (HTA) have created an abundance of external hurdles that manufacturers must navigate to ensure successful product commercialization. These demands have pushed pharmaceutical companies to adjust their internal structures to coordinate generation of appropriate evidence. In this article we summarize internal and external opportunities for manufacturers to establish a foundation of evidence for successful market access, starting in Phase I of development and continuing throughout the post-approval product lifecycle. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Putting Carbon in its Place: What You Can Do (LBNL Science at the Theater)

    ScienceCinema

    Walker, Iain; Regnier, Cindy [LBNL, Environmental Energy Technologies Division; Miller, Jeff; Masanet, Eric

    2018-06-28

    Science at the Theater: Berkeley Lab scientists reveal the latest research on how to reduce your carbon footprint at home, work, and when you shop. Learn how even small choices can have a big impact. Iain Walker's research focuses on optimizing the energy use and comfort of buildings. He's a staff scientist in the Energy Performance of Buildings Group, which is part of Berkeley Lab's Environmen...tal Energy Technologies Division. He's also executive editor of Home Energy Magazine. Cindy Regnier is a Project Manager in the Environmental Energy Technologies Division at Berkeley Lab. She has over 13 years of mechanical engineering design experience, with a focus on low-energy buildings. Her projects have included several LEED Platinum buildings and the design of a 200,000 sf carbon neutral, net-zero energy science museum in San Francisco. Eric Masanet is Acting Deputy Leader of the International Energy Studies Group at Berkeley Lab. His research focuses on life-cycle assessments and energy efficiency analysis. He holds a joint research appointment in the Institute of Transportation Studies at UC Berkeley.

  5. C-130 Advanced Technology Center wing box conceptual design/cost study

    NASA Technical Reports Server (NTRS)

    Whitehead, R. S.; Foreman, C. R.; Silva, K.

    1992-01-01

    A conceptual design was developed by Northrop/LTV for an advanced C-130 Center Wing Box (CWB) which could meet the severe mission requirements of the SOF C-130 aircraft. The goals for the advanced technology CWB relative to the current C-130H CWB were: (1) the same acquisition cost; (2) lower operating support costs; (3) equal or lower weight; (4) a 30,000 hour service life for the SOF mission; and (5) minimum impact on the current maintenance concept. Initially, the structural arrangement, weight, external and internal loads, fatigue spectrum, flutter envelope and design criteria for the SOF C-130 aircraft CWB were developed. An advanced materials assessment was then conducted to determine the suitability of advanced materials for a 1994 production availability and detailed trade studies were performed on candidate CWB conceptual designs. Finally, a life-cycle cost analysis was performed on the advanced CWB. The study results showed that a hybrid composite/metallic CWB could meet the severe SOF design requirements, reduce the CWB weight by 14 pct., and was cost effective relative to an all metal beefed up C-130H CWB.

  6. A decision-directed approach for prioritizing research into the impact of nanomaterials on the environment and human health

    NASA Astrophysics Data System (ADS)

    Linkov, Igor; Bates, Matthew E.; Canis, Laure J.; Seager, Thomas P.; Keisler, Jeffrey M.

    2011-12-01

    The emergence of nanotechnology has coincided with an increased recognition of the need for new approaches to understand and manage the impact of emerging technologies on the environment and human health. Important elements in these new approaches include life-cycle thinking, public participation and adaptive management of the risks associated with emerging technologies and new materials. However, there is a clear need to develop a framework for linking research on the risks associated with nanotechnology to the decision-making needs of manufacturers, regulators, consumers and other stakeholder groups. Given the very high uncertainties associated with nanomaterials and their impact on the environment and human health, research resources should be directed towards creating the knowledge that is most meaningful to these groups. Here, we present a model (based on multi-criteria decision analysis and a value of information approach) for prioritizing research strategies in a way that is responsive to the recommendations of recent reports on the management of the risk and impact of nanomaterials on the environment and human health.

  7. Emissions from U.S. waste collection vehicles.

    PubMed

    Maimoun, Mousa A; Reinhart, Debra R; Gammoh, Fatina T; McCauley Bush, Pamela

    2013-05-01

    This research is an in-depth environmental analysis of potential alternative fuel technologies for waste collection vehicles. Life-cycle emissions, cost, fuel and energy consumption were evaluated for a wide range of fossil and bio-fuel technologies. Emission factors were calculated for a typical waste collection driving cycle as well as constant speed. In brief, natural gas waste collection vehicles (compressed and liquid) fueled with North-American natural gas had 6-10% higher well-to-wheel (WTW) greenhouse gas (GHG) emissions relative to diesel-fueled vehicles; however the pump-to-wheel (PTW) GHG emissions of natural gas waste collection vehicles averaged 6% less than diesel-fueled vehicles. Landfill gas had about 80% lower WTW GHG emissions relative to diesel. Biodiesel waste collection vehicles had between 12% and 75% lower WTW GHG emissions relative to diesel depending on the fuel source and the blend. In 2011, natural gas waste collection vehicles had the lowest fuel cost per collection vehicle kilometer travel. Finally, the actual driving cycle of waste collection vehicles consists of repetitive stops and starts during waste collection; this generates more emissions than constant speed driving. Published by Elsevier Ltd.

  8. Integrated testing and verification system for research flight software

    NASA Technical Reports Server (NTRS)

    Taylor, R. N.

    1979-01-01

    The MUST (Multipurpose User-oriented Software Technology) program is being developed to cut the cost of producing research flight software through a system of software support tools. An integrated verification and testing capability was designed as part of MUST. Documentation, verification and test options are provided with special attention on real-time, multiprocessing issues. The needs of the entire software production cycle were considered, with effective management and reduced lifecycle costs as foremost goals.

  9. Diminishing Manufacturing Sources and Material Shortages (DMSMS) Guidebook

    DTIC Science & Technology

    2006-11-01

    www.dau.mil/registrar/enroll.aspx DoD Acquisition, Technology, and Logistics (AT&L) Integrated Framework Chart (IFC) lifecycle activities and...ROI) and Break Even Point ( BEP ). Two analysts could look at the same data and generate different outcomes if they use different assumptions or...principal output of the BCA is the Break Even Point ( BEP ), which shows the payback period of an alternative. It is found from a plot of the

  10. Software Assurance Best Practices for Air Force Weapon and Information Technology Systems - Are We Bleeding

    DTIC Science & Technology

    2008-03-01

    in applications is software assurance. There are many subtle variations to the software assurance definition (Goertzel, et al ., 2007), but the DoD...Gary McGraw (2006), and Thorsten 18 Schneider (2006). Goertzel, et al . (2007), lists and compares several security-enhanced software development...detailed by Goertzel, et al ., is the Microsoft Trustworthy Computing Security Development Lifecycle (SDL), shown in the following figure: Figure 6

  11. Articulating the Resources for Business Process Analysis and Design

    ERIC Educational Resources Information Center

    Jin, Yulong

    2012-01-01

    Effective process analysis and modeling are important phases of the business process management lifecycle. When many activities and multiple resources are involved, it is very difficult to build a correct business process specification. This dissertation provides a resource perspective of business processes. It aims at a better process analysis…

  12. The Funding and Organization of Adult Continuing Education Research in Britain: Trends and Prospects.

    ERIC Educational Resources Information Center

    Field, John; Taylor, Richard

    1995-01-01

    A research review identified major adult/continuing education trends in Britain: vocational education/training, university-business-industry interaction, educational needs of the disadvantaged, nonformal settings, life-cycle analysis, access to education, articulation, social purpose and radical adult education, and analysis of adult education in…

  13. Economic Incentives for Cybersecurity: Using Economics to Design Technologies Ready for Deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vishik, Claire; Sheldon, Frederick T; Ott, David

    Cybersecurity practice lags behind cyber technology achievements. Solutions designed to address many problems may and do exist but frequently cannot be broadly deployed due to economic constraints. Whereas security economics focuses on the cost/benefit analysis and supply/demand, we believe that more sophisticated theoretical approaches, such as economic modeling, rarely utilized, would derive greater societal benefits. Unfortunately, today technologists pursuing interesting and elegant solutions have little knowledge of the feasibility for broad deployment of their results and cannot anticipate the influences of other technologies, existing infrastructure, and technology evolution, nor bring the solutions lifecycle into the equation. Additionally, potentially viable solutionsmore » are not adopted because the risk perceptions by potential providers and users far outweighs the economic incentives to support introduction/adoption of new best practices and technologies that are not well enough defined. In some cases, there is no alignment with redominant and future business models as well as regulatory and policy requirements. This paper provides an overview of the economics of security, reviewing work that helped to define economic models for the Internet economy from the 1990s. We bring forward examples of potential use of theoretical economics in defining metrics for emerging technology areas, positioning infrastructure investment, and building real-time response capability as part of software development. These diverse examples help us understand the gaps in current research. Filling these gaps will be instrumental for defining viable economic incentives, economic policies, regulations as well as early-stage technology development approaches, that can speed up commercialization and deployment of new technologies in cybersecurity.« less

  14. LIFE-CYCLE IMPACT ASSESSMENT DEMONSTRATION FOR THE GBU-24

    EPA Science Inventory

    The primary goal of this project was to develop and demonstrate a life-cycle impact assessment (LCIA) approach using existing life-cycle inventory (LCI) data on one of the propellants, energetics, and pyro-technic (PEP) materials of interest to the U.S. Department of Defense (DoD...

  15. Life-cycle energy and emissions inventories for motorcycles, diesel automobiles, school buses, electric buses, Chicago rail, and New York City rail

    DOT National Transportation Integrated Search

    2009-05-01

    The development of life-cycle energy and emissions factors for passenger transportation modes : is critical for understanding the total environmental costs of travel. Previous life-cycle studies : have focused on the automobile given its dominating s...

  16. Enterprise Information Lifecycle Management

    DTIC Science & Technology

    2011-01-01

    Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing...regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington...Need for Information Lifecycle Management .......................................................... 6 3.3 Challenges of Information Lifecycle

  17. Knowledge based system verification and validation as related to automation of space station subsystems: Rationale for a knowledge based system lifecycle

    NASA Technical Reports Server (NTRS)

    Richardson, Keith; Wong, Carla

    1988-01-01

    The role of verification and validation (V and V) in software has been to support and strengthen the software lifecycle and to ensure that the resultant code meets the standards of the requirements documents. Knowledge Based System (KBS) V and V should serve the same role, but the KBS lifecycle is ill-defined. The rationale of a simple form of the KBS lifecycle is presented, including accommodation to certain critical KBS differences from software development.

  18. Life-Cycle Analysis of Alternative Aviation Fuels in GREET

    DOT National Transportation Integrated Search

    2012-06-01

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model was expanded to include aviation fuel production pathways and aircraft operations, allowing researchers to examine the environmental sustainability of various a...

  19. Joint Removal Implications : Thermal Analysis and Life-Cycle Cost

    DOT National Transportation Integrated Search

    2018-04-01

    Deck joints are causing significant bridge deterioration and maintenance problems for Departments of Transportation (DOTs). Colorado State University researchers partnered with the Colorado DOT to analyze the effects of temperature change and thermal...

  20. A 20 Year Lifecycle Study for Launch Facilities at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Kolody, Mark R.; Li. Wenyan; Hintze, Paul E.; Calle, Luz-Marina

    2009-01-01

    The lifecycle cost analysis was based on corrosion costs for the Kennedy Space Center's Launch Complexes and Mobile Launch Platforms. The first step in the study involved identifying the relevant assets that would be included. Secondly, the identification and collection of the corrosion control cost data for the selected assets was completed. Corrosion control costs were separated into four categories. The sources of cost included the NASA labor for civil servant personnel directly involved in overseeing and managing corrosion control of the assets, United Space Alliance (USA) contractual requirements for performing planned corrosion control tasks, USA performance of unplanned corrosion control tasks, and Testing and Development. Corrosion control operations performed under USA contractual requirements were the most significant contributors to the total cost of corrosion. The operations include the inspection of the pad, routine maintenance of the pad, medium and large scale blasting and repainting activities, and the repair and replacement of structural metal elements. Cost data was collected from the years between 2001 and 2007. These costs were then extrapolated to future years to calculate the 20 year lifecycle costs.

  1. The Potential of RFID Technology in the Textile and Clothing Industry: Opportunities, Requirements and Challenges

    NASA Astrophysics Data System (ADS)

    Legnani, Elena; Cavalieri, Sergio; Pinto, Roberto; Dotti, Stefano

    In the current competitive environment, companies need to extensively exploit the use of advanced technologies in order to develop a sustainable advantage, enhance their operational efficiency and better serve customers. In this context, RFID technology has emerged as a valid support for the company progress and its value is becoming more and more apparent. In particular, the textile and clothing industry, characterised by short life-cycles , quick response production , fast distribution, erratic customer preferences and impulsive purchasing, is one of the sectors which can extensively benefit from the RFID technology. However, actual applications are still very limited, especially in the upstream side of the supply network. This chapter provides an insight into the main benefits and potentials of this technology and highlights the main issues which are currently inhibiting its large scale development in the textile and clothing industry. The experience of two industry-academia projects and the relative fallouts are reported.

  2. Hybrid life-cycle environmental and cost inventory of sewage sludge treatment and end-use scenarios: a case study from China.

    PubMed

    Murray, Ashley; Horvath, Arpad; Nelson, Kara L

    2008-05-01

    Sewage sludge management poses environmental, economic, and political challenges for wastewater treatment plants and municipalities around the globe. To facilitate more informed and sustainable decision making, this study used life-cycle inventory (LCI) to expand upon previous process-based LCIs of sewage sludge treatmenttechnologies. Additionally, the study evaluated an array of productive end-use options for treated sewage sludge, such as fertilizer and as an input into construction materials, to determine how the sustainability of traditional manufacturing processes changes with sludge as a replacement for other raw inputs. The inclusion of the life-cycle of necessary inputs (such as lime) used in sludge treatment significantly impacts the sustainability profiles of different treatment and end-use schemes. Overall, anaerobic digestion is generally the optimal treatment technology whereas incineration, particularly if coal-fired, is the most environmentally and economically costly. With respect to sludge end use, offsets are greatest for the use of sludge as fertilizer, but all of the productive uses of sludge can improve the sustainability of conventional manufacturing practices. The results are intended to help inform and guide decisions about sludge handling for existing wastewater treatment plants and those that are still in the planning phase in cities around the world. Although additional factors must be considered when selecting a sludge treatment and end-use scheme, this study highlights how a systems approach to planning can contribute significantly to improving overall environmental sustainability.

  3. Life-cycle implications of hydrogen fuel cell electric vehicle technology for medium- and heavy-duty trucks

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Yeon; Elgowainy, Amgad; Kotz, Andrew; Vijayagopal, Ram; Marcinkoski, Jason

    2018-07-01

    This study provides a comprehensive and up-to-date life-cycle comparison of hydrogen fuel cell electric trucks (FCETs) and their conventional diesel counterparts in terms of energy use and air emissions, based on the ensemble of well-established methods, high-fidelity vehicle dynamic simulations, and real-world vehicle test data. For the centralized steam methane reforming (SMR) pathway, hydrogen FCETs reduce life-cycle or well-to-wheel (WTW) petroleum energy use by more than 98% compared to their diesel counterparts. The reduction in WTW air emissions for gaseous hydrogen (G.H2) FCETs ranges from 20 to 45% for greenhouse gases, 37-65% for VOC, 49-77% for CO, 62-83% for NOx, 19-43% for PM10, and 27-44% for PM2.5, depending on vehicle weight classes and truck types. With the current U.S. average electricity generation mix, FCETs tend to create more WTW SOx emissions than their diesel counterparts, mainly because of the upstream emissions related to electricity use for hydrogen compression/liquefaction. Compared to G.H2, liquid hydrogen (L.H2) FCETs generally provide smaller WTW emissions reductions. For both G.H2 and L.H2 pathways for FCETs, because of electricity consumption for compression and liquefaction, spatio-temporal variations of electricity generation can affect the WTW results. FCETs retain the WTW emission reduction benefits, even when considering aggressive diesel engine efficiency improvement.

