Sample records for technology partnership program

  1. Innovative Partnerships Program Accomplishments: 2009-2010 at NASA's Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Makufka, David

    2010-01-01

    This document reports on the accomplishments of the Innovative Partnerships Program during the two years of 2009 and 2010. The mission of the Innovative Partnerships Program is to provide leveraged technology alternatives for mission directorates, programs, and projects through joint partnerships with industry, academia, government agencies, and national laboratories. As outlined in this accomplishments summary, the IPP at NASA's Kennedy Space Center achieves this mission via two interdependent goals: (1) Infusion: Bringing external technologies and expertise into Kennedy to benefit NASA missions, programs, and projects (2) Technology Transfer: Spinning out space program technologies to increase the benefits for the nation's economy and humanity

  2. Iterative and Event-Based Frameworks for University and School District Technology Professional Development Partnerships

    ERIC Educational Resources Information Center

    Winslow, Joseph; Dickerson, Jeremy; Weaver, Carmen; Josey, Fair

    2016-01-01

    Forming technology partnerships between universities and public schools in an era of competition and economic difficulty is a challenge. However, when these partnerships are formed and sustained, the benefits for both are extremely valuable. For a university instructional technology graduate program and school partnership to be successful, the…

  3. Space Exploration Technologies Developed through Existing and New Research Partnerships Initiatives

    NASA Technical Reports Server (NTRS)

    Nall, Mark; Casas, Joseph

    2004-01-01

    The Space Partnership Development Program of NASA has been highly successful in leveraging commercial research investments to the strategic mission and applied research goals of the Agency through industry academic partnerships. This program is currently undergoing an outward-looking transformation towards Agency wide research and discovery goals that leverage partnership contributions to the strategic research needed to demonstrate enabling space exploration technologies encompassing both robotic spacecraft missions and human space flight. New Space Partnership Initiatives with incremental goals and milestones will allow a continuing series of accomplishments to be achieved throughout the duration of each initiative, permit the "lessons learned" and capabilities acquired from previous implementation steps to be incorporated into subsequent phases of the initiatives, and allow adjustments to be made to the implementation of the initiatives as new opportunities or challenges arise. An Agency technological risk reduction roadmap for any required technologies not currently available will identify the initiative focus areas for the development, demonstration and utilization of space resources supporting the production of power, air, and water, structures and shielding materials. This paper examines the successes to date, lessons learned, and programmatic outlook of enabling sustainable exploration and discovery through governmental, industrial, academic, and international partnerships. Previous government and industry technology development programs have demonstrated that a focused research program that appropriately shares the developmental risk can rapidly mature low Technology Readiness Level (TRL) technologies to the demonstration level. This cost effective and timely, reduced time to discovery, partnership approach to the development of needed technological capabilities addresses the dual use requirements by the investing partners. In addition, these partnerships help to ensure the attainment of complimenting human and robotic exploration goals for NASA while providing additional capabilities for sustainable scientific research benefiting life and security on Earth.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, Elizabeth James Kistin; Warren, Drake; Hess, Marguerite Evelyn

    This study examines the structure and impact of state-funded technology maturation programs that leverage research institutions for economic development throughout the United States. The lessons learned and practices identified from previous experiences will inform Sandia National Laboratories' Government Relations and Technology Partnerships teams as they participate in near-term discussions about the proposed Technology Readiness Gross Receipts Tax Credit and Program, and continue to shape longer-term program and partnership opportunities. This Page Intentionally Left Blank

  5. R and D limited partnerships (possible applications in advanced communications satellite technology experiment program)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Typical R&D limited partnership arrangements, advantages and disadvantages of R&D limited partnership (RDLPs) and antitrust and tax implications are described. A number of typical forms of RDLPs are described that may be applicable for use in stimulating R&D and experimental programs using the advanced communications technology satellite. The ultimate goal is to increase the rate of market penetration of goods and/or services based upon advanced satellite communications technology. The conditions necessary for these RDLP forms to be advantageous are outlined.

  6. Technology Development Report: CDDF, Dual Use Partnerships, SBIR/STTR: Fiscal Year 2003 Activities

    NASA Technical Reports Server (NTRS)

    Bailey, John W.

    2004-01-01

    The FY2003 NASA John C. Stennis Stennis Space Center (SSC) Technology Development Report provides an integrated report of all technology development activities at SSC. This report actually combines three annual reports: the Center Director's Discretionary Fund (CDDF) Program Report, Dual Use Program Report, and the Small Business Innovation Research (SBIR)/Small Business Technology Transfer (STTR) Program Report. These reports are integrated in one document to summarize all technology development activities underway in support of the NASA missions assigned to SSC. The Dual Use Program Report provides a summary review of the results and status of the nine (9) Dual Use technology development partnership projects funded and managed at SSC during FY2003. The objective of these partnership projects is to develop or enhance technologies that will meet the technology needs of the two NASA SSC Mission Areas: Propulsion Test and Earth Science Applications. During FY2003, the TDTO managed twenty (20) SBIR Phase II Projects and two (2) STTR Phase II Projects. The SBIR contracts support low TRL technology development that supports both the Propulsion Test and the Earth Science Application missions. These projects are shown in the SBIR/STTR Report. In addition to the Phase II contracts, the TDTO managed ten (10) SBIR Phase I contracts which are fixed price, six month feasibility study contracts. These are not listed in this report. Together, the Dual Use Projects and the SBIR/STTR Projects constitute a technology development partnership approach that has demonstrated that success can be achieved through the identification of the technical needs of the NASA mission and using various available partnership techniques to maximize resource utilization to achieve mutual technology goals. Greater use of these partnership techniques and the resource leveraging they provide, is a goal of the TDTO, providing more support to meet the technology development needs of the mission areas at SSC.

  7. FHWA Research and Technology Evaluation: Public-Private Partnership Capacity Building Program

    DOT National Transportation Integrated Search

    2018-02-01

    This report details the evaluation of the Federal Highway Administrations Office of Innovative Program Delivery Public-Private Partnership (P3) Capacity Building Program (P3 Program). The evaluators focused on the P3 Programs P3 Toolkit as an e...

  8. Community Collaboration: A Creative Partnership with Catonsville Community College.

    ERIC Educational Resources Information Center

    Marrow, Alvin J.; McLaughlin, Jack

    Catonsville Community College (CCC), in Maryland, has developed partnerships with business, industry, government, and other educational institutions to address the educational needs of the community. Programs established as a result of these partnerships include the following: (1) an automotive technology program sponsored by major automobile…

  9. The Next Generation of Technicians Prepare for Their Future

    ERIC Educational Resources Information Center

    Wise, Jennifer

    2007-01-01

    For Phoenix's East Valley Institute of Technology's (EVIT) automotive technology program, a unique partnership with local industry leaders is a key to success. Due to a highly successful partnership with Automotive Youth Educational Systems (AYES), EVIT has been named the number one high school automotive program in the United States for placement…

  10. Spinoff 2008: 50 Years of NASA-Derived Technologies (1958-2008)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA Technology Benefiting Society subject headings include: Health and Medicine, Transportation, Public Safety, Consumer, Home and Recreation, Environmental and Agricultural Resources, Computer Technology, and Industrial Productivity. Other topics covered include: Aeronautics and Space Activities, Education News, Partnership News, and the Innovative Partnership Program.

  11. Assessing the Impact and Effectiveness of the Advanced Technological Education (ATE) Program. 2004 Survey Results. Volume I: Evaluation of the ATE Program Design

    ERIC Educational Resources Information Center

    Hanssen, Carl E.; Gullickson, Arlen R.

    2004-01-01

    This report presents results from the fifth annual survey of Advanced Technological Education (ATE) projects, centers, and articulation partnerships. ATE has approximately 220 active awards. Of these, 163 ATE-funded projects, centers, and articulation partnerships were asked to participate in the 2004 survey. During the survey administration…

  12. Interactive Technology Brings Algebra to All.

    ERIC Educational Resources Information Center

    Kennedy, Paul A.; Chavkin, Nancy Feyl

    1993-01-01

    Partnership for Access to Higher Mathematics uses fiber-optic technology in a partnership program among Southwest Texas State University, the San Marcos School District, the telephone company, and the community to significantly improve the mathematical skills of at-risk students. (MLF)

  13. Criteria for successful government-industry-academic partnerships

    NASA Astrophysics Data System (ADS)

    Brannon, David P.

    1996-03-01

    The mission of the Commercial Remote Sensing Program (CRSP) Office at NASA's John C. Stennis Space Center is to maximize U.S. industry's commercial use of remote sensing and related space-based technologies and to develop advanced technical responses to spatial information requirements. The CRSP Office carries out this mission by offering several commercial partnership programs that help companies to apply remote sensing technologies in business applications and to buy down the risk of bringing new or improved products and services to market. Through its commercial partnerships, the CRSP seeks to increase the market demand for remote sensing products and related advanced technologies, thus increasing the use and reducing the cost of spatial information.

  14. Developing a Model for Technology-Based Museum School Partnerships

    ERIC Educational Resources Information Center

    Sanger, Erika; Silverman, Stan; Kraybill, Anne

    2015-01-01

    In 2012, The New York Institute of Technology and the Albany Institute of History & Art collaborated to increase the capacity of museum educators and classroom teachers to develop successful partnerships and deliver new programs through the use of web-based technologies. The project aligned the content expertise of museum educators from…

  15. NASA Centers and Universities Collaborate Through Smallsat Technology Partnerships

    NASA Technical Reports Server (NTRS)

    Cockrell, James

    2018-01-01

    The Small Spacecraft Technology (SST) Program within the NASA Space Technology Mission Directorate is chartered develop and demonstrate the capabilities that enable small spacecraft to achieve science and exploration missions in "unique" and "more affordable" ways. Specifically, the SST program seeks to enable new mission architectures through the use of small spacecraft, to expand the reach of small spacecraft to new destinations, and to make possible the augmentation existing assets and future missions with supporting small spacecraft. The SST program sponsors smallsat technology development partnerships between universities and NASA Centers in order to engage the unique talents and fresh perspectives of the university community and to share NASA experience and expertise in relevant university projects to develop new technologies and capabilities for small spacecraft. These partnerships also engage NASA personnel in the rapid, agile and cost-conscious small spacecraft approaches that have evolved in the university community, as well as increase support to university efforts and foster a new generation of innovators for NASA and the nation.

  16. Partnerships Take a New Turn.

    ERIC Educational Resources Information Center

    Rich, Don

    1983-01-01

    Milwaukee Area Technical College has joined with business and industry to develop training programs for computer-based information processing, and engineering and manufacturing technologies. These partnerships are important as companies look for ways to improve productivity and quality, keep abreast of changing technology, and ensure economic…

  17. Report: EPA Could Improve the SmartWay Transport Partnership Program by Implementing a Direct Data Verification Process

    EPA Pesticide Factsheets

    Report #12-P-0747, August 30, 2012. Recent studies corroborate EPA’s claims that its SmartWay Transport Partnership program helps remove marketplace barriers in order to deploy fuel efficient technologies faster.

  18. Partnerships, Technology, and Learning.

    ERIC Educational Resources Information Center

    Duncan, Roy R.; Schlumpf, Jacob F., Jr.

    A major goal of the Shoreline School District is to develop partnerships with the community, other community agencies, and businesses. The development of a "Long Range Facilities Utilization Plan" led to a 10-year districtwide modernization program to enhance technology and instruction. Now at its midpoint, the design and development of…

  19. Fostering Practical Young Engineers through Mutual Exchange Internship Program between Japan and China

    NASA Astrophysics Data System (ADS)

    Suda, Yoshiaki; Kawasaki, Hiroharu; Shigematsu, Toshinobu; Ono, Bunji; Watanabe, Tetsuya; Morishita, Koji; Inoue, Masahiro

    Sasebo National College of Technology started a mutual exchange internship program in 2005 in partnership with Xiamen University of Technology. The aim of this program is to educate and train young Japanese engineers who can apply their knowledge and skills fully to their work in the factories in China. This program also aims to educate and train young Chinese engineers who will acquire not only technological knowledge and skills but also an understanding of the organizational structure and cultural background of Japanese companies. By deepening mutual understanding between Japan and China through this program, young Japanese and Chinese engineers can work toward their common goal of economic prosperity in their respective countries, while building partnerships based on mutual trust and respect.

  20. NOVOCS TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    An evaluation of the MACTEC Inc., NoVOCs(TM) technology ws conducted under the SITE Program, in partnership with the Naval Facilities Engineering Command SW Division, the Navy Environmental Leadership Program, the EPA Technology Innovation Office and Clean Sites, Inc. Specificall...

  1. SED/Apple Computer, Inc., Partnership Program.

    ERIC Educational Resources Information Center

    Stoll, Peter F.

    1991-01-01

    In 1990, the New York State Education Department (SED), Apple Computer, Inc., Boards of Cooperative Educational Services (BOCES), and school districts formed a partnership to explore the contribution technology can make to schools based on Apple Computer's Learning Society and SED's Long-Range Plan for Technology in Elementary and Secondary…

  2. Teaming with Opportunity: Media Programs, Community Constituencies, and Technology.

    ERIC Educational Resources Information Center

    Farmer, Lesley S. J.

    This book is intended to help library media teachers understand the nature of partnerships at both individual and group levels. It details the steps for developing and maintaining partnerships, particularly with groups and demonstrates how technology can affect these educational collaborative efforts. The chapters cover the following topics: (1)…

  3. Interdependence through Partnerships: Transforming Education.

    ERIC Educational Resources Information Center

    Simone, Beverly S.

    At Wisconsin's Madison Area Technical College (MATC), both external and internal partnerships are a fundamental part of instructional programming. As the need for technological and mathematical competence in the workforce has increased, partnerships between the college and business and industry have become more important and represent an…

  4. Assessing the Impact and Effectiveness of the Advanced Technological Education (ATE) Program. Survey Results 2004. Volume III: Status of ATE Projects and Articulation Partnerships

    ERIC Educational Resources Information Center

    Coryn, Chris L.; Gullickson, Arlen R.; Hanssen, Carl E.

    2004-01-01

    The Advanced Technological Education (ATE) program is a federally funded program designed to educate technicians for the high-technology disciplines that drive the United State's economy. As stated in the ATE program guidelines, this program promotes improvement in technological education at the undergraduate and secondary school levels by…

  5. NREL: International Activities - Bilateral Partnerships

    Science.gov Websites

    development and use of renewable energy and energy efficiency technologies: Algeria Angola Argentina Australia sufficiently accurate information for national-level strategic energy planning. China NREL manages renewable energy cooperation with China under the U.S.-China Renewable Energy Partnership program. This program was

  6. Western Partnership for Environmental Technology Education Faculty Internship Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zehnder, N.

    1994-12-31

    As an important element within Western Partnership for Environmental Technology Education (PETE), summer internship opportunities are made available to environmental technology instructors, primarily at the community-college level, at participating federal laboratories, test facilities, state regulatory agencies and in private industry. The Program is intended to provide instructors with the opportunity to gain practical experience and understanding within the broad area of environmental technology to enhance the development and presentation of environmental technology curricula. Internship content is intended to be flexible to provide experiences which will relate to and meet the specific needs of the intern and his/her college. The Faultymore » Internship Program provides business and government with the opportunity to strengthen the educational process and to expand potential candidate pools for employment.« less

  7. Advanced Technology Tech Prep Partnership for Northern Kane Regional Delivery System. Final Report.

    ERIC Educational Resources Information Center

    Elgin Community Coll., IL.

    A 1-year project was undertaken to continue implementation, evaluation, and revision of a model advanced technology partnership between Elgin Community College (ECC) and the Northern Kane Regional Delivery System in Illinois. The model program, which originally included three high schools, was expanded to include five additional high schools in…

  8. The National Aeronautics and Space Administration's Earth Science Applications Program: Exploring Partnerships to Enhance Decision Making in Public Health Practice

    NASA Technical Reports Server (NTRS)

    Vann, Timi S.; Venezia, Robert A.

    2002-01-01

    The National Aeronautics and Space Administration (NASA), Earth Science Enterprise is engaged in applications of NASA Earth science and remote sensing technologies for public health. Efforts are focused on establishing partnerships with those agencies and organizations that have responsibility for protecting the Nation's Health. The program's goal is the integration of NASA's advanced data and technology for enhanced decision support in the areas of disease surveillance and environmental health. A focused applications program, based on understanding partner issues and requirements, has the potential to significantly contribute to more informed decision making in public health practice. This paper intends to provide background information on NASA's investment in public health and is a call for partnership with the larger practice community.

  9. Space Technology Mission Directorate Game Changing Development Program FY2015 Annual Program Review: Advanced Manufacturing Technology

    NASA Technical Reports Server (NTRS)

    Vickers, John; Fikes, John

    2015-01-01

    The Advance Manufacturing Technology (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of the Initiative is the Advanced Manufacturing National Program Office (AMNPO), which includes participation from all federal agencies involved in U.S. manufacturing. In support of the AMNPO the AMT Project supports building and Growing the National Network for Manufacturing Innovation through a public-private partnership designed to help the industrial community accelerate manufacturing innovation. Integration with other projects/programs and partnerships: STMD (Space Technology Mission Directorate), HEOMD, other Centers; Industry, Academia; OGA's (e.g., DOD, DOE, DOC, USDA, NASA, NSF); Office of Science and Technology Policy, NIST Advanced Manufacturing Program Office; Generate insight within NASA and cross-agency for technology development priorities and investments. Technology Infusion Plan: PC; Potential customer infusion (TDM, HEOMD, SMD, OGA, Industry); Leverage; Collaborate with other Agencies, Industry and Academia; NASA roadmap. Initiatives include: Advanced Near Net Shape Technology Integrally Stiffened Cylinder Process Development (launch vehicles, sounding rockets); Materials Genome; Low Cost Upper Stage-Class Propulsion; Additive Construction with Mobile Emplacement (ACME); National Center for Advanced Manufacturing.

  10. Increasing Opportunities and Success in Science, Math, Engineering and Technology Through Partnerships and Resource Convergence

    NASA Astrophysics Data System (ADS)

    Huebner, P.

    2003-12-01

    Bridging the geographic boundaries and providing educational opportunities is the goal of American Indian Programs at Arizona State University East. Since its inception in 1997, American Indian Programs has established programs and partnerships to provide opportunities and resources to Tribal communities throughout Arizona. From educational programs to enhance student achievement at the K-12 level to recruitment and retention of American Indian students at the post secondary level, American Indian Programs provides the resources to further the success of students in science, math, engineering and technology. Resource convergence is critical in providing opportunities to ensure the success of Indian students in science, math, engineering and technology. American Indian Programs has built successful programs based on partnerships between federal grant programs, corporate, federal and state agencies. Providing professional development for teachers, school assessment, science and math curriculum and data collection are the primary efforts at the K-12 level to increase student achievement. Enrichment programs to enhance K-12 activities include the development of the Arizona American Indian Science and Engineering Fair (the only State fair for American Indiana's in the country) supported entirely through corporate support, summer residential programs, after school activities and dual enrollment programs for high school students. ASU East's retention rate for first year students is 92 percent and 1in 6 graduating students enter graduate programs. American Indian Programs strives to build student relationships with federal, state and corporate agencies through internships and coops. This effort has led to the development of an E-mentoring program that allows students (and K-12 teachers) to work directly with practicing scientists, and engineers in research activities. New programs look to increase technology not only in Tribal schools but increase technology in the homes of students as well.

  11. Tradition and Technology. A Magnet School-Museum Partnership.

    ERIC Educational Resources Information Center

    Judd, Michael; Judd, Elizabeth

    1996-01-01

    Presents a case study of an educational partnership between an Albuquerque magnet elementary school and the New Mexico Museum of Natural History and Science. Descriptions of the school and museum are provided as well as the program's goals, current activities and products, outcomes, and future directions. The Proyecto Futuro program, a multiyear…

  12. A Catalyst for Industry-University Partnerships

    NASA Astrophysics Data System (ADS)

    Senich, Donald

    2004-03-01

    Technology is one of the key elements that define a society or civilization. Whether technology causes everything in a society is not as important as it is to recognize that the processes of technological innovation are critical to the eveolution of a society. Industry is relying more and more on their university and small business partners to provide some of the most innovative paths to economic well being. The United States Government has established several innovative programs to assist in the technology deployment that is the underpining to the technological revolution. This presentation will examine funding trends and selected research alliances involving Industry, Government, and University collaboration. Three programs at the National Science Foundation are stimulating and encouraging the partnerships between different sectors of the technology dependent industrial community and entrepreneurs. This presentation provides a description of three of the most successful programs: Grant Opportunities for Academic Liasion with Industry (GOALI), Small Business Innovation Research Program (SBIR), and the Small Business Technology Transfer Program (STTR). By working together within the boundaries of Industry-University collaborations we can perpetuate leadership in research to develop tools, goods, services, and prosperity.

  13. Evaluation's Contribution to the Success of a Silicon Valley School/Industry Partnership: The Peninsula Academies Evaluation.

    ERIC Educational Resources Information Center

    Jung, Steven M.; And Others

    In an effort to encourage the participation of educationally disadvantaged youth in the Silicon Valley's high technology employment boom, the Peninsula Academies program was established utilizing a triad-partnership arrangement among the Sequoia Union High School District, high technology employers in the area, and the Stanford Mid-Peninsula Urban…

  14. Ethical Use of Information Technologies in Education: Important Issues for America's Schools.

    ERIC Educational Resources Information Center

    Sivin, Jay P.; Bialo, Ellen R.

    In response to the rapid growth of computer crime and such illegitimate practices as piracy and fraud, the National Institute of Justice and the Office for Educational Research and Improvement have formed a partnership to promote school programs on the ethical uses of new technologies. This report, the first of the partnership, is designed to…

  15. Innovative Technology in Automotive Technology

    ERIC Educational Resources Information Center

    Gardner, John

    2007-01-01

    Automotive Technology combines hands-on training along with a fully integrated, interactive, computerized multistationed facility. Our program is a competency based, true open-entry/open-exit program that utilizes flexible self-paced course outlines. It is designed around an industry partnership that promotes community and economic development,…

  16. NASA-UK STAP: A technology applications program to aid government and industry in Kentucky

    NASA Technical Reports Server (NTRS)

    1978-01-01

    There is a need for a well-defined partnership between universities, and the business and industrial community to promote the transfer of technology. In an effort to foster such a partnership, the Space Systems Program, administered by NASA, has established information dissemination centers in cooperation with various universities throughout the country. As a result of limited success in the transfer of technology to state and local units of government NASA felt that new stimuli and new approaches were needed in the public sector area. NASA selected the University of Kentucky, a land grant institution with a significant research dissemination and service role, as the site for the new program. An annual report of this program at the University of Kentucky is presented.

  17. Glenn's Strategic Partnerships With HBCUs and OMUs

    NASA Technical Reports Server (NTRS)

    Kankam, M. David

    2003-01-01

    NASA senior management has identified the need to develop a strategy for increased contracting with the historically black colleges and universities (HBCUs) and other minority universities (OMUs). The benefits to the institutions, by partnering with NASA, include developing their industrial base via NASA-industry partnerships, strong competitive advantage in technology-based research opportunities, and improved research capabilities. NASA gains increased contributed value to the Agency missions and programs as well as potential future recruits from technology-trained students who also constitute a pool for the nation s workforce. This report documents synergistic links between Glenn Research Center research and technology programs and faculty expertise at HBCUs and OMUs. The links are derived, based on Glenn technologies in the various directorates, program offices, and project offices. Such links readily identify universities with faculty members who are knowledgeable or have backgrounds in the listed technologies for possible collaboration. Recommendations are made to use the links as opportunities for Glenn and NASA, as well as industry collaborators, to cultivate stronger partnerships with the universities. It is concluded that Glenn and its partners and collaborators can expect to mutually benefit from leveraging NASA s cutting-edge and challenging research and technologies; industry's high technology development, research and development facilities, system design capabilities and market awareness; and academia s expertise in basic research and relatively low overhead cost. Reduced cost, accelerated technology development, technology transfer, and infrastructure development constitute some of the derived benefits.

  18. The Job Training Partnership Act and Computer-Assisted Instruction. Research Report 88-13.

    ERIC Educational Resources Information Center

    Education Turnkey Systems, Inc., Falls Church, VA.

    A study sought to (1) determine the current and potential instructional application of computers in Job Training Partnership Act (JTPA) Titles II, III, and IV programs; and (2) present policy options that would increase the effective use of this technology in employment and training programs. Research methodology involved conducting an assessment…

  19. SBIR/STTR Programs

    NASA Technical Reports Server (NTRS)

    Stegeman, James D.; Comstock, Douglas

    2008-01-01

    This presentation provides an overview of the NASA mission and overviews of both the Innovative Partnerships Program (IPP) and Small Business Innovation Research (SBIR) programs and how they relate to each other and to the NASA mission. Examples are provided concerning NASA technology needs and how the SBIR program has not only enabled technology development to meet those needs, but has also facilitated the infusion of that technology into the NASA mission.

  20. Atlanta: Magnet Schools Discover the Power of Partnership.

    ERIC Educational Resources Information Center

    Fraser, Lowrie A.

    1986-01-01

    Discusses how the success of magnet programs depends heavily on the partnership between the school and the businesses associated with the magnet specialty. Magnet specialties discussed include applied technology, communications, international studies, science and mathematics, transportation, and retailing. (CT)

  1. Implementing a Project-Based Technology Program for High School Women.

    ERIC Educational Resources Information Center

    Boudria, Theodore J.

