Sample records for technology maturation program

  1. Next Generation Launch Technology Program Lessons Learned

    NASA Technical Reports Server (NTRS)

    Cook, Stephen; Tyson, Richard

    2005-01-01

    In November 2002, NASA revised its Integrated Space Transportation Plan (ISTP) to evolve the Space Launch Initiative (SLI) to serve as a theme for two emerging programs. The first of these, the Orbital Space Plane (OSP), was intended to provide crew-escape and crew-transfer functions for the ISS. The second, the NGLT Program, developed technologies needed for safe, routine space access for scientific exploration, commerce, and national defense. The NGLT Program was comprised of 12 projects, ranging from fundamental high-temperature materials research to full-scale engine system developments (turbine and rocket) to scramjet flight test. The Program included technology advancement activities with a broad range of objectives, ultimate applications/timeframes, and technology maturity levels. An over-arching Systems Engineering and Analysis (SE&A) approach was employed to focus technology advancements according to a common set of requirements. Investments were categorized into three segments of technology maturation: propulsion technologies, launch systems technologies, and SE&A.

  2. NDE Technology Development Program for Non-Visual Volumetric Inspection Technology; Sensor Effectiveness Testing Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moran, Traci L.; Larche, Michael R.; Denslow, Kayte M.

    The Pacific Northwest National Laboratory (PNNL) located in Richland, Washington, hosted and administered Sensor Effectiveness Testing that allowed four different participants to demonstrate the NDE volumetric inspection technologies that were previously demonstrated during the Technology Screening session. This document provides a Sensor Effectiveness Testing report for the final part of Phase I of a three-phase NDE Technology Development Program designed to identify and mature a system or set of non-visual volumetric NDE technologies for Hanford DST primary liner bottom inspection. Phase I of the program will baseline the performance of current or emerging non-visual volumetric NDE technologies for their abilitymore » to detect and characterize primary liner bottom flaws, and identify candidate technologies for adaptation and maturation for Phase II of the program.« less

  3. The Need for Technology Maturity of Any Advanced Capability to Achieve Better Life Cycle Cost (LCC)

    NASA Technical Reports Server (NTRS)

    Robinson, John W.; Levack, Daniel J. H.; Rhodes, Russel E.; Chen, Timothy T.

    2009-01-01

    Programs such as space transportation systems are developed and deployed only rarely, and they have long development schedules and large development and life cycle costs (LCC). They have not historically had their LCC predicted well and have only had an effort to control the DDT&E phase of the programs. One of the factors driving the predictability, and thus control, of the LCC of a program is the maturity of the technologies incorporated in the program. If the technologies incorporated are less mature (as measured by their Technology Readiness Level - TRL), then the LCC not only increases but the degree of increase is difficult to predict. Consequently, new programs avoid incorporating technologies unless they are quite mature, generally TRL greater than or equal to 7 (system prototype demonstrated in a space environment) to allow better predictability of the DDT&E phase costs unless there is no alternative. On the other hand, technology development programs rarely develop technologies beyond TRL 6 (system/subsystem model or prototype demonstrated in a relevant environment). Currently the lack of development funds beyond TRL 6 and the major funding required for full scale development leave little or no funding available to prototype TRL 6 concepts so that hardware would be in the ready mode for safe, reliable and cost effective incorporation. The net effect is that each new program either incorporates little new technology or has longer development schedules and costs, and higher LCC, than planned. This paper presents methods to ensure that advanced technologies are incorporated into future programs while providing a greater accuracy of predicting their LCC. One method is having a dedicated organization to develop X-series vehicles or separate prototypes carried on other vehicles. The question of whether such an organization should be independent of NASA and/or have an independent funding source is discussed. Other methods are also discussed. How to make the choice of which technologies to pursue to the prototype level is also discussed since, to achieve better LCC, first the selection of the appropriate technologies.

  4. QuEST: Qualifying Environmentally Sustainable Technologies. Volume 2

    NASA Technical Reports Server (NTRS)

    Brown, Christina (Editor)

    2007-01-01

    TEERM focuses its validation efforts on technologies that have shown promise in laboratory testing, but lack testing under realistic or field environment. Mature technologies have advantages over those that are still in the developmental stage such as being more likely to be transitioned into a working environment. One way TEERM begins to evaluate the suitability of technologies is through Technology Readiness Levels (TRLs). TRLs are a systematic metric/measurement system that supports assessments of the maturity of a particular technology and the consistent comparison of maturity between different types of technology. TEERM generally works on demonstrating/validating alternatives that fall within TRLs 5-9. In instances where a mature technology does not exist for a particular Agency application, TEERM works with technology development groups and programs such as NASA's Innovative Partnerships Program (IPP). The IPP's purpose is to identify and document available technologies in light of NASA's needs, evaluate and prioritize those technologies, and reach out to find new partners. All TEERM projects involve multiple partners. Partnering reduces duplication of effort that otherwise might occur if individuals worked their problems alone. Partnering also helps reduce individual contributors' shares of the total cost of technology validation. Through collaboration and financial commitment from project stakeholders and third-party sources, it is possible to fully fund expensive demonstration/validation efforts.

  5. NASA space research and technology overview (ITP)

    NASA Technical Reports Server (NTRS)

    Reck, Gregory M.

    1992-01-01

    A series of viewgraphs summarizing NASA space research and technology is presented. Some of the specific topics covered include the organization and goals of the Office of Aeronautics and Space Technology, technology maturation strategy, integrated technology plan for the Civil Space Program, program selection and investment prioritization, and space technology benefits.

  6. Ares Project Technology Assessment: Approach and Tools

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; Tyson, Richard

    2010-01-01

    Technology assessments provide a status of the development maturity of specific technologies. Along with benefit analysis, the risks the project assumes can be quantified. Normally due to budget constraints, the competing technologies are prioritized and decisions are made which ones to fund. A detailed technology development plan is produced for the selected technologies to provide a roadmap to reach the desired maturity by the project s critical design review. Technology assessments can be conducted for both technology only tasks or for product development programs. This paper is primarily biased toward the product development programs. The paper discusses the Ares Project s approach to technology assessment. System benefit analysis, risk assessment, technology prioritization, and technology readiness assessment are addressed. A description of the technology readiness level tool being used is provided.

  7. Mars base technology program overview

    NASA Technical Reports Server (NTRS)

    Chu, Chneg-Chih; Hayati, Samad A.; Udomkesmalee, Suraphol

    2005-01-01

    In this paper, we present an overview of the current technology portfolio for Mars Base Technology Program. Brief descriptions of the awarded technologies and the high-priority areas in both NRAs are provided to show the current focus of MTP. We also present the approach that MTP uses to evaluate technology maturity for each of the technology tasks.

  8. Technology readiness levels for the new millennium program

    NASA Technical Reports Server (NTRS)

    Moynihan, P. I.; Minning, C. P.; Stocky, J. F.

    2003-01-01

    NASA's New Millennium Program (NMP) seeks to advance space exploration by providing an in-space validating mechanism to verify the maturity of promising advanced technologies that cannot be adequately validated with Earth-based testing alone. In meeting this objective, NMP uses NASA Technology Readiness Levels (TRL) as key indicators of technology advancement and assesses development progress against this generalized metric. By providing an opportunity for in-space validation, NMP can mature a suitable advanced technology from TRL 4 (component and/or breadboard validation in laboratory environment) to a TRL 7 (system prototype demonstrated in an Earth-based space environment). Spaceflight technology comprises a myriad of categories, types, and functions, and as each individual technology emerges, a consistent interpretation of its specific state of technological advancement relative to other technologies is problematic.

  9. Overview of the NASA Advanced In-Space Propulsion Project

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael

    2011-01-01

    In FY11, NASA established the Enabling Technologies Development and Demonstration (ETDD) Program, a follow on to the earlier Exploration Technology Development Program (ETDP) within the NASA Exploration Systems Mission Directorate. Objective: Develop, mature and test enabling technologies for human space exploration.

  10. Technology readiness levels for advanced nuclear fuels and materials development

    DOE PAGES

    Carmack, W. J.; Braase, L. A.; Wigeland, R. A.; ...

    2016-12-23

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. It was pioneered by the National Aeronautics and Space Administration (NASA) in the 1980s to develop and deploy new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications as well as the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is a critical technology needed for improving the performance and safety of currentmore » and advanced reactors, and ultimately closing the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management, communication and tracking tool. Furthermore, this article provides examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).« less

  11. Technology readiness levels for advanced nuclear fuels and materials development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmack, W. J.; Braase, L. A.; Wigeland, R. A.

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. It was pioneered by the National Aeronautics and Space Administration (NASA) in the 1980s to develop and deploy new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications as well as the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is a critical technology needed for improving the performance and safety of currentmore » and advanced reactors, and ultimately closing the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management, communication and tracking tool. Furthermore, this article provides examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).« less

  12. X-43 Hypersonic Vehicle Technology Development

    NASA Technical Reports Server (NTRS)

    Voland, Randall T.; Huebner, Lawrence D.; McClinton, Charles R.

    2005-01-01

    NASA recently completed two major programs in Hypersonics: Hyper-X, with the record-breaking flights of the X-43A, and the Next Generation Launch Technology (NGLT) Program. The X-43A flights, the culmination of the Hyper-X Program, were the first-ever examples of a scramjet engine propelling a hypersonic vehicle and provided unique, convincing, detailed flight data required to validate the design tools needed for design and development of future operational hypersonic airbreathing vehicles. Concurrent with Hyper-X, NASA's NGLT Program focused on technologies needed for future revolutionary launch vehicles. The NGLT was "competed" by NASA in response to the President s redirection of the agency to space exploration, after making significant progress towards maturing technologies required to enable airbreathing hypersonic launch vehicles. NGLT quantified the benefits, identified technology needs, developed airframe and propulsion technology, chartered a broad University base, and developed detailed plans to mature and validate hypersonic airbreathing technology for space access. NASA is currently in the process of defining plans for a new Hypersonic Technology Program. Details of that plan are not currently available. This paper highlights results from the successful Mach 7 and 10 flights of the X-43A, and the current state of hypersonic technology.

  13. iPAS: AES Flight System Technology Maturation for Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Othon, William L.

    2014-01-01

    In order to realize the vision of expanding human presence in space, NASA will develop new technologies that can enable future crewed spacecraft to go far beyond Earth orbit. These technologies must be matured to the point that future project managers can accept the risk of incorporating them safely and effectively within integrated spacecraft systems, to satisfy very challenging mission requirements. The technologies must also be applied and managed within an operational context that includes both on-board crew and mission support on Earth. The Advanced Exploration Systems (AES) Program is one part of the NASA strategy to identify and develop key capabilities for human spaceflight, and mature them for future use. To support this initiative, the Integrated Power Avionics and Software (iPAS) environment has been developed that allows engineers, crew, and flight operators to mature promising technologies into applicable capabilities, and to assess the value of these capabilities within a space mission context. This paper describes the development of the integration environment to support technology maturation and risk reduction, and offers examples of technology and mission demonstrations executed to date.

  14. Defense Acquisitions: Assessments of Selected Weapon Programs

    DTIC Science & Technology

    2015-03-01

    offices on technology, design , and manufacturing knowledge; the use of knowledge- based acquisition practices; and the implementation of acquisition...and production maturity using two data-collection instruments, including a questionnaire on issues such as systems engineering reviews, design ...Demonstrating technology maturity is a prerequisite for moving forward into system development, during which the focus should be on design and

  15. An Innovative Flexible Program for Rural Women.

    ERIC Educational Resources Information Center

    Wooller, Judith; Warner, Lesley

    Central Queensland University's Women into Science and Technology program aimed to broaden the access of women to higher education, improve their career opportunities and employment prospects, and address the personnel shortage in engineering and technology by encouraging mature age women to consider these fields. The distance learning program was…

  16. NASA's Advanced Space Transportation Hypersonic Program

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; McClinton, Charles; Cook, Stephen (Technical Monitor)

    2002-01-01

    NASA's has established long term goals for access-to-space. NASA's third generation launch systems are to be fully reusable and operational in approximately 25 years. The goals for third generation launch systems are to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The Advanced Space Transportation Program Office (ASTP) at NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop third generation space transportation technologies. The Hypersonics Investment Area, part of ASTP, is developing the third generation launch vehicle technologies in two main areas, propulsion and airframes. The program's major investment is in hypersonic airbreathing propulsion since it offers the greatest potential for meeting the third generation launch vehicles. The program will mature the technologies in three key propulsion areas, scramjets, rocket-based combined cycle and turbine-based combination cycle. Ground and flight propulsion tests are being planned for the propulsion technologies. Airframe technologies will be matured primarily through ground testing. This paper describes NASA's activities in hypersonics. Current programs, accomplishments, future plans and technologies that are being pursued by the Hypersonics Investment Area under the Advanced Space Transportation Program Office will be discussed.

  17. CMMI Version 1.2 and Beyond Systems and Software Technology Conference

    DTIC Science & Technology

    2008-04-29

    Presentation • “Extreme Programming (XP), Six Sigma, & CMMI: How They Can Work Together” • “CMMI V1.2 Model Changes” Presentation 5 CMMI Update: V1.2 and...Level 4 Reported Maturity Level 5 Reported Country Number of Appraisals Maturity Level 1 Reported Maturity Level 2 Reported Maturity Level 3...Reported Maturity Level 4 Reported Maturity Level 5 Reported Argentina 26 No Yes Yes Yes Yes Malaysia 29 No Yes Yes No Yes Australia 26 Yes Yes

  18. Access from Space: A New Perspective on NASA's Space Transportation Technology Requirements and Opportunities

    NASA Technical Reports Server (NTRS)

    Rasky, Daniel J.

    2004-01-01

    The need for robust and reliable access from space is clearly demonstrated by the recent loss of the Space Shuttle Columbia; as well as the NASA s goals to get the Shuttle re-flying and extend its life, build new vehicles for space access, produce successful robotic landers and s a q k retrr? llisrions, and maximize the science content of ambitious outer planets missions that contain nuclear reactors which must be safe for re-entry after possible launch aborts. The technology lynch pin of access from space is hypersonic entry systems such the thermal protection system, along with navigation, guidance and control (NG&C). But it also extends to descent and landing systems such as parachutes, airbags and their control systems. Current space access technology maturation programs such as NASA s Next Generation Launch Technology (NGLT) program or the In-Space Propulsion (ISP) program focus on maturing laboratory demonstrated technologies for potential adoption by specific mission applications. A key requirement for these programs success is a suitable queue of innovative technologies and advanced concepts to mature, including mission concepts enabled by innovative, cross cutting technology advancements. When considering space access, propulsion often dominates the capability requirements, as well as the attention and resources. From the perspective of access from space some new cross cutting technology drivers come into view, along with some new capability opportunities. These include new miniature vehicles (micro, nano, and picosats), advanced automated systems (providing autonomous on-orbit inspection or landing site selection), and transformable aeroshells (to maximize capabilities and minimize weight). This paper provides an assessment of the technology drivers needed to meet future access from space mission requirements, along with the mission capabilities that can be envisioned from innovative, cross cutting access from space technology developments.

  19. NASA Astrophysics Cosmic Origins (COR) and Physics of the Cosmos (PCOS) Strategic Technology Development Program

    NASA Astrophysics Data System (ADS)

    Pham, Thai; Seery, Bernard D.

    2015-01-01

    The COR and PCOS Program Offices (PO) reside at the NASA Goddard Space Flight Center (GSFC), serving as the NASA Astrophysics Division's implementation arm for matters relating to the two programs. One aspect of the PO's activities is managing the COR and PCOS Strategic Astrophysics Technology (SAT) program, helping mature technologies to enable and enhance future astrophysics missions.The PO is guided by the National Research Council's 'New Worlds, New Horizons in Astronomy and Astrophysics' Decadal Survey report, and NASA's Astrophysics Implementation Plan. Strategic goals include dark energy; gravitational waves; X-ray observatories, e.g., US participation in ATHENA; Inflation probe; and a large UV/Visible telescope.To date, 51 COR and 65 PCOS SAT proposals have been received, of which 11 COR and 18 PCOS projects were funded. Notable successes include maturation of a new far-IR detector, later adopted by the SOFIA HAWC instrument; maturation of the H4RG near-IR detector, adopted by WFIRST; development of an antenna-coupled transition-edge superconducting bolometer, a technology deployed by BICEP2 that allowed measurement of B-mode polarization in the CMB signal, a possible signature of Inflation; and finally, the REXIS instrument on OSIRIS-REx is incorporating CCDs with directly deposited optical blocking filters developed by another SAT-funded project.We discuss our technology development process, with community input and strategic prioritization informing calls for SAT proposals and guiding investment decisions. We also present results of this year's technology gap prioritization and showcase our current portfolio of technology development projects. These include five newly selected projects, kicking off in FY 2015.For more information, visit the COR Program website at cor.gsfc.nasa.gov and the PCOS website at pcos.gsfc.nasa.gov.

  20. Evaluating the Maturity of Cybersecurity Programs for Building Control Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glantz, Clifford S.; Somasundaram, Sriram; Mylrea, Michael E.

    The cyber-physical security threat to buildings is complex, non-linear, and rapidly evolving as operational and information technologies converge and connect buildings to cyberspace. Cyberattacks on buildings can exploit smart building controls and breach corporate networks, causing financial and reputational damage. This may result in the loss of sensitive building information or the disruption of, or damage to, the systems necessary for the safe and efficient operation of buildings. For the buildings and facility infrastructure, there is a need for a robust national cybersecurity strategy for buildings, guidance on the selection and implementation of appropriate cybersecurity controls for buildings, an approachmore » to evaluate the maturity and adequacy of the cybersecurity programs. To provide an approach for evaluating the maturity of the cybersecurity programs for building control systems, the US Department of Energy’s widely used Cybersecurity Capability and Maturity Model (C2M2) has been adapted into a building control systems version. The revised model, the Buildings-C2M2 (B-C2M2) provides maturity level indicators for cybersecurity programmatic domains. A “B-C2M2 Lite” version allows facility managers and building control system engineers, or information technology personnel to perform rapid self-assessments of their cybersecurity program. Both tools have been pilot tested on several facilities. This paper outlines the concept of a maturity model, describes the B-C2M2 tools, presents results and observations from the pilot assessments, and lays out plans for future work.« less

  1. Joint Strike Figher Acquisition: Mature Critical Technologies Needed to Reduce Risks

    DTIC Science & Technology

    2001-10-01

    Reduce Risks GAO-02-39 Report Documentation Page Report Date 00OCT2001 Report Type N/A Dates Covered (from... to) - Title and Subtitle JOINT STRIKE...FIGHTER ACQUISITION: Mature Critical Technologies Needed to Reduce Risks Contract Number Grant Number Program Element Number Author(s) Project...1Joint Strike Fighter Acquisition: Development Schedule Should Be Changed to Reduce Risks (GAO/T-NSIAD-00-132

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, Elizabeth James Kistin; Warren, Drake; Hess, Marguerite Evelyn

    This study examines the structure and impact of state-funded technology maturation programs that leverage research institutions for economic development throughout the United States. The lessons learned and practices identified from previous experiences will inform Sandia National Laboratories' Government Relations and Technology Partnerships teams as they participate in near-term discussions about the proposed Technology Readiness Gross Receipts Tax Credit and Program, and continue to shape longer-term program and partnership opportunities. This Page Intentionally Left Blank

  3. Technology transfer within the government

    NASA Technical Reports Server (NTRS)

    Russell, John

    1992-01-01

    The report of a workshop panel concerned with technology transfer within the government is presented. The presentation is made in vugraph form. The assigned subtopic for this panel are as follows: (1) transfer from non-NASA US government technology developers to NASA space missions/programs; and (2) transfer from NASA to other US government space mission programs. A specific area of inquiry was Technology Maturation Milestones. Three areas were investigated: technology development; advanced development; and flight hardware development.

  4. Maturing Technologies for Stirling Space Power Generation

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Nowlin, Brentley C.; Dobbs, Michael W.; Schmitz, Paul C.; Huth, James

    2016-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint of the current state of the art. The RPS Program Office, working in collaboration with the U.S. Department of Energy (DOE), manages projects to develop thermoelectric and dynamic power systems, including Stirling Radioisotope Generators (SRGs). The Stirling Cycle Technology Development (SCTD) Project, located at Glenn Research Center (GRC), is developing Stirling-based subsystems, including convertors and controllers. The SCTD Project also performs research that focuses on a wide variety of objectives, including increasing convertor temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Research activity includes maturing subsystems, assemblies, and components to prepare them for infusion into future convertor and generator designs. The status of several technology development efforts are described here. As part of the maturation process, technologies are assessed for readiness in higher-level subsystems. To assess the readiness level of the Dual Convertor Controller (DCC), a Technology Readiness Assessment (TRA) was performed and the process and results are shown. Stirling technology research is being performed by the SCTD Project for NASA's RPS Program Office, where tasks focus on maturation of Stirling-based systems and subsystems for future space science missions.

  5. NASA Environmental Control and Life Support Technology Development and Maturation for Exploration: 2015 to 2016 Overview

    NASA Technical Reports Server (NTRS)

    Schneider, Walter F.; Gatens, Robyn L.; Anderson, Molly S.; Broyan, James L.; MaCatangay, Ariel V.; Shull, Sarah A.; Perry, Jay L.; Toomarian, Nikzad

    2016-01-01

    Over the last year, the National Aeronautics and Space Administration (NASA) has continued to refine the understanding and prioritization of technology gaps that must be closed in order to achieve Evolvable Mars Campaign objectives and near term objectives in the cislunar proving ground. These efforts are reflected in updates to the technical area roadmaps released by NASA in 2015 and have guided technology development and maturation tasks that have been sponsored by various programs. This paper provides an overview of the refined Environmental Control and Life Support (ECLS) strategic planning, as well as a synopsis of key technology and maturation project tasks that occurred in 2014 and early 2015 to support the strategic needs. Plans for the remainder of 2015 and subsequent years are also described.

  6. NASA's Integrated Space Transportation Plan — 3 rd generation reusable launch vehicle technology update

    NASA Astrophysics Data System (ADS)

    Cook, Stephen; Hueter, Uwe

    2003-08-01

    NASA's Integrated Space Transportation Plan (ISTP) calls for investments in Space Shuttle safety upgrades, second generation Reusable Launch Vehicle (RLV) advanced development and third generation RLV and in-space research and technology. NASA's third generation launch systems are to be fully reusable and operation by 2025. The goals for third generation launch systems are to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current systems. The Advanced Space Transportation Program Office (ASTP) at NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop third generation space transportation technologies. The Hypersonics Investment Area, part of ASTP, is developing the third generation launch vehicle technologies in two main areas, propulsion and airframes. The program's major investment is in hypersonic airbreathing propulsion since it offers the greatest potential for meeting the third generation launch vehicles. The program will mature the technologies in three key propulsion areas, scramjets, rocket-based combined cycle and turbine-based combination cycle. Ground and flight propulsion tests are being planned for the propulsion technologies. Airframe technologies will be matured primarily through ground testing. This paper describes NASA's activities in hypersonics. Current programs, accomplishments, future plans and technologies that are being pursued by the Hypersonics Investment Area under the Advanced Space Transportation Program Office will be discussed.

  7. Flight Opportunities: Space Technology Mission Directorate

    NASA Technical Reports Server (NTRS)

    Van Dijk, Alexander

    2016-01-01

    Flight Opportunities enables maturation of new space technologies by funding access to commercially available space-relevant test environments. The program also supports capability development in the commercial suborbital and orbital small satellite launcher markets.

  8. NASA Technology Demonstrations Missions Program Overview

    NASA Technical Reports Server (NTRS)

    Turner, Susan

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Fiscal Year 2010 (FY10) budget introduced a new strategic plan that placed renewed emphasis on advanced missions beyond Earth orbit. This supports NASA s 2011 strategic goal to create innovative new space technologies for our exploration, science, and economic future. As a result of this focus on undertaking many and more complex missions, NASA placed its attention on a greater investment in technology development, and this shift resulted in the establishment of the Technology Demonstrations Missions (TDM) Program. The TDM Program, within the newly formed NASA Office of the Chief Technologist, supports NASA s grand challenges by providing a steady cadence of advanced space technology demonstrations (Figure 1), allowing the infusion of flexible path capabilities for future exploration. The TDM Program's goal is to mature crosscutting capabilities to flight readiness in support of multiple future space missions, including flight test projects where demonstration is needed before the capability can transition to direct mission The TDM Program has several unique criteria that set it apart from other NASA program offices. For instance, the TDM Office matures a small number of technologies that are of benefit to multiple customers to flight technology readiness level (TRL) 6 through relevant environment testing on a 3-year development schedule. These technologies must be crosscutting, which is defined as technology with potential to benefit multiple mission directorates, other government agencies, or the aerospace industry, and they must capture significant public interest and awareness. These projects will rely heavily on industry partner collaboration, and funding is capped for all elements of the flight test demonstration including planning, hardware development, software development, launch costs, ground operations, and post-test assessments. In order to inspire collaboration across government and industry, more than 70% of the TDM funds will be competitively awarded as a result of yearly calls for proposed flight demonstrators and selected based on possible payoff to NASA, technology maturity, customer interest, cost, and technical risk reduction. This paper will give an overview of the TDM Program s mission and organization, as well as its current status in delivering advanced space technologies that will enable more flexible and robust future missions. It also will provide several examples of missions that fit within these parameters and expected outcomes.

  9. NASA's Physics of the Cosmos and Cosmic Origins programs manage Strategic Astrophysics Technology (SAT) development

    NASA Astrophysics Data System (ADS)

    Pham, Thai; Thronson, Harley; Seery, Bernard; Ganel, Opher

    2016-07-01

    The strategic astrophysics missions of the coming decades will help answer the questions "How did our universe begin and evolve?" "How did galaxies, stars, and planets come to be?" and "Are we alone?" Enabling these missions requires advances in key technologies far beyond the current state of the art. NASA's Physics of the Cosmos2 (PCOS), Cosmic Origins3 (COR), and Exoplanet Exploration Program4 (ExEP) Program Offices manage technology maturation projects funded through the Strategic Astrophysics Technology (SAT) program to accomplish such advances. The PCOS and COR Program Offices, residing at the NASA Goddard Space Flight Center (GSFC), were established in 2011, and serve as the implementation arm for the Astrophysics Division at NASA Headquarters. We present an overview of the Programs' technology development activities and the current technology investment portfolio of 23 technology advancements. We discuss the process for addressing community-provided technology gaps and Technology Management Board (TMB)-vetted prioritization and investment recommendations that inform the SAT program. The process improves the transparency and relevance of our technology investments, provides the community a voice in the process, and promotes targeted external technology investments by defining needs and identifying customers. The Programs' priorities are driven by strategic direction from the Astrophysics Division, which is informed by the National Research Council's (NRC) "New Worlds, New Horizons in Astronomy and Astrophysics" (NWNH) 2010 Decadal Survey report [1], the Astrophysics Implementation Plan (AIP) [2] as updated, and the Astrophysics Roadmap "Enduring Quests, Daring Visions" [3]. These priorities include technology development for missions to study dark energy, gravitational waves, X-ray and inflation probe science, and large far-infrared (IR) and ultraviolet (UV)/optical/IR telescopes to conduct imaging and spectroscopy studies. The SAT program is the Astrophysics Division's main investment method to mature technologies that will be identified by study teams set up to inform the 2020 Decadal Survey process on several large astrophysics mission concepts.

  10. A Technology Plan for Enabling Commercial Space Business

    NASA Technical Reports Server (NTRS)

    Lyles, Garry M.

    1997-01-01

    The National Aeronautics and Space Administration's (NASA) Advanced Space Transportation Program is a customer driven, focused technology program that supports the NASA Strategic Plan and considers future commercial space business projections. The initial cycle of the Advanced Space Transportation Program implementation planning was conducted from December 1995 through February 1996 and represented increased NASA emphasis on broad base technology development with the goal of dramatic reductions in the cost of space transportation. The second planning cycle, conducted in January and February 1997, updated the program implementation plan based on changes in the external environment, increased maturity of advanced concept studies, and current technology assessments. The program has taken a business-like approach to technology development with a balanced portfolio of near, medium, and long-term strategic targets. Strategic targets are influenced by Earth science, space science, and exploration objectives as well as commercial space markets. Commercial space markets include those that would be enhanced by lower cost transportation as well as potential markets resulting in major increases in space business induced by reductions in transportation cost. The program plan addresses earth-to-orbit space launch, earth orbit operations and deep space systems. It also addresses all critical transportation system elements; including structures, thermal protection systems, propulsion, avionics, and operations. As these technologies are matured, integrated technology flight experiments such as the X-33 and X-34 flight demonstrator programs support near-term (one to five years) development or operational decisions. The Advanced Space Transportation Program and the flight demonstrator programs combine business planning, ground-based technology demonstrations and flight demonstrations that will permit industry and NASA to commit to revolutionary new space transportation systems beginning at the turn of the century and continuing far into the future.

  11. Terrestrial applications of NASA space telerobotics technologies

    NASA Technical Reports Server (NTRS)

    Lavery, Dave

    1994-01-01

    In 1985 the National Aeronautics and Space Administration (NASA) instituted a research program in telerobotics to develop and provide the technology for applications of telerobotics to the United States space program. The activities of the program are intended to most effectively utilize limited astronaut time by facilitating tasks such as inspection, assembly, repair, and servicing, as well as providing extended capability for remotely conducting planetary surface operations. As the program matured, it also developed a strong heritage of working with government and industry to directly transfer the developed technology into industrial applications.

  12. NASA Astrophysics Funds Strategic Technology Development

    NASA Astrophysics Data System (ADS)

    Seery, Bernard D.; Ganel, Opher; Pham, Bruce

    2016-01-01

    The COR and PCOS Program Offices (POs) reside at the NASA Goddard Space Flight Center (GSFC), serving as the NASA Astrophysics Division's implementation arm for matters relating to the two programs. One aspect of the PO's activities is managing the COR and PCOS Strategic Astrophysics Technology (SAT) program, helping mature technologies to enable and enhance future astrophysics missions. For example, the SAT program is expected to fund key technology developments needed to close gaps identified by Science and Technology Definition Teams (STDTs) planned to study several large mission concept studies in preparation for the 2020 Decadal Survey.The POs are guided by the National Research Council's "New Worlds, New Horizons in Astronomy and Astrophysics" Decadal Survey report, NASA's Astrophysics Implementation Plan, and the visionary Astrophysics Roadmap, "Enduring Quests, Daring Visions." Strategic goals include dark energy, gravitational waves, and X-ray observatories. Future missions pursuing these goals include, e.g., US participation in ESA's Euclid, Athena, and L3 missions; Inflation probe; and a large UV/Optical/IR (LUVOIR) telescope.To date, 65 COR and 71 PCOS SAT proposals have been received, of which 15 COR and 22 PCOS projects were funded. Notable successes include maturation of a new far-IR detector, later adopted by the SOFIA HAWC instrument; maturation of the H4RG near-IR detector, adopted by WFIRST; development of an antenna-coupled transition-edge superconducting bolometer, a technology deployed by BICEP2/BICEP3/Keck to measure polarization in the CMB signal; advanced UV reflective coatings implemented on the optics of GOLD and ICON, two heliophysics Explorers; and finally, the REXIS instrument on OSIRIS-REx is incorporating CCDs with directly deposited optical blocking filters developed by another SAT-funded project.We discuss our technology development process, with community input and strategic prioritization informing calls for SAT proposals and guiding investment decisions. We also present results of this year's technology gap prioritization and showcase our current portfolio of technology development projects.

  13. NASA's Physics of the Cosmos and Cosmic Origins Technology Development Programs

    NASA Technical Reports Server (NTRS)

    Pham, Thai; Seery, Bernard; Ganel, Opher

    2016-01-01

    The strategic astrophysics missions of the coming decades will help answer the questions "How did our universe begin and evolve?" and "How did galaxies, stars, and planets come to be?" Enabling these missions requires advances in key technologies far beyond the current state of the art. NASA's Physics of the Cosmos (PCOS) and Cosmic Origins (COR) Program Offices manage technology maturation projects funded through the Strategic Astrophysics Technology (SAT) program to accomplish such advances. The PCOS and COR Program Offices, residing at the NASA Goddard Space Flight Center (GSFC), were established in 2011, and serve as the implementation arm for the Astrophysics Division at NASA Headquarters. We present an overview of the Programs' technology development activities and the current technology investment portfolio of 23 technology advancements. We discuss the process for addressing community-provided technology gaps and Technology Management Board (TMB)-vetted prioritization and investment recommendations that inform the SAT program. The process improves the transparency and relevance of our technology investments, provides the community a voice in the process, and promotes targeted external technology investments by defining needs and identifying customers. The Programs' priorities are driven by strategic direction from the Astrophysics Division, which is informed by the National Research Council's (NRC) "New Worlds, New Horizons in Astronomy and Astrophysics" (NWNH) 2010 Decadal Survey report [1], the Astrophysics Implementation Plan (AIP) [2] as updated, and the Astrophysics Roadmap "Enduring Quests, Daring Visions" [3]. These priorities include technology development for missions to study dark energy, gravitational waves, X-ray and inflation probe science, and large far-infrared (IR) and ultraviolet (UV)/optical/IR telescopes to conduct imaging and spectroscopy studies. The SAT program is the Astrophysics Division's main investment method to mature technologies that will be identified by study teams set up to inform the 2020 Decadal Survey process on several large astrophysics mission concepts.

  14. An Overview Of NASA's Solar Sail Propulsion Project

    NASA Technical Reports Server (NTRS)

    Garbe, Gregory; Montgomery, Edward E., IV

    2003-01-01

    Research conducted by the In-Space Propulsion (ISP) Technologies Projects is at the forefront of NASA's efforts to mature propulsion technologies that will enable or enhance a variety of space science missions. The ISP Program is developing technologies from a Technology Readiness Level (TRL) of 3 through TRL 6. Activities under the different technology areas are selected through the NASA Research Announcement (NRA) process. The ISP Program goal is to mature a suite of reliable advanced propulsion technologies that will promote more cost efficient missions through the reduction of interplanetary mission trip time, increased scientific payload mass fraction, and allowing for longer on-station operations. These propulsion technologies will also enable missions with previously inaccessible orbits (e.g., non-Keplerian, high solar latitudes). The ISP Program technology suite has been prioritized by an agency wide study. Solar Sail propulsion is one of ISP's three high-priority technology areas. Solar sail propulsion systems will be required to meet the challenge of monitoring and predicting space weather by the Office of Space Science s (OSS) Living with a Star (LWS) program. Near-to-mid-term mission needs include monitoring of solar activity and observations at high solar latitudes. Near-term work funded by the ISP solar sail propulsion project is centered around the quantitative demonstration of scalability of present solar sail subsystem designs and concepts to future mission requirements through ground testing, computer modeling and analytical simulations. This talk will review the solar sail technology roadmap, current funded technology development work, future funding opportunities, and mission applications.

  15. Improving the Effectiveness of Program Managers

    DTIC Science & Technology

    2006-05-03

    Improving the Effectiveness of Program Managers Systems and Software Technology Conference Salt Lake City, Utah May 3, 2006 Presented by GAO’s...Companies’ best practices Motorola Caterpillar Toyota FedEx NCR Teradata Boeing Hughes Space and Communications Disciplined software and management...and total ownership costs Collection of metrics data to improve software reliability Technology readiness levels and design maturity Statistical

  16. Integration of National Laboratory and Low-Activity Waste Pre-Treatment System Technology Service Providers - 16435

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subramanian, Karthik H.; Thien, Michael G.; Wellman, Dawn M.

    The National Laboratories are a critical partner and provide expertise in numerous aspects of the successful execution of the Direct-Feed Low Activity Waste Program. The National Laboratories are maturing the technologies of the Low-Activity Waste Pre-Treatment System (LAWPS) consistent with DOE Order 413.3B “Program and Project Management for the Acquisition of Capital Assets” expectations. The National Laboratories continue to mature waste forms, i.e. glass and secondary waste grout, for formulations and predictions of long-term performance as inputs to performance assessments. The working processes with the National Laboratories have been developed in procurements, communications, and reporting to support the necessary delivery-basedmore » technology support. The relationship continues to evolve from planning and technology development to support of ongoing operations and integration of multiple highly coordinated facilities.« less

  17. Cryogenic Propellant Storage and Transfer (CPST) Technology Maturation: Establishing a Foundation for a Technology Demonstration Mission (TDM)

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Meyer, Michael L.; Motil, Susan M.; Ginty, Carol A.

    2014-01-01

    As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including asteroids, Lagrange points, the Moon and Mars. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages (CPS) and propellant depots. The TDM CPST project will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration which is relevant to enable long term human space exploration missions beyond low Earth orbit (LEO). Recognizing that key cryogenic fluid management technologies anticipated for on-orbit (flight) demonstration needed to be matured to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate authorized funding for a one-year (FY12) ground based technology maturation program. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, studies, and ground tests of the storage and fluid transfer Cryogenic Fluid Management (CFM) technology sub-elements and components that were not already at a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. This paper will present the testing, studies, and modeling that occurred in FY12 to mature cryogenic fluid management technologies for propellant storage, transfer, and supply, to examine extensibility to full scale, long duration missions, and to develop and validate analytical models. Finally, the paper will briefly describe an upcoming test to demonstrate Liquid Oxygen (LO2) Zero Boil-Off (ZBO).

  18. Cryogenic Propellant Storage and Transfer (CPST) Technology Maturation: Establishing a Foundation for a Technology Demonstration Mission (TDM)

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Meyer, Michael L.; Motil, Susan M.; Ginty, Carol A.

    2013-01-01

    As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including asteroids, Lagrange points, the Moon and Mars. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages (CPS) and propellant depots. The TDM CPST project will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration which is relevant to enable long term human space exploration missions beyond low Earth orbit (LEO). Recognizing that key cryogenic fluid management technologies anticipated for on-orbit (flight) demonstration needed to be matured to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate authorized funding for a one-year (FY12) ground based technology maturation program. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, studies, and ground tests of the storage and fluid transfer Cryogenic Fluid Management (CFM) technology sub-elements and components that were not already at a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. This paper will present the testing, studies, and modeling that occurred in FY12 to mature cryogenic fluid management technologies for propellant storage, transfer, and supply, to examine extensibility to full scale, long duration missions, and to develop and validate analytical models. Finally, the paper will briefly describe an upcoming test to demonstrate Liquid Oxygen (LO2) Zero Boil- Off (ZBO).

  19. McDonnell Douglas Helicopter Company independent research and development: Preparing for the future

    NASA Technical Reports Server (NTRS)

    Haggerty, Allen C.

    1988-01-01

    During the 1970's and 80's, research has produced the technology that is seen in aircraft such as the LHX and future models. The technology is discussed that is reaching maturity and moving into the application stage of future programs. Technology is discussed in six major areas: advanced concepts, analysis techniques, structures, systems, simulation, and research and development facilities. The partnership of McDonnell Douglas Helicopter Co. and the government in developing these technologies is illustrated in several programs.

  20. One chip at a time: using technology to enhance youth development.

    PubMed

    Cohall, Alwyn; Nshom, Montsine; Nye, Andrea

    2007-08-01

    Youth development programs have the potential to positively impact psychosocial growth and maturation in young adults. Several youth development programs are capitalizing on youths' natural gravitation toward technology as well. Research has shown that youth view technology and technologic literacy as positive and empowering, and that youth who master technology have increased self-esteem and better socioeconomic prospects than their counterparts. Technology-centered youth development programs offer a unique opportunity to engage youth, thereby extending their social networks, enhancing their access to information, building their self-esteem, and improving their self-efficacy. This article provides an overview of the intersection between youth development and technology and illustrates the ways technology can be used as a cutting-edge tool for youth development.

  1. The reusable launch vehicle technology program

    NASA Astrophysics Data System (ADS)

    Cook, S.

    Today's launch systems have major shortcomings that will increase in significance in the future, and thus are principal drivers for seeking major improvements in space transportation. They are too costly; insufficiently reliable, safe, and operable; and increasingly losing market share to international competition. For the United States to continue its leadership in the human exploration and wide ranging utilization of space, the first order of business must be to achieve low cost, reliable transportatin to Earth orbit. NASA's Access to Space Study, in 1993, recommended the development of a fully reusable single-stage-to-orbit (SSTO) rocket vehicle as an Agency goal. The goal of the Reusable Launch Vehicle (RLV) technology program is to mature the technologies essential for a next-generation reusable launch system capable of reliably serving National space transportation needs at substantially reduced costs. The primary objectives of the RLV technology program are to (1) mature the technologies required for the next-generation system, (2) demonstrate the capability to achieve low development and operational cost, and rapid launch turnaround times and (3) reduce business and technical risks to encourage significant private investment in the commercial development and operation of the next-generation system. Developing and demonstrating the technologies required for a Single Stage to Orbit (SSTO) rocket is a focus of the program becuase past studies indicate that it has the best potential for achieving the lowest space access cost while acting as an RLV technology driver (since it also encompasses the technology requirements of reusable rocket vehicles in general).

  2. The reusable launch vehicle technology program

    NASA Technical Reports Server (NTRS)

    Cook, S.

    1995-01-01

    Today's launch systems have major shortcomings that will increase in significance in the future, and thus are principal drivers for seeking major improvements in space transportation. They are too costly; insufficiently reliable, safe, and operable; and increasingly losing market share to international competition. For the United States to continue its leadership in the human exploration and wide ranging utilization of space, the first order of business must be to achieve low cost, reliable transportatin to Earth orbit. NASA's Access to Space Study, in 1993, recommended the development of a fully reusable single-stage-to-orbit (SSTO) rocket vehicle as an Agency goal. The goal of the Reusable Launch Vehicle (RLV) technology program is to mature the technologies essential for a next-generation reusable launch system capable of reliably serving National space transportation needs at substantially reduced costs. The primary objectives of the RLV technology program are to (1) mature the technologies required for the next-generation system, (2) demonstrate the capability to achieve low development and operational cost, and rapid launch turnaround times and (3) reduce business and technical risks to encourage significant private investment in the commercial development and operation of the next-generation system. Developing and demonstrating the technologies required for a Single Stage to Orbit (SSTO) rocket is a focus of the program becuase past studies indicate that it has the best potential for achieving the lowest space access cost while acting as an RLV technology driver (since it also encompasses the technology requirements of reusable rocket vehicles in general).

  3. NASA Funding Opportunities for Optical Fabrication and Testing Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2013-01-01

    Technologies to fabricate and test optical components are required for NASA to accomplish its highest priority science missions. For example, the NRC ASTRO2010 Decadal Survey states that an advanced large-aperture UVOIR telescope is required to enable the next generation of compelling astrophysics and exo-planet science; and that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. The NRC 2012 NASA Space Technology Roadmaps and Priorities report states that the highest priority technology in which NASA should invest to 'Expand our understanding of Earth and the universe' is a new generation of astronomical telescopes. And, each of the Astrophysics division Program Office Annual Technology Reports (PATR), identifies specific technology needs. NASA has a variety of programs to fund enabling technology development: SBIR (Small Business Innovative Research); the ROSES APRA and SAT programs (Research Opportunities in Space and Earth Science; Astrophysics Research and Analysis program; Strategic Astrophysics Technology program); and several Office of the Chief Technologist (OCT) technology development programs.

  4. Pathway to future sustainable land imaging: the compact hyperspectral prism spectrometer

    NASA Astrophysics Data System (ADS)

    Kampe, Thomas U.; Good, William S.

    2017-09-01

    NASA's Sustainable Land Imaging (SLI) program, managed through the Earth Science Technology Office, aims to develop technologies that will provide future Landsat-like measurements. SLI aims to develop a new generation of smaller, more capable, less costly payloads that meet or exceed current imaging capabilities. One projects funded by this program is Ball's Compact Hyperspectral Prism Spectrometer (CHPS), a visible-to-shortwave imaging spectrometer that provides legacy Landsat data products as well as hyperspectral coverage suitable for a broad range of land science products. CHPS exhibits extremely low straylight and accommodates full aperture, full optical path calibration needed to ensure the high radiometric accuracy demanded by SLI measurement objectives. Low polarization sensitivity in visible to near-infrared bands facilitates coastal water science as first demonstrated by the exceptional performance of the Operational Land Imager. Our goal is to mature CHPS imaging spectrometer technology for infusion into the SLI program. Our effort builds on technology development initiated by Ball IRAD investment and includes laboratory and airborne demonstration, data distribution to science collaborators, and maturation of technology for spaceborne demonstration. CHPS is a three year program with expected exiting technology readiness of TRL-6. The 2013 NRC report Landsat and Beyond: Sustaining and Enhancing the Nations Land Imaging Program recommended that the nation should "maintain a sustained, space-based, land-imaging program, while ensuring the continuity of 42-years of multispectral information." We are confident that CHPS provides a path to achieve this goal while enabling new science measurements and significantly reducing the cost, size, and volume of the VSWIR instrument.

  5. NASA funding opportunities for optical fabrication and testing technology development

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip

    2013-09-01

    NASA requires technologies to fabricate and test optical components to accomplish its highest priority science missions. The NRC ASTRO2010 Decadal Survey states that an advanced large-aperture UVOIR telescope is required to enable the next generation of compelling astrophysics and exo-planet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. The NRC 2012 NASA Space Technology Roadmaps and Priorities Report states that the highest priority technology in which NASA should invest to `Expand our understanding of Earth and the universe' is next generation X-ray and UVOIR telescopes. Each of the Astrophysics division Program Office Annual Technology Reports (PATR) identifies specific technology needs. NASA has a variety of programs to fund enabling technology development: SBIR (Small Business Innovative Research); the ROSES APRA and SAT programs (Research Opportunities in Space and Earth Science; Astrophysics Research and Analysis program; Strategic Astrophysics Technology program); and several Office of the Chief Technologist (OCT) programs.

  6. NASA Funding Opportunities for Optical Fabrication and Testing Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2013-01-01

    NASA requires technologies to fabricate and test optical components to accomplish its highest priority science missions. The NRC ASTRO2010 Decadal Survey states that an advanced large-aperture UVOIR telescope is required to enable the next generation of compelling astrophysics and exo-planet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. The NRC 2012 NASA Space Technology Roadmaps and Priorities Report states that the highest priority technology in which NASA should invest to 'Expand our understanding of Earth and the universe' is next generation X-ray and UVOIR telescopes. Each of the Astrophysics division Program Office Annual Technology Reports (PATR) identifies specific technology needs. NASA has a variety of programs to fund enabling technology development: SBIR (Small Business Innovative Research); the ROSES APRA and SAT programs (Research Opportunities in Space and Earth Science; Astrophysics Research and Analysis program; Strategic Astrophysics Technology program); and several Office of the Chief Technologist (OCT) programs

  7. NASA's Spaceliner Investment Area Technology Activities

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; Lyles, Garry M. (Technical Monitor)

    2001-01-01

    NASA's has established long term goals for access-to-space. The third generation launch systems are to be fully reusable and operational around 2025. The goals for the third generation launch system are to significantly reduce cost and improve safety over current conditions. The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop space transportation technologies. Within ASTP, under the Spaceliner Investment Area, third generation technologies are being pursued in the areas of propulsion, airframes, integrated vehicle health management (IVHM), avionics, power, operations, and range. The ASTP program will mature these technologies through both ground and flight system testing. The Spaceliner Investment Area plans to mature vehicle technologies to reduce the implementation risks for future commercially developed reusable launch vehicles (RLV). The plan is to substantially increase the design and operating margins of the third generation RLV (the Space Shuttle is the first generation) by incorporating advanced technologies in propulsion, materials, structures, thermal protection systems, avionics, and power. Advancements in design tools and better characterization of the operational environment will allow improvements in design margins. Improvements in operational efficiencies will be provided through use of advanced integrated health management, operations, and range technologies. The increase in margins will allow components to operate well below their design points resulting in improved component operating life, reliability, and safety which in turn reduces both maintenance and refurbishment costs. These technologies have the potential of enabling horizontal takeoff by reducing the takeoff weight and achieving the goal of airline-like operation. These factors in conjunction with increased flight rates from an expanding market will result in significant improvements in safety and reductions in operational costs of future vehicles. The paper describes current status, future plans and technologies that are being matured by the Spaceliner Investment Area under the Advanced Space Transportation Program Office.

  8. Current status and recent research achievements in SiC/SiC composites

    NASA Astrophysics Data System (ADS)

    Katoh, Y.; Snead, L. L.; Henager, C. H.; Nozawa, T.; Hinoki, T.; Iveković, A.; Novak, S.; Gonzalez de Vicente, S. M.

    2014-12-01

    The silicon carbide fiber-reinforced silicon carbide matrix (SiC/SiC) composite system for fusion applications has seen a continual evolution from development a fundamental understanding of the material system and its behavior in a hostile irradiation environment to the current effort which is directed at a broad-based program of technology maturation program. In essence, over the past few decades this material system has steadily moved from a laboratory curiosity to an engineering material, both for fusion structural applications and other high performance application such as aerospace. This paper outlines the recent international scientific and technological achievements towards the development of SiC/SiC composite material technologies for fusion application and discusses future research directions. It also reviews the materials system in the larger context of progress to maturity as an engineering material for both the larger nuclear community and broader engineering applications.

  9. Evolution of Requirements and Assumptions for Future Exploration Missions

    NASA Technical Reports Server (NTRS)

    Anderson, Molly; Sargusingh, Miriam; Perry, Jay

    2017-01-01

    NASA programs are maturing technologies, systems, and architectures to enabling future exploration missions. To increase fidelity as technologies mature, developers must make assumptions that represent the requirements of a future program. Multiple efforts have begun to define these requirements, including team internal assumptions, planning system integration for early demonstrations, and discussions between international partners planning future collaborations. For many detailed life support system requirements, existing NASA documents set limits of acceptable values, but a future vehicle may be constrained in other ways, and select a limited range of conditions. Other requirements are effectively set by interfaces or operations, and may be different for the same technology depending on whether the hard-ware is a demonstration system on the International Space Station, or a critical component of a future vehicle. This paper highlights key assumptions representing potential life support requirements and explanations of the driving scenarios, constraints, or other issues that drive them.

  10. Mars Science Laboratory Focused Technology Program Overview

    NASA Technical Reports Server (NTRS)

    Udomkesmalee, Gabriel Souraphol; Hayati, Samad A.

    2005-01-01

    This paper describes how the MSL-FT program functions to ensure that the needed technology is identified, developed, matured to TRL 6, and infused in the MSL mission, in a systematic fashion that will meet the mission's objectives innovatively and within budget. The paper describes the mission's technical and project challenges, and outlines the process, procedures, tools and people involved in meeting those challenges. The paper also discusses the technology certification process required to demonstrate that technology deliverables perform adequately and in a predictable fashion to successful infusion into the MSL Flight System.

  11. NASA's In Space Propulsion Technology Program Accomplishments and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Johnson, Les C.; Harris, David

    2008-01-01

    NASA's In-Space Propulsion Technology (ISPT) Program was managed for 5 years at the NASA MSFC and significant strides were made in the advancement of key transportation technologies that will enable or enhance future robotic science and deep space exploration missions. At the program's inception, a set of technology investment priorities were established using an NASA-wide, mission-driven prioritization process and, for the most part, these priorities changed little - thus allowing a consistent framework in which to fund and manage technology development. Technologies in the portfolio included aerocapture, advanced chemical propulsion, solar electric propulsion, solar sail propulsion, electrodynamic and momentum transfer tethers, and various very advanced propulsion technologies with significantly lower technology readiness. The program invested in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. By developing the capability to support mid-term robotic mission needs, the program was to lay the technological foundation for travel to nearby interstellar space. The ambitious goals of the program at its inception included supporting the development of technologies that could support all of NASA's missions, both human and robotic. As time went on and budgets were never as high as planned, the scope of the program was reduced almost every year, forcing the elimination of not only the broader goals of the initial program, but also of funding for over half of the technologies in the original portfolio. In addition, the frequency at which the application requirements for the program changed exceeded the development time required to mature technologies: forcing sometimes radical rescoping of research efforts already halfway (or more) to completion. At the end of its fifth year, both the scope and funding of the program were at a minimum despite the program successfully meeting all of it's initial high priority objectives. This paper will describe the program, its requirements, technology portfolio, and technology maturation processes. Also discussed will be the major technology milestones achieved and the lessons learned from managing a $100M+ technology program.

  12. Defense Advanced Research Projects Agency Fiscal Year 1978 Research & Development Program. Statement by Dr. George H. Heilmeier, Director Before the Subcommittee on Research & Development of Senate Armed Services Committee

    DTIC Science & Technology

    1977-02-01

    CONTENTS I. INTRODUCTION ------------------------------------------- -I A. DARPA PROGRAM PLANS AND PROGRESS ------------------- 1-6 1. High Energy...beyond. In brief, we have followed our long-range plan and have impressive progress to report. A. DARPA Program Plans and Progress 1. High Energy Lasers...stimulate growth of technological "saplings" that have proven promising; and (3) harvest those technologies that have become mature "trees." These three

  13. NASA Composite Cryotank Technology Project Game Changing Program

    NASA Technical Reports Server (NTRS)

    Fikes, John

    2015-01-01

    The fundamental goal of this project was to provide new and innovative cryotank technologies that enable human space exploration to destinations beyond low earth orbit such as the moon, near-earth asteroids, and Mars. The goal ... to mature technologies in preparation for potential system level flight demonstrations through significant ground-based testing and/or laboratory experimentation

  14. Fault Management Technology Maturation for NASA's Constellation Program

    NASA Technical Reports Server (NTRS)

    Waterman, Robert D.

    2010-01-01

    This slide presentation reviews the maturation of fault management technology in preparation for the Constellation Program. There is a review of the Space Shuttle Main Engine (SSME) and a discussion of a couple of incidents with the shuttle main engine and tanking that indicated the necessity for predictive maintenance. Included is a review of the planned Ares I-X Ground Diagnostic Prototype (GDP) and further information about detection and isolation of faults using Testability Engineering and Maintenance System (TEAMS). Another system that being readied for use that detects anomalies, the Inductive Monitoring System (IMS). The IMS automatically learns how the system behaves and alerts operations it the current behavior is anomalous. The comparison of STS-83 and STS-107 (i.e., the Columbia accident) is shown as an example of the anomaly detection capabilities.

  15. Faculty Development: A Stage Model Matched to Blended Learning Maturation

    ERIC Educational Resources Information Center

    Fetters, Michael L.; Duby, Tova Garcia

    2011-01-01

    Faculty development programs are critical to the implementation and support of curriculum innovation. In this case study, the authors present lessons learned from ten years of experience in faculty development programs created to support innovation in technology enhanced learning. Stages of curriculum innovation are matched to stages of faculty…

  16. Technology Investments in the NASA Entry Systems Modeling Project

    NASA Technical Reports Server (NTRS)

    Barnhardt, Michael; Wright, Michael; Hughes, Monica

    2017-01-01

    The Entry Systems Modeling (ESM) technology development project, initiated in 2012 under NASAs Game Changing Development (GCD) Program, is engaged in maturation of fundamental research developing aerosciences, materials, and integrated systems products for entry, descent, and landing(EDL)technologies [1]. To date, the ESM project has published over 200 papers in these areas, comprising the bulk of NASAs research program for EDL modeling. This presentation will provide an overview of the projects successes and challenges, and an assessment of future investments in EDL modeling and simulation relevant to NASAs mission

  17. Hybrid Propulsion Demonstration Program 250K Hybrid Motor

    NASA Technical Reports Server (NTRS)

    Story, George; Zoladz, Tom; Arves, Joe; Kearney, Darren; Abel, Terry; Park, O.

    2003-01-01

    The Hybrid Propulsion Demonstration Program (HPDP) program was formed to mature hybrid propulsion technology to a readiness level sufficient to enable commercialization for various space launch applications. The goal of the HPDP was to develop and test a 250,000 pound vacuum thrust hybrid booster in order to demonstrate hybrid propulsion technology and enable manufacturing of large hybrid boosters for current and future space launch vehicles. The HPDP has successfully conducted four tests of the 250,000 pound thrust hybrid rocket motor at NASA's Stennis Space Center. This paper documents the test series.

  18. Space station environmental control and life support systems test bed program - an overview

    NASA Astrophysics Data System (ADS)

    Behrend, Albert F.

    As the National Aeronautics and Space Administration (NASA) begins to intensify activities for development of the Space Station, decisions must be made concerning the technical state of the art that will be baselined for the initial Space Station system. These decisions are important because significant potential exists for enhancing system performance and for reducing life-cycle costs. However, intelligent decisions cannot be made without an adequate assessment of new and ready technologies, i.e., technologies which are sufficiently mature to allow predevelopment demonstrations to prove their application feasibility and to quantify the risk associated with their development. Therefore, the NASA has implemented a technology development program which includes the establishment of generic test bed capabilities in which these new technologies and approaches can be tested at the prototype level. One major Space Station subsystem discipline in which this program has been implemented is the environmental control and life support system (ECLSS). Previous manned space programs such as Gemini, Apollo, and Space Shuttle have relied heavily on consumables to provide environmental control and life support services. However, with the advent of a long-duration Space Station, consumables must be reduced within technological limits to minimize Space Station resupply penalties and operational costs. The use of advanced environmental control and life support approaches involving regenerative processes offers the best solution for significant consumables reduction while also providing system evolutionary growth capability. Consequently, the demonstration of these "new technologies" as viable options for inclusion in the baseline that will be available to support a Space Station initial operational capability in the early 1990's becomes of paramount importance. The mechanism by which the maturity of these new regenerative life support technologies will be demonstrated is the Space Station ECLSS Test Bed Program. The Space Station ECLSS Test Bed Program, which is managed by the NASA, is designed to parallel and to provide continuing support to the Space Station Program. The prime objective of this multiphase test bed program is to provide viable, mature, and enhancing technical options in time for Space Station implementation. To accomplish this objective, NASA is actively continuing the development and testing of critical components and engineering preprototype subsystems for urine processing, washwater recovery, water quality monitoring, carbon dioxide removal and reduction, and oxygen generation. As part of the ECLSS Test Bed Program, these regenerative subsystems and critical components are tested in a development laboratory to characterize subsystem performance and to identify areas in which further technical development is required. Proven concepts are then selected for development into prototype subsystems in which flight issues such as packaging and maintenance are addressed. These subsystems then are to be assembled as an integrated system and installed in an integrated systems test bed facility for extensive unmanned and manned testing.

  19. A Technology Development Roadmap for a Near-Term Probe-Class X-ray Astrophysics Mission

    NASA Technical Reports Server (NTRS)

    Daelemans, Gerard J.; Petre, Robert; Bookbinder, Jay; Ptak, Andrew; Smith, Randall

    2013-01-01

    This document presents a roadmap, including proposed budget and schedule, for maturing the instrumentation needed for an X-ray astrophysics Probe-class mission. The Physics of the Cosmos (PCOS) Program Office was directed to create this roadmap following the December 2012 NASA Astrophysics Implementation Plan (AIP). Definition of this mission is called for in the AIP, with the possibility of selection in 2015 for a start in 2017. The overall mission capabilities and instrument performance requirements were defined in the 2010 Astronomy and Astrophysics Decadal Survey report, New Worlds, New Horizons in Astronomy and Astrophysics (NWNH), in connection with the highly ranked International X-ray Observatory (IXO). In NWNH, recommendations were provided regarding the size of, and instrumentation needed by, the next large X-ray observatory. Specifically, the key instrumental capability would be an X-ray calorimeter spectrometer at the focus of a large mirror with angular resolution of 10 arc seconds (arcsec) or better. If possible, a grating spectrometer should also be incorporated into the instrument complement. In response to these recommendations, four instrumentation technologies are included in this roadmap. Three of these are critical for an X-ray mission designed to address NWNH questions: segmented X-ray mirrors, transition edge sensor calorimeters, and gratings. Two approaches are described for gratings, which represent the least mature technology and thus most in need of a parallel path for risk reduction. Also, while current CCD detectors would likely meet the mission needs for grating spectrum readout, specific improvements are included as an additional approach for achieving the grating system effective area requirement. The technical steps needed for these technologies to attain technology readiness levels (TRL) of 5 and 6 are described, as well as desirable modest risk reduction steps beyond TRL-6. All of the technology development efforts are currently funded through the NASA Physics of the Cosmos (PCOS) Strategic Astrophysics Technology (SAT) program; some through the end of FY13, others though FY14. These technology needs are those identified as critical for a near-term mission and briefly described in the 2012 NASA X-ray Mission Concepts Study. This Technology Development Roadmap (TDR) provides a more complete description of each, updates the status, and describes the steps to mature them. For each technology, a roadmap is presented for attaining TRL-6 by 2020 at the latest, and 2018 for most. The funding required for each technology to attain TRL-5 and TRL-6 is presented and justified through a description of the steps needing completion. The total funding required for these technologies to reach TRL-6 is relatively modest, and is consistent with the planned PCOS SAT funding over the next several years. The approximate annual cost through 2018 is $8M. The total cost for all technologies to be matured is $62M (including funding already awarded for FY13 and FY14). This can be contrasted to the $180M recommended by NWNH for technology development for IXO, primarily for the maturation of the mirror technology. The technology described in Section 3 of this document is exclusively that needed for a near-term Probe-class mission, to start in 2017, or for a mission that can be recommended by the next Decadal survey committee for an immediate start. It is important to note that there are other critical X-ray instrumentation technologies under development that are less mature than the ones discussed here, but are essential for a major X-ray mission that might start in the late 2020s. These technologies, described briefly in Section 4, are more appropriately funded through the Astronomy and Physics Research and Analysis (APRA) program.

  20. Experimental Results for Titan Aerobot Thermo-Mechanical Subsystem Development

    NASA Technical Reports Server (NTRS)

    Hall, Jeffrey L.; Jones, J. A.; Kerzhanovich, V. V.; Lachenmeier, T.; Mahr, P.; Pauken, M.; Plett, G. A.; Smith, L.; VanLuvender, M. L.; Yavrouian, A. H.

    2006-01-01

    This paper describes experimental results from a development program focused in maturing Titan aerobot technology in the areas of mechanical and thermal subsystems. Results from four key activities are described: first, a cryogenic balloon materials development program involving coupon and cylinder tests and culminating in the fabrication and testing of an inflated 4.6 m long prototype blimp at 93 K; second, a combined lab experiment and numerical simulation effort to assess potential problems resulting from radioisotope thermal generator waste heat generation near an inflated blimp; third, an aerial deployment and inflation development program consisting of laboratory and helicopter drop tests on a near full scale (11 m long) prototype blimp; and fourth, a proof of concept experiment demonstrating the viability of using a mechanically steerable high gain antenna on a floating blimp to perform direct to Earth telecommunications from Titan. The paper provides details on all of these successful activities and discusses their impact on the overall effort to produce mature systems technology for future Titan aerobot missions.

  1. Rapid Maturation of Edge Sensor Technology and Potential Application in Large Space Telescopes with Segmented Primary Mirrors

    NASA Technical Reports Server (NTRS)

    Montgomery, Edward E., IV; Smith, W. Scott (Technical Monitor)

    2002-01-01

    This paper explores the history and results of the last two year's efforts to transition inductive edge sensor technology from Technology Readiness Level 2 to Technology Readiness Level 6. Both technical and programmatic challenges were overcome in the design, fabrication, test, and installation of over a thousand sensors making up the Segment Alignment Maintenance System (SAMs) for the 91 segment, 9.2-meter. Hobby Eberly Telescope (HET). The integration of these sensors with the control system will be discussed along with serendipitous leverage they provided for both initialization alignment and operational maintenance. The experience gained important insights into the fundamental motion mechanics of large segmented mirrors, the relative importance of the variance sources of misalignment errors, the efficient conduct of a program to mature the technology to the higher levels. Unanticipated factors required the team to develop new implementation strategies for the edge sensor information which enabled major segmented mirror controller design simplifications. The resulting increase in the science efficiency of HET will be shown. Finally, the on-going effort to complete the maturation of inductive edge sensor by delivering space qualified versions for future IR (infrared radiation) space telescopes.

  2. Summary of findings of the R&D committee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenley, C.R.; Kokenge, B.R.