  4. Life-Cycle Implications of Hydrogen Fuel Cell Electric Vehicle Technology for Medium- and Heavy-Duty Trucks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotz, Andrew J; Le, Dong-Yeon; Elgowainy, Amgad

    This study provides a comprehensive and up-to-date life-cycle comparison of hydrogen fuel cell electric trucks (FCETs) and their conventional diesel counterparts in terms of energy use and air emissions, based on the ensemble of well-established methods, high-fidelity vehicle dynamic simulations, and real-world vehicle test data. For the centralized steam methane reforming (SMR) pathway, hydrogen FCETs reduce life-cycle or well-to-wheel (WTW) petroleum energy use by more than 98% compared to their diesel counterparts. The reduction in WTW air emissions for gaseous hydrogen (G.H2) FCETs ranges from 20 to 45% for greenhouse gases, 37-65% for VOC, 49-77% for CO, 62-83% for NOx,more » 19-43% for PM10, and 27-44% for PM2.5, depending on vehicle weight classes and truck types. With the current U.S. average electricity generation mix, FCETs tend to create more WTW SOx emissions than their diesel counterparts, mainly because of the upstream emissions related to electricity use for hydrogen compression/liquefaction. Compared to G.H2, liquid hydrogen (L.H2) FCETs generally provide smaller WTW emissions reductions. For both G.H2 and L.H2 pathways for FCETs, because of electricity consumption for compression and liquefaction, spatio-temporal variations of electricity generation can affect the WTW results. FCETs retain the WTW emission reduction benefits, even when considering aggressive diesel engine efficiency improvement.« less

  5. Using Teamcenter engineering software for a successive punching tool lifecycle management

    NASA Astrophysics Data System (ADS)

    Blaga, F.; Pele, A.-V.; Stǎnǎşel, I.; Buidoş, T.; Hule, V.

    2015-11-01

    The paper presents studies and researches results of the implementation of Teamcenter (TC) integrated management of a product lifecycle, in a virtual enterprise. The results are able to be implemented also in a real enterprise. The product was considered a successive punching and cutting tool, designed to materialize a metal sheet part. The paper defines the technical documentation flow (flow of information) in the process of constructive computer aided design of the tool. After the design phase is completed a list of parts is generated containing standard or manufactured components (BOM, Bill of Materials). The BOM may be exported to MS Excel (.xls) format and can be transferred to other departments of the company in order to supply the necessary materials and resources to achieve the final product. This paper describes the procedure to modify or change certain dimensions of sheet metal part obtained by punching. After 3D and 2D design, the digital prototype of punching tool moves to following lifecycle phase of the manufacturing process. For each operation of the technological process the corresponding phases are described in detail. Teamcenter enables to describe manufacturing company structure, underlying workstations that carry out various operations of manufacturing process. The paper revealed that the implementation of Teamcenter PDM in a company, improves efficiency of managing product information, eliminating time working with search, verification and correction of documentation, while ensuring the uniqueness and completeness of the product data.

  6. Preliminary development of an advanced modular pressure relief cushion: Testing and user evaluation.

    PubMed

    Freeto, Tyler; Mitchell, Steven J; Bogie, Kath M

    2018-02-01

    Effective pressure relief cushions are identified as a core assistive technology need by the World Health Organization Global Cooperation on Assistive Technology. High quality affordable wheelchair cushions could provide effective pressure relief for many individuals with limited access to advanced assistive technology. Value driven engineering (VdE) principles were employed to develop a prototype modular cushion. Low cost dynamically responsive gel balls were arranged in a close packed array and seated in bilayer foam for containment and support. Two modular cushions, one with high compliance balls and one with moderate compliance balls were compared with High Profile and Low Profile Roho ® and Jay ® Medical 2 cushions. ISO 16480-2 biomechanical standardized tests were applied to assess cushion performance. A preliminary materials cost analysis was carried out. A prototype modular cushion was evaluated by 12 participants who reported satisfaction using a questionnaire based on the Quebec User Evaluation of Satisfaction with Assistive Technology (QUEST 2.0) instrument. Overall the modular cushions performed better than, or on par with, the most widely prescribed commercially available cushions under ISO 16480-2 testing. Users rated the modular cushion highly for overall appearance, size and dimensions, comfort, safety, stability, ease of adjustment and general ease of use. Cost-analysis indicated that every modular cushion component a could be replaced several times and still maintain cost-efficacy over the complete cushion lifecycle. A VdE modular cushion has the potential provide effective pressure relief for many users at a low lifetime cost. Copyright © 2017. Published by Elsevier Ltd.

  7. Well-to-refinery emissions and net-energy analysis of China's crude-oil supply

    NASA Astrophysics Data System (ADS)

    Masnadi, Mohammad S.; El-Houjeiri, Hassan M.; Schunack, Dominik; Li, Yunpo; Roberts, Samori O.; Przesmitzki, Steven; Brandt, Adam R.; Wang, Michael

    2018-03-01

    Oil is China's second-largest energy source, so it is essential to understand the country's greenhouse gas emissions from crude-oil production. Chinese crude supply is sourced from numerous major global petroleum producers. Here, we use a per-barrel well-to-refinery life-cycle analysis model with data derived from hundreds of public and commercial sources to model the Chinese crude mix and the upstream carbon intensities and energetic productivity of China's crude supply. We generate a carbon-denominated supply curve representing Chinese crude-oil supply from 146 oilfields in 20 countries. The selected fields are estimated to emit between 1.5 and 46.9 g CO2eq MJ-1 of oil, with volume-weighted average emissions of 8.4 g CO2eq MJ-1. These estimates are higher than some existing databases, illustrating the importance of bottom-up models to support life-cycle analysis databases. This study provides quantitative insight into China's energy policy and the economic and environmental implications of China's oil consumption.

  8. Assessing contributory risk using economic input-output life-cycle analysis.

    PubMed

    Miller, Ian; Shelly, Michael; Jonmaire, Paul; Lee, Richard V; Harbison, Raymond D

    2005-04-01

    The contribution of consumer purchases of non-essential products to environmental pollution is characterized. Purchase decisions by consumers induce a complex sequence of economy-wide production interactions that influence the production and consumption of chemicals and subsequent exposure and possible public health risks. An economic input-output life-cycle analysis (EIO-LCA) was used to link resource consumption and production by manufacturers to corresponding environmental impacts. Using the US Department of Commerce's input-output tables together with the US Environmental Protection Agency's Toxics Release Inventory and AIRData databases, the economy-wide air discharges resulting from purchases of household appliances, motor homes, and games and toys were quantified. The economic and environmental impacts generated from a hypothetical 10,000 US dollar purchase for selected consumer items were estimated. The analysis shows how purchases of seemingly benign consumer products increase the output of air pollutants along the supply chain and contribute to the potential risks associated with environmental chemical exposures to both consumers and non-consumers alike.

  9. Is Lifecycle Analysis Unconstitutional? New Frontiers in the Legal Battle Over Climate Science

    NASA Astrophysics Data System (ADS)

    Cullenward, D.; Weiskopf, D.

    2012-12-01

    Recent federal court decisions have established that judges should not second-guess government agency findings related to basic climate change science [1,2]. Nevertheless, the legal battle over climate science is far from over. In the absence of federal legislation, climate policy opponents are developing new arguments to challenge the authority of states to regulate greenhouse gas emissions. This presentation describes a recent challenge to California's climate policy and provides an example of a strategic scientific response. In December 2011, a federal district court ruled that California's Low Carbon Fuel Standard ("LCFS") is unconstitutional [3]. The LCFS regulations employ lifecycle analysis to set a limit on the carbon intensity of fuels sold in California. According to the court, however, the policy's use of lifecycle analysis "facially discriminates" against interstate commerce. Because the court found that nondiscriminatory alternatives were available, it held the policy unconstitutional. If upheld, this reasoning would severely limit the ability of states to address climate change. On appeal to the Ninth Circuit, the Stanford Environmental Law Clinic represented climate scientists [4] and lifecycle analysis scientists [5] in support of upholding the LCFS. These briefs addressed the necessity of lifecycle analysis in the context of transportation fuels, and also presented evidence from the climate impacts literature that supports the state's interest in pursuing climate policy. Although written for the court and targeted at specific legal questions, both briefs were developed in the style of scientific assessments, based on published literature [6,7] and feedback from reviewers. Because courts lack the expertise to evaluate arguments about scientific issues, there is an ongoing need for climate scientists to participate in litigation. Perhaps most importantly, an effective response requires interdisciplinary collaboration between lawyers and scientists. Briefs must be framed to persuade judges and address specific legal questions, but must also accurately reflect the state of scientific evidence, including an accurate depiction of scientific uncertainty. Using the Clinic's experience in the LCFS case as an example, we reflect on opportunities for the scientific and legal communities to strategically collaborate in the future. References [1] Massachusetts v. EPA, 549 U.S. 497, 533 (2007). [2] Coalition for Responsible Regulation v. EPA, No. 09-1322, at *26 (D.C. Cir. June 26, 2012). [3] Rocky Mountain Farmers Union v. Goldstene, 843 F.Supp. 2d 1071, at *14 (E.D. Cal. 2011). [4] Brief for Ken Caldeira, Ph.D., et al. as Amici Curiae supporting Defendant-Appellants, Rocky Mountain Farmers Union v. Goldstene, No. 12-15131 (9th Cir. June 15, 2012). [5] Brief for Michael Wang, Ph.D., et al. as Amici Curiae supporting Defendant-Appellants, Rocky Mountain Farmers Union v. Goldstene, No. 12-15131 (9th Cir. June 15, 2012). [6] National Research Council (2011). America's Climate Choices. [7] D.R. Cayan et al. (eds.) (2011). California Second Assessment: New Climate Impact Studies and Implications for Adaptation. Climatic Change 109 (Supp. 1).

  10. Methodology Development for Assessment of Spaceport Technology Returns and Risks

    NASA Technical Reports Server (NTRS)

    Joglekar, Prafulla; Zapata, Edgar

    2001-01-01

    As part of Kennedy Space Center's (KSC's) challenge to open the space frontier, new spaceport technologies must be developed, matured and successfully transitioned to operational systems. R&D investment decisions can be considered from multiple perspectives. Near mid and far term technology horizons must be understood. Because a multitude of technology investment opportunities are available, we must identify choices that promise the greatest likelihood of significant lifecycle At the same time, the costs and risks of any choice must be well understood and balanced against its potential returns The problem is not one of simply rank- ordering projects in terms of their desirability. KSC wants to determine a portfolio of projects that simultaneously satisfies multiple goals, such as getting the biggest bang for the buck, supporting projects that may be too risky for private funding, staying within annual budget cycles without foregoing the requirements of a long term technology vision, and ensuring the development of a diversity of technologies that, support the variety of operational functions involved in space transportation. This work aims to assist in the development of in methods and techniques that support strategic technology investment decisions and ease the process of determining an optimal portfolio of spaceport R&D investments. Available literature on risks and returns to R&D is reviewed and most useful pieces are brought to the attention of the Spaceport Technology Development Office (STDO). KSC's current project management procedures are reviewed. It is found that the "one size fits all" nature of KSC's existing procedures and project selection criteria is not conducive to prudent decision-making. Directions for improving KSC's - procedures and criteria are outlined. With help of a contractor, STDO is currently developing a tool, named Change Management Analysis Tool (CMAT)/ Portfolio Analysis Tool (PAT), to assist KSC's R&D portfolio determination. A critical review of CMAT/PAT is undertaken. Directions for the improvement of this tool are provided. STDO and KSC intend to follow up on many, if not all, of the recommendations provided.

  11. Application of Fiber Optic Instrumentation

    NASA Technical Reports Server (NTRS)

    Richards, William Lance; Parker, Allen R., Jr.; Ko, William L.; Piazza, Anthony; Chan, Patrick

    2012-01-01

    Fiber optic sensing technology has emerged in recent years offering tremendous advantages over conventional aircraft instrumentation systems. The advantages of fiber optic sensors over their conventional counterparts are well established; they are lighter, smaller, and can provide enormous numbers of measurements at a fraction of the total sensor weight. After a brief overview of conventional and fiber-optic sensing technology, this paper presents an overview of the research that has been conducted at NASA Dryden Flight Research Center in recent years to advance this promising new technology. Research and development areas include system and algorithm development, sensor characterization and attachment, and real-time experimentally-derived parameter monitoring for ground- and flight-based applications. The vision of fiber optic smart structure technology is presented and its potential benefits to aerospace vehicles throughout the lifecycle, from preliminary design to final retirement, are presented.

  12. Analysis of the development of missile-borne IR imaging detecting technologies

    NASA Astrophysics Data System (ADS)

    Fan, Jinxiang; Wang, Feng

    2017-10-01

    Today's infrared imaging guiding missiles are facing many challenges. With the development of targets' stealth, new-style IR countermeasures and penetrating technologies as well as the complexity of the operational environments, infrared imaging guiding missiles must meet the higher requirements of efficient target detection, capability of anti-interference and anti-jamming and the operational adaptability in complex, dynamic operating environments. Missileborne infrared imaging detecting systems are constrained by practical considerations like cost, size, weight and power (SWaP), and lifecycle requirements. Future-generation infrared imaging guiding missiles need to be resilient to changing operating environments and capable of doing more with fewer resources. Advanced IR imaging detecting and information exploring technologies are the key technologies that affect the future direction of IR imaging guidance missiles. Infrared imaging detecting and information exploring technologies research will support the development of more robust and efficient missile-borne infrared imaging detecting systems. Novelty IR imaging technologies, such as Infrared adaptive spectral imaging, are the key to effectively detect, recognize and track target under the complicated operating and countermeasures environments. Innovative information exploring techniques for the information of target, background and countermeasures provided by the detection system is the base for missile to recognize target and counter interference, jamming and countermeasure. Modular hardware and software development is the enabler for implementing multi-purpose, multi-function solutions. Uncooled IRFPA detectors and High-operating temperature IRFPA detectors as well as commercial-off-the-shelf (COTS) technology will support the implementing of low-cost infrared imaging guiding missiles. In this paper, the current status and features of missile-borne IR imaging detecting technologies are summarized. The key technologies and its development trends of missiles' IR imaging detecting technologies are analyzed.

  13. Carbon footprint estimator, phase II : volume II - technical appendices.

    DOT National Transportation Integrated Search

    2014-03-01

    The GASCAP model was developed to provide a software tool for analysis of the life-cycle GHG : emissions associated with the construction and maintenance of transportation projects. This phase : of development included techniques for estimating emiss...

  14. Carbon footprint estimator, phase II : volume I - GASCAP model.

    DOT National Transportation Integrated Search

    2014-03-01

    The GASCAP model was developed to provide a software tool for analysis of the life-cycle GHG : emissions associated with the construction and maintenance of transportation projects. This phase : of development included techniques for estimating emiss...

  15. Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, H.; Wang, M.; Elgowainy, A.

    Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors inmore » the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life-cycle modeling with GREET.« less

  16. Constellation Program Life-cycle Cost Analysis Model (LCAM)

    NASA Technical Reports Server (NTRS)

    Prince, Andy; Rose, Heidi; Wood, James

    2008-01-01

    The Constellation Program (CxP) is NASA's effort to replace the Space Shuttle, return humans to the moon, and prepare for a human mission to Mars. The major elements of the Constellation Lunar sortie design reference mission architecture are shown. Unlike the Apollo Program of the 1960's, affordability is a major concern of United States policy makers and NASA management. To measure Constellation affordability, a total ownership cost life-cycle parametric cost estimating capability is required. This capability is being developed by the Constellation Systems Engineering and Integration (SE&I) Directorate, and is called the Lifecycle Cost Analysis Model (LCAM). The requirements for LCAM are based on the need to have a parametric estimating capability in order to do top-level program analysis, evaluate design alternatives, and explore options for future systems. By estimating the total cost of ownership within the context of the planned Constellation budget, LCAM can provide Program and NASA management with the cost data necessary to identify the most affordable alternatives. LCAM is also a key component of the Integrated Program Model (IPM), an SE&I developed capability that combines parametric sizing tools with cost, schedule, and risk models to perform program analysis. LCAM is used in the generation of cost estimates for system level trades and analyses. It draws upon the legacy of previous architecture level cost models, such as the Exploration Systems Mission Directorate (ESMD) Architecture Cost Model (ARCOM) developed for Simulation Based Acquisition (SBA), and ATLAS. LCAM is used to support requirements and design trade studies by calculating changes in cost relative to a baseline option cost. Estimated costs are generally low fidelity to accommodate available input data and available cost estimating relationships (CERs). LCAM is capable of interfacing with the Integrated Program Model to provide the cost estimating capability for that suite of tools.