    2002-01-01

    Describes the successful implementation of a Women in Technology (WIT) Project-Based Learning Program in High Tech Manufacturing by the Tech Prep Consortium at Bristol Community College (Massachusetts). Reports that the program's success was mainly due to the establishment of partnerships with industry, government, and education, including area…

  2. The Ford Partnership for Advanced Studies: A New Case for Curriculum Integration in Technology Education

    ERIC Educational Resources Information Center

    Zinser, Richard; Poledink, Paul

    2005-01-01

    The Ford Motor Company launched a new pre-engineering curriculum for high schools in the Fall of 2004. Building on an earlier manufacturing program, the development process for the Ford Partnership for Advanced Studies took approximately three years. Ford and the course designers wanted the new program to incorporate the best principles and…

  3. OVERVIEW OF MINE WASTE TECHNOLOGY PROGRAM

    EPA Science Inventory

    The Mine Waste Technology Program (MWTP) is an interagency agreement with the DOE and has partnerships with Universities, Forest Service, BLM, Industry and states. The mission of the MWTP is to provide engineering solutions to national environmental issues resulting from the past...

  4. The Economic Vitality Formula of Success

    ERIC Educational Resources Information Center

    Konopnicki, Patrick M.

    2012-01-01

    An economic vitality formula of success can be accomplished by creating partnerships between local career and technical education (CTE), and workforce development and economic development entities. Student industry certifications; dynamic partnerships; programs and projects focused on science, technology, engineering, and mathematics (STEM); and…

  5. AN OVERVIEW OF THE MINE WASTE TECHNOLOGY PROGRAM PROJECTS

    EPA Science Inventory

    The Mine Waste Technology Program (MWTP) is an interagency agreement with the DOE and has partnerships with Universities, Forest Service, BLM, Industry and states. The mission of the MWTP is to provide engineering solutions to national environmental issues resulting from the past...

  6. Research and Technology

    NASA Technical Reports Server (NTRS)

    1997-01-01

    As the NASA Center responsible for preparing and launching space missions, the John F. Kennedy Space Center (KSC) is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the entire KSC team, consisting of Government and contractor personnel, working in partnership with academic institutions and commercial industry. This edition of the KSC Research and Technology 1997 Annual Report covers the efforts of these contributors to the KSC advanced technology development program, as well as our technology transfer activities.

  7. Environmental education mentoring and continuing education programs -- A progress report on programs implemented by the Partnership for Environmental Technology Education (PETE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arenstein, W.A.

    1999-07-01

    This paper will discuss environmental education mentoring and continuing education programs that are being implemented by the Partnership for Environmental Technology Education (PETE) organization. PETE is a national organization whose purpose is to promote quality environmental training and education by operating cooperative programs that enhance partnerships between community colleges, business and industry, and government. The first program is the Faculty Associate in Science and Technology, or FAST program. The goal of this program is to offer professional internships to environmental science and technology college instructors. Funded by a grant from the National Science Foundation, this program has offered over 150more » internships during the last 3 years. College instructors were placed with a variety of host sites, including private companies, environmental consulting companies, federal laboratories, and environmental regulatory agencies. They worked from 4--8 weeks side-by-side with environmental professionals in a variety of fields. The program has two main goals, first, to provide college instructors with the latest environmental information and techniques available so they can incorporate them into their course curriculum. The second goal is for the instructors to gather information from the organizations they intern with as to the kinds of knowledge and skills they want in their future environmental employees. The college instructors can then modify their curriculum and degree programs to better reflect the needs of employers. Additionally, these internships provide the opportunity for college instructors to enter into mentoring relationships with real world environmental professionals. The second program involves the annual continuing education conferences held by regional PETE offices during the school year.« less

  8. A study of topics for distance education-A survey of U.S. Fish and Wildlife Service employees

    USGS Publications Warehouse

    Ratz, Joan M.; Schuster, Rudy M.; Marcy, Ann H.

    2011-01-01

    The purpose of this study was to identify training topics and distance education technologies preferred by U.S. Fish and Wildlife Service employees. This study was conducted on behalf of the National Conservation Training Center to support their distance education strategy planning and implementation. When selecting survey recipients, we focused on employees in positions involving conservation and environmental education and outreach programming. We conducted the study in two phases. First, we surveyed 72 employees to identify useful training topics. The response rate was 61 percent; respondents were from all regions and included supervisors and nonsupervisors. Five topics for training were identified: creating and maintaining partnerships (partnerships), technology, program planning and development (program planning), outreach methods to engage the community (outreach methods), and evaluation methods. In the second phase, we surveyed 1,488 employees to assess preferences for training among the five topics identified in the first survey and preferences among six distance education technologies: satellite television, video conferencing, audio conferencing, computer mediated training, written resources, and audio resources. Two types of instructor-led training were included on the survey to compare to the technology options. Respondents were asked what types of information, such as basic facts or problem solving skills, were needed for each of the five topics. The adjusted response rate was 64 percent; respondents were from all regions and included supervisors and nonsupervisors. The results indicated clear preferences among respondents for certain training topics and technologies. All five training topics were valued, but the topics of partnerships and technology were given equal value and were valued more than the other three topics. Respondents indicated a desire for training on the topics of partnerships, technology, program planning, and outreach methods. For the six distance education technologies, respondents indicated different levels of usability and access. Audio conferencing and written resources were reported to be most usable and accessible. The ratings of technology usability/access differed according to region; respondents in region 9 rated most technologies higher on usability/access. Respondents indicated they would take courses through either onsite or distance education approaches, but they prefer onsite training for most topics and most types of information.

  9. Promising Practices in Career and Technology Studies (CTS).

    ERIC Educational Resources Information Center

    Alberta Learning, Edmonton. Learning and Teaching Resources Branch.

    This document contains profiles of 130 successful programs and partnerships in Career and Technology Studies (CTS) in Alberta, Canada. Following an introduction to the CTS program and its implementation, the profiles are organized into 23 sections that follow the strands of the program. The sections cover the following topics: CTS general;…

  10. Space Surveillance Tech Area Benefits from University Partnerships (Postprint)

    DTIC Science & Technology

    2013-12-10

    Michigan Technological University’s Oculus- ASR, is a calibration satellite for AMOS’s telescopic non- resolved object characterization program...calibration satellite for AMOS’s telescopic non- resolved object characterization program. Another example is the University of Buffalo, which is... time and on-orbit data. Without partnerships such as these, a school would not be able to deliver as high quality a satellite , decreasing relevance

  11. Asnuntuck Community College's Machine Technology Certificate and Degree Programs.

    ERIC Educational Resources Information Center

    Irlen, Harvey S.; Gulluni, Frank D.

    2002-01-01

    States that although manufacturing remains a viable sector in Connecticut, it is experiencing skills shortages in the workforce. Describes the machine technology program's purpose, the development of the Asnuntuck Community College's (Connecticut) partnership with private sector manufacturers, the curriculum, the outcomes, and benefits of…

  12. Work with us | National Oceanic and Atmospheric Administration

    Science.gov Websites

    Research Marine & Aviation Charting Sanctuaries Education About our agency News and features Our work for scholarships, internships, fellowships and post-doctoral experiences. Opportunities for teachers Innovation Research (SBIR) Program and the Technology Transfer Program. The Technology Partnerships Office

  13. Technology Education Partnerships: Arkansas Articulation.

    ERIC Educational Resources Information Center

    Thompson, Dale E.; And Others

    The Arkansas Articulation Program is the process used since 1986 to supervise the coordination between secondary and postsecondary levels of vocational, technical, and technology education courses whose content has been standardized as the result of competency identification specific to each subject area. The program aims to strengthen the…

  14. RESEARCH STUDIES AT THE GILT EDGE MINE SUPERFUND SITE

    EPA Science Inventory

    A collaborative effort is being implemented at the Gilt Edge Mine Superfund site near Lead, SD. The partnerships involves the Mine Waste Technology Program (MWTP) with the USEPA's NRMRL, Region VIII Superfund program, the DOE, MSE Technology Application, Inc (MSE) and CDM Federal...

  15. Analyzing the Watershed Dynamics project as an example of successful science and education partnerships

    NASA Astrophysics Data System (ADS)

    Buzby, C. K.; Jona, K.

    2009-12-01

    The Watershed Dynamics project is a partnership between Northwestern University, the Consortium of Universities for the Advancement of Hydrologic Science (CUAHSI), and the GLOBE Program (Global Learning and Observations to Benefit the Environment). The goal of the project is to develop inquiry-based educational materials that use authentic scientific data and analysis techniques to teach students about the watershed. The relationship between Northwestern, CUAHSI, and GLOBE allows each partner to contribute to the development of the project in the area of their expertise. Science researchers from CUAHSI share science content knowledge and data access through the development of their Hydrologic Information System (HIS). Curriculum developers at Northwestern write inquiry-based curriculum using GIS technology to access and analyze live data. The GLOBE Program is a worldwide hands-on, primary and secondary school-based science education program that provides teacher training opportunities to a network of teachers around the world. This partnership allows each partner to bring their area of expertise to the project and make the best use of one another's resources. The Watershed Dynamics project can serve as a model for future partnerships between the science and education communities. The Office of Science, Technology, Engineering, and Math Education Partnerships (OSEP) at Northwestern is a service organization that supports Northwestern researchers in developing proposals and implementing research projects that incorporate K-12 educational components, particularly in the fields of science, technology, engineering and mathematics (STEM). OSEP assists faculty with the development of sound plans for education and outreach that reflect current research on learning and educational reform and provides expertise in STEM education materials development, learning technologies, and professional development for K-12 teachers and facilitators in informal education institutions. Resources such as OSEP can pair scientists with educational organizations so that science outreach programs can be sustainable.

  16. NASA's Impact in Florida: A Tech Transfer Perspective

    NASA Technical Reports Server (NTRS)

    Dunn, Carol

    2009-01-01

    The Innovative Partnerships Program (IPP) Office at NASA's Kennedy Space Center is dedicated to forming partnerships that can positively contribute to -- and benefit from -- NASA's research and development (R&D) and technology innovations. This document discusses the IPP-driven impacts of NASA in Florida.

  17. Partnership for Environmental Technology Education: Tribal Colleges Initiative in Science and Environmental Education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-01-01

    The Tribal Colleges Initiatives in Science and Environmental Education (TCI) was developed in collaboration with the Partnership for Environmental Technology Education (PETE). This program is focused on long-term, systematic change through assisting tribally-controlled colleges in improving science and technology infrastructure, faculty and curricula. The goals are to: develop new or enhance existing science and technology education programs within tribally-controlled colleges and affiliates with a focus on environmental education and technology; establish and maintain clearly defined and secure educational pathways for Native American students; produce more Native American environmental and advanced degree graduates who can contribute to meeting the environmental/natural resourcemore » management and economic development goals of Indian Nations; and enhance the general level of Native American scientific literacy through improved public access to information.« less

  18. Dual use technology -- it's good for everyone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schario, K.

    1998-07-01

    Dual use technology is defined as technology that has both military and commercial applications. The main benefit to dual use technology is that it encourages research and development (R and D) partnerships between the government and industry that lead to the development of common products for military and commercial purposes instead of application-unique products, as in the past. Commonality, in turn, leads to better, more affordable products for all. These partnerships are cost-shared so that neither party has to bear the entire cost of development. Why is this good? Neither the military nor commercial world can afford to fully fundmore » all R and D efforts required to maintain their technological edge in the international market. How do you determine which R and D programs have enough commercial potential to motivate industry to invest in the development? This paper explores the issues involved in establishing a dual use program, and how to take advantage of the flexibility of these programs.« less

  19. Teaching Technology to Hispanic Youth: A Report on Factors Affecting Students' Learning. Research Report No. 46

    ERIC Educational Resources Information Center

    Cutz, German; Theuri, Emma

    2011-01-01

    University of Illinois Extension, in partnership with Our Lady of Mount Carmel Church in Joliet, Illinois, offered a technology summer program for Hispanic youth from June 22 to July 22, 2009. The program, "Looking Back, Moving Forward," utilized self-directed learning activities during the entire program. Eight out of fourteen Hispanic…

  20. HMO innovations. Video-enhanced medical advice; senior zoo walkers; Group Health Resource Line; enhancing health education programs through desktop publishing; home health beat; innovative school health partnership.

    PubMed

    Paperny, D M; Maeser, J D; Artz, K; Stroh, M J; Jackson, L; Cohen, K; Lancaster, M S; Heyer, A L; Clevenson, D S

    1991-01-01

    The editors of HMO PRACTICE asked clinicians and health educators in HMOs across the country to submit reports on their unique, successful patient education programs. The following HMO Innovations testify to the wide range of new technologies, enterprising partnerships, and creative ideas that are shaping health education in HMOs today.

  1. Partnerships through Innovative Telecommunications at California State University, Chico.

    ERIC Educational Resources Information Center

    Meuter, Ralph F.; And Others

    California State University (CSU), Chico, has used its relatively isolated location to develop an extensive educational system known as "Instructional Television for Students" (ITFS). Currently, the university is launching plans for new partnerships utilizing satellite technology for the delivery of educational programs. Over the years,…

  2. 76 FR 53666 - Manufacturing Extension Partnership Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-29

    ... open meeting. SUMMARY: The National Institute of Standards and Technology (NIST) announces that the Manufacturing Extension Partnership (MEP) Advisory Board, NIST will hold an open meeting on Wednesday, September..., appointed by the Director of NIST. MEP is a unique program consisting of centers across the United States...

  3. 77 FR 20790 - Manufacturing Extension Partnership Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-06

    ... Open Meeting. SUMMARY: NIST announces that the Manufacturing Extension Partnership (MEP) Advisory Board, National Institute of Standards and Technology (NIST) will hold an open meeting on Sunday, May 6, 2012... NIST. MEP is a unique program consisting of centers across the United States and Puerto Rico with...

  4. NASA / Pratt and Whitney Collaborative Partnership Research in Ultra High Bypass Cycle Propulsion Concepts

    NASA Technical Reports Server (NTRS)

    Hughes, Chris; Lord, Wed

    2008-01-01

    Current collaborative research with Pratt & Whitney on Ultra High Bypass Engine Cycle noise, performance and emissions improvements as part of the Subsonic Fixed Wing Project Ultra High Bypass Engine Partnership Element is discussed. The Subsonic Fixed Wing Project goals are reviewed, as well as their relative technology level compared to previous NASA noise program goals. Progress toward achieving the Subsonic Fixed Wing Project goals over the 2008 fiscal year by the UHB Partnership in this area of research are reviewed. The current research activity in Ultra High Bypass Engine Cycle technology, specifically the Pratt & Whitney Geared Turbofan, at NASA and Pratt & Whitney are discussed including the contributions each entity bring toward the research project, and technical plans and objectives. Pratt & Whitney Geared Turbofan current and future technology and business plans are also discussed, including the role the NASA SFW UHB partnership plays toward achieving those goals.

  5. Fostering Technology-Rich Service-Learning Experiences between School Librarians and Teacher Education Programs

    ERIC Educational Resources Information Center

    Shepherd, Craig E.; Dousay, Tonia; Kvenild, Cassandra; Meredith, Tamara

    2015-01-01

    School libraries are untapped resources for fieldwork by preservice teachers. Many school librarians have expertise in pedagogy and standards-based curriculum development, both for information literacy and for technology integration. By forging partnerships with teacher-preparation programs, school librarians can provide fieldwork sites rich in…

  6. University of Arizona's Collaboration to Advance Teaching Technology and Science (CATTS): lesson for photonics education collaborations

    NASA Astrophysics Data System (ADS)

    Hall-Wallace, Michelle; Regens, Nancy L.; Pompea, Stephen M.

    2002-05-01

    CATTS is a National Science Foundation-funded partnership between the University of Arizona and local school districts to improve science, mathematics and technology teaching at all levels. The goals of the CATTS Program are to develop sustainable partnerships with Kindergarten through 12th grade level (K-12) educators that foster integration of science, mathematics, engineering and technology research in classroom learning experiences. The program also creates opportunities for graduate and undergraduate students to be active participants in K-12 education by providing training and fellowships. CATTS seeks to foster effective teaching and a greater understanding of learning at all levels. School districts and University of Arizona outreach programs propose fellowship activities that address identified educational needs; they work together with CATTS to create customized programs to meet those needs. CATTS Fellows, their faculty mentors and K - 12 partners participate in workshops to gain experience with inquiry-based teaching and understanding diverse learning styles. In the partnership, CATTS Fellows have an opportunity to share their research experiences with K - 12 educators and gain experience with inquiry teaching. On the other side of the partnership, professional educators share their knowledge of teaching with Fellows and gain deeper understanding of scientific inquiry. In the two years that this NSF funded program has been in operation, a variety of lessons have been learned that can apply to school, university, and industrial partnerships to foster education and training. In particular since each organization operates in its own subculture, particular attention must be paid to raising cultural awareness among the participants in ways that foster mutual respect and communication of shared goals. Proper coordination and sensible logistics are also critical for the success of a complex project such as this. Training of the partners and the project management will also be described.

  7. ENVIRONMENTAL TECHNOLOGY REPORT - LEAD DUST WIPE MEASUREMENT TECHNOLOGY MONITORING TECHNOLOGIES INTERNATIONAL, PDV 5000 TRACE ELEMENT ANALYZER

    EPA Science Inventory

    ETV works in partnership with recognized standards and testing organizations and stakeholder groups consisting of regulators, buyers, and vendor organizations, with the full participation of individual technology developers. The program evaluates the performance of innovative

  8. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT; RECHARGEABLE ALKALINE HOUSEHOLD BATTERY SYSTEM; RAYOVAC CORPORATION, RENEWAL

    EPA Science Inventory

    The EPA's ETV Program, in partnership with recognized testing organizations, objectively and systematically documents the performance of commercial ready technologies. Together, with the full participation of the technology developer, develop plans, conduct tests, collect and ana...

  9. NASA / GE Aviation Collaborative Partnership Research in Ultra High Bypass Cycle Propulsion Concepts

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; Zeug, Theresa

    2008-01-01

    Current collaborative research with General Electric Aviation on Open Rotor propulsion as part of the Subsonic Fixed Wing Project Ultra High Bypass Engine Partnership Element is discussed. The Subsonic Fixed Wing Project goals are reviewed, as well as their relative technology level compared to previous NASA noise program goals. The current Open Rotor propulsion research activity at NASA and GE are discussed including the contributions each entity bring toward the research project, and technical plans and objectives. GE Open Rotor propulsion technology and business plans currently and toward the future are also discussed, including the role the NASA SFW UHB partnership plays toward achieving those goals.

  10. A system simulation development project: Leveraging resources through partnerships

    NASA Technical Reports Server (NTRS)

    Drummond, Colin K.; Owen, A. Karl; Davis, Milt W.

    1995-01-01

    Partnerships between government agencies are an intellectually attractive method of conducting scientific research; the goal is to establish mutually beneficial participant roles for technology exchange that ultimately pays-off in a stronger R&D program for each partner. Anticipated and current aerospace research budgetary pressures through the 90's provide additional impetus for Government research agencies to candidly assess their R&D for those simulation activities no longer unique enough to warrant 'going it alone,' or for those elements where partnerships or teams can offset development costs. This paper describes a specific inter-agency system simulation activity that leverages the development cost of mutually beneficial R&D. While the direct positive influence of partnerships on complex technology developments is our main thesis, we also address on-going teaming issues and hope to impart to the reader the immense indirect (sometimes immeasurable) benefits that meaningful interagency partnerships can produce.

  11. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - LEAD IN DUST WIPE MEASUREMENT TECHNOLOGY, KEYMASTER TECHNOLOGIES, X-RAY FLUORESCENCE INSTRUMENT PB-TEST

    EPA Science Inventory

    ETV works in partnership with recognized standards and testing organizations and stakeholder groups consisting of regulators, buyers, and vendor organizations, with the full participation of individual technology developers. The program evaluates the performance of innovative

  12. Enhancing Poetry Writing through Technology: The Yin and the Yang.

    ERIC Educational Resources Information Center

    Roberts, Sherron Killingsworth; Schmidt, Denise

    2002-01-01

    Describes the outcome of an innovative mentoring program that paired technology faculty and methods faculty in order to form partnerships to facilitate the modeling of technology for preservice teachers. Discusses the creation of useful applications for enhancing poetry writing through technology for elementary school students. (SG)

  13. Innovative Technologies for Global Space Exploration

    NASA Technical Reports Server (NTRS)

    Hay, Jason; Gresham, Elaine; Mullins, Carie; Graham, Rachael; Williams-Byrd; Reeves, John D.

    2012-01-01

    Under the direction of NASA's Exploration Systems Mission Directorate (ESMD), Directorate Integration Office (DIO), The Tauri Group with NASA's Technology Assessment and Integration Team (TAIT) completed several studies and white papers that identify novel technologies for human exploration. These studies provide technical inputs to space exploration roadmaps, identify potential organizations for exploration partnerships, and detail crosscutting technologies that may meet some of NASA's critical needs. These studies are supported by a relational database of more than 400 externally funded technologies relevant to current exploration challenges. The identified technologies can be integrated into existing and developing roadmaps to leverage external resources, thereby reducing the cost of space exploration. This approach to identifying potential spin-in technologies and partnerships could apply to other national space programs, as well as international and multi-government activities. This paper highlights innovative technologies and potential partnerships from economic sectors that historically are less connected to space exploration. It includes breakthrough concepts that could have a significant impact on space exploration and discusses the role of breakthrough concepts in technology planning. Technologies and partnerships are from NASA's Technology Horizons and Technology Frontiers game-changing and breakthrough technology reports as well as the External Government Technology Dataset, briefly described in the paper. The paper highlights example novel technologies that could be spun-in from government and commercial sources, including virtual worlds, synthetic biology, and human augmentation. It will consider how these technologies can impact space exploration and will discuss ongoing activities for planning and preparing them.

  14. An Academic-Business Partnership for Advancing Clinical Informatics.

    ERIC Educational Resources Information Center

    Connors, Helen R.; Weaver, Charlotte; Warren, Judith; Miller, Karen L.

    2002-01-01

    A partnership between a university school of nursing and a health care information technology supplier resulted in the Simulated E-hEalth Delivery System (SEEDS). This program enables nursing students to learn clinical skills in a state-of-the-art environment using a live-production, clinical information system designed for care delivery. (JOW)

  15. Panel I: Technology and Jobs.

    ERIC Educational Resources Information Center

    Appalachia, 1984

    1984-01-01

    Panel I features two case histories of state government, university, and private corporation cooperation to bring technology to the workplace (Microelectronics Center of North Carolina and Ben Franklin Partnership Program) and presentations about Burlington Industries and General Electric Company investments in technology to save jobs and boost…

  16. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - LEAD IN DUST WIPE MEASUREMENT TECHNOLOGY, PALINTEST, SCANNING ANALYZER , SA-5000 SYSTEM

    EPA Science Inventory

    ETV works in partnership with recognized standards and testing organizations and stakeholder groups consisting of regulators, buyers, and vendor organizations, with the full participation of individual technology developers. The program evaluates the performance of innovative

  17. Cooperative agreement # RITARS-14-H-HOU : final report.

    DOT National Transportation Integrated Search

    2016-07-15

    The University of Houston, in partnership with the Gas Technology Institute, and with support from the : Commercial Remote Sensing & Spatial Technologies Program at the U.S. Department of Transportation : undertook a pilot project to mitigate pipelin...

  18. 48 CFR 219.800 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (Acquisition, Technology, and Logistics) its authority under paragraph 8(a)(1)(A) of the Small Business Act (15... DEFENSE SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Contracting With the Small Business Administration (The 8(a) Program) 219.800 General. (a) By Partnership Agreement (PA) between the Small Business...

  19. Advanced power electronics and electric machinery program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2007-12-01

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as "FreedomCAR" (derived from "Freedom" and "Cooperative Automotive Research"), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieving the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001.« less

  20. Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pena, Federico

    1997-10-01

    This report serves as the technology basis of a needed national climate change technology strategy, with the confidence that a strong technology R&D program will deliver a portfolio of technologies with the potential to provide very substantial greenhouse gas emission reductions along with continued economic growth. Much more is needed to define such a strategy, including identification of complementary deployment policies and analysis to support the seeping and prioritization of R&D programs. A national strategy must be based upon governmental, industrial, and academic partnerships.

  1. Research and Technology: 2003 Annual Report of the John F Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The John F. Kennedy Space Center (KSC) is America's Spaceport Technology Center. The KSC technology development program encompasses the efforts of the entire KSC team, consisting of Government and contractor personnel, working in partnership with academic institutions and commercial industry. KSC's assigned mission areas are space launch operations and spaceport and range technologies. KSC's technology development customers include current space transportation programs, future space transportation programs / initiatives, and enabling technical programs. The KSC Research and Technology 2003 Annual Report encompasses the efforts of contributors to the KSC advanced technology development program and KSC technology transfer activities. Dr. Dave Bartine, KSC Chief Technologist, (321) 867-7069, is responsible for publication of this report and should be contacted for any desired information regarding KSC's research and technology development activities.

  2. Technology, Innovation, and Regional Economic Development.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Office of Technology Assessment.