    1996-05-01

    In March 1995, the Department of Energy`s (DOE) Nuclear Materials Stabilization Task Group (NMST) chartered a committee to formulate a research and development (R&D) plan in response to Sub-recommendation (2) of Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1. The NMSTG was established as an organizational unit operating under the auspices of the DOE Office of the Environmental Management. As a result of its efforts, the Research Committee concluded that, in general, the technology needs for stabilizing 94-1 nuclear materials are being adequately met by existing or planned DOE programs. At the same time, the committee, in the form ofmore » recommendations, noted specific R&D program areas that should be addressed by the NMSTG. These recommendations are documented in the R&D plan and formulated based on: (1) existing {open_quotes}gaps{close_quotes} in DOE`s R&D stabilization program, (2) the relative maturity of various technologies, and (3) other important R&D program issues that, in the judgement of the committee, should be addressed by the NMSTG. A systems engineering approach, derived form the aerospace industry, was applied to the various stabilization technologies to assess their relative maturity and availability for use in treating 94-1 nuclear materials.« less

  3. Summary Findings from the AVT-191 Project to Assess Sensitivity Analysis and Uncertainty Quantification Methods for Military Vehicle Design

    NASA Technical Reports Server (NTRS)

    Benek, John A.; Luckring, James M.

    2017-01-01

    A NATO symposium held in Greece in 2008 identified many promising sensitivity analysis and uncertainty quantification technologies, but the maturity and suitability of these methods for realistic applications was not clear. The NATO Science and Technology Organization, Task Group AVT-191 was established to evaluate the maturity and suitability of various sensitivity analysis and uncertainty quantification methods for application to realistic vehicle development problems. The program ran from 2011 to 2015, and the work was organized into four discipline-centric teams: external aerodynamics, internal aerodynamics, aeroelasticity, and hydrodynamics. This paper summarizes findings and lessons learned from the task group.

  4. Overview and Recent Accomplishments of the Advanced Mirror Technology Development (AMTD) for Large Aperture UVOIR Space Telescopes Project

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2013-01-01

    Per Astro2010, a new, larger UVO telescope is needed to answer fundamental scientific questions, such as: is there life on Earth-like exoplanets; how galaxies assemble stellar populations; how baryonic matter interacts with intergalactic medium; and how solar systems form and evolve. And, present technology is not mature enough to affordably build and launch any potential UVO concept. Advanced Mirror Technology Development (AMTD) is a funded SAT project. Our objective is to mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system. To provide the science community with options, we are pursuing multiple technology paths. We have assembled an outstanding team from academia, industry, and government with extensive expertise in astrophysics and exoplanet characterization, and in the design/manufacture of monolithic and segmented space telescopes. One of our key accomplishments is that we have derived engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicle and its inherent mass and volume constraints. We defined and initiated a program to mature 6 key technologies required to fabricate monolithic and segmented space mirrors.

  5. Space Industry Study Industrial College of the Armed Forces National Defense University

    DTIC Science & Technology

    2002-06-01

    information technologies , especially fiber, cable, and cellular communications, which forced space systems away from old market roles and denied entry to... technologies fill market niches. As technology matures, small satellites have been viewed a partial solution to this cycle, enabling faster programs...years, the largely unforeseen growth in the internet has proven a valuable new market for satellite service providers. And over the past few years

  6. An Analysis of Technology Transition Within the Department of Defense

    DTIC Science & Technology

    2010-06-01

    relentless adversaries, it is essential that the DoD performs technology transition in a practical yet expedient manner. Time is a critical factor in...themselves, rather than rely on DOD labs to do so—a practice that brings cost and schedule risk since programs may well find themselves addressing problems...that utilized non-traditional, industry practices to abate the difficulties bringing technologies to a suitable maturation state. Albeit these

  7. Overview of the AVT-191 Project to Assess Sensitivity Analysis and Uncertainty Quantification Methods for Military Vehicle Design

    NASA Technical Reports Server (NTRS)

    Benek, John A.; Luckring, James M.

    2017-01-01

    A NATO symposium held in 2008 identified many promising sensitivity analysis and un-certainty quantification technologies, but the maturity and suitability of these methods for realistic applications was not known. The STO Task Group AVT-191 was established to evaluate the maturity and suitability of various sensitivity analysis and uncertainty quantification methods for application to realistic problems of interest to NATO. The program ran from 2011 to 2015, and the work was organized into four discipline-centric teams: external aerodynamics, internal aerodynamics, aeroelasticity, and hydrodynamics. This paper presents an overview of the AVT-191 program content.

  8. Critical Thinking Graduates: A Curriculum Development Case Study in Business.

    ERIC Educational Resources Information Center

    Bygrave, Jenny; Gerbic, Philippa

    The critical thinking curriculum used in the four-year business degree program at the Auckland Institute of Technology Faculty of Commerce in New Zealand is described. The design of the business program is modeled on the authors' view of critical thinking as concerned with the intellectual maturity of the whole person. Key intellectual standards…

  9. Emerging Propulsion Technologies

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.

    2006-01-01

    The Emerging Propulsion Technologies (EPT) investment area is the newest area within the In-Space Propulsion Technology (ISPT) Project and strives to bridge technologies in the lower Technology Readiness Level (TRL) range (2 to 3) to the mid TRL range (4 to 6). A prioritization process, the Integrated In-Space Transportation Planning (IISTP), was developed and applied in FY01 to establish initial program priorities. The EPT investment area emerged for technologies that scored well in the IISTP but had a low technical maturity level. One particular technology, the Momentum-eXchange Electrodynamic-Reboost (MXER) tether, scored extraordinarily high and had broad applicability in the IISTP. However, its technical maturity was too low for ranking alongside technologies like the ion engine or aerocapture. Thus MXER tethers assumed top priority at EPT startup in FY03 with an aggressive schedule and adequate budget. It was originally envisioned that future technologies would enter the ISP portfolio through EPT, and EPT developed an EPT/ISP Entrance Process for future candidate ISP technologies. EPT has funded the following secondary, candidate ISP technologies at a low level: ultra-lightweight solar sails, general space/near-earth tether development, electrodynamic tether development, advanced electric propulsion, and in-space mechanism development. However, the scope of the ISPT program has focused over time to more closely match SMD needs and technology advancement successes. As a result, the funding for MXER and other EPT technologies is not currently available. Consequently, the MXER tether tasks and other EPT tasks were expected to phased out by November 2006. Presentation slides are presented which provide activity overviews for the aerocapture technology and emerging propulsion technology projects.

  10. SCRL-Model for Human Space Flight Operations Enterprise Supply Chain

    NASA Technical Reports Server (NTRS)

    Tucker, Brian; Paxton, Joseph

    2010-01-01

    This paper will present a Supply Chain Readiness Level (SCRL) model that can be used to evaluate and configure adaptable and sustainable program and mission supply chains at an enterprise level. It will also show that using SCRL in conjunction with Technology Readiness Levels (TRLs), Manufacturing Readiness Levels (MRLs) and National Aeronautics Space Administrations (NASA s) Project Lifecycle Process will provide a more complete means of developing and evaluating a robust sustainable supply chain that encompasses the entire product, system and mission lifecycle. In addition, it will be shown that by implementing the SCRL model, NASA can additionally define supplier requirements to enable effective supply chain management (SCM). Developing and evaluating overall supply chain readiness for any product, system and mission lifecycle is critical for mission success. Readiness levels are presently being used to evaluate the maturity of technology and manufacturing capability during development and deployment phases of products and systems. For example, TRLs are used to support the assessment of the maturity of a particular technology and compare maturity of different types of technologies. MRLs are designed to assess the maturity and risk of a given technology from a manufacturing perspective. In addition, when these measurement systems are used collectively they can offer a more comprehensive view of the maturity of the system. While some aspects of the supply chain and supply chain planning are considered in these familiar metric systems, certain characteristics of an effective supply chain, when evaluated in more detail, will provide an improved insight into the readiness and risk throughout the supply chain. Therefore, a system that concentrates particularly on supply chain attributes is required to better assess enterprise supply chain readiness.

  11. SDI Software Technology Program Plan Version 1.5

    DTIC Science & Technology

    1987-06-01

    computer generation of auditory communication of meaningful speech. Most speech synthesizers are based on mathematical models of the human vocal tract, but...oral/ auditory and multimodal communications. Although such state-of-the-art interaction technology has not fully matured, user experience has...superior I pattern matching capabilities and the subliminal intuitive deduction capability. The error performance of humans can be helped by careful

  12. Avionics Architectures for Exploration: Wireless Technologies and Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Goforth, Montgomery B.; Ratliff, James E.; Barton, Richard J.; Wagner, Raymond S.; Lansdowne, Chatwin

    2014-01-01

    The authors describe ongoing efforts by the Avionics Architectures for Exploration (AAE) project chartered by NASA's Advanced Exploration Systems (AES) Program to evaluate new avionics architectures and technologies, provide objective comparisons of them, and mature selected technologies for flight and for use by other AES projects. The AAE project team includes members from most NASA centers and from industry. This paper provides an overview of recent AAE efforts, with particular emphasis on the wireless technologies being evaluated under AES to support human spaceflight.

  13. Autonomous Rendezvous and Docking Conference, volume 2

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Autonomous Rendezvous and Docking (ARD) will be a requirement for future space programs. Clear examples include satellite servicing, repair, recovery, and reboost in the near term, and the longer range lunar and planetary exploration programs. ARD will permit more aggressive unmanned space activities, while providing a valuable operational capability for manned missions. The purpose of the conference is to identify the technologies required for an on-orbit demonstration of ARD, assess the maturity of those technologies, and provide the necessary insight for a quality assessment of programmatic management, technical, schedule, and cost risks.

  14. Modular, Reconfigurable, High-Energy Technology Development

    NASA Technical Reports Server (NTRS)

    Carrington, Connie; Howell, Joe

    2006-01-01

    The Modular, Reconfigurable High-Energy (MRHE) Technology Demonstrator project was to have been a series of ground-based demonstrations to mature critical technologies needed for in-space assembly of a highpower high-voltage modular spacecraft in low Earth orbit, enabling the development of future modular solar-powered exploration cargo-transport vehicles and infrastructure. MRHE was a project in the High Energy Space Systems (HESS) Program, within NASA's Exploration Systems Research and Technology (ESR&T) Program. NASA participants included Marshall Space Flight Center (MSFC), the Jet Propulsion Laboratory (JPL), and Glenn Research Center (GRC). Contractor participants were the Boeing Phantom Works in Huntsville, AL, Lockheed Martin Advanced Technology Center in Palo Alto, CA, ENTECH, Inc. in Keller, TX, and the University of AL Huntsville (UAH). MRHE's technical objectives were to mature: (a) lightweight, efficient, high-voltage, radiation-resistant solar power generation (SPG) technologies; (b) innovative, lightweight, efficient thermal management systems; (c) efficient, 100kW-class, high-voltage power delivery systems from an SPG to an electric thruster system; (d) autonomous rendezvous and docking technology for in-space assembly of modular, reconfigurable spacecraft; (e) robotic assembly of modular space systems; and (f) modular, reconfigurable distributed avionics technologies. Maturation of these technologies was to be implemented through a series of increasingly-inclusive laboratory demonstrations that would have integrated and demonstrated two systems-of-systems: (a) the autonomous rendezvous and docking of modular spacecraft with deployable structures, robotic assembly, reconfiguration both during assembly and (b) the development and integration of an advanced thermal heat pipe and a high-voltage power delivery system with a representative lightweight high-voltage SPG array. In addition, an integrated simulation testbed would have been developed containing software models representing the technologies being matured in the laboratory demos. The testbed would have also included models for non-MRHE developed subsystems such as electric propulsion, so that end-to-end performance could have been assessed. This paper presents an overview of the MRHE Phase I activities at MSFC and its contractor partners. One of the major Phase I accomplishments is the assembly demonstration in the Lockheed Martin Advanced Technology Center (LMATC) Robot-Satellite facility, in which three robot-satellites successfully demonstrated rendezvous & docking, self-assembly, reconfiguration, adaptable GN&C, deployment, and interfaces between modules. Phase I technology maturation results from ENTECH include material recommendations for radiation hardened Stretched Lens Array (SLA) concentrator lenses, and a design concept and test results for a hi-voltage PV receiver. UAH's accomplishments include Supertube heatpipe test results, which support estimates of thermal conductivities at 30,000 times that of an equivalent silver rod. MSFC performed systems trades and developed a preliminary concept design for a 100kW-class modular reconfigurable solar electric propulsion transport vehicle, and Boeing Phantom Works in Huntsville performed assembly and rendezvous and docking trades. A concept animation video was produced by SAIC, wllich showed rendezvous and docking and SLA-square-rigger deployment in LEO.

  15. Environmentally Responsible Aviation: Propulsion Research to Enable Fuel Burn, Noise and Emissions Reduction

    NASA Technical Reports Server (NTRS)

    Van Zante, Dale; Suder, Kenneth

    2015-01-01

    The NASA Environmentally Responsible Aviation (ERA) program is maturing technologies to enable simultaneous reduction of fuel burn, noise and emissions from an aircraft engine system. Three engine related Integrated Technology Demonstrations (ITDs) have been completed at Glenn Research Center in collaboration with Pratt Whitney, General Electric and the Federal Aviation Administration. The engine technologies being matured are: a low NOx, fuel flexible combustor in partnership with Pratt Whitney; an ultra-high bypass, ducted propulsor system in partnership with Pratt Whitney and FAA; and high pressure ratio, front-stage core compressor technology in partnership with General Electric. The technical rationale, test configurations and overall results from the test series in each ITD are described. ERA is using system analysis to project the benefits of the ITD technologies on potential aircraft systems in the 2025 timeframe. Data from the ITD experiments were used to guide the system analysis assumptions. Results from the current assessments for fuel burn, noise and oxides of nitrogen emissions are presented.

  16. Environmentally Responsible Aviation: Propulsion Research to Enable Fuel Burn, Noise and Emissions Reduction

    NASA Technical Reports Server (NTRS)

    Van Zante, Dale E.; Suder, Kenneth L.

    2015-01-01

    The NASA Environmentally Responsible Aviation (ERA) program is maturing technologies to enable simultaneous reduction of fuel burn, noise and emissions from an aircraft engine system. Three engine related Integrated Technology Demonstrations (ITDs) have been completed at Glenn Research Center in collaboration with Pratt Whitney, General Electric and the Federal Aviation Administration. The engine technologies being matured are a low NOx, fuel flexible combustor in partnership with Pratt Whitney, an ultra-high bypass, ducted propulsor system in partnership with Pratt Whitney FAA and high pressure ratio, front-stage core compressor technology in partnership with General Electric. The technical rationale, test configurations and overall results from the test series in each ITD are described. ERA is using system analysis to project the benefits of the ITD technologies on potential aircraft systems in the 2025 timeframe. Data from the ITD experiments were used to guide the system analysis assumptions. Results from the current assessments for fuel burn, noise and oxides of nitrogen emissions are presented.

  17. Current Status and Recent Research Achievements in SiC/SiC Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katoh, Yutai; Snead, Lance L.; Henager, Charles H.

    2014-12-01

    The development and maturation of the silicon carbide fiber-reinforced silicon carbide matrix (SiC/SiC) composite system for fusion applications has seen the evolution from fundamental development and understanding of the material system and its behavior in a hostile irradiation environment to the current effort which essentially is a broad-based program of technology, directed at moving this material class from a laboratory curiosity to an engineering material. This paper lays out the recent international scientific and technological achievements in the development of SiC/SiC composite material technologies for fusion application and will discuss future research directions. It also reviews the materials system inmore » the larger context of progress to maturity as an engineering material for both the larger nuclear community and for general engineering applications.« less

  18. ATD-1 Avionics Phase 2 Flight Test: Flight Test Operations and Saftey Report (FTOSR)

    NASA Technical Reports Server (NTRS)

    Boyle, Dan; Rein-Weston, Karl; Berckefeldt, Rick; Eggling, Helmuth; Stankiewicz, Craig; Silverman, George

    2017-01-01

    The Air Traffic Management Technology Demonstration-1 (ATD-1) is a major applied research and development activity of NASA's Airspace Operations and Safety Program (AOSP). The demonstration is the first of an envisioned series of Air Traffic Management (ATM) Technology Demonstration sub-projects that will demonstrate innovative NASA technologies that have attained a sufficient level of maturity to merit more in-depth research and evaluation at the system level in relevant environments.

  19. JWST Mirror Technology Development Results

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2007-01-01

    Mirror technology is a critical enabling capability for the James Webb Space Telescope (JWST). JWST requires a Primary Mirror Segment Assembly (PMSA) that can survive launch, deploy and align itself to form a 25 square meter collecting area 6.5 meter diameter primary mirror with a 131 nm rms wavefront error at temperatures less than 50K and provide stable optical performance. At the inception of JWST in 1996, such a capability did not exist. A highly successful technology development program was initiated including the Sub-scale Beryllium Mirror Demonstrator (SBMD) and Advanced Mirror System Demonstrator (AMSD) projects. These projects along with flight program activities have matured and demonstrated mirror technology for JWST. Directly traceable prototypes or flight hardware has been built, tested and operated in a relevant environment. This paper summarizes that technology development effort.

  20. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Human Exploration and Operations Mission Directorate Projects at Glenn Research Center for 2015

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    This report is intended to help NASA program and project managers incorporate Glenn Research Center Small Business Innovation Research/Small Business Technology Transfer (SBIR)/(STTR) technologies into NASA Human Exploration and Operations Mission Directorate (HEOMD) programs and projects. Other Government and commercial project managers can also find this useful. Introduction Incorporating Small Business Innovation Research (SBIR)-developed technology into NASA projects is important, especially given the Agency's limited resources for technology development. The SBIR program's original intention was for technologies that had completed Phase II to be ready for integration into NASA programs, however, in many cases there is a gap between Technology Readiness Levels (TRLs) 5 and 6 that needs to be closed. After SBIR Phase II projects are completed, the technology is evaluated against various parameters and a TRL rating is assigned. Most programs tend to adopt more mature technologies-at least TRL 6 to reduce the risk to the mission rather than adopt TRLs between 3 and 5 because those technologies are perceived as too risky. The gap between TRLs 5 and 6 is often called the "Valley of Death" (Figure 1), and historically it has been difficult to close because of a lack of funding support from programs. Several papers have already suggested remedies on how to close the gap (Refs. 1 to 4).

  1. Improving transportation systems management and operations (TSM&O), capability maturity model workshop white paper : systems and technology.

    DOT National Transportation Integrated Search

    2015-04-01

    Research done through the Second Strategic Highway Research Program (SHRP 2) determined that agencies with the most effective transportation systems management and operations (TSM&O) activities were differentiated not by budgets or technical skills a...

  2. Ultra Lightweight Ballutes for Return to Earth from the Moon

    NASA Technical Reports Server (NTRS)

    Masciarelli, James P.; Lin, John K. H.; Ware, Joanne S.; Rohrschneider, Reuben R.; Braun, Robert D.; Bartels, Robert E.; Moses, Robert W.; Hall, Jeffery L.

    2006-01-01

    Ultra lightweight ballutes offer revolutionary mass and cost benefits along with flexibility in flight system design compared to traditional entry system technologies. Under funding provided by NASA s Exploration Systems Research & Technology program, our team was able to make progress in developing this technology through systems analysis and design, evaluation of materials and construction methods, and development of critical analysis tools. Results show that once this technology is mature, significant launch mass savings, operational simplicity, and mission robustness will be available to help carry out NASA s Vision for Space Exploration.

  3. Heatshield for Extreme Entry Environment Technology (HEEET) Development and Maturation Status for NF Missions

    NASA Technical Reports Server (NTRS)

    Ellerby, D.; Blosser, M.; Boghozian, T.; Chavez-Garcia, J.; Chinnapongse, R.; Fowler, M.; Gage, P.; Gasch, M.; Gonzales, G.; Hamm, K.; hide

    2016-01-01

    This poster provides an overview of the requirements, design, development and testing of the 3D Woven TPS being developed under NASA's Heatshield for Extreme Entry Environment Technology (HEEET) project. Under this current program, NASA is working to develop a Thermal Protection System (TPS) capable of surviving entry into Saturn. A primary goal of the project is to build and test an Engineering Test Unit (ETU) to establish a Technical Readiness Level (TRL) of 6 for this technology by 2017.

  4. Heatshield for Extreme Entry Environment Technology (HEEET) Development and Maturation Status

    NASA Technical Reports Server (NTRS)

    Ellerby, D.; Boghozian, T.; Driver, D.; Chavez-Garcia, J.; Fowler, M.; Gage, P.; Gasch, M.; Gonzales, G.; Kazemba, C.; Kellermann, C.; hide

    2018-01-01

    This poster provides an overview of the requirements, design, development and testing of the 3D (Three Dimensional) Woven TPS (Thermal Protection System) being developed under NASA's Heatshield for Extreme Entry Environment Technology (HEEET) project. Under this current program, NASA is working to develop a TPS capable of surviving entry into Saturn. A primary goal of the project is to build and test an Engineering Test Unit (ETU) to establish a Technical Readiness Level (TRL) of 6 for this technology by 2017.

  5. Serum human chorionic gonadotropin levels on the day before oocyte retrieval do not correlate with oocyte maturity.

    PubMed

    Levy, Gary; Hill, Micah J; Ramirez, Christina; Plowden, Torrie; Pilgrim, Justin; Howard, Robin S; Segars, James H; Csokmay, John

    2013-05-01

    To evaluate the correlation of preretrieval quantitative serum hCG level with oocyte maturity. Retrospective cohort study. Military assisted reproductive technology (ART) program. Fresh autologous ART cycles. Serum hCG level the day before oocyte retrieval. Linear regression was used to correlate serum hCG levels and oocyte maturity rates. Normal oocyte maturity was defined as ≥75% and the Wilcoxon rank sum test was used to compare serum hCG levels in patients with normal and low oocyte maturity. Threshold analysis was performed to determine hCG levels that could predict oocyte maturity. A total of 468 ART cycles were analyzed. Serum hCG level was not correlated with hCG dose; however, it was negatively correlated with body mass index (BMI). Serum hCG levels did not differ between patients with oocyte maturity of <75% and ≥75%. Serum hCG levels did not correlate with oocyte maturity rates. Receiver operator characteristic and less than efficiency curves failed to demonstrate thresholds at which hCG could predict oocyte maturity. Serum hCG levels were not correlated with oocyte maturity. Although a positive hCG was reassuring that mature oocytes would be retrieved for most patients, the specific value was not helpful. Copyright © 2013. Published by Elsevier Inc.

  6. Xenon ion propulsion for orbit transfer

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.; Patterson, M. J.; Gruber, R. P.

    1990-01-01

    For more than 30 years, NASA has conducted an ion propulsion program which has resulted in several experimental space flight demonstrations and the development of many supporting technologies. Technologies appropriate for geosynchronous stationkeeping, earth-orbit transfer missions, and interplanetary missions are defined and evaluated. The status of critical ion propulsion system elements is reviewed. Electron bombardment ion thrusters for primary propulsion have evolved to operate on xenon in the 5 to 10 kW power range. Thruster efficiencies of 0.7 and specific impulse values of 4000 s were documented. The baseline thruster currently under development by NASA LeRC includes ring-cusp magnetic field plasma containment and dished two-grid ion optics. Based on past experience and demonstrated simplifications, power processors for these thrusters should have approximately 500 parts, a mass of 40 kg, and an efficiency near 0.94. Thrust vector control, via individual thruster gimbals, is a mature technology. High pressure, gaseous xenon propellant storage and control schemes, using flight qualified hardware, result in propellant tankage fractions between 0.1 and 0.2. In-space and ground integration testing has demonstrated that ion propulsion systems can be successfully integrated with their host spacecraft. Ion propulsion system technologies are mature and can significantly enhance and/or enable a variety of missions in the nation's space propulsion program.

  7. Textile composite fuselage structures development

    NASA Technical Reports Server (NTRS)

    Jackson, Anthony C.; Barrie, Ronald E.; Chu, Robert L.

    1993-01-01

    Phase 2 of the NASA ACT Contract (NAS1-18888), Advanced Composite Structural Concepts and Materials Technology for Transport Aircraft Structures, focuses on textile technology, with resin transfer molding or powder coated tows. The use of textiles has the potential for improving damage tolerance, reducing cost and saving weight. This program investigates resin transfer molding (RTM), as a maturing technology for high fiber volume primary structures and powder coated tows as an emerging technology with a high potential for significant cost savings and superior structural properties. Powder coated tow technology has promise for significantly improving the processibility of high temperature resins such as polyimides.

  8. Critical issues in telemedicine.

    PubMed

    Bashshur, R L

    1997-01-01

    Critical issues facing the development of telemedicine today are described and analyzed as dilemmas or paradoxes. The technological dilemma involves the difficult choice between using the latest technology regardless of how well it fits specific needs on the one hand, and the reluctance to capitalize on the available technological capability to create efficient and effective organizations for expanding the reach of health care on the other hand. The evaluation paradox points to the disjuncture between policy making requirements and the scientific enterprise. This engenders the difficulty of producing scientifically valid and policy relevant results from programs that have not achieved maturity or a steady state of operation. The contextual hazards of limiting the scope of telemedicine to rural areas are discussed, as well as the potential for creating a second tier of care for the remote and isolated populations. Finally, professional maturation is addressed as it underscores the importance of self regulation and control.

  9. Assessing the maturity and re-usability of NASA's Advanced Information System Technology (AIST) Projects

    NASA Astrophysics Data System (ADS)

    Little, M. M.; Hines, K.

    2016-12-01

    Considerable funding has been invested in Earth science information technology (IT) projects by NASA over the past 15 years. While many of these projects succeeded at completing their objectives, rapid improvements in technology and growth in available data could further enhance the capabilities available to the Earth science community. Independent evaluation of these projects has become more and more important. Not only do they qualify the maturity of the work, but they give potential adopters the chance to kick the tires. One approach that has been used is to task Federally Funded Research and Development Corporations (FFRDC) with reviews and paper studies. Another approach involves field testing by third parties. Over the past three years, the AIST Program has tried both. This paper will describe both approaches and lessons learned from the experiences. The audience will be asked for their suggestions as to how to qualify and value these results.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tugurlan, Maria C.; Kirkham, Harold; Chassin, David P.

    Abstract Budget and schedule overruns in product development due to the use of immature technologies constitute an important matter for program managers. Moreover, unexpected lack of technology maturity is also a problem for buyers. Both sides of the situation would benefit from an unbiased measure of technology maturity. This paper presents the use of a software maturity metric called Technology Readiness Level (TRL), in the milieu of the smart grid. For most of the time they have been in existence, power utilities have been protected monopolies, guaranteed a return on investment on anything they could justify adding to the ratemore » base. Such a situation did not encourage innovation, and instead led to widespread risk-avoidance behavior in many utilities. The situation changed at the end of the last century, with a series of regulatory measures, beginning with the Public Utility Regulatory Policy Act of 1978. However, some bad experiences have actually served to strengthen the resistance to innovation by some utilities. Some aspects of the smart grid, such as the addition of computer-based control to the power system, face an uphill battle. It is our position that the addition of TRLs to the decision-making process for smart grid power-system projects, will lead to an environment of more confident adoption.« less

  11. 2006 Status of the Momentum eXchange Electrodynamic Re-Boost (MXER) Tether Development

    NASA Technical Reports Server (NTRS)

    Bonometti, Joseph A.; Sorensen, Kirk F.; Dankanich, John W.; Frame, Kyle L.

    2006-01-01

    The MXER Tether technology development is a high-payoff/high-risk investment area within the NASA In-Space Propulsion Technology (ISPT) Program. The ISPT program is managed by the NASA Headquarters Science Mission Directorate and implemented by the Marshall Space Flight Center in Huntsville, Alabama. The MXER concept was identified and competitively ranked within NASA's comprehensive Integrated In-Space Transportation Plan (IISTP); an agency-wide technology assessment activity. The objective of the MXER tether project within ISPT is to advance the technological maturation level for the MXER system, and its subsystems, as well as other space and terrestrial tether applications. Recent hardware efforts have focused on the manufacturability of space-survivable high-strength tether material and coatings, high-current electrodynamic tether, lightweight catch mechanism, high-accuracy propagator/predictor code, and efficient electron collection/current generation. Significant technical progress has been achieved with modest ISPT funding to the extent that MXER has evolved to a well-characterized system with greater capability as the design has been matured. Synergistic efforts in high-current electrodynamic tethers and efficient electron collection/current generation have been made possible through SBIR and STTR support. The entire development endeavor was orchestrated as a collaborative team effort across multiple individual contracts and has established a solid technology resource base, which permits a wide variety of future space cable/tether applications to be realized.

  12. Fiscal year 1988 program report: Pennsylvania Center for Water Resources Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonnell, A.J.

    1989-08-01

    Three projects and a program of technology transfer were conducted under the Pennsylvania Fiscal Year 1988 State Water Resources Research Grants Program (PL 98-242, Sect. 104). In a completed study focused on the protection of water supplies, mature slow sand filters were found to remove 100 percent of Cryptosporidium and Giardia cysts. A site specific study examined the behavior of sedimentary iron and manganese in an acid mine drainage wetland system. A study was initiated to link a comprehensive non-point source model, AGNPS with current GIS technology to enhance the models' utility for evaluating regional water quality problems related tomore » non-point source agricultural pollution.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mudd, M.J.

    The successful Clean Coal Technology projects which are being discussed in this conference are all a testament to the positive advancements that can be made with environmentally superior technologies when the government and industry cooperate in the context of a properly funded and a well thought-out program. Many of the technologies developed in the Clean Coal Technology Program have taken a competitive position in the marketplace, and many others are on the verge of being competitive in the marketplace. Based on the success of the Clean Coal Technology Program, one would expect that they would be ready for full deploymentmore » in the marketplace with the approach of the next millennium. This is not happening. There are several hurdles that impede their deployment. Some of those hurdles, such as the higher first-of-a-kind cost and technology risk factors that accompany not-yet mature technologies, have existed since the initiation of the Clean Coal Technology Program. However, several new hurdles are impeding the market penetration of Clean Coal Technologies. Those hurdles include the radically different marketplace due to the restructuring of the electric utility industry, a soft market, the difficulty in financing new power plants, low natural gas prices, and lower-cost and higher-efficiency natural gas combined cycle technology.« less

  14. NASA's Spaceliner 100 Investment Area Technology Activities

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; Lyles, Garry M. (Technical Monitor)

    2001-01-01

    NASA's has established long term goals for access-to-space. The third generation launch systems are to be fully reusable and operational around 2025. The goals for the third generation launch system are to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop space transportation technologies. Within ASTP, under the Spaceliner100 Investment Area, third generation technologies are being pursued in the areas of propulsion, airframes, integrated vehicle health management (IVHM), launch systems, and operations and range. The ASTP program will mature these technologies through ground system testing. Flight testing where required, will be advocated on a case by case basis.

  15. Cockpit voice recognition program at Princeton University

    NASA Technical Reports Server (NTRS)

    Huang, C. Y.

    1983-01-01

    Voice recognition technology (VRT) is applied to aeronautics, particularly on the pilot workload alleviation. The VRT does not have to prove its maturity any longer. The feasibility of voice tuning of radio and DME are demonstrated since there are immediate advantages to the pilot and can be completed in a reasonable time.

  16. Modeling timelines for translational science in cancer; the impact of technological maturation

    PubMed Central

    McNamee, Laura M.; Ledley, Fred D.

    2017-01-01

    This work examines translational science in cancer based on theories of innovation that posit a relationship between the maturation of technologies and their capacity to generate successful products. We examined the growth of technologies associated with 138 anticancer drugs using an analytical model that identifies the point of initiation of exponential growth and the point at which growth slows as the technology becomes established. Approval of targeted and biological products corresponded with technological maturation, with first approval averaging 14 years after the established point and 44 years after initiation of associated technologies. The lag in cancer drug approvals after the increases in cancer funding and dramatic scientific advances of the 1970s thus reflects predictable timelines of technology maturation. Analytical models of technological maturation may be used for technological forecasting to guide more efficient translation of scientific discoveries into cures. PMID:28346525

  17. A Patient-Centered Framework for Evaluating Digital Maturity of Health Services: A Systematic Review

    PubMed Central

    Callahan, Ryan; Darzi, Ara; Mayer, Erik

    2016-01-01

    Background Digital maturity is the extent to which digital technologies are used as enablers to deliver a high-quality health service. Extensive literature exists about how to assess the components of digital maturity, but it has not been used to design a comprehensive framework for evaluation. Consequently, the measurement systems that do exist are limited to evaluating digital programs within one service or care setting, meaning that digital maturity evaluation is not accounting for the needs of patients across their care pathways. Objective The objective of our study was to identify the best methods and metrics for evaluating digital maturity and to create a novel, evidence-based tool for evaluating digital maturity across patient care pathways. Methods We systematically reviewed the literature to find the best methods and metrics for evaluating digital maturity. We searched the PubMed database for all papers relevant to digital maturity evaluation. Papers were selected if they provided insight into how to appraise digital systems within the health service and if they indicated the factors that constitute or facilitate digital maturity. Papers were analyzed to identify methodology for evaluating digital maturity and indicators of digitally mature systems. We then used the resulting information about methodology to design an evaluation framework. Following that, the indicators of digital maturity were extracted and grouped into increasing levels of maturity and operationalized as metrics within the evaluation framework. Results We identified 28 papers as relevant to evaluating digital maturity, from which we derived 5 themes. The first theme concerned general evaluation methodology for constructing the framework (7 papers). The following 4 themes were the increasing levels of digital maturity: resources and ability (6 papers), usage (7 papers), interoperability (3 papers), and impact (5 papers). The framework includes metrics for each of these levels at each stage of the typical patient care pathway. Conclusions The framework uses a patient-centric model that departs from traditional service-specific measurements and allows for novel insights into how digital programs benefit patients across the health system. Trial Registration N/A PMID:27080852

  18. KSC-2011-7882

    NASA Image and Video Library

    2011-11-22

    CAPE CANAVERAL, Fla. -- Ed Mango, program manager for NASA's Commercial Crew Program (CCP), updates media on the progress of Commercial Crew Development Round 2 (CCDev2) activities in which seven aerospace companies are maturing launch vehicle and spacecraft systems designed to take astronauts to the International Space Station. The goal of the program is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Seven aerospace companies are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. (ATK) of Promontory, Utah, Blue Origin of Kent, Wash., The Boeing Co., of Houston, Excalibur Almaz Inc. of Houston, Sierra Nevada Corp. of Louisville, Colo., Space Exploration Technologies (SpaceX) of Hawthorne, Calif., and United Launch Alliance (ULA) of Centennial, Colo. For more information, visit www.nasa.gov/exploration/commercial Photo credit: Jim Grossmann

  19. KSC-2011-7881

    NASA Image and Video Library

    2011-11-22

    CAPE CANAVERAL, Fla. -- Ed Mango, program manager for NASA's Commercial Crew Program (CCP), updates media on the progress of Commercial Crew Development Round 2 (CCDev2) activities in which seven aerospace companies are maturing launch vehicle and spacecraft systems designed to take astronauts to the International Space Station. The goal of the program is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Seven aerospace companies are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. (ATK) of Promontory, Utah, Blue Origin of Kent, Wash., The Boeing Co., of Houston, Excalibur Almaz Inc. of Houston, Sierra Nevada Corp. of Louisville, Colo., Space Exploration Technologies (SpaceX) of Hawthorne, Calif., and United Launch Alliance (ULA) of Centennial, Colo. For more information, visit www.nasa.gov/exploration/commercial Photo credit: Jim Grossmann

  20. Space Technology Mission Directorate: Game Changing Development

    NASA Technical Reports Server (NTRS)

    Gaddis, Stephen W.

    2015-01-01

    NASA and the aerospace community have deep roots in manufacturing technology and innovation. Through it's Game Changing Development Program and the Advanced Manufacturing Technology Project NASA develops and matures innovative, low-cost manufacturing processes and products. Launch vehicle propulsion systems are a particular area of interest since they typically comprise a large percentage of the total vehicle cost and development schedule. NASA is currently working to develop and utilize emerging technologies such as additive manufacturing (i.e. 3D printing) and computational materials and processing tools that could dramatically improve affordability, capability, and reduce schedule for rocket propulsion hardware.

  1. Computer-Aided Analysis of Patents for Product Technology Maturity Forecasting

    NASA Astrophysics Data System (ADS)

    Liang, Yanhong; Gan, Dequan; Guo, Yingchun; Zhang, Peng

    Product technology maturity foresting is vital for any enterprises to hold the chance for innovation and keep competitive for a long term. The Theory of Invention Problem Solving (TRIZ) is acknowledged both as a systematic methodology for innovation and a powerful tool for technology forecasting. Based on TRIZ, the state -of-the-art on the technology maturity of product and the limits of application are discussed. With the application of text mining and patent analysis technologies, this paper proposes a computer-aided approach for product technology maturity forecasting. It can overcome the shortcomings of the current methods.

  2. Serum human chorionic gonadotropin levels on the day before oocyte retrieval do not correlate with oocyte maturity

    PubMed Central

    Levy, Gary; Hill, Micah J.; Ramirez, Christina; Plowden, Torrie; Pilgrim, Justin; Howard, Robin S.; Segars, James H.; Csokmay, John

    2014-01-01

    Objective To evaluate the correlation of preretrieval quantitative serum hCG level with oocyte maturity. Design Retrospective cohort study. Setting Military assisted reproductive technology (ART) program. Patient(s) Fresh autologous ART cycles. Intervention(s) Serum hCG level the day before oocyte retrieval. Main Outcome Measure(s) Linear regression was used to correlate serum hCG levels and oocyte maturity rates. Normal oocyte maturity was defined as ≥ 75% and the Wilcoxon rank sum test was used to compare serum hCG levels in patients with normal and low oocyte maturity. Threshold analysis was performed to determine hCG levels that could predict oocyte maturity. Result(s) A total of 468 ART cycles were analyzed. Serum hCG level was not correlated with hCG dose; however, it was negatively correlated with body mass index (BMI). Serum hCG levels did not differ between patients with oocyte maturity of <75% and ≥ 75%. Serum hCG levels did not correlate with oocyte maturity rates. Receiver operator characteristic and less than efficiency curves failed to demonstrate thresholds at which hCG could predict oocyte maturity. Conclusion(s) Serum hCG levels were not correlated with oocyte maturity. Although a positive hCG was reassuring that mature oocytes would be retrieved for most patients, the specific value was not helpful. PMID:23375205

  3. Technology Maturation in Preparation for the Cryogenic Propellant Storage and Transfer (CPST) Technology Demonstration Mission (TDM)

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Doherty, Michael P.; Moder, Jeffrey P.

    2014-01-01

    In support of its goal to find an innovative path for human space exploration, NASA embarked on the Cryogenic Propellant Storage and Transfer (CPST) Project, a Technology Demonstration Mission (TDM) to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large in-space cryogenic propulsion stages and propellant depots. Recognizing that key Cryogenic Fluid Management (CFM) technologies anticipated for on-orbit (flight) demonstration would benefit from additional maturation to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate (STMD) authorized funding for a one-year technology maturation phase of the CPST project. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, concept studies, and ground tests of the storage and fluid transfer of CFM technology sub-elements and components that were lower than a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. The specific technologies selected were grouped into five major categories: thick multilayer insulation, tank applied active thermal control, cryogenic fluid transfer, propellant gauging, and analytical tool development. Based on the success of the technology maturation efforts, the CPST project was approved to proceed to flight system development.

  4. Technology requirements for an orbiting fuel depot - A necessary element of a space infrastructure

    NASA Technical Reports Server (NTRS)

    Stubbs, R. M.; Corban, R. R.; Willoughby, A. J.

    1988-01-01

    Advanced planning within NASA has identified several bold space exploration initiatives. The successful implementation of these missions will require a supporting space infrastructure which would include a fuel depot, an orbiting facility to store, transfer and process large quantities of cryogenic fluids. In order to adequately plan the technology development programs required to enable the construction and operation of a fuel depot, a multidisciplinary workshop was convened to assess critical technologies and their state of maturity. Since technology requirements depend strongly on the depot design assumptions, several depot concepts are presented with their effect of criticality ratings. Over 70 depot-related technology areas are addressed.

  5. Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure

    NASA Technical Reports Server (NTRS)

    Stubbs, R. M.; Corban, R. R.; Willoughby, A. J.

    1988-01-01

    Advanced planning within NASA has identified several bold space exploration initiatives. The successful implementation of these missions will require a supporting space infrastructure which would include a fuel depot, an orbiting facility to store, transfer and process large quantities of cryogenic fluids. In order to adequately plan the technology development programs required to enable the construction and operation of a fuel depot, a multidisciplinary workshop was convened to assess critical technologies and their state of maturity. Since technology requirements depend strongly on the depot design assumptions, several depot concepts are presented with their effect on criticality ratings. Over 70 depot-related technology areas are addressed.

  6. Single-stage-to-orbit: Meeting the challenge

    NASA Astrophysics Data System (ADS)

    Freeman, Delma C., Jr.; Talay, Theodore A.; Austin, Robert Eugene

    1995-10-01

    There has been and continues to be significant discussion about the viability of fully reusable, single-stage-to-orbit (SSTO) concepts for delivery of payloads to orbit. Often, these discussions have focused in detail on performance and technology requirements relating to the technical feasibility of the concept, with only broad generalizations on how the SSTO will achieve its economic goals of greatly reduced vehicle ground and flight operations costs. With the current industry and NASA Reusable Launch Vehicle Technology Program efforts underway to mature and demonstrate technologies leading to a viable commercial launch system that also satisfies national needs, achieving acceptable recurring costs becomes a significant challenge. This paper reviews the current status of the Reusable Launch Vehicle Technology Program including the DC-XA, X-33, and X-34 flight systems and associated technology programs. The paper also examines lessons learned from the recently completed DC-X reusable rocket demonstrator program. It examines how these technologies and flight systems address the technical and operability challenges of SSTO whose solutions are necessary to reduce costs. The paper also discusses the management and operational approaches that address the challenge of a new cost-effective, reusable launch vehicle system.

  7. Single-stage-to-orbit — Meeting the challenge

    NASA Astrophysics Data System (ADS)

    Freeman, Delma C.; Talay, Theodore A.; Austin, Robert Eugene

    1996-02-01

    There has been and continues to be significant discussion about the viability of fully reusable, single-stage-to-orbit (SSTO) concepts for delivery of payloads to orbit. Often, these discussions have focused in detail on performance and technology requirements relating to the technical feasibility of the concept, with only broad generalizations on how the SSTO will achieve its economic goals of greatly reduced vehicle ground and flight operations costs. With the current industry and NASA Reusable Launch Vehicle Technology Program efforts underway to mature and demonstrate technologies leading to a viable commercial launch system that also satisfies national needs, achieving acceptable recurring costs becomes a significant challenge. This paper reviews the current status of the Reusable Launch Vehicle Technology Program including the DC-XA, X-33, X-34 flight systems and associated technology programs. The paper also examines lessons learned from the recently completed DC-X reusable rocket demonstrator program. It examines how these technologies and flight systems address the technical and operability challenges of SSTO whose solutions are necessary to reduce costs. The paper also discusses the management and operational approaches that address the challenge of a new cost-effective, reusable launch vehicle system.

  8. PLSS 2.5 Fan Design and Development

    NASA Technical Reports Server (NTRS)

    Quinn, Gregory; Carra, Michael; Converse, David; Chullen, Cinda

    2015-01-01

    NASA is building a high fidelity prototype of an advanced portable life support system (PLSS) as part of the Advanced Exploration Systems Program. This new PLSS, designated as PLSS 2.5, will advance component technologies and systems knowledge in order to inform a future flight program. The oxygen ventilation loop of its predecessor, PLSS 2.0, is driven by a centrifugal fan developed using specifications from the Constellation Program. PLSS technology and system parameters have matured to the point where the existing fan will not perform adequately for the new prototype. In addition, areas of potential improvement have been identified with the existing fan that could be addressed in a new design. As a result, a new fan was designed and tested for the PLSS 2.5.

  9. The Importance of Technology Readiness in NASA Earth Venture Missions

    NASA Technical Reports Server (NTRS)

    Wells, James E.; Komar, George J.

    2009-01-01

    The first set of Venture-class investigations share the characteristic that the technology should be mature and all investigations must use mature technology that has been modeled or demonstrated in a relevant environment (Technology Readiness Level (TRL) >5). Technology Readiness Levels are a systematic metric/measurement system that supports assessments of the maturity of a particular technology and the consistent comparison of maturity between different types of technology. The TRL is used in NASA technology planning. A major step in the level of fidelity of the technology demonstration follows the completion of TRL 5. At TRL 6, a system or subsystem model or prototype must be demonstrated in a relevant environment (ground or space) representative model or prototype system or system, which would go well beyond ad hoc, "patch-cord," or discrete component level breadboarding. These TRL levels are chosen as target objectives for the Program. The challenge for offerors is that they must identify key aspects (uncertainty, multi subsystem complexity, etc) of the TRL estimate that should be properly explained in a submitted proposal. Risk minimization is a key component of the Earth Venture missions. Experiences of prior airborne missions will be shared. The discussion will address aspects of uncertainty and issues surrounding three areas of airborne earth science missions: (1) Aircraft or proposed flight platform -- Expressing the capability of the aircraft in terms of the supporting mission requirements. These issues include airplane performance characteristics (duration, range, altitude, among others) and multiship complexities. (2) Instruments -- Establishing that the instruments have been demonstrated in a relevant environment. Instruments with heritage in prior space missions meet this requirement, as do instruments tested on the ground. Evidence that the instruments have demonstrated the ability to collect data as advertised will be described. The complexity of the integration of multiple subsystems will also be addressed. Issues associated with tailoring the instrument to meet the specific Venture mission objectives must be thoroughly explained and justified. (3) Aircraft/Instrument Integration -- Explicitly defining what development may be required to harden the instrument and integrate the instrument. The challenges associated with this key aspect of major airborne earth science investigations will be presented.

  10. Advanced gasifier and water gas shift technologies for low cost coal conversion to high hydrogen syngas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, Andrew Kramer

    The Gas Technology Institute (GTI) and team members RTI International (RTI), Coanda Research and Development, and Nexant, are developing and maturing a portfolio of technologies to meet the United States Department of Energy (DOE) goals for lowering the cost of producing high hydrogen syngas from coal for use in carbon capture power and coal-to-liquids/chemicals. This project matured an advanced pilot-scale gasifier, with scalable and commercially traceable components, to readiness for use in a first-of-a-kind commercially-relevant demonstration plant on the scale of 500-1,000 tons per day (TPD). This was accomplished through cold flow simulation of the gasifier quench zone transition regionmore » at Coanda and through an extensive hotfire gasifier test program on highly reactive coal and high ash/high ash fusion temperature coals at GTI. RTI matured an advanced water gas shift process and catalyst to readiness for testing at pilot plant scale through catalyst development and testing, and development of a preliminary design basis for a pilot scale reactor demonstrating the catalyst. A techno-economic analysis was performed by Nexant to assess the potential benefits of the gasifier and catalyst technologies in the context of power production and methanol production. This analysis showed an 18%reduction in cost of power and a 19%reduction in cost of methanol relative to DOE reference baseline cases.« less

  11. An Introduction to the Standards for Preparation and Professional Development for Teachers of Engineering

    ERIC Educational Resources Information Center

    Reimers, Jackson E.; Farmer, Cheryl L.; Klein-Gardner, Stacy S.

    2015-01-01

    The past 30 years have yielded a mature body of research regarding effective professional development for teachers of science and mathematics, leading to a robust selection of professional development programs for these teachers. The current emphasis on connections among science, technology, engineering, and mathematics underscores the need for…

  12. High-Performance, Space-Storable, Bi-Propellant Program Status

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.

    2002-01-01

    Bipropellant propulsion systems currently represent the largest bus subsystem for many missions. These missions range from low Earth orbit satellite to geosynchronous communications and planetary exploration. The payoff of high performance bipropellant systems is illustrated by the fact that Aerojet Redmond has qualified a commercial NTO/MMH engine based on the high Isp technology recently delivered by this program. They are now qualifying a NTO/hydrazine version of this engine. The advanced rhenium thrust chambers recently provided by this program have raised the performance of earth storable propellants from 315 sec to 328 sec of specific impulse. The recently introduced rhenium technology is the first new technology introduced to satellite propulsion in 30 years. Typically, the lead time required to develop and qualify new chemical thruster technology is not compatible with program development schedules. These technology development programs must be supported by a long term, Base R&T Program, if the technology s to be matured. This technology program then addresses the need for high performance, storable, on-board chemical propulsion for planetary rendezvous and descent/ascent. The primary NASA customer for this technology is Space Science, which identifies this need for such programs as Mars Surface Return, Titan Explorer, Neptune Orbiter, and Europa Lander. High performance (390 sec) chemical propulsion is estimated to add 105% payload to the Mars Sample Return mission or alternatively reduce the launch mass by 33%. In many cases, the use of existing (flight heritage) propellant technology is accommodated by reducing mission objectives and/or increasing enroute travel times sacrificing the science value per unit cost of the program. Therefore, a high performance storable thruster utilizing fluorinated oxidizers with hydrazine is being developed.

  13. Integrated propulsion technology demonstrator. Program plan

    NASA Technical Reports Server (NTRS)

    1994-01-01

    NASA and Rockwell have embarked on a cooperative agreement to define, develop, fabricate, and operate an integrated propulsion technology demonstrator (IPTD) for the purpose of validating design, process, and technology improvements of launch vehicle propulsion systems. This program, a result of NRA8-11, Task Area 1 A, is jointly funded by both NASA and Rockwell and is sponsored by the Reusable Launch Vehicle office at NASA Marshall Space flight Center. This program plan provides to the joint NASA/Rockwell integrated propulsion technology demonstrator (IPTD) team a description of the activities within tasks / sub tasks and associated schedules required to successfully achieve program objectives. This document also defines the cost elements and manpower allocations for each sub task for purpose of program control. This plan is updated periodically by developing greater depth of direction for outyear tasks as the program matures. Updating is accomplished by adding revisions to existing pages or attaching page revisions to this plan. In either case, revisions will be identified by appropriate highlighting of the change, or specifying a revision page through the use of footnotes on the bottom right of each change page. Authorization for the change is provided by the principal investigators to maintain control of this program plan document and IPTD program activities.

  14. Technology readiness levels and technology status for selected long term/high payoff technologies on the RLV program

    NASA Technical Reports Server (NTRS)

    Rosmait, Russell L.

    1996-01-01

    The development of a new space transportation system in a climate of constant budget cuts and staff reductions can be and is a difficult task. It is no secret that NASA's current launching system consumes a very large portion of NASA funding and requires a large army of people to operate & maintain the system. The new Reusable Launch Vehicle (RLV) project and it's programs are faced with a monumental task of making the cost of access to space dramatically lower and more efficient than NASA's current system. With pressures from congressional budget cutters and also increased competition and loss of market share from international agencies RLV's first priority is to develop a 'low-cost, reliable transportation to earth orbit.' One of the RLV's major focus in achieving low-cost, reliable transportation to earth orbit is to rely on the maturing of advanced technologies. The technologies for the RLV are numerous and varied. Trying to assess their current status, within the RLV development program is paramount. There are several ways to assess these technologies. One way is through the use of Technology Readiness Levels (TRL's). This project focused on establishing current (summer 95) 'worst case' TRL's for six selected technologies that are under consideration for use within the RLV program. The six technologies evaluated were Concurrent Engineering, Embedded Sensor Technology, Rapid Prototyping, Friction Stir Welding, Thermal Spray Coatings, and VPPA Welding.

  15. As Technologies for Nucleotide Therapeutics Mature, Products Emerge.

    PubMed

    Beierlein, Jennifer M; McNamee, Laura M; Ledley, Fred D

    2017-12-15

    The long path from initial research on oligonucleotide therapies to approval of antisense products is not unfamiliar. This lag resembles those encountered with monoclonal antibodies, gene therapies, and many biological targets and is consistent with studies of innovation showing that technology maturation is a critical determinant of product success. We previously described an analytical model for the maturation of biomedical research, demonstrating that the efficiency of targeted and biological development is connected to metrics of technology growth. The present work applies this model to characterize the advance of oligonucleotide therapeutics. We show that recent oligonucleotide product approvals incorporate technologies and targets that are past the established point of technology growth, as do most of the oligonucleotide products currently in phase 3. Less mature oligonucleotide technologies, such as miRNAs and some novel gene targets, have not passed the established point and have not yielded products. This analysis shows that oligonucleotide product development has followed largely predictable patterns of innovation. While technology maturation alone does not ensure success, these data show that many oligonucleotide technologies are sufficiently mature to be considered part of the arsenal for therapeutic development. These results demonstrate the importance of technology assessment in strategic management of biomedical technologies. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Deployable Engine Air Brake

    NASA Technical Reports Server (NTRS)

    2014-01-01

    On approach, next-generation aircraft are likely to have airframe noise levels that are comparable to or in excess of engine noise. ATA Engineering, Inc. (ATA) is developing a novel quiet engine air brake (EAB), a device that generates "equivalent drag" within the engine through stream thrust reduction by creating a swirling outflow in the turbofan exhaust nozzle. Two Phase II projects were conducted to mature this technology: (1) a concept development program (CDP) and (2) a system development program (SDP).

  17. Status of the Advanced Mirror Technology Development (AMTD) Phase 2, 1.5m ULE(Registered Trademark) Mirror

    NASA Technical Reports Server (NTRS)

    Egerman, Robert; Matthews, Gary W.; Johnson, Matthew; Ferland, Albert; Stahl, H. Philip; Eng, Ron; Effinger, Michael R.

    2015-01-01

    The Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. Under Science and Technology funding, NASA's Marshall Space Flight Center (MSFC) and Exelis have developed a more cost effective process to make up to 4m monolithic spaceflight UV quality, low areal density, thermally and dynamically stable primary mirrors. Under a Phase I program, a proof of concept mirror was completed at Exelis and tested down to 250K at MSFC which would allow imaging out to 2.5 microns. In 2014, Exelis and NASA started a Phase II program to design and build a 1.5m mirror to demonstrate lateral scalability to a 4m monolithic primary mirror. The current status of the Phase II development program will be provided along with a Phase II program summary.

  18. Evaluation of Advanced Composite Structures Technologies for Application to NASA's Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Messinger, Ross

    2008-01-01

    An assessment was performed to identify the applicability of composite material technologies to major structural elements of the NASA Constellation program. A qualitative technology assessment methodology was developed to document the relative benefit of 24 structural systems with respect to 33 major structural elements of Ares I, Orion, Ares V, and Altair. Technology maturity assessments and development plans were obtained from more than 30 Boeing subject matter experts for more than 100 technologies. These assessment results and technology plans were combined to generate a four-level hierarchy of recommendations. An overarching strategy is suggested, followed by a Constellation-wide development plan, three integrated technology demonstrations, and three focused projects for a task order follow-on.

  19. Development vs. Deployment: How Mature Should a Technology be Before it is Considered for Inclusion in an Acquisition Program?

    DTIC Science & Technology

    2007-04-30

    surface combatant. Take, for instance, the tumblehome hull design of the new Zumwalt-class destroyer. If some critical issues were to arise with the ...more aggressive target is selected, there will be a greater increase in capability for each new system deployed. However, the expected duration of...push for the most advanced technology they can get into each new system. • This behavior exacerbates the problem and leads to even longer acquisition

  20. Solving the AI Planning Plus Scheduling Problem Using Model Checking via Automatic Translation from the Abstract Plan Preparation Language (APPL) to the Symbolic Analysis Laboratory (SAL)

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Munoz, Cesar A.; Siminiceanu, Radu I.

    2007-01-01

    This paper describes a translator from a new planning language named the Abstract Plan Preparation Language (APPL) to the Symbolic Analysis Laboratory (SAL) model checker. This translator has been developed in support of the Spacecraft Autonomy for Vehicles and Habitats (SAVH) project sponsored by the Exploration Technology Development Program, which is seeking to mature autonomy technology for the vehicles and operations centers of Project Constellation.

  1. Maturity Model for E-Learning Classroom, Bimodal and Virtual Courses in Higher Education: A Preliminary Study

    ERIC Educational Resources Information Center

    Espinoza-Guzma, Julia; Chávez, María Manuela Pintor; Zermeño, Marcela Georgina Gómez

    2017-01-01

    The use of information and communication technologies (ICT) in higher education, in many cases, does not necessarily correspond to an organizational, sustainable and consistent initiative in all courses or undergraduate programs imparted. An associated risk is wasting the potential of ICTs to contribute to the quality of education. This is an…

  2. Environmentally Responsible Aviation Project: Infrastructure Enhancements and New Capabilities

    NASA Technical Reports Server (NTRS)

    Bezos-OConnor, Gaudy M.

    2015-01-01

    This oral presentation highlights the technical investments the NASA Environmentally Responsible Aviation Project under the Integrated Systems Research Program within ARMD made during FY10-FY14 to upgrade/enhance the NASA infrastructure/testing assets and new capabilities required to mature the ERA N=2 Portfolio of airframe and propulsion technologies to TRL 5/6.

  3. Advanced Avionics and Processor Systems for Space and Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Ray, Robert E.; Johnson, Michael A.; Cressler, John D.

    2009-01-01

    NASA's newly named Advanced Avionics and Processor Systems (AAPS) project, formerly known as the Radiation Hardened Electronics for Space Environments (RHESE) project, endeavors to mature and develop the avionic and processor technologies required to fulfill NASA's goals for future space and lunar exploration. Over the past year, multiple advancements have been made within each of the individual AAPS technology development tasks that will facilitate the success of the Constellation program elements. This paper provides a brief review of the project's recent technology advancements, discusses their application to Constellation projects, and addresses the project's plans for the coming year.

  4. JWST Lightweight Mirror TRL-6 Results

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2007-01-01

    Mirror technology for a Primary Mirror Segment Assembly (PMSA) is a system of components: reflective coating; polished optical surface; mirror substrate; actuators, mechanisms and flexures; and reaction structure. The functional purpose of a PMSA is to survive launch, deploy and align itself to form a 25 square meter collecting area 6.5 meter diameter primary mirror with a 131 nm rms wavefront error at temperatures less than 50K and provide stable optical performance for the anticipated thermal environment. At the inception of JWST in 1996, such a capability was at a Technology Readiness Level (TRL) of 3. A highly successful technology development program was initiated including the Sub-scale Beryllium Mirror Demonstrator (SBMD) and Advanced Mirror System Demonstrator (AMSD) projects. These projects along with flight program activities have matured mirror technology for JWST to TRL-6. A directly traceable prototype (and in some cases the flight hardware itself) has been built, tested and operated in a relevant environment.

  5. Early Market TRL/MRL Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronnebro, Ewa; Stetson, Ned

    he focus of this report is TRL/MRL analysis of hydrogen storage; it documents the methodology and results of an effort to identify hydrogen storage technologies’ technical and manufacturing readiness for early market motive and non-motive applications and to provide a path forward toward commercialization. Motive applications include materials handling equipment (MHE) and ground support equipment (GSE), such as forklifts, tow tractors, and specialty vehicles such as golf carts, lawn mowers and wheel chairs. Non-motive applications are portable, stationary or auxiliary power units (APUs) and include portable laptops, backup power, remote sensor power, and auxiliary power for recreational vehicles, hotels, hospitals,more » etc. Hydrogen storage technologies assessed include metal hydrides, chemical hydrides, sorbents, gaseous storage, and liquid storage. The assessments are based on a combination of Technology Readiness Level (TRL) and Manufacturing Readiness Level (MRL) designations that enable evaluation of hydrogen storage technologies at varying levels of development. The manufacturing status could be established from eight risk elements: Technical Maturity, Design, Materials, Cost & Funding, Process Capability, Personnel, Facilities and Manufacturing Planning. This approach provides a logical methodology and roadmap to enable the identification of hydrogen storage technologies, their advantages/disadvantages, gaps and R&D needs on an unbiased and transparent scale that is easily communicated to interagency partners. This technology readiness assessment (TRA) report documents the process used to conduct the TRA/MRA (technology and manufacturing readiness assessment), reports the TRL and MRL for each assessed technology and provides recommendations based on the findings. To investigate the state of the art and needs to mature the technologies, PNNL prepared a questionnaire to assign TRL and MRL for each hydrogen storage technology. The questionnaire was sent to identified hydrogen storage technology developers and manufacturers who were asked to perform a self-assessment. We included both domestic and international organizations including U.S. national laboratories, U.S. companies, European companies and Japanese companies. PNNL collected the data and performed an analysis to deduce the level of maturity and to provide program recommendations.« less

  6. A brief overview of NASA Langley's research program in formal methods

    NASA Technical Reports Server (NTRS)

    1992-01-01

    An overview of NASA Langley's research program in formal methods is presented. The major goal of this work is to bring formal methods technology to a sufficiently mature level for use by the United States aerospace industry. Towards this goal, work is underway to design and formally verify a fault-tolerant computing platform suitable for advanced flight control applications. Also, several direct technology transfer efforts have been initiated that apply formal methods to critical subsystems of real aerospace computer systems. The research team consists of six NASA civil servants and contractors from Boeing Military Aircraft Company, Computational Logic Inc., Odyssey Research Associates, SRI International, University of California at Davis, and Vigyan Inc.

  7. The success of the X-33 depends on its technology—an overview

    NASA Astrophysics Data System (ADS)

    Bunting, Jackie O.; Sasso, Steven E.

    1996-03-01

    The success of the X-33, and therefore the Reusable Launch Vehicle (RLV) program, is highly dependent on the maturity of the components and subsystems selected and the ability to verify their performance, cost, and operability goals. The success of the technology that will be developed to support these components and subsystems will be critical to developing an operationally efficient X-33 that is traceable to a full-scale RLV system. This paper will delineate the key objectives of each technology demonstration area and provide an assessment of its ability to meet the X-33/RLV requirements. It is our intent to focus on these key technology areas to achieve the ambitious but achievable goals of the RLV and X-33 programs. Based on our assessment of the X-33 and RLV systems, we have focused on the performance verification and validation of the linear aerospike engine. This engine, first developed in the mid-1960s, shows promise in achieving the RLV objectives. Equally critical to the engine selection is the development of cryogenic composite tanks and the associated health management system required to meet the operability goals. We are also developing a highly reusable form of thermal protection system based on years of hypersonic research and Space Shuttle experience. To meet the mass fraction goals, reduction in engine component weights will also be developed. Due to the high degree of operability required, we will investigate the use of real-time integrated system health management and propulsion systems diagnostics, and mature the use of electromechanical actuators for highly reusable systems. The rapid turn-around requirements will require an adaptive guidance, navigation, and control algorithm toolset, which is well underway. We envision our X-33 and RLV to use mature, low-risk technologies that will allow truly low-cost access to space (Lockheed Martin Internal Document, 1995).

  8. Astrobiology from exobiology: Viking and the current Mars probes.

    PubMed

    Soffen, G A

    1997-01-01

    The development of an Astrobiology Program is an extension of current exobiology programs. Astrobiology is the scientific study of the origin, distribution, evolution, and future of life in the universe. It encompasses exobiology; formation of elements, stars, planets, and organic molecules; initiation of replicating organisms; biological evolution; gravitational biology; and human exploration. Current interest in life on Mars provides the scientific community with an example of scientific inquiry that has mass appeal. Technology is mature enough to search for life in the universe.

  9. Meteorological and Remote Sensing Applications of High Altitude Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Schoenung, S. M.; Wegener, S. S.

    1999-01-01

    Unmanned aerial vehicles (UAVs) are maturing in performance and becoming available for routine use in environmental applications including weather reconnaissance and remote sensing. This paper presents a discussion of UAV characteristics and unique features compared with other measurement platforms. A summary of potential remote sensing applications is provided, along with details for four types of tropical cyclone missions. Capabilities of platforms developed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program are reviewed, including the Altus, Perseus, and solar- powered Pathfinder, all of which have flown to over 57,000 ft (17 km). In many scientific missions, the science objectives drive the experimental design, thus defining the sensor payload, aircraft performance, and operational requirements. Some examples of science missions and the requisite UAV / payload system are given. A discussion of technology developments needed to fully mature UAV systems for routine operational use is included, along with remarks on future science and commercial UAV business opportunities.