  17. Product-related research: how research can contribute to successful life-cycle management.

    PubMed

    Sandner, Peter; Ziegelbauer, Karl

    2008-05-01

    Declining productivity with decreasing new molecular entity output combined with increased R&D spending is one of the key challenges for the entire pharmaceutical industry. In order to offset decreasing new molecular entity output, life-cycle management activities for established drugs become more and more important to maintain or even expand clinical indication and market opportunities. Life-cycle management covers a whole range of activities from strategic pricing to a next generation product launch. In this communication, we review how research organizations can contribute to successful life-cycle management strategies using phosphodiesterase 5 inhibitors as an example.

  18. A Regionally-Specific Assessment of the Carbon Abatement Potential of Biochar

    NASA Astrophysics Data System (ADS)

    Birch, G.; Field, J.; Keske, C.; DeFoort, M.; Cotrufo, M.

    2012-12-01

    Biochar, the solid carbon-rich co-product of certain bioenergy conversion technologies, is receiving a great deal of attention as a strategy for sequestering carbon in soils and improving the performance of agricultural systems. Several studies have attempted to quantify the lifecycle carbon abatement potential of biochar systems, considering emissions associated with feedstock provisioning and processing, energy co-production, agronomic system impacts (yield increases and nitrous oxide emission suppression), and the recalcitrance of biochar in soil, as well as accounting for the carbon abatement value of using the char as a fuel that is foregone when it is used as a soil amendment instead. These assessments typically focus on biochar production in advanced, efficient slow pyrolysis systems, despite the fact that much biochar is currently produced through small-scale carbonization or gasification systems that lack energy recovery or even emission control capability. Here, a mechanistic biochar system assessment model is presented, capable of estimating system carbon abatement value and profitability for different feedstocks, conversion technologies and temperatures, and application into different agricultural soils. The variation of biochar recalcitrance in soil as a function of production temperature is considered, and agricultural impacts are assessed in the context of biochar's liming value, an effect that is straightforward to quantify and that has often been implicated in observed crop yield increases or nitrous oxide emission reductions. The analysis is rigorous in that tradeoffs between biochar production quantity and quality are endogenized, but conservative in that other potential agronomic benefits of biochar (e.g. improved soil water holding capacity) are not considered. This model is applied to a case study of bioenergy and biochar co-production in northern Colorado using beetle-killed pine wood and slash as a feedstock. Preliminary results suggest that a) high system carbon abatement potentials are possible in the case study scenario, but only in systems that control air pollutant emissions and recover energy; b) biochar has more value as a soil amendment than a fuel when produced at high temperatures and applied to soils of low pH and low buffering capacity; and c) the carbon abatement value of agronomic impacts in temperate systems is relatively minor compared to other parts of the lifecycle. Additional results will be presented for which an optimal system design is identified and the analysis scaled-up to reflect the total beetle-kill feedstock availability in the state of Colorado in order to estimate the total regional carbon-mitigation potential of the technology.

  19. Sustainability analysis and life-cycle ecological impacts of rainwater harvesting systems using holistic analysis and a modified eco-efficiency framework

    EPA Science Inventory

    Background/Question/Methods A sustainability paradigm is being recognized globally as a path forward for human prosperity and ecological health in the face of climate change and meeting challenges of the water-energy-food nexus. Rainfall shortages for drinking water and crop pro...

  20. Treatment options for tank farms long-length contaminated equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josephson, W.S.

    1995-10-16

    This study evaluated a variety of treatment and disposal technologies for mixed waste (MW) meeting the following criteria: 1. Single-Shell and Double-Shell Tank System (tank farms) equipment and other debris; 2. length greater than 12 feet; and contaminated with listed MW from the tank farms. This waste stream, commonly referred to as tank farms long-length contaminated equipment (LLCE), poses a unique and costly set of challenges during all phases of the waste management lifecycle.

  1. [Morphology, biology and life-cycle of Plasmodium parasites].

    PubMed

    Hommel, Marcel

    2007-10-01

    Laveran first discovered that an infectious agent was responsible for malaria by using a simple microscope, without the assistance of specific stains. Our knowledge of the Plasmodium life cycle and cellular biology has progressed with each technological advance, from Romanovsky staining and histology to electron microscopy, immunocytochemistry, molecular methods and modern imaging techniques. The use of bird, primate and rodent models also made a major contribution, notably in the development of antimalarial drugs that are still in use today.

  2. Jet Propellant 8 versus Alternative Jet Fuels: A Life-Cycle Perspective

    DTIC Science & Technology

    2011-01-01

    United States imports.26 The CBTL process uses three existing technologies to convert coal and biomass into liquid fuel: gasification , FT synthesis...and carbon capture and storage. Gasification converts coal and biomass into CO and H2, a mixture commonly referred to as “syngas.” FT synthesis...com- pare petroleum-derived jet fuel (i.e., JP-8) to an alternative jet fuel derived from a coal- biomass -to-liquid (CBTL) process. The EIO- LCA

  3. Applying GIS and high performance agent-based simulation for managing an Old World Screwworm fly invasion of Australia.

    PubMed

    Welch, M C; Kwan, P W; Sajeev, A S M

    2014-10-01

    Agent-based modelling has proven to be a promising approach for developing rich simulations for complex phenomena that provide decision support functions across a broad range of areas including biological, social and agricultural sciences. This paper demonstrates how high performance computing technologies, namely General-Purpose Computing on Graphics Processing Units (GPGPU), and commercial Geographic Information Systems (GIS) can be applied to develop a national scale, agent-based simulation of an incursion of Old World Screwworm fly (OWS fly) into the Australian mainland. The development of this simulation model leverages the combination of massively data-parallel processing capabilities supported by NVidia's Compute Unified Device Architecture (CUDA) and the advanced spatial visualisation capabilities of GIS. These technologies have enabled the implementation of an individual-based, stochastic lifecycle and dispersal algorithm for the OWS fly invasion. The simulation model draws upon a wide range of biological data as input to stochastically determine the reproduction and survival of the OWS fly through the different stages of its lifecycle and dispersal of gravid females. Through this model, a highly efficient computational platform has been developed for studying the effectiveness of control and mitigation strategies and their associated economic impact on livestock industries can be materialised. Copyright © 2014 International Atomic Energy Agency 2014. Published by Elsevier B.V. All rights reserved.

  4. Gate-to-gate Life-Cycle Inventory of Hardboard Production in North America

    Treesearch

    Richard Bergman

    2014-01-01

    Whole-building life-cycle assessments (LCAs) populated by life-cycle inventory (LCI) data are incorporated into environmental footprint software tools for establishing green building certification by building professionals and code. However, LCI data on some wood building products are still needed to help fill gaps in the data and thus provide a more complete picture...

  5. PACS storage technology update: holographic storage.

    PubMed

    Colang, John E; Johnston, James N

    2006-01-01

    This paper focuses on the emerging technology of holographic storage and its effect on picture archiving and communication systems (PACS). A review of the emerging technology is presented, which includes a high level description of holographic drives and the associated substrate media, the laser and optical technology, and the spatial light modulator. The potential advantages and disadvantages of holographic drive and storage technology are evaluated. PACS administrators face myriad complex and expensive storage solutions and selecting an appropriate system is time-consuming and costly. Storage technology may become obsolete quickly because of the exponential nature of the advances in digital storage media. Holographic storage may turn out to be a low cost, high speed, high volume storage solution of the future; however, data is inconclusive at this early stage of the technology lifecycle. Despite the current lack of quantitative data to support the hypothesis that holographic technology will have a significant effect on PACS and standards of practice, it seems likely from the current information that holographic technology will generate significant efficiencies. This paper assumes the reader has a fundamental understanding of PACS technology.

  6. Microalgae: a robust "green bio-bridge" between energy and environment.

    PubMed

    Chen, Yimin; Xu, Changan; Vaidyanathan, Seetharaman

    2018-05-01

    Microalgae are a potential candidate for biofuel production and environmental treatment because of their specific characteristics (e.g. fast growth, carbon neutral, and rich lipid accumulations). However, several primary bottlenecks still exist in current technologies, including low biomass conversion efficiency, bio-invasion from the external environment, limited or costly nutrient sources, and high energy and capital input for harvest, and stalling its industrial progression. Coupling biofuel production with environmental treatment renders microalgae a more feasible feedstock. This review focuses on microalgae biotechnologies for both bioenergy generation and environmental treatment (e.g. CO 2 sequestration and wastewater reclamation). Different intelligent technologies have been developed, especially during the last decade, to eliminate the bottlenecks, including mixotrophic/heterotrophic cultivation, immobilization, and co-cultivation. It has been realized that any single purpose for the cultivation of microalgae is not an economically feasible option. Combinations of applications in biorefineries are gradually reckoned to be necessary as it provides more economically feasible and environmentally sustainable operations. This presents microalgae as a special niche occupier linking the fields of energy and environmental sciences and technologies. The integrated application of microalgae is also proven by most of the life-cycle analysis studies. This study summarizes the latest development of primary microalgal biotechnologies in the two areas that will bring researchers a comprehensive view towards industrialization with an economic perspective.

  7. Road lifecycle innovative financing (Road LIFE) 2010.

    DOT National Transportation Integrated Search

    2010-07-01

    This report is organized into five sections and nine chapters, and includes a set of appendices : containing supporting information and the results of data collection and analysis. The second : section of the report summarizes the state of practice o...

  8. MDOT Pavement Management System : Prediction Models and Feedback System

    DOT National Transportation Integrated Search

    2000-10-01

    As a primary component of a Pavement Management System (PMS), prediction models are crucial for one or more of the following analyses: : maintenance planning, budgeting, life-cycle analysis, multi-year optimization of maintenance works program, and a...

  9. Analysis of the Lifecycle Impacts and Potential for Avoided Impacts Associated with Single Family Homes

    EPA Pesticide Factsheets

    Learn how recovering construction and demolition materials from single-family homes and reusing them in building and road construction and other applications helps offset the environmental impacts associated with single-family homes.

  10. Teaching Environmental Consumer Education Effectively.

    ERIC Educational Resources Information Center

    Cude, Brenda J.

    1993-01-01

    Effective strategies include (1) helping consumers see how lifestyles and consumer behavior are related; (2) limiting amount of new terminology used; (3) dispelling myths and misperceptions; (4) doing product life-cycle analysis; and (5) emphasizing long-term goals for behavior change. (JOW)

  11. Software safety - A user's practical perspective

    NASA Technical Reports Server (NTRS)

    Dunn, William R.; Corliss, Lloyd D.

    1990-01-01

    Software safety assurance philosophy and practices at the NASA Ames are discussed. It is shown that, to be safe, software must be error-free. Software developments on two digital flight control systems and two ground facility systems are examined, including the overall system and software organization and function, the software-safety issues, and their resolution. The effectiveness of safety assurance methods is discussed, including conventional life-cycle practices, verification and validation testing, software safety analysis, and formal design methods. It is concluded (1) that a practical software safety technology does not yet exist, (2) that it is unlikely that a set of general-purpose analytical techniques can be developed for proving that software is safe, and (3) that successful software safety-assurance practices will have to take into account the detailed design processes employed and show that the software will execute correctly under all possible conditions.

  12. Examining the extraction of artemisinin from artemisia annua using ultrasound

    NASA Astrophysics Data System (ADS)

    Briars, Rhianna; Paniwnyk, Larysa

    2012-05-01

    Artemisinin suppresses the life-cycle of the plasmodium parasite which causes malaria. It is found naturally occurring within the trichome glands of the Artemisia annua plant. Traditional methods for extracting artemisinin are time-consuming and have high environmental impact due to the temperatures and organic solvents which must be employed. Ultrasound decreases these through acoustic streaming and micro-jets. But to fully utilise this technology parameters, such as frequency, temperature and the properties of leaf and solvent, must be explored. As with the extraction process there is also no set analysis method for identification of artemisinin. Therefore several methods of analysing these extracts are employed. Initial results indicate that sonication is able to enhance levels of artemisinin extracted when compared to the conventional/traditional extraction process. In addition Thin Layer Chromatography (TLC) and High Performance Liquid Chromatography (HPLC) have been shown to have a high level of reproducible calibration.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penev, Michael; Melaina, Marc; Bush, Brian

    This report improves on the understanding of the long-term technology potential of low-carbon natural gas (LCNG) supply pathways by exploring transportation market adoption potential through 2035 in California. Techno-economic assessments of each pathway are developed to compare the capacity, cost, and greenhouse gas (GHG) emissions of select LCNG production pathways. The study analyzes the use of fuel from these pathways in light-, medium-, and heavy-duty vehicle applications. Economic and life-cycle GHG emissions analysis suggest that landfill gas resources are an attractive and relatively abundant resource in terms of cost and GHG reduction potential, followed by waste water treatment plants andmore » biomass with gasification and methanation. Total LCNG production potential is on the order of total natural gas demand anticipated in a success scenario for future natural gas vehicle adoption by 2035 across light-, medium-, and heavy-duty vehicle markets (110 trillion Btu/year).« less

  14. Image quality specification and maintenance for airborne SAR

    NASA Astrophysics Data System (ADS)

    Clinard, Mark S.

    2004-08-01

    Specification, verification, and maintenance of image quality over the lifecycle of an operational airborne SAR begin with the specification for the system itself. Verification of image quality-oriented specification compliance can be enhanced by including a specification requirement that a vendor provide appropriate imagery at the various phases of the system life cycle. The nature and content of the imagery appropriate for each stage of the process depends on the nature of the test, the economics of collection, and the availability of techniques to extract the desired information from the data. At the earliest lifecycle stages, Concept and Technology Development (CTD) and System Development and Demonstration (SDD), the test set could include simulated imagery to demonstrate the mathematical and engineering concepts being implemented thus allowing demonstration of compliance, in part, through simulation. For Initial Operational Test and Evaluation (IOT&E), imagery collected from precisely instrumented test ranges and targets of opportunity consisting of a priori or a posteriori ground-truthed cultural and natural features are of value to the analysis of product quality compliance. Regular monitoring of image quality is possible using operational imagery and automated metrics; more precise measurements can be performed with imagery of instrumented scenes, when available. A survey of image quality measurement techniques is presented along with a discussion of the challenges of managing an airborne SAR program with the scarce resources of time, money, and ground-truthed data. Recommendations are provided that should allow an improvement in the product quality specification and maintenance process with a minimal increase in resource demands on the customer, the vendor, the operational personnel, and the asset itself.

  15. Life-Cycle Thinking in Inquiry-Based Sustainability Education--Effects on Students' Attitudes towards Chemistry and Environmental Literacy

    ERIC Educational Resources Information Center

    Juntunen, Marianne; Aksela, Maija

    2013-01-01

    The aim of the present study is to improve the quality of students' environmental literacy and sustainability education in chemistry teaching by combining the socio-scientific issue of life-cycle thinking with inquiry-based learning approaches. This case study presents results from an inquiry-based life-cycle thinking project: an interdisciplinary…

  16. Life-cycle assessment of electricity generation systems and applications for climate change policy analysis

    NASA Astrophysics Data System (ADS)

    Meier, Paul Joseph

    This research uses Life-Cycle Assessment (LCA) to better understand the energy and environmental performance for two electricity generation systems, a 620 MW combined-cycle natural gas plant, and an 8kW building-integrated photovoltaic system. The results of the LCA are used to provide an effective and accurate means for evaluating greenhouse gas emission reduction strategies for U.S. electricity generation. The modern combined-cycle plant considered in this thesis is nominally 48% thermally efficient, but it is only 43% energy efficient when evaluated across its entire life-cycle, due primarily to energy losses during the natural gas fuel cycle. The emission rate for the combined-cycle natural gas plant life-cycle (469 tonnes CO2-equivalent per GWeh), was 23% higher than the emission rate from plant operation alone (382 tonnes CO2-equivalent per GWeh). Uncertainty in the rate of fuel-cycle methane releases results in a potential range of emission rates between 457 to 534 tonnes CO 2-equivalent per GWeh for the studied plant. The photovoltaic system modules have a sunlight to DC electricity conversion efficiency of 5.7%. However, the system's sunlight to AC electricity conversion efficiency is 4.3%, when accounting for life-cycle energy inputs, as well as losses due to system wiring, AC inversion, and module degradation. The LCA illustrates that the PV system has a low, but not zero, life-cycle greenhouse gas emission rate of 39 Tonnes CO2-equivalent per GWeh. A ternary method of evaluation is used to evaluate three greenhouse gas mitigation alternatives: (1) fuel-switching from coal to natural gas for Kyoto-based compliance, (2) fuel-switching from coal to nuclear/renewable for Kyoto based compliance, and (3) fuel-switching to meet the White House House's Global Climate Change Initiative. In a moderate growth scenario, fuel-switching from coal to natural gas fails to meet a Kyoto-based emission target, while fuel-switching to nuclear/renewable meets the emission objective by reducing coal generated electricity 32% below 2000 levels. The Global Climate Change Initiative allows annual greenhouse gas emissions to increase to levels that are 54% higher than the proposed U.S. commitment under the Kyoto Protocol.