    In recent years state and local governments, universities, and private sector groups have become increasingly active in promoting technological innovation and technology-based business development in their local economies. These efforts have resulted in productive new forms of partnership and cooperation at all levels. While federal programs have…

  3. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - LEAD IN DUST WIPE MEASUREMENT TECHNOLOGY, NITON CORPORATION, X-RAY FLURESCENCE SPECTRUM ANALYZER, XL-700

    EPA Science Inventory

    ETV works in partnership with recognized standards and testing organizations and stakeholder groups consisting of regulators, buyers, and vendor organizations, with the full participation of individual technology developers. The program evaluates the performance of innovative

  4. The Minority Honors Program in Energy-Related Curricula.

    ERIC Educational Resources Information Center

    Kish, Evelyn Rubio; Santa Rita, Emilio

    In 1984, Bronx Community College (BCC) established the Minority Honors Program in Energy Related Curricula, a partnership between their academic honors program and the U.S. Department of Energy. The program's goal is to increase the participation of minorities in the fields of Computer Science, Electrical Technology, Engineering Science, Data…

  5. Web 2.0 Technologies: The Best-Fit Model for Preservice Teachers

    ERIC Educational Resources Information Center

    Amundson, Lisa

    2017-01-01

    Web 2.0 technologies facilitate teacher partnerships in today's diverse classrooms. Teacher preparation programs are seeking the factors to support their students desire to use these technologies. A total of 590 preservice teachers reported the factors that lead to their behavioral intentions to use Web 2.0 technologies. Using the theoretical…

  6. Intel Teach to the Future: A Partnership for Professional Development.

    ERIC Educational Resources Information Center

    Metcalf, Teri; Jolly, Deborah

    This paper describes a public/private partnership program designed to provide staff development to help classroom teachers integrate technology in the curriculum by using the train-the-trainer model. The Intel[R] Teach to the Future Project was developed by Intel[R] in collaboration with other public and private sector partners, and has been…

  7. The One Laptop School: Equipping Rural Elementary Schools in South India through Public Private Partnerships

    ERIC Educational Resources Information Center

    Byker, Erik Jon

    2015-01-01

    This article reports on a Public Private Partnership (PPP) program in South India that provided information and communication technology (ICT) to rural elementary schools. The article examined the current status of rural, government-run elementary schools in India by reviewing reports like the Annual Status of Education Report (ASER) in India.…

  8. Technology Transfer Network and Affiliations

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The NASA Technology Transfer Partnership program sponsors a number of organizations around the country that are designed to assist U.S. businesses in accessing, utilizing, and commercializing NASA-funded research and technology. These organizations work closely with the Technology Transfer Offices, located at each of the 10 NASA field centers, providing a full range of technology transfer and commercialization services and assistance.

  9. Environmentally Responsible Aviation: Propulsion Research to Enable Fuel Burn, Noise and Emissions Reduction

    NASA Technical Reports Server (NTRS)

    Van Zante, Dale; Suder, Kenneth

    2015-01-01

    The NASA Environmentally Responsible Aviation (ERA) program is maturing technologies to enable simultaneous reduction of fuel burn, noise and emissions from an aircraft engine system. Three engine related Integrated Technology Demonstrations (ITDs) have been completed at Glenn Research Center in collaboration with Pratt Whitney, General Electric and the Federal Aviation Administration. The engine technologies being matured are: a low NOx, fuel flexible combustor in partnership with Pratt Whitney; an ultra-high bypass, ducted propulsor system in partnership with Pratt Whitney and FAA; and high pressure ratio, front-stage core compressor technology in partnership with General Electric. The technical rationale, test configurations and overall results from the test series in each ITD are described. ERA is using system analysis to project the benefits of the ITD technologies on potential aircraft systems in the 2025 timeframe. Data from the ITD experiments were used to guide the system analysis assumptions. Results from the current assessments for fuel burn, noise and oxides of nitrogen emissions are presented.

  10. Environmentally Responsible Aviation: Propulsion Research to Enable Fuel Burn, Noise and Emissions Reduction

    NASA Technical Reports Server (NTRS)

    Van Zante, Dale E.; Suder, Kenneth L.

    2015-01-01

    The NASA Environmentally Responsible Aviation (ERA) program is maturing technologies to enable simultaneous reduction of fuel burn, noise and emissions from an aircraft engine system. Three engine related Integrated Technology Demonstrations (ITDs) have been completed at Glenn Research Center in collaboration with Pratt Whitney, General Electric and the Federal Aviation Administration. The engine technologies being matured are a low NOx, fuel flexible combustor in partnership with Pratt Whitney, an ultra-high bypass, ducted propulsor system in partnership with Pratt Whitney FAA and high pressure ratio, front-stage core compressor technology in partnership with General Electric. The technical rationale, test configurations and overall results from the test series in each ITD are described. ERA is using system analysis to project the benefits of the ITD technologies on potential aircraft systems in the 2025 timeframe. Data from the ITD experiments were used to guide the system analysis assumptions. Results from the current assessments for fuel burn, noise and oxides of nitrogen emissions are presented.

  11. Making Childhood Asthma Management Education Happen in the Community: Translating Health Behavioral Research into Local Program.

    ERIC Educational Resources Information Center

    Krutzch, Christine B.; And Others

    1987-01-01

    A technology transfer project for getting initial community adoption of childhood asthma management programs is described. The evolution of the project, including development of programs, packaging considerations, establishment of partnerships, implementation, and evaluation are discussed. (Author/CH)

  12. KSC Tech Transfer News, Volume 3, No. 1

    NASA Technical Reports Server (NTRS)

    Dunn, Carol (Editor)

    2010-01-01

    Kennedy Tech Transfer News is the semiannual magazine of the Innovative Partnerships Program at NASA's Kennedy Space Center in Cape Canaveral, Florida. This magazine seeks to inform and educate civil servant and contractor personnel at Kennedy about actively participating in achieving NASA's technology transfer and partnership goals. The contents include: 1) About IPP; 2) NTR corner; 3) Innovator Insights; 4) Licensing Success; 5) Partnership Success; 6) SBIR/STTR Success; 7) Events; 8) Trands in Innovation; 9) Q&A: Data Rights; and 10) Awards.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    On behalf of the Department of Energy's Office of FreedomCAR and Vehicle Technologies, we are pleased to introduce the Fiscal Year (FY) 2004 Annual Progress Report for the Advanced Combustion Engine R&D Sub-Program. The mission of the FreedomCAR and Vehicle Technologies Program is to develop more energy efficient and environmentally friendly highway transportation technologies that enable Americans to use less petroleum for their vehicles. The Advanced Combustion Engine R&D Sub-Program supports this mission by removing the critical technical barriers to commercialization of advanced internal combustion engines for light-, medium-, and heavy-duty highway vehicles that meet future Federal and state emissionsmore » regulations. The primary objective of the Advanced Combustion Engine R&D Sub-Program is to improve the brake thermal efficiency of internal combustion engines from 30 to 45 percent for light-duty applications by 2010; and 40 to 55 percent for heavy-duty applications by 2012; while meeting cost, durability, and emissions constraints. R&D activities include work on combustion technologies that increase efficiency and minimize in-cylinder formation of emissions, as well as aftertreatment technologies that further reduce exhaust emissions. Work is also being conducted on ways to reduce parasitic and heat transfer losses through the development and application of thermoelectrics and turbochargers that include electricity generating capability, and conversion of mechanically driven engine components to be driven via electric motors. This introduction serves to outline the nature, current progress, and future directions of the Advanced Combustion Engine R&D Sub-Program. The research activities of this Sub-Program are planned in conjunction with the FreedomCAR Partnership and the 21st Century Truck Partnership and are carried out in collaboration with industry, national laboratories, and universities. Because of the importance of clean fuels in achieving low emissions, R&D activities are closely coordinated with the relevant activities of the Fuel Technologies Sub-Program, also within the Office of FreedomCAR and Vehicle Technologies. Research is also being undertaken on hydrogen-fueled internal combustion engines to provide an interim hydrogen-based powertrain technology that promotes the longer-range FreedomCAR Partnership goal of transitioning to a hydrogen-fueled transportation system. Hydrogen engine technologies being developed have the potential to provide diesel-like engine efficiencies with near-zero emissions.« less

  14. Enabling Arctic Research Through Science and Engineering Partnerships

    NASA Astrophysics Data System (ADS)

    Kendall, E. A.; Valentic, T. A.; Stehle, R. H.

    2014-12-01

    Under an Arctic Research Support and Logistics contract from NSF (GEO/PLR), SRI International, as part of the CH2M HILL Polar Services (CPS) program, forms partnerships with Arctic research teams to provide data transfer, remote operations, and safety/operations communications. This teamwork is integral to the success of real-time science results and often allows for unmanned operations which are both cost-effective and safer. The CPS program utilizes a variety of communications networks, services and technologies to support researchers and instruments throughout the Arctic, including Iridium, VSAT, Inmarsat BGAN, HughesNet, TeleGreenland, radios, and personal locator beacons. Program-wide IT and communications limitations are due to the broad categories of bandwidth, availability, and power. At these sites it is essential to conserve bandwidth and power through using efficient software, coding and scheduling techniques. There are interesting new products and services on the horizon that the program may be able to take advantage of in the future such as Iridium NEXT, Inmarsat Xpress, and Omnispace mobile satellite services. Additionally, there are engineering and computer software opportunities to develop more efficient products. We will present an overview of science/engineering partnerships formed by the CPS program, discuss current limitations and identify future technological possibilities that could further advance Arctic science goals.

  15. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - LEAD IN DUST WIPE MEASUREMENT TECHNOLOGY, NITON CORPORATION, X-RAY FLUORESCENCE SPECTRUM ANALYSER, XL-300 SERIES

    EPA Science Inventory

    ETV works in partnership with recognized standards and testing organizations and stakeholder groups consisting of regulators, buyers, and vendor organizations, with the full participation of individual technology developers. The program evaluates the performance of innovative

  16. Technology Partnership Agreements | NREL

    Science.gov Websites

    Partnership Agreements Technology Partnership Agreements Looking for Funding? We do not fund any projects under a technology partnership agreement. The partner provides the necessary resources and, in using technology partnership agreements. See a summary of our Fiscal Year 2017 technology partnership

  17. The USAID/DOE Mexico Renewable Energy Program: Using technology to build new markets

    NASA Astrophysics Data System (ADS)

    Hanley, Charles J.

    1997-02-01

    Under the Mexico Renewable Energy Program, managed by Sandia National Laboratories, sustainable markets for renewable energy technologies are developed through the implementation of pilot projects. Sandia provides technical assistance to several Mexican rural development organizations so they can gain the technical and institutional capability to appropriately utilize renewables within their ongoing programs. Activities in the area of water pumping have shown great replication potential, where the tremendous rural demand for water represents a potential renewable market of over 2 billion. Thirty-six photovoltaic water pumping projects have been installed thus far in the Mexican states of Chihuahua, Sonora, Baja California Sur, and Quintana Roo, and 60 more will be implemented this year. The majority of these projects are in partnership with the Mexican Trust for Shared Risk (FIRCO), which has asked Sandia for assistance in extending the program nationwide. This replication is beginning in five new states, and will continue to grow. Sandia is keeping the U.S. renewable energy industry involved in the program through facilitating partnerships between U.S. and Mexican vendors, and through commercialization assistance with new systems technologies. The program is sponsored by the Department of Energy and the U.S. Agency for International Development.

  18. Enabling Science.

    ERIC Educational Resources Information Center

    Scadden, Lawrence A.

    2001-01-01

    Introduces Program for Persons with Disabilities (PPD). Explains the next phase of the program beginning in 2002 which is an academic partnership between four- and two-year colleges called the Regional Alliances for Persons with Disabilities in Science, Mathematics, Engineering, and Technology Education (RAD). (YDS)

  19. 15 CFR 292.1 - Program description.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS MANUFACTURING EXTENSION...)(3) and 278l), as amended, NIST will provide financial assistance to develop the infrastructure of the national manufacturing extension system. Under the NIST Manufacturing Extension Partnership (MEP...

  20. 15 CFR 292.1 - Program description.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS MANUFACTURING EXTENSION...)(3) and 278l), as amended, NIST will provide financial assistance to develop the infrastructure of the national manufacturing extension system. Under the NIST Manufacturing Extension Partnership (MEP...

  1. 15 CFR 292.1 - Program description.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS MANUFACTURING EXTENSION...)(3) and 278l), as amended, NIST will provide financial assistance to develop the infrastructure of the national manufacturing extension system. Under the NIST Manufacturing Extension Partnership (MEP...

  2. 15 CFR 292.1 - Program description.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS MANUFACTURING EXTENSION...)(3) and 278l), as amended, NIST will provide financial assistance to develop the infrastructure of the national manufacturing extension system. Under the NIST Manufacturing Extension Partnership (MEP...

  3. 15 CFR 292.1 - Program description.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS MANUFACTURING EXTENSION...)(3) and 278l), as amended, NIST will provide financial assistance to develop the infrastructure of the national manufacturing extension system. Under the NIST Manufacturing Extension Partnership (MEP...

  4. Virtual Mentoring: Developing Global Leaders for Life

    ERIC Educational Resources Information Center

    Ohlson, Matthew; Froman, Russell

    2012-01-01

    CAMP (Collegiate Achievement Mentoring Program) Gator is a leadership-mentoring program in which collegiate student leaders serve as mentors to at-risk K-12 students. In addition, partnerships with Cisco and Franklin Covey Education have provided the program with the technology resources to conduct "virtual leadership mentoring" sessions…

  5. Space Surveillance Tech Area Benefits From University Partnerships

    NASA Astrophysics Data System (ADS)

    Cole, K.; Voss, D.; Pietruszewski, A.; King, L.; Hohnstadt, P.; Feirstine, K.; Crassidis, J.; D'Angelo, M.; Linares, R.

    2011-09-01

    The University Nanosat Program (UNP) is a two year small satellite competition held among leading universities across the nation. In the past 12 years UNP has involved 27 universities and over 5000 students in a variety of engineering fields and other disciplines, in the process of designing and managing the development of a satellite. The UNP is a partnership between the Air Force Office of Scientific Research (AFOSR), the Air Force Research Laboratory (AFRL), and the American Institute of Aeronautics and Astronautics (AIAA). The program’s primary purpose is to help train engineering students in satellite design, fabrication, and testing by requiring them to build the satellite themselves through the mentorship of their Principle Investigator, industry mentors, and a series of six program reviews managed by the AFRL Program Office. Each university-built satellite attempts to further a specific technology or perform a scientific mission. Technologies advanced through the program include all aspects of small satellite designs including structures, propulsion, imaging, navigation and have helped further science payloads such as energetic particle detectors, plasma probes, photometers, and many others. This paper will discuss the educational impact on students involved in a hands-on, hardware focused program, with emphasis given to two UNP satellites relevant to Space Surveillance Technologies. The most recent winner of the UNP competition, Michigan Technological University’s Oculus-ASR, is a calibration instrument for AMOS’ telescopic non-resolved object characterization program. Another example is the University of Buffalo, which is calibrating with the AFRL MESSA program in the current competition cycle. The University of Buffalo’s nanosatellite is being designed to collect multi-band photometric data of glinting geostationary space objects. Both these satellites are excellent examples of the relevance and quality of innovation and technology that can be produced from an educational program. Finally, the paper will discuss how corporate and government sponsors are a critical part of launching a successful educational flight experiment, and are key benefactors from the data gleaned from a successful mission. These strong partnerships result in students working on relevant projects with mission driven requirements resulting in a better educational program and a greater return on the investment of external partners.

  6. The Inquiry Based Science and Technology Education Program (IN-STEP): The Evaluation of the First Year

    ERIC Educational Resources Information Center

    Corcoran, Thomas B.

    2008-01-01

    This is the first report on the evaluation of the Inquiry Based Science and Technology Education Program (IN-STEP), an innovative and ambitious science education initiative for lower secondary schools being undertaken by a public-private partnership in Thailand funded by MSD-Thailand, an affiliate of Merck & Co. IN-STEP is a public-private…

  7. Machine Tool Advanced Skills Technology Program (MAST). Overview and Methodology.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    The Machine Tool Advanced Skills Technology Program (MAST) is a geographical partnership of six of the nation's best two-year colleges located in the six states that have about one-third of the density of metals-related industries in the United States. The purpose of the MAST grant is to develop and implement a national training model to overcome…

  8. Materials Technology: The Common Core Skills That are Shaping the Future. Final Performance Report. January 1, 1989-June 30, 1990.

    ERIC Educational Resources Information Center

    Battelle Pacific Northwest Laboratories, Richland, WA.

    A materials technology program was developed at Richland High School (Washington) and pilot tested at seven sites in Washington and Oregon. The program created partnerships between science and vocational education teachers at Richland High and Battelle Pacific Northwest Laboratories, and was then expanded to include other high schools, colleges,…

  9. Vehicle Technologies Program Funding Opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) provides funding opportunities for advanced vehicle technology projects that are aimed at removing technical and cost barriers. Much of the funding available to the Vehicle Technologies Program is distributed to private firms, educational institutions, nonprofit organizations, state and local governments, Native American organizations, and individuals, through competitive solicitations. DOE is strongly committed to partnerships to help ensure the eventual market acceptance of the technologies being developed. New solicitations are announced regularly.

  10. McDonnell Douglas Helicopter Company independent research and development: Preparing for the future

    NASA Technical Reports Server (NTRS)

    Haggerty, Allen C.

    1988-01-01

    During the 1970's and 80's, research has produced the technology that is seen in aircraft such as the LHX and future models. The technology is discussed that is reaching maturity and moving into the application stage of future programs. Technology is discussed in six major areas: advanced concepts, analysis techniques, structures, systems, simulation, and research and development facilities. The partnership of McDonnell Douglas Helicopter Co. and the government in developing these technologies is illustrated in several programs.

  11. 15 CFR 291.2 - Environmental integration projects.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS... contracts with the NIST Manufacturing Extension Partnership. Only one proposal per organization per...

  12. 15 CFR 291.2 - Environmental integration projects.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS... contracts with the NIST Manufacturing Extension Partnership. Only one proposal per organization per...

  13. 15 CFR 291.2 - Environmental integration projects.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS... contracts with the NIST Manufacturing Extension Partnership. Only one proposal per organization per...

  14. Spinoff 2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Innovative Partnerships Program of NASA s Exploration Systems Mission Directorate was established to guarantee the transfer of the Space Program s technical advances. Brimming with examples of technologies that have led to significant improvements in quality of life, NASA s technology transfer program has been the conduit for these achievements. The program excels by maintaining established relationships with commercial industries that include and extend beyond the aerospace sector. Spinoff 2004 highlights the diverse benefits that have grown from NASA s partnerships with U.S. companies. These products span the many disciplines of our society. Included among this year s achievements are a natural, low-calorie sugar that is safe for diabetics and contact lenses that offer the benefits of a laser-corrective eye procedure without the need for surgery. This issue also showcases some of the many research and development activities being conducted by NASA s field centers. These activities continue to fuel the Agency s missions, which collectively contribute to making the Vision for Space Exploration a reality. NASA is focusing on identifying common research interests with industry, enabling both parties to leverage their research and produce a technology that will help both the Agency and the private commercial venture. These dual-use joint ventures support the development of new exploration strategies, vehicles, and technologies, while continuing to bring space technologies back down to Earth.

  15. Managing troubled data: Coastal data partnerships smooth data integration

    USGS Publications Warehouse

    Hale, S.S.; Hale, Miglarese A.; Bradley, M.P.; Belton, T.J.; Cooper, L.D.; Frame, M.T.; Friel, C.A.; Harwell, L.M.; King, R.E.; Michener, W.K.; Nicolson, D.T.; Peterjohn, B.G.

    2003-01-01

    Understanding the ecology, condition, and changes of coastal areas requires data from many sources. Broad-scale and long-term ecological questions, such as global climate change, biodiversity, and cumulative impacts of human activities, must be addressed with databases that integrate data from several different research and monitoring programs. Various barriers, including widely differing data formats, codes, directories, systems, and metadata used by individual programs, make such integration troublesome. Coastal data partnerships, by helping overcome technical, social, and organizational barriers, can lead to a better understanding of environmental issues, and may enable better management decisions. Characteristics of successful data partnerships include a common need for shared data, strong collaborative leadership, committed partners willing to invest in the partnership, and clear agreements on data standards and data policy. Emerging data and metadata standards that become widely accepted are crucial. New information technology is making it easier to exchange and integrate data. Data partnerships allow us to create broader databases than would be possible for any one organization to create by itself.

  16. States, Earth Science, and Decision-Making: Five Years of Lessons Learned by the NASA DEVELOP National Program Working with a State Government

    NASA Astrophysics Data System (ADS)

    Favors, J.; Ruiz, M. L.; Rogers, L.; Ross, K. W.; Childs-Gleason, L. M.; Allsbrook, K. N.

    2017-12-01

    Over a five-year period that spanned two administrations, NASA's DEVELOP National Program engaged in a partnership with the Government of the Commonwealth of Virginia to explore the use of Earth observations in state-level decision making. The partnership conducted multiple applied remote sensing projects with DEVELOP and utilized a shared-space approach, where the Virginia Governor's Office hosted NASA DEVELOP participants to mature the partnership and explore additional science opportunities in the Commonwealth. This presentation will provide an overview of various lessons learned from working in an administrative and policy environment, fostering the use of science in such an environment, and building substantive relationships with non-technical partners. An overview of the projects conducted in this partnership will provide an opportunity to explore specific best practices that enhanced the work and provide tips to enhance the potential for success for other science and technology organizations considering similar partnerships.

  17. Managing troubled data: coastal data partnerships smooth data integration.

    PubMed

    Hale, Stephen S; Miglarese, Anne Hale; Bradley, M Patricia; Belton, Thomas J; Cooper, Larry D; Frame, Michael T; Friel, Christopher A; Harwell, Linda M; King, Robert E; Michener, William K; Nicolson, David T; Peterjohn, Bruce G

    2003-01-01

    Understanding the ecology, condition, and changes of coastal areas requires data from many sources. Broad-scale and long-term ecological questions, such as global climate change, biodiversity, and cumulative impacts of human activities, must be addressed with databases that integrate data from several different research and monitoring programs. Various barriers, including widely differing data formats, codes, directories, systems, and metadata used by individual programs, make such integration troublesome. Coastal data partnerships, by helping overcome technical, social, and organizational barriers, can lead to a better understanding of environmental issues, and may enable better management decisions. Characteristics of successful data partnerships include a common need for shared data, strong collaborative leadership, committed partners willing to invest in the partnership, and clear agreements on data standards and data policy. Emerging data and metadata standards that become widely accepted are crucial. New information technology is making it easier to exchange and integrate data. Data partnerships allow us to create broader databases than would be possible for any one organization to create by itself.

  18. JPL Non-NASA Programs

    NASA Technical Reports Server (NTRS)

    Cox, Robert S.

    2006-01-01

    A viewgraph presentation describing JPL's non-NASA Programs is shown. The contents include: 1) JPL/Caltech: National Security Heritage; 2) Organization and Portfolio; 3) Synergistic Areas of Interest; 4) Business Environment; 5) National Space Community; 6) New Business Environment; 7) Technology Transfer Techniques; 8) Innovative Partnership Program (IPP); and 9) JPL's Track Record.

  19. Pioneering Partnerships for Progress

    ERIC Educational Resources Information Center

    Borden, Sam

    2006-01-01

    This paper presents a brief description of the Center for Bioscience and the Integration of Computer and Telecommunications Technology (BioCATT) at Gateway Technical College in Kenosha, Wisconsin. BioCATT is designed to serve as a catalyst for innovation in educational programming, business services, and technology applications.

  20. Reaching Out to Parents with Technology

    ERIC Educational Resources Information Center

    Stephens, Karen

    2004-01-01

    Communication technology strengthens the bonds of parent-program partnerships. It does a great job of reinforcing and broadening parent outreach efforts. It helps staff respond to a wide variety of family questions and needs. And it allows them to respond in a timely manner. In this article, the author explores how to put technology's amazing…

  1. Polish Post-Secondary Vocational Institutions and Canadian Community Colleges: A Comparison Using an Information Technology Conceptual Framework

    ERIC Educational Resources Information Center

    Butler, Norman L.; Pachocinski, Ryszard; Davidson, Barry S.

    2006-01-01

    The aim of this study was to compare Polish post-secondary vocational institutions with Canadian community colleges using an information technology theoretical framework consisting of three parts: participation, feedback and partnership. The research concentrated upon programs in nursing, tourism and information technology delivered by the three…

  2. How PEPFAR's public-private partnerships achieved ambitious goals, from improving labs to strengthening supply chains.

    PubMed

    Sturchio, Jeffrey L; Cohen, Gary M

    2012-07-01

    The President's Emergency Plan for AIDS Relief (PEPFAR), established in 2003, is widely recognized as one of the most ambitious and successful bilateral programs ever implemented to address a single disease. Part of the program's success is attributable to the participation of the private sector, working in partnership with the US and local governments and implementing organizations to maximize the reach and effectiveness of every dollar spent. We examined key public-private partnerships that grew out of PEPFAR to identify features that have made them effective. For example, PEPFAR's Supply Chain Management System took advantage of private industry's best practices in logistics, and a partnership with the medical technology company BD (Becton, Dickinson and Company) improved laboratory systems throughout sub-Saharan Africa. We found that setting ambitious goals, enlisting both global and local partners, cultivating a culture of collaboration, careful planning, continuous monitoring and evaluation, and measuring outcomes systematically led to the most effective programs. The Office of the US Global AIDS Coordinator and PEPFAR should continue to strengthen their capacity for private-sector partnerships, learning from a decade of experience and identifying new ways to make smart investments that will make the most efficient use of taxpayer resources, expand proven interventions more rapidly, and help ensure the sustainability of key programs.