  10. KSC-2011-8117

    NASA Image and Video Library

    2011-12-01

    CAPE CANAVERAL, Fla. -- This is an artist's conception of the Dragon capsule under development by Space Exploration Technologies (SpaceX) of Hawthorne, Calif., for NASA's Commercial Crew Program (CCP). In 2011, NASA selected SpaceX during Commercial Crew Development Round 2 (CCDev2) activities to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. (ATK), The Boeing Co., Excalibur Almaz Inc., Blue Origin, Sierra Nevada, and United Launch Alliance (ULA). For more information, visit www.nasa.gov/commercialcrew. Image credit: Space Exploration Technologies

  11. KSC-2012-1826

    NASA Image and Video Library

    2012-01-30

    HAWTHORNE, Calif. -- NASA astronaut Rex Walheim checks out the Dragon spacecraft under development by Space Exploration Technologies SpaceX of Hawthorne, Calif., for the agency's Commercial Crew Program. In 2011, NASA selected SpaceX during Commercial Crew Development Round 2 CCDev2) activities to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. ATK, The Boeing Co., Excalibur Almaz Inc., Blue Origin, Sierra Nevada, and United Launch Alliance ULA. For more information, visit www.nasa.gov/commercialcrew. Image credit: Space Exploration Technologies

  12. High-power free-electron lasers-technology and future applications

    NASA Astrophysics Data System (ADS)

    Socol, Yehoshua

    2013-03-01

    Free-electron laser (FEL) is an all-electric, high-power, high beam-quality source of coherent radiation, tunable - unlike other laser sources - at any wavelength within wide spectral region from hard X-rays to far-IR and beyond. After the initial push in the framework of the “Star Wars” program, the FEL technology benefited from decades of R&D and scientific applications. Currently, there are clear signs that the FEL technology reached maturity, enabling real-world applications. E.g., successful and unexpectedly smooth commissioning of the world-first X-ray FEL in 2010 increased in one blow by more than an order of magnitude (40×) wavelength region available by FEL technology and thus demonstrated that the theoretical predictions just keep true in real machines. Experience of ordering turn-key electron beamlines from commercial companies is a further demonstration of the FEL technology maturity. Moreover, successful commissioning of the world-first multi-turn energy-recovery linac demonstrated feasibility of reducing FEL size, cost and power consumption by probably an order of magnitude in respect to previous configurations, opening way to applications, previously considered as non-feasible. This review takes engineer-oriented approach to discuss the FEL technology issues, keeping in mind applications in the fields of military and aerospace, next generation semiconductor lithography, photo-chemistry and isotope separation.

  13. Eletrobras management program in ergonomics: the pursuit of excellence through maturity levels.

    PubMed

    Pires, Paulo Roberto de Oliveira Bassil; Rezende, Fagner Fagundes

    2012-01-01

    Ergonomics for Eletrobras arose from the need in having an environment more suitable to the characteristics and circumstances of employees, in compliance with Regulation Standard no. 17 - Ergonomics (NR17) of the Ministry of Labor and Employment. Being a mixed economy company with regionalized anthropometric characteristics of its employees, the study of ergonomic adjustments and improvement of the concept of Ergonomics were and have been of great importance to the company's production environment. These advances have contributed to the development of specific technical criteria for the purchase of furniture and work tools (accessories), apart from their possible effects on the user. Ergonomics has been perceived as a technical-scientific tool, aimed to study labor interactions, new technologies and specific characteristics of the activities performed. To meet these demands a multidisciplinary Ergonomics Committee was created in Eletrobras, and effectively established the Ergonomics Management Program in the company; This program is marked by well-defined phases with great success in making use of these studies for other types of corporate activities and also facilitating the program control and its maturity levels, even at a business level.

  14. Technology Applications that Support Space Exploration

    NASA Technical Reports Server (NTRS)

    Henderson, Edward M.; Holderman, Mark L.

    2011-01-01

    Several enabling technologies have been identified that would provide significant benefits for future space exploration. In-Space demonstrations should be chosen so that these technologies will have a timely opportunity to improve efficiencies and reduce risks for future spaceflight. An early window exists to conduct ground and flight demonstrations that make use of existing assets that were developed for the Space Shuttle and the Constellation programs. The work could be mostly performed using residual program civil servants, existing facilities and current commercial launch capabilities. Partnering these abilities with the emerging commercial sector, along with other government agencies, academia and with international partners would provide an affordable and timely approach to get the launch costs down for these payloads, while increasing the derived benefits to a larger community. There is a wide scope of varied technologies that are being considered to help future space exploration. However, the cost and schedule would be prohibitive to demonstrate all these in the near term. Determining which technologies would yield the best return in meeting our future space needs is critical to building an achievable Space Architecture that allows exploration beyond Low Earth Orbit. The best mix of technologies is clearly to be based on our future needs, but also must take into account the availability of existing assets and supporting partners. Selecting those technologies that have complimentary applications will provide the most knowledge, with reasonable cost, for future use The plan is to develop those applications that not only mature the technology but actually perform a useful task or mission. These might include such functions as satellite servicing, a propulsion stage, processing lunar regolith, generating and transmitting solar power, cryogenic fluid transfer and storage and artificial gravity. Applications have been selected for assessment for future consideration and are addressed in this paper. These applications have been made available to the various NASA study groups that are determining the next steps the Agency must take to secure a sound foundation for future space exploration The paper also addresses how follow-on demonstrations, as launch performance grows, can build on the earlier applications to provide increased benefits for both the commercial and scientific communities. The architecture of incrementally building upon previous successes and insights dramatically lowers the overall associated risk for developing and maturing the key enabling technologies. The goal is to establish a potential business case that encourages commercial activity, thereby reducing the cost for the demonstration while using the technology maturation in developing readiness for future space exploration with overall less risk.

  15. Why commercialization of gene therapy stalled; examining the life cycles of gene therapy technologies.

    PubMed

    Ledley, F D; McNamee, L M; Uzdil, V; Morgan, I W

    2014-02-01

    This report examines the commercialization of gene therapy in the context of innovation theories that posit a relationship between the maturation of a technology through its life cycle and prospects for successful product development. We show that the field of gene therapy has matured steadily since the 1980s, with the congruent accumulation of >35 000 papers, >16 000 US patents, >1800 clinical trials and >$4.3 billion in capital investment in gene therapy companies. Gene therapy technologies comprise a series of dissimilar approaches for gene delivery, each of which has introduced a distinct product architecture. Using bibliometric methods, we quantify the maturation of each technology through a characteristic life cycle S-curve, from a Nascent stage, through a Growing stage of exponential advance, toward an Established stage and projected limit. Capital investment in gene therapy is shown to have occurred predominantly in Nascent stage technologies and to be negatively correlated with maturity. Gene therapy technologies are now achieving the level of maturity that innovation research and biotechnology experience suggest may be requisite for efficient product development. Asynchrony between the maturation of gene therapy technologies and capital investment in development-focused business models may have stalled the commercialization of gene therapy.

  16. Massively parallel E-beam inspection: enabling next-generation patterned defect inspection for wafer and mask manufacturing

    NASA Astrophysics Data System (ADS)

    Malloy, Matt; Thiel, Brad; Bunday, Benjamin D.; Wurm, Stefan; Mukhtar, Maseeh; Quoi, Kathy; Kemen, Thomas; Zeidler, Dirk; Eberle, Anna Lena; Garbowski, Tomasz; Dellemann, Gregor; Peters, Jan Hendrik

    2015-03-01

    SEMATECH aims to identify and enable disruptive technologies to meet the ever-increasing demands of semiconductor high volume manufacturing (HVM). As such, a program was initiated in 2012 focused on high-speed e-beam defect inspection as a complement, and eventual successor, to bright field optical patterned defect inspection [1]. The primary goal is to enable a new technology to overcome the key gaps that are limiting modern day inspection in the fab; primarily, throughput and sensitivity to detect ultra-small critical defects. The program specifically targets revolutionary solutions based on massively parallel e-beam technologies, as opposed to incremental improvements to existing e-beam and optical inspection platforms. Wafer inspection is the primary target, but attention is also being paid to next generation mask inspection. During the first phase of the multi-year program multiple technologies were reviewed, a down-selection was made to the top candidates, and evaluations began on proof of concept systems. A champion technology has been selected and as of late 2014 the program has begun to move into the core technology maturation phase in order to enable eventual commercialization of an HVM system. Performance data from early proof of concept systems will be shown along with roadmaps to achieving HVM performance. SEMATECH's vision for moving from early-stage development to commercialization will be shown, including plans for development with industry leading technology providers.

  17. NASA RPS Program Overview: A Focus on RPS Users

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Sutliff, Thomas J.; Sandifer, Carl E., II; Zakrajsek, June F.

    2016-01-01

    The goal of NASA's Radioisotope Power Systems (RPS) Program is to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet the needs of the missions. To meet this goal, the RPS Program, working closely with the Department of Energy, performs mission and system studies (such as the recently released Nuclear Power Assessment Study), assesses the readiness of promising technologies to infuse in future generators, assesses the sustainment of key RPS capabilities and knowledge, forecasts and tracks the Programs budgetary needs, and disseminates current information about RPS to the community of potential users. This process has been refined and used to determine the current content of the RPS Programs portfolio. This portfolio currently includes an effort to mature advanced thermoelectric technology for possible integration into an enhanced Multi-Mission Radioisotope Generator (eMMRTG), sustainment and production of the currently deployed MMRTG, and technology investments that could lead to a future Stirling Radioisotope Generator (SRG). This paper describes the program planning processes that have been used, the currently available MMRTG, and one of the potential future systems, the eMMRTG.

  18. Mechanically Pumped Fluid Loop (MPFL) Technologies for Thermal Control of Future Mars Rovers

    NASA Technical Reports Server (NTRS)

    Birur, Gaj; Bhandari, Pradeep; Prina, Mauro; Bame, Dave; Yavrouian, Andre; Plett, Gary

    2006-01-01

    Mechanically pumped fluid loop has been the basis of thermal control architecture for the last two Mars lander and rover missions and is the key part of the MSL thermal architecture. Several MPFL technologies are being developed for the MSL rover include long-life pumps, thermal control valves, mechanical fittings for use with CFC-11 at elevated temperatures of approx.100 C. Over three years of life tests and chemical compatibility tests on these MPFL components show that MPFL technology is mature for use on MSL. The advances in MPFL technologies for MSL Rover will benefit any future MPFL applications on NASA s Moon, Mars and Beyond Program.

  19. Rapid Development of Gossamer Propulsion for NASA Inner Solar System Science Missions

    NASA Technical Reports Server (NTRS)

    Young, Roy M.; Montgomery, Edward E.

    2006-01-01

    Over a two and one-half year period dating from 2003 through 2005, NASA s In-Space Propulsion Program matured solar sail technology from laboratory components to full systems, demonstrated in as relevant a space environment as could feasibly be simulated on the ground. This paper describes the challenges identified; as well as the approaches taken toward solving a broad set of issues spanning material science, manufacturing technology, and interplanetary trajectory optimization. Revolutionary advances in system structural predictive analysis and characterization testing occurred. Also addressed are the remaining technology challenges that might be resolved with further ground technology research, geared toward reducing technical risks associated with future space validation and science missions.

  20. Radioisotope Power Systems Program: A Program Overview

    NASA Technical Reports Server (NTRS)

    Hamley, John A.

    2016-01-01

    NASA's Radioisotope Power Systems (RPS) Program continues to plan, mature research in energy conversion, and partners with the Department of Energy (DOE) to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet potential future mission needs. Recent programs responsibilities include providing investment recommendations to NASA stakeholders on emerging thermoelectric and Stirling energy conversion technologies and insight on NASA investments at DOE in readying a generator for the Mars 2020 mission. This presentation provides an overview of the RPS Program content and status and the approach used to maintain the readiness of RPS to support potential future NASA missions.

  1. The Advanced Industrial Materials (AIM) program office of industrial technologies fiscal year 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorrell, C.A.

    1997-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in FY95 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven `Vision Industries` that use about 80%more » of industrial energy and generated about 90% of industrial wastes. These are: aluminium; chemical; forest products; glass; metal casting; refineries; and steel. OIT is working with these industries, through appropriate organizations, to develop Visions of the desired condition of each industry some 20 to 25 years in the future and then to prepare Road Maps and Implementation Plans to enable them to reach their goals. The mission of AIM has, therefore, changed to `Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`« less

  2. NASA Space Cryocooler Programs: A 2003 Overview

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.; Boyle, R. F.; Kittel, P.

    2004-01-01

    Mechanical cryocoolers represent a significant enabling technology for NASA's Earth and Space Science missions. An overview is presented of ongoing cryocooler activities within NASA in support of current flight projects, near-term flight instruments, and long-term technology development. NASA programs in Earth and space science observe a wide range of phenomena, from crop dynamics to stellar birth. Many of the instruments require cryogenic refrigeration to improve dynamic range, extend wavelength coverage, and enable the use of advanced detectors. Although, the largest utilization of coolers over the last decade has been for instruments operating at medium to high cryogenic temperatures (55 to 150 K), reflecting the relative maturity of the technology at these temperatures, important new developments are now focusing at the lower temperature range from 4 to 20 K in support of studies of the origin of the universe and the search for planets around distant stars. NASA's development of a 20K cryocooler for the European Planck spacecraft and its new Advanced Cryocooler Technology Development Program (ACTDP) for 6-18 K coolers are examples of the thrust to provide low temperature cooling for this class of missions.

  3. Visual Navigation - SARE Mission

    NASA Technical Reports Server (NTRS)

    Alonso, Roberto; Kuba, Jose; Caruso, Daniel

    2007-01-01

    The SARE Earth Observing and Technological Mission is part of the Argentinean Space Agency (CONAE - Comision Nacional de Actividades Espaciales) Small and Technological Payloads Program. The Argentinean National Space Program requires from the SARE program mission to test in a real environment of several units, assemblies and components to reduce the risk of using these equipments in more expensive Space Missions. The objective is to make use those components with an acceptable maturity in design or development, but without any heritage at space. From the application point of view, this mission offers new products in the Earth Observation data market which are listed in the present paper. One of the technological payload on board of the SARE satellite is the sensor Ground Tracker. It computes the satellite attitude and orbit in real time (goal) and/or by ground processing. For the first operating mode a dedicated computer and mass memory are necessary to be part of the mentioned sensor. For the second operational mode the hardware and software are much simpler.

  4. Department of the Navy Supporting Data for Fiscal Year 1984 Budget Estimates Descriptive Summaries Submitted to Congress January 1983. Research, Development, Test and Evaluation, Navy. Book 1. Technology Base, Advanced Technology Development, Strategic Programs.

    DTIC Science & Technology

    1983-01-01

    altioser access (2) Asesss maturity of on-gotnR efforts and integrate appropriate development Into an effective globally dftjtributod .command spport...numerical techniques for nonlinear media.structure shock Interaction inrluding effects of elastic-plastic deformation have bee.a developed and used to...shtittle flight; develop camera payload for SPARTAN (free flyer) flight f rom shuttle. Develop detailed Interpretivesystem capablity~ for global ultraviolet

  5. Materials Challenges in Space Exploration

    NASA Technical Reports Server (NTRS)

    Vickers, John; Shah, Sandeep

    2005-01-01

    The new vision of space exploration encompasses a broad range of human and robotic missions to the Moon, Mars and beyond. Extended human space travel requires high reliability and high performance systems for propulsion, vehicle structures, thermal and radiation protection, crew habitats and health monitoring. Advanced materials and processing technologies are necessary to meet the exploration mission requirements. Materials and processing technologies must be sufficiently mature before they can be inserted into a development program leading to an exploration mission. Exploration will be more affordable by in-situ utilization of materials on the Moon and Mars.

  6. Patterns of Innovation in Alzheimer's Disease Drug Development: A Strategic Assessment Based on Technological Maturity.

    PubMed

    Beierlein, Jennifer M; McNamee, Laura M; Walsh, Michael J; Ledley, Fred D

    2015-08-01

    This article examines the current status of translational science for Alzheimer's disease (AD) drug discovery by using an analytical model of technology maturation. Previous studies using this model have demonstrated that nascent scientific insights and inventions generate few successful leads or new products until achieving a requisite level of maturity. This article assessed whether recent failures and successes in AD research follow patterns of innovation observed in other sectors. The bibliometric-based Technology Innovation Maturation Evaluation model was used to quantify the characteristic S-curve of growth for AD-related technologies, including acetylcholinesterase, N-methyl-d-aspartate (NMDA) receptors, B-amyloid, amyloid precursor protein, presenilin, amyloid precursor protein secretases, apolipoprotein E4, and transactive response DNA binding protein 43 kDa (TDP-43). This model quantifies the accumulation of knowledge as a metric for technological maturity, and it identifies the point of initiation of an exponential growth stage and the point at which growth slows as the technology is established. In contrast to the long-established acetylcholinesterase and NMDA receptor technologies, we found that amyloid-related technologies reached the established point only after 2000, and that the more recent technologies (eg, TDP-43) have not yet approached this point. The first approvals for new molecular entities targeting acetylcholinesterase and the NMDA receptor occurred an average of 22 years after the respective technologies were established, with only memantine (which was phenotypically discovered) entering clinical trials before this point. In contrast, the 6 lead compounds targeting the formation of amyloid plaques that failed in Phase III trials between 2009 and 2014 all entered clinical trials before the respective target technologies were established. This analysis suggests that AD drug discovery has followed a predictable pattern of innovation in which technological maturity is an important determinant of success in development. Quantitative analysis indicates that the lag in emergence of new products, and the much-heralded clinical failures of recent years, should be viewed in the context of the ongoing maturation of AD-related technologies. Although these technologies were not sufficiently mature to generate successful products a decade ago, they may be now. Analytical models of translational science can inform basic and clinical research results as well as strategic development of new therapeutic products. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. The role of automation and artificial intelligence

    NASA Astrophysics Data System (ADS)

    Schappell, R. T.

    1983-07-01

    Consideration is given to emerging technologies that are not currently in common use, yet will be mature enough for implementation in a space station. Artificial intelligence (AI) will permit more autonomous operation and improve the man-machine interfaces. Technology goals include the development of expert systems, a natural language query system, automated planning systems, and AI image understanding systems. Intelligent robots and teleoperators will be needed, together with improved sensory systems for the robotics, housekeeping, vehicle control, and spacecraft housekeeping systems. Finally, NASA is developing the ROBSIM computer program to evaluate level of automation, perform parametric studies and error analyses, optimize trajectories and control systems, and assess AI technology.

  8. NASA Radioisotope Power System Program - Technology and Flight Systems

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.; Dudzinski, Leonard A.

    2009-01-01

    NASA sometimes conducts robotic science missions to solar system destinations for which the most appropriate power source is derived from thermal-to-electrical energy conversion of nuclear decay of radioactive isotopes. Typically the use of a radioisotope power system (RPS) has been limited to medium and large-scale missions, with 26 U,S, missions having used radioisotope power since 1961. A research portfolio of ten selected technologies selected in 2003 has progressed to a point of maturity, such that one particular technology may he considered for future mission use: the Advanced Stirling Converter. The Advanced Stirling Radioisotope Generator is a new power system in development based on this Stirling cycle dynamic power conversion technology. This system may be made available for smaller, Discovery-class NASA science missions. To assess possible uses of this new capability, NASA solicited and funded nine study teams to investigate unique opportunities for exploration of potential destinations for small Discovery-class missions. The influence of the results of these studies and the ongoing development of the Advanced Stirling Radioisotope Generator system are discussed in the context of an integrated Radioisotope Power System program. Discussion of other and future technology investments and program opportunities are provided.

  9. Updated Heliostorm Warning Mission: Enhancements Based on New Technology

    NASA Technical Reports Server (NTRS)

    Young, Roy M.

    2010-01-01

    The Heliostorm (also referred to as Geostorm) mission has been regarded as the best choice for the first application of solar sail technology. The objective of Heliostorm is to obtain data from an orbit station slightly displaced from the ecliptic at or nearer to the Sun than 0.98 AU, which places it twice as close to the sun as Earth's natural L1 point at 0.993 AU. Heliostorm has been the subject of several mission studies over the past decade, with the most complete study conducted in 1999 in conjunction with a proposed New Millennium Program (NMP) Space Technology 5 (ST-5) flight opportunity. Recently, over a two and one-half year period dating from 2002 through 2005, NASA s In-Space Propulsion Technology Program (ISTP) matured solar sail technology from laboratory components to fully integrated systems, demonstrated in as relevant a space environment as could feasibly be simulated on the ground. Work under this program has yielded promising results for enhanced Heliostorm mission performance. This paper will present the preliminary results of an updated Heliostorm mission design study including the enhancements incorporated during the design, development, analysis and testing of the system ground demonstrator.

  10. Stimulating Innovation and Accelerating the Development of Complex and Slowly Maturing Technologies Through Advanced Technology Prize Competitions

    DTIC Science & Technology

    2007-06-15

    technology prize competitions have been used since the 18th century to spur innovation and advance the development of complex and slowly maturing disruptive ... technologies The Defense Advanced Research Projects Agency (DARPA) has used advanced technology competitions in 2004 and 2005 to rapidly accelerate the

  11. Beyond the Baseline: Proceedings of the Space Station Evolution Symposium. Volume 2, Part 2; Space Station Freedom Advanced Development Program

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This report contains the individual presentations delivered at the Space Station Evolution Symposium in League City, Texas on February 6, 7, 8, 1990. Personnel responsible for Advanced Systems Studies and Advanced Development within the Space Station Freedom program reported on the results of their work to date. Systems Studies presentations focused on identifying the baseline design provisions (hooks and scars) necessary to enable evolution of the facility to support changing space policy and anticipated user needs. Also emphasized were evolution configuration and operations concepts including on-orbit processing of space transfer vehicles. Advanced Development task managers discussed transitioning advanced technologies to the baseline program, including those near-term technologies which will enhance the safety and productivity of the crew and the reliability of station systems. Special emphasis was placed on applying advanced automation technology to ground and flight systems. This publication consists of two volumes. Volume 1 contains the results of the advanced system studies with the emphasis on reference evolution configurations, system design requirements and accommodations, and long-range technology projections. Volume 2 reports on advanced development tasks within the Transition Definition Program. Products of these tasks include: engineering fidelity demonstrations and evaluations on Station development testbeds and Shuttle-based flight experiments; detailed requirements and performance specifications which address advanced technology implementation issues; and mature applications and the tools required for the development, implementation, and support of advanced technology within the Space Station Freedom Program.

  12. Development of Life Support System Technologies for Human Lunar Missions

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Ewert, Michael K.

    2009-01-01

    With the Preliminary Design Review (PDR) for the Orion Crew Exploration Vehicle planned to be completed in 2009, Exploration Life Support (ELS), a technology development project under the National Aeronautics and Space Administration s (NASA) Exploration Technology Development Program, is focusing its efforts on needs for human lunar missions. The ELS Project s goal is to develop and mature a suite of Environmental Control and Life Support System (ECLSS) technologies for potential use on human spacecraft under development in support of U.S. Space Exploration Policy. ELS technology development is directed at three major vehicle projects within NASA s Constellation Program (CxP): the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems, including habitats and pressurized rovers. The ELS Project includes four technical elements: Atmosphere Revitalization Systems, Water Recovery Systems, Waste Management Systems and Habitation Engineering, and two cross cutting elements, Systems Integration, Modeling and Analysis, and Validation and Testing. This paper will provide an overview of the ELS Project, connectivity with its customers and an update to content within its technology development portfolio with focus on human lunar missions.

  13. A comparative assessment of solar thermal electric power plants in the 1-10 MWe range

    NASA Technical Reports Server (NTRS)

    Rosenberg, L. S.; Revere, W. R.

    1981-01-01

    The candidate power system technologies were ranked in terms of the cost of electric energy each system produces. In all cases, it was assumed that development programs would result in mature power plant systems that could be commercially manufactured. The results of the study, a brief description of the systems examined, and the methodologies used are presented.

  14. Online Education Enters the Mainstream: The 10th Annual Distance Education Survey by the Instructional Technology Council Shows Continued Progress, Maturation

    ERIC Educational Resources Information Center

    Finkel, Ed

    2015-01-01

    The growth of online education has slowed down among community colleges, but it is still outpacing overall enrollment, while the quality of the education offered has improved from a pale imitation to a worthy competitor, administrators say. More than 5.5 million community college students enrolled in distance education programs in 2013-14,…

  15. NASA's Radioisotope Power Systems Planning and Potential Future Systems Overview

    NASA Technical Reports Server (NTRS)

    Zakrajsek, June F.; Woerner, Dave F.; Cairns-Gallimore, Dirk; Johnson, Stephen G.; Qualls, Louis

    2016-01-01

    The goal of NASA's Radioisotope Power Systems (RPS) Program is to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet the needs of the missions. To meet this goal, the RPS Program, working closely with the Department of Energy, performs mission and system studies (such as the recently released Nuclear Power Assessment Study), assesses the readiness of promising technologies to infuse in future generators, assesses the sustainment of key RPS capabilities and knowledge, forecasts and tracks the Program's budgetary needs, and disseminates current information about RPS to the community of potential users. This process has been refined and used to determine the current content of the RPS Program's portfolio. This portfolio currently includes an effort to mature advanced thermoelectric technology for possible integration into an enhanced Multi-Mission Radioisotope Generator (eMMRTG), sustainment and production of the currently deployed MMRTG, and technology investments that could lead to a future Stirling Radioisotope Generator (SRG). This paper describes the program planning processes that have been used, the currently available MMRTG, and one of the potential future systems, the eMMRTG.

  16. NASA's Radioisotope Power Systems Planning and Potential Future Systems Overview

    NASA Technical Reports Server (NTRS)

    Zakrajsek, June F.; Woerner, Dave F.; Cairns-Gallimore, Dirk; Johnson, Stephen G.; Qualis, Louis

    2016-01-01

    The goal of NASA's Radioisotope Power Systems (RPS) Program is to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet the needs of the missions. To meet this goal, the RPS Program, working closely with the Department of Energy, performs mission and system studies (such as the recently released Nuclear Power Assessment Study), assesses the readiness of promising technologies to infuse in future generators, assesses the sustainment of key RPS capabilities and knowledge, forecasts and tracks the Programs budgetary needs, and disseminates current information about RPS to the community of potential users. This process has been refined and used to determine the current content of the RPS Programs portfolio. This portfolio currently includes an effort to mature advanced thermoelectric technology for possible integration into an enhanced Multi-Mission Radioisotope Generator (eMMRTG), sustainment and production of the currently deployed MMRTG, and technology investments that could lead to a future Stirling Radioisotope Generator (SRG). This paper describes the program planning processes that have been used, the currently available MMRTG, and one of the potential future systems, the eMMRTG.

  17. Inflatable Space Structures Technology Development for Large Radar Antennas

    NASA Technical Reports Server (NTRS)

    Freeland, R. E.; Helms, Richard G.; Willis, Paul B.; Mikulas, M. M.; Stuckey, Wayne; Steckel, Gary; Watson, Judith

    2004-01-01

    There has been recent interest in inflatable space-structures technology for possible applications on U.S. Department of Defense (DOD) missions because of the technology's potential for high mechanical-packaging efficiency, variable stowed geometry, and deployment reliability. In recent years, the DOD sponsored Large Radar Antenna (LRA) Program applied this new technology to a baseline concept: a rigidizable/inflatable (RI) perimeter-truss structure supporting a mesh/net parabolic reflector antenna. The program addressed: (a) truss concept development, (b) regidizable materials concepts assessment, (c) mesh/net concept selection and integration, and (d) developed potential mechanical-system performance estimates. Critical and enabling technologies were validated, most notably the orbital radiation durable regidized materials and the high modulus, inflatable-deployable truss members. These results in conjunction with conclusions from previous mechanical-packaging studies by the U.S. Defense Advanced Research Projects Agency (DARPA) Special Program Office (SPO) were the impetus for the initiation of the DARPA/SPO Innovative Space-based Antenna Technology (ISAT) Program. The sponsor's baseline concept consisted of an inflatable-deployable truss structure for support of a large number of rigid, active radar panels. The program's goal was to determine the risk associated with the application of these new RI structures to the latest in radar technologies. The approach used to define the technology maturity level of critical structural elements was to: (a) develop truss concept baseline configurations (s), (b) assess specific inflatable-rigidizable materials technologies, and (c) estimate potential mechanical performance. The results of the structures portion of the program indicated there was high risk without the essential materials technology flight experiments, but only moderate risk if the appropriate on-orbit demonstrations were performed. This paper covers both programs (LRA and ISAT) in two sections, Parts 1 and 2 respectively. Please note that the terms strut, tube, and column are all used interchangeably and refer to the basic strut element of a truss. Also, the paper contains a mix of English and metric dimensional descriptions that reflect prevailing technical discipline conventions and common usage.

  18. Translational Science by Public Biotechnology Companies in the IPO“Class of 2000”: The Impact of Technological Maturity

    PubMed Central

    McNamee, Laura; Ledley, Fred

    2013-01-01

    The biotechnology industry plays a central role in the translation of nascent biomedical science into both products that offer material health benefits and creating capital growth. This study examines the relationship between the maturity of technologies in a characteristic life cycle and value creation by biotechnology companies. We examined the core technology, product development pipelines, and capitalization for a cohort of biotechnology companies that completed an IPO in 2000. Each of these companies was well financed and had core technologies on the leading edge of biological science. We found that companies with the least mature technologies had significantly higher valuations at IPO, but failed to develop products based on these technologies over the ensuing decade, and created less capital growth than companies with more mature technologies at IPO. The observation that this cohort of recently public biotechnology companies was not effective in creating value from nascent science suggests the need for new, evidence-based business strategies for translational science. PMID:24358154

  19. Translational science by public biotechnology companies in the IPO "class of 2000": the impact of technological maturity.

    PubMed

    McNamee, Laura; Ledley, Fred

    2013-01-01

    The biotechnology industry plays a central role in the translation of nascent biomedical science into both products that offer material health benefits and creating capital growth. This study examines the relationship between the maturity of technologies in a characteristic life cycle and value creation by biotechnology companies. We examined the core technology, product development pipelines, and capitalization for a cohort of biotechnology companies that completed an IPO in 2000. Each of these companies was well financed and had core technologies on the leading edge of biological science. We found that companies with the least mature technologies had significantly higher valuations at IPO, but failed to develop products based on these technologies over the ensuing decade, and created less capital growth than companies with more mature technologies at IPO. The observation that this cohort of recently public biotechnology companies was not effective in creating value from nascent science suggests the need for new, evidence-based business strategies for translational science.

  20. Future manned systems advanced avionics study

    NASA Technical Reports Server (NTRS)

    Sawamura, Bob; Radke, Kathie

    1992-01-01

    COTS+ was defined in this study as commercial off-the-shelf (COTS) products, ruggedized and militarized components, and COTS technology. This study cites the benefits of integrating COTS+ in space, postulates a COTS+ integration methodology, and develops requirements and an architecture to achieve integration. Developmental needs and concerns were identified throughout the study; these needs, concerns, and recommendations relative to their abatement are subsequently presented for further action and study. The COTS+ concept appears workable in part or in totality. No COTS+ technology gaps were identified; however, radiation tolerance was cited as a concern, and the deferred maintenance issue resurfaced. Further study is recommended to explore COTS+ cost-effectiveness, maintenance philosophy, needs, concerns, and utility metrics. The generation of a development plan to further investigate and integrate COTS+ technology is recommended. A COTS+ transitional integration program is recommended. Sponsoring and establishing technology maturation programs and COTS+ engineering and standards committees are deemed necessary and are recommended for furthering COTS+ integration in space.

  1. Special Report on "Allegations of Conflict of Interest Regarding Licensing of PROTECT by Argonne National Laboratory"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-08-01

    In February 2009, the Office of Inspector General received a letter from Congressman Mark Steven Kirk of Illinois, which included constituent allegations that an exclusive technology licensing agreement by Argonne National Laboratory was tainted by inadequate competition, conflicts of interest, and other improprieties. The technology in question was for the Program for Response Options and Technology Enhancements for Chemical/Biological Terrorism, commonly referred to as PROTECT. Because of the importance of the Department of Energy's technology transfer program, especially as implementation of the American Recovery and Reinvestment Act matures, we reviewed selected aspects of the licensing process for PROTECT to determinemore » whether the allegations had merit. In summary, under the facts developed during our review, it was understandable that interested parties concluded that there was a conflict of interest in this matter and that Argonne may have provided the successful licensee with an unfair advantage. In part, this was consistent with aspects of the complaint from Congressman Kirk's constituent.« less

  2. Large Composite Structures Processing Technologies for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.; Vickers, J. H.; McMahon, W. M.; Hulcher, A. B.; Johnston, N. J.; Cano, R. J.; Belvin, H. L.; McIver, K.; Franklin, W.; Sidwell, D.

    2001-01-01

    Significant efforts have been devoted to establishing the technology foundation to enable the progression to large scale composite structures fabrication. We are not capable today of fabricating many of the composite structures envisioned for the second generation reusable launch vehicle (RLV). Conventional 'aerospace' manufacturing and processing methodologies (fiber placement, autoclave, tooling) will require substantial investment and lead time to scale-up. Out-of-autoclave process techniques will require aggressive efforts to mature the selected technologies and to scale up. Focused composite processing technology development and demonstration programs utilizing the building block approach are required to enable envisioned second generation RLV large composite structures applications. Government/industry partnerships have demonstrated success in this area and represent best combination of skills and capabilities to achieve this goal.

  3. Nuclear electric propulsion technologies - Overview of the NASA/DoE/DoD Nuclear Electric Propulsion Workshop

    NASA Technical Reports Server (NTRS)

    Barnett, John W.

    1991-01-01

    Nuclear propulsion technology offers substantial benefits to the ambitious piloted and robotic solar system exploration missions of the Space Exploration Initiative (SEI). This paper summarizes a workshop jointly sponsored by NASA, DoE, and DoD to assess candidate nuclear electric propulsion technologies. Twenty-one power and propulsion concepts are reviewed. Nuclear power concepts include solid and gaseous fuel concepts, with static and dynamic power conversion. Propulsion concepts include steady state and pulsed electromagnetic engines, a pulsed electrothermal engine, and a steady state electrostatic engine. The technologies vary widely in maturity. The workshop review panels concluded that compelling benefits would accrue from the development of nuclear electric propulsion systems, and that a focused, well-funded program is required to prepare the technologies for SEI missions.

  4. A case for Sandia investment in complex adaptive systems science and technology.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colbaugh, Richard; Tsao, Jeffrey Yeenien; Johnson, Curtis Martin

    2012-05-01

    This white paper makes a case for Sandia National Laboratories investments in complex adaptive systems science and technology (S&T) -- investments that could enable higher-value-added and more-robustly-engineered solutions to challenges of importance to Sandia's national security mission and to the nation. Complex adaptive systems are ubiquitous in Sandia's national security mission areas. We often ignore the adaptive complexity of these systems by narrowing our 'aperture of concern' to systems or subsystems with a limited range of function exposed to a limited range of environments over limited periods of time. But by widening our aperture of concern we could increase ourmore » impact considerably. To do so, the science and technology of complex adaptive systems must mature considerably. Despite an explosion of interest outside of Sandia, however, that science and technology is still in its youth. What has been missing is contact with real (rather than model) systems and real domain-area detail. With its center-of-gravity as an engineering laboratory, Sandia's has made considerable progress applying existing science and technology to real complex adaptive systems. It has focused much less, however, on advancing the science and technology itself. But its close contact with real systems and real domain-area detail represents a powerful strength with which to help complex adaptive systems science and technology mature. Sandia is thus both a prime beneficiary of, as well as potentially a prime contributor to, complex adaptive systems science and technology. Building a productive program in complex adaptive systems science and technology at Sandia will not be trivial, but a credible path can be envisioned: in the short run, continue to apply existing science and technology to real domain-area complex adaptive systems; in the medium run, jump-start the creation of new science and technology capability through Sandia's Laboratory Directed Research and Development program; and in the long run, inculcate an awareness at the Department of Energy of the importance of supporting complex adaptive systems science through its Office of Science.« less

  5. Technology Catalogue. First edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-02-01

    The Department of Energy`s Office of Environmental Restoration and Waste Management (EM) is responsible for remediating its contaminated sites and managing its waste inventory in a safe and efficient manner. EM`s Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste management programs within EM`s Office of Environmental Restoration and Office of Waste Management. The purpose of the Technology Catalogue is to provide performance data on OTD-developed technologies to scientists and engineers assessing and recommending technical solutions within the Department`s clean-up and waste management programs, asmore » well as to industry, other federal and state agencies, and the academic community. OTD`s applied research and demonstration activities are conducted in programs referred to as Integrated Demonstrations (IDs) and Integrated Programs (IPs). The IDs test and evaluate.systems, consisting of coupled technologies, at specific sites to address generic problems, such as the sensing, treatment, and disposal of buried waste containers. The IPs support applied research activities in specific applications areas, such as in situ remediation, efficient separations processes, and site characterization. The Technology Catalogue is a means for communicating the status. of the development of these innovative technologies. The FY93 Technology Catalogue features technologies successfully demonstrated in the field through IDs and sufficiently mature to be used in the near-term. Technologies from the following IDs are featured in the FY93 Technology Catalogue: Buried Waste ID (Idaho National Engineering Laboratory, Idaho); Mixed Waste Landfill ID (Sandia National Laboratories, New Mexico); Underground Storage Tank ID (Hanford, Washington); Volatile organic compound (VOC) Arid ID (Richland, Washington); and VOC Non-Arid ID (Savannah River Site, South Carolina).« less

  6. NASA astronaut Rex Walheim checks out the Dragon spacecraft und

    NASA Image and Video Library

    2012-01-30

    HAWTHORNE, Calif. -- NASA astronaut Rex Walheim checks out the Dragon spacecraft under development by Space Exploration Technologies SpaceX of Hawthorne, Calif., for the agency's Commercial Crew Program. In 2011, NASA selected SpaceX during Commercial Crew Development Round 2 CCDev2) activities to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. ATK, The Boeing Co., Excalibur Almaz Inc., Blue Origin, Sierra Nevada, and United Launch Alliance ULA. For more information, visit www.nasa.gov/commercialcrew. Image credit: Space Exploration Technologies

  7. KSC-2012-1825

    NASA Image and Video Library

    2012-01-30

    HAWTHORNE, Calif. -- NASA astronauts and industry experts are monitored while they check out the crew accommodations in the Dragon spacecraft under development by Space Exploration Technologies SpaceX of Hawthorne, Calif., for the agency's Commercial Crew Program. In 2011, NASA selected SpaceX during Commercial Crew Development Round 2 CCDev2) activities to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. ATK, The Boeing Co., Excalibur Almaz Inc., Blue Origin, Sierra Nevada, and United Launch Alliance ULA. For more information, visit www.nasa.gov/commercialcrew. Image credit: Space Exploration Technologies

  8. Optimization of System Maturity and Equivalent System Mass for Exploration Systems Development Planning

    NASA Technical Reports Server (NTRS)

    Magnaye, Romulo; Tan, Weiping; Ramirez-Marquez, Jose; Sauser, Bruce

    2010-01-01

    The Exploration Systems Mission Directorate of the National Aeronautics and Space Administration (NASA) is currently pursuing the development of the next generation of human spacecraft and exploration systems throughout the Constellation Program. This includes, among others, habitation technologies for supporting lunar and Mars exploration. The key to these systems is the Exploration Life Support (ELS) system that composes several technology development projects related to atmosphere revitalization, water recovery, waste management and habitation. The proper functioning of these technologies is meant to produce sufficient and balanced resources of water, air, and food to maintain a safe and comfortable environment for long-term human habitation and exploration of space.

  9. Portable Diagnostics Technology Assessment for Space Missions. Part 2; Market Survey

    NASA Technical Reports Server (NTRS)

    Nelson, Emily S.; Chait, Arnon

    2010-01-01

    A mission to Mars of several years duration requires more demanding standards for all onboard instruments than a 6-month mission to the Moon or the International Space Station. In Part 1, we evaluated generic technologies and suitability to NASA needs. This prior work considered crew safety, device maturity and flightworthiness, resource consumption, and medical value. In Part 2, we continue the study by assessing the current marketplace for reliable Point-of-Care diagnostics. The ultimate goal of this project is to provide a set of objective analytical tools to suggest efficient strategies for reaching specific medical targets for any given space mission as program needs, technological development, and scientific understanding evolve.

  10. Modelling phenolic and technological maturities of grapes by means of the multivariate relation between organoleptic and physicochemical properties.

    PubMed

    Meléndez, E; Ortiz, M C; Sarabia, L A; Íñiguez, M; Puras, P

    2013-01-25

    The ripeness of grapes at the harvest time is one of the most important parameters for obtaining high quality red wines. Traditionally the decision of harvesting is to be taken only after analysing sugar concentration, titratable acidity and pH of the grape juice (technological maturity). However, these parameters only provide information about the pulp ripeness and overlook the real degree of skins and seeds maturities (phenolic maturity). Both maturities, technological and phenolic, are not simultaneously reached, on the contrary they tend to separate depending on several factors: grape variety, cultivar, adverse weather conditions, soil, water availability and cultural practices. Besides, this divergence is increasing as a consequence of the climate change (larger quantities of CO(2), less rain, and higher temperatures). 247 samples collected in vineyards representative of the qualified designation of origin Rioja from 2007 to 2011 have been analysed. Samples contain the four grape varieties usual in the elaboration of Rioja wines ('tempranillo', 'garnacha', 'mazuelo' and 'graciano'). The present study is the first systematic investigation on the maturity of grapes that includes the organoleptic evaluation of the degree of grapes maturity (sugars/acidity maturity, aromatic maturity of the pulp, aromatic maturity of the skins and tannins maturity) together with the values of the physicochemical parameters (probable alcohol degree, total acidity, pH, malic acid, K, total index polyphenolics, anthocyans, absorbances at 420, 520 and 620 nm, colour index and tartaric acid) determined over the same samples. A varimax rotation of the latent variables of a PLS model between the physicochemical variables and the mean of four sensory variables allows identifying both maturities. Besides, the position of the samples in the first plane defines the effect that the different factors exert on both phenolic and technological maturities. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. A Study of the Factors Associated with Successful Technology Transfer and their Applicability to Air Force Technology Transfers.

    DTIC Science & Technology

    1995-09-01

    transfer project. (D) 8a Organization has a technology transfer organization. (D,A) 10a Marketing and advertising of technologies targeted to relevant...Entrepreneurial (D) Developer: 10A: Marketing and advertising of technologies targeted to relevant industries. Most developers indicate that they marketed...regard to marketing and advertising . 10B: Technology maturation supported by internal units or by contracting out. Technology maturation is the

  12. Kids with disabilities inspire a musical instrument

    ScienceCinema

    Daily, Dan; Pfeifer, Kent

    2018-02-14

    The Midiwing is a musical instrument that unites music and computer technology for those who lack the experience, physical ability, or maturity to play music with traditional instruments. To create the instrument, Dan Daily, Director of Musicode Innovations, reworked and recoded Musical Instrument Digital Interface (MIDI) technology and introduced ergonomic design. He applied to the New Mexico Small Business Assistance (NMSBA) Program to receive help when he discovered the microcontroller he used was being phased out. Daily and Kent Pfeifer, an engineer at Sandia National Laboratories and musician himself, partnered to create a new state-of-the-art design.

  13. Kids with disabilities inspire a musical instrument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daily, Dan; Pfeifer, Kent

    The Midiwing is a musical instrument that unites music and computer technology for those who lack the experience, physical ability, or maturity to play music with traditional instruments. To create the instrument, Dan Daily, Director of Musicode Innovations, reworked and recoded Musical Instrument Digital Interface (MIDI) technology and introduced ergonomic design. He applied to the New Mexico Small Business Assistance (NMSBA) Program to receive help when he discovered the microcontroller he used was being phased out. Daily and Kent Pfeifer, an engineer at Sandia National Laboratories and musician himself, partnered to create a new state-of-the-art design.

  14. Community Geothermal Technology Program: Fruit drying with geothermal energy. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-03-14

    Largest problem was lack of proper recording and controlling instrumentation. Agricultural products tested were green papaya powder, banana slices, and pineapple slices. Results show that a temperature of 120 F is a good drying temperature. Papaya should be mature green and not overly ripe; banana ripeness is also important; and pineapple slice thickness should be very uniform for even drying. Geothermal drying is feasible. Figs, tabs.

  15. A Successful Infusion Process for Enabling Lunar Exploration Technologies

    NASA Technical Reports Server (NTRS)

    Over, Ann P.; Klem, Mark K.; Motil, Susan M.

    2008-01-01

    The NASA Vision for Space Exploration begins with a more reliable flight capability to the International Space Station and ends with sending humans to Mars. An important stepping stone on the path to Mars encompasses human missions to the Moon. There is little doubt throughout the stakeholder community that new technologies will be required to enable this Vision. However, there are many factors that influence the ability to successfully infuse any technology including the technical risk, requirement and development schedule maturity, and, funds available. This paper focuses on effective infusion processes that have been used recently for the technologies in development for the lunar exploration flight program, Constellation. Recent successes with Constellation customers are highlighted for the Exploration Technology Development Program (ETDP) Projects managed by NASA Glenn Research Center (GRC). Following an overview of the technical context of both the flight program and the technology capability mapping, the process is described for how to effectively build an integrated technology infusion plan. The process starts with a sound risk development plan and is completed with an integrated project plan, including content, schedule and cost. In reality, the available resources for this development are going to change over time, necessitating some level of iteration in the planning. However, the driving process is based on the initial risk assessment, which changes only when the overall architecture changes, enabling some level of stability in the process.

  16. Supersonic Retropropulsion Technology Development in NASA's Entry, Descent, and Landing Project

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.; Berry, Scott A.; Rhode, Matthew N.; Kelb, Bil; Korzun, Ashley; Dyakonov, Artem A.; Zarchi, Kerry A.; Schauerhamer, Daniel G.; Post, Ethan A.

    2012-01-01

    NASA's Entry, Descent, and Landing (EDL) space technology roadmap calls for new technologies to achieve human exploration of Mars in the coming decades [1]. One of those technologies, termed Supersonic Retropropulsion (SRP), involves initiation of propulsive deceleration at supersonic Mach numbers. The potential benefits afforded by SRP to improve payload mass and landing precision make the technology attractive for future EDL missions. NASA's EDL project spent two years advancing the technological maturity of SRP for Mars exploration [2-15]. This paper summarizes the technical accomplishments from the project and highlights challenges and recommendations for future SRP technology development programs. These challenges include: developing sufficiently large SRP engines for use on human-scale entry systems; testing and computationally modelling complex and unsteady SRP fluid dynamics; understanding the effects of SRP on entry vehicle stability and controllability; and demonstrating sub-scale SRP entry systems in Earth's atmosphere.

  17. PILOT-SCALE TEST RESULTS OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT THE HANFORD SITE WASHINGTON USA -11364

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CORBETT JE; TEDESCH AR; WILSON RA

    2011-02-14

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal.more » This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORPIDOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper summarizes results of a pilot-scale test program conducted during calendar year 2010 as part of the ongoing technology maturation development scope for the WFE.« less

  18. Uses of tethered atmospheric research probes

    NASA Technical Reports Server (NTRS)

    Deloach, Richard

    1991-01-01

    In situ measurements in the lower thermosphere are rare because of the difficulty of reaching these altitudes with conventional instrument platforms. The emerging technology of tethered satellites as a means to probe these altitudes from above has matured to the point that a flight program is planned to verify the operational performance of a low-cost deployer mechanism for tethered satellites, and to demonstrate a basic understanding of the dynamics of tethered satellite deployment. With such operational developments at hand, it is appropriate to review some of the potential applications of tethered measurement platforms for acquiring in situ data in the upper atmosphere. This paper focuses on downward-deployed tethered satellite measurements of interest to atmospheric scientists and to hypersonic aerodynamicists, and discusses ways in which this technology may be able to support selected long-range research programs currently in progress or in various stages of pre-flight development. The intent is to illustrate for the potential user community some of the unique advantages of tethered measurement platform technology now under development, and to stimulate creative thinking about ways in which this new capability may be used in support of future research programs.

  19. In vitro maturation of human oocytes for assisted reproduction.

    PubMed

    Jurema, Marcus W; Nogueira, Daniela

    2006-11-01

    To describe and evaluate the current practice of in vitro maturation of oocytes for assisted reproduction. Review of the available and relevant literature regarding in vitro maturation of oocytes. In vitro maturation of human oocytes retrieved from antral ovarian follicles is an emerging procedure quickly being incorporated into the realm of assisted reproductive technologies. This new technology has several potential advantages over traditional controlled ovarian hyperstimulation for IVF, such as reduction of costs by minimizing gonadotropin and GnRH analogue use, elimination of ovarian hyperstimulation syndrome, and simplicity of protocol. In vitro maturation of oocytes for assisted reproduction in human beings still is undergoing refinement but currently is providing efficacy and safety outcome comparable to that of traditional IVF in recent selected studies. Implementing in vitro maturation into an established IVF practice is feasible and requires only a few simple adjustments. Crucial to the advancement and optimization of the technology is a better understanding of how to maximize immature oocyte developmental competence and endometrial receptivity.

  20. Adaptable Deployable Entry & Placement Technology (ADEPT) for Cubesat Delivery to Mars Surface

    NASA Technical Reports Server (NTRS)

    Wercinski, Paul

    2014-01-01

    The Adaptable, Deployable Entry and Placement Technology (ADEPT), uses a mechanical skeleton to deploy a revolutionary carbon fabric system that serves as both heat shield and primary structure during atmospheric entry. The NASA ADEPT project, currently funded by the Game Changing Development Program in STMD is currently focused on 1m class hypersonic decelerators for the delivery of very small payloads ( 5 kg) to locations of interest in an effort to leverage low-cost platforms to rapidly mature the technology while simultaneously delivering high-value science. Preliminary mission design and aerothermal performance testing in arcjets have shown the ADEPT system is quite capable of safe delivery of cubesats to Mars surface. The ability of the ADEPT to transit to Mars in a stowed configuration (similar to an umbrella) provides options for integration with the Mars 2020 cruise stage, even to consider multiple ADEPTs. System-level test campaigns are underway for FY15 execution or planning for FY16. These include deployment testing, wind tunnel testing, system-level arc jet testing, and a sounding rocket flight test. The goal is system level maturation (TRL 6) at a 1m class Mars design reference mission configuration.

  1. Beyond the Baseline 1991: Proceedings of the Space Station Evolution Symposium. Volume 2: Space Station Freedom, part 1

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The results from the Advanced Systems Study and Advanced Development within the Space Station Freedom (SSF) Program are reported. The results show the evolution of the SSF in terms of user requirements, utilization and operations concepts, and growth options for distributed systems. Special attention is given to: highlighting changes made during restructuring; description of growth paths through the follow-on and evolution phases; identification of minimum-impact provisions to allow flexibility in the baseline; and identification of enhancing and enabling technologies. Products of these tasks include: engineering fidelity demonstrations and evaluations of advanced technology; detailed requirements, performance specifications, and design accommodations for insertion of advanced technology; and mature technology, tools, applications for SSF flight, ground, and information systems.

  2. Laser safety research and modeling for high-energy laser systems

    NASA Astrophysics Data System (ADS)

    Smith, Peter A.; Montes de Oca, Cecilia I.; Kennedy, Paul K.; Keppler, Kenneth S.

    2002-06-01

    The Department of Defense has an increasing number of high-energy laser weapons programs with the potential to mature in the not too distant future. However, as laser systems with increasingly higher energies are developed, the difficulty of the laser safety problem increases proportionally, and presents unique safety challenges. The hazard distance for the direct beam can be in the order of thousands of miles, and radiation reflected from the target may also be hazardous over long distances. This paper details the Air Force Research Laboratory/Optical Radiation Branch (AFRL/HEDO) High-Energy Laser (HEL) safety program, which has been developed to support DOD HEL programs by providing critical capability and knowledge with respect to laser safety. The overall aim of the program is to develop and demonstrate technologies that permit safe testing, deployment and use of high-energy laser weapons. The program spans the range of applicable technologies, including evaluation of the biological effects of high-energy laser systems, development and validation of laser hazard assessment tools, and development of appropriate eye protection for those at risk.

  3. Oxide_Oxide Ceramic Matrix Composite (CMC) Exhaust Mixer Development in the NASA Environmentally Responsible Aviation (ERA) Project

    NASA Technical Reports Server (NTRS)

    Kiser, J. Douglas; Bansal, Narottam P.; Szelagowski, James; Sokhey, Jagdish; Heffernan, Tab; Clegg, Joseph; Pierluissi, Anthony; Riedell, Jim; Wyen, Travis; Atmur, Steven; hide

    2015-01-01

    LibertyWorks®, a subsidiary of Rolls-Royce Corporation, first studied CMC (ceramic matrix composite) exhaust mixers for potential weight benefits in 2008. Oxide CMC potentially offered weight reduction, higher temperature capability, and the ability to fabricate complex-shapes for increased mixing and noise suppression. In 2010, NASA was pursuing the reduction of NOx emissions, fuel burn, and noise from turbine engines in Phase I of the Environmentally Responsible Aviation (ERA) Project (within the Integrated Systems Research Program). ERA subtasks, including those focused on CMC components, were being formulated with the goal of maturing technology from Proof of Concept Validation (Technology Readiness Level 3 (TRL 3)) to System/Subsystem or Prototype Demonstration in a Relevant Environment (TRL 6). LibertyWorks®, a subsidiary of Rolls-Royce Corporation, first studied CMC (ceramic matrix composite) exhaust mixers for potential weight benefits in 2008. Oxide CMC potentially offered weight reduction, higher temperature capability, and the ability to fabricate complex-shapes for increased mixing and noise suppression. In 2010, NASA was pursuing the reduction of NOx emissions, fuel burn, and noise from turbine engines in Phase I of the Environmentally Responsible Aviation (ERA) Project (within the Integrated Systems Research Program). ERA subtasks, including those focused on CMC components, were being formulated with the goal of maturing technology from Proof of Concept Validation (Technology Readiness Level 3 (TRL 3)) to System/Subsystem or Prototype Demonstration in a Relevant Environment (TRL 6). Oxide CMC component at both room and elevated temperatures. A TRL˜5 (Component Validation in a Relevant Environment) was attained and the CMC mixer was cleared for ground testing on a Rolls-Royce AE3007 engine for performance evaluation to achieve TRL 6.

  4. Development Status of the CECE Cryogenic Deep Throttling Demonstrator Engine

    NASA Technical Reports Server (NTRS)

    2008-01-01

    As one of the first technology development programs awarded by NASA under the U.S. Space Exploration Policy (USSEP), the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to begin technology development and demonstration toward a deep throttling, cryogenic engine supporting ongoing trade studies for NASA's Lunar Lander descent stage. The CECE program leverages the maturity and previous investment of a flight-proven hydrogen/oxygen expander cycle engine, the PWR RLI0, to develop and demonstrate an unprecedented combination of reliability, safety, durability, throttlability, and restart capabilities in a high-energy, cryogenic engine. The testbed selected for the deep throttling demonstration phases of this program was a minimally modified RL10 engine, allowing for maximum current production engine commonality and extensibility with minimum program cost. Two series of demonstrator engine tests, the first in April-May 2006 and the second in March-April 2007, have demonstrated in excess of 10:1 throttling of the hydrogen/oxygen expander cycle engine. Both test series have explored a combustion instability ("chug") environment at low throttled power levels. These tests have provided an early demonstration of an enabling cryogenic propulsion concept with invaluable system-level technology data acquisition toward design and development risk mitigation for future CECE Demonstrator engine tests.

  5. Architectures of small satellite programs in developing countries

    NASA Astrophysics Data System (ADS)

    Wood, Danielle; Weigel, Annalisa

    2014-04-01

    Global participation in space activity is growing as satellite technology matures and spreads. Countries in Africa, Asia and Latin America are creating or reinvigorating national satellite programs. These countries are building local capability in space through technological learning. This paper analyzes implementation approaches in small satellite programs within developing countries. The study addresses diverse examples of approaches used to master, adapt, diffuse and apply satellite technology in emerging countries. The work focuses on government programs that represent the nation and deliver services that provide public goods such as environmental monitoring. An original framework developed by the authors examines implementation approaches and contextual factors using the concept of Systems Architecture. The Systems Architecture analysis defines the satellite programs as systems within a context which execute functions via forms in order to achieve stakeholder objectives. These Systems Architecture definitions are applied to case studies of six satellite projects executed by countries in Africa and Asia. The architectural models used by these countries in various projects reveal patterns in the areas of training, technical specifications and partnership style. Based on these patterns, three Archetypal Project Architectures are defined which link the contextual factors to the implementation approaches. The three Archetypal Project Architectures lead to distinct opportunities for training, capability building and end user services.

  6. Space Launch System Advanced Development Office, FY 2013 Annual Report

    NASA Technical Reports Server (NTRS)

    Crumbly, C. M.; Bickley, F. P.; Hueter, U.

    2013-01-01

    The Advanced Development Office (ADO), part of the Space Launch System (SLS) program, provides SLS with the advanced development needed to evolve the vehicle from an initial Block 1 payload capability of 70 metric tons (t) to an eventual capability Block 2 of 130 t, with intermediary evolution options possible. ADO takes existing technologies and matures them to the point that insertion into the mainline program minimizes risk. The ADO portfolio of tasks covers a broad range of technical developmental activities. The ADO portfolio supports the development of advanced boosters, upper stages, and other advanced development activities benefiting the SLS program. A total of 34 separate tasks were funded by ADO in FY 2013.

  7. Air-Breathing Launch Vehicle Technology Being Developed

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.

    2003-01-01

    Of the technical factors that would contribute to lowering the cost of space access, reusability has high potential. The primary objective of the GTX program is to determine whether or not air-breathing propulsion can enable reusable single-stage-to-orbit (SSTO) operations. The approach is based on maturation of a reference vehicle design with focus on the integration and flight-weight construction of its air-breathing rocket-based combined-cycle (RBCC) propulsion system.

  8. Airbreathing Hypersonic Systems Focus at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Hunt, James L.; Rausch, Vincent L.

    1998-01-01

    This paper presents the status of the airbreathing hypersonic airplane and space-access vehicle design matrix, reflects on the synergies and issues, and indicates the thrust of the effort to resolve the design matrix and to focus/advance systems technology maturation. Priority is given to the design of the vision operational vehicles followed by flow-down requirements to flight demonstrator vehicles and their design for eventual consideration in the Future-X Program.

  9. Materials Genome Initiative Element

    NASA Technical Reports Server (NTRS)

    Vickers, John

    2015-01-01

    NASA is committed to developing new materials and manufacturing methods that can enable new missions with ever increasing mission demands. Typically, the development and certification of new materials and manufacturing methods in the aerospace industry has required more than 20 years of development time with a costly testing and certification program. To reduce the cost and time to mature these emerging technologies, NASA is developing computational materials tools to improve understanding of the material and guide the certification process.

  10. Marine Fuel Cell Technology Verification Trainer Program: Operator Curriculum Development

    DTIC Science & Technology

    2004-06-01

    collection of tnormiratin is estimiate to average 1 hour per response, Including the time INr reviewing InatruCtlona. ear-ching existing =ata aourcas...guidelines and standards are provided. With the anticipation that up to several years’ delay will occur between the time of this report and the maturity of...reference only, given as foundation sources available at the time of this project. The supplemental references to published materials are considered the

  11. Aeronautics Research Mission Directorate Integrated Systems Research Program (ISRP) and UAS Integration in the NAS Project

    NASA Technical Reports Server (NTRS)

    Wolfe, Jean

    2010-01-01

    Program Goal: Conduct research at an integrated system-level on promising concepts and technologies and explore, assess, or demonstrate the benefits in a relevant environment.Criteria for selection of projects for Integrated Systems Research: a) Technology has attained enough maturity in the foundational research program that they merit more in-depth evaluation at an integrated system level in a relevant environment. b) Technologies which systems analysis indicates have the most potential for contributing to the simultaneous attainment of goals. c) Technologies identified through stakeholder input as having potential for simultaneous attainment of goals. d) Research not being done by other government agencies and appropriate for NASA to conduct. e) Budget augmentation. Environmentally Responsible Aviation (ERA) Project Explore and assess new vehicle concepts and enabling technologies through system-level experimentation to simultaneously reduce fuel burn, noise, and emissions Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project Contribute capabilities that reduce technical barriers related to the safety and operational challenges associated with enabling routine UAS access to the NAS Innovative Concepts for Green Aviation (ICGA) Project Spur innovation by offering research opportunities to the broader aeronautics community through peer-reviewed proposals, with a focus on making aviation more eco-friendly. Establish incentive prizes similar to the Centennial Challenges and sponsor innovation demonstrations of selected technologies that show promise of reducing aviation s impact on the environment

  12. Environmentally Responsible Aviation (ERA) Project - N+2 Advanced Vehicle Concepts Study and Conceptual Design of Subscale Test Vehicle (STV) Final Report

    NASA Technical Reports Server (NTRS)

    Bonet, John T.; Schellenger, Harvey G.; Rawdon, Blaine K.; Elmer, Kevin R.; Wakayama, Sean R.; Brown, Derrell L.; Guo, Yueping

    2011-01-01

    NASA has set demanding goals for technology developments to meet national needs to improve fuel efficiency concurrent with improving the environment to enable air transportation growth. A figure shows NASA's subsonic transport system metrics. The results of Boeing ERA N+2 Advanced Vehicle Concept Study show that the Blended Wing Body (BWB) vehicle, with ultra high bypass propulsion systems have the potential to meet the combined NASA ERA N+2 goals. This study had 3 main activities. 1) The development of an advanced vehicle concepts that can meet the NASA system level metrics. 2) Identification of key enabling technologies and the development of technology roadmaps and maturation plans. 3) The development of a subscale test vehicle that can demonstrate and mature the key enabling technologies needed to meet the NASA system level metrics. Technology maturation plans are presented and include key performance parameters and technical performance measures. The plans describe the risks that will be reduced with technology development and the expected progression of technical maturity.

  13. Optimize Use of Space Research and Technology for Medical Devices

    NASA Technical Reports Server (NTRS)

    Minnifield, Nona K.

    2012-01-01

    systems, and cutting-edge component technologies to conduct a wide range of scientific observations and measurements. These technologies are also considered for practical applications that benefit society in remarkable ways. At NASA Goddard, the technology transfer initiative promotes matching technologies from Earth and space science needs to targeted industry sectors. This requires clear knowledge of industry needs and priorities and social demands. The process entails matching mature technologies where there are known innovation challenges and good opportunities for matching technology needs. This requires creative thinking and takes commitment of time and resources. Additionally, we also look at applications for known hot industry or societal needs. Doing so has given us occasion to host discussions with representatives from industry, academia, government organizations, and societal special interest groups about the application of NASA Goddard technologies for devices used in medical monitoring and detection tools. As a result, partnerships have been established. Innovation transpired when new products were enabled because of NASA Goddard research and technology programs.

  14. Orbital Space Plane (OSP) Program

    NASA Technical Reports Server (NTRS)

    McKenzie, Patrick M.

    2003-01-01

    Lockheed Martin has been an active participant in NASA's Space Launch Initiative (SLI) programs over the past several years. SLI, part of NASA's Integrated Space Transportation Plan (ISTP), was restructured in November of 2002 to focus the overall theme of safer, more afford-able space transportation along two paths - the Orbital Space Plane Program and the Next Generation Launch Technology programs. The Orbital Space Plane Program has the goal of providing rescue capability from the International Space Station by 2008 and transfer capability for crew (and limited cargo) by 2012. The Next Generation Launch Technology program is combining research and development efforts from the 2nd Generation Reusable Launch Vehicle (2GRLV) program with cutting-edge, advanced space transportation programs (previously designated 3rd Generation) into one program aimed at enabling safe, reliable, cost-effective reusable launch systems by the middle of the next decade. Lockheed Martin is one of three prime contractors working to bring Orbital Space Plane system concepts to a system definition level of maturity by December of 2003. This paper and presentation will update the international community on the progress of the' OSP program, from an industry perspective, and provide insights into Lockheed Martin's role in enabling the vision of a safer, more affordable means of taking people to and from space.