  17. Technology-enabled assessment of health professions education: consensus statement and recommendations from the Ottawa 2010 Conference.

    PubMed

    Amin, Zubair; Boulet, John R; Cook, David A; Ellaway, Rachel; Fahal, Ahmad; Kneebone, Roger; Maley, Moira; Ostergaard, Doris; Ponnamperuma, Gominda; Wearn, Andy; Ziv, Amitai

    2011-01-01

    The uptake of information and communication technologies (ICTs) in health professions education can have far-reaching consequences on assessment. The medical education community still needs to develop a deeper understanding of how technology can underpin and extend assessment practices. This article was developed by the 2010 Ottawa Conference Consensus Group on technology-enabled assessment to guide practitioners and researchers working in this area. This article highlights the changing nature of ICTs in assessment, the importance of aligning technology-enabled assessment with local context and needs, the need for better evidence to support use of technologies in health profession education assessment, and a number of challenges, particularly validity threats, that need to be addressed while incorporating technology in assessment. Our recommendations are intended for all practitioners across health professional education. Recommendations include adhering to principles of good assessment, the need for developing coherent institutional policy, using technologies to broaden the competencies to be assessed, linking patient-outcome data to assessment of practitioner performance, and capitalizing on technologies for the management of the entire life-cycle of assessment.

  18. A simplified life-cycle cost comparison of various engines for small helicopter use

    NASA Technical Reports Server (NTRS)

    Civinskas, K. C.; Fishbach, L. M.

    1974-01-01

    A ten-year, life-cycle cost comparison is made of the following engines for small helicopter use: (1) simple turboshaft; (2) regenerative turboshaft; (3) compression-ignition reciprocator; (4) spark-ignited rotary; and (5) spark-ignited reciprocator. Based on a simplified analysis and somewhat approximate data, the simple turboshaft engine apparently has the lowest costs for mission times up to just under 2 hours. At 2 hours and above, the regenerative turboshaft appears promising. The reciprocating and rotary engines are less attractive, requiring from 10 percent to 80 percent more aircraft to have the same total payload capability as a given number of turbine powered craft. A nomogram was developed for estimating total costs of engines not covered in this study.

  19. Save Money and the Planet: Make Your School Energy Efficient.

    ERIC Educational Resources Information Center

    Lewis, Eleanor J.; Weltman, Eric

    1993-01-01

    Examines ways in which schools can cut their energy costs. Suggestions are provided for making school lighting more efficient, conducting a life-cycle cost analysis to facilitate energy efficiency, and developing funding for implementing energy-efficient projects. (GLR)

  20. 32 CFR 651.5 - Army policies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... retain environmental analyses and data from requirements determination activities, and Science and... environmental analysis of acquisition life-cycle activities (including disposal). Planning to accomplish these... required, throughout the life cycle of the system. The MATDEV will coordinate with ASA (AL&T) or MACOM...

  1. Economics of Concrete and Wood Tie Track Structures

    DOT National Transportation Integrated Search

    1978-08-01

    This report presents results from an evaluation of the economic benefits of concrete- versus wood-tie track. The analysis includes the life-cycle capital, maintenance, and renewal costs for concrete- and wood-tie track for four specific test cases an...

  2. Technology requirements for advanced earth-orbital transportation systems, dual-mode propulsion

    NASA Technical Reports Server (NTRS)

    Haefeli, R. C.; Littler, E. G.; Hurley, J. B.; Winter, M. G.

    1977-01-01

    The application of dual-mode propulsion concepts to fully reusable single-stage-to-orbit (SSTO) vehicles is discussed. Dual-mode propulsion uses main rocket engines that consume hydrocarbon fuels as well as liquid hydrogen fuel. Liquid oxygen is used as the oxidizer. These engine concepts were integrated into transportation vehicle designs capable of vertical takeoff, delivering a payload to earth orbit, and return to earth with a horizontal landing. Benefits of these vehicles were assessed and compared with vehicles using single-mode propulsion (liquid hydrogen and oxygen engines). Technology requirements for such advanced transportation systems were identified. Figures of merit, including life-cycle cost savings and research costs, were derived for dual-mode technology programs, and were used for assessments of potential benefits of proposed technology activities. Dual-mode propulsion concepts display potential for significant cost and performance benefits when applied to SSTO vehicles.

  3. Energy, Environmental, and Economic Analyses of Design Concepts for the Co-Production of Fuels and Chemicals with Electricity via Co-Gasification of Coal and Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eric Larson; Robert Williams; Thomas Kreutz

    2012-03-11

    The overall objective of this project was to quantify the energy, environmental, and economic performance of industrial facilities that would coproduce electricity and transportation fuels or chemicals from a mixture of coal and biomass via co-gasification in a single pressurized, oxygen-blown, entrained-flow gasifier, with capture and storage of CO{sub 2} (CCS). The work sought to identify plant designs with promising (Nth plant) economics, superior environmental footprints, and the potential to be deployed at scale as a means for simultaneously achieving enhanced energy security and deep reductions in U.S. GHG emissions in the coming decades. Designs included systems using primarily already-commercializedmore » component technologies, which may have the potential for near-term deployment at scale, as well as systems incorporating some advanced technologies at various stages of R&D. All of the coproduction designs have the common attribute of producing some electricity and also of capturing CO{sub 2} for storage. For each of the co-product pairs detailed process mass and energy simulations (using Aspen Plus software) were developed for a set of alternative process configurations, on the basis of which lifecycle greenhouse gas emissions, Nth plant economic performance, and other characteristics were evaluated for each configuration. In developing each set of process configurations, focused attention was given to understanding the influence of biomass input fraction and electricity output fraction. Self-consistent evaluations were also carried out for gasification-based reference systems producing only electricity from coal, including integrated gasification combined cycle (IGCC) and integrated gasification solid-oxide fuel cell (IGFC) systems. The reason biomass is considered as a co-feed with coal in cases when gasoline or olefins are co-produced with electricity is to help reduce lifecycle greenhouse gas (GHG) emissions for these systems. Storing biomass-derived CO{sub 2} underground represents negative CO{sub 2} emissions if the biomass is grown sustainably (i.e., if one ton of new biomass growth replaces each ton consumed), and this offsets positive CO{sub 2} emissions associated with the coal used in these systems. Different coal:biomass input ratios will produce different net lifecycle greenhouse gas (GHG) emissions for these systems, which is the reason that attention in our analysis was given to the impact of the biomass input fraction. In the case of systems that produce only products with no carbon content, namely electricity, ammonia and hydrogen, only coal was considered as a feedstock because it is possible in theory to essentially fully decarbonize such products by capturing all of the coal-derived CO{sub 2} during the production process.« less

  4. Analysis of the JSF Engine Competition

    DTIC Science & Technology

    2012-09-01

    even 25 Competition for Support Services  Support costs are typically more than half of life-cycle costs and normally incurred in a sole-source...Strike Fighter), Aircraft Engines, Competition, Military Procurement, Defense Industry, Cost Analysis Analysis of the JSF Engine Competition James...different designs to meet the same functional requirements. Such a case was examined by the Institute for Defense Analyses in a forward-looking cost and

  5. 78 FR 13566 - Energy Conservation Program for High-Intensity Discharge Lamps: Public Meeting and Availability...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ... Prices C. Energy Use Analysis D. Life-Cycle Cost and Payback Period Analyses E. National Impact Analysis... projected energy prices and installed stock in each year. DOE calculates annual equipment expenditures by... DEPARTMENT OF ENERGY 10 CFR Part 431 [Docket No. EERE-2010-BT-STD-0043] RIN 1904-AC36 Energy...

  6. An Investigation into the Use of 3D Scanning and Printing Technologies in the Navy Collaborative Product Lifecycle Management

    DTIC Science & Technology

    2013-12-01

    starches ) are simple. One example is the use of 3DP to fabricate Ti3SiC2 (titanium silicon carbide)- based ceramics (Nan, Yin, Zhang, & Cheng, 2011...These ceramics are highly valued in high-temperature and electronic applications because of characteristics such as high oxidation resistance , low...electrical resistance , and low density; however, it also has low strength and fracture toughness, making it difficult to manufacture. Nan et al. (2011

  7. High-Performance Manufacturing Technology Research and Development Pilot Program for Fiscal Year 2006

    DTIC Science & Technology

    2008-05-01

    Pilot Program for Fiscal Year 2006 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6 . AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER...production risk and maximize life-cycle performance and affordability. This report is in response to Public Law 109-163 (January 6 , 2006), Subtitle D, High...NSF), and the Department of Homeland Security (DHS). 1.3 PURPOSE OF REPORT This report is provided in response to Public Law 109-163 (January 6

  8. Ship Maintenance Processes with Collaborative Product Lifecycle Management and 3D Terrestrial Laser Scanning Tools: Reducing Costs and Increasing Productivity

    DTIC Science & Technology

    2011-04-30

    developed the Knowledge Value Added + Systems Dynamics + Integrated Risk Management (KVA+SD+IRM) valuation framework to address these issues. KVA+SD...SD+IRM framework is used to quantify process cost savings and the potential benefits of selecting collab-PLM+3D TLS technology in the ship SHIPMAIN...The first section of this paper explicates the KVA+SD+IRM framework . In section two, a description of the SHIPMAIN program is provided. The third

  9. Life-cycle assessment of redwood decking in the United States with a comparison to three other decking materials

    Treesearch

    R. Bergman; H. Sup-Han; E. Oneil; I. Eastin

    2013-01-01

    The goal of the study was to conduct a life-cycle inventory (LCI) of California redwood (Sequoia sempervirens) decking that would quantify the critical environmental impacts of decking from cradle to grave. Using that LCI data, a life-cycle assessment (LCA) was produced for redwood decking. The results were used to compare the environmental footprint...

  10. A Life-Cycle Assessment of Biofuels: Tracing Energy and Carbon through a Fuel-Production System

    ERIC Educational Resources Information Center

    Krauskopf, Sara

    2010-01-01

    A life-cycle assessment (LCA) is a tool used by engineers to make measurements of net energy, greenhouse gas production, water consumption, and other items of concern. This article describes an activity designed to walk students through the qualitative part of an LCA. It asks them to consider the life-cycle costs of ethanol production, in terms of…

  11. Environmental performance of green building code and certification systems.

    PubMed

    Suh, Sangwon; Tomar, Shivira; Leighton, Matthew; Kneifel, Joshua

    2014-01-01

    We examined the potential life-cycle environmental impact reduction of three green building code and certification (GBCC) systems: LEED, ASHRAE 189.1, and IgCC. A recently completed whole-building life cycle assessment (LCA) database of NIST was applied to a prototype building model specification by NREL. TRACI 2.0 of EPA was used for life cycle impact assessment (LCIA). The results showed that the baseline building model generates about 18 thousand metric tons CO2-equiv. of greenhouse gases (GHGs) and consumes 6 terajoule (TJ) of primary energy and 328 million liter of water over its life-cycle. Overall, GBCC-compliant building models generated 0% to 25% less environmental impacts than the baseline case (average 14% reduction). The largest reductions were associated with acidification (25%), human health-respiratory (24%), and global warming (GW) (22%), while no reductions were observed for ozone layer depletion (OD) and land use (LU). The performances of the three GBCC-compliant building models measured in life-cycle impact reduction were comparable. A sensitivity analysis showed that the comparative results were reasonably robust, although some results were relatively sensitive to the behavioral parameters, including employee transportation and purchased electricity during the occupancy phase (average sensitivity coefficients 0.26-0.29).

  12. Optimization of monitoring and inspections in the life-cycle of wind turbines

    NASA Astrophysics Data System (ADS)

    Hanish Nithin, Anu; Omenzetter, Piotr

    2016-04-01

    The past decade has witnessed a surge in the offshore wind farm developments across the world. Although this form of cleaner and greener energy is beneficial and eco-friendly, the production of wind energy entails high life-cycle costs. The costs associated with inspections, monitoring and repairs of wind turbines are primary contributors to the high costs of electricity produced in this way and are disadvantageous in today's competitive economic environment. There is limited research being done in the probabilistic optimization of life-cycle costs of offshore wind turbines structures and their components. This paper proposes a framework for assessing the life cycle cost of wind turbine structures subject to damage and deterioration. The objective of the paper is to develop a mathematical probabilistic cost assessment framework which considers deterioration, inspection, monitoring, repair and maintenance models and their uncertainties. The uncertainties are etched in the accuracy and precision of the monitoring and inspection methods and can be considered through the probability of damage detection of each method. Schedules for inspection, monitoring and repair actions are demonstrated using a decision tree. Examples of a generalised deterioration process integrated with the cost analysis using a decision tree are shown for a wind turbine foundation structure.

  13. Summary of Fast Pyrolysis and Upgrading GHG Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snowden-Swan, Lesley J.; Male, Jonathan L.

    2012-12-07

    The Energy Independence and Security Act (EISA) of 2007 established new renewable fuel categories and eligibility requirements (EPA 2010). A significant aspect of the National Renewable Fuel Standard 2 (RFS2) program is the requirement that the life cycle greenhouse gas (GHG) emissions of a qualifying renewable fuel be less than the life cycle GHG emissions of the 2005 baseline average gasoline or diesel fuel that it replaces. Four levels of reduction are required for the four renewable fuel standards. Table 1 lists these life cycle performance improvement thresholds. Table 1. Life Cycle GHG Thresholds Specified in EISA Fuel Type Percentmore » Reduction from 2005 Baseline Renewable fuel 20% Advanced biofuel 50% Biomass-based diesel 50% Cellulosic biofuel 60% Notably, there is a specialized subset of advanced biofuels that are the cellulosic biofuels. The cellulosic biofuels are incentivized by the Cellulosic Biofuel Producer Tax Credit (26 USC 40) to stimulate market adoption of these fuels. EISA defines a cellulosic biofuel as follows (42 USC 7545(o)(1)(E)): The term “cellulosic biofuel” means renewable fuel derived from any cellulose, hemicellulose, or lignin that is derived from renewable biomass and that has lifecycle greenhouse gas emissions, as determined by the Administrator, that are at least 60 percent less than the baseline lifecycle greenhouse gas emissions. As indicated, the Environmental Protection Agency (EPA) has sole responsibility for conducting the life cycle analysis (LCA) and making the final determination of whether a given fuel qualifies under these biofuel definitions. However, there appears to be a need within the LCA community to discuss and eventually reach consensus on discerning a 50–59 % GHG reduction from a ≥ 60% GHG reduction for policy, market, and technology development. The level of specificity and agreement will require additional development of capabilities and time for the sustainability and analysis community, as illustrated by the rich dialogue and convergence around the energy content and GHG reduction of cellulosic ethanol (an example of these discussions can be found in Wang 2011). GHG analyses of fast pyrolysis technology routes are being developed and will require significant work to reach the levels of development and maturity of cellulosic ethanol models. This summary provides some of the first fast pyrolysis analyses and clarifies some of the reasons for differing results in an effort to begin the convergence on assumptions, discussion of quality of models, and harmonization.« less

  14. E-Governance and Service Oriented Computing Architecture Model

    NASA Astrophysics Data System (ADS)

    Tejasvee, Sanjay; Sarangdevot, S. S.