  3. Identifying new technologies that save energy and reduce costs to the Federal sector: The New Technology Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, W.D.M.; Conover, D.R.; Stockmeyer, M.K.

    1995-11-01

    In 1990 the New Technology Demonstration Program (formerly the Test Bed Demonstration Program) was initiated by the US Department of Energy`s Office (DOE`s) of Federal Energy Management Programs with the purpose of accelerating the introduction of new technologies into the Federal sector. The program has since expanded into a multi-laboratory collaborative effort that evaluates new technologies and shares the results with the Federal design and procurement communities. These evaluations are performed on a collaborative basis which typically includes technology manufacturers, Federal facilities, utilities, trade associations, research institutes, and other in partnership with DOE. The end result is a range ofmore » effective technology transfer tools that provide operations and performance data on new technologies to Federal designers, building managers, and procurement officials. These tools assist in accelerating a technology`s Federal application and realizing reductions in energy consumption and costs.« less

  4. Materials Science and Technology. A Preview of an Exemplary High School Course Where Students Explore New Frontiers of Scientific and Vocational Education Know-How.

    ERIC Educational Resources Information Center

    Battelle Pacific Northwest Laboratories, Richland, WA.

    A materials science and technology (MST) program was developed at Richland High School (Washington) and pilot tested at seven sites in Washington and Oregon. The program created partnerships between science and vocational education teachers at Richland High and Battelle Pacific Northwest Laboratories, and then was expanded to include other high…

  5. Alliance for Sequestration Training, Outreach, Research & Education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Hilary

    The Sequestration Training, Outreach, Research and Education (STORE) Alliance at The University of Texas at Austin completed its activity under Department of Energy Funding (DE-FE0002254) on September 1, 2013. The program began as a partnership between the Institute for Geophysics, the Bureau of Economic Geology and the Petroleum and Geosystems Engineering Department at UT. The initial vision of the program was to promote better understanding of CO 2 utilization and storage science and engineering technology through programs and opportunities centered on training, outreach, research and technology transfer, and education. With over 8,000 hrs of formal training and education (and almostmore » 4,500 of those hours awarded as continuing education credits) to almost 1,100 people, STORE programs and activities have provided benefits to the Carbon Storage Program of the Department of Energy by helping to build a skilled workforce for the future CCS and larger energy industry, and fostering scientific public literacy needed to continue the U.S. leadership position in climate change mitigation and energy technologies and application. Now in sustaining mode, the program is housed at the Center for Petroleum and Geosystems Engineering, and benefits from partnerships with the Gulf Coast Carbon Center, TOPCORP and other programs at the university receiving industry funding.« less

  6. ATIP: Automotive Technician Internship Program.

    ERIC Educational Resources Information Center

    De Anza Coll., Cupertino, CA.

    The Automotive Technology Department (ATD) of De Anza College (DAC) in Cupertino, California, in partnership with the Automotive Service Council of California, received funding to develop and implement a 2-year, competency-based certification program for automotive service technicians. Students in the Automotive Technician Internship Program…

  7. FY 2004 Technology Transfer Network and Affiliations

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The NASA Innovative Partnerships Program sponsors a number of organizations around the country that are designed to assist U.S. businesses in accessing, utilizing, and commercializing NASA-funded research and technology. These organizations work closely with the Technology Transfer Offices, located at each of the 10 NASA field centers, providing a full range of technology transfer and commercialization services and assistance.

  8. IT-Adventures: A Program to Spark IT Interest in High School Students Using Inquiry-Based Learning with Cyber Defense, Game Design, and Robotics

    ERIC Educational Resources Information Center

    Rursch, Julie A.; Luse, Andy; Jacobson, Doug

    2010-01-01

    The IT-Adventures program is dedicated to increasing interest in and awareness of information technology among high school students using inquiry-based learning focused on three content areas: cyber defense, game design programming, and robotics. The program combines secondary, post-secondary, and industry partnerships in educational programming,…

  9. U.S. Department of Energy's Regional Carbon Sequestration Partnership Program: Overview

    USGS Publications Warehouse

    Litynski, J.; Plasynski, S.; Spangler, L.; Finley, R.; Steadman, E.; Ball, D.; Nemeth, K.J.; McPherson, B.; Myer, L.

    2009-01-01

    The U.S. Department of Energy (DOE) has formed a nationwide network of seven regional partnerships to help determine the best approaches for capturing and permanently storing gases that can contribute to global climate change. The Regional Carbon Sequestration Partnerships (RCSPs) are tasked with determining the most suitable technologies, regulations, and infrastructure for carbon capture, transport, and storage in their areas of the country and parts of Canada. The seven partnerships include more than 350 state agencies, universities, national laboratories, private companies, and environmental organizations, spanning 42 states, two Indian nations, and four Canadian provinces. The Regional Partnerships initiative is being implemented in three phases: ???Characterization Phase (2003-2005): The objective was to collect data on CO2 sources and sinks and develop the human capital to support and enable future carbon sequestration field tests and deployments. The completion of this Phase was marked by release of the Carbon Sequestration Atlas of the United States and Canada-Version 1 which included a common methodology for capacity assessment and reported over 3,000GT of storage capacity in saline formations, depleted oil and gas fields, and coal seams.???Validation Phase (2005-2009): The objective is to plan and implement small-scale (<1??million tons CO2) field testing of storage technologies in areas determined to be favorable for carbon storage. The partnerships are currently conducting over 20 small-scale geologic field tests and 11 terrestrial field tests.???Development Phase (2008-2018): The primary objective is the development of large-scale (>1??million tons of CO2) Carbon Capture and Storage (CCS) projects, which will demonstrate that large volumes of CO2 can be injected safely, permanently, and economically into geologic formations representative of large storage capacity. Even though the RCSP Program is being implemented in three phases, it should be viewed as an integrated whole, with many of the goals and objectives transitioning from one phase to the next. Accomplishments and results from the Characterization Phase have helped to refine goals and activities in the Validation and Deployment Phases. The RCSP Program encourages and requires open information sharing among its members by sponsoring both general workshops and meetings to facilitate information exchange. Although each RCSP has its own objectives and field tests, mutual cooperation has been an important part of the Program thus far. The primary goal of the RCSP initiative is to promote the development of a regional framework and the infrastructure necessary to validate and deploy carbon sequestration technologies within each Partnership's region. ?? 2009 Elsevier Ltd. All rights reserved.

  10. Developing an MBA Study-Abroad Program at Southeastern Louisiana University

    ERIC Educational Resources Information Center

    Budden, Michael Craig; Baraya, Aristides R.; Juban, Rusty L.

    2005-01-01

    International experience is critical for MBA faculty and students, but providing such experience as part of the curriculum is often difficult for relatively small programs. This article briefly describes how the College of Business and Technology at Southeastern Louisiana University developed a partnership program in Costa Rica as one step toward…

  11. Connected Vehicle Pilot Deployment Program phase 1 : partnership status summary : ICF/Wyoming : draft report.

    DOT National Transportation Integrated Search

    2016-08-12

    The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...

  12. Inservice Program for Math/Science Teachers.

    ERIC Educational Resources Information Center

    Kinsley, Carol W.; Sweet, Helaine D.

    1986-01-01

    A school-business partnership between Monsanto Company and the Springfield Public Schools, Massachusetts, focuses on inservice teacher education. Seminar series equip teachers with current information on the technological revolution. (CJH)

  13. Development of "Remotely Operated Vehicles for Education and Research" (ROVERs)

    NASA Astrophysics Data System (ADS)

    Gaines, J. E.; Bland, G.; Bydlowski, D.

    2017-12-01

    The University of South Florida is a team member for the AREN project which develops educational technologies for data acquisition. "Remotely Operated Vehicles for Education and Research" (ROVERs) are floatable data acquisition systems used for Earth science measurements. The USF partnership was productive in the first year, resulting in new autonomous ROVER platforms being developed and used during a 5 week STEM summer camp by middle school youth. ROVERs were outfitted with GPS and temperature sensors and programmed to move forward, backwards, and to turn autonomously using the National Instruments myRIO embedded system. GLOBE protocols were used to collect data. The outreach program's structure lended itself to accomplishing an essential development effort for the AREN project towards the use of the ROVER platform in informal educational settings. A primary objective of the partnership is curriculum development to integrate GLOBE protocols and NASA technology and hardware/ROVER development wher new ROVER platforms are explored. The USF partnership resulted in two design prototypes for ROVERs, both of which can be created from recyclable materials for flotation and either 3D printed or laser cut components. In addition, both use the National Instruments myRIO for autonomous control. We will present two prototypes designed for use during the USF outreach program, the structure of the program, and details on the fabrication of prototype Z during the program by middle school students. Considering the 5-year objective of the AREN project is to "develop approaches, learning plans, and specific tools that can be affordably implemented nationwide (globally)", the USF partnership is key as it contributes to each part of the objective in a unique and impactful way.

  14. NASA partnership with industry: Enhancing technology transfer

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Recognizing the need to accelerate and expand the application of NASA-derived technology for other civil uses in the United States, potential opportunities were assessed; the range of benefits to NASA, industry and the nations were explored; public policy implications were assessed; and this new range of opportunities were related to current technology transfer programs of NASA.

  15. Strengthening and expanding the capacity of health worker education in Zambia

    PubMed Central

    Michelo, Charles; Zulu, Joseph Mumba; Simuyemba, Moses; Andrews, Benjamin; Katubulushi, Max; Chi, Benjamin; Njelesani, Evariste; Vwalika, Bellington; Bowa, Kasonde; Maimbolwa, Margaret; Chipeta, James; Goma, Fastone; Nzala, Selestine; Banda, Sekelani; Mudenda, John; Ahmed, Yusuf; Hachambwa, Lotti; Wilson, Craig; Vermund, Sten; Mulla, Yakub

    2017-01-01

    Introduction Zambia is facing a chronic shortage of health care workers. The paper aimed at understanding how the Medical Education Partnership Initiative (MEPI) program facilitated strengthening and expanding of the national capacity and quality of medical education as well as processes for retaining faculty in Zambia. Methods Data generated through documentary review, key informant interviews and observations were analyzed using a thematic approach. Results The MEPI program triggered the development of new postgraduate programs thereby increasing student enrollment. This was achieved by leveraging of existing and new partnerships with other universities and differentiating the old Master in Public Health into specialized curriculum. Furthermore, the MEPI program improved the capacity and quality of training by facilitating installation and integration of new technology such as the eGranary digital library, E-learning methods and clinical skills laboratory into the Schools. This technology enabled easy access to relevant data or information, quicker turn around of experiments and enhanced data recording, display and analysis features for experiments. The program also facilitated transforming of the academic environment into a more conducive work place through strengthening the Staff Development program and support towards research activities. These activities stimulated work motivation and interest in research by faculty. Meanwhile, these processes were inhibited by the inability to upload all courses on to Moodle as well as inadequate operating procedures and feedback mechanisms for the Moodle. Conclusion Expansion and improvement in training processes for health care workers requires targeted investment within medical institutions and strengthening local and international partnerships. PMID:28819513

  16. Strengthening and expanding the capacity of health worker education in Zambia.

    PubMed

    Michelo, Charles; Zulu, Joseph Mumba; Simuyemba, Moses; Andrews, Benjamin; Katubulushi, Max; Chi, Benjamin; Njelesani, Evariste; Vwalika, Bellington; Bowa, Kasonde; Maimbolwa, Margaret; Chipeta, James; Goma, Fastone; Nzala, Selestine; Banda, Sekelani; Mudenda, John; Ahmed, Yusuf; Hachambwa, Lotti; Wilson, Craig; Vermund, Sten; Mulla, Yakub

    2017-01-01

    Zambia is facing a chronic shortage of health care workers. The paper aimed at understanding how the Medical Education Partnership Initiative (MEPI) program facilitated strengthening and expanding of the national capacity and quality of medical education as well as processes for retaining faculty in Zambia. Data generated through documentary review, key informant interviews and observations were analyzed using a thematic approach. The MEPI program triggered the development of new postgraduate programs thereby increasing student enrollment. This was achieved by leveraging of existing and new partnerships with other universities and differentiating the old Master in Public Health into specialized curriculum. Furthermore, the MEPI program improved the capacity and quality of training by facilitating installation and integration of new technology such as the eGranary digital library, E-learning methods and clinical skills laboratory into the Schools. This technology enabled easy access to relevant data or information, quicker turn around of experiments and enhanced data recording, display and analysis features for experiments. The program also facilitated transforming of the academic environment into a more conducive work place through strengthening the Staff Development program and support towards research activities. These activities stimulated work motivation and interest in research by faculty. Meanwhile, these processes were inhibited by the inability to upload all courses on to Moodle as well as inadequate operating procedures and feedback mechanisms for the Moodle. Expansion and improvement in training processes for health care workers requires targeted investment within medical institutions and strengthening local and international partnerships.

  17. Agreement Moves Nevada Solar Plant Step Closer to Reality

    Science.gov Websites

    Secretary Christine Ervin, CSTRR President Rose McKinney-James and NREL Director Dr. Charles Gay today new partnership, NREL will make available its facilities to test renewable energy technologies, help other renewable technologies. NREL will support the efforts of DOE's Federal Energy Management Program

  18. Strategic Partnerships in Fuel Cell Development

    ERIC Educational Resources Information Center

    Diab, Dorey

    2006-01-01

    This article describes how forming strategic alliances with universities, emerging technology companies, the state of Ohio, the federal government, and the National Science Foundation, has enabled Stark State College to develop a $5.5 million Fuel Cell Prototyping Center and establish a Fuel Cell Technology program to promote economic development…

  19. ACTT Now: A Collaboration Reshaping Teacher Technology Training.

    ERIC Educational Resources Information Center

    Curry-Corcoran, Daniel E.; O'Shea, Patrick M.

    2003-01-01

    Describes the ACTT Now (Aligning Certification with Technology Training) project in Brunswick County Public Schools (Virginia) that, in partnership with Old Dominion University (Norfolk, VA), has created a Field-Based Master's Program to help overcome the disadvantages of a small, rural district in providing teacher training for technology…

  20. 77 FR 55201 - State Energy Advisory Board (STEAB); Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-07

    .... L. 92- 463; 86 Stat.770) requires that public notice of these meetings be announced in the Federal... responsibilities as designated in the State Energy Efficiency Programs Improvement Act of 1990 (Pub. L. 101-440... partnerships, new initiatives and technologies being created at the Laboratory, explore possible technology...

  1. Construction Program Saved! Partnership Revitalizes School of Applied Technology

    ERIC Educational Resources Information Center

    LaPlaca, Joseph

    2010-01-01

    The Edison School of Applied Technology, a comprehensive public high school, has long had a reputation for producing top-notch crafts workers, tradespeople, project managers, estimators, and industry leaders. The school's graduates helped build the city and many currently have successful, productive careers in the public and private sectors. But…

  2. Training in Industrial Technology: A Collection of Essays.

    ERIC Educational Resources Information Center

    Hatton, Michael J., Ed.

    Prepared as part of the Asia Pacific Economic Cooperation Forum's efforts to explore issues related to economic development and technology training, the three essays in this collection describe industrial training efforts at community colleges, focusing on partnerships with the private sector, programs targeted at women, and the use of…

  3. On-Demand Lectures Create an Effective Distributed Education Experience

    ERIC Educational Resources Information Center

    Lindsey, Stanley D.

    2003-01-01

    In this article, the author shares his experience teaching senior-level structural engineering courses at the Georgia Institute of Technology's Georgia Tech Regional Engineering Program. The program is a unique partnership of four universities--Georgia Tech, Savannah State University, Armstrong Atlantic State University, and Georgia Southern…

  4. Bioremediation Education Science and Technology (BEST) Program Annual Report 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazen, Terry C.

    2000-07-01

    The Bioremediation, Education, Science and Technology (BEST) partnership provides a sustainable and contemporary approach to developing new bioremedial technologies for US Department of Defense (DoD) priority contaminants while increasing the representation of underrepresented minorities and women in an exciting new biotechnical field. This comprehensive and innovative bioremediation education program provides under-represented groups with a cross-disciplinary bioremediation cirruculum and financial support, coupled with relevant training experiences at advanced research laboratories and field sites. These programs are designed to provide a stream of highly trained minority and women professionals to meet national environmental needs.

  5. Research utilization in the building industry: decision model and preliminary assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watts, R.L.; Johnson, D.R.; Smith, S.A.

    1985-10-01

    The Research Utilization Program was conceived as a far-reaching means for managing the interactions of the private sector and the federal research sector as they deal with energy conservation in buildings. The program emphasizes a private-public partnership in planning a research agenda and in applying the results of ongoing and completed research. The results of this task support the hypothesis that the transfer of R and D results to the buildings industry can be accomplished more efficiently and quickly by a systematic approach to technology transfer. This systematic approach involves targeting decision makers, assessing research and information needs, properly formatingmore » information, and then transmitting the information through trusted channels. The purpose of this report is to introduce elements of a market-oriented knowledge base, which would be useful to the Building Systems Division, the Office of Buildings and Community Systems and their associated laboratories in managing a private-public research partnership on a rational systematic basis. This report presents conceptual models and data bases that can be used in formulating a technology transfer strategy and in planning technology transfer programs.« less

  6. Final Scientifc Report - Hydrogen Education State Partnership Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leon, Warren

    2012-02-03

    Under the leadership of the Department of Energy Hydrogen and Fuel Cells program, Clean Energy States Alliance (CESA) educated and worked with state leaders to encourage wider deployment of fuel cell and hydrogen technologies. Through outreach to state policymakers, legislative leaders, clean energy funds, energy agencies, and public utility commissions, CESA worked to accomplish the following objectives of this project: 1. Provide information and technical assistance to state policy leaders and state renewable energy programs in the development of effective hydrogen fuel cell programs. 2. Identify and foster hydrogen program best practices. 3. Identify and promote strategic opportunities for statesmore » and the Department of Energy (DOE) to advance hydrogen technology deployment through partnerships, collaboration, and targeted activities. Over the three years of this project, CESA, with our partner National Conference of State Legislatures (NCSL), was able to provide credible information on fuel cell policies, finance, and technical assistance to hundreds of state officials and other stakeholders. CESA worked with its membership network to effectively educate state clean energy policymakers, program managers, and decision makers about fuel cell and hydrogen technologies and the efforts by states to advance those technologies. With the assistance of NCSL, CESA gained access to an effective forum for outreach and communication with state legislators from all 50 states on hydrogen issues and policies. This project worked to educate policymakers and stakeholders with the potential to develop and deploy stationary and portable fuel cell technologies.« less

  7. INSPIRE: Initiating New Science Partnerships in Rural Education

    NASA Astrophysics Data System (ADS)

    Pierce, Donna M.; McNeal, K. S.; Bruce, L. M.; Harpole, S. H.; Schmitz, D. W.

    2010-10-01

    INSPIRE, Initiating New Science Partnerships in Rural Education, is a partnership between Mississippi State University and three school districts in Mississippi's Golden Triangle (Starkville, Columbus, West Point). This program recruits ten graduate fellows each year from geosciences, physics, astronomy, and engineering and pairs them with a participating middle school or high school teacher. The graduate fellows provide technology-supported inquiry-based learning in the earth and space sciences by incorporating their research into classroom instruction and using multiple resources such as Google Earth, geographic information systems (GIS), Celestia, and others. In addition to strengthening the communication skills of the graduate fellows, INSPIRE will increase the content knowledge of participating teachers, provide high-quality instruction using multiple technologies, promote higher education to area high-school students, and provide fellows and teachers with international research experience through our partners in Australia, The Bahamas, England, and Poland. INSPIRE is funded by the Graduate STEM Fellows in K-12 Education Program (GK-12; Award No. DGE-0947419), which is part of the Division for Graduate Education of the National Science Foundation.

  8. Academic and Government Partnerships to Address Diabetes in the USA: a Narrative Review.

    PubMed

    Yi, Stella S; Chamany, Shadi; Thorpe, Lorna

    2017-09-01

    Multi-sector partnerships are broadly considered to be of value for diabetes prevention and management. The purpose of this article is to summarize academic and government collaborations focused on diabetes prevention and management. Using a narrative review approach, we identified 17 articles describing 10 academic and government partnerships for diabetes management and surveillance. Challenges and gaps in the literature include complexity of diabetes management vis a vis current healthcare infrastructure; a paucity of racial/ethnic diversity in translational efforts; and the time/effort needed to maintain strong relationships across partner institutions. Academic and government partnerships are of value for diabetes prevention and management activities. Acknowledgment that the key priorities of government programming are often costs and feasibility is critical for collaborations to be successful. Future translational efforts of diabetes prevention and management programs should focus on the following: (1) expansion of partnerships between academia and local health departments; (2) increased utilization of implementation science for enhanced and efficient implementation and dissemination; and (3) harnessing of technological advances for data analysis, patient communication, and report generation.

  9. How a Beacon Community Program in New Orleans Helped Create a Better Health Care System by Building Relationships before Technology.

    PubMed

    Khurshid, Anjum; Brown, Lisanne

    2014-01-01

    In the aftermath of Hurricane Katrina, much of New Orleans' healthcare infrastructure was destroyed. Initial federal funding after the storm expanded primary care services and helped set up medical homes for New Orleans' large uninsured and underinsured population. Following that, the Beacon Community in New Orleans, charged with improving health care through the use of technology, decided the best way to accomplish those goals was to build community partnerships and introduce technology improvements based on their input and on their terms. The purpose of this paper is to describe how those partnerships were wrought, including the innovative use of a conceptual framework, and how they are being sustained; how different technologies were and are being introduced; and what the results have been so far. Past successful community experiences, as well as a proven conceptual framework, were used to help establish community partnerships and governance structures, as well as to demonstrate their linkages. This paper represents a compilation of reports and information from key Beacon leaders, staff and providers and their firsthand experiences in setting up those structures, as well as their conclusions. The community partnerships proved extremely successful in not only devising successful ways to introduce new technology into healthcare settings, but in sustaining those changes by creating a governance structure that has enough fluidity to adapt to changing circumstances. Building and developing community partnerships takes time and effort; however, these relationships are necessary and essential to introducing and sustaining new technologies in a healthcare setting and should be a first step for any organization looking to accomplish such goals.

  10. Global partnerships: Expanding the frontiers of space exploration education

    NASA Astrophysics Data System (ADS)

    MacLeish, Marlene Y.; Akinyede, Joseph O.; Goswami, Nandu; Thomson, William A.

    2012-11-01

    Globalization is creating an interdependent space-faring world and new opportunities for international partnerships that strengthen space knowledge development and transfer. These opportunities have been codified in the Global Exploration Strategy, which endorses the "inspirational and educational value of space exploration" [1]. Also, during the 2010 Heads of Space Agencies Summit celebrating the International Academy of Astronautics' (IAA) 50th Anniversary, space-faring nations from across the globe issued a collective call in support of robust international partnerships to expand the frontiers of space exploration and generate knowledge for improving life on Earth [2]. Educators play a unique role in this mission, developing strategic partnerships and sharing best educational practices to (1) further global understanding of the benefits of space exploration for life on Earth and (2) prepare the next generation of scientists required for the 21st Century space workforce. Educational Outreach (EO) programs use evidence-based, measurable outcomes strategies and cutting edge information technologies to transfer space-based science, technology, engineering and mathematics (STEM) knowledge to new audiences; create indigenous materials with cultural resonance for emerging space societies; support teacher professional development; and contribute to workforce development initiatives that inspire and prepare new cohorts of students for space exploration careers. The National Space Biomedical Research Institute (NSBRI), the National Aeronautics and Space Administration (NASA) and Morehouse School of Medicine (MSM) have sustained a 13-year space science education partnership dedicated to these objectives. This paper briefly describes the design and achievements of NSBRI's educational programs, with special emphasis on those initiatives' involvement with IAA and the International Astronautical Congress (IAC). The IAA Commission 2 Draft Report, Space for Africa, is discussed as a model for developing sustainable partnerships and indigenous programs that support Africa's steady emergence as a global space-faring force. The IAC will provide timely: 2011 South Africa will provide timely feedback to refine that report's strategies for space life sciences education and public engagement in Africa and around the globe.

  11. ENVIRONMENTAL TECHNOLOGY VERIFICATION JOINT (NSF-EPA) VERIFICATION STATEMENT AND REPORT PERFORMANCE OF INDUCTION MIXERS FOR DISINFECTION OF WET WEATHER FLOWS, GAS MASTRRR SERIES 32 SUBMERSIBLE CHEMICAL INDUCTION MIXERS

    EPA Science Inventory

    The Wet-Weather Flow Technologies Pilot of the EPA's Environmental Technology Verification (ETV) Program under a partnership with NSF International has verified the performance of the GAS MASTRRR Series 32 Submersible Chemical Induction Mixers used for disinfection of wet-weather...

  12. InfoMall: An Innovative Strategy for High-Performance Computing and Communications Applications Development.

    ERIC Educational Resources Information Center

    Mills, Kim; Fox, Geoffrey

    1994-01-01

    Describes the InfoMall, a program led by the Northeast Parallel Architectures Center (NPAC) at Syracuse University (New York). The InfoMall features a partnership of approximately 24 organizations offering linked programs in High Performance Computing and Communications (HPCC) technology integration, software development, marketing, education and…

  13. Forming Innovative Learning Environments through Technology. Conversations in Excellence.

    ERIC Educational Resources Information Center

    Cimino, Carol, Ed.; Haney, Regina M., Ed.; O'Keefe, Joseph M., Ed.; Zukowski, Angela Ann, Ed.