  15. NASA's Hypersonic Investment Area

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; Hutt, John; McClinton, Charles

    2002-01-01

    NASA has established long term goals for access to space. The third generation launch systems are to be fully reusable and operational around 2025. The goal for third-generation launch systems represents significant reduction in cost and improved safety over the current first generation system. The Advanced Space Transportation Office (ASTP) at NASA s Marshall Space Flight Center (MSFC) has the agency lead to develop space transportation technologies. Within ASTP, under the Hypersonic Investment Area (HIA), third generation technologies are being pursued in the areas of propulsion, airframe, integrated vehicle health management (IVHM), avionics, power, operations and system analysis. These technologies are being matured through research and both ground and flight-testing. This paper provides an overview of the HIA program plans and recent accomplishments.

  16. Use of internet technologies for students' communicative competence development in the process of professional foreign language study in technical universities

    NASA Astrophysics Data System (ADS)

    Khasanova, A. N.

    2017-01-01

    Problems of mature thinking formation and development of foreign-language professional communicative competence of competitive graduates of technical universities are considered in the article. The most important factors influencing the achievement of high standard of knowledge, students' abilities and skills and increase of their abilities to establish deep meta-subject connections due to Internet technologies in the course of professional foreign language training are analyzed. The article is written on the basis of project material "Network School of National Research Nuclear University MEPhI" aimed at optimization of technological aspect of training. The given academic on-line program assigns to the teacher a part of an organizer who only coordinates creative, academic students' activity.

  17. TPV power source development for an unmanned undersea vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmquist, G.A.

    The thermophotovoltaic (TPV) generation of electrical power promises efficiencies that are exploitable for military and commercial applications. TPV offers a combination of unique characteristics as a power source for military Unmanned Undersea Vehicles. In civilian applications TPV technology offers the potential for lightweight, rugged, and reliable power systems that can be environmentally benign. These systems can use a variety of fuels and can be scaled up in size. TPV is truly a dual use technology in which the United States appears to have a technical lead. The focus of the current Quantum program is the maturation of the technology andmore » the demonstration of a 10 kilowatt generator. Preliminary results of this project are presented.« less

  18. Panoramic projection avionics displays

    NASA Astrophysics Data System (ADS)

    Kalmanash, Michael H.

    2003-09-01

    Avionics projection displays are entering production in advanced tactical aircraft. Early adopters of this technology in the avionics community used projection displays to replace or upgrade earlier units incorporating direct-view CRT or AMLCD devices. Typical motivation for these upgrades were the alleviation of performance, cost and display device availability concerns. In these systems, the upgraded (projection) displays were one-for-one form / fit replacements for the earlier units. As projection technology has matured, this situation has begun to evolve. The Lockheed-Martin F-35 is the first program in which the cockpit has been specifically designed to take advantage of one of the more unique capabilities of rear projection display technology, namely the ability to replace multiple small screens with a single large conformal viewing surface in the form of a panoramic display. Other programs are expected to follow, since the panoramic formats enable increased mission effectiveness, reduced cost and greater information transfer to the pilot. Some of the advantages and technical challenges associated with panoramic projection displays for avionics applications are described below.

  19. Recent progress in VSTOL technology

    NASA Technical Reports Server (NTRS)

    Roberts, L.; Deckert, W. R.

    1982-01-01

    Progress in vertical and short takeoff and landing (V/STOL) aircraft technology, in particular, during the 1970 to 1980 period at Ames Research Center is discussed. Although only two kinds of V/STOL aircraft (the helicopter and the British direct lift Harrier) have achieved operational maturity, understanding of the technology has vastly improved during this 10 year period. To pursue an aggressive R and D program at a reasonable cost, it was decided to conduct extensive large scale testing in wind tunnel and flight simulation facilities, to develop low cost research aircraft using modified airframes or engines, and to involve other agencies and industry contractors in joint technical and funding arrangements. The STOL investigations include exploring STOL performance using the rotating cylinder flap concept, the augmentor wing, upon initiation of the Quiet Short Haul Research Aircraft program, the upper surface blown flap concept. The VTOL investigations were conducted using a tilt rotor aircraft, resulting in the XV-15 tilt rotor research aircraft. Direct jet lift is now being considered for application to future supersonic fighter aircraft.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, D.F.

    This analysis evaluates the incentives necessary to introduce commercial scale Advanced Clean Coal Technologies, specifically Integrated Coal Gasification Combined Cycle (ICGCC) and Pressurized Fluidized Bed Combustion (PFBC) powerplants. The incentives required to support the initial introduction of these systems are based on competitive busbar electricity costs with natural gas fired combined cycle powerplants, in baseload service. A federal government price guarantee program for up to 10 Advanced Clean Coal Technology powerplants, 5 each ICGCC and PFBC systems is recommended in order to establish the commercial viability of these systems by 2010. By utilizing a decreasing incentives approach as the technologiesmore » mature (plants 1--5 of each type), and considering the additional federal government benefits of these plants versus natural gas fired combined cycle powerplants, federal government net financial exposure is minimized. Annual net incentive outlays of approximately 150 million annually over a 20 year period could be necessary. Based on increased demand for Advanced Clean Coal Technologies beyond 2010, the federal government would be revenue neutral within 10 years of the incentives program completion.« less

  1. Exploration of Terminal Procedures Enabled by NASA Wake VAS Technologies

    NASA Technical Reports Server (NTRS)

    Lunsford, Clark R.; Smith, Arthur P., III; Cooper, Wayne W., Jr.; Mundra, Anand D.; Gross, Amy E.; Audenaerd, Laurence F.; Killian, Bruce E.

    2004-01-01

    The National Aeronautics and Space Administration (NASA) tasked The MITRE Corporation's Center for Advanced Aviation System Development (CAASD) to investigate potential air traffic control (ATC) procedures that could benefit from technology used or developed in NASA's Wake Vortex Advisory System (WakeVAS). The task also required developing an estimate of the potential benefits of the candidate procedures. The main thrust of the investigation was to evaluate opportunities for improved capacity and efficiency in airport arrival and departure operations. Other procedures that would provide safety enhancements were also considered. The purpose of this investigation was to provide input to the WakeVAS program office regarding the most promising areas of development for the program. A two-fold perspective was desired: First, identification of benefits from possible procedures enabled by both incremental components and the mature state of WakeVAS technology; second identification of procedures that could be expected to evolve from the current Federal Aviation Administration (FAA) procedures. The evolution of procedures should provide meaningful increments of benefit and a low risk implementation of the WakeVAS technologies.

  2. Space Exploration Technologies Developed through Existing and New Research Partnerships Initiatives

    NASA Technical Reports Server (NTRS)

    Nall, Mark; Casas, Joseph

    2004-01-01

    The Space Partnership Development Program of NASA has been highly successful in leveraging commercial research investments to the strategic mission and applied research goals of the Agency through industry academic partnerships. This program is currently undergoing an outward-looking transformation towards Agency wide research and discovery goals that leverage partnership contributions to the strategic research needed to demonstrate enabling space exploration technologies encompassing both robotic spacecraft missions and human space flight. New Space Partnership Initiatives with incremental goals and milestones will allow a continuing series of accomplishments to be achieved throughout the duration of each initiative, permit the "lessons learned" and capabilities acquired from previous implementation steps to be incorporated into subsequent phases of the initiatives, and allow adjustments to be made to the implementation of the initiatives as new opportunities or challenges arise. An Agency technological risk reduction roadmap for any required technologies not currently available will identify the initiative focus areas for the development, demonstration and utilization of space resources supporting the production of power, air, and water, structures and shielding materials. This paper examines the successes to date, lessons learned, and programmatic outlook of enabling sustainable exploration and discovery through governmental, industrial, academic, and international partnerships. Previous government and industry technology development programs have demonstrated that a focused research program that appropriately shares the developmental risk can rapidly mature low Technology Readiness Level (TRL) technologies to the demonstration level. This cost effective and timely, reduced time to discovery, partnership approach to the development of needed technological capabilities addresses the dual use requirements by the investing partners. In addition, these partnerships help to ensure the attainment of complimenting human and robotic exploration goals for NASA while providing additional capabilities for sustainable scientific research benefiting life and security on Earth.

  3. Arthur Hansen: engineering education to fit the times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Dr Hansen, president of Purdue University, reports that students are eager to try solving today's complex energy and environmental problems. He expressed his views on university students' aims during the 1960s and the resultant unrest, but believes that students of today are more mature and are working harder for tangible results. Part of the approach at Purdue, he says, is to provide students with an education that will help them survive social and technological changes. The main facets of the EPRI program are reviewed, pointing out the main reasons for its existence. ''Every student should have a basic knowledge ofmore » technology,'' Dr. Hansen says. (MCW)« less

  4. Scientists Inspect Plant Grown onboard the ISS in 2002

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Advanced Astroculture (tm) unit is growing plants on its second flight on the International Space Station. Dr. Weijia Zhou (left), director of the Wisconsin Center for Space Automation and Robotics at the University of Wisconsin-Madison, inspects soybeans grown in the plant growth unit aboard ISS in 2002. Coating technology is used inside the miniature plant greenhouse to remove ethylene, a chemical produced by plant leaves that can cause plants to mature too quickly. This same coating technology is used in a new anthrax-killing device. The Space Station experiment is managed by the Space Partnership Development Program at NASA's Marshall Space Flight Center in Huntsville, Ala.

  5. Maturity Models of Healthcare Information Systems and Technologies: a Literature Review.

    PubMed

    Carvalho, João Vidal; Rocha, Álvaro; Abreu, António

    2016-06-01

    The maturity models are instruments to facilitate organizational management, including the management of its information systems function. These instruments are used also in hospitals. The objective of this article is to identify and compare the maturity models for management of information systems and technologies (IST) in healthcare. For each maturity model, it is identified the methodology of development and validation, as well as the scope, stages and their characteristics by dimensions or influence factors. This study resulted in the need to develop a maturity model based on a holistic approach. It will include a comprehensive set of influencing factors to reach all areas and subsystems of health care organizations.

  6. Orbital Space Plane (OSP) Program at Lockheed Martin

    NASA Technical Reports Server (NTRS)

    Ford, Robert

    2003-01-01

    Lockheed Martin has been an active participant in NASA's Space Launch Initiative (SLI) programs over the past several years. SLI, part of NASA's Integrated Space Transportation Plan (ISTP), was restructured in November 2002 to focus the overall theme of safer, more affordable space transportation along two paths the Orbital Space Plane (OSP) and the Next Generation Launch Technology programs. The Orbital Space Plane program has the goal of providing rescue capability from the International Space Station by 2008 or earlier and transfer capability for crew (and contingency cargo) by 2012. The Next Generation Launch Technology program is combining research and development efforts from the 2d Generation Reusable Launch Vehicle (2GRLV) program with cutting-edge, advanced space transportation programs (previously designated 31d Generation) into one program aimed at enabling safe, reliable, cost-effective reusable launch systems by the middle of the next decade. Lockheed Martin is one of three prime contractors working to bring Orbital Space Plane system concepts to a system design level of maturity by December 2003. This paper and presentation will update the aerospace community on the progress of the OSP program, from an industry perspective, and provide insights into Lockheed Martin's role in enabling the vision of a safer, more affordable means of taking people to and from space.

  7. Technology Assessment Requirements for Programs and Projects

    NASA Technical Reports Server (NTRS)

    Bilbro, James W.

    2006-01-01

    Program/project uncertainty can most simply be defined as the unpredictability of its outcome. As might be expected, the degree of uncertainty depends substantially on program/project type. For hi-tech programs/projects, uncertainty all too frequently translates into schedule slips, cost overruns and occasionally even to cancellations or failures - consummations root cause of such events is often attributed to inadequate definition of requirements. If such were indeed the root cause, then correcting the situation would simply be a matter of requiring better requirements definition, but since history seems frequently to repeat itself, this must not be the case - at least not in total. There are in fact many contributors to schedule slips, cost overruns, project cancellations and failures, among them lack of adequate requirements definition. The case can be made, however, that many of these contributors are related to the degree of uncertainty at the outset of the project. And further, that a dominant factor in the degree of uncertainty is the maturity of the technology required to bring the project to fruition. This presentation discusses the concept of relating degrees of uncertainty to Technology Readiness Levels (TRL) and their associated Advancement Degree of Difficulty (AD2) levels. It also briefly describes a quantifiable process to establish the appropriate TRL for a given technology and quantifies through the AD2 what is required to move it from its current TRL to the desired TRL in order to reduce risk and maximize likelihood of successfully infusing the technology.

  8. Engine Validation of Noise and Emission Reduction Technology Phase I

    NASA Technical Reports Server (NTRS)

    Weir, Don (Editor)

    2008-01-01

    This final report has been prepared by Honeywell Aerospace, Phoenix, Arizona, a unit of Honeywell International, Inc., documenting work performed during the period December 2004 through August 2007 for the NASA Glenn Research Center, Cleveland, Ohio, under the Revolutionary Aero-Space Engine Research (RASER) Program, Contract No. NAS3-01136, Task Order 8, Engine Validation of Noise and Emission Reduction Technology Phase I. The NASA Task Manager was Dr. Joe Grady of the NASA Glenn Research Center. The NASA Contract Officer was Mr. Albert Spence of the NASA Glenn Research Center. This report is for a test program in which NASA funded engine validations of integrated technologies that reduce aircraft engine noise. These technologies address the reduction of engine fan and jet noise, and noise associated with propulsion/airframe integration. The results of these tests will be used by NASA to identify the engineering tradeoffs associated with the technologies that are needed to enable advanced engine systems to meet stringent goals for the reduction of noise. The objectives of this program are to (1) conduct system engineering and integration efforts to define the engine test-bed configuration; (2) develop selected noise reduction technologies to a technical maturity sufficient to enable engine testing and validation of those technologies in the FY06-07 time frame; (3) conduct engine tests designed to gain insight into the sources, mechanisms and characteristics of noise in the engines; and (4) establish baseline engine noise measurements for subsequent use in the evaluation of noise reduction.

  9. Propulsion and Cryogenics Advanced Development (PCAD) Project Propulsion Technologies for the Lunar Lander

    NASA Technical Reports Server (NTRS)

    Klem, Mark D.; Smith, Timothy D.

    2008-01-01

    The Propulsion and Cryogenics Advanced Development (PCAD) Project in the Exploration Technology Development Program is developing technologies as risk mitigation for Orion and the Lunar Lander. An integrated main and reaction control propulsion system has been identified as a candidate for the Lunar Lander Ascent Module. The propellants used in this integrated system are Liquid Oxygen (LOX)/Liquid Methane (LCH4) propellants. A deep throttle pump fed Liquid Oxygen (LOX)/Liquid Hydrogen (LH2) engine system has been identified for the Lunar Lander Descent Vehicle. The propellant combination and architecture of these propulsion systems are novel and would require risk reduction prior to detailed design and development. The PCAD Project addresses the technology requirements to obtain relevant and necessary test data to further the technology maturity of propulsion hardware utilizing these propellants. This plan and achievements to date will be presented.

  10. From the Chemistry Lab to Licensing

    NASA Technical Reports Server (NTRS)

    Savino, Joseph M.; Street, Kenneth W.; Philipp, Warren H.

    1998-01-01

    This is a story of technology maturation and transfer, and licensing. It traces the history of the recently patented ion- exchange material (IEM) from the accidental discovery that this polymer, a battery separator of marginal performance, picked up copper from distilled water passing through corroded copper tubing in the laboratory, to a point where five organizations and one individual have applied for licenses to manufacture and market it or to use it in a wide variety of applications. This story discusses in detail the problems of converting an immature technology into a mature and eventually commercialized technology, without dedicated resources. Readers will develop an appreciation for how the obstacles to maturation and licensing of the technology were faced and overcome. The lessons learned will be discussed, with the hope of enhancing the technology transfer process.

  11. The Legacy of Space Shuttle Flight Software

    NASA Technical Reports Server (NTRS)

    Hickey, Christopher J.; Loveall, James B.; Orr, James K.; Klausman, Andrew L.

    2011-01-01

    The initial goals of the Space Shuttle Program required that the avionics and software systems blaze new trails in advancing avionics system technology. Many of the requirements placed on avionics and software were accomplished for the first time on this program. Examples include comprehensive digital fly-by-wire technology, use of a digital databus for flight critical functions, fail operational/fail safe requirements, complex automated redundancy management, and the use of a high-order software language for flight software development. In order to meet the operational and safety goals of the program, the Space Shuttle software had to be extremely high quality, reliable, robust, reconfigurable and maintainable. To achieve this, the software development team evolved a software process focused on continuous process improvement and defect elimination that consistently produced highly predictable and top quality results, providing software managers the confidence needed to sign each Certificate of Flight Readiness (COFR). This process, which has been appraised at Capability Maturity Model (CMM)/Capability Maturity Model Integration (CMMI) Level 5, has resulted in one of the lowest software defect rates in the industry. This paper will present an overview of the evolution of the Primary Avionics Software System (PASS) project and processes over thirty years, an argument for strong statistical control of software processes with examples, an overview of the success story for identifying and driving out errors before flight, a case study of the few significant software issues and how they were either identified before flight or slipped through the process onto a flight vehicle, and identification of the valuable lessons learned over the life of the project.

  12. Risk of spacecraft on-orbit obsolescence: Novel framework, stochastic modeling, and implications

    NASA Astrophysics Data System (ADS)

    Dubos, Gregory F.; Saleh, Joseph H.

    2010-07-01

    The Government Accountability Office (GAO) has repeatedly noted the difficulties encountered by the Department of Defense (DOD) in keeping its acquisition of space systems on schedule and within budget. Among the recommendations provided by GAO, a minimum Technology Readiness Level (TRL) for technologies to be included in the development of a space system is advised. The DOD considers this recommendation impractical arguing that if space systems were designed with only mature technologies (high TRL), they would likely become obsolete on-orbit fairly quickly. The risk of on-orbit obsolescence is a key argument in the DOD's position for dipping into low technology maturity for space acquisition programs, but this policy unfortunately often results in the cost growth and schedule slippage criticized by the GAO. The concept of risk of on-orbit obsolescence has remained qualitative to date. In this paper, we formulate a theory of risk of on-orbit obsolescence by building on the traditional notion of obsolescence and adapting it to the specificities of space systems. We develop a stochastic model for quantifying and analyzing the risk of on-orbit obsolescence, and we assess, in its light, the appropriateness of DOD's rationale for maintaining low TRL technologies in its acquisition of space assets as a strategy for mitigating on-orbit obsolescence. Our model and results contribute one step towards the resolution of the conceptual stalemate on this matter between the DOD and the GAO, and we hope will inspire academics to further investigate the risk of on-orbit obsolescence.

  13. Stretched Lens Array Squarerigger (SLASR) Technology Maturation

    NASA Technical Reports Server (NTRS)

    O'Neill, Mark; McDanal, A.J.; Howell, Joe; Lollar, Louis; Carrington, Connie; Hoppe, David; Piszczor, Michael; Suszuki, Nantel; Eskenazi, Michael; Aiken, Dan; hide

    2007-01-01

    Since April 2005, our team has been underway on a competitively awarded program sponsored by NASA s Exploration Systems Mission Directorate to develop, refine, and mature the unique solar array technology known as Stretched Lens Array SquareRigger (SLASR). SLASR offers an unprecedented portfolio of performance metrics, SLASR offers an unprecedented portfolio of performance metrics, including the following: Areal Power Density = 300 W/m2 (2005) - 400 W/m2 (2008 Target) Specific Power = 300 W/kg (2005) - 500 W/kg (2008 Target) for a Full 100 kW Solar Array Stowed Power = 80 kW/cu m (2005) - 120 kW/m3 (2008 Target) for a Full 100 kW Solar Array Scalable Array Capacity = 100 s of W s to 100 s of kW s Super-Insulated Small Cell Circuit = High-Voltage (300-600 V) Operation at Low Mass Penalty Super-Shielded Small Cell Circuit = Excellent Radiation Hardness at Low Mass Penalty 85% Cell Area Savings = 75% Lower Array Cost per Watt than One-Sun Array Modular, Scalable, & Mass-Producible at MW s per Year Using Existing Processes and Capacities

  14. NASA Program Office Technology Investments to Enable Future Missions

    NASA Astrophysics Data System (ADS)

    Thronson, Harley; Pham, Thai; Ganel, Opher

    2018-01-01

    The Cosmic Origins (COR) and Physics of the Cosmos (PCOS) Program Offices (POs) reside at NASA GSFC and implement priorities for the NASA HQ Astrophysics Division (APD). One major aspect of the POs’ activities is managing our Strategic Astrophysics Technology (SAT) program to mature technologies for future strategic missions. The Programs follow APD guidance on which missions are strategic, currently informed by the NRC’s 2010 Decadal Survey report, as well as APD’s Implementation Plan and the Astrophysics Roadmap.In preparation for the upcoming 2020 Decadal Survey, the APD has established Science and Technology Definition Teams (STDTs) to study four large-mission concepts: the Origins Space Telescope (née, Far-IR Surveyor), Habitable Exoplanet Imaging Mission, Large UV/Optical/IR Surveyor, and Lynx (née, X-ray Surveyor). The STDTs will develop the science case and design reference mission, assess technology development needs, and estimate the cost of their concept. A fifth team, the L3 Study Team (L3ST), was charged to study potential US contributions to ESA’s planned Laser Interferometer Space Antenna (LISA) gravitational-wave observatory.The POs use a rigorous and transparent process to solicit technology gaps from the scientific and technical communities, and prioritize those entries based on strategic alignment, expected impact, cross-cutting applicability, and urgency. For the past two years, the technology-gap assessments of the four STDTs and the L3ST are included in our process. Until a study team submits its final report, community-proposed changes to gaps submitted or adopted by a study team are forwarded to that study team for consideration.We discuss our technology development process, with strategic prioritization informing calls for SAT proposals and informing investment decisions. We also present results of the 2017 technology gap prioritization and showcase our current portfolio of technology development projects. To date, 96 COR and 86 PCOS SAT proposals have been received, of which 22 COR and 28 PCOS projects were awarded. For more information, see the Program Annual Technology Reports available through the PO Technology web page at https://apd440.gsfc.nasa.gov/technology.html .

  15. A program-management plan with critical-path definition for Combustion Augmentation with Thermionic Energy Conversion (CATEC)

    NASA Technical Reports Server (NTRS)

    Morris, J. F.; Merrill, O. S.; Reddy, H. K.

    1981-01-01

    Thermionic energy conversion (TEC) is discussed. In recent TEC-topping analyses, overall plant efficiency (OPE) and cost of electricity (COE) improved slightly with current capabilities and substantially with fully matured technologies. Enhanced credibility derives from proven hot-corrosion protection for TEC by silicon-carbide clads in fossil fuel combustion products. Combustion augmentation with TEC (CATEC) affords minimal cost and plant perturbation, but with smaller OPE and COE improvements than more conventional topping applications. Risk minimization as well as comparative simplicity and convenience, favor CATEC for early market penetration. A program-management plan is proposed. Inputs, characteristics, outputs and capabilities are discussed.

  16. A program-management plan with critical-path definition for Combustion Augmentation with Thermionic Energy Conversion (CATEC)

    NASA Astrophysics Data System (ADS)

    Morris, J. F.; Merrill, O. S.; Reddy, H. K.

    Thermionic energy conversion (TEC) is discussed. In recent TEC-topping analyses, overall plant efficiency (OPE) and cost of electricity (COE) improved slightly with current capabilities and substantially with fully matured technologies. Enhanced credibility derives from proven hot-corrosion protection for TEC by silicon-carbide clads in fossil fuel combustion products. Combustion augmentation with TEC (CATEC) affords minimal cost and plant perturbation, but with smaller OPE and COE improvements than more conventional topping applications. Risk minimization as well as comparative simplicity and convenience, favor CATEC for early market penetration. A program-management plan is proposed. Inputs, characteristics, outputs and capabilities are discussed.

  17. Low Gravity Issues of Deep Space Refueling

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2005-01-01

    This paper discusses the technologies required to develop deep space refueling of cryogenic propellants and low cost flight experiments to develop them. Key technologies include long term storage, pressure control, mass gauging, liquid acquisition, and fluid transfer. Prior flight experiments used to mature technologies are discussed. A plan is presented to systematically study the deep space refueling problem and devise low-cost experiments to further mature technologies and prepare for full scale flight demonstrations.

  18. Information Technology Governance Maturity: Examining the Moderating Effect on the Relationship between Strategic Alignment Maturity and Information Technology Effectiveness

    ERIC Educational Resources Information Center

    Kouakou, Claude N.

    2013-01-01

    The positive contribution of information technology (IT) in an organization is undeniable. Most organizations take advantage of that contributive benefit by aligning their business strategy with their IT strategy. This alignment is known as IT-business strategic alignment. Strategic alignment involves making the best possible use of corporate IT…

  19. Final Report for the Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2030 to 2035 Period, N+3 Supersonic Program

    NASA Technical Reports Server (NTRS)

    Morgenstern, John; Norstrud, Nicole; Stelmack, Marc; Skoch, Craig

    2010-01-01

    The N+3 Final Report documents the work and progress made by Lockheed Martin Aeronautics in response to the NASA sponsored program "N+3 NRA Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2030 to 2035 Period." The key technical objective of this effort was to generate promising supersonic concepts for the 2030 to 2035 timeframe and to develop plans for maturing the technologies required to make those concepts a reality. The N+3 program is aligned with NASA's Supersonic Project and is focused on providing alternative system-level solutions capable of overcoming the efficiency, environmental, and performance barriers to practical supersonic flight

  20. Space Launch System Spacecraft/Payloads Integration and Evolution Office Advanced Development FY 2014 Annual Report

    NASA Technical Reports Server (NTRS)

    Crumbly, C. M.; Bickley, F. P.; Hueter, U.

    2015-01-01

    The Advanced Development Office (ADO), part of the Space Launch System (SLS) program, provides SLS with the advanced development needed to evolve the vehicle from an initial Block 1 payload capability of 70 metric tons (t) to an eventual capability Block 2 of 130 t, with intermediary evolution options possible. ADO takes existing technologies and matures them to the point that insertion into the mainline program minimizes risk. The ADO portfolio of tasks covers a broad range of technical developmental activities. The ADO portfolio supports the development of advanced boosters, upper stages, and other advanced development activities benefiting the SLS program. A total of 36 separate tasks were funded by ADO in FY 2014.

  1. An Assessment of the Status of Captive Broodstock Technology of Pacific Salmon, 1995 Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flagg, Thomas A.; Mahnaken, Conrad V.W.; Hard, Jeffrey J.

    1995-06-01

    This report provides guidance for the refinement and use of captive broodstock technology for Pacific salmon (Oncorhynchus spp.) by bringing together information on the husbandry techniques, genetic risks, physiology, nutrition, and pathology affecting captive broodstocks. Captive broodstock rearing of Pacific salmon is an evolving technology, as yet without well defined standards. At present, we regard captive rearing of Pacific salmon as problematic: high mortality rates and low egg viability were common in the programs we reviewed for this report. One of the most important elements in fish husbandry is the culture environment itself. Many captive broodstock programs for Pacific salmonmore » have reared fish from smolt-to-adult in seawater net-pens, and most have shown success in providing gametes for recovery efforts. However, some programs have lost entire brood years to diseases that transmitted rapidly in this medium. Current programs for endangered species of Pacific salmon rear most fish full-term to maturity in fresh well-water, since ground water is low in pathogens and thus helps ensure survival to adulthood. Our review suggested that captive rearing of fish in either freshwater, well-water, or filtered and sterilized seawater supplied to land-based tanks should produce higher survival than culture in seawater net-pens.« less

  2. An Approach to Establishing System Benefits for Technology in NASA's Hypersonics Investment Area

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; Pannell, Bill; Cook, Stephen (Technical Monitor)

    2001-01-01

    NASA's has established long term goals for access-to-space. The third generation launch systems are to be fully reusable and operational around 2025. The goals for the third generation launch system are to significantly reduce cost and improve safety over current systems. The Advanced Space Transportation Program (ASTP) Office at the NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop space transportation technologies. Within ASTP, under the Hypersonics Investment Area, third generation technologies are being pursued. The Hypersonics Investment Area's primary objective is to mature vehicle technologies to enable substantial increases in the design and operating margins of third generation RLVs (current Space Shuttle is considered the first generation RLV) by incorporating advanced propulsion systems, materials, structures, thermal protection systems, power, and avionics technologies. The paper describes the system process, tools and concepts used to determine the technology benefits. Preliminary results will be presented along with the current technology investments that are being made by ASTP's Hypersonics Investment Area.

  3. New Developments in the Technology Readiness Assessment Process in US DOE-EM - 13247

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krahn, Steven; Sutter, Herbert; Johnson, Hoyt

    2013-07-01

    A Technology Readiness Assessment (TRA) is a systematic, metric-based process and accompanying report that evaluates the maturity of the technologies used in systems; it is designed to measure technology maturity using the Technology Readiness Level (TRL) scale pioneered by the National Aeronautics and Space Administration (NASA) in the 1980's. More recently, DoD has adopted and provided systematic guidance for performing TRAs and determining TRLs. In 2007 the GAO recommended that the DOE adopt the NASA/DoD methodology for evaluating technology maturity. Earlier, in 2006-2007, DOE-EM had conducted pilot TRAs on a number of projects at Hanford and Savannah River. In Marchmore » 2008, DOE-EM issued a process guide, which established TRAs as an integral part of DOE-EM's Project Management Critical Decision Process. Since the development of its detailed TRA guidance in 2008, DOE-EM has continued to accumulate experience in the conduct of TRAs and the process for evaluating technology maturity. DOE has developed guidance on TRAs applicable department-wide. DOE-EM's experience with the TRA process, the evaluations that led to recently developed proposed revisions to the DOE-EM TRA/TMP Guide; the content of the proposed changes that incorporate the above lessons learned and insights are described. (authors)« less

  4. NASA's Orbital Space Plane Risk Reduction Strategy

    NASA Technical Reports Server (NTRS)

    Dumbacher, Dan

    2003-01-01

    This paper documents the transformation of NASA s Space Launch Initiative (SLI) Second Generation Reusable Launch Vehicle Program under the revised Integrated Space Transportation Plan, announced November 2002. Outlining the technology development approach followed by the original SLI, this paper gives insight into the current risk-reduction strategy that will enable confident development of the Nation s first orbital space plane (OSP). The OSP will perform an astronaut and contingency cargo transportation function, with an early crew rescue capability, thus enabling increased crew size and enhanced science operations aboard the International Space Station. The OSP design chosen for full-scale development will take advantage of the latest innovations American industry has to offer. The OSP Program identifies critical technologies that must be advanced to field a safe, reliable, affordable space transportation system for U.S. access to the Station and low-Earth orbit. OSP flight demonstrators will test crew safety features, validate autonomous operations, and mature thermal protection systems. Additional enabling technologies may be identified during the OSP design process as part of an overall risk-management strategy. The OSP Program uses a comprehensive and evolutionary systems acquisition approach, while applying appropriate lessons learned.

  5. Practice Ethical Behavior. Work Maturity Skills. Competency 4.0.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    Designed for use as a part of the Work Maturity Skills Training Program, this unit consists of instructional materials dealing with practicing ethical behavior. (The Work Maturity Skills Training Program is a set of individualized competency-based units that are designed to help participants develop the competencies they need to find and retain…

  6. Developing Advanced Human Support Technologies for Planetary Exploration Missions

    NASA Technical Reports Server (NTRS)

    Berdich, Debra P.; Campbell, Paul D.; Jernigan, J. Mark

    2004-01-01

    The United States Vision for Space Exploration calls for sending robots and humans to explore the Earth's moon, the planet Mars, and beyond. The National Aeronautics and Space Administration (NASA) is developing a set of design reference missions that will provide further detail to these plans. Lunar missions are expected to provide a stepping stone, through operational research and evaluation, in developing the knowledge base necessary to send crews on long duration missions to Mars and other distant destinations. The NASA Exploration Systems Directorate (ExSD), in its program of bioastronautics research, manages the development of technologies that maintain human life, health, and performance in space. Using a system engineering process and risk management methods, ExSD's Human Support Systems (HSS) Program selects and performs research and technology development in several critical areas and transfers the results of its efforts to NASA exploration mission/systems development programs in the form of developed technologies and new knowledge about the capabilities and constraints of systems required to support human existence beyond Low Earth Orbit. HSS efforts include the areas of advanced environmental monitoring and control, extravehicular activity, food technologies, life support systems, space human factors engineering, and systems integration of all these elements. The HSS Program provides a structured set of deliverable products to meet the needs of exploration programs. These products reduce the gaps that exist in our knowledge of and capabilities for human support for long duration, remote space missions. They also reduce the performance gap between the efficiency of current space systems and the greater efficiency that must be achieved to make human planetary exploration missions economically and logistically feasible. In conducting this research and technology development program, it is necessary for HSS technologists and program managers to develop a common currency for decision making and the allocation of funding. A high level assessment is made of both the knowledge gaps and the system performance gaps across the program s technical project portfolio. This allows decision making that assures proper emphasis areas and provides a key measure of annual technological progress, as exploration mission plans continue to mature.

  7. Developing Advanced Support Technologies for Planetary Exploration Missions

    NASA Technical Reports Server (NTRS)

    Berdich, Debra P.; Campbel, Paul D.; Jernigan, J. Mark

    2004-01-01

    The United States Vision for Space Exploration calls for sending robots and humans to explore the Earth s moon, the planet Mars, and beyond. The National Aeronautics and Space Administration (NASA) is developing a set of design reference missions that will provide further detail to these plans. Lunar missions are expected to provide a stepping stone, through operational research and evaluation, in developing the knowledge base necessary to send crews on long duration missions to Mars and other distant destinations. The NASA Exploration Systems Directorate (ExSD), in its program of bioastronautics research, manages the development of technologies that maintain human life, health, and performance in space. Using a systems engineering process and risk management methods, ExSD s Human Support Systems (HSS) Program selects and performs research and technology development in several critical areas and transfers the results of its efforts to NASA exploration mission/systems development programs in the form of developed technologies and new knowledge about the capabilities and constraints of systems required to support human existence beyond Low Earth Orbit. HSS efforts include the areas of advanced environmental monitoring and control, extravehicular activity, food technologies, life support systems, space human factors engineering, and systems integration of all these elements. The HSS Program provides a structured set of deliverable products to meet the needs of exploration programs. these products reduce the gaps that exist in our knowledge of and capabilities for human support for long duration, remote space missions. They also reduce the performance gap between the efficiency of current space systems and the greater efficiency that must be achieved to make human planetary exploration missions economically and logistically feasible. In conducting this research and technology development program, it is necessary for HSS technologists and program managers to develop a common currency for decision making and the allocation of funding. A high level assessment is made of both the knowledge gaps and the system performance gaps across the program s technical project portfolio. This allows decision making that assures proper emphasis areas and provides a key measure of annual technological progress, as exploration mission plans continue to mature.

  8. Composite Development and Applications for RLV Tankage

    NASA Technical Reports Server (NTRS)

    Wright, Richard J.; Achary, David C.; McBain, Michael C.

    2003-01-01

    The development of polymer composite cryogenic tanks is a critical step in creating the next generation of launch vehicles. Future launch vehicles need to minimize the gross liftoff weight (GLOW), which is possible due to the 28%-41% reduction in weight that composite materials can provide over current aluminum technology. The development of composite cryogenic tanks, feedlines, and unpressurized structures are key enabling technologies for performance and cost enhancements for Reusable Launch Vehicles (RLVs). The technology development of composite tanks has provided direct and applicable data for feedlines, unpressurized structures, material compatibility, and cryogenic fluid containment for highly loaded complex structures and interfaces. All three types of structure have similar material systems, processing parameters, scaling issues, analysis methodologies, NDE development, damage tolerance, and repair scenarios. Composite cryogenic tankage is the most complex of the 3 areas and provides the largest breakthrough in technology. A building block approach has been employed to bring this family of difficult technologies to maturity. This approach has built up composite materials, processes, design, analysis and test methods technology through a series of composite test programs beginning with the NASP program to meet aggressive performance goals for reusable launch vehicles. In this paper, the development and application of advanced composites for RLV use is described.

  9. Career Maturity of Students in Accelerated versus Traditional Programs

    ERIC Educational Resources Information Center

    Borges, Nicole J.; Richard, George V.; Duffy, Ryan D.

    2007-01-01

    The authors assessed the career maturity of students in accelerated versus traditional academic programs. Students in traditional programs were hypothesized to be more advanced regarding their career decision making and development when compared with students in accelerated programs. The Medical Career Development Inventory (see M. L. Savickas,…

  10. Maturity Assessment of Space Plug-and-Play Architecture

    DTIC Science & Technology

    2013-03-01

    SSM SPA Service Module SRL System Readiness Level TAT Time-at-Tone TRA Technology Readiness Assessment TRL Technology Readiness Level USB Universal...maturity assessment—the Technology Readiness Level (TRL) process, the Integration Readiness Level (IRL) process, and the System Readiness Level ( SRL ...is an important hallmark of the SPA concept, and makes possible the composability and scalability of system designs that employ it. 14 4. SPA

  11. KSC-2012-1828

    NASA Image and Video Library

    2012-03-09

    CANOGA PARK, Calif. -- Pratt & Whitney Rocketdyne hot-fires a launch abort engine for The Boeing Co., which is developing its CST-100 spacecraft for NASA's Commercial Crew Program. Under its fixed-price contract with Boeing, Pratt and Whitney Rocketdyne is combining its Attitude Control Propulsion System thrusters from heritage spaceflight programs, Bantam abort engine design and storable propellant engineering capabilities. In 2011, NASA selected Boeing of Houston during Commercial Crew Development Round 2 CCDev2) activities to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. ATK, Blue Origin, Excalibur Almaz Inc., Sierra Nevada Corp., Space Exploration Technologies SpaceX, and United Launch Alliance ULA. For more information, visit www.nasa.gov/commercialcrew. Image credit: Pratt & Whitney Rocketdyne

  12. KSC-2012-1829

    NASA Image and Video Library

    2012-03-09

    CANOGA PARK, Calif. -- Pratt & Whitney Rocketdyne hot-fires a launch abort engine for The Boeing Co., which is developing its CST-100 spacecraft for NASA's Commercial Crew Program. Under its fixed-price contract with Boeing, Pratt and Whitney Rocketdyne is combining its Attitude Control Propulsion System thrusters from heritage spaceflight programs, Bantam abort engine design and storable propellant engineering capabilities. In 2011, NASA selected Boeing of Houston during Commercial Crew Development Round 2 CCDev2) activities to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. ATK, Blue Origin, Excalibur Almaz Inc., Sierra Nevada Corp., Space Exploration Technologies SpaceX, and United Launch Alliance ULA. For more information, visit www.nasa.gov/commercialcrew. Image credit: Pratt & Whitney Rocketdyne

  13. KSC-2012-1827

    NASA Image and Video Library

    2012-03-09

    CANOGA PARK, Calif. -- Pratt & Whitney Rocketdyne hot-fires a launch abort engine for The Boeing Co., which is developing its CST-100 spacecraft for NASA's Commercial Crew Program. Under its fixed-price contract with Boeing, Pratt and Whitney Rocketdyne is combining its Attitude Control Propulsion System thrusters from heritage spaceflight programs, Bantam abort engine design and storable propellant engineering capabilities. In 2011, NASA selected Boeing of Houston during Commercial Crew Development Round 2 CCDev2) activities to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. ATK, Blue Origin, Excalibur Almaz Inc., Sierra Nevada Corp., Space Exploration Technologies SpaceX, and United Launch Alliance ULA. For more information, visit www.nasa.gov/commercialcrew. Image credit: Pratt & Whitney Rocketdyne

  14. A Center of Excellence in Rotary Wing Aircraft Technology. Phase 2. Program Maturation Phase, 15 January 1988 - 14 January 1993

    DTIC Science & Technology

    1993-03-14

    COSTSHARING REOUIRED AND UNIVERSITY COO SHARING c ison For INCREASED . . *AFLIGHT SIMULATION TASK ADDED D ! !L ý Figure 1. _It• .. ... Avail. 2Blot S. . .. lI...Vibrations and Structnal Dynamics .................. 28 Task 4. Damage Resistance in Rotorcraft Structus ........................ 31 D . Flight Mechanics and...Twenty-Second Symposium (Volume i), ASTM STP 1131, H. A. Ernst, A. Saxena, and D . L. McDowell, Eds., American Society for Testing and Materials

  15. Proceedings from the Workshop on Phytoremediation of Inorganic Contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Jay Thatcher; Matthern, Gretchen Elise; Glenn, Anne Williams

    The Metals and Radionuclides Product Line of the U.S. Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) is responsible for the development of technologies and systems that reduce the risk and cost of remediation of radionuclide and hazardous metal contamination in soils and groundwater. The rapid and efficient remediation of these sites and the areas surrounding them represents a technological challenge. Phytoremediation, the use of living plants to cleanup contaminated soils, sediments, surface water and groundwater, is an emerging technology that may be applicable to the problem. The use of phytoremediation to cleanup organic contamination is widely accepted andmore » is being implemented at numerous sites. This workshop was held to initiate a discussion in the scientific community about whether phytoremediation is applicable to inorganic contaminants, such as metals and radionuclides, across the DOE complex. The Workshop on Phytoremediation of Inorganic Contaminants was held at Argonne National Laboratory from November 30 through December 2, 1999. The purpose of the workshop was to provide SCFA and the DOE Environmental Restoration Program with an understanding of the status of phytoremediation as a potential remediation technology for DOE sites. The workshop was expected to identify data gaps, technologies ready for demonstration and deployment, and to provide a set of recommendations for the further development of these technologies. More specifically, the objectives of the workshop were to: · Determine the status of the existing baseline, including technological maturation, · Identify areas for future potential research, · Identify the key issues and recommendations for issue resolution, · Recommend a strategy for maturing key aspects of phytoremediation, · Improve communication and collaboration among organizations currently involved in phytoremediation research, and · Identify technical barriers to making phytoremediation commercially successful in more areas.« less

  16. Avionics Architectures for Exploration: Ongoing Efforts in Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Goforth, Montgomery B.; Ratliff, James E.; Hames, Kevin L.; Vitalpur, Sharada V.; Woodman, Keith L.

    2014-01-01

    The field of Avionics is advancing far more rapidly in terrestrial applications than in spaceflight applications. Spaceflight Avionics are not keeping pace with expectations set by terrestrial experience, nor are they keeping pace with the need for increasingly complex automation and crew interfaces as we move beyond Low Earth Orbit. NASA must take advantage of the strides being made by both space-related and terrestrial industries to drive our development and sustaining costs down. This paper describes ongoing efforts by the Avionics Architectures for Exploration (AAE) project chartered by NASA's Advanced Exploration Systems (AES) Program to evaluate new avionic architectures and technologies, provide objective comparisons of them, and mature selected technologies for flight and for use by other AES projects. The AAE project team includes members from most NASA centers, and from industry. It is our intent to develop a common core avionic system that has standard capabilities and interfaces, and contains the basic elements and functionality needed for any spacecraft. This common core will be scalable and tailored to specific missions. It will incorporate hardware and software from multiple vendors, and be upgradeable in order to infuse incremental capabilities and new technologies. It will maximize the use of reconfigurable open source software (e.g., Goddard Space Flight Center's (GSFC's) Core Flight Software (CFS)). Our long-term focus is on improving functionality, reliability, and autonomy, while reducing size, weight, and power. Where possible, we will leverage terrestrial commercial capabilities to drive down development and sustaining costs. We will select promising technologies for evaluation, compare them in an objective manner, and mature them to be available for future programs. The remainder of this paper describes our approach, technical areas of emphasis, integrated test experience and results as of mid-2014, and future plans. As a part of the AES Program, we are encouraged to set aggressive goals and fall short if necessary, rather than to set our sights too low. We are also asked to emphasize providing our personnel with hands-on experience in development, integration, and testing. That we have embraced both of these philosophies will be evident in the descriptions below.

  17. Preliminary test results from a free-piston Stirling engine technology demonstration program to support advanced radioisotope space power applications

    NASA Astrophysics Data System (ADS)

    White, Maurice A.; Qiu, Songgang; Augenblick, Jack E.

    2000-01-01

    Free-piston Stirling engines offer a relatively mature, proven, long-life technology that is well-suited for advanced, high-efficiency radioisotope space power systems. Contracts from DOE and NASA are being conducted by Stirling Technology Company (STC) for the purpose of demonstrating the Stirling technology in a configuration and power level that is representative of an eventual space power system. The long-term objective is to develop a power system with an efficiency exceeding 20% that can function with a high degree of reliability for up to 15 years on deep space missions. The current technology demonstration convertors (TDC's) are completing shakedown testing and have recently demonstrated performance levels that are virtually identical to projections made during the preliminary design phase. This paper describes preliminary test results for power output, efficiency, and vibration levels. These early results demonstrate the ability of the free-piston Stirling technology to exceed objectives by approximately quadrupling the efficiency of conventional radioisotope thermoelectric generators (RTG's). .

  18. CECE: A Deep Throttling Demonstrator Cryogenic Engine for NASA's Lunar Lander

    NASA Technical Reports Server (NTRS)

    Giuliano, Victor J.; Leonard, Timothy G.; Adamski, Walter M.; Kim, Tony S.

    2007-01-01

    As one of the first technology development programs awarded under NASA's Vision for Space Exploration, the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to begin technology development and demonstration toward a deep throttling, cryogenic Lunar Lander engine for use across multiple human and robotic lunar exploration mission segments with extensibility to Mars. The CECE program leverages the maturity and previous investment of a flight-proven hydrogen/oxygen expander cycle engine, the RL10, to develop and demonstrate an unprecedented combination of reliability, safety, durability, throttlability, and restart capabilities in a high-energy, cryogenic engine. NASA Marshall Space Flight Center and NASA Glenn Research Center personnel were integral design and analysis team members throughout the requirements assessment, propellant studies and the deep throttling demonstrator elements of the program. The testbed selected for the initial deep throttling demonstration phase of this program was a minimally modified RL10 engine, allowing for maximum current production engine commonality and extensibility with minimum program cost. In just nine months from technical program start, CECE Demonstrator No. 1 engine testing in April/May 2006 at PWR's E06 test stand successfully demonstrated in excess of 10:1 throttling of the hydrogen/oxygen expander cycle engine. This test provided an early demonstration of a viable, enabling cryogenic propulsion concept with invaluable system-level technology data acquisition toward design and development risk mitigation for both the subsequent CECE Demonstrator No. 2 program and to the future Lunar Lander Design, Development, Test and Evaluation effort.

  19. The Iodine Satellite (iSat) Project Development Towards Critical Design Review

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; Calvert, Derek; Kamhawi, Hani; Hickman, Tyler; Szabo, James; Byrne, Lawrence

    2015-01-01

    Despite the prevalence of small satellites in recent years, the systems flown to date have very limited propulsion capability. SmallSats are typically secondary payloads and have significant constraints for volume, mass, and power in addition to limitations on the use of hazardous propellants or stored energy. These constraints limit the options for SmallSat maneuverability. NASA's Space Technology Mission Directorate approved the iodine Satellite flight project for a rapid demonstration of iodine Hall thruster technology in a 12U (cubesat units) configuration under the Small Spacecraft Technology Program. The mission is a partnership between NASA MSFC, NASA GRC, and Busek Co, Inc., with the Air Force supporting the propulsion technology maturation. The team is working towards the critical design review in the final design and fabrication phase of the project. The current design shows positive technical performance margins in all areas. The iSat project is planned for launch readiness in the spring of 2017.

  20. ERAST: Scientific Applications and Technology Commercialization

    NASA Technical Reports Server (NTRS)

    Hunley, John D. (Compiler); Kellogg, Yvonne (Compiler)

    2000-01-01

    This is a conference publication for an event designed to inform potential contractors and appropriate personnel in various scientific disciplines that the ERAST (Environmental Research Aircraft and Sensor Technology) vehicles have reached a certain level of maturity and are available to perform a variety of missions ranging from data gathering to telecommunications. There are multiple applications of the technology and a great many potential commercial and governmental markets. As high altitude platforms, the ERAST vehicles can gather data at higher resolution than satellites and can do so continuously, whereas satellites pass over a particular area only once each orbit. Formal addresses are given by Rich Christiansen, (Director of Programs, NASA Aerospace Technology Ent.), Larry Roeder, (Senior Policy Advisor, U.S. Dept. of State), and Dr. Marianne McCarthy, (DFRC Education Dept.). The Commercialization Workshop is chaired by Dale Tietz (President, New Vista International) and the Science Workshop is chaired by Steve Wegener, (Deputy Manager of NASA ERAST, NASA Ames Research Center.

  1. New Model of Information Technology Governance in the Government of Gorontalo City using Framework COBIT 4.1

    NASA Astrophysics Data System (ADS)

    Bouty, A. A.; Koniyo, M. H.; Novian, D.

    2018-02-01

    This study aims to determine the level of maturity of information technology governance in Gorontalo city government by applying the COBIT framework 4.1. The research method is the case study method, by conducting surveys and data collection at 25 institution in Gorontalo City. The results of this study is the analysis of information technology needs based on the measurement of maturity level. The results of the measurement of the maturity level of information technology governance shows that there are still many business processes running at lower level, from 9 existing business processes there are 4 processes at level 2 (repetitive but intuitive) and 3 processes at level 1 (Initial/Ad hoc). With these results, is expected that the government of Gorontalo city immediately make improvements to the governance of information technology so that it can run more effectively and efficiently.

  2. Summary of Recent Results from NASA's Space Solar Power (SSP) Programs and the Current Capabilities of Microwave WPT Technology

    NASA Technical Reports Server (NTRS)

    McSpadden, James; Mankins, John C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    The concept of placing enormous solar power satellite (SPS) systems in space represents one of a handful of new technological options that might provide large-scale, environmentally clean base load power into terrestrial markets. In the US, the SPS concept was examined extensively during the late 1970s by the U.S. Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA). More recently, the subject of space solar power (SSP) was reexamined by NASA from 1995-1997 in the "fresh look" study, and during 1998 in an SSP "concept definition study". As a result of these efforts, in 1999-2000, NASA undertook the SSP Exploratory Research and Technology (SERT) program which pursued preliminary strategic technology research and development to enable large, multi-megawatt SSP systems and wireless power transmission (WPT) for government missions and commercial markets (in-space and terrestrial). During 2001-2002, NASA has been pursuing an SSP Concept and Technology Maturation (SCTM) program follow-on to the SERT, with special emphasis on identifying new, high-leverage technologies that might advanced the feasibility of future SSP systems. In addition, in 2001, the U.S. National Research Council (NRC) released a major report providing the results of a peer review of NASA's SSP strategic research and technology (R&T) road maps. One of the key technologies needed to enable the future feasibility of SSP/SPS is that of wireless power transmission. Advances in phased array antennas and rectennas have provided the building blocks for a realizable WPT system. These key components include the dc-RF converters in the transmitter, the retrodirective beam control system, and the receiving rectenna. Each subject is briefly covered, and results from the SERT program that studied a 5.8 GHz SPS system are presented. This paper presents a summary results from NASA's SSP efforts, along with a summary of the status of microwave WPT technology development.

  3. Life Support and Habitation Systems: Crew Support and Protection for Human Exploration Missions Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; McQuillan, Jeffrey

    2011-01-01

    The National Aeronautics and Space Administration (NASA) has recently expanded its mission set for possible future human exploration missions. With multiple options there is interest in identifying technology needs across these missions to focus technology investments. In addition to the Moon and other destinations in cis-lunar space, other destinations including Near Earth Objects and Mars have been added for consideration. Recently, technology programs and projects have been re-organizing to better meet the Agency s strategic goals and address needs across these potential future missions. Life Support and Habitation Systems (LSHS) is one of 10 Foundational Domains as part of the National Aeronautics and Space Administration s Exploration Technology Development Program. The chief goal of LSHS is to develop and mature advanced technologies to sustain human life on missions beyond Low Earth Orbit (LEO) to increase reliability, reduce dependency on resupply and increase vehicle self-sufficiency. For long duration exploration missions, further closure of life support systems is of interest. Focus includes key technologies for atmosphere revitalization, water recovery, waste management, thermal control and crew accommodations. Other areas of focus include technologies for radiation protection, environmental monitoring and fire protection. The aim is to recover additional consumable mass, reduce requirements for power, volume, heat rejection, crew involvement, and meet exploration vehicle requirements. This paper provides a brief description of the LSHS Foundational Domain as defined for fiscal year 2011.

  4. X-Ray Optics at NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Atkins, Carolyn; Broadway, David M.; Elsner, Ronald F.; Gaskin, Jessica A.; Gubarev, Mikhail V.; Kilaru, Kiranmayee; Kolodziejczak, Jeffery J.; Ramsey, Brian D.; Roche, Jacqueline M.; hide

    2015-01-01

    NASA's Marshall Space Flight Center (MSFC) engages in research, development, design, fabrication, coating, assembly, and testing of grazing-incidence optics (primarily) for x-ray telescope systems. Over the past two decades, MSFC has refined processes for electroformed-nickel replication of grazing-incidence optics, in order to produce high-strength, thin-walled, full-cylinder x-ray mirrors. In recent years, MSFC has used this technology to fabricate numerous x-ray mirror assemblies for several flight (balloon, rocket, and satellite) programs. Additionally, MSFC has demonstrated the suitability of this technology for ground-based laboratory applications-namely, x-ray microscopes and cold-neutron microscopes and concentrators. This mature technology enables the production, at moderately low cost, of reasonably lightweight x-ray telescopes with good (15-30 arcsecond) angular resolution. However, achieving arcsecond imaging for a lightweight x-ray telescope likely requires development of other technologies. Accordingly, MSFC is conducting a multi-faceted research program toward enabling cost-effective production of lightweight high-resolution x-ray mirror assemblies. Relevant research topics currently under investigation include differential deposition for post-fabrication figure correction, in-situ monitoring and control of coating stress, and direct fabrication of thin-walled full-cylinder grazing-incidence mirrors.

  5. Maturation of enabling technologies for the next generation reignitable cryogenic upper stage

    NASA Astrophysics Data System (ADS)

    Mueller, Mark

    Following the ESA decision in November 2008, a pre-development phase (Phase 1) of a future evolution of the Ariane 5 launcher (named Ariane 5 Midlife Evolution, A5ME) was started under Astrium Prime leadership. This upgraded version of the Ariane 5 launcher is based on an enhanced performance Upper Stage including the cryogenic re-ignitable VINCI engine. Thanks to this reignition capability, this new Upper Stage shall be "versatile" in the sense that it shall fulfil customer needs on a broader spectrum of orbits than the "standard" orbits (i.e. Geosynchronous Transfer Orbits, GTO) typically used for commercial telecommunications satellites. In order to meet the challenges of versatility, new technologies are currently being investigated. These technologies are mainly related -but not limited-to propellant management during the extended coasting phases with the related heat transfer into the tanks and the required multiple engine re-ignitions. Within the frame of the ESA Future Launchers Preparatory Programme (Period 2 Slice 1), the Cryogenic Upper Stage Technology project (CUST) aims to mature critical technologies to such a Technology Readiness Level (TRL) that they can be integrated into the baseline A5ME Upper Stage development schedule. In addition to A5ME application, these technologies can also be used on the future next generation European launcher. This paper shows the down-selection process implemented to identify the most crucial enabling technologies for a future versatile Upper Stage and gives a description of each technology finally selected for maturation in the frame of CUST. These include -amongst others-a Sandwich Common Bulkhead for the propellant tank, an external thermal insulation kit and various propellant management devices for the coasting phase. The paper also gives an overview on the related development and maturation plan including the tests to be conducted, as well as first results of the maturation activities themselves.

  6. Green Propellant Infusion Mission Program Development and Technology Maturation

    NASA Technical Reports Server (NTRS)

    McLean, Christopher H.; Deininger, William D.; Joniatis, John; Aggarwal, Pravin K.; Spores, Ronald A.; Deans, Matthew; Yim, John T.; Bury, Kristen; Martinez, Jonathan; Cardiff, Eric H.; hide

    2014-01-01

    The NASA Space Technology Mission Directorate's (STMD) Green Propellant Infusion Mission (GPIM) Technology Demonstration Mission (TDM) is comprised of a cross-cutting team of domestic spacecraft propulsion and storable green propellant technology experts. This TDM is led by Ball Aerospace & Technologies Corp. (BATC), who will use their BCP- 100 spacecraft to carry a propulsion system payload consisting of one 22 N thruster for primary divert (DeltaV) maneuvers and four 1 N thrusters for attitude control, in a flight demonstration of the AF-M315E technology. The GPIM project has technology infusion team members from all three major market sectors: Industry, NASA, and the Department of Defense (DoD). The GPIM project team includes BATC, includes Aerojet Rocketdyne (AR), Air Force Research Laboratory, Aerospace Systems Directorate, Edwards AFB (AFRL), NASA Glenn Research Center (GRC), NASA Kennedy Space Center (KSC), and NASA Goddard Space Flight Center (GSFC). STMD programmatic and technology oversight is provided by NASA Marshall Space Flight Center. The GPIM project shall fly an operational AF-M315E green propulsion subsystem on a Ball-built BCP-100 spacecraft.

  7. Thermal Environmental Testing of NSTAR Engineering Model Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Rawlin, Vincent K.; Patterson, Michael J.; Becker, Raymond A.

    1999-01-01

    NASA's New Millenium program will fly a xenon ion propulsion system on the Deep Space 1 Mission. Tests were conducted under NASA's Solar Electric Propulsion Technology Applications Readiness (NSTAR) Program with 3 different engineering model ion thrusters to determine thruster thermal characteristics over the NSTAR operating range in a variety of thermal environments. A liquid nitrogen-cooled shroud was used to cold-soak the thruster to -120 C. Initial tests were performed prior to a mature spacecraft design. Those results and the final, severe, requirements mandated by the spacecraft led to several changes to the basic thermal design. These changes were incorporated into a final design and tested over a wide range of environmental conditions.

  8. JPL Innovation Foundry

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent; McCleese, Daniel

    2012-01-01

    Space science missions are increasingly challenged today: in ambition, by increasingly sophisticated hypotheses tested; in development, by the increasing complexity of advanced technologies; in budgeting, by the decline of flagship-class mission opportunities; in management, by expectations for breakthrough science despite a risk-averse programmatic climate; and in planning, by increasing competition for scarce resources. How are the space-science missions of tomorrow being formulated? The paper describes the JPL Innovation Foundry, created in 2011, to respond to this evolving context. The Foundry integrates methods, tools, and experts that span the mission concept lifecycle. Grounded in JPL's heritage of missions, flight instruments, mission proposals, and concept innovation, the Foundry seeks to provide continuity of support and cost-effective, on-call access to the right domain experts at the right time, as science definition teams and Principal Investigators mature mission ideas from "cocktail napkin" to PDR. The Foundry blends JPL capabilities in proposal development and concurrent engineering, including Team X, with new approaches for open-ended concept exploration in earlier, cost-constrained phases, and with ongoing research and technology projects. It applies complexity and cost models, projectformulation lessons learned, and strategy analyses appropriate to each level of concept maturity. The Foundry is organizationally integrated with JPL formulation program offices; staffed by JPL's line organizations for engineering, science, and costing; and overseen by senior Laboratory leaders to assure experienced coordination and review. Incubation of each concept is tailored depending on its maturity and proposal history, and its highest leverage modeling and analysis needs.

  9. Effects of Deployment Investment on the Growth of the Biofuels Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vimmerstedt, Laura J.; Bush, Brian W.

    2013-12-01

    In support of the national goals for biofuel use in the United States, numerous technologies have been developed that convert biomass to biofuels. Some of these biomass to biofuel conversion technology pathways are operating at commercial scales, while others are in earlier stages of development. The advancement of a new pathway toward commercialization involves various types of progress, including yield improvements, process engineering, and financial performance. Actions of private investors and public programs can accelerate the demonstration and deployment of new conversion technology pathways. These investors (both private and public) will pursue a range of pilot, demonstration, and pioneer scalemore » biorefinery investments; the most cost-effective set of investments for advancing the maturity of any given biomass to biofuel conversion technology pathway is unknown. In some cases, whether or not the pathway itself will ultimately be technically and financially successful is also unknown. This report presents results from the Biomass Scenario Model -- a system dynamics model of the biomass to biofuels system -- that estimate effects of investments in biorefineries at different maturity levels and operational scales. The report discusses challenges in estimating effects of such investments and explores the interaction between this deployment investment and a volumetric production incentive. Model results show that investments in demonstration and deployment have a substantial positive effect on the development of the biofuels industry. Results also show that other conditions, such as supportive policies, have major impacts on the effectiveness of such investments.« less

  10. Final review of analog field campaigns for In Situ Resource Utilization technology and capability maturation

    NASA Astrophysics Data System (ADS)

    Sanders, Gerald B.; Larson, William E.

    2015-05-01

    A key aspect of enabling an affordable and sustainable program of human exploration beyond low Earth orbit is the ability to locate, extract, and harness the resources found in space to reduce what needs to be launched from Earth's deep gravity well and to minimize the risk of dependence on Earth for survival. Known as In Situ Resource Utilization or ISRU, the ability to convert space resources into useful and mission critical products has been shown in numerous studies to be mission and architecture enhancing or enabling. However at the time of the release of the US Vision for Space Exploration in 2004, only concept feasibility hardware for ISRU technologies and capabilities had been built and tested in the laboratory; no ISRU hardware had ever flown in a mission to the Moon or Mars. As a result, an ISRU development project was established with phased development of multiple generations of hardware and systems. To bridge the gap between past ISRU feasibility hardware and future hardware needed for space missions, and to increase confidence in mission and architecture planners that ISRU capabilities would meet exploration needs, the ISRU development project incorporated extensive ground and analog site testing to mature hardware, operations, and interconnectivity with other exploration systems linked to ISRU products. This report documents the series of analog test activities performed from 2008 to 2012, the stepwise progress achieved, and the end-to-end system and mission demonstrations accomplished in this test program.

  11. Advanced Industrial Materials (AIM) program. Annual progress report. FY 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-04-01

    The Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven `Vision Industries` that use about 80% ofmore » industrial energy and generated about 90% of industrial wastes. These are: aluminium; chemical; forest products; glass; metal casting; refineries; and steel. OIT is working with these industries, through appropriate organizations, to develop Visions of the desired condition of each industry some 20 or 25 years in the future and then to prepare Road Maps and Implementation Plans to enable them to reach their goals. The mission of AIM has, therefore, changed to `Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.` Though AIM remains essentially a National Laboratory Program, it is necessary that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains healthy and productive, thanks to the superb investigators and Laboratory Program Managers. Separate abstracts have been indexed into the energy database for articles from this report.« less

  12. Airspace Systems Program: Next Generation Air Transportation System, NextGen Systems Analysis, Integration and Evaluation Project. Version 1.0; Project Plan

    NASA Technical Reports Server (NTRS)

    Quon, Leighton

    2010-01-01

    The key objectives of the NASA ASP are to: Improve mobility, capacity efficiency and access of the airspace system. Improve collaboration, predictability, and flexibility for the airspace users. Enable accurate modeling and simulation of air transportation systems. Accommodate operations of all classes of aircraft. Maintain system safety and environmental protection. In support of these program objectives, the major goal of the NextGen-SAIE Project is to enable the transition of key capacity and efficiency improvements to the NAS. Since many aspects of the NAS are unique to specific airport or airspace environments, demand on various parts of the NAS is not expected to increase equally as system demand grows. SAIE will provide systems level analysis of the NAS characteristics, constraints, and demands such that a suite of capacity-increasing concepts and technologies for system solutions are enabled and facilitated. The technical objectives in support of this goal are the following: Integration, evaluation, and transition of more mature concepts and technologies in an environment that faithfully emulates real-world complexities. Interoperability research and analysis of ASP technologies across ATM functions is performed to facilitate integration and take ASP concepts and technologies to higher Technology Readiness Level (TRL). Analyses are conducted on the program s concepts to identify the system benefits or impacts. System level analysis is conducted to increase understanding of the characteristics and constraints of airspace system and its domains.