    2010-11-01

    E-Governance is the effective application of information communication and technology (ICT) in the government processes to accomplish safe and reliable information lifecycle management. Lifecycle of the information involves various processes as capturing, preserving, manipulating and delivering information. E-Governance is meant to transform of governance in better manner to the citizens which is transparent, reliable, participatory, and accountable in point of view. The purpose of this paper is to attempt e-governance model, focus on the Service Oriented Computing Architecture (SOCA) that includes combination of information and services provided by the government, innovation, find out the way of optimal service delivery to citizens and implementation in transparent and liable practice. This paper also try to enhance focus on the E-government Service Manager as a essential or key factors service oriented and computing model that provides a dynamically extensible structural design in which all area or branch can bring in innovative services. The heart of this paper examine is an intangible model that enables E-government communication for trade and business, citizen and government and autonomous bodies.

  15. Maritime vessel obsolescence, life cycle cost and design service life

    NASA Astrophysics Data System (ADS)

    Dinu, O.; Ilie, A. M.

    2015-11-01

    Maritime vessels have long service life and great costs of building, manning, operating, maintaining and repairing throughout their life. Major actions are needed to repair, renovate, sometime built or even replace those scrapped when technology or demand changes determine obsolescence. It is regarded as a concern throughout vessel's entire life cycle and reflects changes in expectation regarding performances in functioning, safety and environmental effects. While service live may differ from physical lives, expectations about physical lives is the main factors that determines design service life. Performance and failure are illustrated conceptually and represented in a simplified form considering the evolution of vessels parameters during its service life. In the proposed methodology an accumulated vessel lifecycle cost is analyzed and obsolescence is characterized from ship's design, performances, maintenance and management parameters point of view. Romanian ports feeding Black Sea are investigated in order to provide comprehensive information on: number and types of vessels, transport capacity and life cycle length. Recommendations are to be made in order to insure a best practice in lifecycle management in order to reduce costs.

  16. Wheel configurations for combined energy storage and attitude control systems

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.

    1985-01-01

    Integrated power and attitude control system (IPACS) studies performed over a decade ago established the feasibility of simultaneously storing electrical energy in wheels and utilizing the resulting momentum for spacecraft attitude control. It was shown that such a system possessed many advantages over other contemporary energy storage and attitude control systems in many applications. More recent technology advances in composite rotors, magnetic bearings, and power control electronics have triggered new optimism regarding the feasibility and merits of such a system. This paper presents the results of a recent study whose focus was to define an advanced IPACS and to evaluate its merits for the Space Station application. Emphasis is given to the selection of the wheel configuration to perform the combined functions. A component design concept is developed to establish the system performance capability. A system-level trade study, including life-cycle costing, is performed to define the merits of the system relative to two other candidate systems. It is concluded that an advanced IPACS concept is not only feasible but offers substantial savings in mass and life-cycle cost.

  17. Low Temperature Life-cycle Testing of a Lithium-ion Battery for Low-earth-orbiting Spacecraft

    NASA Technical Reports Server (NTRS)

    Reid, Concha

    2004-01-01

    A flight-qualified, lithium-ion (Li-ion) battery developed for the Mars Surveyor Program 2001 lander is undergoing life-testing at low temperature under a low-Earth-orbit (LEO) profile to assess its capability to provide long term energy storage for aerospace missions. NASA has embarked upon an ambitious course to return humans to the moon by 2015-2020 in preparation for robotic and human exploration of Mars and robotic exploration of the moons of outer planets. Li-ion batteries are excellent candidates to provide power and energy storage for multiple aspects of these missions due to their low specific energy, low energy density, and excellent low temperature performance. Laboratory testing of Li-ion technology is necessary in order to assess lifetime, characterize multi-cell battery-level performance under aerospace conditions, and to gauge safety aspects of the technology. Life-cycle testing provides an opportunity to examine battery-level performance and the dynamics of individual cells in the stack over the entire life of the battery. Data generated through this testing will be critical to establish confidence in the technology for its widespread use in manned and unmanned mission. This paper discusses the performance of the 28 volt, 25 ampere-hour battery through 6000 LEO cycles, which corresponds to one year on LEO orbit. Testing is being performed at 0 C and 40% depth-of-discharge. Individual cell behaviors and their effect on the performance of the battery are described. Capacity, impedance, energy efficiency and end-of-discharge voltage at 1000 cycle intervals are reported. Results from this life-testing will help contribute to the database on battery-level performance of aerospace Li-ion batteries and low temperature cycling under LEO conditions.

  18. Product Lifecycle Management and the Quest for Sustainable Space Exploration Solutions

    NASA Technical Reports Server (NTRS)

    Caruso, Pamela W.; Dumbacher, Daniel L.

    2010-01-01

    Product Lifecycle Management (PLM) is an outcome of lean thinking to eliminate waste and increase productivity. PLM is inextricably tied to the systems engineering business philosophy, coupled with a methodology by which personnel, processes and practices, and information technology combine to form an architecture platform for product design, development, manufacturing, operations, and decommissioning. In this model, which is being implemented by the Engineering Directorate at the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center, total lifecycle costs are important variables for critical decisionmaking. With the ultimate goal to deliver quality products that meet or exceed requirements on time and within budget, PLM is a powerful tool to shape everything from engineering trade studies and testing goals, to integrated vehicle operations and retirement scenarios. This paper will demonstrate how the Engineering Directorate is implementing PLM as part of an overall strategy to deliver safe, reliable, and affordable space exploration solutions. It has been 30 years since the United States fielded the Space Shuttle. The next generation space transportation system requires a paradigm shift such that digital tools and knowledge management, which are central elements of PLM, are used consistently to maximum effect. The outcome is a better use of scarce resources, along with more focus on stakeholder and customer requirements, as a new portfolio of enabling tools becomes second nature to the workforce. This paper will use the design and manufacturing processes, which have transitioned to digital-based activities, to show how PLM supports the comprehensive systems engineering and integration function. It also will go through a launch countdown scenario where an anomaly is detected to show how the virtual vehicle created from paperless processes will help solve technical challenges and improve the likelihood of launching on schedule, with less hands-on labor needed for processing and troubleshooting. Sustainable space exploration solutions demand that all lifecycle phases be optimized. Adopting PLM, which has been used by the automotive industry for many years, for aerospace applications provides a foundation for strong, disciplined systems engineering and accountable return on investment by making lifecycle considerations variables in an iterative decision-making process. This paper combines the perspectives of the founding father of PLM, along with the experience of Engineering leaders who are implementing these processes and practices real-time. As the nation moves from an industrial-based society to one where information is a valued commodity, future NASA programs and projects will benefit from the experience being gained today for the exploration missions of tomorrow.

  19. Environmental, mechanical and life-cycle cost analysis of bridge columns.

    DOT National Transportation Integrated Search

    2014-08-01

    Corrosion of RC bridge element is one of the major deterioration distresses in US Highway Bridges. FRP composites jackets can be : the economic and effective corrosion repair in future, though its practices and field installation as a means of corros...

  20. Tank car accident data analysis

    DOT National Transportation Integrated Search

    1991-06-01

    This report presents the results of a study of accidents involving railroad tank cars. The study is part of an overall effort to provide improved safety of rail transportation at reduced life-cycle costs. A major goal of the study is to provide a tec...

  1. Sustainability Assessment of Coal-Fired Power Plants with Carbon Capture and Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widder, Sarah H.; Butner, R. Scott; Elliott, Michael L.

    2011-11-30

    Carbon capture and sequestration (CCS) has the ability to dramatically reduce carbon dioxide (CO2) emissions from power production. Most studies find the potential for 70 to 80 percent reductions in CO2 emissions on a life-cycle basis, depending on the technology. Because of this potential, utilities and policymakers are considering the wide-spread implementation of CCS technology on new and existing coal plants to dramatically curb greenhouse gas (GHG) emissions from the power generation sector. However, the implementation of CCS systems will have many other social, economic, and environmental impacts beyond curbing GHG emissions that must be considered to achieve sustainable energymore » generation. For example, emissions of nitrogen oxides (NOx), sulfur oxides (SOx), and particulate matter (PM) are also important environmental concerns for coal-fired power plants. For example, several studies have shown that eutrophication is expected to double and acidification would increase due to increases in NOx emissions for a coal plant with CCS provided by monoethanolamine (MEA) scrubbing. Potential for human health risks is also expected to increase due to increased heavy metals in water from increased coal mining and MEA hazardous waste, although there is currently not enough information to relate this potential to actual realized health impacts. In addition to environmental and human health impacts, supply chain impacts and other social, economic, or strategic impacts will be important to consider. A thorough review of the literature for life-cycle analyses of power generation processes using CCS technology via the MEA absorption process, and other energy generation technologies as applicable, yielded large variability in methods and core metrics. Nonetheless, a few key areas of impact for CCS were developed from the studies that we reviewed. These are: the impact of MEA generation on increased eutrophication and acidification from ammonia emissions and increased toxicity from MEA production and the impact of increased coal use including the increased generation of NOx from combustion and transportation, impacts of increased mining of coal and limestone, and the disposal of toxic fly ash and boiler ash waste streams. Overall, the implementing CCS technology could contribute to a dramatic decrease in global GHG emissions, while most other environmental and human health impact categories increase only slightly on a global scale. However, the impacts on human toxicity and ecotoxicity have not been studied as extensively and could have more severe impacts on a regional or local scale. More research is needed to draw strong conclusions with respect to the specific relative impact of different CCS technologies. Specifically, a more robust data set that disaggregates data in terms of component processes and treats a more comprehensive set of environmental impacts categories from a life-cycle perspective is needed. In addition, the current LCA framework lacks the required temporal and spatial scales to determine the risk of environmental impact from carbon sequestration. Appropriate factors to use when assessing the risk of water acidification (groundwater/oceans/aquifers depending on sequestration site), risk of increased human toxicity impact from large accidental releases from pipeline or wells, and the legal and public policy risk associated with licensing CO2 sequestration sites are also not currently addressed. In addition to identifying potential environmental, social, or risk-related issues that could impede the large-scale deployment of CCS, performing LCA-based studies on energy generation technologies can suggest places to focus our efforts to achieve technically feasible, economically viable, and environmentally conscious energy generation technologies for maximum impact.« less

  2. Field Demonstration of a High-Efficiency Packaged Rooftop Air Conditioning Unit at Fort Gordon, Augusta, GA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Peter R.; Sullivan, Gregory P.; Parker, Graham B.

    2006-03-31

    As part of a larger program targeting the market transformation of packaged rooftop air conditioning, five high-efficiency rooftop air conditioning products were selected in 2002 by the U.S. Department of Energy (DOE) under the Unitary Air Conditioner (UAC) Technology Procurement (http://www.pnl.gov/uac). In February 2003, Fort Gordon in Augusta, Georgia was chosen as the demonstration site. With the goal of validating the field performance and operation of one of the awarded products, a 10-ton high-efficiency packaged rooftop unit (RTU) manufactured by Global Energy Group (GEG) was installed at Fort Gordon in October 2003. Following equipment installation, power metering, air- and refrigerant-sidemore » instrumentation was installed on the GEG RTU and a 4-year old typical-efficiency 20-ton RTU manufactured by AAON . The GEG and AAON units were instrumented identically and operated May through July, 2005, to observe performance under a range of conditions. Based on the data collected as part of this demonstration, the GEG equipment performed at least 8% better in stage-1 (single compressor running) cooling and at least 16% better in stage-2 (both compressors running) than the baseline AAON equipment. Performance comparisons are based on what we call application EER normalized to equivalent specific fan power. The full-load, specific-fan-power-normalized application EERs at ARI design conditions were 10.48 Btu/Wh for the GEG and 9.00 Btu/Wh for the baseline machine. With a cost premium of nearly 50%, and slightly higher maintenance costs, the life-cycle cost analysis shows that the GEG technology pays for itself--a positive net-present value (NPV)--only in climates and buildings with long cooling seasons. Manufacture of this equipment on a larger scale can be expected to reduce costs to the point where it is more broadly cost-effective. The assumed 10-ton baseline and new-technology unit costs are $3824.00 and $5525.00 respectively. If the new technology cost is assumed to drop as sales increase to $4674.50 for a 10-ton unit (i.e. the original cost difference is halved), the life-cycle costs improve. A grid of first cost, annual maintenance cost and electricity price is enumerated and the results presented in the report show the sensitivity of life cycle cost to these three financial parameters in each of eight different climates.« less

  3. Ontology for Life-Cycle Modeling of Water Distribution Systems: Model View Definition

    DTIC Science & Technology

    2013-06-01

    Research and Development Center, Construction Engineering Research Laboratory (ERDC-CERL) to develop a life-cycle building model have resulted in the...Laboratory (ERDC-CERL) to develop a life-cycle building model have resulted in the definition of a “core” building information model that contains...developed experimental BIM models us- ing commercial off-the-shelf (COTS) software. Those models represent three types of typical low-rise Army

  4. Policy implications of uncertainty in modeled life-cycle greenhouse gas emissions of biofuels.

    PubMed

    Mullins, Kimberley A; Griffin, W Michael; Matthews, H Scott

    2011-01-01

    Biofuels have received legislative support recently in California's Low-Carbon Fuel Standard and the Federal Energy Independence and Security Act. Both present new fuel types, but neither provides methodological guidelines for dealing with the inherent uncertainty in evaluating their potential life-cycle greenhouse gas emissions. Emissions reductions are based on point estimates only. This work demonstrates the use of Monte Carlo simulation to estimate life-cycle emissions distributions from ethanol and butanol from corn or switchgrass. Life-cycle emissions distributions for each feedstock and fuel pairing modeled span an order of magnitude or more. Using a streamlined life-cycle assessment, corn ethanol emissions range from 50 to 250 g CO(2)e/MJ, for example, and each feedstock-fuel pathway studied shows some probability of greater emissions than a distribution for gasoline. Potential GHG emissions reductions from displacing fossil fuels with biofuels are difficult to forecast given this high degree of uncertainty in life-cycle emissions. This uncertainty is driven by the importance and uncertainty of indirect land use change emissions. Incorporating uncertainty in the decision making process can illuminate the risks of policy failure (e.g., increased emissions), and a calculated risk of failure due to uncertainty can be used to inform more appropriate reduction targets in future biofuel policies.

  5. Lifecycle Greenhouse Gas Analysis of an Anaerobic Codigestion Facility Processing Dairy Manure and Industrial Food Waste.

    PubMed

    Ebner, Jacqueline H; Labatut, Rodrigo A; Rankin, Matthew J; Pronto, Jennifer L; Gooch, Curt A; Williamson, Anahita A; Trabold, Thomas A

    2015-09-15

    Anaerobic codigestion (AcoD) can address food waste disposal and manure management issues while delivering clean, renewable energy. Quantifying greenhouse gas (GHG) emissions due to implementation of AcoD is important to achieve this goal. A lifecycle analysis was performed on the basis of data from an on-farm AcoD in New York, resulting in a 71% reduction in GHG, or net reduction of 37.5 kg CO2e/t influent relative to conventional treatment of manure and food waste. Displacement of grid electricity provided the largest reduction, followed by avoidance of alternative food waste disposal options and reduced impacts associated with storage of digestate vs undigested manure. These reductions offset digester emissions and the net increase in emissions associated with land application in the AcoD case relative to the reference case. Sensitivity analysis showed that using feedstock diverted from high impact disposal pathways, control of digester emissions, and managing digestate storage emissions were opportunities to improve the AcoD GHG benefits. Regional and parametrized emissions factors for the storage emissions and land application phases would reduce uncertainty.

  6. A field demonstration of energy conservation using occupancy sensor lighting control in equipment rooms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dagle, J.E.