    Selected Programs for Improving Catholic Education (SPICE) was initiated in 1996. This venture of the National Catholic Educational Association, in partnership with the Jesuit Institute at Boston College, identifies exemplary Catholic educational programs from around the country, and invites the schools and dioceses named to share their ideas and…

  14. The Northeast Texas Adult Education Rural Workplace Literacy Program. Annual Performance Report.

    ERIC Educational Resources Information Center

    Barker, Sue; Burns, Kathryn; Bowers, Jana; Pruitt, Jeanni; Pate, Sally

    The Northeast Texas Adult Education Rural Education Workplace Literacy Program, which is a partnership between Northeast Texas Community College and area businesses, offers workplace literacy instruction designed around job-specific basic skills. Training is offered in the following: applied workplace technology; applied math skills; measurements…

  15. Provision of Academic Support Services to Adults in Distance Education Programs.

    ERIC Educational Resources Information Center

    Manzo, David A.

    Demographic changes and economic need have driven higher education institutions to become more flexible in educational programming and to forge bonds with business and industry. Technological advancements such as satellite communications and computers have helped facilitate these partnerships between education and the business community. In many…

  16. Student Cooperative Training Units. Business Partnerships Final Performance Report.

    ERIC Educational Resources Information Center

    Wheeles, Rebecca

    The North Clackamas School District (Oregon) conducted the Student Cooperative Training Units (CTU) program. The CTU program addressed two key issues that disrupted the development and maintenance of local high technology businesses: (1) The aerospace parts casting, health care, and graphic reproduction industries have experienced a shortage of…

  17. State Partnership Program News - The National Guard

    Science.gov Websites

    ARNG Command Sergeant Major of the ARNG State Mission Sustainability Training ARNG Distributed Learning Program Training & Technology Battle Lab (T3BL) Civil Support Simulation Exercises Regional Training Site Maintenance Battle Focused Training Strategy Battle Staff Training Resources News Publications

  18. High School Teen Mentoring Handbook

    ERIC Educational Resources Information Center

    Alberta Advanced Education and Technology, 2009

    2009-01-01

    Big Brothers Big Sisters Edmonton & Area, in partnership with Alberta Advanced Education and Technology, are providing the High School Teen Mentoring Program, a school-based mentoring program where mentor-mentee matches meet for one hour per week to engage in relationship-building activities at an elementary school. This initiative aims to…

  19. Annual Review of Adult Learning and Literacy. Volume 1. The Jossey-Bass Higher and Adult Education Series.

    ERIC Educational Resources Information Center

    Comings, John, Ed.; Garner, Barbara, Ed.; Smith, Cristine, Ed.

    This book contains eight papers on adult learning and literacy. "The Year 1998 in Review" (Fran Tracy-Mumford) examines educational legislation and policy and developments in adult education program development, program accountability, strategic alliances and partnerships, and instructional methodologies and technologies. "Lessons…

  20. The National Space Weather Program: Two decades of interagency partnership and accomplishments

    NASA Astrophysics Data System (ADS)

    Bonadonna, Michael; Lanzerotti, Louis; Stailey, Judson

    2017-01-01

    This paper describes the development of the United States National Space Weather Program (NSWP) from early interests in space environmental phenomena and their impact through the culmination of the program in 2015. Over its 21 year run, the NSWP facilitated substantial improvements in the capabilities of Federal Space Weather services and fostered broad and enduring partnerships with industry and the academic community within the U.S. and internationally. Under the management of the Office of the Federal Coordinator for Meteorological Services and Supporting Research a coalition of 10 federal agencies worked together from 1994 to 2015 to advance the national space weather enterprise. The paper describes key events and accomplishments of the NSWP interagency partnership while recognizing the great achievements made by the individual agencies. In order to provide context, the paper also discusses several important events outside the NSWP purview. Some of these external events influenced the course of the NSWP, while others were encouraged by the NSWP partnership. Following the establishment of the Space Weather Operations, Research, and Mitigation Task Force of the National Science and Technology Council in the White House and the deactivation of the NSWP Council, the agencies now play a supporting role in the national effort as the federal engagement in the National Space Weather Partnership graduates to a higher level.

  1. Overcoming Constraints of Building Successful Partnerships Incorporating STEM Research Into K-12 Classrooms

    NASA Astrophysics Data System (ADS)

    Radencic, S.; McNeal, K. S.; Pierce, D.; Hare, D.

    2011-12-01

    The Initiating New Science Partnerships in Rural Education (INSPIRE) program at Mississippi State University (MSU), funded by the NSF Graduate STEM Fellows in K-12 Education (GK12) program, focuses on the advancement of Earth and Space science education in K-12 classrooms. INSPIRE is currently in its second year of partnering ten graduate students from the STEM fields of Geosciences, Engineering and Chemistry at MSU with five teachers from local, rural school districts. The five year project serves to increase inquiry and technology experiences in science and math while enhancing graduate student's communication skills as they create interactive lessons linking their STEM research focus to the state and national standards covered in the classrooms. Each graduate student is responsible for the development of two lessons each month of the school year that are then published on the INSPIRE project webpage, www.gk12.msstate.edu, where they are a free resource for any K-12 classroom teacher seeking innovative activities for their classrooms. Many of the participating teachers and graduate students share activities developed with non-participating teachers, expanding INSPIRE's outreach throughout the local community. Numerous challenges were met during the formation of the program as well as throughout the first year in which the project management team worked together to find solutions ensuring that INSPIRE maintained successful partnerships for all involved. Proposed solutions of the following key components were identified by INSPIRE through the development, implementation, and continuous evaluation (internal and external) of the first year of the program as areas that can pose challenges to the construction of strong relationships between STEM research and K-12 classrooms: initializing the partnerships with the K-12 classrooms and STEM graduate fields at the university; maintaining strong partnerships; providing appropriate training and support; developing sound resources involving STEM research, inquiry, and technology; implementing STEM graduate research into the classroom; clarifying potential benefits for all involved partners (school districts, teacher, university departments, graduate students and K-12 students); improving management methods; and planning for sustainability of partnerships and resources developed including synergy with other university outreach projects.

  2. Acoustics Discipline Overview

    NASA Technical Reports Server (NTRS)

    Envia, Edmane; Thomas, Russell

    2007-01-01

    As part of the Fundamental Aeronautics Program Annual Review, a summary of the progress made in 2007 in acoustics research under the Subsonic Fixed Wing project is given. The presentation describes highlights from in-house and external activities including partnerships and NRA-funded research with industry and academia. Brief progress reports from all acoustics Phase 1 NRAs are also included as are outlines of the planned activities for 2008 and all Phase 2 NRAs. N+1 and N+2 technology paths outlined for Subsonic Fixed Wing noise targets. NRA Round 1 progressing with focus on prediction method advancement. NRA Round 2 initiating work focused on N+2 technology, prediction methods, and validation. Excellent partnerships in progress supporting N+1 technology targets and providing key data sets.

  3. Comprehensive Technology Utilization Leading to Excellence in Medium Sized Schools.

    ERIC Educational Resources Information Center

    Diercks, Eileen; And Others

    Although limited finances and a student body of 3,200 have made it necessary to be selective in acquiring educational technology, the Plainfield (Illinois) Community Consolidated School District No. 202 has been very active in the regional partnership for excellence. Curricular programs at the Plainfield High School include use of…

  4. Aerospace Workforce Development: The Nebraska Proposal; and Native View Connections: A Multi-Consortium Workforce Development Proposal. UNO Aviation Monograph Series

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Russell, Valerie; Vlasek, Karisa; Avery, Shelly; Calamaio, Larry; Carstenson, Larry; Farritor, Shane; deSilva, Shan; Dugan, James; Farr, Lynne

    2003-01-01

    The NASA Nebraska Space Grant Consortium (NSGC) continues to recognize the necessity of increasing the quantity and quality of highly skilled graduates and faculty involved with NASA. Through NASA Workforce Development funds awarded in 2002, NSGC spearheaded customer- focused workforce training and higher education, industry and community partnerships that are significantly impacting the state s workforce in the science, technology, engineering, and mathematics (STEM) competencies. NSGC proposes to build upon these accomplishments to meet the steadily increasing demand for STEM skills and to safeguard minority representation in these disciplines. A wide range of workforce development activities target NASA s need to establish stronger connections among higher education, industry, and community organizations. Participation in the National Student Satellite Program (NSSP), Community Internship Program, and Nebraska Science and Technology Recruitment Fair will extend the pipeline of employees benefiting NASA as well as Nebraska. The diversity component of this proposal catapults from the exceptional reputation NSGC has built by delivering geospatial science experiences to Nebraska s Native Americans. For 6 years, NSGC has fostered and sustained partnerships with the 2 tribal colleges and 4 reservation school districts in Nebraska to foster aeronautics education and outreach. This program, the Nebraska Native American Outreach Program (NNAOP), has grown to incorporate more than educational institutions and is now a partnership among tribal community leaders, academia, tribal schools, and industry. The content focus has broadened from aeronautics in the school systems to aerospace technology and earth science applications in tribal community decision-making and workforce training on the reservations. To date, participants include faculty and staff at 4 Nebraska tribal schools, 2 tribal colleges, approximately 1,000 Native American youth, and over 1,200 community members. This Native American Initiative of the NSGC addresses Nebraska workforce development and serves as a model to others. Following a structured evaluation process, NSGC proposes to sustain delivery of the training funded by NASA in 2002 to tribal entities through partnerships linking academic programs and industry leaders.

  5. A New Way of Doing Business: Reusable Launch Vehicle Advanced Thermal Protection Systems Technology Development: NASA Ames and Rockwell International Partnership

    NASA Technical Reports Server (NTRS)

    Carroll, Carol W.; Fleming, Mary; Hogenson, Pete; Green, Michael J.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    NASA Ames Research Center and Rockwell International are partners in a Cooperative Agreement (CA) for the development of Thermal Protection Systems (TPS) for the Reusable Launch Vehicle (RLV) Technology Program. This Cooperative Agreement is a 30 month effort focused on transferring NASA innovations to Rockwell and working as partners to advance the state-of-the-art in several TPS areas. The use of a Cooperative Agreement is a new way of doing business for NASA and Industry which eliminates the traditional customer/contractor relationship and replaces it with a NASA/Industry partnership.

  6. ENVIRONMENTAL TECHNOLOGY VERIFICATION JOINT (NSF-EPA) VERIFICATION STATEMENT AND REPORT, PERFORMANCE OF INDUCTION MIXERS FOR DISINFECTION OF WET WEATHER FLOWS, US FILTER/STRANCO PRODUCTS WATER CHAMP R F SERIES CHEMICAL INDUCTION SYSTEM

    EPA Science Inventory

    The Wet-Weather Flow Technologies Pilot of the EPA's Technology Verification (ETV) Program under a partnership with NSF International has verified the performawnce of the USFilter/Stranco Products chemical induction mixer used for disinfection of wet-weather flows. The USFilter t...

  7. Bringing Engineering Research Coupled With Art Into The K-12 Classroom

    NASA Astrophysics Data System (ADS)

    Cola, J.

    2016-12-01

    The Partnerships for Research, Innovation and Multi-Scale Engineering Program, a Research Experiences for K-12 Teachers at Georgia Institute of Technology demonstrates a successful program that blends the fine arts with engineering research. Teachers selected for the program improve their science and engineering content knowledge, as well as their understanding of how to use STEAM to increase student comprehension and engagement. Participants in the program designed Science, Technology, Engineering, Art, and Mathematics (STEAM)- based lessons based on faculty engineering research. Examples of some STEAM lessons created will be discussed along with lessons learned.

  8. Indian oil company joins efforts to reduce methane emissions

    NASA Astrophysics Data System (ADS)

    Kumar, Mohi

    The Oil and Natural Gas Corp, Ltd. (ONGC), headquartered in Dehradun, India, has joined seven U.S. and Canadian oil and natural gas companies as a partner in a U.S. Environmental Protection Agency program to reduce greenhouse gas emissions. EPA's Natural Gas STAR International Program aims to reduce methane emissions from the oil and natural gas sector while delivering more gas to markets around the world. With this partnership, ONGC agrees to implement emissions reduction practices and to submit annual reports on progress achieved; EPA agrees to assist ONGC with training technicians in new cost-effective technologies that will help achieve target emissions. The Natural Gas STAR International Program is administered under the Methane to Markets Partnership, a group of 20 countries and 600 companies across the globe that since 2004 has volunteered to cut methane emissions. More information on EPA's agreement with ONGC can be found at http://www.epa.gov/gasstar/index.htm; information about the Methane to Markets Partnership can be found at http://www.methanetomarkets.org.

  9. Oak Ridge National Laboratory Annual Progress Report for the Electric Drive Technologies Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozpineci, Burak

    The US Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the US Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE’s commitment to developing public–private partnerships to fund high-risk–high-reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from “Freedom” and “Cooperative Automotive Research”) that ran from 2002 throughmore » 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. Oak Ridge National Laboratory’s (ORNL’s) Electric Drive Technologies (EDT) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), and traction drive system (TDS) technologies that will leapfrog current on-the-road technologies, leading to lower cost and better efficiency in transforming battery energy to useful work. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency through research in more efficient TDSs. In supporting the development of advanced vehicle propulsion systems, the EDT subprogram fosters the development of technologies that will significantly improve efficiency, costs, and fuel economy« less

  10. NASA Goddard Thermal Technology Overview 2018

    NASA Technical Reports Server (NTRS)

    Butler, Dan; Swanson, Ted

    2018-01-01

    This presentation summarizes the current plans and efforts at NASA/Goddard to develop new thermal control technology for anticipated future missions. It will also address some of the programmatic developments currently underway at NASA, especially with respect to the NASA Technology Development Program. The effects of the recently submitted NASA budget will also be addressed. While funding for basic technology development is still tight, significant efforts are being made in direct support of flight programs. Thermal technology Implementation on current flight programs will be reviewed, and the recent push for Cube-sat mission development will also be addressed. Many of these technologies also have broad applicability to DOD, DOE, and commercial programs. Partnerships have been developed with the Air Force, Navy, and various universities to promote technology development. In addition, technology development activities supported by internal research and development (IRAD) program and the Small Business Innovative Research (SBIR) program are reviewed in this presentation. Specific technologies addressed include; two-phase systems applications and issues on NASA missions, latest developments of thermal control coatings, Atomic Layer Deposition (ALD), Micro-scale Heat Transfer, and various other research activities.

  11. Gulf of Mexico Helicopter Offshore System Technologies Engineering Needs Assessment

    DOT National Transportation Integrated Search

    1999-05-01

    The National Aeronautics and Space Administration (NASA), in partnership with the Federal Aviation Administration (FAA), is conducting a research and development program to modernize the National Airspace System (NAS) . The mission of NASA's Advanced...

  12. A Career Cluster in Law, Public Safety, Corrections and Security

    ERIC Educational Resources Information Center

    Reese, Susan

    2007-01-01

    This article describes a program at Great Plains Technology Center that is not only serving its community's needs but it is also serving as a national pilot site. When Oklahoma's Great Plains Technology Center began developing its Law, Public Safety, Corrections and Security Cluster in 2003, the National Partnership for Careers in Law, Public…

  13. National workshop on forest productivity & technology: cooperative research to support a sustainable & competitive future - progress and strategy

    Treesearch

    Eric D. Vance

    2010-01-01

    The Agenda 2020 Program is a partnership among government agencies, the forest products industry, and academia to develop technology capable of enhancing forest productivity, sustaining environmental values, increasing energy efficiency, and improving the economic competitiveness of the United States forest sector. In November 2006, the USDA Forest Service, in...

  14. A National Partnership-Based Summer Learning Initiative to Engage Underrepresented Students with Science, Technology, Engineering and Mathematics

    NASA Technical Reports Server (NTRS)

    Melvin, Leland

    2010-01-01

    In response to the White House Educate to Innovate campaign, NASA developed a new science, technology, engineering, and mathematics (STEM) education program for non-traditional audiences that also focused on public-private partnerships and nationwide participation. NASA recognized that summer break is an often overlooked but opportune time to engage youth in STEM experiences, and elevated its ongoing commitment to the cultivation of diversity. The Summer of Innovation (SoI) is the resulting initiative that uses NASA's unique missions and resources to boost summer learning, particularly for students who are underrepresented, underserved and underperforming in STEM. The SoI pilot, launched in June 2010, is a multi-faceted effort designed to improve STEM teaching and learning through partnership, multi-week summer learning programs, special events, a national concluding event, and teacher development. The SoI pilot features strategic infusion of NASA content and educational resource materials, sustainability through STEM Learning Communities, and assessments of effectiveness of SoI interventions with other pilot efforts. This paper examines the inception and development of the Summer of Innovation pilot project, including achievements and effectiveness, as well as lessons learned for future efforts.

  15. Leveraging Relational Technology through Industry Partnerships.

    ERIC Educational Resources Information Center

    Brush, Leonard M.; Schaller, Anthony J.

    1988-01-01

    Carnegie Mellon University has leveraged its technological expertise with database management systems (DBMS) into joint technological and developmental partnerships with DBMS and application software vendors. Carnegie's relational database strategy, the strategy of partnerships and how they were formed, and how the partnerships are doing are…

  16. U.S. Climate Change Technology Program: Strategic Plan

    DTIC Science & Technology

    2006-09-01

    and Long Term, provides details on the 85 technologies in the R&D portfolio. 21 (Figure 2-1) Continuing Process The United States, in partnership with...locations may be centered near or in residential locations, and work processes and products may be more commonly communicated or delivered via digital... chemical properties, along with advanced methods to simulate processes , will stem from advances in computational technology. Current Portfolio The current

  17. A Global Assessment of Stem Cell Engineering

    PubMed Central

    Loring, Jeanne F.; McDevitt, Todd C.; Palecek, Sean P.; Schaffer, David V.; Zandstra, Peter W.

    2014-01-01

    Over the last 2 years a global assessment of stem cell engineering (SCE) was conducted with the sponsorship of the National Science Foundation, the National Cancer Institute at the National Institutes of Health, and the National Institute of Standards and Technology. The purpose was to gather information on the worldwide status and trends in SCE, that is, the involvement of engineers and engineering approaches in the stem cell field, both in basic research and in the translation of research into clinical applications and commercial products. The study was facilitated and managed by the World Technology Evaluation Center. The process involved site visits in both Asia and Europe, and it also included several different workshops. From this assessment, the panel concluded that there needs to be an increased role for engineers and the engineering approach. This will provide a foundation for the generation of new markets and future economic growth. To do this will require an increased investment in engineering, applied research, and commercialization as it relates to stem cell research and technology. It also will require programs that support interdisciplinary teams, new innovative mechanisms for academic–industry partnerships, and unique translational models. In addition, the global community would benefit from forming strategic partnerships between countries that can leverage existing and emerging strengths in different institutions. To implement such partnerships will require multinational grant programs with appropriate review mechanisms. PMID:24428577

  18. A global assessment of stem cell engineering.

    PubMed

    Loring, Jeanne F; McDevitt, Todd C; Palecek, Sean P; Schaffer, David V; Zandstra, Peter W; Nerem, Robert M

    2014-10-01

    Over the last 2 years a global assessment of stem cell engineering (SCE) was conducted with the sponsorship of the National Science Foundation, the National Cancer Institute at the National Institutes of Health, and the National Institute of Standards and Technology. The purpose was to gather information on the worldwide status and trends in SCE, that is, the involvement of engineers and engineering approaches in the stem cell field, both in basic research and in the translation of research into clinical applications and commercial products. The study was facilitated and managed by the World Technology Evaluation Center. The process involved site visits in both Asia and Europe, and it also included several different workshops. From this assessment, the panel concluded that there needs to be an increased role for engineers and the engineering approach. This will provide a foundation for the generation of new markets and future economic growth. To do this will require an increased investment in engineering, applied research, and commercialization as it relates to stem cell research and technology. It also will require programs that support interdisciplinary teams, new innovative mechanisms for academic-industry partnerships, and unique translational models. In addition, the global community would benefit from forming strategic partnerships between countries that can leverage existing and emerging strengths in different institutions. To implement such partnerships will require multinational grant programs with appropriate review mechanisms.

  19. An Opportunity for Industry-Academia Partnership: Training the Next Generation of Industrial Researchers in Characterizing Higher Order Protein Structure.

    PubMed

    Bain, David L; Brenowitz, Michael; Roberts, Christopher J

    2016-12-01

    Training researchers for positions in the United States biopharmaceutical industry has long been driven by academia. This commentary explores how the changing landscape of academic training will impact the industrial workforce, particularly with regard to the development of protein therapeutics in the area of biophysical and higher order structural characterization. We discuss how to balance future training and employment opportunities, how academic-industrial partnerships can help young scientists acquire the skills needed by their future employer, and how an appropriately trained workforce can facilitate the translation of new technology from academic to industrial laboratories. We also present suggestions to facilitate the coordinated development of industrial-academic educational partnerships to develop new training programs, and the ability of students to locate these programs, through the development of authoritative public resources. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  20. NASA's Agricultural Program: A USDA/Grower Partnership

    NASA Technical Reports Server (NTRS)

    McKellip, Rodney; Thomas, Michael

    2002-01-01

    Ag20/20 is a partnership between USDA, NASA, and four national commodity associations. It is driven by the information needs of U.S. farmers. Ag20/20 is focused on utilization of earth science and remote sensing for decision-making and oriented toward economically viable operational solutions. Its purpose is to accelerate the use of remote sensing and other geospatial technologies on the farm to: 1) Increase the production efficiency of the American farmer; 2) Reduce crop production risks; 3) Improve environmental stewardship tools for agricultural production.

  1. The Catalyst Scholarship Program at Hunter College. A Partnership among Earth Science, Physics, Computer Science and Mathematics

    ERIC Educational Resources Information Center

    Salmun, Haydee; Buonaiuto, Frank

    2016-01-01

    The Catalyst Scholarship Program at Hunter College of The City University of New York (CUNY) was established with a four-year award from the National Science Foundation (NSF) to fund scholarships to 40 academically talented but financially disadvantaged students majoring in four disciplines of science, technology, engineering and mathematics…

  2. Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olszewski, M.

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and DaimlerChrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Vehicle Systems subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive and heavy truck technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles and heavy trucks will function as a unified system to improve fuel efficiency. This work also supports the development of advanced automotive accessories and the reduction of parasitic losses (e.g., aerodynamic drag, thermal management, friction and wear, and rolling resistance). In supporting the development of hybrid propulsion systems, the Vehicle Systems subprogram has enabled the development of technologies that will significantly improve fuel economy, comply with projected emissions and safety regulations, and use fuels produced domestically. The Vehicle Systems subprogram supports the efforts of the FreedomCAR and Fuel Partnership and the 21st Century Truck Partnership through a three-phase approach intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the Vehicle Systems subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR Program. A key element in making hybrid electric vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) Novel traction motor designs that result in increased power density and lower cost; (2) Inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) Converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) More effective thermal control and packaging technologies; and (5) Integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, Power Electronics and Electric Machinery Program. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2006 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work. Summaries of major accomplishments for each technical project are give.« less

  3. Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olszewski, M.

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of hybrid propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve advanced vehicle efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors, and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs, and fuel-cell-powered automobiles that meet the goals of the Vehicle Technologies Program. A key element in making HEVs practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) more effective thermal control and packaging technologies; and (5) integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies.« less

  4. An Overview of 2014 SBIR Phase I and Phase II Materials Structures for Extreme Environments

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.

    2015-01-01

    NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights nine of the innovative SBIR 2014 Phase I and Phase II projects that emphasize one of NASA Glenn Research Center's six core competencies-Materials and Structures for Extreme Environments. The technologies cover a wide spectrum of applications such as high temperature environmental barrier coating systems, deployable space structures, solid oxide fuel cells, and self-lubricating hard coatings for extreme temperatures. Each featured technology describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brian McPherson

    The Southwest Partnership on Carbon Sequestration completed its Phase I program in December 2005. The main objective of the Southwest Partnership Phase I project was to evaluate and demonstrate the means for achieving an 18% reduction in carbon intensity by 2012. Many other goals were accomplished on the way to this objective, including (1) analysis of CO{sub 2} storage options in the region, including characterization of storage capacities and transportation options, (2) analysis and summary of CO{sub 2} sources, (3) analysis and summary of CO{sub 2} separation and capture technologies employed in the region, (4) evaluation and ranking of themore » most appropriate sequestration technologies for capture and storage of CO{sub 2} in the Southwest Region, (5) dissemination of existing regulatory/permitting requirements, and (6) assessing and initiating public knowledge and acceptance of possible sequestration approaches. Results of the Southwest Partnership's Phase I evaluation suggested that the most convenient and practical ''first opportunities'' for sequestration would lie along existing CO{sub 2} pipelines in the region. Action plans for six Phase II validation tests in the region were developed, with a portfolio that includes four geologic pilot tests distributed among Utah, New Mexico, and Texas. The Partnership will also conduct a regional terrestrial sequestration pilot program focusing on improved terrestrial MMV methods and reporting approaches specific for the Southwest region. The sixth and final validation test consists of a local-scale terrestrial pilot involving restoration of riparian lands for sequestration purposes. The validation test will use desalinated waters produced from one of the geologic pilot tests. The Southwest Regional Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. These partners include 21 state government agencies and universities, five major electric utility companies, seven oil, gas and coal companies, three federal agencies, the Navajo Nation, several NGOs, and the Western Governors Association. This group is continuing its work in the Phase II Validation Program, slated to conclude in 2009.« less

  6. Research and Energy Efficiency: Selected Success Stories

    DOE R&D Accomplishments Database

    Garland, P. W.; Garland, R. W.