  13. Landscape of Innovation for Cardiovascular Pharmaceuticals: From Basic Science to New Molecular Entities.

    PubMed

    Beierlein, Jennifer M; McNamee, Laura M; Walsh, Michael J; Kaitin, Kenneth I; DiMasi, Joseph A; Ledley, Fred D

    2017-07-01

    This study examines the complete timelines of translational science for new cardiovascular therapeutics from the initiation of basic research leading to identification of new drug targets through clinical development and US Food and Drug Administration (FDA) approval of new molecular entities (NMEs) based on this research. This work extends previous studies by examining the association between the growth of research on drug targets and approval of NMEs associated with these targets. Drawing on research on innovation in other technology sectors, where technological maturity is an important determinant in the success or failure of new product development, an analytical model was used to characterize the growth of research related to the known targets for all 168 approved cardiovascular therapeutics. Categorizing and mapping the technological maturity of cardiovascular therapeutics reveal that (1) there has been a distinct transition from phenotypic to targeted methods for drug discovery, (2) the durations of clinical and regulatory processes were significantly influenced by changes in FDA practice, and (3) the longest phase of the translational process was the time required for technology to advance from initiation of research to a statistically defined established point of technology maturation (mean, 30.8 years). This work reveals a normative association between metrics of research maturation and approval of new cardiovascular therapeutics and suggests strategies for advancing translational science by accelerating basic and applied research and improving the synchrony between the maturation of this research and drug development initiatives. Copyright © 2017 Elsevier HS Journals, Inc. All rights reserved.

  14. Advanced Mirror Technology Development (AMTD) for Very Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2014-01-01

    Advanced Mirror Technology Development (AMTD) is a multi-year effort to systematically mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. This technology must enable missions capable of both general astrophysics & ultra-high contrast observations of exoplanets. To accomplish our objective, We use a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system.

  15. First nationwide survey of US integrated 6-year cardiothoracic surgical residency program directors.

    PubMed

    Lebastchi, Amir H; Tackett, John J; Argenziano, Michael; Calhoon, John H; Gasparri, Mario G; Halkos, Michael E; Hicks, George L; Iannettoni, Mark D; Ikonomidis, John S; McCarthy, Patrick M; Starnes, Sandra L; Tong, Betty C; Yuh, David D

    2014-08-01

    The recently implemented integrated 6-year (I-6) format represents a significant change in cardiothoracic surgical residency training. We report the results of the first nationwide survey assessing I-6 program directors' impressions of this new format. A 28-question web-based survey was distributed to program directors of all 24 Accreditation Council for Graduate Medical Education-accredited I-6 training programs in November 2013. The response rate was a robust 67%. Compared with graduates of traditional residencies, most I-6 program directors with enrolled residents believed that their graduates will be better trained (67%), be better prepared for new technological advances (67%), and have superior comprehension of cardiothoracic disease processes (83%). Just as with traditional program graduates, most respondents believed their I-6 graduates would be able to independently perform routine adult cardiac and general thoracic operations (75%) and were equivocal on whether additional specialty training (eg, minimally invasive, heart failure, aortic) was necessary. Most respondents did not believe that less general surgical training disadvantaged I-6 residents in terms of their career (83%); 67% of respondents would have chosen the I-6 format for themselves if given the choice. The greater challenges in training less mature and experienced trainees and vulnerability to attrition were noted as disadvantages of the I-6 format. Most respondents believed that I-6 programs represent a natural evolution toward improved residency training rather than a response to declining interest among medical school graduates. High satisfaction rates with the I-6 format were prevalent among I-6 program directors. However, concerns with respect to training relatively less experienced, mature trainees were evident. Copyright © 2014 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  16. Configuration Aerodynamics: Past - Present - Future

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Agrawal, Shreekant; Bencze, Daniel P.; Kulfan, Robert M.; Wilson, Douglas L.

    1999-01-01

    The Configuration Aerodynamics (CA) element of the High Speed Research (HSR) program is managed by a joint NASA and Industry team, referred to as the Technology Integration Development (ITD) team. This team is responsible for the development of a broad range of technologies for improved aerodynamic performance and stability and control characteristics at subsonic to supersonic flight conditions. These objectives are pursued through the aggressive use of advanced experimental test techniques and state of the art computational methods. As the HSR program matures and transitions into the next phase the objectives of the Configuration Aerodynamics ITD are being refined to address the drag reduction needs and stability and control requirements of High Speed Civil Transport (HSCT) aircraft. In addition, the experimental and computational tools are being refined and improved to meet these challenges. The presentation will review the work performed within the Configuration Aerodynamics element in 1994 and 1995 and then discuss the plans for the 1996-1998 time period. The final portion of the presentation will review several observations of the HSR program and the design activity within Configuration Aerodynamics.

  17. Innovative Airbreathing Propulsion Concepts for High-speed Applications

    NASA Technical Reports Server (NTRS)

    Whitlow, Woodrow, Jr.

    2002-01-01

    The current cost to launch payloads to low earth orbit (LEO) is approximately loo00 U.S. dollars ($) per pound ($22000 per kilogram). This high cost limits our ability to pursue space science and hinders the development of new markets and a productive space enterprise. This enterprise includes NASA's space launch needs and those of industry, universities, the military, and other U.S. government agencies. NASA's Advanced Space Transportation Program (ASTP) proposes a vision of the future where space travel is as routine as in today's commercial air transportation systems. Dramatically lower launch costs will be required to make this vision a reality. In order to provide more affordable access to space, NASA has established new goals in its Aeronautics and Space Transportation plan. These goals target a reduction in the cost of launching payloads to LEO to $lo00 per pound ($2200 per kilogram) by 2007 and to $100' per pound by 2025 while increasing safety by orders of magnitude. Several programs within NASA are addressing innovative propulsion systems that offer potential for reducing launch costs. Various air-breathing propulsion systems currently are being investigated under these programs. The NASA Aerospace Propulsion and Power Base Research and Technology Program supports long-term fundamental research and is managed at GLenn Research Center. Currently funded areas relevant to space transportation include hybrid hyperspeed propulsion (HHP) and pulse detonation engine (PDE) research. The HHP Program currently is addressing rocket-based combined cycle and turbine-based combined cycle systems. The PDE research program has the goal of demonstrating the feasibility of PDE-based hybrid-cycle and combined cycle propulsion systems that meet NASA's aviation and access-to-space goals. The ASTP also is part of the Base Research and Technology Program and is managed at the Marshall Space Flight Center. As technologies developed under the Aerospace Propulsion and Power Base Research and Technology Program mature, they are incorporated into ASTP. One example of this is rocket-based combined cycle systems that are being considered as part of ASTP. The NASA Ultra Efficient Engine Technology (UEET) Program has the goal of developing propulsion system component technology that is relevant to a wide range of vehicle missions. In addition to subsonic and supersonic speed regimes, it includes the hypersonic speed regime. More specifically, component technologies for turbine-based combined cycle engines are being developed as part of UEET.

  18. An overview of Japanese CELSS research activities

    NASA Technical Reports Server (NTRS)

    Nitta, Keiji

    1987-01-01

    Development of Controlled Ecological Life Support System (CELSS) technology is inevitable for future long duration stays of human beings in space, for lunar base construction and for manned Mars flight programs. CELSS functions can be divided into 2 categories, Environmental Control and Material Recycling. Temperature, humidity, total atmospheric pressure and partial pressure of oxygen and carbon dioxide, necessary for all living things, are to be controlled by the environment control function. This function can be performed by technologies already developed and used as the Environment Control Life Support System (ECLSS) of Space Shuttle and Space Station. As for material recycling, matured technologies have not yet been established for fully satisfying the specific metabolic requirements of each living thing including human beings. Therefore, research activities for establishing CELSS technology should be focused on material recycling technologies using biological systems such as plants and animals and physico-chemical systems, for example, a gas recycling system, a water purifying and recycling system and a waste management system. Japanese research activities were conducted and will be continued accordingly.

  19. NASA Game Changing Development Program Manufacturing Innovation Project

    NASA Technical Reports Server (NTRS)

    Tolbert, Carol; Vickers, John

    2011-01-01

    This presentation examines the new NASA Manufacturing Innovation Project. The project is a part of the Game Changing Development Program which is one element of the Space Technology Programs Managed by Office of the Chief Technologist. The project includes innovative technologies in model-based manufacturing, digital additive manufacturing, and other next generation manufacturing tools. The project is also coupled with the larger federal initiatives in this area including the National Digital Engineering and Manufacturing Initiative and the Advanced Manufacturing Partnership. In addition to NASA, other interagency partners include the Department of Defense, Department of Commerce, NIST, Department of Energy, and the National Science Foundation. The development of game-changing manufacturing technologies are critical for NASA s mission of exploration, strengthening America s manufacturing competitiveness, and are highly related to current challenges in defense manufacturing activities. There is strong consensus across industry, academia, and government that the future competitiveness of U.S. industry will be determined, in large part, by a technologically advanced manufacturing sector. This presentation highlights the prospectus of next generation manufacturing technologies to the challenges faced NASA and by the Department of Defense. The project focuses on maturing innovative/high payoff model-based manufacturing technologies that may lead to entirely new approaches for a broad array of future NASA missions and solutions to significant national needs. Digital manufacturing and computer-integrated manufacturing "virtually" guarantee advantages in quality, speed, and cost and offer many long-term benefits across the entire product lifecycle. This paper addresses key enablers and emerging strategies in areas such as: Current government initiatives, Model-based manufacturing, and Additive manufacturing.

  20. Engineering Specifications derived from Science Requirements

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Arnold, William; Bevan, Ryan M.; Smith, W. Scott; Kirk, Charles S.; Postman, Marc

    2013-01-01

    Advanced Mirror Technology Development (AMTD) is a multi-year effort to systematically mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. This technology must enable missions capable of both general astrophysics & ultra-high contrast observations of exoplanets. To accomplish our objective, we use a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system.

  1. KSC-2012-1823

    NASA Image and Video Library

    2012-04-03

    CAPE CANAVERAL, Fla. -- This is an artist's conception of the Human Spacecraft being considered for NASA's Commercial Crew Program CCP. In 2011, NASA and Excalibur Almaz Inc. of Houston entered into an unfunded Space Act Agreement during Commercial Crew Development Round 2 CCDev2) activities to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. ATK, Blue Origin, The Boeing Co., Sierra Nevada Corp., Space Exploration Technologies SpaceX, and United Launch Alliance ULA. For more information, visit www.nasa.gov/exploration/commercialcrew Image credit: Excalibur Almaz Inc.

  2. KSC-2011-8114

    NASA Image and Video Library

    2011-12-01

    CAPE CANAVERAL, Fla. -- This is an artist's conception of the CST-100 under development by The Boeing Co. of Houston for NASA's Commercial Crew Program (CCP). In 2011, NASA selected Boeing during Commercial Crew Development Round 2 (CCDev2) activities to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. (ATK), Blue Origin, Excalibur Almaz Inc., Sierra Nevada Corp., Space Exploration Technologies (SpaceX), and United Launch Alliance (ULA). For more information, visit www.nasa.gov/commercialcrew. Image credit: The Boeing Co.

  3. KSC-2011-8116

    NASA Image and Video Library

    2011-12-01

    CAPE CANAVERAL, Fla. -- This is an artist's conception of the Dream Chaser spacecraft under development by Sierra Nevada of Centennial, Colo., for NASA's Commercial Crew Program (CCP). In 2011, NASA selected Sierra Nevada during Commercial Crew Development Round 2 (CCDev2) activities to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. (ATK), The Boeing Co., Excalibur Almaz Inc., Blue Origin, Space Exploration Technologies (SpaceX), and United Launch Alliance (ULA). For more information, visit www.nasa.gov/commercialcrew. Image credit: Sierra Nevada Corp.

  4. KSC-2011-8115

    NASA Image and Video Library

    2011-12-01

    CAPE CANAVERAL, Fla. -- This is an artist's conception of the Space Vehicle under development by Blue Origin of Kent, Wash., for NASA's Commercial Crew Program (CCP). In 2011, NASA selected Blue Origin during Commercial Crew Development Round 2 (CCDev2) activities to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. (ATK), The Boeing Co., Excalibur Almaz Inc., Sierra Nevada Corp., Space Exploration Technologies (SpaceX), and United Launch Alliance (ULA). For more information, visit www.nasa.gov/commercialcrew. Image credit: Blue Origin

  5. KSC-2012-1824

    NASA Image and Video Library

    2012-01-30

    HAWTHORNE, Calif. -- NASA astronauts and industry experts check out the crew accommodations in the Dragon spacecraft under development by Space Exploration Technologies SpaceX of Hawthorne, Calif., for the agency's Commercial Crew Program. On top, from left, are NASA Crew Survival Engineering Team Lead Dustin Gohmert, NASA astronauts Tony Antonelli and Lee Archambault, and SpaceX Mission Operations Engineer Laura Crabtree. On bottom, from left, are SpaceX Thermal Engineer Brenda Hernandez and NASA astronauts Rex Walheim and Tim Kopra. In 2011, NASA selected SpaceX during Commercial Crew Development Round 2 CCDev2) activities to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. ATK, The Boeing Co., Excalibur Almaz Inc., Blue Origin, Sierra Nevada, and United Launch Alliance ULA. For more information, visit www.nasa.gov/commercialcrew. Image credit: Space Exploration Technologies

  6. NASA Astrophysics Prioritizes Technology Development Funding for Strategic Missions

    NASA Astrophysics Data System (ADS)

    Thronson, Harley A.; Pham, Bruce; Ganel, Opher

    2017-01-01

    The Cosmic Origins (COR) and Physics of the Cosmos (PCOS) Program Offices (POs) reside at NASA GSFC and implement priorities for the NASA HQ Astrophysics Division (APD). One major aspect of the POs’ activities is managing our Strategic Astrophysics Technology (SAT) program to mature technologies for future strategic missions. The Programs follow APD guidance on which missions are strategic, currently informed by the NRC’s 2010 Decadal Survey report, as well as APD’s Implementation Plan and the Astrophysics Roadmap.In preparation for the upcoming 2020 Decadal Survey, the APD has established Science and Technology Definition Teams (STDTs) to study four large-mission concepts: the Origins Space Telescope, Habitable Exoplanet Imaging Mission, Large UV/Optical/IR Surveyor, and X-ray Surveyor. The STDTs will develop the science case and design reference mission, assess technology development needs, and estimate the cost of their concept. A fifth team, the L3 Study Team (L3ST), was charged to study potential US contributions to ESA’s planned L3 gravitational-wave observatory.The POs use a rigorous and transparent process to solicit technology gaps from the scientific and technical communities, and prioritize those entries based on strategic alignment, expected impact, cross-cutting applicability, and urgency. Starting in 2016, the technology-gap assessments of the four STDTs and the L3ST are included in our process. Until a study team submits its final report, community-proposed changes to gaps submitted or adopted by a study team are forwarded to that study team for consideration.We discuss our technology development process, with strategic prioritization informing calls for SAT proposals and informing investment decisions. We also present results of this year’s technology gap prioritization and showcase our current portfolio of technology development projects. To date, 77 COR and 80 PCOS SAT proposals have been received, of which 18 COR and 22 PCOS projects were funded (PCOS awards starting in 2017 have yet to be announced). For more information, see the respective Program Annual Technology Reports under the technology tabs of the COR website at cor.gsfc.nasa.gov and the PCOS website at pcos.gsfc.nasa.gov.

  7. Using Technology in Teacher Preparation: Two Mature Teacher Educators Negotiate the Steep Learning Curve

    ERIC Educational Resources Information Center

    Monroe, Eula; Tolman, Marvin

    2004-01-01

    This paper chronicles the ventures of two mature faculty members who continue to negotiate their own steep learning curves in helping teacher education students use current technology. It describes the scaffolding provided within the university setting for the faculty members' growth. Included are elements supported by a PT3 grant that have…

  8. Maturing Glycoproteomics Technologies Provide Unique Structural Insights into the N-glycoproteome and Its Regulation in Health and Disease*

    PubMed Central

    Packer, Nicolle H.; Schulz, Benjamin L.

    2016-01-01

    The glycoproteome remains severely understudied because of significant analytical challenges associated with glycoproteomics, the system-wide analysis of intact glycopeptides. This review introduces important structural aspects of protein N-glycosylation and summarizes the latest technological developments and applications in LC-MS/MS-based qualitative and quantitative N-glycoproteomics. These maturing technologies provide unique structural insights into the N-glycoproteome and its synthesis and regulation by complementing existing methods in glycoscience. Modern glycoproteomics is now sufficiently mature to initiate efforts to capture the molecular complexity displayed by the N-glycoproteome, opening exciting opportunities to increase our understanding of the functional roles of protein N-glycosylation in human health and disease. PMID:26929216

  9. CECE: Expanding the Envelope of Deep Throttling Technology in Liquid Oxygen/Liquid Hydrogen Rocket Engines for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Giuliano, Victor J.; Leonard, Timothy G.; Lyda, Randy T.; Kim, Tony S.

    2010-01-01

    As one of the first technology development programs awarded by NASA under the Vision for Space Exploration, the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to begin technology development and demonstration toward a deep throttling, cryogenic engine supporting ongoing trade studies for NASA s Lunar Lander descent stage. The CECE program leverages the maturity and previous investment of a flight-proven hydrogen/oxygen expander cycle engine, the PWR RL10, to develop and demonstrate an unprecedented combination of reliability, safety, durability, throttlability, and restart capabilities in high-energy, cryogenic, in-space propulsion. The testbed selected for the deep throttling demonstration phases of this program was a minimally modified RL10 engine, allowing for maximum current production engine commonality and extensibility with minimum program cost. Four series of demonstrator engine tests have been successfully completed between April 2006 and April 2010, accumulating 7,436 seconds of hot fire time over 47 separate tests. While the first two test series explored low power combustion (chug) and system instabilities, the third test series investigated and was ultimately successful in demonstrating several mitigating technologies for these instabilities and achieved a stable throttling ratio of 13:1. The fourth test series significantly expanded the engine s operability envelope by successfully demonstrating a closed-loop control system and extensive transient modeling to enable lower power engine starting, faster throttle ramp rates, and mission-specific ignition testing. The final hot fire test demonstrated a chug-free, minimum power level of 5.9%, corresponding to an overall 17.6:1 throttling ratio achieved. In total, these tests have provided an early technology demonstration of an enabling cryogenic propulsion concept with invaluable system-level technology data acquisition toward design and development risk mitigation for future lander descent main engines.

  10. Water Science and Technology Board annual report 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-01-01

    In 1982, the National Research Council chose to recognize the importance of water resource issues by establishing the Water Science and Technology Board (WSTB). During the five years since its first meeting in November 1982, the WSTB has grown and matured. The WSTB has met 14 times to provide guidance and plan activities. Under the WSTB's direction, committees of experts have conducted approximately 30 studies on a broad array of topics, from dam safety to irrigation-induced water quality problems to ground water protection strategies. Studies have ranged in scope from the oversight of specific agency projects and programs to broadermore » scientific reviews, such as a disciplinary assessment of the hydrologic sciences initiated in 1987. In all cases, studies have the general theme of ultimately improving the scientific and technological bases of programs of water management and environmental quality. This fifth annual report of the WSTB summarizes the Board's accomplishments during 1987, its current activities, and its plans for the future. The report also includes information on Board and committee memberships, program organizations, and the reports produced. The report should provide the reader with a basic understanding of the WSTB's interests, achievements, and capabilities. The WSTB welcomes inquiries and suggestions concerning its activities and will provide more detailed information on any aspects of its work to those interested.« less

  11. The Iodine Satellite (iSAT) Hall Thruster Demonstration Mission Concept and Development

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; Polzin, Kurt A.; Calvert, Derek; Kamhawi, Hani

    2014-01-01

    The use of iodine propellant for Hall thrusters has been studied and proposed by multiple organizations due to the potential mission benefits over xenon. In 2013, NASA Marshall Space Flight Center competitively selected a project for the maturation of an iodine flight operational feed system through the Technology Investment Program. Multiple partnerships and collaborations have allowed the team to expand the scope to include additional mission concept development and risk reduction to support a flight system demonstration, the iodine Satellite (iSAT). The iSAT project was initiated and is progressing towards a technology demonstration mission preliminary design review. The current status of the mission concept development and risk reduction efforts in support of this project is presented.

  12. Demonstrating tactical information services from coordinated UAV operations

    NASA Astrophysics Data System (ADS)

    Bay, John S.

    2006-05-01

    As the component technologies for unmanned aerial vehicles mature, increased attention is being paid to the problem of command and control. Many UAVs, even small lightweight versions, are seeing significant operational time as a result of the Iraq war, and consequently, users are becoming increasingly proficient with the platform technologies and are considering new and more elaborate tactics, techniques, and procedures (TTPs), as well as concepts of operations (CONOPS), for their use, both individually and in teams. This paper presents one such concept and summarizes the progress made toward that goal in a recent research program. In particularly, the means by which a team of UAVs can be considered a tactical information resource is investigated, and initial experimental results are summarized.

  13. An Abstract Plan Preparation Language

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Munoz, Cesar A.

    2006-01-01

    This paper presents a new planning language that is more abstract than most existing planning languages such as the Planning Domain Definition Language (PDDL) or the New Domain Description Language (NDDL). The goal of this language is to simplify the formal analysis and specification of planning problems that are intended for safety-critical applications such as power management or automated rendezvous in future manned spacecraft. The new language has been named the Abstract Plan Preparation Language (APPL). A translator from APPL to NDDL has been developed in support of the Spacecraft Autonomy for Vehicles and Habitats Project (SAVH) sponsored by the Explorations Technology Development Program, which is seeking to mature autonomy technology for application to the new Crew Exploration Vehicle (CEV) that will replace the Space Shuttle.

  14. Applying Formal Methods to NASA Projects: Transition from Research to Practice

    NASA Technical Reports Server (NTRS)

    Othon, Bill

    2009-01-01

    NASA project managers attempt to manage risk by relying on mature, well-understood process and technology when designing spacecraft. In the case of crewed systems, the margin for error is even tighter and leads to risk aversion. But as we look to future missions to the Moon and Mars, the complexity of the systems will increase as the spacecraft and crew work together with less reliance on Earth-based support. NASA will be forced to look for new ways to do business. Formal methods technologies can help NASA develop complex but cost effective spacecraft in many domains, including requirements and design, software development and inspection, and verification and validation of vehicle subsystems. To realize these gains, the technologies must be matured and field-tested so that they are proven when needed. During this discussion, current activities used to evaluate FM technologies for Orion spacecraft design will be reviewed. Also, suggestions will be made to demonstrate value to current designers, and mature the technology for eventual use in safety-critical NASA missions.

  15. Technology Maturity for the Habitable-zone Exoplanet Imaging Mission (HabEx) Concept

    NASA Astrophysics Data System (ADS)

    Morgan, Rhonda; Warfield, Keith R.; Stahl, H. Philip; Mennesson, Bertrand; Nikzad, Shouleh; nissen, joel; Balasubramanian, Kunjithapatham; Krist, John; Mawet, Dimitri; Stapelfeldt, Karl; warwick, Steve

    2018-01-01

    HabEx Architecture A is a 4m unobscured telescope optimized for direct imaging and spectroscopy of potentially habitable exoplanets, and also enables a wide range of general astrophysics science. The exoplanet detection and characterization drives the enabling core technologies. A hybrid starlight suppression approach of a starshade and coronagraph diversifies technology maturation risk. In this poster we assess these exoplanet-driven technologies, including elements of coronagraphs, starshades, mirrors, jitter mitigation, wavefront control, and detectors. By utilizing high technology readiness solutions where feasible, and identifying required technology development that can begin early, HabEx will be well positioned for assessment by the community in 2020 Astrophysics Decadal Survey.

  16. High-Power Solar Electric Propulsion for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Manzella, David; Hack, Kurt

    2014-01-01

    NASA has sought to utilize high-power solar electric propulsion as means of improving the affordability of in-space transportation for almost 50 years. Early efforts focused on 25 to 50 kilowatt systems that could be used with the Space Shuttle, while later efforts focused on systems nearly an order of magnitude higher power that could be used with heavy lift launch vehicles. These efforts never left the concept development phase in part because the technology required was not sufficiently mature. Since 2012 the NASA Space Technology Mission Directorate has had a coordinated plan to mature the requisite solar array and electric propulsion technology needed to implement a 30 to 50 kilowatt solar electric propulsion technology demonstration mission. Multiple solar electric propulsion technology demonstration mission concepts have been developed based on these maturing technologies with recent efforts focusing on an Asteroid Redirect Robotic Mission. If implemented, the Asteroid Redirect Vehicle will form the basis for a capability that can be cost-effectively evolved over time to provide solar electric propulsion transportation for a range of follow-on mission applications at power levels in excess of 100 kilowatts.

  17. Enabling Dedicated, Affordable Space Access Through Aggressive Technology Maturation

    NASA Technical Reports Server (NTRS)

    Jones, Jonathan E.; Kibbey, Timothy P.; Cobb, C. Brent; Harris, Lawanna L.

    2014-01-01

    A launch vehicle at the scale and price point which allows developers to take reasonable risks with high payoff propulsion and avionics hardware solutions does not exist today. Establishing this service provides a ride through the proverbial technology "valley of death" that lies between demonstration in laboratory and flight environments. NASA's NanoLaunch effort will provide the framework to mature both earth-to-orbit and on-orbit propulsion and avionics technologies while also providing affordable, dedicated access to low earth orbit for cubesat class payloads.

  18. Maturation of the human fetal startle response: evidence for sex-specific maturation of the human fetus.

    PubMed

    Buss, Claudia; Davis, Elysia Poggi; Class, Quetzal A; Gierczak, Matt; Pattillo, Carol; Glynn, Laura M; Sandman, Curt A

    2009-10-01

    Despite the evidence for early fetal experience exerting programming influences on later neurological development and health risk, very few prospective studies of human fetal behavior have been reported. In a prospective longitudinal study, fetal nervous system maturation was serially assessed by monitoring fetal heart rate (FHR) responses to vibroacoustic stimulation (VAS) in 191 maternal/fetal dyads. Responses were not detected at 26 weeks gestational age (GA). Sex-specific, age-characteristic changes in the FHR response to VAS were observed by 31 weeks' GA. Males showed larger responses and continued to exhibit maturational changes until 37 weeks' GA, females however, presented with a mature FHR startle response by 31 weeks' GA. The results indicate that there are different rates of maturation in the male and female fetuses that may have implications for sex-specific programming influences.

  19. Validating the Use of pPerformance Risk Indices for System-Level Risk and Maturity Assessments

    NASA Astrophysics Data System (ADS)

    Holloman, Sherrica S.

    With pressure on the U.S. Defense Acquisition System (DAS) to reduce cost overruns and schedule delays, system engineers' performance is only as good as their tools. Recent literature details a need for 1) objective, analytical risk quantification methodologies over traditional subjective qualitative methods -- such as, expert judgment, and 2) mathematically rigorous system-level maturity assessments. The Mahafza, Componation, and Tippett (2005) Technology Performance Risk Index (TPRI) ties the assessment of technical performance to the quantification of risk of unmet performance; however, it is structured for component- level data as input. This study's aim is to establish a modified TPRI with systems-level data as model input, and then validate the modified index with actual system-level data from the Department of Defense's (DoD) Major Defense Acquisition Programs (MDAPs). This work's contribution is the establishment and validation of the System-level Performance Risk Index (SPRI). With the introduction of the SPRI, system-level metrics are better aligned, allowing for better assessment, tradeoff and balance of time, performance and cost constraints. This will allow system engineers and program managers to ultimately make better-informed system-level technical decisions throughout the development phase.

  20. NASA Research Announcement Phase 1 Report and Phase 2 Proposal for the Development of a Power Assisted Space Suit Glove Assembly

    NASA Technical Reports Server (NTRS)

    Cadogan, Dave; Lingo, Bob

    1996-01-01

    In July of 1996, ILC Dover was awarded Phase 1 of a contract for NASA to develop a prototype Power Assisted Space Suit glove to enhance the performance of astronauts during Extra-Vehicular Activity (EVA). This report summarizes the work performed to date on Phase 1, and details the work to be conducted on Phase 2 of the program. Phase 1 of the program consisted of research and review of related technical sources, concept brainstorming, baseline design development, modeling and analysis, component mock-up testing, and test data analysis. ILC worked in conjunction with the University of Maryland's Space Systems Laboratory (SSL) to develop the power assisted glove. Phase 2 activities will focus on the design maturation and the manufacture of a working prototype system. The prototype will be tested and evaluated in conjunction with existing space suit glove technology to determine the performance enhancement anticipated with the implementation of the power assisted joint technology in space suit gloves.

  1. An Environmental Management Maturity Model of Construction Programs Using the AHP-Entropy Approach.

    PubMed

    Bai, Libiao; Wang, Hailing; Huang, Ning; Du, Qiang; Huang, Youdan

    2018-06-23

    The accelerating process of urbanization in China has led to considerable opportunities for the development of construction projects, however, environmental issues have become an important constraint on the implementation of these projects. To quantitatively describe the environmental management capabilities of such projects, this paper proposes a 2-dimensional Environmental Management Maturity Model of Construction Program (EMMMCP) based on an analysis of existing projects, group management theory and a management maturity model. In this model, a synergetic process was included to compensate for the lack of consideration of synergies in previous studies, and it was involved in the construction of the first dimension, i.e., the environmental management index system. The second dimension, i.e., the maturity level of environment management, was then constructed by redefining the hierarchical characteristics of construction program (CP) environmental management maturity. Additionally, a mathematical solution to this proposed model was derived via the Analytic Hierarchy Process (AHP)-entropy approach. To verify the effectiveness and feasibility of this proposed model, a computational experiment was conducted, and the results show that this approach could not only measure the individual levels of different processes, but also achieve the most important objective of providing a reference for stakeholders when making decisions on the environmental management of construction program, which reflects this model is reasonable for evaluating the level of environmental management maturity in CP. To our knowledge, this paper is the first study to evaluate the environmental management maturity levels of CP, which would fill the gap between project program management and environmental management and provide a reference for relevant management personnel to enhance their environmental management capabilities.

  2. Noninvasive assays of in vitro matured human oocytes showed insignificant correlation with fertilization and embryo development.

    PubMed

    Ashourzadeh, Sareh; Khalili, Mohammad Ali; Omidi, Marjan; Mahani, Seyed Nooraldin Nematollahi; Kalantar, Seyed Mehdi; Aflatoonian, Abbas; Habibzadeh, Victoria

    2015-08-01

    Recently, the upgrading of in vitro maturation (IVM) of human oocytes as a promising strategy has emerged in assisted reproductive technology (ART). The goal was to evaluate the correlation of the in vitro matured oocytes selected on the basis of the zona pellucida (ZP) birefringence and meiotic spindles (MS) detection with fertilization and subsequent embryo development in ICSI program. A total of 168 immature oocytes [germinal vesicle (n = 140) and metaphase I (n = 28)] obtained from patients undergoing oocytes retrieval for ICSI. After in vitro culture for 24-40 h, 112 (67 %) oocytes reached to MII stage. Using a polarized microscopy, the presence of MS and ZP birefringence were assessed in matured oocytes, followed by ICSI performance. The rates of fertilization in oocytes with spindles (51.3 %) were similar to that of the oocytes without spindles (50.7 %; P = 1.00). Moreover, the fertilization rates in high birefringence (HB) oocytes was not statistically different than oocytes with low birefringence (LB) (P = 0.44). The findings also showed that 64.9 % of the fertilized oocytes developed to embryos, in which 33.3 % were derived from spindle-detected oocytes. Regarding the ZP birefringence, 35.5 % of the embryos were derived from HB oocytes. There were insignificant relationships between the MS detection and ZP birefringence score with the rates of fertilization and embryo development in IVM oocytes.

  3. A Continuing Education Program for the Mature Woman Trained in a Science: I. The Program.

    ERIC Educational Resources Information Center

    Lee, C. O.; And Others

    This document describes how mature scientists who received their master's or bachelor's degrees between two and fifteen years ago, and who are unemployed, underemployed, or need refresher work, are taking tuition-free courses. The year-long program includes courses in chemical concepts, physical chemistry, food and flavor chemistry, environmental…

  4. Advanced Radioisotope Power Conversion Technology Research and Development

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.

    2004-01-01

    NASA's Radioisotope Power Conversion Technology program is developing next generation power conversion technologies that will enable future missions that have requirements that cannot be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power System (RPS) technology. Performance goals of advanced radioisotope power systems include improvement over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. NASA has awarded ten contracts in the technology areas of Brayton, Stirling, Thermoelectric, and Thermophotovoltaic power conversion including five development contracts that deal with more mature technologies and five research contracts. The Advanced RPS Systems Assessment Team includes members from NASA GRC, JPL, DOE and Orbital Sciences whose function is to review the technologies being developed under the ten Radioisotope Power Conversion Technology contracts and assess their relevance to NASA's future missions. Presented is an overview of the ten radioisotope power conversion technology contracts and NASA's Advanced RPS Systems Assessment Team.

  5. L-8: Docking Systems and Other Attachment/Release Mechanisms and Related Technologies

    NASA Technical Reports Server (NTRS)

    Lewis, James

    2016-01-01

    We are sharpening our focus on Human Space Flight (HSF) Exploration Beyond Low Earth Orbit. We want to ensure that HSF technologies are ready to take Humans to Mars in the 2030s. Various Roadmaps define the needed technologies. We are attempting to define our activities and dependencies. Our Goal: Get within 8 years of launching humans to Mars (L-8) by 2025. Develop and Mature the technologies and systems needed. Develop and Mature the personnel needed. We need collaborators to make it happen, and we think they can benefit by working with us.

  6. Overview and Recent Accomplishments of Advanced Mirror Technology Development Phase 2 (AMTD-2)

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2015-01-01

    AMTD uses a science-driven systems engineering approach to define & execute a long-term strategy to mature technologies necessary to enable future large aperture space telescopes. Because we cannot predict the future, we are pursuing multiple technology paths including monolithic & segmented mirrors. Assembled outstanding team from academia, industry & government; experts in science & space telescope engineering. Derived engineering specifications from science measurement needs & implementation constraints. Maturing 6 critical technologies required to enable 4 to 8 meter UVOIR space telescope mirror assemblies for both general astrophysics & ultra-high contrast exoplanet imaging. AMTD achieving all its goals & accomplishing all its milestones.

  7. Flight Development for Cryogenic Fluid Management in Support of Exploration Missions

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2006-01-01

    This paper describes the results of the "Experimentation for the Maturation of Deep Space Cryogenic Refueling Technology" study. The purposes of this study were to identify cryogenic fluids management technologies requiring low gravity flight experiments to bring to technology readiness level (TRL) 5-6; to study many possible flight experiment options; and to develop near-term low-cost flight experiment concepts to mature core technologies of refueling. A total of twenty-five white papers were prepared in the course of this study. Each white paper is briefly summarized and relevant references cited. A total of 90 references are cited.

  8. Women in a Changing World: A Handbook on a Pre-Admission Counseling Program for Mature Women Students.

    ERIC Educational Resources Information Center

    Chitayat, Deanna; Rael, Elsa

    The program described in this handbook is a pre-admission counseling program dealing with the specific needs of the mature woman student. It encourages her to explore her educational and career options, making it possible for her to enroll in a career-oriented study program if she so chooses. The book operates on the assumption that it is no…

  9. Practical Application of Model-based Programming and State-based Architecture to Space Missions

    NASA Technical Reports Server (NTRS)

    Horvath, Gregory A.; Ingham, Michel D.; Chung, Seung; Martin, Oliver; Williams, Brian

    2006-01-01

    Innovative systems and software engineering solutions are required to meet the increasingly challenging demands of deep-space robotic missions. While recent advances in the development of an integrated systems and software engineering approach have begun to address some of these issues, they are still at the core highly manual and, therefore, error-prone. This paper describes a task aimed at infusing MIT's model-based executive, Titan, into JPL's Mission Data System (MDS), a unified state-based architecture, systems engineering process, and supporting software framework. Results of the task are presented, including a discussion of the benefits and challenges associated with integrating mature model-based programming techniques and technologies into a rigorously-defined domain specific architecture.

  10. ParaChoice Model.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heimer, Brandon Walter; Levinson, Rebecca Sobel; West, Todd H.

    Analysis with the ParaChoice model addresses three barriers from the VTO Multi-Year Program Plan: availability of alternative fuels and electric charging station infrastructure, availability of AFVs and electric drive vehicles, and consumer reluctance to purchase new technologies. In this fiscal year, we first examined the relationship between the availability of alternative fuels and station infrastructure. Specifically, we studied how electric vehicle charging infrastructure affects the ability of EVs to compete with vehicles that rely on mature, conventional petroleum-based fuels. Second, we studied how the availability of less costly AFVs promotes their representation in the LDV fleet. Third, we used ParaChoicemore » trade space analyses to help inform which consumers are reluctant to purchase new technologies. Last, we began analysis of impacts of alternative energy technologies on Class 8 trucks to isolate those that may most efficaciously advance HDV efficiency and petroleum use reduction goals.« less

  11. Structural basis of fluorescence quenching in caspase activatable-GFP

    PubMed Central

    Nicholls, Samantha B; Hardy, Jeanne A

    2013-01-01

    Apoptosis is critical for organismal homeostasis and a wide variety of diseases. Caspases are the ultimate executors of the apoptotic programmed cell death pathway. As caspases play such a central role in apoptosis, there is significant demand for technologies to monitor caspase function. We recently developed a caspase activatable-GFP (CA-GFP) reporter. CA-GFP is unique due to its “dark” state, where chromophore maturation of the GFP is inhibited by the presence of a C-terminal peptide. Here we show that chromophore maturation is prevented because CA-GFP does not fold into the robust β-barrel of GFP until the peptide has been cleaved by active caspase. Both CA-GFP and GFP1-10, a split form of GFP lacking the 11th strand, have similar secondary structure, different from mature GFP. A similar susceptibility to proteolytic digestion indicates that this shared structure is not the robust, fully formed GFP β-barrel. We have developed a model that suggests that as CA-GFP is translated in vivo it follows the same folding path as wild-type GFP; however, the presence of the appended peptide does not allow CA-GFP to form the barrel of the fully matured GFP. CA-GFP is therefore held in a “pro-folding” intermediate state until the peptide is released, allowing it to continue folding into the mature barrel geometry. This new understanding of the structural basis of the dark state of the CA-GFP reporter will enable manipulation of this mechanism in the development of reporter systems for any number of cellular processes involving proteases and potentially other enzymes. PMID:23139158

  12. Epigenetic and gene expression changes in the adolescent brain: What have we learned from animal models?

    PubMed

    Mychasiuk, Richelle; Metz, Gerlinde A S

    2016-11-01

    Adolescence is defined as the gradual period of transition between childhood and adulthood that is characterized by significant brain maturation, growth spurts, sexual maturation, and heightened social interaction. Although originally believed to be a uniquely human aspect of development, rodent and non-human primates demonstrate maturational patterns that distinctly support an adolescent stage. As epigenetic processes are essential for development and differentiation, but also transpire in mature cells in response to environmental influences, they are an important aspect of adolescent brain maturation. The purpose of this review article was to examine epigenetic programming in animal models of brain maturation during adolescence. The discussion focuses on animal models to examine three main concepts; epigenetic processes involved in normal adolescent brain maturation, the influence of fetal programming on adolescent brain development and the epigenome, and finally, postnatal experiences such as exercise and drugs that modify epigenetic processes important for adolescent brain maturation. This corollary emphasizes the utility of animal models to further our understanding of complex processes such as epigenetic regulation and brain development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The Iodine Satellite (iSat) Project Development Towards Critical Design Review (CDR)

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; Selby, Michael; Polzin, Kurt A.; Kamhawi, Hani; Hickman, Tyler; Byrne, Larry

    2016-01-01

    Despite the prevalence of Small Satellites in recent years, the systems flown to date have very limited propulsion capability. SmallSats are typically secondary payloads and have significant constraints for volume, mass, and power in addition to limitations on the use of hazardous propellants or stored energy (i.e. high pressure vessels). These constraints limit the options for SmallSat maneuverability. NASA's Space Technology Mission Directorate approved the iodine Satellite flight project for a rapid demonstration of iodine Hall thruster technology in a 12U configuration under the Small Spacecraft Technology Program. The project formally began in FY15 as a partnership between NASA MSFC, NASA GRC, and Busek Co, Inc., with the Air Force supporting the propulsion technology maturation. The team is in final preparation of the Critical Design Review prior to initiating the fabrication and integration phase of the project. The iSat project is on schedule for a launch opportunity in November 2017.

  14. CTCF counter-regulates cardiomyocyte development and maturation programs in the embryonic heart.

    PubMed

    Gomez-Velazquez, Melisa; Badia-Careaga, Claudio; Lechuga-Vieco, Ana Victoria; Nieto-Arellano, Rocio; Tena, Juan J; Rollan, Isabel; Alvarez, Alba; Torroja, Carlos; Caceres, Eva F; Roy, Anna R; Galjart, Niels; Delgado-Olguin, Paul; Sanchez-Cabo, Fatima; Enriquez, Jose Antonio; Gomez-Skarmeta, Jose Luis; Manzanares, Miguel

    2017-08-01

    Cardiac progenitors are specified early in development and progressively differentiate and mature into fully functional cardiomyocytes. This process is controlled by an extensively studied transcriptional program. However, the regulatory events coordinating the progression of such program from development to maturation are largely unknown. Here, we show that the genome organizer CTCF is essential for cardiogenesis and that it mediates genomic interactions to coordinate cardiomyocyte differentiation and maturation in the developing heart. Inactivation of Ctcf in cardiac progenitor cells and their derivatives in vivo during development caused severe cardiac defects and death at embryonic day 12.5. Genome wide expression analysis in Ctcf mutant hearts revealed that genes controlling mitochondrial function and protein production, required for cardiomyocyte maturation, were upregulated. However, mitochondria from mutant cardiomyocytes do not mature properly. In contrast, multiple development regulatory genes near predicted heart enhancers, including genes in the IrxA cluster, were downregulated in Ctcf mutants, suggesting that CTCF promotes cardiomyocyte differentiation by facilitating enhancer-promoter interactions. Accordingly, loss of CTCF disrupts gene expression and chromatin interactions as shown by chromatin conformation capture followed by deep sequencing. Furthermore, CRISPR-mediated deletion of an intergenic CTCF site within the IrxA cluster alters gene expression in the developing heart. Thus, CTCF mediates local regulatory interactions to coordinate transcriptional programs controlling transitions in morphology and function during heart development.

  15. CTCF counter-regulates cardiomyocyte development and maturation programs in the embryonic heart

    PubMed Central

    Gomez-Velazquez, Melisa; Badia-Careaga, Claudio; Lechuga-Vieco, Ana Victoria; Nieto-Arellano, Rocio; Rollan, Isabel; Alvarez, Alba; Torroja, Carlos; Caceres, Eva F.; Roy, Anna R.; Galjart, Niels; Sanchez-Cabo, Fatima; Enriquez, Jose Antonio; Gomez-Skarmeta, Jose Luis

    2017-01-01

    Cardiac progenitors are specified early in development and progressively differentiate and mature into fully functional cardiomyocytes. This process is controlled by an extensively studied transcriptional program. However, the regulatory events coordinating the progression of such program from development to maturation are largely unknown. Here, we show that the genome organizer CTCF is essential for cardiogenesis and that it mediates genomic interactions to coordinate cardiomyocyte differentiation and maturation in the developing heart. Inactivation of Ctcf in cardiac progenitor cells and their derivatives in vivo during development caused severe cardiac defects and death at embryonic day 12.5. Genome wide expression analysis in Ctcf mutant hearts revealed that genes controlling mitochondrial function and protein production, required for cardiomyocyte maturation, were upregulated. However, mitochondria from mutant cardiomyocytes do not mature properly. In contrast, multiple development regulatory genes near predicted heart enhancers, including genes in the IrxA cluster, were downregulated in Ctcf mutants, suggesting that CTCF promotes cardiomyocyte differentiation by facilitating enhancer-promoter interactions. Accordingly, loss of CTCF disrupts gene expression and chromatin interactions as shown by chromatin conformation capture followed by deep sequencing. Furthermore, CRISPR-mediated deletion of an intergenic CTCF site within the IrxA cluster alters gene expression in the developing heart. Thus, CTCF mediates local regulatory interactions to coordinate transcriptional programs controlling transitions in morphology and function during heart development. PMID:28846746

  16. Raising Nuclear Thermal Propulsion (NTP) Technology Readiness Above 3

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold P., Jr.

    2014-01-01

    NTP development is currently supported by the NASA program office "Advanced Exploration Systems". The concept is a main propulsion option being considered for human missions to Mars in the 2030's. Major NTP development took place in the 1960's and 1970's under the Rover/NERVA program. The technology had matured to TRL 6 and was preparing to go to TRL 7 with a prototype flight engine before the program was cancelled. Over the last 40 years, a variety of continuations started, but only lasted a few years each. The Rover/NERVA infrastructure is almost all gone. The only remains are a few pieces of hardware, final reports and a few who worked the Rover/NERVA. Two types of nuclear fuel are being investigated to meet the current engine design specific impulse of 900 seconds compared to approximately 850 seconds demonstrated during Rover/NERVA. One is a continuation of composite fuel with new coatings to better control mid-band corrosion. The other type is a CERMET fuel made of Tungsten and UO2. Both fuels are being made from Rover/NERVA lessons learned, but with slightly different recipes to increase fuel endurance at higher operating temperatures. The technology readiness level (TRL) of these current modified reactor fuels is approximately TRL 3. To keep the development cost low and help mature the TRL level past 4 quickly, a few special non-nuclear test facilities have been made to test surrogate fuel, with depleted uranium, as coupons and full length elements. Both facilities utilize inductive heating and are licensed to handle depleted uranium. TRL 5 requires exposing the fuel to a nuclear environment and TRL 6 requires a prototype ground or flight engine system test. Currently, three different NTP ground test facility options are being investigated: exhaust scrubber, bore hole, and total exhaust containment. In parallel, a prototype flight demonstration test is also being studied. The first human mission to Mars in the 2030's is currently 2033. For an advanced propulsion concept to be seriously considered for use, the engine development plans need to show it is feasible and affordable to reach TRL 8 by 2027 and can be qualified for human mission use.

  17. Biotechnology Challenges to In Vitro Maturation of Hepatic Stem Cells.

    PubMed

    Chen, Chen; Soto-Gutierrez, Alejandro; Baptista, Pedro M; Spee, Bart

    2018-04-01

    The incidence of liver disease is increasing globally. The only curative therapy for severe end-stage liver disease, liver transplantation, is limited by the shortage of organ donors. In vitro models of liver physiology have been developed and new technologies and approaches are progressing rapidly. Stem cells might be used as a source of liver tissue for development of models, therapies, and tissue-engineering applications. However, we have been unable to generate and maintain stable and mature adult liver cells ex vivo. We review factors that promote hepatocyte differentiation and maturation, including growth factors, transcription factors, microRNAs, small molecules, and the microenvironment. We discuss how the hepatic circulation, microbiome, and nutrition affect liver function, and the criteria for considering cells derived from stem cells to be fully mature hepatocytes. We explain the challenges to cell transplantation and consider future technologies for use in hepatic stem cell maturation, including 3-dimensional biofabrication and genome modification. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  18. L-8: In-Situ Resource Utilization Capabilities

    NASA Technical Reports Server (NTRS)

    Sanders, Jerry

    2016-01-01

    We are sharpening our focus on Human Space Flight (HSF) Exploration Beyond Low Earth Orbit. We want to ensure that HSF technologies are ready to take Humans to Mars in the 2030's. Various Roadmaps define the needed technologies. We are attempting to define our activities and dependencies. Our Goal: Get within 8 years of launching humans to Mars (L-8) by 2025. Develop and Mature the technologies and systems needed. Develop and Mature the personnel needed. We need collaborators to make it happen, and we think they can benefit by working with us.

  19. Stay Fit as You Mature

    MedlinePlus

    ... For Reporters Meetings & Workshops Follow Us Home Health Information Weight Management Stay Fit as You Mature Related Topics Section ... at NIDDK Technology Advancement & Transfer Meetings & Workshops Health Information ... Disease Urologic Diseases Endocrine Diseases Diet & Nutrition ...

  20. 7 CFR 1435.103 - Availability, disbursement, and maturity of loans.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS SUGAR PROGRAM Sugar Loan Program § 1435.103 Availability, disbursement, and maturity of loans. (a) Before obtaining a... on sugar or in-process sugar pledged as loan collateral, obtain waivers that fully protect CCC's...

  1. 7 CFR 1435.103 - Availability, disbursement, and maturity of loans.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS SUGAR PROGRAM Sugar Loan Program § 1435.103 Availability, disbursement, and maturity of loans. (a) Before obtaining a... on sugar or in-process sugar pledged as loan collateral, obtain waivers that fully protect CCC's...

  2. 7 CFR 1435.103 - Availability, disbursement, and maturity of loans.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS SUGAR PROGRAM Sugar Loan Program § 1435.103 Availability, disbursement, and maturity of loans. (a) Before obtaining a... on sugar or in-process sugar pledged as loan collateral, obtain waivers that fully protect CCC's...

  3. 7 CFR 1435.103 - Availability, disbursement, and maturity of loans.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS SUGAR PROGRAM Sugar Loan Program § 1435.103 Availability, disbursement, and maturity of loans. (a) Before obtaining a... on sugar or in-process sugar pledged as loan collateral, obtain waivers that fully protect CCC's...

  4. 7 CFR 1435.103 - Availability, disbursement, and maturity of loans.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS SUGAR PROGRAM Sugar Loan Program § 1435.103 Availability, disbursement, and maturity of loans. (a) Before obtaining a... on sugar or in-process sugar pledged as loan collateral, obtain waivers that fully protect CCC's...

  5. Recent advances in technologies required for a "Salad Machine".

    PubMed

    Kliss, M; Heyenga, A G; Hoehn, A; Stodieck, L S

    2000-01-01

    Future long duration, manned space flight missions will require life support systems that minimize resupply requirements and ultimately approach self-sufficiency in space. Bioregenerative life support systems are a promising approach, but they are far from mature. Early in the development of the NASA Controlled Ecological Life Support System Program, the idea of onboard cultivation of salad-type vegetables for crew consumption was proposed as a first step away from the total reliance on resupply for food in space. Since that time, significant advances in space-based plant growth hardware have occurred, and considerable flight experience has been gained. This paper revisits the "Salad Machine" concept and describes recent developments in subsystem technologies for both plant root and shoot environments that are directly relevant to the development of such a facility.

  6. NASA Capability Roadmaps Executive Summary

    NASA Technical Reports Server (NTRS)

    Willcoxon, Rita; Thronson, Harley; Varsi, Guilio; Mueller, Robert; Regenie, Victoria; Inman, Tom; Crooke, Julie; Coulter, Dan

    2005-01-01

    This document is the result of eight months of hard work and dedication from NASA, industry, other government agencies, and academic experts from across the nation. It provides a summary of the capabilities necessary to execute the Vision for Space Exploration and the key architecture decisions that drive the direction for those capabilities. This report is being provided to the Exploration Systems Architecture Study (ESAS) team for consideration in development of an architecture approach and investment strategy to support NASA future mission, programs and budget requests. In addition, it will be an excellent reference for NASA's strategic planning. A more detailed set of roadmaps at the technology and sub-capability levels are available on CD. These detailed products include key driving assumptions, capability maturation assessments, and technology and capability development roadmaps.

  7. Recent Advances in Technologies Required for a ``Salad Machine''

    NASA Astrophysics Data System (ADS)

    Kliss, M.; Heyenga, A. G.; Hoehn, A.; Stodieck, L. S.

    Future long duration, manned space flight missions will require life support systems that minimize resupply requirements and ultimately approach self-sufficiency in space. Bioregenerative life support systems are a promising approach, but they are far from mature. Early in the development of the NASA Controlled Ecological Life Support System Program, the idea of onboard cultivation of salad-type vegetables for crew consumption was proposed as a first step away from the total reliance on resupply for food in space. Since that time, significant advances in space-based plant growth hardware have occurred, and considerable flight experience has been gained. This paper revisits the ``Salad Machine'' concept and describes recent developments in subsystem technologies for both plant root and shoot environments that are directly relevant to the development of such a facility

  8. Advanced UVOIR Mirror Technology Development (AMTD) for Very Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Smith, W. Scott; Mosier, Gary; Abplanalp, Laura; Arnold, William

    2014-01-01

    ASTRO2010 Decadal stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. AMTD builds on the state of art (SOA) defined by over 30 years of monolithic & segmented ground & space-telescope mirror technology to mature six key technologies. AMTD is deliberately pursuing multiple design paths to provide the science community with op-tions to enable either large aperture monolithic or segmented mirrors with clear engineering metrics traceable to science requirements.

  9. Overview and Recent Accomplishments of Advanced Mirror Technology Development (AMTD) for Very Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2013-01-01

    AMTD uses a science-driven systems engineering approach to define & execute a long-term strategy to mature technologies necessary to enable future large aperture space telescopes. Because we cannot predict the future, we are pursuing multiple technology paths including monolithic & segmented mirrors. Assembled outstanding team from academia, industry & government; experts in science & space telescope engineering. Derived engineering specifications from science measurement needs & implementation constraints. Maturing 6 critical technologies required to enable 4 to 8 meter UVOIR space telescope mirror assemblies for both general astrophysics & ultra-high contrast exoplanet imaging. AMTD achieving all its goals & accomplishing all its milestones.

  10. Tomato seeds maturity detection system based on chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Li, Cuiling; Wang, Xiu; Meng, Zhijun

    2016-10-01

    Chlorophyll fluorescence intensity can be used as seed maturity and quality evaluation indicator. Chlorophyll fluorescence intensity of seed coats is tested to judge the level of chlorophyll content in seeds, and further to judge the maturity and quality of seeds. This research developed a detection system of tomato seeds maturity based on chlorophyll fluorescence spectrum technology, the system included an excitation light source unit, a fluorescent signal acquisition unit and a data processing unit. The excitation light source unit consisted of two high power LEDs, two radiators and two constant current power supplies, and it was designed to excite chlorophyll fluorescence of tomato seeds. The fluorescent signal acquisition unit was made up of a fluorescence spectrometer, an optical fiber, an optical fiber scaffolds and a narrowband filter. The data processing unit mainly included a computer. Tomato fruits of green ripe stage, discoloration stage, firm ripe stage and full ripe stage were harvested, and their seeds were collected directly. In this research, the developed tomato seeds maturity testing system was used to collect fluorescence spectrums of tomato seeds of different maturities. Principal component analysis (PCA) method was utilized to reduce the dimension of spectral data and extract principal components, and PCA was combined with linear discriminant analysis (LDA) to establish discriminant model of tomato seeds maturity, the discriminant accuracy was greater than 90%. Research results show that using chlorophyll fluorescence spectrum technology is feasible for seeds maturity detection, and the developed tomato seeds maturity testing system has high detection accuracy.

  11. Antenna Technology and other Radio Frequency (RF) Communications Activities at the Glenn Research Center in Support of NASA's Exploration Vision

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2007-01-01

    NASA s Vision for Space Exploration outlines a very ambitious program for the next several decades of the Space Agency endeavors. Ahead is the completion of the International Space Station (ISS); safely flight the shuttle (STS) until 2010; develop and fly the Crew Exploration Vehicle (Orion) by no later than 2014; return to the moon by no later than 2020; extend human presence across the solar system and beyond; implement a sustainable and affordable human and robotic program; develop supporting innovative technologies, knowledge and infrastructure; and promote international and commercial participation in exploration. To achieve these goals, a series of enabling technologies must be developed or matured in a timely manner. Some of these technologies are: spacecraft RF technology (e.g., high power sources and large antennas which using surface receive arrays can get up to 1 Gbps from Mars), uplink arraying (reduce reliance on large ground-based antennas and high operation costs; single point of failure; enable greater data-rates or greater effective distance; scalable, evolvable, flexible scheduling), software define radio (i.e., reconfigurable, flexible interoperability allows for in flight updates open architecture; reduces mass, power, volume), and optical communications (high capacity communications with low mass/power required; significantly increases data rates for deep space). This presentation will discuss some of the work being performed at the NASA Glenn Research Center, Cleveland, Ohio, in antenna technology as well as other on-going RF communications efforts.

  12. Propulsion Integrated Vehicle Health Management Technology Experiment (PITEX) Conducted

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Chicatelli, Amy K.; Fulton, Christopher E.

    2004-01-01

    The Propulsion Integrated Vehicle Health Management (IVHM) Technology Experiment (PITEX) is a continuing NASA effort being conducted cooperatively by the NASA Glenn Research Center, the NASA Ames Research Center, and the NASA Kennedy Space Center. It was a key element of a Space Launch Initiative risk-reduction task performed by the Northrop Grumman Corporation in El Segundo, California. PITEX's main objectives are the continued maturation of diagnostic technologies that are relevant to second generation reusable launch vehicle (RLV) subsystems and the assessment of the real-time performance of the PITEX diagnostic solution. The PITEX effort has considerable legacy in the NASA IVHM Technology Experiment for X-vehicles (NITEX) that was selected to fly on the X-34 subscale RLV that was being developed by Orbital Sciences Corporation. NITEX, funded through the Future-X Program Office, was to advance the technology-readiness level of selected IVHM technologies within a flight environment and to begin the transition of these technologies from experimental status into RLV baseline designs. The experiment was to perform realtime fault detection and isolation and suggest potential recovery actions for the X-34 main propulsion system (MPS) during all mission phases by using a combination of system-level analysis and detailed diagnostic algorithms.

  13. The NASA Advanced Space Power Systems Project

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Hoberecht, Mark A.; Bennett, William R.; Lvovich, Vadim F.; Bugga, Ratnakumar

    2015-01-01

    The goal of the NASA Advanced Space Power Systems Project is to develop advanced, game changing technologies that will provide future NASA space exploration missions with safe, reliable, light weight and compact power generation and energy storage systems. The development effort is focused on maturing the technologies from a technology readiness level of approximately 23 to approximately 56 as defined in the NASA Procedural Requirement 7123.1B. Currently, the project is working on two critical technology areas: High specific energy batteries, and regenerative fuel cell systems with passive fluid management. Examples of target applications for these technologies are: extending the duration of extravehicular activities (EVA) with high specific energy and energy density batteries; providing reliable, long-life power for rovers with passive fuel cell and regenerative fuel cell systems that enable reduced system complexity. Recent results from the high energy battery and regenerative fuel cell technology development efforts will be presented. The technical approach, the key performance parameters and the technical results achieved to date in each of these new elements will be included. The Advanced Space Power Systems Project is part of the Game Changing Development Program under NASAs Space Technology Mission Directorate.

  14. NASA astronauts and industry experts check out the crew accommod

    NASA Image and Video Library

    2012-01-30

    HAWTHORNE, Calif. -- NASA astronauts and industry experts check out the crew accommodations in the Dragon spacecraft under development by Space Exploration Technologies SpaceX of Hawthorne, Calif., for the agency's Commercial Crew Program. On top, from left, are NASA Crew Survival Engineering Team Lead Dustin Gohmert, NASA astronauts Tony Antonelli and Lee Archambault, and SpaceX Mission Operations Engineer Laura Crabtree. On bottom, from left, are SpaceX Thermal Engineer Brenda Hernandez and NASA astronauts Rex Walheim and Tim Kopra. In 2011, NASA selected SpaceX during Commercial Crew Development Round 2 CCDev2) activities to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. ATK, The Boeing Co., Excalibur Almaz Inc., Blue Origin, Sierra Nevada, and United Launch Alliance ULA. For more information, visit www.nasa.gov/commercialcrew. Image credit: Space Exploration Technologies

  15. Fabrication and Testing of CERMET Fuel Materials for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Hickman, Robert; Broadway, Jeramie; Mireles, Omar

    2012-01-01

    A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on Nuclear Thermal Propulsion (NTP) is currently being developed for Advanced Space Exploration Systems. The overall goal of the project is to address critical NTP technology challenges and programmatic issues to establish confidence in the affordability and viability of NTP systems. The current technology roadmap for NTP identifies the development of a robust fuel form as a critical near term need. The lack of a qualified nuclear fuel is a significant technical risk that will require a considerable fraction of program resources to mitigate. Due to these risks and the cost for qualification, the development and selection of a primary fuel must begin prior to Authority to Proceed (ATP) for a specific mission. The fuel development is a progressive approach to incrementally reduce risk, converge the fuel materials, and mature the design and fabrication process of the fuel element. A key objective of the current project is to advance the maturity of CERMET fuels. The work includes fuel processing development and characterization, fuel specimen hot hydrogen screening, and prototypic fuel element testing. Early fuel materials development is critical to help validate requirements and fuel performance. The purpose of this paper is to provide an overview and status of the work at Marshall Space Flight Center (MSFC).

  16. Review of NASA In-Space Propulsion Technology Program Inflatable Decelerator Investments

    NASA Technical Reports Server (NTRS)

    Richardson, E. H.; Mnk, M. M.; James, B. F.; Moon, S. A.

    2005-01-01

    The NASA In-Space Propulsion Technology (ISPT) Program is managed by the NASA Headquarters Science Mission Directorate and is implemented by the Marshall Space Flight Center in Huntsville, Alabama. The ISPT objective is to fund development of promising in-space propulsion technologies that can decrease flight times, decrease cost, or increase delivered payload mass for future science missions. Before ISPT will invest in a technology, the Technology Readiness Level (TRL) of the concept must be estimated to be at TRL 3. A TRL 3 signifies that the technical community agrees that the feasibility of the concept has been proven through experiment or analysis. One of the highest priority technology investments for ISPT is Aerocapture. The aerocapture maneuver uses a planetary atmosphere to reduce or alter the speed of a vehicle allowing for quick, propellantless (or using very little propellant) orbit capture. The atmosphere is used as a brake, transferring the energy associated with the vehicle's high speed into thermal energy. The ISPT Aerocapture Technology Area (ATA) is currently investing in the development of advanced lightweight ablative thermal protection systems, high temperature composite structures, and heat-flux sensors for rigid aeroshells. The heritage of rigid aeroshells extends back to the Apollo era and this technology will most likely be used by the first generation aerocapture vehicle. As a second generation aerocapture technology, ISPT is investing in three inflatable aerodynamic decelerator concepts for planetary aerocapture. They are: trailing ballute (balloon-parachute), attached afterbody ballute, and an inflatable aeroshell. ISPT also leverages the NASA Small Business Innovative Research Program for additional inflatable decelerator technology development. In mid-2004 ISPT requested an independent review of the three inflatable decelerator technologies funded directly by ISPT to validate the TRL and to identify technology maturation concerns. An independent panel with expertise in advanced thin film materials, aerothermodynamics, trajectory design, and inflatable structures was convened to assess the ISPT investments. The panel considered all major technical subsystems including materials, aerothermodynamics, structural dynamics, packaging, and inflation systems. The panel assessed the overall technology readiness of inflatable decelerators to be a 3 and identified fluid- structure interaction, aeroheating, and structural adhesives to be of highest technical concern.

  17. Review of NASA In-Space Propulsion Technology Program Inflatable Decelerator Investments

    NASA Technical Reports Server (NTRS)

    Richardson, Erin H.; Munk, Michelle M.; James, Bonnie F.; Moon, Steve A.

    2005-01-01

    The NASA In-Space Propulsion Technology (ISPT) Program is managed by the NASA Headquarters Science Mission Directorate and is implemented by the Marshall Space Flight Center in Huntsville, Alabama. The ISPT objective is to fund development of promising in- space propulsion technologies that can decrease flight times, decrease cost, or increase delivered payload mass for future science missions. Before ISPT will invest in a technology, the Technology Readiness Level (TRL) of the concept must be estimated to be at TRL 3. A TRL 3 signifies that the technical community agrees that the feasibility of the concept has been proven through experiment or analysis. One of the highest priority technology investments for ISPT is Aerocapture. The aerocapture maneuver uses a planetary atmosphere to reduce or alter the speed of a vehicle allowing for quick, propellantless (or using very little propellant) orbit capture. The atmosphere is used as a brake, transferring the energy associated with the vehicle s high speed into thermal energy. The ISPT Aerocapture Technology Area (ATA) is currently investing in the development of advanced lightweight ablative thermal protection systems, high temperature composite structures, and heat-flux sensors for rigid aeroshells. The heritage of rigid aeroshells extends back to the Apollo era and this technology will most likely be used by the first generation aerocapture vehicle. As a second generation aerocapture technology, ISPT is investing in three inflatable aerodynamic decelerator concepts for planetary aerocapture. They are: trailing ballute (balloon-parachute), attached afterbody ballute, and an inflatable aeroshell. ISPT also leverages the NASA Small Business Innovative Research Program for additional inflatable decelerator technology development. In mid-2004 ISPT requested an independent review of the three inflatable decelerator technologies funded directly by ISPT to validate the TRL and to identify technology maturation concerns. An independent panel with expertise in advanced thin film materials, aerothermodynamics, trajectory design, and inflatable structures was convened to assess the ISPT investments. The panel considered all major technical subsystems including materials, aerothermodynamics, structural dynamics, packaging, and inflation systems. The panel assessed the overall technology readiness of inflatable decelerators to be a 3 and identified fluid-structure interaction, aeroheating, and structural adhesives to be of highest technical concern.