    1992-09-01

    The Pacific Northwest Laboratory identified energy savings potential of automatic equipment-room lighting controls, which was demonstrated by the field experiment described in this report. Occupancy sensor applications have gained popularity in recent years due to improved technology that enhances reliability and reduces cost. Automatic lighting control using occupancy sensors has been accepted as an energy-conservation measure because it reduces wasted lighting. This study focused on lighting control for equipment rooms, which have inherent conditions ideal for automatic lighting control, i.e., an area which is seldom occupied, multiple users of the area who would not know if others are in themore » room when they leave, and high lighting energy intensity in the area. Two rooms were selected for this study: a small equipment room in the basement of the 337 Building, and a large equipment area in the upper level of the 329 Building. The rooms were selected to demonstrate the various degrees of complexity which may be encountered in equipment rooms throughout the Hanford Site. The 337 Building equipment-room test case demonstrated a 97% reduction in lighting energy consumption, with an annual energy savings of $184. Including lamp-replacement savings, a total savings of $306 per year is offset by an initial installation cost of $1,100. The installation demonstrates a positive net present value of $2,858 when the lamp-replacement costs are included in a life-cycle analysis. This also corresponds to a 4.0-year payback period. The 329 Building equipment-room installation resulted in a 92% reduction in lighting energy consumption. This corresponds to annual energy savings of $1,372, and a total annual savings of $2,104 per year including lamp-replacement savings. The life-cycle cost analysis shows a net present value of $15,855, with a 5.8-year payback period.« less

  7. CuInSe2-Based Thin-Film Photovoltaic Technology in the Gigawatt Production Era

    NASA Astrophysics Data System (ADS)

    Kushiya, Katsumi

    2012-10-01

    The objective of this paper is to review current status and future prospect on CuInSe2 (CIS)-based thin-film photovoltaic (PV) technology. In CIS-based thin-film PV technology, total-area cell efficiency in a small-area (i.e., smaller than 1 cm2) solar cell with top grids has been over 20%, while aperture-area efficiency in a large-area (i.e., larger than 800 cm2 as definition) monolithic module is approaching to an 18% milestone. However, most of the companies with CIS-based thin-film PV technology still stay at a production research stage, except Solar Frontier K.K. In July, 2011, Solar Frontier has joined the gigawatt (GW) group by starting up their third facility with a 0.9-GW/year production capacity. They are keeping the closest position to pass a 16% module-efficiency border by transferring the developed technologies in the R&D and accelerating the preparation for the future based on the concept of a product life-cycle management.

  8. Beetle-kill to carbon-negative bioenergy in the Rockies: stand, enterprise, and regional-scale perspectives

    NASA Astrophysics Data System (ADS)

    Field, J.; Paustian, K.

    2016-12-01

    The interior mountain West is particularly vulnerable to climate change with potential impacts including drought and wildfire intensification, and wide-scale species disruptions due to shifts in habitable elevation ranges or other effects. One such example is the current outbreak of native mountain pine and spruce beetles across the Rockies, with warmer winters, dryer summers, and a legacy of logging and fire suppression all interacting to result in infestation and unprecedented tree mortality over more than 42 million acres. Current global climate change mitigation commitments imply that shifts to renewable energy must be supplemented with widespread deployment of carbon-negative technologies such as BECCS and biochar. Carefully-designed forest bioenergy and biochar industries can play an important role in meeting these targets, valorizing woody biomass and allowing more acres to be actively managed under existing land management goals while simultaneously displacing fossil energy use and directly sequestering carbon. In this work we assess the negative emissions potential from the deployment of biochar co-producing thermochemical bioenergy technologies in the Rockies using beetle-kill wood as a feedstock, a way of leveraging a climate change driven problem for climate mitigation. We start with a review and classification of bioenergy lifecycle assessment emission source categories, clarifying the differences in mechanism and confidence around emissions sources, offsets, sequestration, and leakage effects. Next we develop methods for modeling ecosystem carbon response to biomass removals at the stand scale, considering potential species shifts and regrowth rates under different harvest systems deployed in different areas. We then apply a lifecycle assessment framework to evaluate the performance of a set of real-world bioenergy technologies at enterprise scale, including biomass logistics and conversion product yields. We end with an exploration of regional-scale mitigation capacity considering wide-scale deployment and potential wildfire feedback effects of harvest, highlighting the relative importance of supply chain, conversion technology, ecological, and epistemological uncertainties in realizing wide-scale negative emissions in this region.

  9. Background qualitative analysis of the European Reference Life Cycle Database (ELCD) energy datasets - part I: fuel datasets.

    PubMed

    Garraín, Daniel; Fazio, Simone; de la Rúa, Cristina; Recchioni, Marco; Lechón, Yolanda; Mathieux, Fabrice

    2015-01-01

    The aim of this study is to identify areas of potential improvement of the European Reference Life Cycle Database (ELCD) fuel datasets. The revision is based on the data quality indicators described by the ILCD Handbook, applied on sectorial basis. These indicators evaluate the technological, geographical and time-related representativeness of the dataset and the appropriateness in terms of completeness, precision and methodology. Results show that ELCD fuel datasets have a very good quality in general terms, nevertheless some findings and recommendations in order to improve the quality of Life-Cycle Inventories have been derived. Moreover, these results ensure the quality of the fuel-related datasets to any LCA practitioner, and provide insights related to the limitations and assumptions underlying in the datasets modelling. Giving this information, the LCA practitioner will be able to decide whether the use of the ELCD fuel datasets is appropriate based on the goal and scope of the analysis to be conducted. The methodological approach would be also useful for dataset developers and reviewers, in order to improve the overall DQR of databases.

  10. Evaluation of The Operational Benefits Versus Costs of An Automated Cargo Mover

    DTIC Science & Technology

    2016-12-01

    logistics footprint and life-cycle cost are presented as part of this report. Analysis of modeling and simulation results identified statistically...life-cycle cost are presented as part of this report. Analysis of modeling and simulation results identified statistically significant differences...Error of Estimation. Source: Eskew and Lawler (1994). ...........................75 Figure 24. Load Results (100 Runs per Scenario

  11. Cradle-to-gate life-cycle assessment of laminated veneer lumber produced in the southeast region of the United States

    Treesearch

    Richard D. Bergman; Sevda Alanya-Rosenbaum

    2017-01-01

    The goal of the present study was to develop life-cycle impact assessment (LCIA) data associated with gate-to-gate laminated veneer lumber (LVL) production in the southeast (SE) region of the U.S. with the ultimate aim of constructing an updated cradle-to-gate mill output life-cycle assessment (LCA). The authors collected primary (survey) mill data from LVL production...

  12. Ontology for Life-Cycle Modeling of Water Distribution Systems: Application of Model View Definition Attributes

    DTIC Science & Technology

    2013-06-01

    ER D C/ CE RL C R- 13 -5 Ontology for Life-Cycle Modeling of Water Distribution Systems : Application of Model View Definition...2013 Ontology for Life-Cycle Modeling of Water Distribution Systems : Application of Model View Definition Attributes Kristine K. Fallon, Robert A...interior plumbing systems and the information exchange requirements for every participant in the design. The findings were used to develop an

  13. Systematic life-cycle analysis and performance of enhanced trackbed support.

    DOT National Transportation Integrated Search

    2015-09-21

    The first objective of this project is to develop a method to measure the pressure distribution and magnitude as well as contact area at the ballast-tie interface under heavy haul, Class I type loading. Ballast degradation at this interface has been ...

  14. Assessing a Reclaimed Concrete Up-Cycling Scheme through Life-Cycle Analysis

    NASA Astrophysics Data System (ADS)

    Guignot, Sylvain; Bru, Kathy; Touzé, Solène; Ménard, Yannick

    The present study evaluates the environmental impacts of a recycling scheme for gravels from building concretes wastes, in which the liberated aggregates are reused in structural concretes while the residual mortar fines are sent to the raw mill of a clinker kiln.

  15. DYNALIST II : A Computer Program for Stability and Dynamic Response Analysis of Rail Vehicle Systems : Volume 4. Revised User's Manual.

    DOT National Transportation Integrated Search

    1976-07-01

    The Federal Railroad Administration (FRA) is sponsoring research, development, and demonstration programs to provide improved safety, performance, speed, reliability, and maintainability of rail transportation systems at reduced life-cycle costs. A m...

  16. An economic analysis comparison of stationary and dual-axis tracking grid-connected photovoltaic systems in the US Upper Midwest

    NASA Astrophysics Data System (ADS)

    Choi, Wongyu; Pate, Michael B.; Warren, Ryan D.; Nelson, Ron M.

    2018-05-01

    This paper presents an economic analysis of stationary and dual-axis tracking photovoltaic (PV) systems installed in the US Upper Midwest in terms of life-cycle costs, payback period, internal rate of return, and the incremental cost of solar energy. The first-year performance and energy savings were experimentally found along with documented initial cost. Future PV performance, savings, and operating and maintenance costs were estimated over 25-year assumed life. Under the given assumptions and discount rates, the life-cycle savings were found to be negative. Neither system was found to have payback periods less than the assumed system life. The lifetime average incremental costs of energy generated by the stationary and dual-axis tracking systems were estimated to be 0.31 and 0.37 per kWh generated, respectively. Economic analyses of different scenarios, each having a unique set of assumptions for costs and metering, showed a potential for economic feasibility under certain conditions when compared to alternative investments with assumed yields.

  17. Life-cycle energy and GHG emissions of forest biomass harvest and transport for biofuel production in Michigan

    DOE PAGES

    Zhang, Fengli; Johnson, Dana M.; Wang, Jinjiang

    2015-04-01

    High dependence on imported oil has increased U.S. strategic vulnerability and prompted more research in the area of renewable energy production. Ethanol production from renewable woody biomass, which could be a substitute for gasoline, has seen increased interest. This study analysed energy use and greenhouse gas emission impacts on the forest biomass supply chain activities within the State of Michigan. A life-cycle assessment of harvesting and transportation stages was completed utilizing peer-reviewed literature. Results for forest-delivered ethanol were compared with those for petroleum gasoline using data specific to the U.S. The analysis from a woody biomass feedstock supply perspective uncoveredmore » that ethanol production is more environmentally friendly (about 62% less greenhouse gas emissions) compared with petroleum based fossil fuel production. Sensitivity analysis was conducted with key inputs associated with harvesting and transportation operations. The results showed that research focused on improving biomass recovery efficiency and truck fuel economy further reduced GHG emissions and energy consumption.« less

  18. Life-cycle energy and GHG emissions of forest biomass harvest and transport for biofuel production in Michigan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fengli; Johnson, Dana M.; Wang, Jinjiang

    High dependence on imported oil has increased U.S. strategic vulnerability and prompted more research in the area of renewable energy production. Ethanol production from renewable woody biomass, which could be a substitute for gasoline, has seen increased interest. This study analysed energy use and greenhouse gas emission impacts on the forest biomass supply chain activities within the State of Michigan. A life-cycle assessment of harvesting and transportation stages was completed utilizing peer-reviewed literature. Results for forest-delivered ethanol were compared with those for petroleum gasoline using data specific to the U.S. The analysis from a woody biomass feedstock supply perspective uncoveredmore » that ethanol production is more environmentally friendly (about 62% less greenhouse gas emissions) compared with petroleum based fossil fuel production. Sensitivity analysis was conducted with key inputs associated with harvesting and transportation operations. The results showed that research focused on improving biomass recovery efficiency and truck fuel economy further reduced GHG emissions and energy consumption.« less

  19. Sliding down the U-shape? A dynamic panel investigation of the age-well-being relationship, focusing on young adults.

    PubMed

    Piper, Alan T

    2015-10-01

    Much of the work within economics attempting to understand the relationship between age and well-being has focused on the U-shape, whether it exists and, more recently, potential reasons for its existence. This paper focuses on one part of the lifecycle rather than the whole: young people. This focus offers a better understanding of the age-well-being relationship for young people, and helps with increasing general understanding regarding the U-shape itself. The empirical estimations employ both static and dynamic panel estimations, with the latter preferred for several reasons. The empirical results are in line with the U-shape, and the results from the dynamic analysis indicate that this result is a lifecycle effect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Evaluation of the Effectiveness of Stormwater Decision Support Tools for Infrastructure Selection and the Barriers to Implementation

    NASA Astrophysics Data System (ADS)

    Spahr, K.; Hogue, T. S.

    2016-12-01

    Selecting the most appropriate green, gray, and / or hybrid system for stormwater treatment and conveyance can prove challenging to decision markers across all scales, from site managers to large municipalities. To help streamline the selection process, a multi-disciplinary team of academics and professionals is developing an industry standard for selecting and evaluating the most appropriate stormwater management technology for different regions. To make the tool more robust and comprehensive, life-cycle cost assessment and optimization modules will be included to evaluate non-monetized and ecosystem benefits of selected technologies. Initial work includes surveying advisory board members based in cities that use existing decision support tools in their infrastructure planning process. These surveys will qualify the decisions currently being made and identify challenges within the current planning process across a range of hydroclimatic regions and city size. Analysis of social and other non-technical barriers to adoption of the existing tools is also being performed, with identification of regional differences and institutional challenges. Surveys will also gage the regional appropriateness of certain stormwater technologies based off experiences in implementing stormwater treatment and conveyance plans. In additional to compiling qualitative data on existing decision support tools, a technical review of components of the decision support tool used will be performed. Gaps in each tool's analysis, like the lack of certain critical functionalities, will be identified and ease of use will be evaluated. Conclusions drawn from both the qualitative and quantitative analyses will be used to inform the development of the new decision support tool and its eventual dissemination.

  1. Multi-host model-based identification of Armillifer agkistrodontis (Pentastomida), a new zoonotic parasite from China.

    PubMed

    Chen, Shao-Hong; Liu, Qin; Zhang, Yong-Nian; Chen, Jia-Xu; Li, Hao; Chen, Ying; Steinmann, Peter; Zhou, Xiao-Nong

    2010-04-06

    Pentastomiasis is a rare parasitic infection of humans. Pentastomids are dioecious obligate parasites requiring multiple hosts to complete their lifecycle. Despite their worm-like appearance, they are commonly placed into a separate sub-class of the subphylum Crustacea, phylum Arthropoda. However, their systematic position is not uncontested and historically, they have been considered as a separate phylum. An appraisal of Armillifer agkistrodontis was performed in terms of morphology and genetic identification after its lifecycle had been established in a multi-host model, i.e., mice and rats as intermediate hosts, and snakes (Agkistrodon acutus and Python molurus) as definitive hosts. Different stages of the parasite, including eggs, larvae and adults, were isolated and examined morphologically using light and electron microscopes. Phylogenetic and cluster analysis were also undertaken, focusing on the 18S rRNA and the Cox1 gene. The time for lifecycle completion was about 14 months, including 4 months for the development of eggs to infectious larvae in the intermediate host and 10 months for infectious larvae to mature in the final host. The main morphological difference between A. armillatus and Linguatula serrata is the number of abdominal annuli. Based on the 18S rRNA sequence, the shortest hereditary distance was found between A. agkistrodontis and Raillietiella spp. The highest degree of homology in the Cox 1 nucleic acid sequences and predicted amino acid sequences was found between A. agkistrodontis and A. armillatus. This is the first time that a multi-host model of the entire lifecycle of A. agkistrodontis has been established. Morphologic and genetic analyses supported the notion that pentastomids should be placed into the phylum Arthropoda.

  2. Clinical Research Informatics: Supporting the Research Study Lifecycle.

    PubMed

    Johnson, S B

    2017-08-01

    Objectives: The primary goal of this review is to summarize significant developments in the field of Clinical Research Informatics (CRI) over the years 2015-2016. The secondary goal is to contribute to a deeper understanding of CRI as a field, through the development of a strategy for searching and classifying CRI publications. Methods: A search strategy was developed to query the PubMed database, using medical subject headings to both select and exclude articles, and filtering publications by date and other characteristics. A manual review classified publications using stages in the "research study lifecycle", with key stages that include study definition, participant enrollment, data management, data analysis, and results dissemination. Results: The search strategy generated 510 publications. The manual classification identified 125 publications as relevant to CRI, which were classified into seven different stages of the research lifecycle, and one additional class that pertained to multiple stages, referring to general infrastructure or standards. Important cross-cutting themes included new applications of electronic media (Internet, social media, mobile devices), standardization of data and procedures, and increased automation through the use of data mining and big data methods. Conclusions: The review revealed increased interest and support for CRI in large-scale projects across institutions, regionally, nationally, and internationally. A search strategy based on medical subject headings can find many relevant papers, but a large number of non-relevant papers need to be detected using text words which pertain to closely related fields such as computational statistics and clinical informatics. The research lifecycle was useful as a classification scheme by highlighting the relevance to the users of clinical research informatics solutions. Georg Thieme Verlag KG Stuttgart.

  3. Efficient load rating and quantification of life-cycle damage of Indiana bridges due to overweight loads.

    DOT National Transportation Integrated Search

    2016-02-01

    In this study, a computational approach for conducting durability analysis of bridges using detailed finite element models is developed. The underlying approach adopted is based on the hypothesis that the two main factors affecting the life of a brid...