    1997-06-26

    Energy use and energy technology play critical roles in the U.S. economy and modern society. The Department of Energy (DOE) conducts civilian energy research and development (R&D) programs for the purpose of identifying promising technologies that promote energy security, energy efficiency, and renewable energy use. DOE-sponsored research ranges from basic investigation of phenomena all the way through development of applied technology in partnership with industry. DOE`s research programs are conducted in support of national strategic energy objectives, however austere financial times have dictated that R&D programs be measured in terms of cost vs. benefit. In some cases it is difficult to measure the return on investment for the basic "curiosity-driven" research, however many applied technology development programs have resulted in measurable commercial successes. The DOE has published summaries of their most successful applied technology energy R&D programs. In this paper, we will discuss five examples from the Building Technologies area of the DOE Energy Efficiency program. Each story will describe the technology, discuss the level of federal funding, and discuss the returns in terms of energy savings, cost savings, or national economic impacts.

  7. Seattle/Lake Washington corridor urban partnership agreement. National evaluation : surveys, interviews and workshops test plan.

    DOT National Transportation Integrated Search

    1998-07-01

    The Rural Public Transportation Technologies: User Needs and Applications study was conducted as part of the U.S. Department of Transportations (DOT) overall Rural Intelligent Transportation System (ITS) Program. The study examined the opportuniti...

  8. 77 FR 6673 - Removal of the Indian HOME Investment Partnerships Program Regulation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ... Removal of the Indian HOME Investment Partnerships Program Regulation AGENCY: Office of the Assistant... outdated regulations for the Indian HOME Investment Partnerships (Indian HOME) program. Under the Indian... Investment Partnerships Program The HOME Investment Partnerships Act (Title II of the Cranston- Gonzales...

  9. Ultra High Bypass Ratio Engine Research for Reducing Noise, Emissions, and Fuel Consumption

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; Schweitzer, Jeff

    2007-01-01

    A pictorial history of NASA development of advanced engine technologies for reducing environmental emissions and increasing performance from the 1970s to 2000s is presented. The goals of the Subsonic Fixed Wing Program portion of the NASA Fundamental Aeronautics Program are discussed, along with the areas of investigation currently being pursued by the Ultra High Bypass Partnership Element of the Subsonic Fixed Wing Program.

  10. Learning and Leading with Technology: A Case Study of Centennial Campus Magnet Middle School

    ERIC Educational Resources Information Center

    Morris-Bryant, Edye Darlene

    2012-01-01

    The purpose of this single case study is to describe and document the implementation of a 1:1 laptop program for a middle school with a unique school-university partnership. The goal of this study is two-fold; one being to describe the implementation of a 1:1 laptop program and to document the lessons learned in leading a 1:1 laptop program. This…

  11. Defense AT and L. Volume 37, Number 6

    DTIC Science & Technology

    2008-12-01

    identifiers. Defense AT&L (ISSN 1547-5476), formerly Program Manager, is published bimonthly by the DAU Press and is free to all U.S. and foreign national...12th grade participated in museum programs designed to make science, technology, and aerospace fun and interesting for all ages. Working with...careers on the base. At the college level, certification programs, cooperative education (co-op) internships, and edu- cational partnerships all

  12. Redefining Scientist-Educator Partnerships: Science in Service at Stanford

    NASA Astrophysics Data System (ADS)

    Beck, K.

    2005-05-01

    The Stanford Solar Observatories Group and Haas Center for Public Service have created an innovative model for scientist-educator partnerships in which science students are trained and mentored by public service education professionals to create outreach events for local communities. The program, Science in Service, is part of the EPO plan for the Solar Group's participation in NASA's Solar Dynamics Observatory mission. Based on the principles of service learning, the Science in Service Program mentors college science students in best practices for communicating science and engages these students in public service projects that center on teaching solar science. The program goals are to - Enhance and expand the learning experiences that pre-college students, from underserved and underrepresented groups in particular, have in science and technology. - Promote leadership in community service in the area of science and engineering among the next generation of scientists and engineers, today's undergraduate students. - Encourage science and engineering faculty to think creatively about their outreach requirements and to create a community of faculty committed to quality outreach programs. This talk will describe the unique advantages and challenges of a research-public service partnership, explain the structure of Stanford's Science in Service Program, and present the experiences of the undergraduates and the outreach communities that have been involved in the program.

  13. Medical Physics Residency Consortium: collaborative endeavors to meet the ABR 2014 certification requirements.

    PubMed

    Parker, Brent C; Duhon, John; Yang, Claus C; Wu, H Terry; Hogstrom, Kenneth R; Gibbons, John P

    2014-03-06

    In 2009, Mary Bird Perkins Cancer Center (MBPCC) established a Radiation Oncology Physics Residency Program to provide opportunities for medical physics residency training to MS and PhD graduates of the CAMPEP-accredited Louisiana State University (LSU)-MBPCC Medical Physics Graduate Program. The LSU-MBPCC Program graduates approximately six students yearly, which equates to a need for up to twelve residency positions in a two-year program. To address this need for residency positions, MBPCC has expanded its Program by developing a Consortium consisting of partnerships with medical physics groups located at other nearby clinical institutions. The consortium model offers the residents exposure to a broader range of procedures, technology, and faculty than available at the individual institutions. The Consortium institutions have shown a great deal of support from their medical physics groups and administrations in developing these partnerships. Details of these partnerships are specified within affiliation agreements between MBPCC and each participating institution. All partner sites began resident training in 2011. The Consortium is a network of for-profit, nonprofit, academic, community, and private entities. We feel that these types of collaborative endeavors will be required nationally to reach the number of residency positions needed to meet the 2014 ABR certification requirements and to maintain graduate medical physics training programs.

  14. An Overview of 2014 SBIR Phase 1 and Phase 2 Communications Technology and Development

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.

    2015-01-01

    NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights eight of the innovative SBIR 2014 Phase I and Phase II projects that emphasize one of NASA Glenn Research Center's six core competencies-Communication Technology and Development. The technologies cover a wide spectrum of applications such as X-ray navigation, microsensor instrument for unmanned aerial vehicle airborne atmospheric measurements, 16-element graphene-based phased array antenna system, interferometric star tracker, ultralow power fast-response sensor, and integrated spacecraft navigation and communication. Each featured technology describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.

  15. Partnering to Change the Way NASA and the Nation Communicate Through Space

    NASA Technical Reports Server (NTRS)

    Vrotsos, Pete A.; Budinger, James M.; Bhasin, Kul; Ponchak, Denise S.

    2000-01-01

    For at least 20 years, the Space Communications Program at NASA Glenn Research Center (GRC) has focused on enhancing the capability and competitiveness of the U.S. commercial communications satellite industry. GRC has partnered with the industry on the development of enabling technologies to help maintain U.S. preeminence in the worldwide communications satellite marketplace. The Advanced Communications Technology Satellite (ACTS) has been the most significant space communications technology endeavor ever performed at GRC, and the centerpiece of GRC's communication technology program for the last decade. Under new sponsorship from NASA's Human Exploration and Development of Space Enterprise, GRC has transitioned the focus and direction of its program, from commercial relevance to NASA mission relevance. Instead of one major experimental spacecraft and one headquarters sponsor, GRC is now exploring opportunities for all of NASA's Enterprises to benefit from advances in space communications technologies, and accomplish their missions through the use of existing and emerging commercially provided services. A growing vision within NASA is to leverage the best commercial standards, technologies, and services as a starting point to satisfy NASA's unique needs. GRC's heritage of industry partnerships is closely aligned with this vision. NASA intends to leverage the explosive growth of the telecommunications industry through its impressive technology advancements and potential new commercial satellite systems. GRC's partnerships with the industry, academia, and other government agencies will directly support all four NASA's future mission needs, while advancing the state of the art of commercial practice. GRC now conducts applied research and develops and demonstrates advanced communications and network technologies in support of all four NASA Enterprises (Human Exploration and Development of Space, Space Science, Earth Science, and Aero-Space Technologies).

  16. FY2014 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Motors Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozpineci, Burak

    The US Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the US Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE’s commitment to developing public–private partnerships to fund high-risk–high-reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from “Freedom” and “Cooperative Automotive Research”) that ran from 2002 throughmore » 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. Oak Ridge National Laboratory’s (ORNL’s) Advanced Power Electronics and Electric Motors (APEEM) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor, and traction drive system (TDS) technologies that will leapfrog current on-the-road technologies, leading to lower cost and better efficiency in transforming battery energy to useful work. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency through research in more efficient TDSs.« less

  17. Wheels With Sense

    NASA Astrophysics Data System (ADS)

    Cambridge, Dwayne; Clauss, Douglas; Hewson, Fraser; Brown, Robert; Hisrich, Robert; Taylor, Cyrus

    2002-10-01

    We describe a student intrapreneurial project in the Physics Entrepreneurship Program at Case Western Reserve University. At the request of a major fortune 100 company, a study has been made of the technical and marketing issues for a new business of selling sensors on commercial vehicle wheels for monitoring pressure, temperature, rotations, and vibrations, as well as providing identification. The nature of the physics involved in the choice of the appropriate device such as capacitive or piezoresistive sensors is discussed, along with the possibility of MEMS (micro-electro-mechanical systems) technology and RFID (radiofrequency identification) readout on wheels. Five options (status quo, in-house development, external business acquisition, a large business national partnership, and a small-business Cleveland consortium partnership) were studied from both technological and business perspectives to commercialize the technology. The decision making process for making a choice is explained.

  18. Building technological capability within satellite programs in developing countries

    NASA Astrophysics Data System (ADS)

    Wood, Danielle; Weigel, Annalisa

    2011-12-01

    This paper explores the process of building technological capability in government-led satellite programs within developing countries. The key message is that these satellite programs can learn useful lessons from literature in the international development community. These lessons are relevant to emerging satellite programs that leverage international partnerships in order to establish local capability to design, build and operate satellites. Countries with such programs include Algeria, Nigeria, Turkey, Malaysia and the United Arab Emirates. The paper first provides background knowledge about space activity in developing countries, and then explores the nuances of the lessons coming from the international development literature. Developing countries are concerned with satellite technology because satellites provide useful services in the areas of earth observation, communication, navigation and science. Most developing countries access satellite services through indirect means such as sharing data with foreign organizations. More countries, however, are seeking opportunities to develop satellite technology locally. There are objective, technically driven motivations for developing countries to invest in satellite technology, despite rich debate on this topic. The paper provides a framework to understand technical motivations for investment in satellite services, hardware, expertise and infrastructure in both short and long term. If a country decides to pursue such investments they face a common set of strategic decisions at the levels of their satellite program, their national context and their international relationships. Analysis of past projects shows that countries have chosen diverse strategies to address these strategic decisions and grow in technological capability. What is similar about the historical examples is that many countries choose to leverage international partnerships as part of their growth process. There are also historical examples from outside the space arena in which organizations have pursued technological capability. Scholars have analyzed these examples and developed insightful frameworks. The paper draws key concepts from this literature about the nature of development, technology, knowledge and organizational learning. These concepts are relevant to learning in new satellite programs, but the ideas must be applied cautiously because of the nature of satellite technology. The paper draws three major lessons from the international development literature regarding absorptive capacity, tacit knowledge and organizational learning; it synthesizes these lessons into a cohesive, original framework. The closing section proposes future work on a detailed study of technological learning in specific government satellite programs.

  19. NASA Goddard Thermal Technology Overview 2017

    NASA Technical Reports Server (NTRS)

    Butler, Dan; Swanson, Ted

    2017-01-01

    This presentation summarizes the current plans and efforts at NASA Goddard to develop new thermal control technology for anticipated future missions. It will also address some of the programmatic developments currently underway at NASA, especially with respect to the NASA Technology Development Program. The effects of the recently enacted FY 17 NASA budget, which includes a sizeable increase, will also be addressed. While funding for basic technology development is still tight, significant efforts are being made in direct support of flight programs. Thermal technology Implementation on current flight programs will be reviewed, and the recent push for CubeSat mission development will also be addressed. Many of these technologies also have broad applicability to DOD (Dept. of Defense), DOE (Dept. of the Environment), and commercial programs. Partnerships have been developed with the Air Force, Navy, and various universities to promote technology development. In addition, technology development activities supported by internal research and development (IRAD) program and the Small Business Innovative Research (SBIR) program are reviewed in this presentation. Specific technologies addressed include; two-phase systems applications and issues on NASA missions, latest developments of electro-hydrodynamically pumped systems, Atomic Layer Deposition (ALD), Micro-scale Heat Transfer, and various other research activities.

  20. NASA Goddard Thermal Technology Overview 2016

    NASA Technical Reports Server (NTRS)

    Butler, Dan; Swanson, Ted

    2016-01-01

    This presentation summarizes the current plans and efforts at NASA Goddard to develop new thermal control technology for anticipated future missions. It will also address some of the programmatic developments currently underway at NASA, especially with respect to the NASA Technology Development Program. The effects of the recently enacted FY 16 NASA budget, which includes a sizeable increase, will also be addressed. While funding for basic technology development is still tight, significant efforts are being made in direct support of flight programs. Thermal technology implementation on current flight programs will be reviewed, and the recent push for Cube-sat mission development will also be addressed. Many of these technologies also have broad applicability to DOD, DOE, and commercial programs. Partnerships have been developed with the Air Force, Navy, and various universities to promote technology development. In addition, technology development activities supported by internal research and development (IRAD) program and the Small Business Innovative Research (SBIR) program are reviewed in this presentation. Specific technologies addressed include; two-phase systems applications and issues on NASA missions, latest developments of electro-hydrodynamically pumped systems, Atomic Layer Deposition (ALD), Micro-scale Heat Transfer, and various other research activities.

  1. What Works? Common Practices in High Functioning Afterschool Programs across the Nation in Math, Reading, Science, Arts, Technology, and Homework--A Study by the National Partnership. The Afterschool Program Assessment Guide. CRESST Report 768

    ERIC Educational Resources Information Center

    Huang, Denise; Cho, Jamie; Mostafavi, Sima; Nam, Hannah H.; Oh, Christine; Harven, Aletha; Leon, Seth

    2010-01-01

    In an effort to identify and incorporate exemplary practices into existing and future afterschool programs, the U.S. Department of Education commissioned a large-scale evaluation of the 21st Century Community Learning Center (CCLC) program. The purpose of this evaluation project was to develop resources and professional development that addresses…

  2. Sandia National Laboratories:

    Science.gov Websites

    Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for Development Agreement (CRADA) Strategic Partnership Projects, Non-Federal Entity (SPP/NFE) Agreements New Browse Technology Portfolios Technology Partnerships Business, Industry, & Non-Profits Government

  3. Factors related to the economic sustainability of two-year chemistry-based technology training programs

    NASA Astrophysics Data System (ADS)

    Backus, Bridgid A.

    Two-year chemistry-based technology training (CBTT) programs in the U.S. are important in the preparation of the professional technical workforce. The purpose of this study was to identify, examine, and analyze factors related to the economic sustainability of CBTT programs. A review of literature identified four clustered categories of 31 sub-factors related to program sustainability. Three research questions relating to program sustainability were: (1) What is the relative importance of the identified factors?, (2) What differences exist between the opinions of administrators and faculty?, and (3) What are the interrelationships among the factors? In order to answer these questions, survey data gathered from CBTT programs throughout the United States were analyzed statistically. Conclusions included the following: (1) Rank order of the importance to sustainability of the clustered categories was: (1) Partnerships, (2) Employer and Student Educational Goals, (3) Faculty and Their Resources, and (4) Community Perceptions and Marketing Strategies. (2) Significant correlations between ratings of sustainability and the sub-factors included: degree of partnering, college responsiveness, administration involvement in partnerships, experiential learning opportunities, employer input in curriculum development, use of skill standards, number of program graduates, student job placement, professional development opportunities, administrator support, presence of a champion, flexible scheduling, program visibility, perception of chemical technicians, marketing plans, and promotion to secondary students. (3) Faculty and administrators differed significantly on only two sub-factor ratings: employer assisted curriculum development, and faculty workloads. (4) Significant differences in ratings by small program faculty and administrators and large program faculty and administrators were indicated, with most between small program faculty and large program administrators. The study concluded with suggestions for educators, employers, professional organizations, and legislators. These suggestions included: Educators should work collaboratively in partnerships to encourage employer input, internships, and job placement of graduates. Programs should be supported by administrators and continued outside resources. Professional development opportunities should be afforded to faculty, along with reasonable workloads. Programs need high community visibility and should be promoted to secondary students. Finally, program size should be considered when adopting strategies for CBTT program sustainability.

  4. Commercial Building Partnerships Replication and Diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonopoulos, Chrissi A.; Dillon, Heather E.; Baechler, Michael C.

    2013-09-16

    This study presents findings from survey and interview data investigating replication efforts of Commercial Building Partnership (CBP) partners that worked directly with the Pacific Northwest National Laboratory (PNNL). PNNL partnered directly with 12 organizations on new and retrofit construction projects, which represented approximately 28 percent of the entire U.S. Department of Energy (DOE) CBP program. Through a feedback survey mechanism, along with personal interviews, PNNL gathered quantitative and qualitative data relating to replication efforts by each organization. These data were analyzed to provide insight into two primary research areas: 1) CBP partners’ replication efforts of technologies and approaches used inmore » the CBP project to the rest of the organization’s building portfolio (including replication verification), and, 2) the market potential for technology diffusion into the total U.S. commercial building stock, as a direct result of the CBP program. The first area of this research focused specifically on replication efforts underway or planned by each CBP program participant. Factors that impact replication include motivation, organizational structure and objectives firms have for implementation of energy efficient technologies. Comparing these factors between different CBP partners revealed patterns in motivation for constructing energy efficient buildings, along with better insight into market trends for green building practices. The second area of this research develops a diffusion of innovations model to analyze potential broad market impacts of the CBP program on the commercial building industry in the United States.« less

  5. Creative Partnerships for Funding Nursing Research

    PubMed Central

    McCann, Judith J.; Hills, Elizabeth Blanchard; Zauszniewski, Jaclene A.; Smith, Carol E.; Farran, Carol J.; Wilkie, Diana J.

    2013-01-01

    The Small Business Innovation Research (SBIR) program and the Small Business Technology Transfer Research (STTR) program are two federal funding mechanisms that some nurses in academic positions have used to support research and development of innovative nursing products or services. Both the SBIR and STTR mechanisms are excellent sources of funding for nurse researchers who want to capitalize on relationships with small businesses or obtain seed money to fund high risk projects with potential to attract new venture capital. This paper provides an overview of NIH-funded SBIR and STTR programs and summarizes similarities and differences between the programs. The paper also describes unique features of NIH SBIR and STTR funding mechanisms that differentiate them from other R-series funding mechanisms, reviews evaluation criteria for SBIR and STTR projects, and discusses critical partners and resources for proposal development. Finally, the paper describes characteristics of successful partnerships and provides examples of SBIR/STTR-funded projects. PMID:20719996

  6. Creative partnerships for funding nursing research.

    PubMed

    McCann, Judith J; Hills, Elizabeth Blanchard; Zauszniewski, Jaclene A; Smith, Carol E; Farran, Carol J; Wilkie, Diana J

    2011-02-01

    The Small Business Innovation Research (SBIR) program and the Small Business Technology Transfer Research (STTR) program are two federal funding mechanisms that some nurses in academic positions have used to support research and development of innovative nursing products or services. Both the SBIR and STTR mechanisms are excellent sources of funding for nurse researchers who want to capitalize on relationships with small businesses or obtain seed money to fund high-risk projects with potential to attract new venture capital. This article provides an overview of National Institutes of Health (NIH)-funded SBIR and STTR programs and summarizes similarities and differences between the programs. The article also describes unique features of NIH SBIR and STTR funding mechanisms that differentiate them from other R-series funding mechanisms, reviews evaluation criteria for SBIR and STTR projects, and discusses critical partners and resources for proposal development. Finally, the article describes characteristics of successful partnerships and provides examples of SBIR/STTR-funded projects.

  7. Alabama's Education Coalition Focuses on Supporting the State's Math, Science and Technology Initiative and on Building Distance Learning Programs

    NASA Astrophysics Data System (ADS)

    Denson, R. L.

    2003-12-01

    The Alabama Math Science Technology Educational Coalition (AMSTEC) was formed as a non-profit after a 1998 NASA Linking Leaders program brought in education and corporate leaders to address systemic education reform in Alabama public schools. AMSTEC was instrumental in the creation of the Alabama Math Science Technology Initiative (AMSTI), a K-12 program designed using data from national and international research and local teacher survey. In the face of dwindling government support in a state ranked last in education funding, AMSTEC believes that its best hope for improved STEM education lies in strengthening its community/industry partnerships and building upon the Department of Education's newly created AMSTI program. NASA's GLOBE program is the primary earth science education component being integrated into AMSTI. AMSTI is structured to provide teachers with (1) the materials, equipment, technology and supplies necessary to deliver high quality, inquiry-based instruction; (2) professional development linked directly to the educational resources with the intent of strengthening content knowledge, instructional strategies, and use of assessment tools; and (3) on-site support and mentoring throughout the year in the interest of achieving these goals. Roles for community partners to support these objectives far exceed that of mere funding - especially in the area of mentoring and professional development. Currently, AMSTEC consists of 100+ members including classroom teachers and district officers, education department representatives from higher educational institutions, policy makers and administrators, and government and industry representatives. AMSTEC remains partially tied to NASA fiscally and is administratively housed by the National Space Science and Technology Center's Earth System Science Center. AMSTEC's partnership emphasis is focused on increasing corporate and industry participation to support the implementation of AMSTI and its hub-site-based program. Future foci for AMSTEC are development and implementation of distance learning programs across Alabama's K-12 public schools.

  8. FY2011 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olszewski, Mitchell

    The U.S. Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the U.S. Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE's commitment to developing public-private partnerships to fund high risk-high reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research') that ran frommore » 2002 through 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machines (PEEM) subprogram within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the PEEM subprogram has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The PEEM subprogram supports the efforts of the U.S. DRIVE partnership through a three phase approach intended to: (1) identify overall propulsion and vehicle related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component R&D activities; (2) develop and validate individual subsystems and components, including EMs and PE; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), battery electric vehicles, and fuel-cell-powered automobiles that meet the goals of the VTP. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, efficiency, and cost targets for the PE and EM subsystems of the traction drive system. Areas of development include: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency with the ability to accommodate higher temperature environments while achieving high reliability; (3) converter concepts that use methods of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control through innovative packaging technologies; and (6) integrated motor-inverter traction drive system concepts. ORNL's PEEM research program conducts fundamental research, evaluates hardware, and assists in the technical direction of the VTP Advanced Power Electronics and Electric Motors (APEEM) program. In this role, ORNL serves on the U.S. DRIVE Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. DOE's continuing R&D into advanced vehicle technologies for transportation offers the possibility of reducing the nation's dependence on foreign oil and the negative economic impacts of crude oil price fluctuations. It also supports the Administration's goal of deploying 1 million PHEVs by 2015.« less

  9. Integration of Old and New Technology: Computers, Photography, and Video Technology in an Even Start Family Literacy Project.

    ERIC Educational Resources Information Center

    Landerholm, Elizabeth

    McCosh Even Start is a federally funded project at McCosh School in an inner-city Chicago neighborhood and is administered as a partnership between Northeastern Illinois University and the Chicago Public Schools. The program's goals are to help parents: (1) become involved with the school by becoming comfortable at the school, making friends, and…

  10. Strengthening Educational Technology in K-8 Urban Schools and in Preservice Teacher Education: A Practitioner-Faculty Collaborative Process

    ERIC Educational Resources Information Center

    Murphy, Karen; Richards, Judith; Lewis, Colleen; Carman, Elizabeth

    2005-01-01

    If classroom teachers are to meet the need for meaningful integration of technology in educational settings, there must be a restructuring of both teacher preparation programs and current classroom practice. The purpose of this paper is to share the progress of a collaborative partnership between an urban school district and a college of education…

  11. Development of Multi-Disciplinary Finite Element Method Analysis Courses at California State University, Los Angeles

    NASA Technical Reports Server (NTRS)

    McKinney, John; Wu, Chivey

    1998-01-01

    The NASA Dryden Flight Research Center (DFRC) Partnership Awards Grant to California State University, Los Angeles (CSULA) has two primary goals that help to achieve NASA objectives. The overall objectives of the NASA Partnership Awards are to create opportunities for joint University NASA/Government sponsored research and related activities. One of the goals of the grant is to have university faculty researchers participate and contribute to the development of NASA technology that supports NASA goals for research and development (R&D) in Aeronautics and Astronautics. The other goal is technology transfer in the other direction, where NASA developed technology is made available to the general public and more specifically, targeted to industries that can profit from utilization of government developed technology. This years NASA Dryden Partnership Awards grant to CSULA entitled, "Computer Simulation of Multi-Disciplinary Engineering Systems", has two major tasks that satisfy overall NASA objectives. The first task conducts basic and applied research that contributes to technology development at the Dryden Flight Research Center. The second part of the grant provides for dissemination of NASA developed technology, by using the teaching environment created in the CSULA classroom. The second task and how this is accomplished is the topic of this paper. The NASA STARS (Structural Analysis Routines) computer simulation program is used at the Dryden center to support flight testing of high-performance experimental aircraft and to conduct research and development of new and advanced Aerospace technology.