  18. Starting Up a Company in a Mature Market: Wise or Foolish ?

    NASA Astrophysics Data System (ADS)

    Biberger, Maximilian

    SDCmaterials, Inc. (SDC) is a venture backed, mature start up in the automotive sector. Moreover: Catalytic Converters for vehicles and stationary applications. The company has invented and developed environmentally friendly, novel materials as well as material integration techniques for catalytic converters based on a proprietary and patented nanotechnology. Traditionally catalysts require large amounts of PGMs (Platinum Group Metals), more than USD 10B per year, in order to treat vehicle emissions. Due to that, the catalytic converter is the single most expensive piece part in a vehicle. The currently used technologies have served the industry well. However, as emission standards dramatically tighten, particularly in China, the demand for more fuel efficient and Hybrid vehicles increases, this technology begins to start showing limitations as it can meet the aforementioned demands only by increasing the PGM amount per vehicle. This in turn will increase the cost per vehicle and / or reduce margins for the automotive industry, and in addition to that impact the environment negatively. In contrast to existing technologies, the SDC based technology can meet future emission goals by maintaining, or even reducing, the PGM amount required to treat exhaust emissions. This results in tremendous savings for the consumer and the automotive industry, as well as a significantly better stewardship of natural resources and clean manufacturing. In the present paper the pros and cons of starting a nanotechnology company in a mature market are presented. Both from a business & economics, as well as from a technology point of view. The case is made that it is possible to start a company in a mature market and that novel technologies can compete economically with 40+ old year technologies.

  19. Space Solar Power Technology Demonstration for Lunar Polar Applications: Laser-Photovoltaic Wireless Power Transmission

    NASA Technical Reports Server (NTRS)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.

  20. Solar Sail Propulsion for Interplanetary Cubesats

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Sobey, Alex; Sykes, Kevin

    2015-01-01

    NASA is developing two small satellite missions as part of the Advanced Exploration Systems (AES) Program, both of which will use a solar sail to enable their scientific objectives. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellantless thrust, allowing for very high (Delta)V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. Solar sail technology is rapidly maturing for space propulsion applications within NASA and around the world.

  1. Development and validation of the Eating Maturity Questionnaire: Preliminary findings.

    PubMed

    Potocka, Adrianna; Najder, Anna

    2016-10-01

    This article describes the development of the Eating Maturity Questionnaire, a self-reported measurement of eating maturity that initiates and gives direction to human eating behaviors. The Eating Maturity Questionnaire was designed to study individuals' biological and psychosocial motives for eating. The Eating Maturity Questionnaire is a 21-item tool with satisfactory psychometric values (Cronbach's α coefficients between 0.83 and 0.88) consisting of two subscales: Rational Eating and Psychosocial Maturity Eating Maturity Questionnaire results may be used to design programs that target eating behaviors and body mass modification. © The Author(s) 2015.

  2. 25 CFR 1000.338 - What happens to a Tribe's/Consortium's mature contract status if it has retroceded a program that...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 2 2013-04-01 2013-04-01 false What happens to a Tribe's/Consortium's mature contract...-DETERMINATION AND EDUCATION ACT Retrocession § 1000.338 What happens to a Tribe's/Consortium's mature contract...? Retrocession has no effect on mature contract status, provided that the 3 most recent audits covering...

  3. A Fast Technology Infusion Model for Aerospace Organizations

    NASA Technical Reports Server (NTRS)

    Shapiro, Andrew A.; Schone, Harald; Brinza, David E.; Garrett, Henry B.; Feather, Martin S.

    2006-01-01

    A multi-year Fast Technology Infusion initiative proposes a model for aerospace organizations to improve the cost-effectiveness by which they mature new, in-house developed software and hardware technologies for space mission use. The first year task under the umbrella of this initiative will provide the framework to demonstrate and document the fast infusion process. The viability of this approach will be demonstrated on two technologies developed in prior years with internal Jet Propulsion Laboratory (JPL) funding. One hardware technology and one software technology were selected for maturation within one calendar year or less. The overall objective is to achieve cost and time savings in the qualification of technologies. At the end of the recommended three-year effort, we will have demonstrated for six or more in-house developed technologies a clear path to insertion using a documented process that permits adaptation to a broad range of hardware and software projects.

  4. Space Shuttle Main Engine (SSME) Evolution

    NASA Technical Reports Server (NTRS)

    Worlund, Len A.; Hastings, J. H.; McCool, Alex (Technical Monitor)

    2001-01-01

    The SSME when developed in the 1970's was a technological leap in space launch propulsion system design. The engine has safely supported the space shuttle for the last two decades and will be required for at least another decade to support human space flight to the international space station. This paper discusses the continued improvements and maturing of the system to its current state and future considerations for its critical role in the nations space program. Discussed are the initiatives of the late 1980's, which lead to three major upgrades through the 1990's. The current capabilities of the propulsion system are defined in the areas of highest programmatic importance: ascent risk, in-flight abort thrust, reusability, and operability. Future initiatives for improved shuttle safety, the paramount priority of the Space Shuttle program are discussed.

  5. Status of Mirror Technology for the Next Generation Space Telescope

    NASA Astrophysics Data System (ADS)

    Jacobson, D. N.

    2000-10-01

    The NGST primary mirror is anticipated to be a segmented deployable optic with segment size being in the range of 1-3m depending on the details of the architecture. Over the past 4 years the NGST program has initiated and implemented an aggressive lightweight cryogenic mirror technology program. The program was designed to challenge and excite the optical community in reaching a new standard in production of lightweight optics. The goal was to develop optics at < 15 kg/m2, operational at ~ 40K and meeting the overall NGST observatory requirement for diffraction limited performance at 2 microns. In order to meet the NGST needs, technology efforts were initiated to investigate and develop mirrors in a variety of materials, which held promise for the program. The basic technology approaches have initially targeted the production of large mirrors in the 1.2-2.0m diameter range (or side-to-side distance in the case of hexagonal optics). Although this size may not be the final size of an NGST primary mirror segment, it was felt that a 1.2-2.0m optic would be of sufficient size to understand the mirror material and fabrication processes which drive the cost and schedule of mirror production. The ultimate goals of the technology program are both to demonstrate mirrors meeting the NGST performance requirements, and to establish cost and schedule credibility for producing and implementing the mirrors for the NGST flight system. Establishing cost and schedule credibility is essential to NGST which is a cost capped mission, with past program experience demonstrating that the optics will be a large portion of the total cost of the program. The first two years of the program were dedicated to understanding the various applicable materials, funding those materials to various levels of maturity and implementing the first large mirror procurement, the NGST Mirror System Demonstrator (NMSD), in order to establish a benchmark for the state-of-the-art in lightweight optics and to establish credibility that the goals of NGST could be achieved. The past two years of the program has seen major steps in the development of several mirror materials, which not only might have NGST applicability but could also support other programs for other customers. Additionally, a second large mirror procurement, the Advanced Mirror System Demonstrator (AMSD), has been implemented providing a focal point to complete the mirror technology development and lead ultimately to the production of mirrors that will fly on NEXUS (NGST flight experimentand) and NGST. This talk will focus on a status of the mirror technology developed over the past 4 years on the NGST program.

  6. The RY/Sph element mediates transcriptional repression of maturation genes from late maturation to early seedling growth.

    PubMed

    Guerriero, Gea; Martin, Nathalie; Golovko, Anna; Sundström, Jens F; Rask, Lars; Ezcurra, Ines

    2009-11-01

    In orthodox seeds, the transcriptional activator ABI3 regulates two major stages in embryo maturation: a mid-maturation (MAT) stage leading to accumulation of storage compounds, and a late maturation (LEA) stage leading to quiescence and desiccation tolerance. Our aim was to elucidate mechanisms for transcriptional shutdown of MAT genes during late maturation, to better understand phase transition between MAT and LEA stages. Using transgenic and transient approaches in Nicotiana, we examined activities of two ABI3-dependent reporter genes driven by multimeric RY and abscisic acid response elements (ABREs) from a Brassica napus napin gene, termed RY and ABRE, where the RY reporter requires ABI3 DNA binding. Expression of RY peaks during mid-maturation and drops during late maturation, mimicking the MAT gene program, and in Arabidopsis thaliana RY elements are over-represented in MAT, but not in LEA, genes. The ABI3 transactivation of RY is inhibited by staurosporine, by a PP2C phosphatase, and by a repressor of maturation genes, VAL1/HSI2. The RY element mediates repression of MAT genes, and we propose that transcriptional shutdown of the MAT program during late maturation involves inhibition of ABI3 DNA binding by dephosphorylation. Later, during seedling growth, VAL1/HSI2 family repressors silence MAT genes by binding RY elements.

  7. Changes in primary metabolites and polyphenols in the peel of "Braeburn" apples (Malus domestica Borkh.) during advanced maturation.

    PubMed

    Bizjak, Jan; Mikulic-Petkovsek, Maja; Stampar, Franci; Veberic, Robert

    2013-10-30

    During the two growing seasons the evolution of primary metabolites and wide range of polyphenols in the "Braeburn" apple peel during advanced maturation were investigated. During the five weeks sucrose significantly increased, whereas fructose and glucose fluctuated around the same level in one season and decreased in another. Regarding malic and citric acids, an expected decrease was recorded. The concentrations of hydroxycinnamic acids, dihydrochalcones, and flavanols remained quite constant or slightly decreased during advanced apple ripening. On the contrary an intensive accumulation of quercetin glycosides and anthocyanins took place during this period, starting with the onset of rapid formation approximately 3 weeks before the technological maturity of apples. Total phenolic content was relatively constant or slightly increased. The present results suggest that measures designed to improve the apple color and quality of "Braeburn" apples should be performed approximately 3-4 weeks before the expected technological maturity of apples.

  8. An Analysis of Factors Affecting Mature Age Students' Academic Success in Undergraduate Nursing Programs: A Critical Literature Review.

    PubMed

    Hayden, Lisa J; Jeong, Sarah Y; Norton, Carol A

    2016-01-01

    The population of mature age students entering university nursing programs has steadily increased in both Australia and worldwide. The objective of the literature review was to explore how mature age students perform academically and to analyse the factors associated with their academic performance in nursing programs. A literature search was conducted in the following databases: CINAHL, ProQuest, Medline, Cochrane, Mosby's Index, Joanna Briggs Institute (JBI), and Scopus. Twenty-six (26) research papers published between 2000 and 2014 have met the selection criteria of this review. The key themes identified include; 1) ambiguity in definition of mature age and academic success, 2) age and academic success, 3) intrinsic factors (life experiences, emotional intelligence, and motivation and volition), and 4) extrinsic factors (peer, academic and family support; and learning style, components of the modules and mode of delivery). Current literature provides evidence that mature age nursing students perform at a higher level within the methodological issues discussed in this paper. Future research is warranted to advance the understanding of the complex relationship between extrinsic and intrinsic factors of mature age students and their academic success in higher education. Nursing educators will benefit from novel evidence, ideas and opportunities to explore and implement in nursing education.

  9. Electronegative Gas Thruster

    NASA Technical Reports Server (NTRS)

    Dankanich, John; Polzin, Kurt; Walker, Mitchell

    2015-01-01

    The project is an international collaboration and academic partnership to mature an innovative electric propulsion thruster concept to Technology Research Level-3 (TRL-3) through direct thrust measurement. The project includes application assessment of the technology ranging from small spacecraft to high power. The Plasma propulsion with Electronegative GASES(PEGASES) basic proof of concept has been matured to TRL-2 by Ane Aanesland of Laboratoire de Physique des Plasma at Ecole Polytechnique. The concept has advantages through eliminating the neutralizer requirement and should yield longer life and lower cost over conventional gridded ion engines. The objective of this research is to validate the proof of concept through the first direct thrust measurements and mature the concept to TRL-3.

  10. Genome-wide association study (GWAS) for growth rate and age at sexual maturation in Atlantic salmon (Salmo salar).

    PubMed

    Gutierrez, Alejandro P; Yáñez, José M; Fukui, Steve; Swift, Bruce; Davidson, William S

    2015-01-01

    Early sexual maturation is considered a serious drawback for Atlantic salmon aquaculture as it retards growth, increases production times and affects flesh quality. Although both growth and sexual maturation are thought to be complex processes controlled by several genetic and environmental factors, selection for these traits has been continuously accomplished since the beginning of Atlantic salmon selective breeding programs. In this genome-wide association study (GWAS) we used a 6.5K single-nucleotide polymorphism (SNP) array to genotype ∼ 480 individuals from the Cermaq Canada broodstock program and search for SNPs associated with growth and age at sexual maturation. Using a mixed model approach we identified markers showing a significant association with growth, grilsing (early sexual maturation) and late sexual maturation. The most significant associations were found for grilsing, with markers located in Ssa10, Ssa02, Ssa13, Ssa25 and Ssa12, and for late maturation with markers located in Ssa28, Ssa01 and Ssa21. A lower level of association was detected with growth on Ssa13. Candidate genes, which were linked to these genetic markers, were identified and some of them show a direct relationship with developmental processes, especially for those in association with sexual maturation. However, the relatively low power to detect genetic markers associated with growth (days to 5 kg) in this GWAS indicates the need to use a higher density SNP array in order to overcome the low levels of linkage disequilibrium observed in Atlantic salmon before the information can be incorporated into a selective breeding program.

  11. KSC-2012-1015

    NASA Image and Video Library

    2012-01-12

    CAPE CANAVERAL, Fla. -- This is an artist's conception of the Dream Chaser spacecraft integrated with an Atlas V rocket. Dream Chaser is under development by Sierra Nevada of Centennial, Colo., for NASA's Commercial Crew Program (CCP). In 2011, NASA selected Sierra Nevada during Commercial Crew Development Round 2 (CCDev2) activities to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. United Launch Alliance's Atlas V also is being considered under CCDev2. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Five other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. (ATK), The Boeing Co., Excalibur Almaz Inc., Blue Origin, and Space Exploration Technologies (SpaceX). For more information, visit www.nasa.gov/commercialcrew. Image credit: Sierra Nevada Corp.

  12. KSC-2011-8113

    NASA Image and Video Library

    2011-12-01

    CAPE CANAVERAL, Fla. -- This is an artist's conception of the Liberty Launch Vehicle under development by Alliant Techsystems Inc. (ATK) of Promontory, Utah, for NASA's Commercial Crew Program (CCP). In 2011, NASA and ATK entered into an unfunded Space Act Agreement during Commercial Crew Development Round 2 (CCDev2) activities to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Blue Origin, The Boeing Co., Excalibur Almaz Inc., Sierra Nevada Corp., Space Exploration Technologies (SpaceX), and United Launch Alliance (ULA). For more information, visit www.nasa.gov/commercialcrew. Image credit: Alliant Techsystems Inc.

  13. KSC-2012-1016

    NASA Image and Video Library

    2012-01-12

    CAPE CANAVERAL, Fla. -- This is an artist's conception of an Almaz capsule, the basis of Excalibur Almaz Inc.'s Human Spacecraft design. In 2011, NASA's Commercial Crew Program CCP and the Houston-based company entered into an unfunded Space Act Agreement during Commercial Crew Development Round 2 CCDev2) activities to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems ATK, Blue Origin, The Boeing Co., Sierra Nevada Corp., Space Exploration Technologies SpaceX, and United Launch Alliance ULA. For more information, visit www.nasa.gov/commercialcrew. Image credit: Excalibur Almaz Limited

  14. KSC-2011-8118

    NASA Image and Video Library

    2011-12-01

    CAPE CANAVERAL, Fla. -- This is an artist's conception of a United Launch Alliance (ULA) Atlas V rocket being considered for NASA's Commercial Crew Program (CCP). In 2011, NASA and ULA of Englewood, Colo., entered into an unfunded Space Act Agreement during Commercial Crew Development Round 2 (CCDev2) activities to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. (ATK), Blue Origin, The Boeing Co., Excalibur Almaz Inc., Sierra Nevada Corp., and Space Exploration Technologies (SpaceX). For more information, visit www.nasa.gov/commercialcrew. Image credit: United Launch Alliance

  15. Development of a Risk-Based Comparison Methodology of Carbon Capture Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engel, David W.; Dalton, Angela C.; Dale, Crystal

    2014-06-01

    Given the varying degrees of maturity among existing carbon capture (CC) technology alternatives, an understanding of the inherent technical and financial risk and uncertainty associated with these competing technologies is requisite to the success of carbon capture as a viable solution to the greenhouse gas emission challenge. The availability of tools and capabilities to conduct rigorous, risk–based technology comparisons is thus highly desirable for directing valuable resources toward the technology option(s) with a high return on investment, superior carbon capture performance, and minimum risk. To address this research need, we introduce a novel risk-based technology comparison method supported by anmore » integrated multi-domain risk model set to estimate risks related to technological maturity, technical performance, and profitability. Through a comparison between solid sorbent and liquid solvent systems, we illustrate the feasibility of estimating risk and quantifying uncertainty in a single domain (modular analytical capability) as well as across multiple risk dimensions (coupled analytical capability) for comparison. This method brings technological maturity and performance to bear on profitability projections, and carries risk and uncertainty modeling across domains via inter-model sharing of parameters, distributions, and input/output. The integration of the models facilitates multidimensional technology comparisons within a common probabilistic risk analysis framework. This approach and model set can equip potential technology adopters with the necessary computational capabilities to make risk-informed decisions about CC technology investment. The method and modeling effort can also be extended to other industries where robust tools and analytical capabilities are currently lacking for evaluating nascent technologies.« less

  16. Study Abroad as a Multifaceted Approach to Supporting College Sophomores: Creating Optimal Environments to Promote Intercultural Maturity

    ERIC Educational Resources Information Center

    Luchesi, Jessica

    2014-01-01

    Leaders in higher education bear the responsibility of creating educational environments and programming that promote student development and help prepare graduates to work, live, and lead in today's interconnected and global society. Such institutional programming, which fosters "intercultural maturity," defined as the cognitive,…

  17. A Review of Monitoring Technologies for Trace Air Contaminants in the International Space Station

    NASA Technical Reports Server (NTRS)

    James, John T.; McCoy, J. Torin

    2004-01-01

    NASA issued a Request For Information (RFI) to identify technologies that might be available to monitor a list of air pollutants in the ISS atmosphere. After NASA received responses to the RFI, an expert panel was assembled to hear presentations from 9 technology proponents. The goal of the panel was to identify technologies that might be suitable for replacement of the current Volatile Organics Analyzer (VOA) within several years. The panelists consisted of 8 experts in analytical chemistry without any links to NASA and 7 people with specific expertise because of their roles in NASA programs. Each technology was scored using a tool that enabled rating of many specific aspects of the technology on a 4-point system. The maturity of the technologies ranged from well-tested instrument packages that had been designed for space applications and were nearly ready for flight to technologies that were untested and speculative in nature. All but one technology involved the use of gas chromatography for separation, and there were various detectors proposed including several mass spectrometers and ion mobility spectrometers. In general there was a tradeoff between large systems with considerable capability to address the target list and smaller systems that had much more limited capability.

  18. Space Station Freedom Central Thermal Control System Evolution

    NASA Technical Reports Server (NTRS)

    Bullock, Richard; Olsson, Eric

    1990-01-01

    The objective of the evolution study is to review the proposed growth scenarios for Space Station Freedom and identify the major CTCS hardware scars and software hooks required to facilitate planned growth and technology obsolescence. The Station's two leading evolutionary configurations are: (1) the Research and Development node, where the fundamental mission is scientific research and commercial endeavors, and (2) the Transportation node, where the emphasis is on supporting Lunar and Mars human exploration. These two nodes evolve from the from the assembly complete configuration by the addition of manned modules, pocket labs, resource nodes, attached payloads, customer servicing facility, and an upper and lower keel and boom truss structure. In the case of the R & D node, the role of the dual keel will be to support external payloads for scientific research. In the case of the Transportation node, the keel will support the Lunar (LTV) and Mars (MTV) transportation vehicle service facilities In addition to external payloads. The transverse boom is extended outboard of the alpha gimbal to accommodate the new solar dynamic arrays for power generation, which will supplement the photovoltaic system. The design, development, deployment, and operation of SSF will take place over a 30 year time period and new Innovations and maturation in technologies can be expected. Evolutionary planning must include the obsolescence and insertion of the new technologies over the life of the program, and the technology growth issues must be addressed in parallel with the development of the baseline thermal control system. Technologies that mature and are available within the next 10 years are best suited for evolutionary consideration as the growth phase begins in the year 2000. To increase TCS capability to accommodate growth using baseline technology would require some penalty in mass, volume, EVA time, manifesting, and operational support. To be cost effective the capabilities of the heat acquisition, transport, and rejection subsystems must be increased.

  19. L-8: Non-Venting Thermal Control Systems for Space Vehicles: Boilerplate

    NASA Technical Reports Server (NTRS)

    Smith, Fred; Massina, Chris

    2016-01-01

    We are sharpening our focus on Human Space Flight (HSF) Exploration Beyond Low Earth Orbit. We want to ensure that HSF technologies are ready to take Humans to Mars in the 2030's. Various Roadmaps define the needed technologies. We are attempting to define our activities and dependencies. Our Goal: Get within 8 years of launching humans to Mars (L-8) by 2025. Develop and Mature the technologies and systems needed. Develop and Mature the personnel needed. We need collaborators to make it happen, and we think they can benefit by working with us.

  20. Technology Readiness Level Guidebook

    DOT National Transportation Integrated Search

    2017-09-01

    This guidebook provides the necessary information for conducting a Technology Readiness Level (TRL) Assessment. TRL Assessments are a tool for determining the maturity of technologies and identifying next steps in the research process. This guidebook...

  1. Updated Heliostorm Warning Mission: Enhancements Based on New Technology

    NASA Technical Reports Server (NTRS)

    Young, Roy M.

    2007-01-01

    The Heliostorm (also referred to as Geostorm) mission has been regarded as the best choice for the first application of solar sail technology. The objective of Heliostorm is to obtain data from an orbit station slightly displaced from the ecliptic at or nearer to the Sun than 0.98 AU, which places it twice as close to the sun as Earth's natural L1 point at 0.993 AU. The maintenance of such an orbit location would require prohibitive amounts of propellants using chemical or electric propulsion systems; however, a solar sailcraft is ideally suited for this purpose because it relies solely on the propulsive force from photons for orbit maintenance. Heliostorm has been the subject of several mission studies over the past decade, with the most complete study conducted in 1999 in conjunction with a proposed New Millennium Program (NMP) Space Technology 5 (ST-5) flight opportunity. Recently, over a two and one-half year period dating from 2003 through 2005, NASA's In-Space Propulsion Technology Program (ISTP) matured solar sail technology from laboratory components to full systems, demonstrated in as relevant a space environment as could feasibly be simulated on the ground. Work under this program has yielded promising results for enhanced Heliostorm mission performance. This enhanced performance is achievable principally through reductions in the sail areal density. These reductions are realized through the use of lower linear mass density booms, a thinner sail membrane, and increased sail area. Advancements in sailcraft vehicle system design also offer potential mass reductions and hence improved performance. This paper will present the preliminary results of an updated Heliostorm mission design study including the enhancements incorporated during the design, development, analysis and testing of the system ground demonstrator.

  2. Updated Heliostorm Warning Mission: Enhancements Based on New Technology

    NASA Technical Reports Server (NTRS)

    Young, Roy M.

    2007-01-01

    The Heliostorm (also referred to as Geostorm) mission has been regarded as the best choice for the first application of solar sail technology. The objective of Heliostorm is to obtain data from an orbit station slightly displaced from the ecliptic at or nearer to the Sun than 0.98 AU, which places it twice as dose to the sun as Earth's natural L1 point at 0.993 AU. The maintenance of such an orbit location would require prohibitive amounts of propellants using chemical or electric propulsion systems; however, a solar sailcraft is ideally suited for this purpose because it relies solely on the propulsive force from photons for orbit maintenance. Heliostorm has been the subject of several mission studies over the past decade, with the most complete study conducted in 1999 in conjunction with a proposed New Millennium Program (NMP) Space Technology 5 (ST-5) flight opportunity. Recently, over a two and one-half year period dating from 2003 through 2005, NASA's In-Space Propulsion Technology Program (ISTP) matured solar sail technology from laboratory components to full systems, demonstrated in as relevant a space environment as could feasibly be simulated on the ground. Work under this program has yielded promising results for enhanced Heliostorm mission performance. This enhanced performance is achievable principally through reductions in the sail areal density. These reductions are realized through the use of lower linear mass density booms, a thinner sail membrane, and increased sail area. Advancements in sailcraft vehicle system design also offer potential mass reductions and hence improved performance. This paper will present the preliminary results of an updated Heliostorm mission design study including the enhancements incorporated during the design, development, analysis and testing of the system ground demonstrator.

  3. Woven Thermal Protection System Based Heat-shield for Extreme Entry Environments Technology (HEEET)

    NASA Technical Reports Server (NTRS)

    Ellerby, Donald; Venkatapathy, Ethiraj; Stackpoole, Margaret; Chinnapongse, Ronald; Munk, Michelle; Dillman, Robert; Feldman, Jay; Prabhu, Dinesh; Beerman, Adam

    2013-01-01

    NASA's future robotic missions utilizing an entry system into Venus and the outer planets, namely, Saturn, Uranus, Neptune, result in extremely high entry conditions that exceed the capabilities of state of the art low to mid density ablators such as PICA or Avcoat. Therefore mission planners typically assume the use of a fully dense carbon phenolic heat shield similar to what was flown on Pioneer Venus and Galileo. Carbon phenolic is a robust TPS material however its high density and relatively high thermal conductivity constrain mission planners to steep entries, with high heat fluxes and pressures and short entry durations, in order for CP to be feasible from a mass perspective. The high entry conditions pose challenges for certification in existing ground based test facilities and the longer-term sustainability of CP will continue to pose challenges. In 2012 the Game Changing Development Program (GCDP) in NASA's Space Technology Mission Directorate funded NASA ARC to investigate the feasibility of a Woven Thermal Protection System (WTPS) to meet the needs of NASA's most challenging entry missions. This project was highly successful demonstrating that a Woven TPS solution compares favorably to CP in performance in simulated reentry environments and provides the opportunity to manufacture graded materials that should result in overall reduced mass solutions and enable a much broader set of missions than does CP. Building off the success of the WTPS project GCDP has funded a follow on project to further mature and scale up the WTPS concept for insertion into future NASA robotic missions. The matured WTPS will address the CP concerns associated with ground based test limitations and sustainability. This presentation will briefly discuss results from the WTPS Project and the plans for WTPS maturation into a heat-shield for extreme entry environment.

  4. Woven Thermal Protection System Based Heat-shield for Extreme Entry Environments Technology (HEEET)

    NASA Technical Reports Server (NTRS)

    Chinnapongse, Ronald; Ellerbe, Donald; Stackpoole, Maragaret; Venkatapathy, Ethiraj; Beerman, Adam; Feldman, Jay; Peterson Keith; Prabhu, Dinesh; Dillman, Robert; Munk, Michelle

    2013-01-01

    NASA's future robotic missions utilizing an entry system into Venus and the outer planets, namely, Saturn, Uranus, Neptune, result in extremely severe entry conditions that exceed the capabilities of state of the art low to mid density ablators such as PICA or Avcoat. Therefore mission planners typically assume the use of a fully dense carbon phenolic heat shield similar to what was flown on Pioneer Venus and Galileo. Carbon phenolic (CP) is a robust TPS material however its high density and relatively high thermal conductivity constrain mission planners to steep entries, with high heat fluxes and pressures and short entry durations, in order for CP to be feasible from a mass perspective. The high entry conditions pose challenges for certification in existing ground based test facilities and the longer-­-term sustainability of CP will continue to pose challenges. In 2012 the Game Changing Development Program (GCDP) in NASA's Space Technology Mission Directorate funded NASA ARC to investigate the feasibility of a Woven Thermal Protection System (WTPS) to meet the needs of NASA's most challenging entry missions. This project was highly successful demonstrating that a Woven TPS solution compares favorably to CP in performance in simulated reentry environments and provides the opportunity to manufacture graded materials that should result in overall reduced mass solutions and enable a much broader set of missions than does CP. Building off the success of the WTPS project GCDP has funded a follow on project to further mature and scale up the WTPS concept for insertion into future NASA robotic missions. The matured WTPS will address the CP concerns associated with ground based test limitations and sustainability. This presentation will briefly discuss results from the WTPS Project and the plans for WTPS maturation into a heat-­-shield for extreme entry environment.

  5. Monitoring fetal maturation—objectives, techniques and indices of autonomic function*

    PubMed Central

    Hoyer, Dirk; Żebrowski, Jan; Cysarz, Dirk; Gonçalves, Hernâni; Pytlik, Adelina; Amorim-Costa, Célia; Bernardes, João; Ayres-de-Campos, Diogo; Witte, Otto W; Schleußner, Ekkehard; Stroux, Lisa; Redman, Christopher; Georgieva, Antoniya; Payne, Stephen; Clifford, Gari; Signorini, Maria G; Magenes, Giovanni; Andreotti, Fernando; Malberg, Hagen; Zaunseder, Sebastian; Lakhno, Igor; Schneider, Uwe

    2017-01-01

    Objective Monitoring the fetal behavior does not only have implications for acute care but also for identifying developmental disturbances that burden the entire later life. The concept, of ‘fetal programming’, also known as ‘developmental origins of adult disease hypothesis’, e.g. applies for cardiovascular, metabolic, hyperkinetic, cognitive disorders. Since the autonomic nervous system is involved in all of those systems, cardiac autonomic control may provide relevant functional diagnostic and prognostic information. Approach The fetal heart rate patterns (HRP) are one of the few functional signals in the prenatal period that relate to autonomic control and, therefore, is key to fetal autonomic assessment. The development of sensitive markers of fetal maturation and its disturbances requires the consideration of physiological fundamentals, recording technology and HRP parameters of autonomic control. Main Results Based on the ESGCO2016 special session on monitoring the fetal maturation we herein report the most recent results on: (i) functional fetal autonomic brain age score (fABAS), Recurrence Quantitative Analysis and Binary Symbolic Dynamics of complex HRP resolve specific maturation periods, (ii) magnetocardiography (MCG) based fABAS was validated for cardiotocography (CTG), (iii) 30 min recordings are sufficient for obtaining episodes of high variability, important for intrauterine growth restriction (IUGR) detection in handheld Doppler, (iv) novel parameters from PRSA to identify Intra IUGR fetuses, (v) evaluation of fetal electrocardiographic (ECG) recordings, (vi) correlation between maternal and fetal HRV is disturbed in pre-eclampsia. Significance The reported novel developments significantly extend the possibilities for the established CTG methodology. Novel HRP indices improve the accuracy of assessment due to their more appropriate consideration of complex autonomic processes across the recording technologies (CTG, handheld Doppler, MCG, ECG). The ultimate objective is their dissemination into routine practice and studies of fetal developmental disturbances with implications for programming of adult diseases. PMID:28186000

  6. Effects of Deployment Investment on the Growth of the Biofuels Industry. 2016 Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vimmerstedt, Laura J.; Warner, Ethan S.; Stright, Dana

    This report updates the 2013 report of the same title. Some text originally published in that report is retained and indicated in gray. In support of the national goals for biofuel use in the United States, numerous technologies have been developed that convert biomass to biofuels. Some of these biomass to biofuel conversion technology pathways are operating at commercial scales, while others are in earlier stages of development. The advancement of a new pathway toward commercialization involves various types of progress, including yield improvements, process engineering, and financial performance. Actions of private investors and public programs can accelerate the demonstrationmore » and deployment of new conversion technology pathways. These investors (both private and public) will pursue a range of pilot, demonstration, and pioneer scale biorefinery investments; the most cost-effective set of investments for advancing the maturity of any given biomass to biofuel conversion technology pathway is unknown. In some cases, whether or not the pathway itself will ultimately be technically and financially successful is also unknown. This report presents results from the Biomass Scenario Model--a system dynamics model of the biomass to biofuels system--that estimate effects of investments in biorefineries at different maturity levels and operational scales. The report discusses challenges in estimating effects of such investments and explores the interaction between this deployment investment and a volumetric production incentive. Model results show that investments in demonstration and deployment have a substantial growth impact on the development of the biofuels industry. Results also show that other conditions, such as accompanying incentives, have major impacts on the effectiveness of such investments. Results from the 2013 report are compared to new results. This report does not advocate for or against investments, incentives, or policies, but analyzes simulations of their hypothetical effects.« less

  7. Experimentation for the Maturation of Deep Space Cryogenic Refueling Technologies

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2008-01-01

    This report describes the results of the "Experimentation for the Maturation of Deep Space Cryogenic Refueling Technology" study. This study identifies cryogenic fluid management technologies that require low-gravity flight experiments bring technology readiness levels to 5 to 6; examines many possible flight experiment options; and develops near-term low-cost flight experiment concepts to mature the core technologies. A total of 25 white papers were prepared by members of the project team in the course of this study. The full text of each white paper is included and 89 relevant references are cited. The team reviewed the white papers that provided information on new or active concepts of experiments to pursue and assessed them on the basis of technical need, cost, return on investment, and flight platform. Based on on this assessment the "Centaur Test Bed for Cryogenic Fluid Management" was rated the highest. "Computational Opportunities for Cryogenics for Cryogenic and Low-g Fluid Systems" was ranked second, based on its high scores in state of the art and return on investment, even though scores in cost and time were second to last. "Flight Development Test Objective Approach for In-space Propulsion Elements" was ranked third.

  8. Laser-based standoff detection of explosives: a critical review.

    PubMed

    Wallin, Sara; Pettersson, Anna; Ostmark, Henric; Hobro, Alison

    2009-09-01

    A review of standoff detection technologies for explosives has been made. The review is focused on trace detection methods (methods aiming to detect traces from handling explosives or the vapours surrounding an explosive charge due to the vapour pressure of the explosive) rather than bulk detection methods (methods aiming to detect the bulk explosive charge). The requirements for standoff detection technologies are discussed. The technologies discussed are mostly laser-based trace detection technologies, such as laser-induced-breakdown spectroscopy, Raman spectroscopy, laser-induced-fluorescence spectroscopy and IR spectroscopy but the bulk detection technologies millimetre wave imaging and terahertz spectroscopy are also discussed as a complement to the laser-based methods. The review includes novel techniques, not yet tested in realistic environments, more mature technologies which have been tested outdoors in realistic environments as well as the most mature millimetre wave imaging technique.

  9. Ensuring sustainability of non-networked sanitation technologies: an approach to standardization.

    PubMed

    Starkl, Markus; Brunner, Norbert; Feil, Magdalena; Hauser, Andreas

    2015-06-02

    Non-networked sanitation technologies use no sewer, water or electricity lines. Based on a review of 45 commercially distributed technologies, 12 (representing three concepts) were selected for a detailed audit. They were located in six countries of Africa and Asia. The safety of users was generally assured and the costs per use were not excessive, whereas costs were fully transparent for only one technology surveyed. A main drawback was insufficient quality of the byproducts from on-site treatment, making recycling in agriculture a hygienic and environmental risk. Further, no technology was sufficiently mature (requiring e.g. to shift wastes by hand). In order to promote further development and give producers of mature products a competitive advantage, the paper proposes a certification of technologies to confirm the fulfillment of basic requirements to make them attractive for future users.

  10. An innovative approach to predict technology evolution for the desoldering of printed circuit boards: A perspective from China and America.

    PubMed

    Wang, Chen; Zhao, Wu; Wang, Jie; Chen, Ling; Luo, Chun-Jing

    2016-06-01

    The printed circuit boards basis of electronic equipment have seen a rapid growth in recent years and played a significant role in modern life. Nowadays, the fact that electronic devices upgrade quickly necessitates a proper management of waste printed circuit boards. Non-destructive desoldering of waste printed circuit boards becomes the first and the most crucial step towards recycling electronic components. Owing to the diversity of materials and components, the separation process is difficult, which results in complex and expensive recovery of precious materials and electronic components from waste printed circuit boards. To cope with this problem, we proposed an innovative approach integrating Theory of Inventive Problem Solving (TRIZ) evolution theory and technology maturity mapping system to forecast the evolution trends of desoldering technology of waste printed circuit boards. This approach can be applied to analyse the technology evolution, as well as desoldering technology evolution, then research and development strategy and evolution laws can be recommended. As an example, the maturity of desoldering technology is analysed with a technology maturity mapping system model. What is more, desoldering methods in different stages are analysed and compared. According to the analysis, the technological evolution trends are predicted to be 'the law of energy conductivity' and 'increasing the degree of idealisation'. And the potential technology and evolutionary state of waste printed circuit boards are predicted, offering reference for future waste printed circuit boards recycling. © The Author(s) 2016.

  11. Development Challenges of Game-Changing Entry System Technologies From Concept to Mission Infusion

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Beck, Robin; Ellerby, Don; Feldman, Jay; Gage, Peter; Munk, Michelle; Wercinski, Paul

    2016-01-01

    Realization within the US and NASA that future exploration both Human and Robotic will require innovative new technologies led to the creation of the Space Technology Mission Directorate and investment in game changing technologies with high pay-off. Some of these investments will see success and others, due to many of the constraints, will not attain their goal. The co-authors of this proposed presentation have been involved from concept to mission infusion aspects of entry technologies that are game changing. The four example technologies used to describe the challenges experienced along the pathways to success are at different levels of maturity. They are Conformal, 3-D MAT, HEEET and ADEPT. The four examples in many ways capture broad aspects of the challenges of maturation and illustrate what led some to be exceptionally successful and how others had to be altered in order remain viable game changing technologies.

  12. Overview of Stirling Technology Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Schifer, Nicholas A.; Williams, Zachary D.; Metscher, Jonathan F.

    2016-01-01

    Stirling Radioisotope Power Systems (RPSs) are under development to provide power on future space science missions where robotic spacecraft will orbit, fly by, land, or rove using less than a quarter of the plutonium the currently available RPS uses to produce about the same power. NASA Glenn Research Center's newly formulated Stirling Cycle Technology Development Project (SCTDP) continues development of Stirling-based systems and subsystems, which include a flight-like generator and related housing assembly, controller, and convertors. The project also develops less mature technologies under Stirling Technology Research, with a focus on demonstration in representative environments to increase the technology readiness level (TRL). Matured technologies are evaluated for selection in future generator designs. Stirling Technology Research tasks focus on a wide variety of objectives, including increasing temperature capability to enable new environments, reducing generator mass and/or size, improving reliability and system fault tolerance, and developing alternative designs. The task objectives and status are summarized.

  13. Overview of Stirling Technology Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Schifer, Nicholas A.; Williams, Zachary D.; Metscher, Jonathan F.

    2015-01-01

    Stirling Radioisotope Power Systems (RPS) are under development to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove using less than a quarter of the plutonium the currently available RPS uses to produce about the same power. Glenn Research Center's (GRC's) newly formulated Stirling Cycle Technology Development Project (SCTDP) continues development of Stirling-based systems and subsystems, which include a flight-like generator and related housing assembly, controller, and convertors. The project also develops less mature technologies under Stirling Technology Research, with a focus on demonstration in representative environments to increase the technology readiness level (TRL). Matured technologies are evaluated for selection in future generator designs. Stirling Technology Research tasks focus on a wide variety of objectives, including increasing temperature capability to enable new environments, reducing generator mass and/or size, improving reliability or system fault tolerance, and developing alternative designs. The task objectives and status are summarized.

  14. Preparing systems engineering and computing science students in disciplined methods, quantitative, and advanced statistical techniques to improve process performance

    NASA Astrophysics Data System (ADS)

    McCray, Wilmon Wil L., Jr.

    The research was prompted by a need to conduct a study that assesses process improvement, quality management and analytical techniques taught to students in U.S. colleges and universities undergraduate and graduate systems engineering and the computing science discipline (e.g., software engineering, computer science, and information technology) degree programs during their academic training that can be applied to quantitatively manage processes for performance. Everyone involved in executing repeatable processes in the software and systems development lifecycle processes needs to become familiar with the concepts of quantitative management, statistical thinking, process improvement methods and how they relate to process-performance. Organizations are starting to embrace the de facto Software Engineering Institute (SEI) Capability Maturity Model Integration (CMMI RTM) Models as process improvement frameworks to improve business processes performance. High maturity process areas in the CMMI model imply the use of analytical, statistical, quantitative management techniques, and process performance modeling to identify and eliminate sources of variation, continually improve process-performance; reduce cost and predict future outcomes. The research study identifies and provides a detail discussion of the gap analysis findings of process improvement and quantitative analysis techniques taught in U.S. universities systems engineering and computing science degree programs, gaps that exist in the literature, and a comparison analysis which identifies the gaps that exist between the SEI's "healthy ingredients " of a process performance model and courses taught in U.S. universities degree program. The research also heightens awareness that academicians have conducted little research on applicable statistics and quantitative techniques that can be used to demonstrate high maturity as implied in the CMMI models. The research also includes a Monte Carlo simulation optimization model and dashboard that demonstrates the use of statistical methods, statistical process control, sensitivity analysis, quantitative and optimization techniques to establish a baseline and predict future customer satisfaction index scores (outcomes). The American Customer Satisfaction Index (ACSI) model and industry benchmarks were used as a framework for the simulation model.

  15. Exploration Systems Health Management Facilities and Testbed Workshop

    NASA Technical Reports Server (NTRS)

    Wilson, Scott; Waterman, Robert; McCleskey, Carey

    2004-01-01

    Presentation Agenda : (1) Technology Maturation Pipeline (The Plan) (2) Cryogenic testbed (and other KSC Labs) (2a) Component / Subsystem technologies (3) Advanced Technology Development Center (ATDC) (3a) System / Vehic1e technologies (4) EL V Flight Experiments (Flight Testbeds).

  16. Rapid cotton maturity and fineness measurements using the Cottonscope®

    USDA-ARS?s Scientific Manuscript database

    Much interest has been shown in new and rapid measurements of fiber maturity and fineness. The Cottonscope is a new instrument for fiber maturity and fineness, using a longitudinal measurement of weighted fiber snippets in water by polarized light microscopy and image analysis. A program was implem...

  17. New Start: Pre-Enrollment Programme for Mature Age Students.

    ERIC Educational Resources Information Center

    Morrison, A. A.

    1979-01-01

    Describes the "New Start" preenrollment program in Auckland (New Zealand) University for mature-age students to prepare them for the requirements of university study and show them how to cope with degree work. Discusses factors to explain the success of mature-age students, in particular the "New Starters." (MF)

  18. 24 CFR 201.11 - Loan maturities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Loan maturities. 201.11 Section 201... DEVELOPMENT MORTGAGE AND LOAN INSURANCE PROGRAMS UNDER NATIONAL HOUSING ACT AND OTHER AUTHORITIES TITLE I PROPERTY IMPROVEMENT AND MANUFACTURED HOME LOANS Loan and Note Provisions § 201.11 Loan maturities. (a...

  19. Looking ever so much like an alien spacecraft, the Altus II remotely piloted aircraft shows off some

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Looking ever so much like an alien spacecraft, the Altus II remotely piloted aircraft shows off some of the instruments and camera lenses mounted in its nose for a lightning study over Florida flown during the summer of 2002. The Altus Cumulus Electrification Study (ACES), led by Dr. Richard Blakeslee of NASA Marshall Space Flight center, focused on the collection of electrical, magnetic and optical measurements of thunderstorms. Data collected will help scientists understand the development and life cycles of thunderstorms, which in turn may allow meteorologists to more accurately predict when destructive storms may hit. The Altus II, built by General Atomics Aeronautical Systems, Inc., is one of several remotely operated aircraft developed and matured under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program. The program focused on developing airframe, propulsion, control system and communications technologies to allow unmanned aerial vehicles (UAVs) to operate at very high altitudes for long durations while carrying a variety of sensors, cameras or other instruments for science experiments, surveillance or telecommunications relay missions.

  20. Functional Testing of the Space Station Plasma Contactor

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Hamley, John A.; Sarver-Verhey, Timothy R.; Soulas, George C.

    1995-01-01

    A plasma contactor system has been baselined for the International Space Station Alpha (ISSA) to control the electrical potentials of surfaces to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and, in particular, the technology development effort on ion thruster systems. The plasma contactor subsystems include a hollow cathode assembly, a power electronics unit, and an expellant management unit. Under a pre-flight development program these subsystems are being developed to the level of maturity appropriate for transfer to U.S. industry for final development. Development efforts for the hollow cathode assembly include design selection and refinement, validating its required lifetime, and quantifying the cathode performance and interface specifications. To date, cathode components have demonstrated over 10,000 hours lifetime, and a hollow cathode assembly has demonstrated over 3,000 ignitions. Additionally, preliminary integration testing of a hollow cathode assembly with a breadboard power electronics unit has been completed. This paper discusses test results and the development status of the plasma contactor subsystems for ISSA, and in particular, the hollow cathode assembly.

  1. Space Station Cathode Design, Performance, and Operating Specifications

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Verhey, Timothy R.; Soulas, George; Zakany, James

    1998-01-01

    A plasma contactor system was baselined for the International Space Station (ISS) to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and, in particular, the technology development efforts on ion thruster systems. The plasma contactor includes a hollow cathode assembly (HCA), a power electronics unit, and a xenon gas feed system. Under a pre-flight development program, these subsystems were taken to the level of maturity appropriate for transfer to U.S. industry for final development. NASA's Lewis Research Center was subsequently requested by ISS to manufacture and deliver the engineering model, qualification model, and flight HCA units. To date, multiple units have been built. One cathode has demonstrated approximately 28,000 hours lifetime, two development unit HCAs have demonstrated over 10,000 hours lifetime, and one development unit HCA has demonstrated more than 32,000 ignitions. All 8 flight HCAs have been manufactured, acceptance tested, and are ready for delivery to the flight contractor. This paper discusses the requirements, mechanical design, performance, operating specifications, and schedule for the plasma contactor flight HCAs.

  2. Proton-Exchange-Membrane Fuel Cell Powerplants Developed and Tested for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark A.; Pham, Nang T.

    2005-01-01

    Proton-exchange-membrane fuel cell (PEMFC) technology has received major attention for terrestrial applications, such as the automotive and residential markets, for the past 20 years. This attention has significantly advanced the maturity of the technology, resulting in ever more compact, efficient, reliable, and inexpensive PEMFC designs. In comparison to the terrestrial operating environment, the space operating environment is much more demanding. Microgravity to high-gravity loads and the need to use pure oxygen (rather than air) as the fuel cell oxidizer place more stringent demands on PEMFC technology. NASA and its partners from industry are leveraging terrestrial PEMFC advancements by conducting parallel space technology development for future exploration missions. A team from the NASA Glenn Research Center, NASA Johnson Space Center, and NASA Kennedy Space Center recently completed the first phase of a PEMFC powerplant development effort for exploration missions. The industry partners for this phase of the development effort were ElectroChem, Inc., and Teledyne Energy Systems, Inc. Under contract to Glenn, both of these industry partners successfully designed, fabricated, and tested a breadboard PEMFC powerplant in the 1- to 5-kW power range. These powerplants were based on existing company-proprietary fuel cell stack designs, combined with off-the-shelf components, which formed the balance of the powerplant design. Subsequent to the contractor development efforts, both powerplants were independently tested at Johnson to verify operational and performance characteristics, and to determine suitability for further technology development in the second phase of the NASA-led effort. Following the independent NASA testing, Teledyne Energy Systems, Inc., was selected to develop an engineering model PEMFC powerplant. This effort was initiated by the 2nd Generation Reusable Launch Vehicle (RLV) Program Office in 2001; it transitioned to the Next Generation Launch Technologies (NGLT) Program Office in 2003. The effort is now being funded by the Exploration Program Office. We plan to summarize the results from the ongoing engineering model PEMFC powerplant development in a future Research & Technology article.

  3. Proton-Exchange-Membrane Fuel Cell Powerplants Developed and Tested for Exploration Missions

    NASA Astrophysics Data System (ADS)

    Hoberecht, Mark A.; Pham, Nang T.

    2005-06-01

    Proton-exchange-membrane fuel cell (PEMFC) technology has received major attention for terrestrial applications, such as the automotive and residential markets, for the past 20 years. This attention has significantly advanced the maturity of the technology, resulting in ever more compact, efficient, reliable, and inexpensive PEMFC designs. In comparison to the terrestrial operating environment, the space operating environment is much more demanding. Microgravity to high-gravity loads and the need to use pure oxygen (rather than air) as the fuel cell oxidizer place more stringent demands on PEMFC technology. NASA and its partners from industry are leveraging terrestrial PEMFC advancements by conducting parallel space technology development for future exploration missions. A team from the NASA Glenn Research Center, NASA Johnson Space Center, and NASA Kennedy Space Center recently completed the first phase of a PEMFC powerplant development effort for exploration missions. The industry partners for this phase of the development effort were ElectroChem, Inc., and Teledyne Energy Systems, Inc. Under contract to Glenn, both of these industry partners successfully designed, fabricated, and tested a breadboard PEMFC powerplant in the 1- to 5-kW power range. These powerplants were based on existing company-proprietary fuel cell stack designs, combined with off-the-shelf components, which formed the balance of the powerplant design. Subsequent to the contractor development efforts, both powerplants were independently tested at Johnson to verify operational and performance characteristics, and to determine suitability for further technology development in the second phase of the NASA-led effort. Following the independent NASA testing, Teledyne Energy Systems, Inc., was selected to develop an engineering model PEMFC powerplant. This effort was initiated by the 2nd Generation Reusable Launch Vehicle (RLV) Program Office in 2001; it transitioned to the Next Generation Launch Technologies (NGLT) Program Office in 2003. The effort is now being funded by the Exploration Program Office. We plan to summarize the results from the ongoing engineering model PEMFC powerplant development in a future Research & Technology article.

  4. A Perspective on Science and Research in the Environmental Consulting Industry

    NASA Astrophysics Data System (ADS)

    Stephens, D. B.

    2005-12-01

    Substantial growth in the hydrogeology field has occurred in response to federal regulations of the 1970s and 1980s dealing with water quality. The regulations led to increasing student applications, more universities offering programs in hydrogeology, and increased research support. With no new regulatory drivers and diminished perceived imminent threats to human health and the environment in recent years, the field of hydrogeology appears to have matured. An enormous amount of information, new technology, and new analytical tools have overwhelmed regulators and the regulated community. Although there appear to be many areas yet to explore, some of the more theoretical developments may be perceived by end users as having limited practical value or little immediate impact to solve existing problems. A key challenge is to put current theory and state of art technology into practice.

  5. A fresh view of the fly-by-light/power-by-wire program

    NASA Technical Reports Server (NTRS)

    Wander, John

    1995-01-01

    NASA has been funding a focused program to promote the development of optical signaling and electrical actuation for civil transports. This program is reviewed in the context of other government and private sector initiatives. It is concluded that significant resources have and continue to be expended to develop these technologies. A second goal of the program is to develop certification methods for aircraft that implement these new technologies. It is concluded that there is a significant need for this effort and that NASA in cooperation with the FAA are well suited to do satisfy the need. Electrical actuation is not new but has recently been made feasible for a broader array of high power applications than previously because of developments in power switching technologies, motors, and computers. This development has been well explored by the Air Force and the private sector and requires little more government attention. Light signal and sensor technology has been developing under public and private funding and has reached a level of maturity such that some companies are using optical signal carriers for flight control on private jets. Several issues remain unresolved but centrally focused government effort is not an effective way to pursue the variety of issues that persist. Certification of aircraft for flight is a government activity. The poor preparedness of the FAA to certify fault tolerant digital flight control systems against electromagnetic effects coupled with the increasing number of electromagnetic emitters constitutes an impediment for development of this technology. The complete lack of preparation to certify optical components is currently causing concern for a general aviation supplier who is having difficulty certify their system. NASA with the FAA should work to develop clear, reasonable, and cost effective ways of certifying the reliability of fault tolerant digital and optical flight control components and systems.

  6. Composites for Exploration Upper Stage

    NASA Technical Reports Server (NTRS)

    Fikes, J. C.; Jackson, J. R.; Richardson, S. W.; Thomas, A. D.; Mann, T. O.; Miller, S. G.

    2016-01-01

    The Composites for Exploration Upper Stage (CEUS) was a 3-year, level III project within the Technology Demonstration Missions program of the NASA Space Technology Mission Directorate. Studies have shown that composites provide important programmatic enhancements, including reduced weight to increase capability and accelerated expansion of exploration and science mission objectives. The CEUS project was focused on technologies that best advanced innovation, infusion, and broad applications for the inclusion of composites on future large human-rated launch vehicles and spacecraft. The benefits included near- and far-term opportunities for infusion (NASA, industry/commercial, Department of Defense), demonstrated critical technologies and technically implementable evolvable innovations, and sustained Agency experience. The initial scope of the project was to advance technologies for large composite structures applicable to the Space Launch System (SLS) Exploration Upper Stage (EUS) by focusing on the affordability and technical performance of the EUS forward and aft skirts. The project was tasked to develop and demonstrate critical composite technologies with a focus on full-scale materials, design, manufacturing, and test using NASA in-house capabilities. This would have demonstrated a major advancement in confidence and matured the large-scale composite technology to a Technology Readiness Level 6. This project would, therefore, have bridged the gap for providing composite application to SLS upgrades, enabling future exploration missions.

  7. Growing Up: The Development of Psychosocial Maturity. Report No. 180.

    ERIC Educational Resources Information Center

    Greenberger, Ellen; And Others

    The Center for Social Organization of Schools has two objectives: to develop a scientific knowledge of how schools affect their students, and to use this knowledge to develop better school practices and organization. One of the three programs sponsored by the center is the Schools and Maturity Program. It is studying the effects of school, family,…

  8. Effect of an Experiential and Work-Based Learning Program on Vocational Identity, Career Decision Self-Efficacy, and Career Maturity

    ERIC Educational Resources Information Center

    Esters, Levon T.; Retallick, Michael S.

    2013-01-01

    This exploratory study examined the effect of an agriculturally-based experiential and work-based learning program, Science With Practice (SWP), on the vocational identity, career decision self-efficacy, and career maturity of undergraduate agriculture and life sciences students. The SWP experience helped clarify students' career interests and…

  9. Seed maturation associated transcriptional programs and regulatory networks underlying genotypic difference in seed dormancy and size/weight in wheat (Triticum aestivum L.).

    PubMed

    Yamasaki, Yuji; Gao, Feng; Jordan, Mark C; Ayele, Belay T

    2017-09-16

    Maturation forms one of the critical seed developmental phases and it is characterized mainly by programmed cell death, dormancy and desiccation, however, the transcriptional programs and regulatory networks underlying acquisition of dormancy and deposition of storage reserves during the maturation phase of seed development are poorly understood in wheat. The present study performed comparative spatiotemporal transcriptomic analysis of seed maturation in two wheat genotypes with contrasting seed weight/size and dormancy phenotype. The embryo and endosperm tissues of maturing seeds appeared to exhibit genotype-specific temporal shifts in gene expression profile that might contribute to the seed phenotypic variations. Functional annotations of gene clusters suggest that the two tissues exhibit distinct but genotypically overlapping molecular functions. Motif enrichment predicts genotypically distinct abscisic acid (ABA) and gibberellin (GA) regulated transcriptional networks contribute to the contrasting seed weight/size and dormancy phenotypes between the two genotypes. While other ABA responsive element (ABRE) motifs are enriched in both genotypes, the prevalence of G-box-like motif specifically in tissues of the dormant genotype suggests distinct ABA mediated transcriptional mechanisms control the establishment of dormancy during seed maturation. In agreement with this, the bZIP transcription factors that co-express with ABRE enriched embryonic genes differ with genotype. The enrichment of SITEIIATCYTC motif specifically in embryo clusters of maturing seeds irrespective of genotype predicts a tissue specific role for the respective TCP transcription factors with no or minimal contribution to the variations in seed dormancy. The results of this study advance our understanding of the seed maturation associated molecular mechanisms underlying variation in dormancy and weight/size in wheat seeds, which is a critical step towards the designing of molecular strategies for enhancing seed yield and quality.

  10. Antibody VH and VL recombination using phage and ribosome display technologies reveals distinct structural routes to affinity improvements with VH-VL interface residues providing important structural diversity

    PubMed Central

    Groves, Maria AT; Amanuel, Lily; Campbell, Jamie I; Rees, D Gareth; Sridharan, Sudharsan; Finch, Donna K; Lowe, David C; Vaughan, Tristan J

    2014-01-01

    In vitro selection technologies are an important means of affinity maturing antibodies to generate the optimal therapeutic profile for a particular disease target. Here, we describe the isolation of a parent antibody, KENB061 using phage display and solution phase selections with soluble biotinylated human IL-1R1. KENB061 was affinity matured using phage display and targeted mutagenesis of VH and VL CDR3 using NNS randomization. Affinity matured VHCDR3 and VLCDR3 library blocks were recombined and selected using phage and ribosome display protocol. A direct comparison of the phage and ribosome display antibodies generated was made to determine their functional characteristics. PMID:24256948

  11. CECE: Expanding the Envelope of Deep Throttling in Liquid Oxygen/Liquid Hydrogen Rocket Engines For NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Giuliano, Victor J.; Leonard, Timothy G.; Lyda, Randy T.; Kim, Tony S.

    2010-01-01

    As one of the first technology development programs awarded by NASA under the Vision for Space Exploration, the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to begin technology development and demonstration toward a deep throttling, cryogenic engine supporting ongoing trade studies for NASA s Lunar Lander descent stage. The CECE program leverages the maturity and previous investment of a flight-proven hydrogen/oxygen expander cycle engine, the PWR RL10, to develop technology and demonstrate an unprecedented combination of reliability, safety, durability, throttlability, and restart capabilities in a high-energy cryogenic engine. The testbed selected for the deep throttling demonstration phases of this program was a minimally modified RL10 engine, allowing for maximum current production engine commonality and extensibility with minimum program cost. Three series of demonstrator engine tests, the first in April-May 2006, the second in March-April 2007 and the third in November-December 2008, have demonstrated up to 13:1 throttling (104% to 8% thrust range) of the hydrogen/oxygen expander cycle engine. The first two test series explored a propellant feed system instability ("chug") environment at low throttled power levels. Lessons learned from these two tests were successfully applied to the third test series, resulting in stable operation throughout the 13:1 throttling range. The first three tests have provided an early demonstration of an enabling cryogenic propulsion concept, accumulating over 5,000 seconds of hot fire time over 27 hot fire tests, and have provided invaluable system-level technology data toward design and development risk mitigation for the NASA Altair and future lander propulsion system applications. This paper describes the results obtained from the highly successful third test series as well as the test objectives and early results obtained from a fourth test series conducted over March-May 2010

  12. Marshall Space Flight Center's Virtual Reality Applications Program 1993

    NASA Technical Reports Server (NTRS)

    Hale, Joseph P., II

    1993-01-01

    A Virtual Reality (VR) applications program has been under development at the Marshall Space Flight Center (MSFC) since 1989. Other NASA Centers, most notably Ames Research Center (ARC), have contributed to the development of the VR enabling technologies and VR systems. This VR technology development has now reached a level of maturity where specific applications of VR as a tool can be considered. The objectives of the MSFC VR Applications Program are to develop, validate, and utilize VR as a Human Factors design and operations analysis tool and to assess and evaluate VR as a tool in other applications (e.g., training, operations development, mission support, teleoperations planning, etc.). The long-term goals of this technology program is to enable specialized Human Factors analyses earlier in the hardware and operations development process and develop more effective training and mission support systems. The capability to perform specialized Human Factors analyses earlier in the hardware and operations development process is required to better refine and validate requirements during the requirements definition phase. This leads to a more efficient design process where perturbations caused by late-occurring requirements changes are minimized. A validated set of VR analytical tools must be developed to enable a more efficient process for the design and development of space systems and operations. Similarly, training and mission support systems must exploit state-of-the-art computer-based technologies to maximize training effectiveness and enhance mission support. The approach of the VR Applications Program is to develop and validate appropriate virtual environments and associated object kinematic and behavior attributes for specific classes of applications. These application-specific environments and associated simulations will be validated, where possible, through empirical comparisons with existing, accepted tools and methodologies. These validated VR analytical tools will then be available for use in the design and development of space systems and operations and in training and mission support systems.

  13. FY2016 Propulsion Materials Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion systems focus on improvements in both vehicle efficiency and fuel substitution, both of which must overcome the performance limitations of the materials currently in use. Propulsion Materials Program activities work with national laboratories, industry experts, and VTO powertrain systems (e.g., Advanced Combustion Engines and Fuels) teams to develop strategies thatmore » overcome materials limitations in future powertrain performance. The technical maturity of the portfolio of funded projects ranges from basic science to subsystem prototype validation. Projects within a Propulsion Materials Program activity address materials concerns that directly impact critical technology barriers within each of the above programs, including barriers that impact fuel efficiency, thermal management, emissions reduction, improved reliability, and reduced manufacturing costs. The program engages only the barriers that result from material property limitations and represent fundamental, high-risk materials issues.« less

  14. Adaptation and Re-Use of Spacecraft Power System Models for the Constellation Program

    NASA Technical Reports Server (NTRS)

    Hojnicki, Jeffrey S.; Kerslake, Thomas W.; Ayres, Mark; Han, Augustina H.; Adamson, Adrian M.

    2008-01-01

    NASA's Constellation Program is embarking on a new era of space exploration, returning to the Moon and beyond. The Constellation architecture will consist of a number of new spacecraft elements, including the Orion crew exploration vehicle, the Altair lunar lander, and the Ares family of launch vehicles. Each of these new spacecraft elements will need an electric power system, and those power systems will need to be designed to fulfill unique mission objectives and to survive the unique environments encountered on a lunar exploration mission. As with any new spacecraft power system development, preliminary design work will rely heavily on analysis to select the proper power technologies, size the power system components, and predict the system performance throughout the required mission profile. Constellation projects have the advantage of leveraging power system modeling developments from other recent programs such as the International Space Station (ISS) and the Mars Exploration Program. These programs have developed mature power system modeling tools, which can be quickly modified to meet the unique needs of Constellation, and thus provide a rapid capability for detailed power system modeling that otherwise would not exist.

  15. Developing a successful robotics program.

    PubMed

    Luthringer, Tyler; Aleksic, Ilija; Caire, Arthur; Albala, David M

    2012-01-01

    Advancements in the robotic surgical technology have revolutionized the standard of care for many surgical procedures. The purpose of this review is to evaluate the important considerations in developing a new robotics program at a given healthcare institution. Patients' interest in robotic-assisted surgery has and continues to grow because of improved outcomes and decreased periods of hospitalization. Resulting market forces have created a solid foundation for the implementation of robotic surgery into surgical practice. Given proper surgeon experience and an efficient system, robotic-assisted procedures have been cost comparable to open surgical alternatives. Surgeon training and experience is closely linked to the efficiency of a new robotics program. Formally trained robotic surgeons have better patient outcomes and shorter operative times. Training in robotics has shown no negative impact on patient outcomes or mentor learning curves. Individual economic factors of local healthcare settings must be evaluated when planning for a new robotics program. The high cost of the robotic surgical platform is best offset with a large surgical volume. A mature, experienced surgeon is integral to the success of a new robotics program.

  16. Qualification testing of fiber-based laser transmitters and on-orbit validation of a commercial laser system

    NASA Astrophysics Data System (ADS)

    Wright, M. W.; Wilkerson, M. W.; Tang, R. R.