  4. Life-cycle energy implications of different residential settings : recognizing buildings, travel, and public infrastructure.

    DOT National Transportation Integrated Search

    2013-08-01

    The built environment can be used to influence travel demand, but very few studies consider the relative energy : savings of such policies in context of a complex urban system. This analysis quantifies the day-to-day and embodied : energy consumption...

  5. The cost of construction delays and traffic control for life-cycle cost analysis of pavements

    DOT National Transportation Integrated Search

    2002-03-01

    The objective of this report is to provide the Kentucky Transportation Cabinet a reliable approach to quantifying/calculating "Road User Cost"--often referred to as total user delay costs. To meet this objective, this report is divided into three mai...

  6. Performance Analysis of Retrofitted Tribo-Corrosion Test Rig for Monitoring In Situ Oil Conditions.

    PubMed

    Siddaiah, Arpith; Khan, Zulfiqar Ahmad; Ramachandran, Rahul; Menezes, Pradeep L

    2017-09-28

    Oils and lubricants, once extracted after use from a mechanical system, can hardly be reused, and should be refurbished or replaced in most applications. New methods of in situ oil and lubricant efficiency monitoring systems have been introduced for a wide variety of mechanical systems, such as automobiles, aerospace aircrafts, ships, offshore wind turbines, and deep sea oil drilling rigs. These methods utilize electronic sensors to monitor the "byproduct effects" in a mechanical system that are not indicative of the actual remaining lifecycle and reliability of the oils. A reliable oil monitoring system should be able to monitor the wear rate and the corrosion rate of the tribo-pairs due to the inclusion of contaminants. The current study addresses this technological gap, and presents a novel design of a tribo-corrosion test rig for oils used in a dynamic system. A pin-on-disk tribometer test rig retrofitted with a three electrode-potentiostat corrosion monitoring system was used to analyze the corrosion and wear rate of a steel tribo-pair in industrial grade transmission oil. The effectiveness of the retrofitted test rig was analyzed by introducing various concentrations of contaminants in an oil medium that usually leads to a corrosive working environment. The results indicate that the retrofitted test rig can effectively monitor the in situ tribological performance of the oil in a controlled dynamic corrosive environment. It is a useful method to understand the wear-corrosion synergies for further experimental work, and to develop accurate predictive lifecycle assessment and prognostic models. The application of this system is expected to have economic benefits and help reduce the ecological oil waste footprint.

  7. Near-term deployment of carbon capture and sequestration from biorefineries in the United States.

    PubMed

    Sanchez, Daniel L; Johnson, Nils; McCoy, Sean T; Turner, Peter A; Mach, Katharine J

    2018-05-08

    Capture and permanent geologic sequestration of biogenic CO 2 emissions may provide critical flexibility in ambitious climate change mitigation. However, most bioenergy with carbon capture and sequestration (BECCS) technologies are technically immature or commercially unavailable. Here, we evaluate low-cost, commercially ready CO 2 capture opportunities for existing ethanol biorefineries in the United States. The analysis combines process engineering, spatial optimization, and lifecycle assessment to consider the technical, economic, and institutional feasibility of near-term carbon capture and sequestration (CCS). Our modeling framework evaluates least cost source-sink relationships and aggregation opportunities for pipeline transport, which can cost-effectively transport small CO 2 volumes to suitable sequestration sites; 216 existing US biorefineries emit 45 Mt CO 2 annually from fermentation, of which 60% could be captured and compressed for pipeline transport for under $25/tCO 2 A sequestration credit, analogous to existing CCS tax credits, of $60/tCO 2 could incent 30 Mt of sequestration and 6,900 km of pipeline infrastructure across the United States. Similarly, a carbon abatement credit, analogous to existing tradeable CO 2 credits, of $90/tCO 2 can incent 38 Mt of abatement. Aggregation of CO 2 sources enables cost-effective long-distance pipeline transport to distant sequestration sites. Financial incentives under the low-carbon fuel standard in California and recent revisions to existing federal tax credits suggest a substantial near-term opportunity to permanently sequester biogenic CO 2 This financial opportunity could catalyze the growth of carbon capture, transport, and sequestration; improve the lifecycle impacts of conventional biofuels; support development of carbon-negative fuels; and help fulfill the mandates of low-carbon fuel policies across the United States. Copyright © 2018 the Author(s). Published by PNAS.

  8. Alternatives Assessment Frameworks: Research Needs for the Informed Substitution of Hazardous Chemicals

    PubMed Central

    Jacobs, Molly M.; Malloy, Timothy F.; Tickner, Joel A.; Edwards, Sally

    2015-01-01

    Background Given increasing pressures for hazardous chemical replacement, there is growing interest in alternatives assessment to avoid substituting a toxic chemical with another of equal or greater concern. Alternatives assessment is a process for identifying, comparing, and selecting safer alternatives to chemicals of concern (including those used in materials, processes, or technologies) on the basis of their hazards, performance, and economic viability. Objectives The purposes of this substantive review of alternatives assessment frameworks are to identify consistencies and differences in methods and to outline needs for research and collaboration to advance science policy practice. Methods This review compares methods used in six core components of these frameworks: hazard assessment, exposure characterization, life-cycle impacts, technical feasibility evaluation, economic feasibility assessment, and decision making. Alternatives assessment frameworks published from 1990 to 2014 were included. Results Twenty frameworks were reviewed. The frameworks were consistent in terms of general process steps, but some differences were identified in the end points addressed. Methodological gaps were identified in the exposure characterization, life-cycle assessment, and decision–analysis components. Methods for addressing data gaps remain an issue. Discussion Greater consistency in methods and evaluation metrics is needed but with sufficient flexibility to allow the process to be adapted to different decision contexts. Conclusion Although alternatives assessment is becoming an important science policy field, there is a need for increased cross-disciplinary collaboration to refine methodologies in support of the informed substitution and design of safer chemicals, materials, and products. Case studies can provide concrete lessons to improve alternatives assessment. Citation Jacobs MM, Malloy TF, Tickner JA, Edwards S. 2016. Alternatives assessment frameworks: research needs for the informed substitution of hazardous chemicals. Environ Health Perspect 124:265–280; http://dx.doi.org/10.1289/ehp.1409581 PMID:26339778

  9. Performance Analysis of Retrofitted Tribo-Corrosion Test Rig for Monitoring In Situ Oil Conditions

    PubMed Central

    Ramachandran, Rahul; Menezes, Pradeep L.

    2017-01-01

    Oils and lubricants, once extracted after use from a mechanical system, can hardly be reused, and should be refurbished or replaced in most applications. New methods of in situ oil and lubricant efficiency monitoring systems have been introduced for a wide variety of mechanical systems, such as automobiles, aerospace aircrafts, ships, offshore wind turbines, and deep sea oil drilling rigs. These methods utilize electronic sensors to monitor the “byproduct effects” in a mechanical system that are not indicative of the actual remaining lifecycle and reliability of the oils. A reliable oil monitoring system should be able to monitor the wear rate and the corrosion rate of the tribo-pairs due to the inclusion of contaminants. The current study addresses this technological gap, and presents a novel design of a tribo-corrosion test rig for oils used in a dynamic system. A pin-on-disk tribometer test rig retrofitted with a three electrode-potentiostat corrosion monitoring system was used to analyze the corrosion and wear rate of a steel tribo-pair in industrial grade transmission oil. The effectiveness of the retrofitted test rig was analyzed by introducing various concentrations of contaminants in an oil medium that usually leads to a corrosive working environment. The results indicate that the retrofitted test rig can effectively monitor the in situ tribological performance of the oil in a controlled dynamic corrosive environment. It is a useful method to understand the wear–corrosion synergies for further experimental work, and to develop accurate predictive lifecycle assessment and prognostic models. The application of this system is expected to have economic benefits and help reduce the ecological oil waste footprint. PMID:28956819

  10. Near-term deployment of carbon capture and sequestration from biorefineries in the United States

    PubMed Central

    Johnson, Nils; McCoy, Sean T.; Turner, Peter A.; Mach, Katharine J.

    2018-01-01

    Capture and permanent geologic sequestration of biogenic CO2 emissions may provide critical flexibility in ambitious climate change mitigation. However, most bioenergy with carbon capture and sequestration (BECCS) technologies are technically immature or commercially unavailable. Here, we evaluate low-cost, commercially ready CO2 capture opportunities for existing ethanol biorefineries in the United States. The analysis combines process engineering, spatial optimization, and lifecycle assessment to consider the technical, economic, and institutional feasibility of near-term carbon capture and sequestration (CCS). Our modeling framework evaluates least cost source–sink relationships and aggregation opportunities for pipeline transport, which can cost-effectively transport small CO2 volumes to suitable sequestration sites; 216 existing US biorefineries emit 45 Mt CO2 annually from fermentation, of which 60% could be captured and compressed for pipeline transport for under $25/tCO2. A sequestration credit, analogous to existing CCS tax credits, of $60/tCO2 could incent 30 Mt of sequestration and 6,900 km of pipeline infrastructure across the United States. Similarly, a carbon abatement credit, analogous to existing tradeable CO2 credits, of $90/tCO2 can incent 38 Mt of abatement. Aggregation of CO2 sources enables cost-effective long-distance pipeline transport to distant sequestration sites. Financial incentives under the low-carbon fuel standard in California and recent revisions to existing federal tax credits suggest a substantial near-term opportunity to permanently sequester biogenic CO2. This financial opportunity could catalyze the growth of carbon capture, transport, and sequestration; improve the lifecycle impacts of conventional biofuels; support development of carbon-negative fuels; and help fulfill the mandates of low-carbon fuel policies across the United States. PMID:29686063

  11. Nanotechnology patenting trends through an environmental lens: analysis of materials and applications

    NASA Astrophysics Data System (ADS)

    Leitch, Megan E.; Casman, Elizabeth; Lowry, Gregory V.

    2012-12-01

    Many international groups study environmental health and safety (EHS) concerns surrounding the use of engineered nanomaterials (ENMs). These researchers frequently use the "Project on Emerging Nanotechnologies" (PEN) inventory of nano-enabled consumer products to prioritize types of ENMs to study because estimates of life-cycle ENM releases to the environment can be extrapolated from the database. An alternative "snapshot" of nanomaterials likely to enter commerce can be determined from the patent literature. The goal of this research was to provide an overview of nanotechnology intellectual property trends, complementary to the PEN consumer product database, to help identify potentially "risky" nanomaterials for study by the nano-EHS community. Ten years of nanotechnology patents were examined to determine the types of nano-functional materials being patented, the chemical compositions of the ENMs, and the products in which they are likely to appear. Patenting trends indicated different distributions of nano-enabled products and materials compared to the PEN database. Recent nanotechnology patenting is dominated by electrical and information technology applications rather than the hygienic and anti-fouling applications shown by PEN. There is an increasing emphasis on patenting of nano-scale layers, coatings, and other surface modifications rather than traditional nanoparticles, and there is widespread use of nano-functional semiconductor, ceramic, magnetic, and biological materials that are currently less studied by EHS professionals. These commonly patented products and the nano-functional materials they contain may warrant life-cycle evaluations to determine the potential for environmental exposure and toxicity. The patent and consumer product lists contribute different and complementary insights into the emerging nanotechnology industry and its potential for introducing nanomaterials into the environment.

  12. 77 FR 65665 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-30

    ...: International Trade Administration. Title: International Client Life-cycle Multi-Purpose Forms. OMB Control... of an international client's life-cycle with CS, involves merging with other information collections...

  13. Life Cycle Assessment of Wall Systems

    NASA Astrophysics Data System (ADS)

    Ramachandran, Sriranjani

    Natural resource depletion and environmental degradation are the stark realities of the times we live in. As awareness about these issues increases globally, industries and businesses are becoming interested in understanding and minimizing the ecological footprints of their activities. Evaluating the environmental impacts of products and processes has become a key issue, and the first step towards addressing and eventually curbing climate change. Additionally, companies are finding it beneficial and are interested in going beyond compliance using pollution prevention strategies and environmental management systems to improve their environmental performance. Life-cycle Assessment (LCA) is an evaluative method to assess the environmental impacts associated with a products' life-cycle from cradle-to-grave (i.e. from raw material extraction through to material processing, manufacturing, distribution, use, repair and maintenance, and finally, disposal or recycling). This study focuses on evaluating building envelopes on the basis of their life-cycle analysis. In order to facilitate this analysis, a small-scale office building, the University Services Building (USB), with a built-up area of 148,101 ft2 situated on ASU campus in Tempe, Arizona was studied. The building's exterior envelope is the highlight of this study. The current exterior envelope is made of tilt-up concrete construction, a type of construction in which the concrete elements are constructed horizontally and tilted up, after they are cured, using cranes and are braced until other structural elements are secured. This building envelope is compared to five other building envelope systems (i.e. concrete block, insulated concrete form, cast-in-place concrete, steel studs and curtain wall constructions) evaluating them on the basis of least environmental impact. The research methodology involved developing energy models, simulating them and generating changes in energy consumption due to the above mentioned envelope types. Energy consumption data, along with various other details, such as building floor area, areas of walls, columns, beams etc. and their material types were imported into Life-Cycle Assessment software called ATHENA impact estimator for buildings. Using this four-stepped LCA methodology, the results showed that the Steel Stud envelope performed the best and less environmental impact compared to other envelope types. This research methodology can be applied to other building typologies.

  14. Product Lifecycle Management and the Quest for Sustainable Space Explorations

    NASA Technical Reports Server (NTRS)

    Caruso, Pamela W.; Dumbacher, Daniel L.

    2010-01-01

    Product Lifecycle Management (PLM) is an outcome of lean thinking to eliminate waste and increase productivity. PLM is inextricably tied to the systems engineering business philosophy, coupled with a methodology by which personnel, processes and practices, and information technology combine to form an architecture platform for product design, development, manufacturing, operations, and decommissioning. In this model, which is being implemented by the Engineering Directorate at the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center, total lifecycle costs are important variables for critical decision-making. With the ultimate goal to deliver quality products that meet or exceed requirements on time and within budget, PLM is a powerful concept to shape everything from engineering trade studies and testing goals, to integrated vehicle operations and retirement scenarios. This paper will demonstrate how the Engineering Directorate is implementing PLM as part of an overall strategy to deliver safe, reliable, and affordable space exploration solutions. It has been 30 years since the United States fielded the Space Shuttle. The next generation space transportation system requires a paradigm shift such that digital tools and knowledge management, which are central elements of PLM, are used consistently to maximum effect. The outcome is a better use of scarce resources, along with more focus on stakeholder and customer requirements, as a new portfolio of enabling tools becomes second nature to the workforce. This paper will use the design and manufacturing processes, which have transitioned to digital-based activities, to show how PLM supports the comprehensive systems engineering and integration function. It also will go through a launch countdown scenario where an anomaly is detected to show how the virtual vehicle created from paperless processes will help solve technical challenges and improve the likelihood of launching on schedule, with less hands-on labor needed for processing and troubleshooting.

  15. Exploring business process modelling paradigms and design-time to run-time transitions

    NASA Astrophysics Data System (ADS)

    Caron, Filip; Vanthienen, Jan

    2016-09-01

    The business process management literature describes a multitude of approaches (e.g. imperative, declarative or event-driven) that each result in a different mix of process flexibility, compliance, effectiveness and efficiency. Although the use of a single approach over the process lifecycle is often assumed, transitions between approaches at different phases in the process lifecycle may also be considered. This article explores several business process strategies by analysing the approaches at different phases in the process lifecycle as well as the various transitions.

  16. Lifecycle of laser-produced air sparks

    DOE PAGES

    Harilal, S. S.; Brumfield, B. E.; Phillips, M. C.

    2015-06-03

    Here, we investigated the lifecycle of laser-generated air sparks or plasmas using multiple plasma diagnostic tools. The sparks were generated by focusing the fundamental radiation from an Nd:YAG laser in air, and studies included early and late time spark dynamics, decoupling of the shock wave from the plasma core, emission from the spark kernel, cold gas excitation by UV radiation, shock waves produced by the air spark, and the spark's final decay and turbulence formation. The shadowgraphic and self-emission images showed similar spark morphology at earlier and late times of its lifecycle; however, significant differences are seen in the midlifemore » images. Spectroscopic studies in the visible region showed intense blackbody-type radiation at early times followed by clearly resolved ionic, atomic, and molecular emission. The detected spectrum at late times clearly contained emission from both CN and N 2 +. Additional spectral features have been identified at late times due to emission from O and N atoms, indicating some degree of molecular dissociation and excitation. Detailed spatially and temporally resolved emission analysis provides insight about various physical mechanisms leading to molecular and atomic emission by air sparks, including spark plasma excitation, heating of cold air by UV radiation emitted by the spark, and shock-heating.« less

  17. Updated estimation of energy efficiencies of U.S. petroleum refineries.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palou-Rivera, I.; Wang, M. Q.