  12. The United States Department of Energy's Regional Carbon Sequestration Partnerships program: a collaborative approach to carbon management.

    PubMed

    Litynski, John T; Klara, Scott M; McIlvried, Howard G; Srivastava, Rameshwar D

    2006-01-01

    This paper reviews the Regional Carbon Sequestration Partnerships (RCSP) concept, which is a first attempt to bring the U.S. Department of Energy's (DOE) carbon sequestration program activities into the "real world" by using a geographically-disposed-system type approach for the U.S. Each regional partnership is unique and covers a unique section of the U.S. and is tasked with determining how the research and development activities of DOE's carbon sequestration program can best be implemented in their region of the country. Although there is no universal agreement on the cause, it is generally understood that global warming is occurring, and many climate scientists believe that this is due, in part, to the buildup of carbon dioxide (CO(2)) in the atmosphere. This is evident from the finding presented in the National Academy of Science Report to the President on Climate Change which stated "Greenhouse gases are accumulating in Earth's atmosphere as a result of human activities, causing surface air temperatures and subsurface ocean temperatures to rise. Temperatures are, in fact, rising. The changes observed over the last several decades are likely mostly due to human activities, ...". In the United States, emissions of CO(2) originate mainly from the combustion of fossil fuels for energy production, transportation, and other industrial processes. Roughly one third of U.S. anthropogenic CO(2) emissions come from power plants. Reduction of CO(2) emissions through sequestration of carbon either in geologic formations or in terrestrial ecosystems can be part of the solution to the problem of global warming. However, a number of steps must be accomplished before sequestration can become a reality. Cost effective capture and separation technology must be developed, tested, and demonstrated; a database of potential sequestration sites must be established; and techniques must be developed to measure, monitor, and verify the sequestered CO(2). Geographical differences in fossil fuel use, the industries present, and potential sequestration sinks across the United States dictate the use of a regional approach to address the sequestration of CO(2). To accommodate these differences, the DOE has created a nationwide network of seven Regional Carbon Sequestration Partnerships (RCSP) to help determine and implement the carbon sequestration technologies, infrastructure, and regulations most appropriate to promote CO(2) sequestration in different regions of the nation. These partnerships currently represent 40 states, three Indian Nations, four Canadian Provinces, and over 200 organizations, including academic institutions, research institutions, coal companies, utilities, equipment manufacturers, forestry and agricultural representatives, state and local governments, non-governmental organizations, and national laboratories. These partnerships are dedicated to developing the necessary infrastructure and validating the carbon sequestration technologies that have emerged from DOE's core R&D and other programs to mitigate emissions of CO(2), a potent greenhouse gas. The partnerships provide a critical link to DOE's plans for FutureGen, a highly efficient and technologically sophisticated coal-fired power plant that will produce both hydrogen and electricity with near-zero emissions. Though limited to the situation in the U.S., the paper describes for the international scientific community the approach being taken by the U.S. to prepare for carbon sequestration, should that become necessary.

  13. URobotics—Urology Robotics at Johns Hopkins

    PubMed Central

    Stoianovici, D

    2011-01-01

    URobotics (Urology Robotics) is a program of the Urology Department at the Johns Hopkins Medical Institutions dedicated to the development of new technology for urologic surgery (http://urology.jhu.edu/urobotics). The program is unique in that it is the only academic engineering program exclusively applied to urology. The program combines efforts and expertise from the medical and engineering fields through a close partnership of clinical and technical personnel. Since its creation in 1996, the URobotics lab has created several devices, instruments, and robotic systems, several of which have been successfully used in the operating room. This article reviews the technology developed in our laboratory and its surgical applications, and highlights our future directions. PMID:11954067

  14. Reaching for the Stars: A New NASA-National Federation of the Blind Initiative

    NASA Astrophysics Data System (ADS)

    Maynard, N. G.; Riccobono, M. A.

    2004-12-01

    The National Aeronautics and Space Administration (NASA) and the National Federation of the Blind (NFB) recently launched a unique new partnership which will inspire and empower blind youth to consider opportunities in science, technologies, engineering, and math related careers from which they have typically been excluded. This partnership presents a framework for successful cultivation of the next generation of scientists. By partnering with the NFB Jernigan Institute, a one of a kind research and training facility developed and directed by blind people, NASA has engaged the most powerful tool for tapping the potential of blind youth. By teaming NASA scientists and engineers with successful blind adults within a national organization, the NFB, this partnership has established an unparalleled pipeline of talent and imagination. The NASA/NFB partnership seeks to facilitate the means that will lead to increased science and technology employment opportunities for the blind, and particularly within NASA. The initiative is facilitating the development of education programs and products which will stimulate better educational opportunities and supports for blind youth in the STEM areas and better preparing them to enter the NASA employment path. In addition, the partnership brings the unique perspective of the blind to the continuing effort to develop improved space technologies, which may be applied for navigation and wayfinding, technologies for education and outreach, and technologies for improving access to information using nonvisual techniques. This presentation describes some of the activities accomplished in the first year of the partnership. Examples include the establishment of the first NFB Science Academy for Blind Youth which included two summer science camps supported by NASA. During the first camp session, twelve middle school age blind youth explored earth science concepts such as identification and characterization of soils, weather parameters, plants, and the independent dissection of a dog fish shark. During the second camp, twelve high school age blind youth prepared a science payload for a one half size patriot rocket fueled by a hybrid rocket motor and successfully completed the procedures necessary to launch the rocket from the Wallops Flight Facility. These and other activities will be highlighted to demonstrate the effectiveness of partnership, imagination, and innovation that has come from the collaboration between these two organizations.

  15. The Wireless Student & the Library.

    ERIC Educational Resources Information Center

    Drew, Bill

    2002-01-01

    Describes a program at the State University of New York College of Agriculture and Technology at Morrisville (SUNY-Morrisville) developed with IBM called ThinkPad University that integrates computers into the teaching and learning environment. Explains a partnership with Raytheon that provides wireless connectivity; and discusses changes in…

  16. The Regional Integrated Sciences and Assessments (RISA) Program, Climate Services, and Meeting the National Climate Change Adaptation Challenge

    NASA Astrophysics Data System (ADS)

    Overpeck, J. T.; Udall, B.; Miles, E.; Dow, K.; Anderson, C.; Cayan, D.; Dettinger, M.; Hartmann, H.; Jones, J.; Mote, P.; Ray, A.; Shafer, M.; White, D.

    2008-12-01

    The NOAA-led RISA Program has grown steadily to nine regions and a focus that includes both natural climate variability and human-driven climate change. The RISAs are, at their core, university-based and heavily invested in partnerships, particularly with stakeholders, NOAA, and other federal agencies. RISA research, assessment and partnerships have led to new operational climate services within NOAA and other agencies, and have become important foundations in the development of local, state and regional climate change adaptation initiatives. The RISA experience indicates that a national climate service is needed, and must include: (1) services prioritized based on stakeholder needs; (2) sustained, ongoing regional interactions with users, (3) a commitment to improve climate literacy; (4) support for assessment as an ongoing, iterative process; (5) full recognition that stakeholder decisions are seldom made using climate information alone; (6) strong interagency partnership; (7) national implementation and regional in focus; (8) capability spanning local, state, tribal, regional, national and international space scales, and weeks to millennia time scales; and (9) institutional design and scientific support flexible enough to assure the effort is nimble enough to respond to rapidly-changing stakeholder needs. The RISA experience also highlights the central role that universities must play in national climate change adaptation programs. Universities have a tradition of trusted regional stakeholder partnerships, as well as the interdisciplinary expertise - including social science, ecosystem science, law, and economics - required to meet stakeholder climate-related needs; project workforce can also shift rapidly in universities. Universities have a proven ability to build and sustain interagency partnerships. Universities excel in most forms of education and training. And universities often have proven entrepreneurship, technology transfer and private sector partnership capability.

  17. FY2007 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olszewski, Mitchell

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as 'FreedomCAR' (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieving the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of hybrid propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve advanced vehicle efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR and Vehicle Technologies Program. A key element in making hybrid electric vehicles (HEVs) practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) more effective thermal control and packaging technologies; and (5) integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2007 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work.« less

  18. Universal Signal Conditioning Amplifier

    NASA Technical Reports Server (NTRS)

    Kinney, Frank

    1997-01-01

    The Technological Research and Development Authority (TRDA) and NASA-KSC entered into a cooperative agreement in March of 1994 to achieve the utilization and commercialization of a technology development for benefiting both the Space Program and U.S. industry on a "dual-use basis". The technology involved in this transfer is a new, unique Universal Conditioning Amplifier (USCA) used in connection with various types of transducers. The project was initiated in partnership with I-Net Corporation, Lockheed Martin Telemetry & Instrumentation (formerly Loral Test and Information Systems) and Brevard Community College. The project consists of designing, miniaturizing, manufacturing, and testing an existing prototype of USCA that was developed for NASA-KSC by the I-Net Corporation. The USCA is a rugged and field-installable self (or remotely)- programmable amplifier that works in combination with a tag random access memory (RAM) attached to various types of transducers. This summary report comprises performance evaluations, TRDA partnership tasks, a project summary, project milestones and results.

  19. Regional convergence platforms in Europe—Innovation for space through technology partnerships

    NASA Astrophysics Data System (ADS)

    Bütfering, Peter

    2010-05-01

    Upcoming European and national space exploration programs and projects require new capabilities and scientific-technological solutions, and therefore external contributions to innovation. On the other hand European core (industrial) regions are searching of partners for innovation to strengthen their regional economy. In this context the German-based company European Space Innovation AG (former Adam Alva Neil)—highly experienced in the area of convergence activities between space and other sectors—has developed the model of regional convergence platforms (named 'SpaceInnovation'). These platforms are designed to foster technology partnerships between regional companies and institutes from 'non-space' and the space sector (agencies/industry). The article reflects this regional approach and shows examples in three different directions: SpaceInnovation Saar, an benchmark convergence platform initiated by the Saarland region. SpaceInnovation Europe, an European regions network approach. European SpaceInnovation Agent, an interface approach for systematic and sustainable convergence activities.

  20. Advancing the science for active surveillance: rationale and design for the Observational Medical Outcomes Partnership.

    PubMed

    Stang, Paul E; Ryan, Patrick B; Racoosin, Judith A; Overhage, J Marc; Hartzema, Abraham G; Reich, Christian; Welebob, Emily; Scarnecchia, Thomas; Woodcock, Janet

    2010-11-02

    The U.S. Food and Drug Administration (FDA) Amendments Act of 2007 mandated that the FDA develop a system for using automated health care data to identify risks of marketed drugs and other medical products. The Observational Medical Outcomes Partnership is a public-private partnership among the FDA, academia, data owners, and the pharmaceutical industry that is responding to the need to advance the science of active medical product safety surveillance by using existing observational databases. The Observational Medical Outcomes Partnership's transparent, open innovation approach is designed to systematically and empirically study critical governance, data resource, and methodological issues and their interrelationships in establishing a viable national program of active drug safety surveillance by using observational data. This article describes the governance structure, data-access model, methods-testing approach, and technology development of this effort, as well as the work that has been initiated.

  1. National Academies-Review of the Research Program of the FreedomCAR and Fuel Partnership. Third Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2011-06-09

    This report by the National Research Council's (NRC's) Committee on Review of the FreedomCAR and Fuel Research Program, Phase 3, is the third NRC review. The Phase 1 and Phase 2 reviews were issued in 2005 and 2008, respectively (NRC, 2005, 2008). The long-range goals of the Partnership focus on a transition to a highway transportation system that uses sustainable energy resources and reduces emissions, including net carbon emissions, on a life-cycle or well (source)-to-wheels basis (DOE, 2004). The Partnership focuses on precompetitive research and development (R&D) that can help to accelerate the emergence of technologies that can meet themore » long-range goals. • This review document is published by National Academies Press. You may (a) read the text for free on the National Academies Press web site, (b) download a free PDF after providing some identifying information, or (c) purchase a paperback copy of the book.« less

  2. Bringing the Great American Eclipse of 2017 to Audiences across the Nation

    NASA Astrophysics Data System (ADS)

    Young, C. A.; Mayo, L.; Cline, T. D.; Ng, C.; Stephenson, B. E.

    2015-12-01

    The August 21, 2017 eclipse across America will be seen by an estimated 500 million people from northern Canada to South America as well as parts of western Europe and Africa. Through This "Great American Eclipse" NASA in partnership with Google, the American Parks Network, American Astronomical Society, the Astronomical League, and numerous other science, education, outreach, and public communications groups and organizations will develop the approaches, resources, partnerships, and technology applications necessary to bring the excitement and the science of the August 21st, 2017 total solar eclipse across America to formal and informal audiences in the US and around the world. This effort will be supported by the highly visible and successful Sun Earth Days program and will be the main theme for Sun-Earth Days 2017.This presentation will discuss NASA's education and communication plans for the eclipse and will detail a number of specific programs and partnerships being leveraged to enhance our reach and impact.

  3. State investments in high-technology job growth.

    PubMed

    Leicht, Kevin T; Jenkins, J Craig

    2017-07-01

    Since the early 1970's state and local governments have launched an array of economic development programs designed to promote high-technology development. The question our analysis addresses is whether these programs promote long-term high-technology employment growth net of state location and agglomeration advantages. Proponents talk about an infrastructure strategy that promotes investment in public research and specialized infrastructure to attract and grow new high technology industries in specific locations, and a more decentralized entrepreneurial strategy that reinforces local agglomeration capacities by investing in new enterprises and products, promoting the development of local networks and partnerships. Our results support the entrepreneurial strategy, suggesting that state governments can accelerate high technology development by adopting market-supportive programs that complement private sector initiatives. In addition to positive direct benefits of technology deployment/transfer programs and SBIR programs, entrepreneurial programs affect change in high-technology employment in concert with existing locational and agglomeration advantages. Rural (i.e. low population density) states tend to benefit by technology development programs. Infrastructure strategy programs also facilitate high technology job growth in places where local advantages already exist. Our results suggest that critics of industrial policy are correct that high technology growth is organic and endogenous, yet state governments are able to "pick winners and losers" in ways that grow their local economy. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Medical Physics Residency Consortium: collaborative endeavors to meet the ABR 2014 certification requirements

    PubMed Central

    Parker, Brent C.; Duhon, John; Yang, Claus C.; Wu, H. Terry; Hogstrom, Kenneth R.

    2014-01-01

    In 2009, Mary Bird Perkins Cancer Center (MBPCC) established a Radiation Oncology Physics Residency Program to provide opportunities for medical physics residency training to MS and PhD graduates of the CAMPEP‐accredited Louisiana State University (LSU)‐MBPCC Medical Physics Graduate Program. The LSU‐MBPCC Program graduates approximately six students yearly, which equates to a need for up to twelve residency positions in a two‐year program. To address this need for residency positions, MBPCC has expanded its Program by developing a Consortium consisting of partnerships with medical physics groups located at other nearby clinical institutions. The consortium model offers the residents exposure to a broader range of procedures, technology, and faculty than available at the individual institutions. The Consortium institutions have shown a great deal of support from their medical physics groups and administrations in developing these partnerships. Details of these partnerships are specified within affiliation agreements between MBPCC and each participating institution. All partner sites began resident training in 2011. The Consortium is a network of for‐profit, nonprofit, academic, community, and private entities. We feel that these types of collaborative endeavors will be required nationally to reach the number of residency positions needed to meet the 2014 ABR certification requirements and to maintain graduate medical physics training programs. PACS numbers: 01.40.Fk, 01.40.gb PMID:24710434

  5. KSC Tech Transfer News, Volume 5, No. 2

    NASA Technical Reports Server (NTRS)

    Nichols, James D.

    2013-01-01

    Kennedy Tech Transfer News is the semiannual magazine of the Innovative Partnerships Program Office at NASA Kennedy Space Center in Cape Canaveral, Florida. This magazine seeks to inform and educate cMI servant and Contractor personnel at Kennedy about actively participating in achieving NASA's technology transfer goals

  6. John C. Stennis Space Center: Partnerships for ISHM Technology Development and Applications

    NASA Technical Reports Server (NTRS)

    Figueroa, Jorge F.; Schmalzel, John; Turowski, Mark; Morris, John; Smith, Harvey

    2008-01-01

    This poster shows the partners that work with NASA's Stennis Space Center's NASA Test Operations Group in development of Integrated Systems Health Management (ISHM) applications for various programs. The partners are from universities, other US government agencies, private firms and other NASA Centers.

  7. Serving up Access

    ERIC Educational Resources Information Center

    Rich, Sarah

    2011-01-01

    When low-income students returned to Chicago public schools this fall, many had better access to technology, thanks to a public-private partnership. Chicago families with children enrolled in the National School Lunch Program are eligible for subsidized computers and Internet connections through an agreement between the city and telecom giant…

  8. Developing technology -- a forest health partnership

    Treesearch

    John W. Barry; Harold W. Thistle

    1995-01-01

    Since the early 1960's Missoula Technology and Development Center (MTDC) and Forest Pest Management (FPM) have worked in partnership developing technology to support forest health and silviculture. Traditionally this partnership has included cooperators from other agencies, States, foreign governments, academia, industry, and individual landowners. The FPM...

  9. Progress Cleaning the Air: Voluntary Partnership Program Accomplishments

    EPA Pesticide Factsheets

    EPA voluntary clean air partnership programs work in tandem with regulatory programs to protect public health and the environment. This page highlights accomplishments of selected partnership programs.

  10. Aircraft Engine Technology for Green Aviation to Reduce Fuel Burn

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; VanZante, Dale E.; Heidmann, James D.

    2013-01-01

    The NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project and Integrated Systems Research Program Environmentally Responsible Aviation Project in the Aeronautics Research Mission Directorate are conducting research on advanced aircraft technology to address the environmental goals of reducing fuel burn, noise and NOx emissions for aircraft in 2020 and beyond. Both Projects, in collaborative partnerships with U.S. Industry, Academia, and other Government Agencies, have made significant progress toward reaching the N+2 (2020) and N+3 (beyond 2025) installed fuel burn goals by fundamental aircraft engine technology development, subscale component experimental investigations, full scale integrated systems validation testing, and development validation of state of the art computation design and analysis codes. Specific areas of propulsion technology research are discussed and progress to date.

  11. Tracking Health Data Is Not Enough: A Qualitative Exploration of the Role of Healthcare Partnerships and mHealth Technology to Promote Physical Activity and to Sustain Behavior Change.

    PubMed

    Miyamoto, Sheridan W; Henderson, Stuart; Young, Heather M; Pande, Amit; Han, Jay J

    2016-01-20

    Despite the recent explosion of the mobile health (mHealth) industry and consumer acquisition of mHealth tools such as wearable sensors and applications (apps), limited information is known about how this technology can sustain health behavior change and be integrated into health care. The objective of the study was to understand potential users' views of mHealth technology, the role this technology may have in promoting individual activity goals aimed at improving health, and the value of integrating mHealth technology with traditional health care. Four focus groups were conducted with adults interested in sharing their views on how mHealth technology could support wellness programs and improve health. Participants (n=30) were enrolled from an employee population at an academic health institution. Qualitative thematic analysis was used to code transcripts and identify overarching themes. Our findings suggest that tracking health data alone may result in heightened awareness of daily activity, yet may not be sufficient to sustain use of mHealth technology and apps, which often have low reuse rates. Participants suggested that context, meaning, and health care partnerships need to be incorporated to engage and retain users. In addition to these findings, drivers for mHealth technology previously identified in the literature, including integration and control of health data were confirmed in this study. This study explores ways that mHealth technologies may be used to not only track data, but to encourage sustained engagement to achieve individual health goals. Implications of these findings include recommendations for mHealth technology design and health care partnership models to sustain motivation and engagement, allowing individuals to achieve meaningful behavior change.

  12. Tracking Health Data Is Not Enough: A Qualitative Exploration of the Role of Healthcare Partnerships and mHealth Technology to Promote Physical Activity and to Sustain Behavior Change

    PubMed Central

    Young, Heather M; Pande, Amit; Han, Jay J

    2016-01-01

    Background Despite the recent explosion of the mobile health (mHealth) industry and consumer acquisition of mHealth tools such as wearable sensors and applications (apps), limited information is known about how this technology can sustain health behavior change and be integrated into health care. Objective The objective of the study was to understand potential users’ views of mHealth technology, the role this technology may have in promoting individual activity goals aimed at improving health, and the value of integrating mHealth technology with traditional health care. Methods Four focus groups were conducted with adults interested in sharing their views on how mHealth technology could support wellness programs and improve health. Participants (n=30) were enrolled from an employee population at an academic health institution. Qualitative thematic analysis was used to code transcripts and identify overarching themes. Results Our findings suggest that tracking health data alone may result in heightened awareness of daily activity, yet may not be sufficient to sustain use of mHealth technology and apps, which often have low reuse rates. Participants suggested that context, meaning, and health care partnerships need to be incorporated to engage and retain users. In addition to these findings, drivers for mHealth technology previously identified in the literature, including integration and control of health data were confirmed in this study. Conclusions This study explores ways that mHealth technologies may be used to not only track data, but to encourage sustained engagement to achieve individual health goals. Implications of these findings include recommendations for mHealth technology design and health care partnership models to sustain motivation and engagement, allowing individuals to achieve meaningful behavior change. PMID:26792225

  13. Challenges to establishing successful partnerships in community health promotion programs: local experiences from the national implementation of healthy eating activity and lifestyle (HEAL™) program.

    PubMed

    Dennis, Sarah; Hetherington, Sharon A; Borodzicz, Jerrad A; Hermiz, Oshana; Zwar, Nicholas A

    2015-04-01

    Community-based programs to address physical activity and diet are seen as a valuable strategy to reduce risk factors for chronic disease. Community partnerships are important for successful local implementation of these programs but little is published to describe the challenges of developing partnerships to implement health promotion programs. The aim of this study was to explore the experiences and opinions of key stakeholders on the development and maintenance of partnerships during their implementation of the HEAL™ program. Semi-structured interviews with key stakeholders involved in implementation of HEAL™ in four local government areas. The interviews were transcribed verbatim and analysed thematically. Partnerships were vital to the success of the local implementation. Successful partnerships occurred where the program met the needs of the partnering organisation, or could be adapted to do so. Partnerships took time to develop and were often dependent on key people. Partnering with organisations that had a strong influence in the community could strengthen existing relationships and success. In remote areas partnerships took longer to develop because of fewer opportunities to meet face to face and workforce shortages and this has implications for program funding in these areas. Partnerships are important for the successful implementation of community preventive health programs. They take time to develop, are dependent on the needs of the stakeholders and are facilitated by stable leadership. SO WHAT?: An understanding of the role of partnerships in the implementation of community health programs is important to inform several aspects of program delivery, including flexibility in funding arrangements to allow effective and mutually beneficial partnerships to develop before the implementation phase of the program. It is important that policy makers have an understanding of the time it takes for partnerships to develop and to take this into consideration when programs are funded and implemented in the community.

  14. Cast Metals Coalition Technology Transfer and Program Management Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gwyn, Mike

    2009-03-31

    The Cast Metals Coalition (CMC) partnership program was funded to ensure that the results of the Department of Energy's (DOE) metalcasting research and development (R&D) projects are successfully deployed into industry. Specifically, the CMC program coordinated the transfer and deployment of energy saving technologies and process improvements developed under separately funded DOE programs and projects into industry. The transition of these technologies and process improvements is a critical step in the path to realizing actual energy savings. At full deployment, DOE funded metalcasting R&D results are projected to save 55% of the energy used by the industry in 1998. Thismore » closely aligns with DOE's current goal of driving a 25% reduction in industrial energy intensity by 2017. In addition to benefiting DOE, these energy savings provide metalcasters with a significant economic advantage. Deployment of already completed R&D project results and those still underway is estimated to return over 500% of the original DOE and industry investment. Energy savings estimates through December 2008 from the Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) portfolio of projects alone are 12 x 1012 BTUs, with a projection of over 50 x 1012 BTUs ten years after program completion. These energy savings and process improvements have been made possible through the unique collaborative structure of the CMC partnership. The CMC team consists of DOE's Office of Industrial Technology, the three leading metalcasting technical societies in the U.S: the American Foundry Society; the North American Die Casting Association; and the Steel Founders Society of America; and the Advanced Technology Institute (ATI), a recognized leader in distributed technology management. CMC provides collaborative leadership to a complex industry composed of approximately 2,100 companies, 80% of which employ less than 100 people, and only 4% of which employ more than 250 people. Without collaboration, new technologies enabling energy efficiencies and environment-friendly improvements are slow to develop, and have trouble obtaining a broad application. The CMC team was able to effectively and efficiently transfer the results of DOE's metalcasting R&D projects to industry by utilizing and delivering the numerous communication vehicles identified in the proposal. The three metalcasting technical associations achieved significant technology transition results under this program. In addition to reaching over 23,000 people per year through Modern Casting and 28,000 through Engineered Casting Solutions, AFS had 84 national publications and reached over 1,200 people annually through Cast Metals Institute (CMI) education courses. NADCA's education department reached over 1,000 people each year through their courses, in addition to reaching over 6,000 people annually through Die Casting Engineer, and publishing 58 papers. The SFSA also published 99 research papers and reached over 1,000 people annually through their member newsletters. In addition to these communication vehicles, the CMC team conducted numerous technical committee meetings, project reviews, and onsite visits. All of these efforts to distribute the latest metalcasting technologies contributed to the successful deployment of DOE's R&D projects into industry. The DOE/CMC partnership demonstrated significant success in the identification and review of relevant and easy-to-implement metalcasting energy-saving processes and technologies so that the results are quickly implemented and become general practice. The results achieved in this program demonstrate that sustained technology transfer efforts are a critical step in the deployment of R&D projects to industry.« less

  15. Resident partnerships: an effective strategy for training in primary care.

    PubMed

    Adam, P; Williamson, H A; Zweig, S C; Delzell, J E

    1997-06-01

    To facilitate resident training in the ambulatory setting, a few family practice residency programs use a partnership system to train residents. Partnerships are pairs of residents from the same year that rotate together on inpatient services. We identified and characterized the advantages and disadvantages of partnership programs in family practice residencies. We conducted a national survey of family practice residencies, followed by phone interviews with residency directors of programs with partnerships. A total of 305 of 407 (75%) residencies responded; 10 programs fit our definition of partnership. Program directors were positive about resident partnerships. Benefits included improved outpatient continuity, enhanced medical communication skills, and emotional and intellectual support. Disadvantages were decreased inpatient exposure and difficulty coordinating residents' schedules. Directors were favorable about partnerships, which seem to be an underutilized technique to improve residency training.