    2017-11-01

    Qualification testing of fiber based laser transmitters is required for NASA's Deep Space Optical Communications program to mature the technology for space applications. In the absence of fully space qualified systems, commercial systems have been investigated in order to demonstrate the robustness of the technology. To this end, a 2.5 W fiber based laser source was developed as the transmitter for an optical communications experiment flown aboard the ISS as a part of a technology demonstration mission. The low cost system leveraged Mil Standard design principles and Telcordia certified components to the extent possible and was operated in a pressure vessel with active cooling. The laser was capable of high rate modulation but was limited by the mission requirements to 50 Mbps for downlinking stored video from the OPALS payload, externally mounted on the ISS. Environmental testing and space qualification of this unit will be discussed along with plans for a fully space qualified laser transmitter.

  17. Northrop Grumman TR202 LOX/LH2 Deep Throttling Engine Technology Project Status

    NASA Technical Reports Server (NTRS)

    Gromski, Jason; Majamaki, Annik; Chianese, Silvio; Weinstock, Vladimir; Kim, Tony S.

    2010-01-01

    NASA's Propulsion and Cryogenic Advanced Development (PCAD) project is currently developing enabling propulsion technologies in support of future lander missions. To meet lander requirements, several technical challenges need to be overcome, one of which is the ability for the descent engine(s) to operate over a deep throttle range with cryogenic propellants. To address this need, PCAD has enlisted Northrop Grumman Aerospace Systems (NGAS) in a technology development effort associated with the TR202 engine. The TR202 is a LOX/LH2 expander cycle engine driven by independent turbopump assemblies and featuring a variable area pintle injector similar to the injector used on the TR200 Apollo Lunar Module Descent Engine (LMDE). Since the Apollo missions, NGAS has continued to mature deep throttling pintle injector technology. The TR202 program has completed two series of pintle injector testing. The first series of testing used ablative thrust chambers and demonstrated igniter operation as well as stable performance at discrete points throughout the designed 10:1 throttle range. The second series was conducted with calorimeter chambers and demonstrated injector performance at discrete points throughout the throttle range as well as chamber heat flow adequate to power an expander cycle design across the throttle range. This paper provides an overview of the TR202 program, describing the different phases and key milestones. It describes how test data was correlated to the engine conceptual design. The test data obtained has created a valuable database for deep throttling cryogenic pintle technology, a technology that is readily scalable in thrust level.

  18. Automated Rendezvous and Docking Sensor Testing at the Flight Robotics Laboratory

    NASA Technical Reports Server (NTRS)

    Mitchell, J.; Johnston, A.; Howard, R.; Williamson, M.; Brewster, L.; Strack, D.; Cryan, S.

    2007-01-01

    The Exploration Systems Architecture defines missions that require rendezvous, proximity operations, and docking (RPOD) of two spacecraft both in Low Earth Orbit (LEO) and in Low Lunar Orbit (LLO). Uncrewed spacecraft must perform automated and/or autonomous rendezvous, proximity operations and docking operations (commonly known as Automated Rendezvous and Docking, AR&D). The crewed versions may also perform AR&D, possibly with a different level of automation and/or autonomy, and must also provide the crew with relative navigation information for manual piloting. The capabilities of the RPOD sensors are critical to the success of the Exploration Program. NASA has the responsibility to determine whether the Crew Exploration Vehicle (CEV) contractor-proposed relative navigation sensor suite will meet the CEV requirements. The relatively low technology readiness of relative navigation sensors for AR&D has been carried as one of the CEV Projects top risks. The AR&D Sensor Technology Project seeks to reduce this risk by increasing technology maturation of selected relative navigation sensor technologies through testing and simulation, and to allow the CEV Project to assess the relative navigation sensors.

  19. Automated Rendezvous and Docking Sensor Testing at the Flight Robotics Laboratory

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Williamson, Marlin L.; Johnston, Albert S.; Brewster, Linda L.; Mitchell, Jennifer D.; Cryan, Scott P.; Strack, David; Key, Kevin

    2007-01-01

    The Exploration Systems Architecture defines missions that require rendezvous, proximity operations, and docking (RPOD) of two spacecraft both in Low Earth Orbit (LEO) and in Low Lunar Orbit (LLO). Uncrewed spacecraft must perform automated and/or autonomous rendezvous, proximity operations and docking operations (commonly known as Automated Rendezvous and Docking, (AR&D).) The crewed versions of the spacecraft may also perform AR&D, possibly with a different level of automation and/or autonomy, and must also provide the crew with relative navigation information for manual piloting. The capabilities of the RPOD sensors are critical to the success of the Exploration Program. NASA has the responsibility to determine whether the Crew Exploration Vehicle (CEV) contractor-proposed relative navigation sensor suite will meet the CEV requirements. The relatively low technology readiness of relative navigation sensors for AR&D has been carried as one of the CEV Projects top risks. The AR&D Sensor Technology Project seeks to reduce this risk by increasing technology maturation of selected relative navigation sensor technologies through testing and simulation, and to allow the CEV Project to assess the relative navigation sensors.

  20. Commercial Space with Technology Maturation

    NASA Technical Reports Server (NTRS)

    McCleskey, Carey M.; Rhodes, Russell E.; Robinson, John W.

    2013-01-01

    To provide affordable space transportation we must be capable of using common fixed assets and the infrastructure for multiple purposes simultaneously. The Space Shuttle was operated for thirty years, but was not able to establish an effective continuous improvement program because of the high risk to the crew on every mission. An unmanned capability is needed to provide an acceptable risk to the primary mission. This paper is intended to present a case where a commercial space venture could share the large fixed cost of operating the infrastructure with the government while the government provides new advanced technology that is focused on reduced operating cost to the common launch transportation system. A conceivable commercial space venture could provide educational entertainment for the country's youth that would stimulate their interest in the science, technology, engineering, and mathematics (STEM) through access at entertainment parks or the existing Space Visitor Centers. The paper uses this example to demonstrate how growing public-private space market demand will re-orient space transportation industry priorities in flight and ground system design and technology development, and how the infrastructure is used and shared.

  1. AST Composite Wing Program: Executive Summary

    NASA Technical Reports Server (NTRS)

    Karal, Michael

    2001-01-01

    The Boeing Company demonstrated the application of stitched/resin infused (S/RFI) composite materials on commercial transport aircraft primary wing structures under the Advanced Subsonic technology (AST) Composite Wing contract. This report describes a weight trade study utilizing a wing torque box design applicable to a 220-passenger commercial aircraft and was used to verify the weight savings a S/RFI structure would offer compared to an identical aluminum wing box design. This trade study was performed in the AST Composite Wing program, and the overall weight savings are reported. Previous program work involved the design of a S/RFI-base-line wing box structural test component and its associated testing hardware. This detail structural design effort which is known as the "semi-span" in this report, was completed under a previous NASA contract. The full-scale wing design was based on a configuration for a MD-90-40X airplane, and the objective of this structural test component was to demonstrate the maturity of the S/RFI technology through the evaluation of a full-scale wing box/fuselage section structural test. However, scope reductions of the AST Composite Wing Program pre-vented the fabrication and evaluation of this wing box structure. Results obtained from the weight trade study, the full-scale test component design effort, fabrication, design development testing, and full-scale testing of the semi-span wing box are reported.

  2. Development Challenges of Game-Changing Entry System Technologies from Concept to Mission Infusion

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Beck, Robin; Ellerby, Don; Feldman, Jay; Gage, Peter; Munk, Michelle; Wercinski, Paul

    2015-01-01

    Realization within the US and NASA that future exploration both Human and Robotic will require innovative new technologies led to the creation of the Space Technology Mission Directorate and investment in game changing technologies with high pay-off. Some of these investments will see success and others, due to many of the constraints, will not attain their goal. The co-authors of this proposed presentation have been involved from concept to mission infusion aspects of entry technologies that are game changing. The four example technologies used to describe the challenges experienced along the pathways to success are at different levels of maturity. They are Conformal, 3-D MAT, HEEET and ADEPT. The four examples in many ways capture broad aspects of the challenges of maturation and illustrate what led some to be exceptionally successful and how others had to be altered in order remain viable game changing technologies. Subsystem technologies for robotic and human missions?

  3. System Level Aerothermal Testing for the Adaptive Deployable Entry and Placement Technology (ADEPT)

    NASA Technical Reports Server (NTRS)

    Cassell, Alan; Gorbunov, Sergey; Yount, Bryan; Prabhu, Dinesh; de Jong, Maxim; Boghozian, Tane; Hui, Frank; Chen, Y.-K.; Kruger, Carl; Poteet, Carl; hide

    2016-01-01

    The Adaptive Deployable Entry and Placement Technology (ADEPT), a mechanically deployable entry vehicle technology, has been under development at NASA since 2011. As part of the technical maturation of ADEPT, designs capable of delivering small payloads (10 kg) are being considered to rapidly mature sub 1 m deployed diameter designs. The unique capability of ADEPT for small payloads comes from its ability to stow within a slender volume and deploy to achieve a mass efficient drag surface with a high heat rate capability. The low ballistic coefficient results in entry heating and mechanical loads that can be met by a revolutionary three-dimensionally woven carbon fabric supported by a deployable skeleton structure. This carbon fabric has test proven capability as both primary structure and payload thermal protection system. In order to rapidly advance ADEPTs technical maturation, the project is developing test methods that enable thermostructural design requirement verification of ADEPT designs at the system level using ground test facilities. Results from these tests are also relevant to larger class missions and help us define areas of focused component level testing in order to mature material and thermal response design codes. The ability to ground test sub 1 m diameter ADEPT configurations at or near full-scale provides significant value to the rapid maturation of this class of deployable entry vehicles. This paper will summarize arc jet test results, highlight design challenges, provide a summary of lessons learned and discuss future test approaches based upon this methodology.

  4. Report to the administrator by the NASA Aerospace Safety Advisory Panel on the Skylab program. Volume 2: Program implementation and maturity. [systems management evaluation and design analysis

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Results of the design and manufacturing reviews on the maturity of the Skylab modules are presented along with results of investigations on the scope of the cluster risk assessment efforts. The technical management system and its capability to assess and resolve problems are studied.

  5. Promising Results from Three NASA SBIR Solar Array Technology Development Programs

    NASA Technical Reports Server (NTRS)

    Eskenazi, Mike; White, Steve; Spence, Brian; Douglas, Mark; Glick, Mike; Pavlick, Ariel; Murphy, David; O'Neill, Mark; McDanal, A. J.; Piszczor, Michael

    2005-01-01

    Results from three NASA SBIR solar array technology programs are presented. The programs discussed are: 1) Thin Film Photovoltaic UltraFlex Solar Array; 2) Low Cost/Mass Electrostatically Clean Solar Array (ESCA); and 3) Stretched Lens Array SquareRigger (SLASR). The purpose of the Thin Film UltraFlex (TFUF) Program is to mature and validate the use of advanced flexible thin film photovoltaics blankets as the electrical subsystem element within an UltraFlex solar array structural system. In this program operational prototype flexible array segments, using United Solar amorphous silicon cells, are being manufactured and tested for the flight qualified UltraFlex structure. In addition, large size (e.g. 10 kW GEO) TFUF wing systems are being designed and analyzed. Thermal cycle and electrical test and analysis results from the TFUF program are presented. The purpose of the second program entitled, Low Cost/Mass Electrostatically Clean Solar Array (ESCA) System, is to develop an Electrostatically Clean Solar Array meeting NASA s design requirements and ready this technology for commercialization and use on the NASA MMS and GED missions. The ESCA designs developed use flight proven materials and processes to create a ESCA system that yields low cost, low mass, high reliability, high power density, and is adaptable to any cell type and coverglass thickness. All program objectives, which included developing specifications, creating ESCA concepts, concept analysis and trade studies, producing detailed designs of the most promising ESCA treatments, manufacturing ESCA demonstration panels, and LEO (2,000 cycles) and GEO (1,350 cycles) thermal cycling testing of the down-selected designs were successfully achieved. The purpose of the third program entitled, "High Power Platform for the Stretched Lens Array," is to develop an extremely lightweight, high efficiency, high power, high voltage, and low stowed volume solar array suitable for very high power (multi-kW to MW) applications. These objectives are achieved by combining two cutting edge technologies, the SquareRigger solar array structure and the Stretched Lens Array (SLA). The SLA SquareRigger solar array is termed SLASR. All program objectives, which included developing specifications, creating preliminary designs for a near-term SLASR, detailed structural, mass, power, and sizing analyses, fabrication and power testing of a functional flight-like SLASR solar blanket, were successfully achieved.

  6. Integrated Ground Operations Demonstration Units Testing Plans and Status

    NASA Technical Reports Server (NTRS)

    Johnson, Robert G.; Notardonato, William U.; Currin, Kelly M.; Orozco-Smith, Evelyn M.

    2012-01-01

    Cryogenic propellant loading operations with their associated flight and ground systems are some of the most complex, critical activities in launch operations. Consequently, these systems and operations account for a sizeable portion of the life cycle costs of any launch program. NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite advances in cryogenics, system health management and command and control technologies. This project was developed to mature, integrate and demonstrate advancement in the current state of the art in these areas using two distinct integrated ground operations demonstration units (GODU): GODU Integrated Refrigeration and Storage (IRAS) and GODU Autonomous Control

  7. Advanced Mirror Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2017-01-01

    The Advanced Mirror Technology Development (AMTD) project matures critical technologies required to enable ultra-stable 4-m-or-larger monolithic or segmented ultraviolet, optical, and infrared (UVOIR) space telescope primary-mirror assemblies for general astrophysics and ultra-high-contrast observations of exoplanets.

  8. KSC-2012-2692

    NASA Image and Video Library

    2012-04-25

    HAWTHORNE, Calif. -- NASA astronauts and industry experts check out the crew accommodations in the Dragon spacecraft under development by Space Exploration Technologies SpaceX of Hawthorne, Calif., for the agency's Commercial Crew Program. On top, from left, are NASA Crew Survival Engineering Team Lead Dustin Gohmert, NASA astronauts Tony Antonelli and Eric Boe and SpaceX Mission Operations Engineer Laura Crabtree. On bottom, from left, are SpaceX Thermal Engineer Brenda Hernandez and NASA astronauts Rex Walheim and Tim Kopra. This is the second crew accommodation check that allowed passengers to get a feel for Dragon’s interior, including displays and simulated control panels. In 2011, NASA selected SpaceX during Commercial Crew Development Round 2 CCDev2) activities to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. ATK, The Boeing Co., Excalibur Almaz Inc., Blue Origin, Sierra Nevada, and United Launch Alliance ULA. For more information, visit www.nasa.gov/commercialcrew. Image credit: Space Exploration Technologies

  9. IT infusion

    NASA Technical Reports Server (NTRS)

    Feather, M. S.

    2002-01-01

    Infusing IT technology is a perennial challenge. The Technology Infusion and Maturity Assessment approach of Cornford & Hicks is shown applied to an example of IT infusion: moedl-based V&V of spacecraft software.

  10. Technology readiness assessments: A retrospective

    NASA Astrophysics Data System (ADS)

    Mankins, John C.

    2009-11-01

    The development of new system capabilities typically depends upon the prior success of advanced technology research and development efforts. These systems developments inevitably face the three major challenges of any project: performance, schedule and budget. Done well, advanced technology programs can substantially reduce the uncertainty in all three of these dimensions of project management. Done poorly, or not at all, and new system developments suffer from cost overruns, schedule delays and the steady erosion of initial performance objectives. It is often critical for senior management to be able to determine which of these two paths is more likely—and to respond accordingly. The challenge for system and technology managers is to be able to make clear, well-documented assessments of technology readiness and risks, and to do so at key points in the life cycle of the program. In the mid 1970s, the National Aeronautics and Space Administration (NASA) introduced the concept of "technology readiness levels" (TRLs) as a discipline-independent, programmatic figure of merit (FOM) to allow more effective assessment of, and communication regarding the maturity of new technologies. In 1995, the TRL scale was further strengthened by the articulation of the first definitions of each level, along with examples (J. Mankins, Technology readiness levels, A White Paper, NASA, Washington, DC, 1995. [1]). Since then, TRLs have been embraced by the U.S. Congress' General Accountability Office (GAO), adopted by the U.S. Department of Defense (DOD), and are being considered for use by numerous other organizations. Overall, the TRLs have proved to be highly effective in communicating the status of new technologies among sometimes diverse organizations. This paper will review the concept of "technology readiness assessments", and provide a retrospective on the history of "TRLs" during the past 30 years. The paper will conclude with observations concerning prospective future directions for the important discipline of technology readiness assessments.

  11. Mature Age Professionals: Factors Influencing Their Decision to Make a Career Change into Teaching

    ERIC Educational Resources Information Center

    Bauer, Carmel; Thomas, Sue; Sim, Cheryl

    2017-01-01

    This paper presents the early findings from a study that addresses the topic of mature age professionals making a career change into the secondary teaching profession by undertaking a postgraduate coursework initial teacher education program. The paper specifically addresses the factors that affect the decision for mature age professionals to make…

  12. Challenges in Understanding and Assisting Mature-Age Students Who Participate in Alternative Entry Programs

    ERIC Educational Resources Information Center

    Cullity, Marguerite

    2006-01-01

    Mature-age students are a significant group within the Australian sub-degree and undergraduate commencing cohort. Nevertheless, little is known about mature-age student backgrounds or factors that affect their participation at university. This paper draws on a case study that examined the nature and outcomes of Australian alternative entry…

  13. Developmental milestones across the programmatic life cycle: implementing the CDC's Colorectal Cancer Screening Demonstration Program.

    PubMed

    Glover-Kudon, Rebecca; DeGroff, Amy; Rohan, Elizabeth A; Preissle, Judith; Boehm, Jennifer E

    2013-08-01

    In 2005 through 2009, the Centers for Disease Control and Prevention (CDC) funded 5 sites to implement a colorectal cancer screening program for uninsured, low-income populations. These 5 sites composed a demonstration project intended to explore the feasibility of establishing a national colorectal cancer screening program through various service delivery models. A longitudinal, multiple case study was conducted to understand and document program implementation processes. Using metaphor as a qualitative analytic technique, evaluators identified stages of maturation across the programmatic life cycle. Analysis rendered a working theory of program development during screening implementation. In early stages, program staff built relationships with CDC and local partners around screening readiness, faced real-world challenges putting program policies into practice, revised initial program designs, and developed new professional skills. Midterm implementation was defined by establishing program cohesiveness and expanding programmatic reach. In later stages of implementation, staff focused on sustainability and formal program closeout, which prompted reflection about personal and programmatic accomplishments. Demonstration sites evolved through common developmental stages during screening implementation. Findings elucidate ways to target technical assistance to more efficiently move programs along their maturation trajectory. In practical terms, the time and cost associated with guiding a program to maturity may be potentially shortened to maximize return on investment for both organizations and clients receiving service benefits. © 2013 American Cancer Society.

  14. Research and Technology Activities Supporting Closed-Brayton-Cycle Power Conversion System Development

    NASA Technical Reports Server (NTRS)

    Barrett, Michael J.

    2004-01-01

    The elements of Brayton technology development emphasize power conversion system risk mitigation. Risk mitigation is achieved by demonstrating system integration feasibility, subsystem/component life capability (particularly in the context of material creep) and overall spacecraft mass reduction. Closed-Brayton-cycle (CBC) power conversion technology is viewed as relatively mature. At the 2-kWe power level, a CBC conversion system Technology Readiness Level (TRL) of six (6) was achieved during the Solar Dynamic Ground Test Demonstration (SD-GTD) in 1998. A TRL 5 was demonstrated for 10 kWe-class CBC components during the development of the Brayton Rotating Unit (BRU) from 1968 to 1976. Components currently in terrestrial (open cycle) Brayton machines represent TRL 4 for similar uses in 100 kWe-class CBC space systems. Because of the baseline component and subsystem technology maturity, much of the Brayton technology task is focused on issues related to systems integration. A brief description of ongoing technology activities is given.

  15. Sustaining a Mature Risk Management Process: Ensuring the International Space Station for a Vibrant Future

    NASA Technical Reports Server (NTRS)

    Raftery, Michael; Carter-Journet, Katrina

    2013-01-01

    The International Space Station (ISS) risk management methodology is an example of a mature and sustainable process. Risk management is a systematic approach used to proactively identify, analyze, plan, track, control, communicate, and document risks to help management make risk-informed decisions that increase the likelihood of achieving program objectives. The ISS has been operating in space for over 14 years and permanently crewed for over 12 years. It is the longest surviving habitable vehicle in low Earth orbit history. Without a mature and proven risk management plan, it would be increasingly difficult to achieve mission success throughout the life of the ISS Program. A successful risk management process must be able to adapt to a dynamic program. As ISS program-level decision processes have evolved, so too has the ISS risk management process continued to innovate, improve, and adapt. Constant adaptation of risk management tools and an ever-improving process is essential to the continued success of the ISS Program. Above all, sustained support from program management is vital to risk management continued effectiveness. Risk management is valued and stressed as an important process by the ISS Program.

  16. North Carolina's Approach: Developing a Bio-Tech Workforce

    ERIC Educational Resources Information Center

    Smit, Norman

    2004-01-01

    States across the country are all chasing what are becoming known as "new-age" technologies. These are technologies such as biotechnology, nanotechnology, bio-informatics and others. These technologies offer the potential for long-term economic growth and well-paid jobs to employees working in these sectors. As these technologies mature,…

  17. Development of a multicriteria assessment model for ranking biomass feedstock collection and transportation systems.

    PubMed

    Kumar, Amit; Sokhansanj, Shahab; Flynn, Peter C

    2006-01-01

    This study details multicriteria assessment methodology that integrates economic, social, environmental, and technical factors in order to rank alternatives for biomass collection and transportation systems. Ranking of biomass collection systems is based on cost of delivered biomass, quality of biomass supplied, emissions during collection, energy input to the chain operations, and maturity of supply system technologies. The assessment methodology is used to evaluate alternatives for collecting 1.8 x 10(6) dry t/yr based on assumptions made on performance of various assemblies of biomass collection systems. A proposed collection option using loafer/ stacker was shown to be the best option followed by ensiling and baling. Ranking of biomass transport systems is based on cost of biomass transport, emissions during transport, traffic congestion, and maturity of different technologies. At a capacity of 4 x 10(6) dry t/yr, rail transport was shown to be the best option, followed by truck transport and pipeline transport, respectively. These rankings depend highly on assumed maturity of technologies and scale of utilization. These may change if technologies such as loafing or ensiling (wet storage) methods are proved to be infeasible for large-scale collection systems.

  18. Construction and Resource Utilization Explorer (CRUX): Implementing Instrument Suite Data Fusion to Characterize Regolith Hydrogen Resources

    NASA Technical Reports Server (NTRS)

    Haldemann, Albert F. C.; Johnson, Jerome B.; Elphic, Richard C.; Boynton, William V.; Wetzel, John

    2006-01-01

    CRUX is a modular suite of geophysical and borehole instruments combined with display and decision support system (MapperDSS) tools to characterize regolith resources, surface conditions, and geotechnical properties. CRUX is a NASA-funded Technology Maturation Program effort to provide enabling technology for Lunar and Planetary Surface Operations (LPSO). The MapperDSS uses data fusion methods with CRUX instruments, and other available data and models, to provide regolith properties information needed for LPSO that cannot be determined otherwise. We demonstrate the data fusion method by showing how it might be applied to characterize the distribution and form of hydrogen using a selection of CRUX instruments: Borehole Neutron Probe and Thermal Evolved Gas Analyzer data as a function of depth help interpret Surface Neutron Probe data to generate 3D information. Secondary information from other instruments along with physical models improves the hydrogen distribution characterization, enabling information products for operational decision-making.

  19. Avionics Architectures for Exploration: Building a Better Approach for (Human) Spaceflight Avionics

    NASA Technical Reports Server (NTRS)

    Goforth, Montgomery B.; Ratliff, James E.; Hames, Kevin L.; Vitalpur, Sharada V.

    2014-01-01

    The field of Avionics is advancing far more rapidly in terrestrial applications than in space flight applications. Spaceflight Avionics are not keeping pace with expectations set by terrestrial experience, nor are they keeping pace with the need for increasingly complex automation and crew interfaces as we move beyond Low Earth Orbit. NASA must take advantage of the strides being made by both space-related and terrestrial industries to drive our development and sustaining costs down. This paper describes ongoing efforts by the Avionics Architectures for Exploration (AAE) project chartered by NASA's Advanced Exploration Systems (AES) Program to evaluate new avionic architectures and technologies, provide objective comparisons of them, and mature selected technologies for flight and for use by other AES projects. Results from the AAE project's FY13 efforts are discussed, along with the status of FY14 efforts and future plans.

  20. Automation of the space station core module power management and distribution system

    NASA Technical Reports Server (NTRS)

    Weeks, David J.

    1988-01-01

    Under the Advanced Development Program for Space Station, Marshall Space Flight Center has been developing advanced automation applications for the Power Management and Distribution (PMAD) system inside the Space Station modules for the past three years. The Space Station Module Power Management and Distribution System (SSM/PMAD) test bed features three artificial intelligence (AI) systems coupled with conventional automation software functioning in an autonomous or closed-loop fashion. The AI systems in the test bed include a baseline scheduler/dynamic rescheduler (LES), a load shedding management system (LPLMS), and a fault recovery and management expert system (FRAMES). This test bed will be part of the NASA Systems Autonomy Demonstration for 1990 featuring cooperating expert systems in various Space Station subsystem test beds. It is concluded that advanced automation technology involving AI approaches is sufficiently mature to begin applying the technology to current and planned spacecraft applications including the Space Station.

  1. Advanced Launch System (ALS) actuation and power systems impact operability and cost

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.

    1990-01-01

    To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrical power system and controls for all actuation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a specific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military and civilian aircraft, lunar/Martian vehicles, and a multitude of commercial applications.

  2. Advanced Launch System (ALS): Electrical actuation and power systems improve operability and cost picture

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.

    1990-01-01

    To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrical power system and controls for all actuation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a specific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military and civilian aircraft, lunar/Martian vehicles, and a multitude of commercial applications.

  3. Advanced launch system (ALS) - Electrical actuation and power systems improve operability and cost picture

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.

    1990-01-01

    To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrrical power system and controls for all aviation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a sdpecific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military ans civilian aircraft, lunar/Martian vehicles, and a multitude of comercial applications.

  4. EPA ENERGY STAR: Tackling Growth in Home Electronics and Small Appliances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, Marla Christine; Brown, Richard; Homan, Gregory

    2008-11-17

    Over a decade ago, the electricity consumption associated with home electronics and other small appliances emerged onto the global energy policy landscape as one of the fastest growing residential end uses with the opportunity to deliver significant energy savings. As our knowledge of this end use matures, it is essential to step back and evaluate the degree to which energy efficiency programs have successfully realized energy savings and where savings opportunities have been missed.For the past fifteen years, we have quantified energy, utility bill, and carbon savings for US EPA?s ENERGY STAR voluntary product labeling program. In this paper, wemore » present a unique look into the US residential program savings claimed to date for EPA?s ENERGY STAR office equipment, consumer electronics, and other small household appliances as well as EPA?s projected program savings over the next five years. We present a top-level discussion identifying program areas where EPA?s ENERGY STAR efforts have succeeded and program areas where ENERGY STAR efforts did not successfully address underlying market factors, technology issues and/or consumer behavior. We end by presenting the magnitude of ?overlooked? savings.« less

  5. Federal research, development, and demonstration priorities for carbon dioxide removal in the United States

    NASA Astrophysics Data System (ADS)

    Sanchez, Daniel L.; Amador, Giana; Funk, Jason; Mach, Katharine J.

    2018-01-01

    Atmospheric carbon dioxide removal (CDR) technologies may be critical to achieving deep decarbonization. Yet a lack of technical and commercial maturity of CDR technologies hinders potential deployment. Needs for commercialization span research, development, and demonstration (RD&D) activities, including development of new materials, reactors, and processes, and rigorous monitoring of a portfolio of demonstration projects. As a world leader in supporting science and engineering, the United States (US) can play an important role in reducing costs and clarifying the sustainable scale of CDR. To date, federal agencies have focused on voluntary or piecemeal CDR programs. Here, we present a synthesis of research and developement needs, relevant agency authority, barriers to coordination, and interventions to enhance RD&D across the federal government of the US. On the basis of agency authority and expertise, the Department of Energy, Department of Agriculture, Department of the Interior, National Oceanic and Atmospheric Administration, and National Science Foundation are most central to conducting research, funding projects, monitoring effects, and promulgating regulations. Key enablers for successful programs include embracing technological diversity and administrative efficiency, fostering agency buy-in, and achieving commercial deployment. Based on these criteria, the executive branch could effectively coordinate RD&D strategy through two complementary pathways: (1) renewing intra-agency commitment to CDR in five primary agencies, including both research and demonstration, and (2) coordinating research prioritization and outcomes across agencies, led by the Office of Science and Technology Policy and loosely based on the National Nanotechnology Initiative. Both pathways can be stimulated by executive order or Congressional mandate. Executive branch implementation can begin at any time; future Farm and Energy Bills provide legislative vehicles for enhancing programs.

  6. Organizational Resilience and Culture a Model for Information Technology Service Management (ITSM)

    ERIC Educational Resources Information Center

    Granito, Francis A.

    2011-01-01

    Organizational change and organizational culture have been studied and written about by many authors, most notably by Edgar Schein (1990, 1992), and are named as critical components of organizational maturity through such industry standards as The Capability Maturity Model Integration (CMMI), Control Objectives for Information and Related…

  7. Mechanically-Deployed Hypersonic Decelerator and Conformal Ablator Technologies for Mars Missions

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Wercinski, Paul F.; Beck, Robin A. S.; Hamm, Kenneth R.; Yount, Bryan C.; Makino, A.; Smith, B.; Gage, P.; Prabhu, D.

    2012-01-01

    The concept of a mechanically deployable hypersonic decelerator, developed initially for high mass (40 MT) human Mars missions, is currently funded by OCT for technology maturation. The ADEPT (Adaptive, Deployable Entry and Placement Technology) project has broad, game-changing applicability to in situ science missions to Venus, Mars, and the Outer Planets. Combined with maturation of conformal ablator technology (another current OCT investment), the two technologies provide unique low mass mission enabling capabilities otherwise not achievable by current rigid aeroshell or by inflatables. If this abstract is accepted, we will present results that illustrate the mission enabling capabilities of the mechanically deployable architecture for: (1) robotic Mars (Discovery or New Frontiers class) in the near term; (2) alternate approaches to landing MSL-class payloads, without the need for supersonic parachute or lifting entry, in the mid-term; and (3) Heavy mass and human missions to Mars in the long term.

  8. Mechanically-Deployed Hypersonic Decelerator and Conformal Ablator Technologies for Mars Missions

    NASA Technical Reports Server (NTRS)

    Venkatapathy, E.; Wercinski, P.; Prabhu, D.

    2012-01-01

    The concept of a mechanically deployable hypersonic decelerator, developed initially for high mass (approximately 40 MT) human Mars missions, is currently funded by OCT for technology maturation. The ADEPT (Adaptive, Deployable Entry and Placement Technology) project has broad, game-changing applicability to in situ science missions to Venus, Mars, and the Outer Planets. Combined with maturation of conformal ablator technology (another current OCT investment), the two technologies provide unique low-mass mission enabling capabilities otherwise not achievable by current rigid aeroshell or by inflatables. If this abstract is accepted, we will present results that illustrate the mission enabling capabilities of the mechanically deployable architecture for: (1) robotic Mars (Discovery or New Frontiers class) in the near term (2) alternate approaches to landing MSL-class payloads, without the need for supersonic parachute or lifting entry, in the mid-term and (3) Heavy mass and human missions to Mars in the long term.

  9. Development of an innovative sandwich common bulkhead for cryogenic upper stage propellant tank

    NASA Astrophysics Data System (ADS)

    Szelinski, B.; Lange, H.; Röttger, C.; Sacher, H.; Weiland, S.; Zell, D.

    2012-12-01

    In the frame of the Future Launcher Preparatory Program (FLPP) investigating advancing technologies for the Next Generation of Launchers (NGL) a number of novel key technologies are presently under development for significantly improving vehicle performance in terms of payload capacity and mission versatility. As a respective ESA guided technology development program, Cryogenic Upper Stage Technologies (CUST) has been launched within FLPP that hosts among others the development of a common bulkhead to separate liquid hydrogen from the liquid oxygen compartment. In this context, MT Aerospace proposed an advanced sandwich design concept which is currently in the development phase reaching for TRL4 under MT Aerospace responsibility. Key components of this sandwich common bulkhead are a specific core material, situated in-between two thin aluminum face sheets, and an innovative thermal decoupling element at the equatorial region. The combination of these elements provides excellent thermal insulation capabilities and mechanical performance at a minimum weight, since mechanical and thermal functions are merged in the same component. This improvement is expressed by substantial performance figures of the proposed concept that include high resistance against reverse pressure, an optimized heat leak and minimized mass, involving the sandwich dome structure and the adjacent interface rings. The development of single sub-technologies, all contributing to maturate the sandwich common bulkhead towards the desired technology readiness level (TRL), is described in the context of the given design constraints as well as technical, functional and programmatic requirements, issued from the stage level. This includes the thermal and mechanical characterization of core materials, manufacturing issues as well as non-destructive testing and the thermal and structural analyses and dimensioning of the complete common bulkhead system. Dedicated TRL assessments in the Ariane 5 Mid-life Evolution (A5-ME) program track the progress of these technology developments and analyze their applicability in time for A5-ME. In order to approximate A5-ME concerned preconditions, activities are initiated aiming at harmonization of the available specifications. Hence, a look-out towards a further technology step approaching TRL6 in a subsequent phase is given, briefly addressing topics of full scale manufacture and appropriate thermo-mechanical testing of an entire sandwich common bulkhead.

  10. The Financial Cost of Export Credit Guarantee Programs,

    DTIC Science & Technology

    1987-06-01

    a percentage of a high esti- mate of payments due. Table A.5 RATIOS, TERMS, AND RECOVERY RATES Item Hermes ECGD COFACE Eximbank Ratio of outstanding...Immediate Liquidation Case ...... 8 2. Income Statement: Hold to Maturity, Certain Repayment ................................... 9 3. Income Statement: Hold ...to Maturity, Uncertain Repayment, Risk Neutrality .................... 10 4. Income Statement: Hold to Maturity, Uncertain Repayment, Risk Aversion

  11. Tactical Satellite 3

    NASA Astrophysics Data System (ADS)

    Davis, T. M.; Straight, S. D.; Lockwook, R. B.

    2008-08-01

    Tactical Satellite 3 is an Air Force Research Laboratory Science and Technology (S&T) initiative that explores the capability and technological maturity of small, low-cost satellites. It features a low cost "plug and play" modular bus and low cost militarily significant payloads - a Raytheon developed Hyperspectral imager and secondary payload data exfiltration provided by the Office of Naval Research. In addition to providing for ongoing innovation and demonstration in this important technology area, these S&T efforts also help mitigate technology risk and establish a potential concept of operations for future acquisitions. The key objectives are rapid launch and on-orbit checkout, theater commanding, and near-real time theater data integration. It will also feature a rapid development of the space vehicle and integrated payload and spacecraft bus by using components and processes developed by the satellite modular bus initiative. Planned for a late summer 2008 launch, the TacSat-3 spacecraft will collect and process images and then downlink processed data using a Common Data Link. An in-theater tactical ground station will have the capability to uplink tasking to spacecraft and will receive full data image. An international program, the United Kingdom Defence Science and Technology Laboratory (DSTL) and Australian Defence Science and Technology Organisation (DSTO) plan to participate in TacSat-3 experiments.

  12. Deterministic Line-Shape Programming of Silicon Nanowires for Extremely Stretchable Springs and Electronics.

    PubMed

    Xue, Zhaoguo; Sun, Mei; Dong, Taige; Tang, Zhiqiang; Zhao, Yaolong; Wang, Junzhuan; Wei, Xianlong; Yu, Linwei; Chen, Qing; Xu, Jun; Shi, Yi; Chen, Kunji; Roca I Cabarrocas, Pere

    2017-12-13

    Line-shape engineering is a key strategy to endow extra stretchability to 1D silicon nanowires (SiNWs) grown with self-assembly processes. We here demonstrate a deterministic line-shape programming of in-plane SiNWs into extremely stretchable springs or arbitrary 2D patterns with the aid of indium droplets that absorb amorphous Si precursor thin film to produce ultralong c-Si NWs along programmed step edges. A reliable and faithful single run growth of c-SiNWs over turning tracks with different local curvatures has been established, while high resolution transmission electron microscopy analysis reveals a high quality monolike crystallinity in the line-shaped engineered SiNW springs. Excitingly, in situ scanning electron microscopy stretching and current-voltage characterizations also demonstrate a superelastic and robust electric transport carried by the SiNW springs even under large stretching of more than 200%. We suggest that this highly reliable line-shape programming approach holds a strong promise to extend the mature c-Si technology into the development of a new generation of high performance biofriendly and stretchable electronics.

  13. Geospatial Data Science Analysis | Geospatial Data Science | NREL

    Science.gov Websites

    different levels of technology maturity. Photo of a man taking field measurements. Geospatial analysis energy for different technologies across the nation? Featured Analysis Products Renewable Energy

  14. Strategic Business Planning and Human Resources: Part I.

    ERIC Educational Resources Information Center

    Smith, Eddie C.

    1982-01-01

    The maturity of a business is strategically important because an organization's characteristics change as it ages. Similarly, elements of the human resource program (compensation, benefits, staff development, etc.) also change as the business matures. (SK)

  15. A Design Heritage-Based Forecasting Methodology for Risk Informed Management of Advanced Systems

    NASA Technical Reports Server (NTRS)

    Maggio, Gaspare; Fragola, Joseph R.

    1999-01-01

    The development of next generation systems often carries with it the promise of improved performance, greater reliability, and reduced operational costs. These expectations arise from the use of novel designs, new materials, advanced integration and production technologies intended for functionality replacing the previous generation. However, the novelty of these nascent technologies is accompanied by lack of operational experience and, in many cases, no actual testing as well. Therefore some of the enthusiasm surrounding most new technologies may be due to inflated aspirations from lack of knowledge rather than actual future expectations. This paper proposes a design heritage approach for improved reliability forecasting of advanced system components. The basis of the design heritage approach is to relate advanced system components to similar designs currently in operation. The demonstrated performance of these components could then be used to forecast the expected performance and reliability of comparable advanced technology components. In this approach the greater the divergence of the advanced component designs from the current systems the higher the uncertainty that accompanies the associated failure estimates. Designers of advanced systems are faced with many difficult decisions. One of the most common and more difficult types of these decisions are those related to the choice between design alternatives. In the past decision-makers have found these decisions to be extremely difficult to make because they often involve the trade-off between a known performing fielded design and a promising paper design. When it comes to expected reliability performance the paper design always looks better because it is on paper and it addresses all the know failure modes of the fielded design. On the other hand there is a long, and sometimes very difficult road, between the promise of a paper design and its fulfillment; with the possibility that sometimes the reliability promise is not fulfilled at all. Decision makers in advanced technology areas have always known to discount the performance claims of a design to a degree in proportion to its stage of development, and at times have preferred the more mature design over the one of lesser maturity even with the latter promising substantially better performance once fielded. As with the broader measures of performance this has also been true for projected reliability performance. Paper estimates of potential advances in design reliability are to a degree uncertain in proportion to the maturity of the features being proposed to secure those advances. This is especially true when performance-enhancing features in other areas are also planned to be part of the development program.

  16. Utilization of robotic "remote presence" technology within North American intensive care units.

    PubMed

    Reynolds, Eliza M; Grujovski, Andre; Wright, Tim; Foster, Michael; Reynolds, H Neal

    2012-09-01

    To describe remote presence robotic utilization and examine perceived physician impact upon care in the intensive care unit (ICU). Data were obtained from academic, university, community, and rural medical facilities in North America with remote presence robots used in ICUs. Objective utilization data were extracted from a continuous monitoring system. Physician data were obtained via an Internet-based survey. As of 2010, 56 remote presence robots were deployed in 25 North American ICUs. Of 10,872 robot activations recorded, 10,065 were evaluated. Three distinct utilization patterns were discovered. Combining all programs revealed a pattern that closely reflects diurnal ICU activity. The physician survey revealed staff are senior (75% >40 years old, 60% with >16 years of clinical practice), trained in and dedicated to critical care. Programs are mature (70% >3 years old) and operate in a decentralized system, originating from cities with >50,000 population and provided to cities >50,000 (80%). Of the robots, 46.6% are in academic facilities. Most physicians (80%) provide on-site and remote ICU care, with 60% and 73% providing routine or scheduled rounds, respectively. All respondents (100%) believed patient care and patient/family satisfaction were improved. Sixty-six percent perceived the technology was a "blessing," while 100% intend to continue using the technology. Remote presence robotic technology is deployed in ICUs with various patterns of utilization that, in toto, simulate normal ICU work flow. There is a high rate of deployment in academic ICUs, suggesting the intensivists shortage also affects large facilities. Physicians using the technology are generally senior, experienced, and dedicated to critical care and highly support the technology.

  17. Systems Engineering Approach to Technology Integration for NASA's 2nd Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Thomas, Dale; Smith, Charles; Thomas, Leann; Kittredge, Sheryl

    2002-01-01

    The overall goal of the 2nd Generation RLV Program is to substantially reduce technical and business risks associated with developing a new class of reusable launch vehicles. NASA's specific goals are to improve the safety of a 2nd-generation system by 2 orders of magnitude - equivalent to a crew risk of 1-in-10,000 missions - and decrease the cost tenfold, to approximately $1,000 per pound of payload launched. Architecture definition is being conducted in parallel with the maturating of key technologies specifically identified to improve safety and reliability, while reducing operational costs. An architecture broadly includes an Earth-to-orbit reusable launch vehicle, on-orbit transfer vehicles and upper stages, mission planning, ground and flight operations, and support infrastructure, both on the ground and in orbit. The systems engineering approach ensures that the technologies developed - such as lightweight structures, long-life rocket engines, reliable crew escape, and robust thermal protection systems - will synergistically integrate into the optimum vehicle. To best direct technology development decisions, analytical models are employed to accurately predict the benefits of each technology toward potential space transportation architectures as well as the risks associated with each technology. Rigorous systems analysis provides the foundation for assessing progress toward safety and cost goals. The systems engineering review process factors in comprehensive budget estimates, detailed project schedules, and business and performance plans, against the goals of safety, reliability, and cost, in addition to overall technical feasibility. This approach forms the basis for investment decisions in the 2nd Generation RLV Program's risk-reduction activities. Through this process, NASA will continually refine its specialized needs and identify where Defense and commercial requirements overlap those of civil missions.

  18. Systems Engineering Approach to Technology Integration for NASA's 2nd Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Thomas, Dale; Smith, Charles; Thomas, Leann; Kittredge, Sheryl

    2002-01-01

    The overall goal of the 2nd Generation RLV Program is to substantially reduce technical and business risks associated with developing a new class of reusable launch vehicles. NASA's specific goals are to improve the safety of a 2nd generation system by 2 orders of magnitude - equivalent to a crew risk of 1-in-10,000 missions - and decrease the cost tenfold, to approximately $1,000 per pound of payload launched. Architecture definition is being conducted in parallel with the maturating of key technologies specifically identified to improve safety and reliability, while reducing operational costs. An architecture broadly includes an Earth-to-orbit reusable launch vehicle, on-orbit transfer vehicles and upper stages, mission planning, ground and flight operations, and support infrastructure, both on the ground and in orbit. The systems engineering approach ensures that the technologies developed - such as lightweight structures, long-life rocket engines, reliable crew escape, and robust thermal protection systems - will synergistically integrate into the optimum vehicle. To best direct technology development decisions, analytical models are employed to accurately predict the benefits of each technology toward potential space transportation architectures as well as the risks associated with each technology. Rigorous systems analysis provides the foundation for assessing progress toward safety and cost goals. The systems engineering review process factors in comprehensive budget estimates, detailed project schedules, and business and performance plans, against the goals of safety, reliability, and cost, in addition to overall technical feasibility. This approach forms the basis for investment decisions in the 2nd Generation RLV Program's risk-reduction activities. Through this process, NASA will continually refine its specialized needs and identify where Defense and commercial requirements overlap those of civil missions.

  19. Miniature vibration isolation system for space applications

    NASA Astrophysics Data System (ADS)

    Quenon, Dan; Boyd, Jim; Buchele, Paul; Self, Rick; Davis, Torey; Hintz, Timothy L.; Jacobs, Jack H.

    2001-06-01

    In recent years, there has been a significant interest in, and move towards using highly sensitive, precision payloads on space vehicles. In order to perform tasks such as communicating at extremely high data rates between satellites using laser cross-links, or searching for new planets in distant solar systems using sparse aperture optical elements, a satellite bus and its payload must remain relatively motionless. The ability to hold a precision payload steady is complicated by disturbances from reaction wheels, control moment gyroscopes, solar array drives, stepper motors, and other devices. Because every satellite is essentially unique in its construction, isolating or damping unwanted vibrations usually requires a robust system over a wide bandwidth. The disadvantage of these systems is that they typically are not retrofittable and not tunable to changes in payload size or inertias. Previous work, funded by AFRL, DARPA, BMDO and others, developed technology building blocks that provide new methods to control vibrations of spacecraft. The technology of smart materials enables an unprecedented level of integration of sensors, actuators, and structures; this integration provides the opportunity for new structural designs that can adaptively influence their surrounding environment. To date, several demonstrations have been conducted to mature these technologies. Making use of recent advances in smart materials, microelectronics, Micro-Electro Mechanical Systems (MEMS) sensors, and Multi-Functional Structures (MFS), the Air Force Research Laboratory along with its partner DARPA, have initiated an aggressive program to develop a Miniature Vibration Isolation System (MVIS) (patent pending) for space applications. The MVIS program is a systems-level demonstration of the application of advanced smart materials and structures technology that will enable programmable and retrofittable vibration control of spacecraft precision payloads. The current effort has been awarded to Honeywell Space Systems Operation. AFRL is providing in-house research and testing in support of the program as well. The MVIS program will culminate in a flight demonstration that shows the benefits of applying smart materials for vibration isolation in space and precision payload control.

  20. 2015 Annual Report for the Flight Opportunities Program

    NASA Technical Reports Server (NTRS)

    Van Dijk, Alexander

    2015-01-01

    Welcome to this third edition of the Flight Opportunities program annual report. In this edition, we continue our story of pathfinding NASA's role in the partnership with the U.S. commercial space and space technology R&D communities to advance national space interests and develop technologies critical to NASA's future missions. 2015 was the year in which a planned change to our payload solicitation strategy saw its first tangible result. As you might remember from our 2014 annual report, in 2015 we set out to facilitate a more direct interaction between flight providers and technology developers by providing fixed funding awards to researchers to directly purchase the flight service(s) that best meet their needs. The selection and award of the first six REDDI-F1 flight grants to non-U.S. government researchers was an important milestone in this regard. From now on, using the REDDI-F1 solicitation appendix, the program will enable non-U.S. government researchers to directly purchase flight services on the emerging suborbital market. The same (or similar) commercial flight services will be available to NASA and other U.S. government agencies (OGA) through commercial contracts that NASA has established through our program. For the latter, our program is available to provide campaign management services, similar to the role we play(ed) for technology payloads remaining in our pool from earlier selections. The full impact of this broader strategic change will likely become more visible in the years ahead as our legacy pool gets depleted and we have implemented a new NASA- and OGA-specific call for proposals. One observation that can already be made after two rounds of REDDI-F1 solicitations is that through this change, the list of commercial flight service providers of interest to non-U.S. government researchers has grown from five in 2014 to nine in 2015. On the industry development front, our Announcement of Collaborative Opportunities (ACO) solicitation was promoted to an STMD-wide solicitation and released in 2015 in combination with the Tipping Point solicitation. A total of 22 awards was announced in November 2015, 12 of which are ACO awards, and six of these are funded by Flight Opportunities. Through these ACO awards, the program funds NASA technical expertise and NASA test facilities to aid industry partners in maturing key space technologies, in our case focusing on small launch vehicle technology development. Flight test activity in 2015 saw a steady 13 campaigns with 31 payload-flights (29 unique payloads). Thirteen new payloads were selected into the program in FY2015, and 14 payloads completed flight testing, bringing the total number of completed technology demonstration payloads to 69. Overall, we are pleased with the evolution and growth of the Flight Opportunities program and look forward to continued success in our partnership with the technology R&D community and the commercial space sector.

  1. Laminar flow: Challenge and potential

    NASA Technical Reports Server (NTRS)

    Kirchner, Mark E.

    1987-01-01

    Commercial air transportation has experienced revolutionary technology advances since WWII. These technology advances have resulted in an explosive growth in passenger traffic. Today, however, many technologies have matured, and maintaining a similar growth rate will be a challenge. A brief history of laminar flow technology and its application to subsonic and supersonic air transportation is presented.

  2. Advanced CO2 removal process control and monitor instrumentation development

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Dalhausen, M. J.; Klimes, R.

    1982-01-01

    A progam to evaluate, design and demonstrate major advances in control and monitor instrumentation was undertaken. A carbon dioxide removal process, one whose maturity level makes it a prime candidate for early flight demonstration was investigated. The instrumentation design incorporates features which are compatible with anticipated flight requirements. Current electronics technology and projected advances are included. In addition, the program established commonality of components for all advanced life support subsystems. It was concluded from the studies and design activities conducted under this program that the next generation of instrumentation will be greatly smaller than the prior one. Not only physical size but weight, power and heat rejection requirements were reduced in the range of 80 to 85% from the former level of research and development instrumentation. Using a microprocessor based computer, a standard computer bus structure and nonvolatile memory, improved fabrication techniques and aerospace packaging this instrumentation will greatly enhance overall reliability and total system availability.

  3. A methodology for spacecraft technology insertion analysis balancing benefit, cost, and risk

    NASA Astrophysics Data System (ADS)

    Bearden, David Allen

    Emerging technologies are changing the way space missions are developed and implemented. Technology development programs are proceeding with the goal of enhancing spacecraft performance and reducing mass and cost. However, it is often the case that technology insertion assessment activities, in the interest of maximizing performance and/or mass reduction, do not consider synergistic system-level effects. Furthermore, even though technical risks are often identified as a large cost and schedule driver, many design processes ignore effects of cost and schedule uncertainty. This research is based on the hypothesis that technology selection is a problem of balancing interrelated (and potentially competing) objectives. Current spacecraft technology selection approaches are summarized, and a Methodology for Evaluating and Ranking Insertion of Technology (MERIT) that expands on these practices to attack otherwise unsolved problems is demonstrated. MERIT combines the modern techniques of technology maturity measures, parametric models, genetic algorithms, and risk assessment (cost and schedule) in a unique manner to resolve very difficult issues including: user-generated uncertainty, relationships between cost/schedule and complexity, and technology "portfolio" management. While the methodology is sufficiently generic that it may in theory be applied to a number of technology insertion problems, this research focuses on application to the specific case of small (<500 kg) satellite design. Small satellite missions are of particular interest because they are often developed under rigid programmatic (cost and schedule) constraints and are motivated to introduce advanced technologies into the design. MERIT is demonstrated for programs procured under varying conditions and constraints such as stringent performance goals, not-to-exceed costs, or hard schedule requirements. MERIT'S contributions to the engineering community are its: unique coupling of the aspects of performance, cost, and schedule; assessment of system level impacts of technology insertion; procedures for estimating uncertainties (risks) associated with advanced technology; and application of heuristics to facilitate informed system-level technology utilization decisions earlier in the conceptual design phase. MERIT extends the state of the art in technology insertion assessment selection practice and, if adopted, may aid designers in determining the configuration of complex systems that meet essential requirements in a timely, cost-effective manner.

  4. Clerkship maturity: does the idea of training clinical skills work?

    PubMed

    Stosch, Christoph; Joachim, Alexander; Ascher, Johannes

    2011-01-01

    With the reformed curriculum "4C", the Medical Faculty of the University of Cologne has started to systematically plan practical skills training, for which Clerkship Maturity is the first step. The key guidelines along which the curriculum was development were developed by experts. This approach has now been validated. Both students and teachers were asked to fill in a questionnaire regarding preclinical practical skills training to confirm the concept of Clerkship Maturity. The Cologne training program Clerkship Maturity can be validated empirically overall through the activities of the students awaiting the clerkship framework and through the evaluation by the medical staff providing the training. The subjective ratings of the advantages of the training by the students leave room for improvement. Apart from minor improvements to the program, the most likely solution providing sustainable results will involve an over-regional strategy for establishing skills training planned as part of the curriculum.

  5. Development Status of the International Space Station Urine Processor Assembly

    NASA Technical Reports Server (NTRS)

    Holder, Donald W.; Hutchens, Cindy F.

    2003-01-01

    NASA, Marshall Space Flight Center (MSFC) is developing a Urine Processor Assembly (UPA) for the International Space Station (ISS). The UPA uses Vapor Compression Distillation (VCD) technology to reclaim water from pre-treated urine. This water is further processed by the Water Processor Assembly (WPA) to potable quality standards for use on the ISS. NASA has developed this technology over the last 25-30 years. Over this history, many technical issues were solved with thousands of hours of ground testing that demonstrate the ability of the UPA technology to reclaim water from urine. In recent years, NASA MSFC has been responsible for taking the UPA technology to "flight design" maturity. This paper will give a brief overview of the UPA design and a status of the major design and development efforts completed recently to mature the UPA to a flight level.

  6. Cobalt: Development and Maturation of GN&C Technologies for Precision Landing

    NASA Technical Reports Server (NTRS)

    Carson, John M.; Restrepo, Carolina; Seubert, Carl; Amzajerdian, Farzin

    2016-01-01

    The CoOperative Blending of Autonomous Landing Technologies (COBALT) instrument is a terrestrial test platform for development and maturation of guidance, navigation and control (GN&C) technologies for precision landing. The project is developing a third-generation Langley Research Center (LaRC) navigation doppler lidar (NDL) for ultra-precise velocity and range measurements, which will be integrated and tested with the Jet Propulsion Laboratory (JPL) lander vision system (LVS) for terrain relative navigation (TRN) position estimates. These technologies together provide precise navigation knowledge that is critical for a controlled and precise touchdown. The COBALT hardware will be integrated in 2017 into the GN&C subsystem of the Xodiac rocket-propulsive vertical test bed (VTB) developed by Masten Space Systems, and two terrestrial flight campaigns will be conducted: one open-loop (i.e., passive) and one closed-loop (i.e., active).

  7. Returning to STEM: Gendered Factors Affecting Employability for Mature Women Students

    ERIC Educational Resources Information Center

    Herman, Clem

    2015-01-01

    This paper adds to current discourses around employability by arguing for an explicit recognition of gender, in particular in relation to women's employment in male-dominated sectors such as science, engineering and technology. This is not limited to young first-time graduates but continues and evolves throughout the life course. Mature women…

  8. Distilling the Verification Process for Prognostics Algorithms

    NASA Technical Reports Server (NTRS)

    Roychoudhury, Indranil; Saxena, Abhinav; Celaya, Jose R.; Goebel, Kai

    2013-01-01

    The goal of prognostics and health management (PHM) systems is to ensure system safety, and reduce downtime and maintenance costs. It is important that a PHM system is verified and validated before it can be successfully deployed. Prognostics algorithms are integral parts of PHM systems. This paper investigates a systematic process of verification of such prognostics algorithms. To this end, first, this paper distinguishes between technology maturation and product development. Then, the paper describes the verification process for a prognostics algorithm as it moves up to higher maturity levels. This process is shown to be an iterative process where verification activities are interleaved with validation activities at each maturation level. In this work, we adopt the concept of technology readiness levels (TRLs) to represent the different maturity levels of a prognostics algorithm. It is shown that at each TRL, the verification of a prognostics algorithm depends on verifying the different components of the algorithm according to the requirements laid out by the PHM system that adopts this prognostics algorithm. Finally, using simplified examples, the systematic process for verifying a prognostics algorithm is demonstrated as the prognostics algorithm moves up TRLs.

  9. High Temperature Wireless Communication And Electronics For Harsh Environment Applications

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Beheim, G. M.; Ponchak, G. E.; Chen, L.-Y

    2007-01-01

    In order for future aerospace propulsion systems to meet the increasing requirements for decreased maintenance, improved capability, and increased safety, the inclusion of intelligence into the propulsion system design and operation becomes necessary. These propulsion systems will have to incorporate technology that will monitor propulsion component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This implies the development of sensors, actuators, and electronics, with associated packaging, that will be able to operate under the harsh environments present in an engine. However, given the harsh environments inherent in propulsion systems, the development of engine-compatible electronics and sensors is not straightforward. The ability of a sensor system to operate in a given environment often depends as much on the technologies supporting the sensor element as the element itself. If the supporting technology cannot handle the application, then no matter how good the sensor is itself, the sensor system will fail. An example is high temperature environments where supporting technologies are often not capable of operation in engine conditions. Further, for every sensor going into an engine environment, i.e., for every new piece of hardware that improves the in-situ intelligence of the components, communication wires almost always must follow. The communication wires may be within or between parts, or from the engine to the controller. As more hardware is added, more wires, weight, complexity, and potential for unreliability is also introduced. Thus, wireless communication combined with in-situ processing of data would significantly improve the ability to include sensors into high temperature systems and thus lead toward more intelligent engine systems. NASA Glenn Research Center (GRC) is presently leading the development of electronics, communication systems, and sensors capable of prolonged stable operation in harsh 500C environments. This has included world record operation of SiC-based transistor technology (including packaging) that has demonstrated continuous electrical operation at 500C for over 2000 hours. Based on SiC electronics, development of high temperature wireless communication has been on-going. This work has concentrated on maturing the SiC electronic devices for communication purposes as well as the passive components such as resistors and capacitors needed to enable a high temperature wireless system. The objective is to eliminate wires associated with high temperature sensors which add weight to a vehicle and can be a cause of sensor unreliability. This paper discusses the development of SiC based electronics and wireless communications technology for harsh environment applications such as propulsion health management systems and in Venus missions. A brief overview of the future directions in sensor technology is given including maturing of near-room temperature "Lick and Stick" leak sensor technology for possible implementation in the Crew Launch Vehicle program. Then an overview of high temperature electronics and the development of high temperature communication systems is presented. The maturity of related technologies such as sensor and packaging will also be discussed. It is concluded that a significant component of efforts to improve the intelligence of harsh environment operating systems is the development and implementation of high temperature wireless technology

  10. Increased Science Instrumentation Funding Strengthens Mars Program

    NASA Technical Reports Server (NTRS)

    Graham, Lee D.; Graff, T. G.

    2012-01-01

    As the strategic knowledge gaps mature for the exploration of Mars, Mars sample return (MSR), and Phobos/Deimos missions, one approach that becomes more probable involves smaller science instrumentation and integrated science suites. Recent technological advances provide the foundation for a significant evolution of instrumentation; however, the funding support is currently too small to fully utilize these advances. We propose that an increase in funding for instrumentation development occur in the near-term so that these foundational technologies can be applied. These instruments would directly address the significant knowledge gaps for humans to Mars orbit, humans to the Martian surface, and humans to Phobos/ Deimos. They would also address the topics covered by the Decadal Survey and the Mars scientific goals, objectives, investigations and priorities as stated by the MEPAG. We argue that an increase of science instrumentation funding would be of great benefit to the Mars program as well as the potential for human exploration of the Mars system. If the total non-Earth-related planetary science instrumentation budget were increased 100% it would not add an appreciable amount to the overall NASA budget and would provide the real potential for future breakthroughs. If such an approach were implemented in the near-term, NASA would benefit greatly in terms of science knowledge of the Mars, Phobos/Deimos system, exploration risk mitigation, technology development, and public interest.

  11. Using an Integrated Distributed Test Architecture to Develop an Architecture for Mars

    NASA Technical Reports Server (NTRS)

    Othon, William L.

    2016-01-01

    The creation of a crew-rated spacecraft architecture capable of sending humans to Mars requires the development and integration of multiple vehicle systems and subsystems. Important new technologies will be identified and matured within each technical discipline to support the mission. Architecture maturity also requires coordination with mission operations elements and ground infrastructure. During early architecture formulation, many of these assets will not be co-located and will required integrated, distributed test to show that the technologies and systems are being developed in a coordinated way. When complete, technologies must be shown to function together to achieve mission goals. In this presentation, an architecture will be described that promotes and advances integration of disparate systems within JSC and across NASA centers.

  12. A Close Look at a STEM-Themed Magnet and Its Experiential Program on the Occupational Identities, Career Maturity, and Access Provided to Low Socioeconomic Minority Students

    ERIC Educational Resources Information Center

    Reyes, Urlette

    2013-01-01

    The purpose of this study was to determine the effects of an experiential program on the occupational identity, access, and career maturity of Black and Latino students from low socioeconomic backgrounds. Data shows these students to be underrepresented in STEM fields. Student interest and access are noted in the literature to be amongst the…

  13. Strategic Planning of Technology Transfer.

    ERIC Educational Resources Information Center

    Groff, Warren H.

    Using the Ohio Technology Transfer Organization (OTTO) as its primary example, this paper offers a strategic planning perspective on technology transfer and human resources development. First, a brief overview is provided of the maturation of mission priorities and planning processes in higher education in the United States, followed by a…

  14. FY2014 Propulsion Materials R&D Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion systems focus on improvements in both vehicle efficiency and fuel substitution, both of which must overcome the performance limitations of the materials currently in use. Propulsion Materials Program activities work with national laboratories, industry experts, and VTO powertrain systems (e.g., Advanced Combustion Engines [ACE], Advanced Power Electronics and Electrical Machinesmore » [APEEM], and fuels) teams to develop strategies that overcome materials limitations in future powertrain performance. The technical maturity of the portfolio of funded projects ranges from basic science to subsystem prototype validation. Projects within a Propulsion Materials Program activity address materials concerns that directly impact critical technology barriers within each of the above programs, including barriers that impact fuel efficiency, thermal management, emissions reduction, improved reliability, and reduced manufacturing costs. The program engages only the barriers that result from material property limitations and represent fundamental, high-risk materials issues.« less

  15. FY2015 Propulsion Materials Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion systems focus on improvements in both vehicle efficiency and fuel substitution, both of which must overcome the performance limitations of the materials currently in use. Propulsion Materials Program activities work with national laboratories, industry experts, and VTO powertrain systems (e.g., Advanced Combustion Engines [ACE], Advanced Power Electronics and Electrical Machinesmore » [APEEM], and fuels) teams to develop strategies that overcome materials limitations in future powertrain performance. The technical maturity of the portfolio of funded projects ranges from basic science to subsystem prototype validation. Projects within a Propulsion Materials Program activity address materials concerns that directly impact critical technology barriers within each of the above programs, including barriers that impact fuel efficiency, thermal management, emissions reduction, improved reliability, and reduced manufacturing costs. The program engages only the barriers that result from material property limitations and represent fundamental, high-risk materials issues.« less

  16. Operational Concept for the NASA Constellation Program's Ares I Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Best, Joel; Chavers, Greg; Richardson, Lea; Cruzen, Craig

    2008-01-01

    Ares I design brings together innovation and new technologies with established infrastructure and proven heritage hardware to achieve safe, reliable, and affordable human access to space. NASA has 50 years of experience from Apollo and Space Shuttle. The Marshall Space Flight Center's Mission Operations Laboratory is leading an operability benchmarking effort to compile operations and supportability lessons learned from large launch vehicle systems, both domestically and internationally. Ares V will be maturing as the Shuttle is retired and the Ares I design enters the production phase. More details on the Ares I and Ares V will be presented at SpaceOps 2010 in Huntsville, Alabama, U.S.A., April 2010.