    2010-12-08

    Evaluation of life-cycle (or well-to-wheels, WTW) energy and emission impacts of vehicle/fuel systems requires energy use (or energy efficiencies) of energy processing or conversion activities. In most such studies, petroleum fuels are included. Thus, determination of energy efficiencies of petroleum refineries becomes a necessary step for life-cycle analyses of vehicle/fuel systems. Petroleum refinery energy efficiencies can then be used to determine the total amount of process energy use for refinery operation. Furthermore, since refineries produce multiple products, allocation of energy use and emissions associated with petroleum refineries to various petroleum products is needed for WTW analysis of individual fuels suchmore » as gasoline and diesel. In particular, GREET, the life-cycle model developed at Argonne National Laboratory with DOE sponsorship, compares energy use and emissions of various transportation fuels including gasoline and diesel. Energy use in petroleum refineries is key components of well-to-pump (WTP) energy use and emissions of gasoline and diesel. In GREET, petroleum refinery overall energy efficiencies are used to determine petroleum product specific energy efficiencies. Argonne has developed petroleum refining efficiencies from LP simulations of petroleum refineries and EIA survey data of petroleum refineries up to 2006 (see Wang, 2008). This memo documents Argonne's most recent update of petroleum refining efficiencies.« less

  18. Lifecycle of laser-produced air sparks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harilal, S. S., E-mail: hari@pnnl.gov; Brumfield, B. E.; Phillips, M. C.

    2015-06-15

    We investigated the lifecycle of laser-generated air sparks or plasmas using multiple plasma diagnostic tools. The sparks were generated by focusing the fundamental radiation from an Nd:YAG laser in air, and studies included early and late time spark dynamics, decoupling of the shock wave from the plasma core, emission from the spark kernel, cold gas excitation by UV radiation, shock waves produced by the air spark, and the spark's final decay and turbulence formation. The shadowgraphic and self-emission images showed similar spark morphology at earlier and late times of its lifecycle; however, significant differences are seen in the midlife images.more » Spectroscopic studies in the visible region showed intense blackbody-type radiation at early times followed by clearly resolved ionic, atomic, and molecular emission. The detected spectrum at late times clearly contained emission from both CN and N{sub 2}{sup +}. Additional spectral features have been identified at late times due to emission from O and N atoms, indicating some degree of molecular dissociation and excitation. Detailed spatially and temporally resolved emission analysis provides insight about various physical mechanisms leading to molecular and atomic emission by air sparks, including spark plasma excitation, heating of cold air by UV radiation emitted by the spark, and shock-heating.« less

  19. Prophage-Encoded Staphylococcal Enterotoxin A: Regulation of Production in Staphylococcus aureus Strains Representing Different Sea Regions

    PubMed Central

    Zeaki, Nikoleta; Budi Susilo, Yusak; Pregiel, Anna; Rådström, Peter; Schelin, Jenny

    2015-01-01

    The present study investigates the nature of the link between the staphylococcal enterotoxin A (SEA) gene and the lifecycle of Siphoviridae bacteriophages, including the origin of strain variation regarding SEA production after prophage induction. Five strains representing three different genetic lines of the sea region were studied under optimal and prophage-induced growth conditions and the Siphoviridae lifecycle was followed through the phage replicative form copies and transcripts of the lysogenic repressor, cro. The role of SOS response on prophage induction was addressed through recA transcription in a recA-disruption mutant. Prophage induction was found to increase the abundance of the phage replicative form, the sea gene copies and transcripts and enhance SEA production. Sequence analysis of the sea regions revealed that observed strain variances were related to strain capacity for prophage induction, rather than sequence differences in the sea region. The impact of SOS response activation on the phage lifecycle was demonstrated by the absence of phage replicative form copies in the recA-disruption mutant after prophage induction. From this study it emerges that all aspects of SEA-producing strain, the Siphoviridae phage and the food environment must be considered when evaluating SEA-related hazards. PMID:26690218

  20. What Is PG-TRAK90? An Introduction to PGCC's Lifestyle Cluster System for Student Recruitment Targeting and Enrollment Analysis. Market Analysis MA94-1.

    ERIC Educational Resources Information Center

    Boughan, Karl

    PG-TRAK90 is a cluster-based geographic marketing system designed by Maryland's Prince George's Community College (PGCC) to maximize educational marketing objectives. To create it, United States Census Bureau files containing over 200 demographic, housing, and lifecycle variables for 172 tracts in Prince George County (PGC) were reformatted into…

  1. Engineering sustainable development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prendergast, J.

    1993-10-01

    This article discusses sustainable development, a policy which attempts to balance environmental preservation and economic growth, and promises a way to provide a decent life for Earth's human inhabitants without destroying the global ecosystem. Sustainable development is an effort to use technology to help clean up the mess it helped make, and engineers will be central players in its success or failure. Key aspects include more efficient energy use through conservation measures and switching to renewable sources, waste minimization, much greater recycling and reuse of materials, more comprehensive economic/environmental assessments employing life-cycle analyses, and better management of resources.

  2. The Surface Layer Mechanical Condition and Residual Stress Forming Model in Surface Plastic Deformation Process with the Hardened Body Effect Consideration

    NASA Astrophysics Data System (ADS)

    Mahalov, M. S.; Blumenstein, V. Yu

    2017-10-01

    The mechanical condition and residual stresses (RS) research and computational algorithms creation in complex types of loading on the product lifecycle stages relevance is shown. The mechanical state and RS forming finite element model at surface plastic deformation strengthening machining, including technological inheritance effect, is presented. A model feature is the production previous stages obtained transformation properties consideration, as well as these properties evolution during metal particles displacement through the deformation space in the present loading step.

  3. Control Technology for Depainting Operations: Estimation of Life-Cycle Costs of Controlling Methylene Chloride in Aircraft-Depainting Operations Versus Alternative Processes

    DTIC Science & Technology

    1997-11-24

    2343 Calle Del Mundo Santa Clara, CA 95054-1008 Tel.: (408)727-8282 POC: J. A. Gotterba Durr Industries Environmental Systems Division 40600...1) LESS THAN 1 IV. FIRE AND EXPLOSION DATA FLASH POINT (TEST METHOD) ABOVE 200*P AUTO IGNITION ABOVE TEMPERATURE iJfJO’P...IST METHOD, ?oo.._r T,CCT CxriNOUISHINO Mt 01A WATER AUTO IGNITION ABOVB I rLAM**BLt »•’•’"’• TEMPERATURE ^QQly | IN AIR

  4. Vocational Education for Migrant Youth. Information Series No. 238.

    ERIC Educational Resources Information Center

    Picou, J. Steven

    This paper is intended to assist vocational educators in meeting the career development needs and aspirations of migrant youth. It examines the unique characteristics of migrant youth and develops a general life-cycle model of their vocational development. This comparative analysis provides the vocational educator with a basis for identifying…

  5. Planning level assessment of greenhouse gas emissions for alternative transportation construction projects : carbon footprint estimator, phase II, volume I - GASCAP model.

    DOT National Transportation Integrated Search

    2014-03-01

    The GASCAP model was developed to provide a software tool for analysis of the life-cycle GHG : emissions associated with the construction and maintenance of transportation projects. This phase : of development included techniques for estimating emiss...

  6. Cost Sensitivity Analysis for Consolidated Interim Storage of Spent Fuel: Evaluating the Effect of Economic Environment Parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cumberland, Riley M.; Williams, Kent Alan; Jarrell, Joshua J.

    This report evaluates how the economic environment (i.e., discount rate, inflation rate, escalation rate) can impact previously estimated differences in lifecycle costs between an integrated waste management system with an interim storage facility (ISF) and a similar system without an ISF.

  7. "Illustrating the Machinery of Life": Viruses

    ERIC Educational Resources Information Center

    Goodsell, David S.

    2012-01-01

    Data from electron microscopy, X-ray crystallography, and biophysical analysis are used to create illustrations of viruses in their cellular context. This report describes the scientific data and artistic methods used to create three illustrations: a depiction of the poliovirus lifecycle, budding of influenza virus from a cell surface, and a…

  8. Evaluating Games-Based Learning

    ERIC Educational Resources Information Center

    Hainey, Thomas; Connolly, Thomas

    2010-01-01

    A highly important part of software engineering education is requirements collection and analysis, one of the initial stages of the Software Development Lifecycle. No other conceptual work is as difficult to rectify at a later stage or as damaging to the overall system if performed incorrectly. As software engineering is a field with a reputation…

  9. Imprinting Community College Computer Science Education with Software Engineering Principles

    ERIC Educational Resources Information Center

    Hundley, Jacqueline Holliday

    2012-01-01

    Although the two-year curriculum guide includes coverage of all eight software engineering core topics, the computer science courses taught in Alabama community colleges limit student exposure to the programming, or coding, phase of the software development lifecycle and offer little experience in requirements analysis, design, testing, and…

  10. Life-cycle analysis of dryland greenhouse gases affected by cropping sequence and nitrogen fertilization

    USDA-ARS?s Scientific Manuscript database

    Little information is available about management practices effect on net global warming potential (GWP) and greenhouse gas intensity (GHGI) under dryland cropping systems. We evaluated the effects of cropping sequences (conventional till malt barley-fallow [CTB-F], no-till malt barley-pea [NTB-P], a...

  11. THE POTENTIAL MID-TERM ROLE OF NUCLEAR POWER IN THE UNITED STATES: A SCENARIO ANALYSIS USING MARKAL

    EPA Science Inventory

    With all nations facing enormous challenges related to energy security, sustainability and environmental quality, nuclear power is likely to play an increasingly important role in the future. In particular, the life-cycle emissions of criteria pollutants and greenhouse gases (GHG...

  12. Recyclable organic solar cells on cellulose nanocrystal substrates

    PubMed Central

    Zhou, Yinhua; Fuentes-Hernandez, Canek; Khan, Talha M.; Liu, Jen-Chieh; Hsu, James; Shim, Jae Won; Dindar, Amir; Youngblood, Jeffrey P.; Moon, Robert J.; Kippelen, Bernard

    2013-01-01

    Solar energy is potentially the largest source of renewable energy at our disposal, but significant advances are required to make photovoltaic technologies economically viable and, from a life-cycle perspective, environmentally friendly, and consequently scalable. Cellulose nanomaterials are emerging high-value nanoparticles extracted from plants that are abundant, renewable, and sustainable. Here, we report on the first demonstration of efficient polymer solar cells fabricated on optically transparent cellulose nanocrystal (CNC) substrates. The solar cells fabricated on the CNC substrates display good rectification in the dark and reach a power conversion efficiency of 2.7%. In addition, we demonstrate that these solar cells can be easily separated and recycled into their major components using low-energy processes at room temperature, opening the door for a truly recyclable solar cell technology. Efficient and easily recyclable organic solar cells on CNC substrates are expected to be an attractive technology for sustainable, scalable, and environmentally-friendly energy production. PMID:23524333

  13. Development and flight test experiences with a flight-crucial digital control system

    NASA Technical Reports Server (NTRS)

    Mackall, Dale A.

    1988-01-01

    Engineers and scientists in the advanced fighter technology integration (AFTI) F-16 program investigated the integration of emerging technologies into an advanced fighter aircraft. AFTI's three major technologies included: flight-crucial digital control, decoupled aircraft flight control, and integration of avionics, flight control, and pilot displays. In addition to investigating improvements in fighter performance, researchers studied the generic problems confronting the designers of highly integrated flight-crucial digital control. An overview is provided of both the advantages and problems of integration digital control systems. Also, an examination of the specification, design, qualification, and flight test life-cycle phase is provided. An overview is given of the fault-tolerant design, multimoded decoupled flight control laws, and integrated avionics design. The approach to qualifying the software and system designs is discussed, and the effects of design choices on system qualification are highlighted.

  14. Recyclable organic solar cells on cellulose nanocrystal substrates.

    PubMed

    Zhou, Yinhua; Fuentes-Hernandez, Canek; Khan, Talha M; Liu, Jen-Chieh; Hsu, James; Shim, Jae Won; Dindar, Amir; Youngblood, Jeffrey P; Moon, Robert J; Kippelen, Bernard

    2013-01-01

    Solar energy is potentially the largest source of renewable energy at our disposal, but significant advances are required to make photovoltaic technologies economically viable and, from a life-cycle perspective, environmentally friendly, and consequently scalable. Cellulose nanomaterials are emerging high-value nanoparticles extracted from plants that are abundant, renewable, and sustainable. Here, we report on the first demonstration of efficient polymer solar cells fabricated on optically transparent cellulose nanocrystal (CNC) substrates. The solar cells fabricated on the CNC substrates display good rectification in the dark and reach a power conversion efficiency of 2.7%. In addition, we demonstrate that these solar cells can be easily separated and recycled into their major components using low-energy processes at room temperature, opening the door for a truly recyclable solar cell technology. Efficient and easily recyclable organic solar cells on CNC substrates are expected to be an attractive technology for sustainable, scalable, and environmentally-friendly energy production.

  15. Generalized approach for identification and evaluation of technology-insertion options for military avionics systems

    NASA Astrophysics Data System (ADS)

    Harkness, Linda L.; Sjoberg, Eric S.

    1996-06-01

    The Georgia Tech Research Institute, sponsored by the Warner Robins Air Logistics Center, has developed an approach for efficiently postulating and evaluating methods for extending the life of radars and other avionics systems. The technique identified specific assemblies for potential replacement and evaluates the system level impact, including performance, reliability and life-cycle cost of each action. The initial impetus for this research was the increasing obsolescence of integrated circuits contained in the AN/APG-63 system. The operational life of military electronics is typically in excess of twenty years, which encompasses several generations of IC technology. GTRI has developed a systems approach to inserting modern technology components into older systems based upon identification of those functions which limit the system's performance or reliability and which are cost drivers. The presentation will discuss the above methodology and a technique for evaluating and ranking the different potential system upgrade options.

  16. Usability engineering for augmented reality: employing user-based studies to inform design.

    PubMed

    Gabbard, Joseph L; Swan, J Edward

    2008-01-01

    A major challenge, and thus opportunity, in the field of human-computer interaction and specifically usability engineering is designing effective user interfaces for emerging technologies that have no established design guidelines or interaction metaphors or introduce completely new ways for users to perceive and interact with technology and the world around them. Clearly, augmented reality is one such emerging technology. We propose a usability engineering approach that employs user-based studies to inform design, by iteratively inserting a series of user-based studies into a traditional usability engineering lifecycle to better inform initial user interface designs. We present an exemplar user-based study conducted to gain insight into how users perceive text in outdoor augmented reality settings and to derive implications for design in outdoor augmented reality. We also describe lessons learned from our experiences conducting user-based studies as part of the design process.

  17. 49 CFR 236.917 - Retention of records.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-Based Signal and Train Control Systems § 236.917 Retention of records. (a) What life-cycle and...: (i) For the life-cycle of the product, adequate documentation to demonstrate that the PSP meets the...

  18. 49 CFR 236.917 - Retention of records.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-Based Signal and Train Control Systems § 236.917 Retention of records. (a) What life-cycle and...: (i) For the life-cycle of the product, adequate documentation to demonstrate that the PSP meets the...

  19. Life-cycle costing: Practical considerations

    NASA Technical Reports Server (NTRS)

    Eisenberger, I.; Lorden, G.

    1977-01-01

    The history and methodology of life-cycle costing are presented and analyzed, contrasting the potential benefits of the technique with the difficulties of its application. Examples and a short survey of the literature are given.

  20. A Collaborative Approach to Lifecycle Management: An Engineering Perspective

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.; Spellman, K.

    1998-01-01

    In this paper, we will discuss how the partnership formed between the engineering and archival disciplines at the Jet Propulsion Laboratory (JPL) is working to improve lifecycle management for all users.

Top