  17. KSC-08pd2046

    NASA Image and Video Library

    2008-07-14

    VANDENBERG AIR FORCE BASE, Calif. -- An Alliant motor designated for Stage 3 of a Taurus rocket is weighed by Orbital Sciences workers in Building 1555 at Vandenberg AFB. The Taurus will launch the Orbiting Carbon Observatory, or OCO, in January 2009. The OCO is a new Earth-orbiting mission sponsored by NASA's Earth System Science Pathfinder Program. OCO will provide space-based observations of atmospheric carbon dioxide (CO2), the principal human-initiated driver of climate change. Mature technologies will be used to address NASA's highest priority carbon cycle measurement requirement. NASA's Jet Propulsion Laboratory leads the OCO effort. Orbital Sciences Corporation is providing the Taurus launch vehicle; Hamilton Sundstrand Sensor Systems, the OCO spacecraft. Photo credit: NASA/Randy Beaudoin

  18. KSC-08pd2044

    NASA Image and Video Library

    2008-07-14

    VANDENBERG AIR FORCE BASE, Calif. -- An Alliant motor designated for Stage 3 of a Taurus rocket is weighed by Orbital Sciences workers in Building 1555 at Vandenberg AFB. The Taurus will launch the Orbiting Carbon Observatory, or OCO, in January 2009. The OCO is a new Earth-orbiting mission sponsored by NASA's Earth System Science Pathfinder Program. OCO will provide space-based observations of atmospheric carbon dioxide (CO2), the principal human-initiated driver of climate change. Mature technologies will be used to address NASA's highest priority carbon cycle measurement requirement. NASA's Jet Propulsion Laboratory leads the OCO effort. Orbital Sciences Corporation is providing the Taurus launch vehicle; Hamilton Sundstrand Sensor Systems, the OCO spacecraft. Photo credit: NASA/Randy Beaudoin

  19. KSC-08pd2045

    NASA Image and Video Library

    2008-07-14

    VANDENBERG AIR FORCE BASE, Calif. -- An Alliant motor designated for Stage 3 of a Taurus rocket is weighed by Orbital Sciences workers in Building 1555 at Vandenberg AFB. The Taurus will launch the Orbiting Carbon Observatory, or OCO, in January 2009. The OCO is a new Earth-orbiting mission sponsored by NASA's Earth System Science Pathfinder Program. OCO will provide space-based observations of atmospheric carbon dioxide (CO2), the principal human-initiated driver of climate change. Mature technologies will be used to address NASA's highest priority carbon cycle measurement requirement. NASA's Jet Propulsion Laboratory leads the OCO effort. Orbital Sciences Corporation is providing the Taurus launch vehicle; Hamilton Sundstrand Sensor Systems, the OCO spacecraft. Photo credit: NASA/Randy Beaudoin

  20. JSpOC Mission System Application Development Environment

    NASA Astrophysics Data System (ADS)

    Luce, R.; Reele, P.; Sabol, C.; Zetocha, P.; Echeverry, J.; Kim, R.; Golf, B.

    2012-09-01

    The Joint Space Operations Center (JSpOC) Mission System (JMS) is the program of record tasked with replacing the legacy Space Defense Operations Center (SPADOC) and Astrodynamics Support Workstation (ASW) capabilities by the end of FY2015 as well as providing additional Space Situational Awareness (SSA) and Command and Control (C2) capabilities post-FY2015. To meet the legacy replacement goal, the JMS program is maturing a government Service Oriented Architecture (SOA) infrastructure that supports the integration of mission applications while acquiring mature industry and government mission applications. Future capabilities required by the JSpOC after 2015 will require development of new applications and procedures as well as the exploitation of new SSA data sources. To support the post FY2015 efforts, the JMS program is partnering with the Air Force Research Laboratory (AFRL) to build a JMS application development environment. The purpose of this environment is to: 1) empower the research & development community, through access to relevant tools and data, to accelerate technology development, 2) allow the JMS program to communicate user capability priorities and requirements to the developer community, 3) provide the JMS program with access to state-of-the-art research, development, and computing capabilities, and 4) support market research efforts by identifying outstanding performers that are available to shepherd into the formal transition process. The application development environment will consist of both unclassified and classified environments that can be accessed over common networks (including the Internet) to provide software developers, scientists, and engineers everything they need (e.g., building block JMS services, modeling and simulation tools, relevant test scenarios, documentation, data sources, user priorities/requirements, and SOA integration tools) to develop and test mission applications. The developed applications will be exercised in these relevant environments with representative data sets to help bridge the gap between development and integration into the operational JMS enterprise.

  1. Developmental competence of equine oocytes and embryos obtained by in vitro procedures ranging from in vitro maturation and ICSI to embryo culture, cryopreservation and somatic cell nuclear transfer.

    PubMed

    Galli, C; Colleoni, S; Duchi, R; Lagutina, I; Lazzari, G

    2007-03-01

    Development of assisted reproductive technologies in horses has been relatively slow compared to other domestic species, namely ruminants and pigs. The scarce availability of abattoir ovaries and the lack of interest from horse breeders and breed associations have been the main reasons for this delay. Progressively though, the technology of oocyte maturation in vitro has been established followed by the application of ICSI to achieve fertilization in vitro. Embryo culture was initially performed in vivo, in the mare oviduct or in the surrogate sheep oviduct, to achieve the highest embryo development, in the range of 18-36% of the fertilised oocytes. Subsequently, the parallel improvement of in vitro oocyte maturation conditions and embryo culture media has permitted high rates of embryo development from in vitro matured and in vitro cultured ICSI embryos, ranging from 5 to 10% in the early studies to up to 38% in the latest ones. From 2003, with the birth of the first cloned equids, the technology of somatic cell nuclear transfer has also become established due to improvement of the basic steps of embryo production in vitro, including cryopreservation. Pregnancy and foaling rates are still estimated based on a small number of in vitro produced equine embryos transferred to recipients. The largest set of data on non-surgical embryo transfer of in vitro produced embryos, from ICSI of both abattoir and in vitro-matured Ovum Pick Up (OPU) oocytes, and from somatic cell nuclear transfer, has been obtained in our laboratory. The data demonstrate that equine embryos produced by OPU and then cryopreserved can achieve up to 69% pregnancy rate with a foaling rate of 83%. These percentages are reduced to 11 and 23%, respectively, for cloned embryos. In conclusion, extensive evidence exists that in vitro matured equine oocytes can efficiently develop into viable embryos and offspring.

  2. THE DOE OFFICE OF ENVIRONMENTAL MANAGEMENT INTERNATIONAL COOPERATIVE PROGRAM: OVERVIEW OF TECHNICAL TASKS AND RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marra, J.; Fox, K.; Farfan, E.

    2009-12-08

    The DOE Office of Environmental Management (DOE-EM) Office of Engineering and Technology is responsible for implementing EM's International Cooperative Program. Over the past 15 years, collaborative work has been conducted through this program with researchers in Russia, Ukraine, France, United Kingdom and Republic of Korea. Currently, work is being conducted with researchers in Russia and Ukraine. Efforts aimed at evaluating and advancing technologies to support U.S. high-level waste (HLW) vitrification initiatives are being conducted in collaboration with Russian researchers. Work at Khlopin Radium Institute (KRI) is targeted at improving the throughput of current vitrification processes by increasing melting rate. Thesemore » efforts are specifically targeted at challenging waste types identified at the Savannah River Site (SRS) and Hanford Site. The objectives of current efforts at SIA Radon are to gain insight into vitrification process limits for the cold crucible induction melter (CCIM) technology. Previous demonstration testing has shown that the CCIM offers the potential for dramatic increases in waste loading and waste throughput. However, little information is known regarding operational limits that could affect long-term, efficient CCIM operations. Collaborative work with the Russian Electrotechnical University (ETU) 'LETI' is aimed at advancing CCIM process monitoring, process control and design. The goal is to further mature the CCIM technology and to establish it as a viable HLW vitrification technology. The greater than two year effort conducted with the International Radioecology Laboratory in the Ukraine recently completed. The objectives of this study were: to assess the long-term impacts to the environment from radiation exposure in the Chernobyl Exclusion Zone (ChEZ); and to provide information on remediation guidelines and ecological risk assessment within radioactively contaminated territories around the Chernobyl Nuclear Power Plant (ChNPP) based on the results of long-term field monitoring, analytical measurements, and numerical modeling of soils and groundwater radioactive contamination.« less

  3. U.S. Army Medical Department

    MedlinePlus

    ... Games, they came ready to play. Read more Image-2 Excerpt-2 Training, technological synergy key to future battlefield care scenarios To obtain a more complete, more mature fusion of technology and Soldier, Army Medicine focuses on ...

  4. Comparative transcript profiling by SuperSAGE identifies novel candidate genes for controlling potato quantitative resistance to late blight not compromised by late maturity.

    PubMed

    Draffehn, Astrid M; Li, Li; Krezdorn, Nicolas; Ding, Jia; Lübeck, Jens; Strahwald, Josef; Muktar, Meki S; Walkemeier, Birgit; Rotter, Björn; Gebhardt, Christiane

    2013-01-01

    Resistance to pathogens is essential for survival of wild and cultivated plants. Pathogen susceptibility causes major losses of crop yield and quality. Durable field resistance combined with high yield and other superior agronomic characters are therefore, important objectives in every crop breeding program. Precision and efficacy of resistance breeding can be enhanced by molecular diagnostic tools, which result from knowledge of the molecular basis of resistance and susceptibility. Breeding uses resistance conferred by single R genes and polygenic quantitative resistance. The latter is partial but considered more durable. Molecular mechanisms of plant pathogen interactions are elucidated mainly in experimental systems involving single R genes, whereas most genes important for quantitative resistance in crops like potato are unknown. Quantitative resistance of potato to Phytophthora infestans causing late blight is often compromised by late plant maturity, a negative agronomic character. Our objective was to identify candidate genes for quantitative resistance to late blight not compromised by late plant maturity. We used diagnostic DNA-markers to select plants with different field levels of maturity corrected resistance (MCR) to late blight and compared their leaf transcriptomes before and after infection with P. infestans using SuperSAGE (serial analysis of gene expression) technology and next generation sequencing. We identified 2034 transcripts up or down regulated upon infection, including a homolog of the kiwi fruit allergen kiwellin. 806 transcripts showed differential expression between groups of genotypes with contrasting MCR levels. The observed expression patterns suggest that MCR is in part controlled by differential transcript levels in uninfected plants. Functional annotation suggests that, besides biotic and abiotic stress responses, general cellular processes such as photosynthesis, protein biosynthesis, and degradation play a role in MCR.

  5. Design of the ARES Mars Airplane and Mission Architecture

    NASA Technical Reports Server (NTRS)

    Braun, Robert D.; Wright, Henry S.; Croom, Mark A.; Levine, Joel S.; Spencer, David A.

    2006-01-01

    Significant technology advances have enabled planetary aircraft to be considered as viable science platforms. Such systems fill a unique planetary science measurement gap, that of regional-scale, near-surface observation, while providing a fresh perspective for potential discovery. Recent efforts have produced mature mission and flight system concepts, ready for flight project implementation. This paper summarizes the development of a Mars airplane mission architecture that balances science, implementation risk and cost. Airplane mission performance, flight system design and technology maturation are described. The design, analysis and testing completed demonstrates the readiness of this science platform for use in a Mars flight project.

  6. Mobile Technology in 2020: Predictions and Implications for K-12 Education

    ERIC Educational Resources Information Center

    Norris, Cathleen A.; Soloway, Elliot

    2015-01-01

    While "mobile learning" has gained recognition in K-12 as a category in educational technology, the authors argue that, between 2010 and 2015, at least, its impact hasn't matched the hype. But between 2015 and 2020, hardware, software, and network technologies will mature sufficiently such that educational technology's Holy…

  7. Advanced Manufacturing Technologies

    NASA Technical Reports Server (NTRS)

    Fikes, John

    2016-01-01

    Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.

  8. A Systematic Review Approach to Technologies Used for Learning and Education

    ERIC Educational Resources Information Center

    Purarjomandlangrudi, Afrooz; Chen, David; Nguyen, Anne

    2015-01-01

    E-learning is implementation of technologies in learning process and is growing at a very rapid pace. E-learning technology has matured noticeably and the majority of organisations are taking advantage of it in their educational systems. However, there is a lack of methodical and consistent paradigm of these technologies in literature. The purpose…

  9. Project Icarus: Nuclear Fusion Propulsion Concept Comparison

    NASA Astrophysics Data System (ADS)

    Stanic, M.

    Project Icarus will use nuclear fusion as the primary propulsion, since achieving breakeven is imminent within the next decade. Therefore, fusion technology provides confidence in further development and fairly high technological maturity by the time the Icarus mission would be plausible. Currently there are numerous (over 2 dozen) different fusion approaches that are simultaneously being developed around the World and it is difficult to predict which of the concepts is going to be the most successful one. This study tried to estimate current technological maturity and possible technological extrapolation of fusion approaches for which appropriate data could be found. Figures of merit that were assessed include: current technological state, mass and volume estimates, possible gain values, main advantages and disadvantages of the concept and an attempt to extrapolate current technological state for the next decade or two. Analysis suggests that Magnetic Confinement Fusion (MCF) concepts are not likely to deliver sufficient performance due to size, mass, gain and large technological barriers of the concept. However, ICF and PJMIF did show potential for delivering necessary performance, assuming appropriate techno- logical advances. This paper is a submission of the Project Icarus Study Group.

  10. The Development of Stacked Core for the Fabrication of Deep Lightweight UV-Quality Space Mirrors

    NASA Technical Reports Server (NTRS)

    Matthews, Gary W.; Egerman, Robert; Maffett, Steven P.; Stahl, H. Philip; Eng, Ron; Effinger, Michael R.

    2014-01-01

    The 2010 Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. Under Science and Technology funding, NASA's Marshall Space Flight Center (MSFC) and Exelis have developed a more cost effective process to make 4m class or larger monolithic spaceflight UV quality, low areal density, thermally and dynamically stable primary mirrors. A proof of concept 0.43m mirror was completed at Exelis optically tested at 250K at MSFC which demonstrated the ability for imaging out to 2.5 microns. The parameters and test results of this concept mirror are shown. The next phase of the program includes a 1.5m subscale mirror that will be optically and dynamically tested. The scale-up process will be discussed and the technology development path to a 4m mirror system by 2018 will be outlined.

  11. Sensing Hazards with Operational Unmanned Technology

    NASA Astrophysics Data System (ADS)

    Hood, R. E.

    2016-12-01

    The Unmanned Aircraft Systems (UAS) Program of the National Oceanic and Atmospheric Administration (NOAA) is working with the National Weather Service, the National Ocean Service, other Federal agencies, private industry, and academia to evaluate the feasibility of UAS observations to provide time critical information needed for situational awareness, prediction, warning, and damage assessment of hazards. This activity is managed within a portfolio of projects entitled "Sensing Hazards with Operational Unmanned Technology (SHOUT)." The diversity of this portfolio includes evaluations of high altitude UAS observations for high impact oceanic storms prediction to low altitude UAS observations of rivers, severe storms, and coastal areas for pre-hazard situational awareness and post-hazard damage assessments. Each SHOUT evaluation project begins with a proof-of-concept field demonstration of a UAS observing strategy for a given hazard and then matures to joint studies of both scientific data impact along with cost and operational feasibility of the observing strategy for routine applications. The technology readiness and preliminary evaulation results will be presented for several UAS observing strategies designed for improved observations of oceanic storms, floods, severe storms, and coastal ecosystem hazards.

  12. Fiber-Based, Trace-Gas, Laser Transmitter Technology Development for Space

    NASA Technical Reports Server (NTRS)

    Stephen, Mark; Yu, Anthony; Chen, Jeffrey; Nicholson, Jeffrey; Engin, Doruk; Mathason, Brian; Wu, Stewart; Allan, Graham; Hasselbrack, William; Gonzalez, Brayler; hide

    2015-01-01

    NASA’s Goddard Space Flight Center (GSFC) is working on maturing the technology readiness of a laser transmitter designed for use in atmospheric CO2 remote-sensing. GSFC has been developing an airplane-based CO2 lidar instrument over several years to demonstrate the efficacy of the instrumentation and measurement technique and to link the science models to the instrument performance. The ultimate goal is to make space-based satellite measurements with global coverage. In order to accomplish this, we must demonstrate the technology readiness and performance of the components as well as demonstrate the required power-scaling to make the link with the required signal-to-noise-ratio (SNR). To date, all the instrument components have been shown to have the required performance with the exception of the laser transmitter.In this program we are working on a fiber-based master oscillator power amplifier (MOPA) laser transmitter architecture where we will develop a ruggedized package and perform the relevant environmental tests to demonstrate TRL-6. In this paper we will review our transmitter architecture and progress on the performance and packaging of the laser transmitter.

  13. A tale of three cities--where RHIOS meet the NHIN.

    PubMed

    DeBor, Greg; Diamond, Carol; Grodecki, Don; Halamka, John; Overhage, J Marc; Shirky, Clay

    2006-01-01

    Regional health information exchanges in California, Indiana, and Massachusetts have been collaborating on a prototype for a nationwide health information network, first under the auspices of the Markle Foundation's Connecting for Health program and now under contract to the Department of Health and Human Services' Office of the National Coordinator for Health Information Technology. Since mid-2004, this collaboration has evolved from a collection of regional efforts to a standards-driven cooperative and now to one of four prototype national networks fostered by federal efforts. This development reflects a maturing market for interoperability and integration in healthcare information technology, starting with RHIOs, and suggests one response to the industry's need for the type of plug-and-play information exchange available in other industries. The authors share their experiences and their views of how RHIOs and a Nationwide Health Information Network will further develop to make interoperable electronic health records a reality in coming years. The content of this article is solely the responsibility of the authors and does not necessarily represent the official view of the Office of the National Coordinator for Health Information Technology.

  14. Fiber-based, trace-gas, laser transmitter technology development for space

    NASA Astrophysics Data System (ADS)

    Stephen, Mark; Yu, Anthony; Chen, Jeffrey; Nicholson, Jeffrey; Engin, Doruk; Mathason, Brian; Wu, Stewart; Allan, Graham; Hasselbrack, William; Gonzales, Brayler; Han, Lawrence; Numata, Kenji; Storm, Mark; Abshire, James

    2015-09-01

    NASA's Goddard Space Flight Center (GSFC) is working on maturing the technology readiness of a laser transmitter designed for use in atmospheric CO2 remote-sensing. GSFC has been developing an airplane-based CO2 lidar instrument over several years to demonstrate the efficacy of the instrumentation and measurement technique and to link the science models to the instrument performance. The ultimate goal is to make space-based satellite measurements with global coverage. In order to accomplish this, we must demonstrate the technology readiness and performance of the components as well as demonstrate the required power-scaling to make the link with the required signal-to-noise-ratio (SNR). To date, all the instrument components have been shown to have the required performance with the exception of the laser transmitter. In this program we are working on a fiber-based master oscillator power amplifier (MOPA) laser transmitter architecture where we will develop a ruggedized package and perform the relevant environmental tests to demonstrate TRL-6. In this paper we will review our transmitter architecture and progress on the performance and packaging of the laser transmitter.

  15. Recent developments in chemical decontamination technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, C.J.

    1995-03-01

    Chemical decontamination of parts of reactor coolant systems is a mature technology, used routinely in many BWR plants, but less frequently in PWRs. This paper reviews recent developments in the technology - corrosion minimization, waste processing and full system decontamination, including the fuel. Earlier work was described in an extensive review published in 1990.

  16. Organizational Considerations for Advanced Manufacturing Technology

    ERIC Educational Resources Information Center

    DeRuntz, Bruce D.; Turner, Roger M.

    2003-01-01

    In the last several decades, the United States has experienced a decline in productivity, while the world has seen a maturation of the global marketplace. Nations have moved manufacturing strategy and process technology issues to the top of management priority lists. The issues surrounding manufacturing technologies and their implementations have…

  17. Maturation capacity, morphology and morphometric assessment of human immature oocytes after vitrification and in-vitro maturation

    PubMed Central

    Nazari, Saeedeh; Khalili, Mohammad Ali; Esmaielzadeh, Forouzan; Mohsenzadeh, Mehdi

    2011-01-01

    Background: In general, 15% of oocytes collected in ART cycles are immature. These oocytes may be cryopreserved further for use in in-vitro maturation (IVM) program. Objective: The aim of this study was to determine maturation capacity, morphometric parameters and morphology of human immature oocytes in both fresh IVM (fIVM) and vitrified-IVM (vIVM) oocytes. Materials and Methods: 93 women who underwent controlled ovarian stimulation for ART were included. The immature oocytes (n=203) were divided into two groups: the first group (n=101) directly matured in vitro; and the second group (n=102) first vitrified, then matured in vitro. All oocytes underwent IVM in Ham’s F10 supplemented with LH+FSH and human follicular fluid. After 48h of incubation, the oocyte maturation rates, as well as morphometric and morphologic characteristics were assessed using cornus imaging and were compared. Results: Oocyte maturation rates were reduced in vIVM, (40.4%), in comparison with fIVM (59.4%, p<0.001). Following morphometric assessment, there was no difference in the mean oocyte diameters (µm) between fIVM and vIVM, 156.3±6.8 and 154.07±9.9, respectively. Other parameters of perimeters, egg areas, as well as oocyte and ooplasm volumes were similar in two groups. In addition, more morphologic abnormalities, such as, vacuole, and dark oocyte were observed in vIVM oocytes. Conclusion: fIVM was more successful than vIVM groups. No statistical differences were noticed in morphometry assessment in two groups. This suggests that morphometric parameters can not be applied as prognosis factor in oocyte maturation outcome in IVM program. PMID:26396566

  18. The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program.

    PubMed

    Fasoli, Marianna; Dal Santo, Silvia; Zenoni, Sara; Tornielli, Giovanni Battista; Farina, Lorenzo; Zamboni, Anita; Porceddu, Andrea; Venturini, Luca; Bicego, Manuele; Murino, Vittorio; Ferrarini, Alberto; Delledonne, Massimo; Pezzotti, Mario

    2012-09-01

    We developed a genome-wide transcriptomic atlas of grapevine (Vitis vinifera) based on 54 samples representing green and woody tissues and organs at different developmental stages as well as specialized tissues such as pollen and senescent leaves. Together, these samples expressed ∼91% of the predicted grapevine genes. Pollen and senescent leaves had unique transcriptomes reflecting their specialized functions and physiological status. However, microarray and RNA-seq analysis grouped all the other samples into two major classes based on maturity rather than organ identity, namely, the vegetative/green and mature/woody categories. This division represents a fundamental transcriptomic reprogramming during the maturation process and was highlighted by three statistical approaches identifying the transcriptional relationships among samples (correlation analysis), putative biomarkers (O2PLS-DA approach), and sets of strongly and consistently expressed genes that define groups (topics) of similar samples (biclustering analysis). Gene coexpression analysis indicated that the mature/woody developmental program results from the reiterative coactivation of pathways that are largely inactive in vegetative/green tissues, often involving the coregulation of clusters of neighboring genes and global regulation based on codon preference. This global transcriptomic reprogramming during maturation has not been observed in herbaceous annual species and may be a defining characteristic of perennial woody plants.

  19. Will Moores law be sufficient?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeBenedictis, Erik P.

    2004-07-01

    It seems well understood that supercomputer simulation is an enabler for scientific discoveries, weapons, and other activities of value to society. It also seems widely believed that Moore's Law will make progressively more powerful supercomputers over time and thus enable more of these contributions. This paper seeks to add detail to these arguments, revealing them to be generally correct but not a smooth and effortless progression. This paper will review some key problems that can be solved with supercomputer simulation, showing that more powerful supercomputers will be useful up to a very high yet finite limit of around 1021 FLOPSmore » (1 Zettaflops) . The review will also show the basic nature of these extreme problems. This paper will review work by others showing that the theoretical maximum supercomputer power is very high indeed, but will explain how a straightforward extrapolation of Moore's Law will lead to technological maturity in a few decades. The power of a supercomputer at the maturity of Moore's Law will be very high by today's standards at 1016-1019 FLOPS (100 Petaflops to 10 Exaflops), depending on architecture, but distinctly below the level required for the most ambitious applications. Having established that Moore's Law will not be that last word in supercomputing, this paper will explore the nearer term issue of what a supercomputer will look like at maturity of Moore's Law. Our approach will quantify the maximum performance as permitted by the laws of physics for extension of current technology and then find a design that approaches this limit closely. We study a 'multi-architecture' for supercomputers that combines a microprocessor with other 'advanced' concepts and find it can reach the limits as well. This approach should be quite viable in the future because the microprocessor would provide compatibility with existing codes and programming styles while the 'advanced' features would provide a boost to the limits of performance.« less

  20. Advanced Exploration Systems Atmosphere Resource Recovery and Environmental Monitoring

    NASA Technical Reports Server (NTRS)

    Perry, J.; Abney, M.; Conrad, R.; Garber, A.; Howard, D.; Kayatin, M.; Knox, J.; Newton, R.; Parrish, K.; Roman, M.; hide

    2016-01-01

    In September 2011, the Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project was commissioned by NASA's Advanced Exploration Systems program to advance Atmosphere Revitalization Subsystem (ARS) and Environmental Monitoring Subsystem (EMS) technologies for enabling future crewed space exploration missions beyond low Earth orbit. The ARREM project's period of performance covered U.S. Government fiscal years 2012-2014. The ARREM project critically assessed the International Space Station (ISS) ARS and EMS architectures and process technologies as the foundation for an architecture suitable for deep space exploration vehicles. The project's technical content included technical tasks focused on improving the reliability and life cycle cost of ARS and EMS technologies as well as reducing future flight project developmental risk and design, development, test, and evaluation costs. Targeted technology development and maturation tasks, including key technical trade assessments, were accomplished and integrated ARS architectures were demonstrated. The ARREM project developed, demonstrated, and tested leading process technology candidates and subsystem architectures that met or exceeded key figures of merit, addressed capability gaps, and significantly improved the efficiency, safety, and reliability over the state-of-the-art ISS figures of merit. Promising EMS instruments were developed and functionally demonstrated in a simulated cabin environment. The project's technical approach and results are described and recommendations for continued development are provided.

  1. Technology development life cycle processes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, David Franklin

    2013-05-01

    This report and set of appendices are a collection of memoranda originally drafted in 2009 for the purpose of providing motivation and the necessary background material to support the definition and integration of engineering and management processes related to technology development. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. As presented herein, the material begins with a survey of open literature perspectives on technology development life cycles, including published data on %E2%80%9Cwhat went wrong.%E2%80%9D The main thrust of the material presents a rational expose%CC%81more » of a structured technology development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of the systems engineering process. The material concludes with a discussion on the use of multiple measures to assess technology maturity, including consideration of the viewpoint of potential users.« less

  2. Technologies and Concepts for Reducing the Fuel Burn of Subsonic Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Nickol, Craig L.

    2012-01-01

    There are many technologies under development that have the potential to enable large fuel burn reductions in the 2025 timeframe for subsonic transport aircraft relative to the current fleet. This paper identifies a potential technology suite and analyzes the fuel burn reduction potential of these technologies when integrated into advanced subsonic transport concepts. Advanced tube-and-wing concepts are developed in the single aisle and large twin aisle class, and a hybrid-wing-body concept is developed for the large twin aisle class. The resulting fuel burn reductions for the advanced tube-and-wing concepts range from a 42% reduction relative to the 777-200 to a 44% reduction relative to the 737-800. In addition, the hybrid-wingbody design resulted in a 47% fuel burn reduction relative to the 777-200. Of course, to achieve these fuel burn reduction levels, a significant amount of technology and concept maturation is required between now and 2025. A methodology for capturing and tracking concept maturity is also developed and presented in this paper.

  3. Weight training in youth-growth, maturation, and safety: an evidence-based review.

    PubMed

    Malina, Robert M

    2006-11-01

    To review the effects of resistance training programs on pre- and early-pubertal youth in the context of response, potential influence on growth and maturation, and occurrence of injury. Evidence-based review. Twenty-two reports dealing with experimental resistance training protocols, excluding isometric programs, in pre- and early-pubertal youth, were reviewed in the context of subject characteristics, training protocol, responses, and occurrence of injury. Experimental programs most often used isotonic machines and free weights, 2- and 3-day protocols, and 8- and 12-week durations, with significant improvements in muscular strength during childhood and early adolescence. Strength gains were lost during detraining. Experimental resistance training programs did not influence growth in height and weight of pre- and early-adolescent youth, and changes in estimates of body composition were variable and quite small. Only 10 studies systematically monitored injuries, and only three injuries were reported. Estimated injury rates were 0.176, 0.053, and 0.055 per 100 participant-hours in the respective programs. Experimental training protocols with weights and resistance machines and with supervision and low instructor/participant ratios are relatively safe and do not negatively impact growth and maturation of pre- and early-pubertal youth.

  4. 25 CFR 1000.338 - What happens to a Tribe's/Consortium's mature contract status if it has retroceded a program that...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ANNUAL FUNDING AGREEMENTS UNDER THE TRIBAL SELF-GOVERNMENT ACT AMENDMENTS TO THE INDIAN SELF...? Retrocession has no effect on mature contract status, provided that the 3 most recent audits covering...

  5. 25 CFR 1000.338 - What happens to a Tribe's/Consortium's mature contract status if it has retroceded a program that...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ANNUAL FUNDING AGREEMENTS UNDER THE TRIBAL SELF-GOVERNMENT ACT AMENDMENTS TO THE INDIAN SELF...? Retrocession has no effect on mature contract status, provided that the 3 most recent audits covering...

  6. 25 CFR 1000.338 - What happens to a Tribe's/Consortium's mature contract status if it has retroceded a program that...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ANNUAL FUNDING AGREEMENTS UNDER THE TRIBAL SELF-GOVERNMENT ACT AMENDMENTS TO THE INDIAN SELF...? Retrocession has no effect on mature contract status, provided that the 3 most recent audits covering...

  7. 25 CFR 1000.338 - What happens to a Tribe's/Consortium's mature contract status if it has retroceded a program that...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ANNUAL FUNDING AGREEMENTS UNDER THE TRIBAL SELF-GOVERNMENT ACT AMENDMENTS TO THE INDIAN SELF...? Retrocession has no effect on mature contract status, provided that the 3 most recent audits covering...

  8. Wireless Roadside Inspection Proof of Concept Test Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capps, Gary J; Franzese, Oscar; Knee, Helmut E

    2009-03-01

    The U.S. Department of Transportation (DOT) FMCSA commissioned the Wireless Roadside Inspection (WRI) Program to validate technologies and methodologies that can improve safety through inspections using wireless technologies that convey real-time identification of commercial vehicles, drivers, and carriers, as well as information about the condition of the vehicles and their drivers. It is hypothesized that these inspections will: -- Increase safety -- Decrease the number of unsafe commercial vehicles on the road; -- Increase efficiency -- Speed up the inspection process, enabling more inspections to occur, at least on par with the number of weight inspections; -- Improve effectiveness --more » Reduce the probability of drivers bypassing CMV inspection stations and increase the likelihood that fleets will attempt to meet the safety regulations; and -- Benefit industry -- Reduce fleet costs, provide good return-on-investment, minimize wait times, and level the playing field. The WRI Program is defined in three phases which are: Phase 1: Proof of Concept Test (POC) Testing of commercially available off-the-shelf (COTS) or near-COTS technology to validate the wireless inspection concept. Phase 2: Pilot Test Safety technology maturation and back office system integration Phase 3: Field Operational Test Multi-vehicle testing over a multi-state instrumented corridor This report focuses on Phase 1 efforts that were initiated in March, 2006. Technical efforts dealt with the ability of a Universal Wireless Inspection System (UWIS) to collect driver, vehicle, and carrier information; format a Safety Data Message Set from this information; and wirelessly transmit a Safety Data Message Set to a roadside receiver unit or mobile enforcement vehicle.« less

  9. Next Generation Life Support Project Status

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Chullen, Cinda; Vega, Leticia; Cox, Marlon R.; Aitchison, Lindsay T.; Lange, Kevin E.; Pensinger, Stuart J.; Meyer, Caitlin E.; Flynn, Michael; Jackson, W. Andrew; hide

    2014-01-01

    Next Generation Life Support (NGLS) is one of over twenty technology development projects sponsored by NASA's Game Changing Development Program. The NGLS Project develops selected life support technologies needed for humans to live and work productively in space, with focus on technologies for future use in spacecraft cabin and space suit applications. Over the last three years, NGLS had five main project elements: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, High Performance (HP) Extravehicular Activity (EVA) Glove, Alternative Water Processor (AWP) and Series-Bosch Carbon Dioxide Reduction. The RCA swing bed, VOR and HP EVA Glove tasks are directed at key technology needs for the Portable Life Support System (PLSS) and pressure garment for an Advanced Extravehicular Mobility Unit (EMU). Focus is on prototyping and integrated testing in cooperation with the Advanced Exploration Systems (AES) Advanced EVA Project. The HP EVA Glove Element, new this fiscal year, includes the generation of requirements and standards to guide development and evaluation of new glove designs. The AWP and Bosch efforts focus on regenerative technologies to further close spacecraft cabin atmosphere revitalization and water recovery loops and to meet technology maturation milestones defined in NASA's Space Technology Roadmaps. These activities are aimed at increasing affordability, reliability, and vehicle self-sufficiency while decreasing mass and mission cost, supporting a capability-driven architecture for extending human presence beyond low-Earth orbit, along a human path toward Mars. This paper provides a status of current technology development activities with a brief overview of future plans.

  10. The K-12 Educational Technology Value Chain: Apps for Kids, Tools for Teachers and Levers for Reform

    ERIC Educational Resources Information Center

    Pierce, Glenn L.; Cleary, Paul F.

    2016-01-01

    Historically implementing, maintaining and managing educational technology has been difficult for K-12 educational systems. Consequently, opportunities for significant advances in K-12 education have often gone unrealized. With the maturation of Internet delivered services along with K-12 institutional trends, educational technologies are poised…

  11. Advances in integrated system heath management system technologies : overview of NASA and industry collaborative activities

    NASA Technical Reports Server (NTRS)

    Dixit, Sunil; Brown, Steve; Fijany, Amir; Park, Han; Mackey, Ryan; James, Mark; Baroth, Ed

    2005-01-01

    This paper will describe recent advances in ISHM technologies made through collaboration between NASA and industry. In particular, the paper will focus on past, present, and future technology development and maturation efforts at the Jet Propulsion Laboratory (JPL) and its industry partner, Northrop Grumman lntegrated Systems (NGIS).

  12. From the Gleam in the Eye of an Engineer to a Dream Classroom: How Assistive Technology Products Move from Research and Development into the Hands of Children

    ERIC Educational Resources Information Center

    de St. Aubin, Shawn-Laree

    2010-01-01

    This article explains how Asssistive Technology products move from research and development into the hands of children. The assistive technology (AT) industry is maturing, with many exciting new technologies under development in university settings, by individual inventors and engineers, and by leading AT and information technology (IT) companies.…

  13. Microsystems: from technologies to products

    NASA Astrophysics Data System (ADS)

    Ryser, Peter

    2003-10-01

    In this paper, we outline the process leading from technologies to successful products in the MEMS (Microelectromechanical Systems) and MST (Microsystems Technology) field. The development of new products involves a lot of factors, such as mature technologies, interdisciplinary team, identifying the right business potential and long term oriented investors. The paper summarizes a survey of different technologies and point out that packaging, test and calibration are still major shortcomings for the concerned industries.

  14. Clerkship maturity: Does the idea of training clinical skills work?

    PubMed Central

    Stosch, Christoph; Joachim, Alexander; Ascher, Johannes

    2011-01-01

    Background: With the reformed curriculum “4C”, the Medical Faculty of the University of Cologne has started to systematically plan practical skills training, for which Clerkship Maturity is the first step. The key guidelines along which the curriculum was development were developed by experts. This approach has now been validated. Materials and methods: Both students and teachers were asked to fill in a questionnaire regarding preclinical practical skills training to confirm the concept of Clerkship Maturity. Results and discussion: The Cologne training program Clerkship Maturity can be validated empirically overall through the activities of the students awaiting the clerkship framework and through the evaluation by the medical staff providing the training. The subjective ratings of the advantages of the training by the students leave room for improvement. Apart from minor improvements to the program, the most likely solution providing sustainable results will involve an over-regional strategy for establishing skills training planned as part of the curriculum. PMID:21866243

  15. State of the art and taxonomy of prognostics approaches, trends of prognostics applications and open issues towards maturity at different technology readiness levels

    NASA Astrophysics Data System (ADS)

    Javed, Kamran; Gouriveau, Rafael; Zerhouni, Noureddine

    2017-09-01

    Integrating prognostics to a real application requires a certain maturity level and for this reason there is a lack of success stories about development of a complete Prognostics and Health Management system. In fact, the maturity of prognostics is closely linked to data and domain specific entities like modeling. Basically, prognostics task aims at predicting the degradation of engineering assets. However, practically it is not possible to precisely predict the impending failure, which requires a thorough understanding to encounter different sources of uncertainty that affect prognostics. Therefore, different aspects crucial to the prognostics framework, i.e., from monitoring data to remaining useful life of equipment need to be addressed. To this aim, the paper contributes to state of the art and taxonomy of prognostics approaches and their application perspectives. In addition, factors for prognostics approach selection are identified, and new case studies from component-system level are discussed. Moreover, open challenges toward maturity of the prognostics under uncertainty are highlighted and scheme for an efficient prognostics approach is presented. Finally, the existing challenges for verification and validation of prognostics at different technology readiness levels are discussed with respect to open challenges.

  16. Photon Sail History, Engineering, and Mission Analysis. Appendix

    NASA Technical Reports Server (NTRS)

    Matloff, Gregory L.; Taylor, Travis; Powell, Conley

    2004-01-01

    This Appendix summarizes the results of a Teledyne Brown Engineering, Inc. report to the In-Space propulsion research group of the NASA Marshall Space Flight Center (MSFC) that was authored by Taylor et al. in 2003. The subject of this report is the technological maturity, readiness, and capability of the photon solar sail to support space-exploration missions. Technological maturity for solar photon sail concepts is extremely high high for rectangular (or square) solar sail configurations due to the historical development of the rectangular design by the NASA Jet Propulsion Laboratory (JPL). L'Garde Inc., ILC Dover Inc., DLR, and many other corporations and agencies. However, future missions and mission analysis may prove that the rectangular sail design is not the best architecture for achieving mission goals. Due to the historical focus on rectangular solar sail spacecraft designs, the maturity of other architectures such as hoop-supported disks, multiple small disk arrays, parachute sails, heliogyro sails, perforated sails, multiple vane sails (such as the Planetary Society's Cosmos 1), inflated pillow sails, etc., have not reached a high level of technological readiness. (Some sail architectures are shown in Fig. A.1.) The possibilities of different sail architectures and some possible mission concepts are discussed in this Appendix.

  17. Current status and applications of somatic cell nuclear transfer in dogs.

    PubMed

    Jang, Goo; Kim, Min Kyu; Lee, Byeong Chun

    2010-11-01

    Although somatic cell nuclear transfer (SCNT) technology and applications are well developed in most domesticated and laboratory animals, their use in dogs has advanced only slowly. Many technical difficulties had to be overcome before preliminary experiments could be conducted. First, due to the very low efficiency of dog oocyte maturation in vitro, in vivo matured oocytes were generally used. The nucleus of an in vivo matured oocyte was removed and a donor cell (from fetal or adult fibroblasts) was injected into the oocyte. Secondly, fusion of the reconstructed oocytes was problematic, and it was found that a higher electrical voltage was necessary, in comparison to other mammalian species. By transferring the resulting fused oocytes into surrogate females, several cloned offspring were born. SCNT was also used for producing cloned wolves, validating reproductive technologies for aiding conservation of endangered or extinct breeds. Although examples of transgenesis in canine species are very sparse, SCNT studies are increasing, and together with the new field of gene targeting technology, they have been applied in many fields of veterinary or bio-medical science. This review summarizes the current status of SCNT in dogs and evaluates its potential future applications. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Enabling Technologies for Characterizing Exoplanet Systems with Exo-C

    NASA Astrophysics Data System (ADS)

    Cahoy, Kerri Lynn; Belikov, Ruslan; Stapelfeldt, Karl R.; Chakrabarti, Supriya; Trauger, John T.; Serabyn, Eugene; McElwain, Michael W.; Pong, Christopher M.; Brugarolas, Paul

    2015-01-01

    The Exoplanet Science and Technology Definition Team's Internal Coronagraph mission design, called 'Exo-C', utilizes several technologies that have advanced over the past decade with support from the Exoplanet Exploration Program. Following the flow of photons through the telescope, the science measurement is enabled by (i) a precision pointing system to keep the target exoplanet system precisely positioned on the detector during the integration time, (ii) high-performance coronagraphs to block the parent star's light so that the planet's reflected light can be detected, (iii) a wavefront control system to compensate for any wavefront errors such as those due to thermal or mechanical deformations in the optical path, especially errors with high spatial frequencies that could cause contrast-reducing speckles, and (iv) an integral field spectrograph (IFS) that provides moderate resolution spectra of the target exoplanets, permitting their characterization and comparison with models and other data sets. Technologies such as the wavefront control system and coronagraphs will also benefit from other funded efforts in progress, such as the Wide Field Infrared Survey Telescope Astrophysics Focused Telescope Assets (WFIRST-AFTA) program. Similarly, the Exo-C IFS will benefit from the Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) demonstration. We present specific examples for each of these technologies showing that the state of the art has advanced to levels that will meet the overall scientific, cost, and schedule requirements of the Exo-C mission. These capabilities have matured with testbed and/or ground-telescope demonstrations and have reached a technological readiness level (TRL) that supports their inclusion in the baseline design for potential flight at the end of this decade. While additional work remains to build and test flight-like components (that concurrently meet science as well as size, weight, power, and environmental requirements) and to integrate these subsystems together for a hardware-in-the-loop end-to-end demonstration, the overall readiness of the suite of enabling technologies makes a compelling case for Exo-C among the exoplanet direct imaging mission candidates.

  19. Advanced Mirror Technology Development (AMTD) Project: 3.0 Year Status

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2015-01-01

    Advanced Mirror Technology Development (AMTD) is a funded NASA Strategic Astrophysics Technology project. Begun in 2011, we are in Phase 2 of a multi-year effort. Our objective is to mature towards TRL6 critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable astronomy mission can be considered by the 2020 Decadal Review. The developed technology must enable missions capable of both general astrophysics and ultra-high contrast observations of exoplanets. Just as JWST's architecture was driven by launch vehicle, a future UVOIR mission's architecture (monolithic, segmented or interferometric) will depend on capacities of future launch vehicles (and budget). Since we cannot predict the future, we must prepare for all potential futures. Therefore, we are pursuing multiple technology paths. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system. One of our key accomplishments is that we have derived engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicle and its inherent mass and volume constraints. Another key accomplishment is that we have matured our technology by building and testing hardware. To demonstrate stacked core technology, we built a 400 mm thick mirror. Currently, to demonstrate lateral scalability, we are manufacturing a 1.5 meter mirror. To assist in architecture trade studies, the Engineering team develops Structural, Thermal and Optical Performance (STOP) models of candidate mirror assembly systems including substrates, structures, and mechanisms. These models are validated by test of full- and subscale components in relevant thermo-vacuum environments. Specific analyses include: maximum mirror substrate size, first fundamental mode frequency (i.e., stiffness) and mass required to fabricate without quilting, survive launch, and achieve stable pointing and maximum thermal time constant.

  20. PF-WFS Shell Inspection Update December 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, Anthony Eugene; Ledoux, Reina Rebecca; Gonzales, Antonio R.

    Since the last project update in FY16:Q2, PF-WFS personnel have advanced in understanding of shell inspection on Coordinate Measuring Machines {CMM} and refined the PF-WFS process to the point it was decided to convert shell inspection from the Sheffield #1 gage to Lietz CM Ms. As a part of introspection on the quality of this process many sets of data have been reviewed and analyzed. This analysis included Sheffield to CMM comparisons, CMM inspection repeatability, fixturing differences, quality check development, probing approach changes. This update report will touch on these improvements that have built the confidence in this process tomore » mainstream it inspecting shells. In addition to the CMM programming advancements, the continuation in refinement of input and outputs for the CMM program has created an archiving scheme, input spline files, an output metafile, and inspection report package. This project will continue to mature. Part designs may require program modifications to accommodate "new to this process" part designs. Technology limitations tied to security and performance are requiring possible changes to computer configurations to support an automated process.« less

  1. High responsivity CMOS imager pixel implemented in SOI technology

    NASA Technical Reports Server (NTRS)

    Zheng, X.; Wrigley, C.; Yang, G.; Pain, B.

    2000-01-01

    Availability of mature sub-micron CMOS technology and the advent of the new low noise active pixel sensor (APS) concept have enabled the development of low power, miniature, single-chip, CMOS digital imagers in the decade of the 1990's.

  2. Investigation of the Use of Match Cure Technology in the Precast Concrete Industry

    DOT National Transportation Integrated Search

    1998-08-01

    This project was proposed to evaluate the feasibility and methodology of implementing match cure technology and maturity measurement systems into TxDOT acceptance criteria for concrete construction projects. This report will deal strictly with the in...

  3. Are we There Yet? ... Developing In-Situ Fabrication and Repair (ISFR) Technologies to Explore and Live on the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Bassler, Julie A.; Bodiford, Melanie P.; Fiske, Michael R.; Strong, Janet D.

    2005-01-01

    NASA's human exploration initiative poses great opportunity and great risk for manned missions to the Moon and Mars. Engineers and Scientists at the Marshall Space Flight Center are evaluating current technologies for in situ exploration habitat and fabrication and repair applications. Several technologies to be addressed in this paper have technology readiness levels (TRLs) that are currently mature enough to pursue for exploration purposes. However, many technologies offer promising applications but these must be pulled along by the demands and applications of this great initiative. The In Situ Fabrication and Repair (ISFR) program will supply and push state of the art technologies for applications such as habitat structure development, in situ resource utilization for tool and part fabrication, and repair and replacement of common life support elements. This paper will look at the current and future habitat technology applications such as the implementation of in situ environmental elements such as caves, rilles and lavatubes, the development of lunar regolith concrete and structure design and development, thin film and inflatable technologies. We will address current rapid prototyping technologies, their ISFR applications and near term advancements. We will discuss the anticipated need to utilize in situ resources to produce replacement parts and fabricate repairs to vehicles, habitats, life support and quality of life elements. All ISFR technology developments will incorporate automated deployment and robotic construction and fabrication techniques. The current state of the art for these applications is fascinating, but the future is out of this world.

  4. [Considerations for the Definition of a Interval of Vulnerability/Possibility in Adolescence].

    PubMed

    Orón Semper, José Víctor; Echarte Alonso, Luis Enrique

    2017-01-01

    This article explores the hypothesis that while maturation related cognitive abilities reaches maturity around the age of fifteen, maturation related social skills is delayed until well into the twenties. Our goal is to try to define what is the window of opportunity/vulnerability and what is the maturational status of the young in this interval. In this context, we argue how the maturational time of the closing of adolescence has an impact on the valuation of autonomy in decision-making of the person. Particularly, we figure out implications for the assessment of the autonomy of youth in health issues, and also criminal liability. In the conclusion, we offer some educational criteria that may provide guidance for implementing both social policy and educational programs.

  5. Bone Morphogenetic Protein 15 in the Pro-Mature Complex Form Enhances Bovine Oocyte Developmental Competence

    PubMed Central

    Sudiman, Jaqueline; Sutton-McDowall, Melanie L.; Ritter, Lesley J.; White, Melissa A.; Mottershead, David G.; Thompson, Jeremy G.; Gilchrist, Robert B.

    2014-01-01

    Developmental competence of in vitro matured (IVM) oocytes needs to be improved and this can potentially be achieved by adding recombinant bone morphogenetic protein 15 (BMP15) or growth differentiation factor (GDF9) to IVM. The aim of this study was to determine the effect of a purified pro-mature complex form of recombinant human BMP15 versus the commercially available bioactive forms of BMP15 and GDF9 (both isolated mature regions) during IVM on bovine embryo development and metabolic activity. Bovine cumulus oocyte complexes (COCs) were matured in vitro in control medium or treated with 100 ng/ml pro-mature BMP15, mature BMP15 or mature GDF9 +/− FSH. Metabolic measures of glucose uptake and lactate production from COCs and autofluorescence of NAD(P)H, FAD and GSH were measured in oocytes after IVM. Following in vitro fertilisation and embryo culture, day 8 blastocysts were stained for cell numbers. COCs matured in medium +/− FSH containing pro-mature BMP15 displayed significantly improved blastocyst development (57.7±3.9%, 43.5±4.2%) compared to controls (43.3±2.4%, 28.9±3.7%) and to mature GDF9+FSH (36.1±3.0%). The mature form of BMP15 produced intermediate levels of blastocyst development; not significantly different to control or pro-mature BMP15 levels. Pro-mature BMP15 increased intra-oocyte NAD(P)H, and reduced glutathione (GSH) levels were increased by both forms of BMP15 in the absence of FSH. Exogenous BMP15 in its pro-mature form during IVM provides a functional source of oocyte-secreted factors to improve bovine blastocyst development. This form of BMP15 may prove useful for improving cattle and human artificial reproductive technologies. PMID:25058588

  6. Bone morphogenetic protein 15 in the pro-mature complex form enhances bovine oocyte developmental competence.

    PubMed

    Sudiman, Jaqueline; Sutton-McDowall, Melanie L; Ritter, Lesley J; White, Melissa A; Mottershead, David G; Thompson, Jeremy G; Gilchrist, Robert B

    2014-01-01

    Developmental competence of in vitro matured (IVM) oocytes needs to be improved and this can potentially be achieved by adding recombinant bone morphogenetic protein 15 (BMP15) or growth differentiation factor (GDF9) to IVM. The aim of this study was to determine the effect of a purified pro-mature complex form of recombinant human BMP15 versus the commercially available bioactive forms of BMP15 and GDF9 (both isolated mature regions) during IVM on bovine embryo development and metabolic activity. Bovine cumulus oocyte complexes (COCs) were matured in vitro in control medium or treated with 100 ng/ml pro-mature BMP15, mature BMP15 or mature GDF9 +/- FSH. Metabolic measures of glucose uptake and lactate production from COCs and autofluorescence of NAD(P)H, FAD and GSH were measured in oocytes after IVM. Following in vitro fertilisation and embryo culture, day 8 blastocysts were stained for cell numbers. COCs matured in medium +/- FSH containing pro-mature BMP15 displayed significantly improved blastocyst development (57.7±3.9%, 43.5±4.2%) compared to controls (43.3±2.4%, 28.9±3.7%) and to mature GDF9+FSH (36.1±3.0%). The mature form of BMP15 produced intermediate levels of blastocyst development; not significantly different to control or pro-mature BMP15 levels. Pro-mature BMP15 increased intra-oocyte NAD(P)H, and reduced glutathione (GSH) levels were increased by both forms of BMP15 in the absence of FSH. Exogenous BMP15 in its pro-mature form during IVM provides a functional source of oocyte-secreted factors to improve bovine blastocyst development. This form of BMP15 may prove useful for improving cattle and human artificial reproductive technologies.

  7. Conceptual Design and Cost Estimate of a Subsonic NASA Testbed Vehicle (NTV) for Aeronautics Research

    NASA Technical Reports Server (NTRS)

    Nickol, Craig L.; Frederic, Peter

    2013-01-01

    A conceptual design and cost estimate for a subsonic flight research vehicle designed to support NASA's Environmentally Responsible Aviation (ERA) project goals is presented. To investigate the technical and economic feasibility of modifying an existing aircraft, a highly modified Boeing 717 was developed for maturation of technologies supporting the three ERA project goals of reduced fuel burn, noise, and emissions. This modified 717 utilizes midfuselage mounted modern high bypass ratio engines in conjunction with engine exhaust shielding structures to provide a low noise testbed. The testbed also integrates a natural laminar flow wing section and active flow control for the vertical tail. An eight year program plan was created to incrementally modify and test the vehicle, enabling the suite of technology benefits to be isolated and quantified. Based on the conceptual design and programmatic plan for this testbed vehicle, a full cost estimate of $526M was developed, representing then-year dollars at a 50% confidence level.

  8. An Overview of NASA Space Cryocooler Programs--2006

    NASA Technical Reports Server (NTRS)

    Ross, Ronald G., Jr.; Boyle, R. F.

    2006-01-01

    Mechanical cryocoolers represent a significant enabling technology for NASA's Earth and Space Science Enterprises. Many of NASA's space instruments require cryogenic refrigeration to improve dynamic range, extend wavelength coverage, or enable the use of advanced detectors to observe a wide range of phenomena--from crop dynamics to stellar birth. Reflecting the relative maturity of the technology at these temperatures, the largest utilization of coolers over the last fifteen years has been for instruments operating at medium to high cryogenic temperatures (55 to 150K). For the future, important new developments are focusing on the lower temperature range, from 6 to 20 K, in support of studies of the origin of the Universe and the search for planets around distant stars. NASA's development of a 20K cryocooler for the European Planck spacecraft and a 6 K cryocooler for the MIRI instrument on the James Webb Space Telescope (JWST) are examples of the thrust to provide low-temperature cooling for this class of future missions.

  9. Technology Development and Field Trials of EGS Drilling Systems at Chocolate Mountain

    DOE Data Explorer

    Steven Knudsen

    2012-01-01

    Polycrystalline diamond compact (PDC) bits are routinely used in the oil and gas industry for drilling medium to hard rock but have not been adopted for geothermal drilling, largely due to past reliability issues and higher purchase costs. The Sandia Geothermal Research Department has recently completed a field demonstration of the applicability of advanced synthetic diamond drill bits for production geothermal drilling. Two commercially-available PDC bits were tested in a geothermal drilling program in the Chocolate Mountains in Southern California. These bits drilled the granitic formations with significantly better Rate of Penetration (ROP) and bit life than the roller cone bit they are compared with. Drilling records and bit performance data along with associated drilling cost savings are presented herein. The drilling trials have demonstrated PDC bit drilling technology has matured for applicability and improvements to geothermal drilling. This will be especially beneficial for development of Enhanced Geothermal Systems whereby resources can be accessed anywhere within the continental US by drilling to deep, hot resources in hard, basement rock formations.

  10. MoSi2-Base Structural Composite Passed Engine Test

    NASA Technical Reports Server (NTRS)

    Nathal, Michael V.; Hebsur, Mohan G.

    1999-01-01

    The intermetallic compound molybdenum disilicide (MoSi2) is an attractive high-temperature structural material for advanced engine applications. It has excellent oxidation resistance, a high melting point, relatively low density, and high thermal conductivity; and it is easily machined. Past research at the NASA Lewis Research Center has resulted in the development of a hybrid composite consisting of a MoSi2 matrix reinforced with silicon nitride (Si3N4) particulate and silicon carbide (SiC) fibers. This composite has demonstrated attractive strength, toughness, thermal fatigue, and oxidation resistance, including resistance to "pest" oxidation. These properties attracted the interest of the Office of Naval Research and Pratt & Whitney, and a joint NASA/Navy/Pratt & Whitney effort was developed to continue to mature the MoSi2 composite technology. A turbine blade outer air seal, which was part of the Integrated High Performance Turbine Engine Technology (IHPTET) program, was chosen as a first component on which to focus.

  11. Temperature Resistant Fiber Bragg Gratings for On-Line and Structural Health Monitoring of the Next-Generation of Nuclear Reactors.

    PubMed

    Laffont, Guillaume; Cotillard, Romain; Roussel, Nicolas; Desmarchelier, Rudy; Rougeault, Stéphane

    2018-06-02

    The harsh environment associated with the next generation of nuclear reactors is a great challenge facing all new sensing technologies to be deployed for on-line monitoring purposes and for the implantation of SHM methods. Sensors able to resist sustained periods at very high temperatures continuously as is the case within sodium-cooled fast reactors require specific developments and evaluations. Among the diversity of optical fiber sensing technologies, temperature resistant fiber Bragg gratings are increasingly being considered for the instrumentation of future nuclear power plants, especially for components exposed to high temperature and high radiation levels. Research programs are supporting the developments of optical fiber sensors under mixed high temperature and radiative environments leading to significant increase in term of maturity. This paper details the development of temperature-resistant wavelength-multiplexed fiber Bragg gratings for temperature and strain measurements and their characterization for on-line monitoring into the liquid sodium used as a coolant for the next generation of fast reactors.

  12. Photonics for aerospace sensors

    NASA Astrophysics Data System (ADS)

    Pellegrino, John; Adler, Eric D.; Filipov, Andree N.; Harrison, Lorna J.; van der Gracht, Joseph; Smith, Dale J.; Tayag, Tristan J.; Viveiros, Edward A.

    1992-11-01

    The maturation in the state-of-the-art of optical components is enabling increased applications for the technology. Most notable is the ever-expanding market for fiber optic data and communications links, familiar in both commercial and military markets. The inherent properties of optics and photonics, however, have suggested that components and processors may be designed that offer advantages over more commonly considered digital approaches for a variety of airborne sensor and signal processing applications. Various academic, industrial, and governmental research groups have been actively investigating and exploiting these properties of high bandwidth, large degree of parallelism in computation (e.g., processing in parallel over a two-dimensional field), and interconnectivity, and have succeeded in advancing the technology to the stage of systems demonstration. Such advantages as computational throughput and low operating power consumption are highly attractive for many computationally intensive problems. This review covers the key devices necessary for optical signal and image processors, some of the system application demonstration programs currently in progress, and active research directions for the implementation of next-generation architectures.

  13. Development of the electric vehicle analyzer

    NASA Astrophysics Data System (ADS)

    Dickey, Michael R.; Klucz, Raymond S.; Ennix, Kimberly A.; Matuszak, Leo M.

    1990-06-01

    The increasing technological maturity of high power (greater than 20 kW) electric propulsion devices has led to renewed interest in their use as a means of efficiently transferring payloads between earth orbits. Several systems and architecture studies have identified the potential cost benefits of high performance Electric Orbital Transfer Vehicles (EOTVs). These studies led to the initiation of the Electric Insertion Transfer Experiment (ELITE) in 1988. Managed by the Astronautics Laboratory, ELITE is a flight experiment designed to sufficiently demonstrate key technologies and options to pave the way for the full-scale development of an operational EOTV. An important consideration in the development of the ELITE program is the capability of available analytical tools to simulate the orbital mechanics of a low thrust, electric propulsion transfer vehicle. These tools are necessary not only for ELITE mission planning exercises but also for continued, efficient, accurate evaluation of DoD space transportation architectures which include EOTVs. This paper presents such a tool: the Electric Vehicle Analyzer (EVA).

  14. Biotechnology

    NASA Image and Video Library

    2003-02-09

    Dr. Weijia Zhou, director of the Wisconsin Center for Space Automation and Robotics at the University of Wisconsin-Madison, inspects the Advanced Astroculture(tm) plant growth unit before its first flight last spring. Coating technology is used inside the miniature plant greenhouse to remove ethylene, a chemical produced by plant leaves that can cause plants to mature too quickly. This same coating technology is used in a new anthrax-killing device. The Space Station experiment is managed by the Space Product Development Program at NASA's Marshall Space Flight Center in Huntsville, Ala. DuPont is partnering with NASA and the Wisconsin Center for Space Automation and Robotics (WCSAR) at the University of Wisconsin-Madison to grow soybeans aboard the Space Station to find out if they have improved oil, protein, carbohydrates or secondary metabolites that could benefit farmers and consumers. Principal Investigators: Dr. Tom Corbin, Pioneer Hi-Bred International Inc., a Dupont Company, with headquarters in Des Moines, Iowa, and Dr. Weijia Zhou, Wisconsin Center for Space Automation and Robotics (WCSAR), University of Wisconsin-Madison.

  15. Propellant injection systems and processes

    NASA Technical Reports Server (NTRS)

    Ito, Jackson I.

    1995-01-01

    The previous 'Art of Injector Design' is maturing and merging with the more systematic 'Science of Combustion Device Analysis.' This technology can be based upon observation, correlation, experimentation and ultimately analytical modeling based upon basic engineering principles. This methodology is more systematic and far superior to the historical injector design process of 'Trial and Error' or blindly 'Copying Past Successes.' The benefit of such an approach is to be able to rank candidate design concepts for relative probability of success or technical risk in all the important combustion device design requirements and combustion process development risk categories before committing to an engine development program. Even if a single analytical design concept cannot be developed to predict satisfying all requirements simultaneously, a series of risk mitigation key enabling technologies can be identified for early resolution. Lower cost subscale or laboratory experimentation to demonstrate proof of principle, critical instrumentation requirements, and design discriminating test plans can be developed based on the physical insight provided by these analyses.

  16. Design, Development, Test, and Evaluation of Atmosphere Revitalization and Environmental Monitoring Systems for Long Duration Missions

    NASA Technical Reports Server (NTRS)

    Roman, Monsi C.; Perry, Jay L.; Jan, Darrell L.

    2012-01-01

    The Advanced Exploration Systems Program's Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project is working to mature optimum atmosphere revitalization and environmental monitoring system architectures. It is the project's objective to enable exploration beyond Lower Earth Orbit (LEO) and improve affordability by focusing on three primary goals: 1) achieving high reliability, 2) reducing dependence on a ground-based logistics resupply model, and 3) maximizing commonality between atmosphere revitalization subsystem components and those needed to support other exploration elements. The ARREM project's strengths include using existing developmental hardware and testing facilities, when possible, and and a well-coordinated effort among the NASA field centers that contributed to past ARS and EMS technology development projects.

  17. Tc removal from the waste treatment and immobilization plant low-activity waste vitrification off-gas recycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, Kathryn M. L.; McCabe, Daniel J.; Nash, Charles A.

    Vitrification of Low Activity Waste in the Hanford Waste Treatment and Immobilization Plant generates a condensate stream from the off-gas processes. Components in this stream are partially volatile and accumulate to high concentrations through recycling, which impacts the waste glass loading and facility throughput. The primary radionuclide that vaporizes and accumulates in the stream is 99Tc. This program is investigating Tc removal via reductive precipitation with stannous chloride to examine the potential for diverting this stream to an alternate disposition path. As a result, research has shown stannous chloride to be effective, and this paper describes results of recent experimentsmore » performed to further mature the technology.« less

  18. Tc removal from the waste treatment and immobilization plant low-activity waste vitrification off-gas recycle

    DOE PAGES

    Taylor-Pashow, Kathryn M. L.; McCabe, Daniel J.; Nash, Charles A.

    2017-03-16

    Vitrification of Low Activity Waste in the Hanford Waste Treatment and Immobilization Plant generates a condensate stream from the off-gas processes. Components in this stream are partially volatile and accumulate to high concentrations through recycling, which impacts the waste glass loading and facility throughput. The primary radionuclide that vaporizes and accumulates in the stream is 99Tc. This program is investigating Tc removal via reductive precipitation with stannous chloride to examine the potential for diverting this stream to an alternate disposition path. As a result, research has shown stannous chloride to be effective, and this paper describes results of recent experimentsmore » performed to further mature the technology.« less

  19. First Test Results of the 150 mm Aperture IR Quadrupole Models for the High Luminosity LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambrosio, G.; Chlachidze, G.; Wanderer, P.

    2016-10-06

    The High Luminosity upgrade of the LHC at CERN will use large aperture (150 mm) quadrupole magnets to focus the beams at the interaction points. The high field in the coils requires Nb3Sn superconductor technology, which has been brought to maturity by the LHC Accelerator Re-search Program (LARP) over the last 10 years. The key design targets for the new IR quadrupoles were established in 2012, and fabrication of model magnets started in 2014. This paper discusses the results from the first single short coil test and from the first short quadrupole model test. Remaining challenges and plans to addressmore » them are also presented and discussed.« less

  20. Atmospheric and Spectroscopic Research in the Far Infrared

    NASA Technical Reports Server (NTRS)

    Park, Kwangjai

    2001-01-01

    The University of Oregon (UO) was a participant in a number of far infrared spectroscopic projects over the past three decades. These include Sub-millimeter Infrared Balloon Experiment (SIBEX), the Balloon Intercomparison Campaign (BIC), and the Infrared Balloon Experiment (IBEX). In addition to these field studies, the UO program contained a detector research component and a laboratory spectroscopy element. Through a productive collaboration with Dr. Carli's group in Italy, with Prof. Ade's group in England and with Dr. Chance of Harvard-Smithsonian, we have made substantial contributions to the development of far infrared spectroscopy as a mature measurement technology for the atmospheric science. This report summarizes the activities during the latest grant period, covering the span from February 22, 1998 to February 21, 2002.

Top