  16. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susan M. Capalbo

    2004-10-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources foundmore » in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies. Two key deliverables were completed in the second quarter--a literature review/database to assess the soil carbon on rangelands, and the draft protocols, contracting options for soil carbon trading. The protocols developed for soil carbon trading are unique and provide a key component of the mechanisms that might be used to efficiently sequester GHG and reduce CO{sub 2} concentrations. While no key deliverables were due during the third quarter, progress on other deliverables is noted in the PowerPoint presentations and in this report. A series of meetings held during the second and third quarters have laid the foundations for assessing the issues surrounding carbon sequestration in this region, the need for a holistic approach to meeting energy demands and economic development potential, and the implementation of government programs or a market-based setting for soil C credits. These meetings provide a connection to stakeholders in the region and a basis on which to draw for the DOE PEIS hearings. In the fourth quarter, three deliverables have been completed, some in draft form to be revised and updated to include Wyoming. This is due primarily to some delays in funding to LANL and INEEL and the approval of a supplemental proposal to include Wyoming in much of the GIS data sets, analysis, and related materials. The deliverables are discussed in the following sections and greater details are provided in the materials that are attached to this report. In August 2004, a presentation was made to Pioneer Hi-Bred, discussing the Partnership and the synergies with terrestrial sequestration, agricultural industries, and ongoing, complimentary USDA efforts. The Partnership organized a Carbon session at the INRA 2004 Environmental and Subsurface Science Symposium in September 2004; also in September, a presentation was made to the Wyoming Carbon Sequestration Advisory Committee, followed up with a roundtable discussion.« less

  17. Work with Us | Research Site Name | NREL

    Science.gov Websites

    ullamco laboris nisi ut aliquip ex ea commodo consequat. Hero Image - Width of 1746px - Height can vary ex ea commodo consequat. Learn about our technology partnership agreements. Use our cutting-edge commercialization programs. Join Our Team Find an opportunity: Job | Internship | Post Doc | Director's Postdoctoral

  18. Issues in NASA program and project management. Special report: 1995 conference

    NASA Technical Reports Server (NTRS)

    Hoffman, Edward J. (Editor); Lawbaugh, William M. (Editor)

    1995-01-01

    This volume is the tenth in an ongoing series on aerospace project management at NASA. Articles in this volume cover the 1996 Conference as follows: international partnerships; industry/interagency collaboration; technology transfer; and project management development process. A section on resources for NASA managers rounds out the publication.

  19. Computer Training for Seniors: An Academic-Community Partnership

    ERIC Educational Resources Information Center

    Sanders, Martha J.; O'Sullivan, Beth; DeBurra, Katherine; Fedner, Alesha

    2013-01-01

    Computer technology is integral to information retrieval, social communication, and social interaction. However, only 47% of seniors aged 65 and older use computers. The purpose of this study was to determine the impact of a client-centered computer program on computer skills, attitudes toward computer use, and generativity in novice senior…

  20. A New Pathway: Video-Based Professional Development in Geography

    ERIC Educational Resources Information Center

    Boehm, Richard G.; Brysch, Carmen P.; Mohan, Audrey; Backler, Alan

    2012-01-01

    The Gilbert M. Grosvenor Center for Geographic Education, in partnership with the Agency for Instructional Technology, and the National Geographic Education Foundation have embarked on the production of a twenty-two-program, Web-based professional development series for teachers of geography, social studies, and environmental science, titled…

  1. Iowa Distance Education Alliance. Final Evaluation Report. Abbreviated Version.

    ERIC Educational Resources Information Center

    Sorenson, Chris; And Others

    This report describes 2-year outcomes of the Iowa Distance Education Alliance (IDEA), a partnership involving educational institutions across Iowa that received funding from the federal Star Schools Program to demonstrate the use of the Iowa Communication Network's (ICN's) fiber-optic technology for K-12 instruction. First-year project activities…

  2. Girls and Computer Technology: Barrier or Key?

    ERIC Educational Resources Information Center

    Gipson, Joella

    1997-01-01

    Discusses the disparity in numbers of girls and boys taking math, science, and computer classes in elementary and secondary schools, and examines steps being taken to better prepare girls, especially minority girls, for an increasingly technical society. A program in Michigan is described that involved a school and business partnership. (LRW)

  3. Tech Transfer Magazine - KSC News Volume I, Number 2, Fall/Winter 2008

    NASA Technical Reports Server (NTRS)

    Dunn, Carol (Editor)

    2008-01-01

    Kennedy Tech Transfer News is the semiannual magazine of the Innovative Partnerships Program Office at NASA Kennedy Space Center in Cape Canaveral, Florida. This magazine seeks to inform and educate cMI servant and Contractor personnel at Kennedy about actively participating in achieving NASA's technology transfer goals:

  4. FINESSE Spaceward Bound - Teacher Engagement in NASA Science and Exploration Field Research

    NASA Technical Reports Server (NTRS)

    Jones, A. J. P.; Heldmann, J. L.; Sheely, T.; Karlin, J.; Johnson, S.; Rosemore, A.; Hughes, S.; Nawotniak, S. Kobs; Lim, D. S. S.; Garry, W. B.

    2016-01-01

    The FINESSE (Field Investigations to Enable Solar System Science and Exploration) team of NASA's Solar System Exploration Research Virtual Institute (SSERVI) is focused on a science and exploration field-based research program aimed at generating strategic knowledge in preparation for the human and robotic exploration of the Moon, Near Earth Asteroids, and the moons of Mars. The FINESSE science program is infused with leading edge exploration concepts since "science enables exploration and exploration enables science." The FINESSE education and public outreach program leverages the team's field investigations and educational partnerships to share the excitement of lunar, Near Earth Asteroid, and martian moon science and exploration locally, nationally, and internationally. The FINESSE education plan is in line with all of NASA's Science Mission Directorate science education objectives, particularly to enable STEM (science, technology, engineering, and mathematics) education and leverage efforts through partnerships.

  5. Academic Medical Product Development: An Emerging Alliance of Technology Transfer Organizations and the CTSA

    PubMed Central

    Everts, Maaike; Heller, Caren; Burke, Christine; Hafer, Nathaniel; Steele, Scott

    2014-01-01

    Abstract To bring the benefits of science more quickly to patient care, the NIH National Center Advancing Translational Sciences (NCATS) supports programs that enhance the development, testing, and implementation of new medical products and procedures. The NCATS clinical and translational science award (CTSA) program is central to that mission; creating an academic home for clinical and translational science and supporting those involved in the discovery and development of new health‐related inventions. The technology transfer Offices (TTO) of CTSA‐funded universities can be important partners in the development process; facilitating the transfer of medical research to the commercial sector for further development and ultimately, distribution to patients. The Aggregating Intellectual Property (IP) Working Group (AWG) of the CTSA public private partnerships key function committee (PPP‐KFC) developed a survey to explore how CTSA‐funded institutions currently interface with their respective TTOs to support medical product development. The results suggest a range of relationships across institutions; approximately half have formal collaborative programs, but only a few have well‐connected programs. Models of collaborations are described and provided as examples of successful CTSA/TTO partnerships that have increased the value of health‐related inventions as measured by follow‐on funding and industry involvement; either as a consulting partner or licensee. PMID:24945893

  6. Academic medical product development: an emerging alliance of technology transfer organizations and the CTSA.

    PubMed

    Rose, Lynn M; Everts, Maaike; Heller, Caren; Burke, Christine; Hafer, Nathaniel; Steele, Scott

    2014-12-01

    To bring the benefits of science more quickly to patient care, the NIH National Center Advancing Translational Sciences (NCATS) supports programs that enhance the development, testing, and implementation of new medical products and procedures. The NCATS clinical and translational science award (CTSA) program is central to that mission; creating an academic home for clinical and translational science and supporting those involved in the discovery and development of new health-related inventions. The technology transfer Offices (TTO) of CTSA-funded universities can be important partners in the development process; facilitating the transfer of medical research to the commercial sector for further development and ultimately, distribution to patients. The Aggregating Intellectual Property (IP) Working Group (AWG) of the CTSA public private partnerships key function committee (PPP-KFC) developed a survey to explore how CTSA-funded institutions currently interface with their respective TTOs to support medical product development. The results suggest a range of relationships across institutions; approximately half have formal collaborative programs, but only a few have well-connected programs. Models of collaborations are described and provided as examples of successful CTSA/TTO partnerships that have increased the value of health-related inventions as measured by follow-on funding and industry involvement; either as a consulting partner or licensee. © 2014 Wiley Periodicals, Inc.

  7. Training Teachers to Use Technology and Inquiry-based Learning Practices in the Geosciences through an Industry-University Partnership

    NASA Astrophysics Data System (ADS)

    McNeal, K.; Buell, R.; Eiland, L.

    2009-12-01

    Teacher professional development centered about the Geosciences is necessary in order to train K-12 teachers about this science field and to effectively educate K-12 students about Earth processes. The partnership of industries, universities, and K-12 schools is a collaborative pathway to support these efforts by providing teachers access to technology, inquiry-based learning, and authentic field experiences within the Geosciences context. This research presents the results of Project SMARTER (Science and Mathematics Advancement and Reform utilizing Technology and Enhanced Resources), a co-lead industry-university partnership and teacher professional development workshop program that focused on technology and inquiry-based learning in the Geosciences. The workshop included fifteen teachers from five distressed counties in Mississippi as defined by the Appalachian Regional Commission. Three (one science, once math, one technology) 7-12 grade teachers were selected from each school district and worked together during activities as a team to foster a cooperative learning experience. The two week workshop trained teachers on the use of a variety of technologies including: Vernier Probes and software, TI-calculators and presenter, Mimio Boards, GPS receivers, Google Earth, Excel, PowerPoint, projectors, and the use of historic geologic datasets. Furthermore, teachers were trained on proper field collection techniques, the use of Hach Kits and field probes, and the interpretation of geologic data. Each daily program incorporated the use of technology-rich and inquiry-based activities into one of the five Earth spheres: atmosphere, lithosphere, biosphere, hydrosphere, and anthrosphere. Results from the pre-post technology attitude survey showed that participating teachers significantly (p < 0.05) increased their confidence level in using technology. Furthermore, all participants self-reflected that the workshop both increased their interest in the Geosciences and their plans to integrate technology in future classroom activities. Qualitative responses from daily feedback forms and journal entries indicated that participating teachers were enthusiastic about inquiry-, technology-, and field-based learning activities and were willing to incorporate cross-discipline lesson plans. Evaluation of final lesson plans developed by the teachers during the workshop combined with follow-up classroom visits illustrated that the teachers appropriately developed classroom lessons to incorporate inquiry and technology and that they successfully implemented these lesson plans in their own classroom as a direct result of participating in workshop activities.

  8. An Overview of SBIR Phase 2 Communications Technology and Development

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing areas in Communications Technology and Development which is one of six core competencies at NASA Glenn Research Center. There are eighteen technologies featured with emphasis on a wide spectrum of applications such as with a security-enhanced autonomous network management, secure communications using on-demand single photons, cognitive software-defined radio, spacesuit audio systems, multiband photonic phased-array antenna, and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.

  9. An Overview of SBIR Phase 2 Physical Sciences and Biomedical Technologies in Space

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing areas in physical sciences and biomedical technologies in space, which is one of six core competencies at NASA Glenn Research Center. There are twenty two technologies featured with emphasis on a wide spectrum of applications such as reusable handheld electrolyte, sensor for bone markers, wideband single crystal transducer, mini treadmill for musculoskeletal, and much more. Each article in this report describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.

  10. Partnership Successes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Through partnerships with industry and academia, NASA s space-age technology improves all aspects of society. While not every technology transfer activity results in commercialization, these partnerships offer far-reaching benefits to U.S. citizens. The following examples are just a few of the ways NASA is applying its technology and resources to improve the quality of life on Earth.

  11. Strengthening Communication and Scientific Reasoning Skills of Graduate Students Through the INSPIRE Program

    NASA Astrophysics Data System (ADS)

    Pierce, Donna M.; McNeal, K. S.; Radencic, S. P.; Schmitz, D. W.; Cartwright, J.; Hare, D.; Bruce, L. M.

    2012-10-01

    Initiating New Science Partnerships in Rural Education (INSPIRE) is a five-year partnership between Mississippi State University and three nearby school districts. The primary goal of the program is to strengthen the communication and scientific reasoning skills of graduate students in geosciences, physics, chemistry, and engineering by placing them in area middle school and high school science and mathematics classrooms for ten hours a week for an entire academic year as they continue to conduct their thesis or dissertation research. Additional impacts include increased content knowledge for our partner teachers and improvement in the quality of classroom instruction using hands-on inquiry-based activities that incorporate ideas used in the research conducted by the graduate students. Current technologies, such as Google Earth, GIS, Celestia, benchtop SEM and GCMS, are incorporated into many of the lessons. Now in the third year of our program, we will present the results of our program to date, including an overview of documented graduate student, teacher, and secondary student achievements, the kinds of activities the graduate students and participating teachers have developed for classroom instruction, and the accomplishments resulting from our four international partnerships. INSPIRE is funded by the Graduate K-12 (GK-12) STEM Fellowship Program (Award No. DGE-0947419), which is part of the Division for Graduate Education of the National Science Foundation.

  12. Terrestrial applications from space technology

    NASA Technical Reports Server (NTRS)

    Clarks, H.

    1985-01-01

    NASA's Technology Utilization Program, which is concerned with transferring aerospace technologies to the public and private sectors, is described. The strategy for transferring the NASA technologies to engineering projects includes: (1) identification of the problem, (2) selection of an appropriate aerospace technology, (3) development of a partnership with the company, (4) implementation of the project, and (5) commercialization of the product. Three examples revealing the application of aerospace technologies to projects in biomedical engineering, materials, and automation and robotics are presented; the development of a programmable, implantable medication system and a programmable, mask-based optical correlator, and the improvement of heat and erosion resistance in continuous casting are examined.

  13. Colloborative International Resesarch on the Water Energy Nexus: Lessons Learned from the Clean Energy Research Center - Water Energy Technologies (CERC-WET)

    NASA Astrophysics Data System (ADS)

    Remick, C.

    2017-12-01

    The U.S.-China Clean Energy Research Center - Water and Energy Technologies (CERC-WET) is a global research partnership focused on developing and deploying technologies that to allow the U.S. and China to thrive in a future with constrained energy and water resources in a changing global climate. This presentation outlines and addresses the opportunities and challenges for international research collaboration on the so called "water-energy nexus", with a focus on industrial partnership, market readiness, and intellectual property. The U.S. Department of Energy created the CERC program as a research and development partnership between the United States and China to accelerate the development and deployment of advanced clean energy technologies. The United States and China are not only the world's largest economies; they are also the world's largest energy producers and energy consumers. Together, they account for about 40% of annual global greenhouse gas emissions. The bilateral investment in CERC-WET will total $50 million over five years and will target on the emerging issues and cut-edge research on the topics of (1) water use reduction at thermoelectric plants; (2) treatment and management of non-traditional waters; (3) improvements in sustainable hydropower design and operation; (4) climate impact modeling, methods, and scenarios to support improved understanding of energy and water systems; and (5) data and analysis to inform planning and policy.

  14. H2FIRST: A partnership to advance hydrogen fueling station technology driving an optimal consumer experience.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moen, Christopher D.; Dedrick, Daniel E.; Pratt, Joseph William

    2014-03-01

    The US Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) Office of Fuel Cell Technologies Office (FCTO) is establishing the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) partnership, led by the National Renewable Energy Laboratory (NREL) and Sandia National Laboratories (SNL). FCTO is establishing this partnership and the associated capabilities in support of H2USA, the public/private partnership launched in 2013. The H2FIRST partnership provides the research and technology acceleration support to enable the widespread deployment of hydrogen infrastructure for the robust fueling of light-duty fuel cell electric vehicles (FCEV). H2FIRST will focus on improving private-sector economics, safety,more » availability and reliability, and consumer confidence for hydrogen fueling. This whitepaper outlines the goals, scope, activities associated with the H2FIRST partnership.« less

  15. Active coatings technologies for tailorable military coating systems

    NASA Astrophysics Data System (ADS)

    Zunino, J. L., III

    2007-04-01

    The main objective of the U.S. Army's Active Coatings Technologies Program is to develop technologies that can be used in combination to tailor coatings for utilization on Army Materiel. The Active Coatings Technologies Program, ACT, is divided into several thrusts, including the Smart Coatings Materiel Program, Munitions Coatings Technologies, Active Sensor packages, Systems Health Monitoring, Novel Technology Development, as well as other advanced technologies. The goal of the ACT Program is to conduct research leading to the development of multiple coatings systems for use on various military platforms, incorporating unique properties such as self repair, selective removal, corrosion resistance, sensing, ability to modify coatings' physical properties, colorizing, and alerting logistics staff when tanks or weaponry require more extensive repair. A partnership between the U.S. Army Corrosion Office at Picatinny Arsenal, NJ along with researchers at the New Jersey Institute of Technology, NJ, Clemson University, SC, University of New Hampshire, NH, and University of Massachusetts (Lowell), MA, are developing the next generation of Smart Coatings Materiel via novel technologies such as nanotechnology, Micro-electromechanical Systems (MEMS), meta-materials, flexible electronics, electrochromics, electroluminescence, etc. This paper will provide the reader with an overview of the Active Coatings Technologies Program, including an update of the on-going Smart Coatings Materiel Program, its progress thus far, description of the prototype Smart Coatings Systems and research tasks as well as future nanotechnology concepts, and applications for the Department of Defense.

  16. The InterCon network: a program for education partnerships at the University of Texas-Houston Health Science Center.

    PubMed

    Castro, G A; Bouldin, P A; Farver, D W; Maugans, L A; Sanders, L C; Booker, J

    1999-04-01

    The University of Texas-Houston Health Science Center (UT-Houston) has created programs and activities to address the state's pressing needs in minority education. Through InterCon, a network of universities and K-12 schools, UT-Houston works with its partners to identify competitive candidates in the current pool of minority graduates with bachelor's degrees and to help them--along with their non-minority counterparts--progress in their education. Another objective is to expand the pool of minorities underrepresented in medicine who complete high school and go to college. In 1994 UT-Houston and Prairie View A&M University created a collaborative venture to provide new educational opportunities at UT-Houston for Prairie View's predominantly African American students. A three-track summer internship program--a result of that collaboration--has since been expanded to partnerships with other minority and majority universities throughout Texas. In 1998, for example, 108 undergraduate students from these universities (and 40 other universities nationwide) participated in research, professional, and administrative summer internships at UT-Houston. The InterCon network also has partnerships with K-12 schools. UT-Houston works with inner-city, suburban, and rural school districts to develop education models that can be transferred throughout the state. The partnerships deal with helping to teach basic academic skills and computer literacy, improve science-related instruction, meet demands for health promotion materials and information for school-initiated health and wellness programs, and develop distance-learning paradigms. UT-Houston views InterCon as a program helping Texas institutions to engage and adapt to the socioeconomic factors, demographic changes, and technology explosion that currently challenge public education.

  17. An innovative partnership in service.

    PubMed

    Lazarus, Cathy J; Krane, N Kevin; Bowdish, Bruce

    2002-07-01

    Stimulated by the need for better alignment of educational content and goals with evolving societal needs, practice patterns, and scientific developments, many medical schools are implementing new and creative educational experiences for students. Tulane University School of Medicine and Apple Computers have established an innovative partnership in which Apple laptop computers support and enhance students' service learning projects. The partnership also provides a unique opportunity to meet the Medical School Objectives Project (MSOP) objectives in Medical Informatics and Population Health, as outlined in Report II.(1) Apple Computers has a commitment to the New Orleans community as part of its corporate strategic plan to support educational programs at all levels; Tulane has a longstanding commitment to and experience with student-led service learning as part of the Foundations in Medicine Course.(2) Senior administrative personnel from Tulane and Apple discussed these common interests, resulting in a partnership to enhance the potential impact on the community served. Apple agreed to donate 20 G3 Powerbooks and a complete set of the Apple Learning series of software to support new and ongoing service-learning projects. A committee of Tulane faculty and students, information technology staff, and an Apple representative developed the project. To maximize students' access to the laptops while managing the administration's liability, the laptops were identically configured with standardized software packages (database development and maintenance, Web access, word processing, presentation development and execution, automated backup, and individual project access to protected server space). To maximize the use of the laptops, students from the service-learning organizations can check out the laptops on a just-in-time basis, because the projects have different needs over time. Student-service leaders are currently defining and developing the exact uses for the laptops. We anticipate that this project will enhance the administrative management of service-learning programs (e.g., schedules, directions to sites), the presentation of educational programs (e.g., teaching in schools), the creation of new media to support programs (e.g., our restaurant choking program has a partnership with the American Heart Association to create a video and training manual to be used nationwide), and data tracking (e.g., sites and clients served, outcomes achieved). Students' use of the laptops should support the achievement of several of the MSOP Report II Medical Informatics objectives. To assess that, all first-year medical students are completing a pre- and post-project survey based on those objectives. The availability of laptops and software should significantly enhance the service-learning programs. The students participating should gain important skills in the use of computer technology related to their roles as lifelong learners, educators and communicators, researchers, and managers.(1) We plan to report the results of the pre- and post-project surveys once they have been completed. Students' feedback on the project has been very positive, and we hope it can serve as a model for other medical school, corporate, and community partnerships.

  18. A partnership in upstream HSE technology transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olszewski, R.E. Wahjosoedibjo, A.S.; Hunley, M.; Peargin, J.C.

    1996-11-01

    The oil and gas industry was for nearly two decades the dominant force in the Indonesian economy and the single largest contributor to the nation`s development. Because of the success of Indonesia`s long-term development and diversification program, this once-dominant sector today occupies a more equal but still vital position in a better-balanced economy. The Indonesian government understands the danger to the environment posed by rapid industrial expansion and has enacted laws and regulations to ensure the sustainable development of its resources while protecting its rain forest environment. In 1992, the government oil company approached Chevron and Texaco for assistance inmore » training its Health, Safety, and Environment (HSE) professionals. The upstream environment, health and safety training program was developed to transfer HSE knowledge and technology to PERTAMINA, PT Caltex Pacific Indonesia, a C&T affiliate, and indirectly, to the entire Indonesian oil and gas industry and government ministries. The four companies have demonstrated the effectiveness of a partnership approach in developing and carrying out HSE training. During 1994 and 1995, four groups, each consisting of about twenty representatives from PERTAMINA, the Directorate of Oil and Gas (MIGAS), the Indonesian Environmental Impact Management Agency (BAPEDAL), CPI, and Chevron and Texaco worldwide subsidiaries, traveled to the United States for an intensive four-month program of study in HSE best practices and technology conducted by Chevron and Texaco experts. This paper describes the development and realization of The PERTAMINA/CPI Health, Safety and Environment Training Program, outlines subjects covered and explains the methodology used to ensure the effective transfer of HSE knowledge and technology. The paper also offers an evaluation of the sessions and presents the plans developed by participant-teams for follow up on their return to Indonesia.« less

  19. Achievements of the DOT-NASA Joint Program on Remote Sensing and Spatial Information Technologies: Application to Multimodal Transportation

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This report presents three-year accomplishments from the national program on Commercial Remote Sensing and Geospatial Technology (CRSGT) application to transportation, administered by the U.S. Department of Transportation (U.S. DOT) in collaboration with the National Aeronautics and Space Administration (NASA). The joint program was authorized under Section 5113 of the Transportation Equity Act for the 21st Century (TEA-21). This is the first national program of its type focusing on transportation applications of emerging commercial remote sensing technologies. U.S. DOT's Research and Special Programs Administration manages the program in coordination with NASA's Earth Science Enterprise's application programs. The program focuses on applications of CRSGT products and systems for providing smarter and more efficient transportation operations and services. The program is performed in partnership with four major National Consortia for Remote Sensing in Transportation (NCRST). Each consortium focuses on research and development of products in one of the four priority areas for transportation application, and includes technical application and demonstration projects carried out in partnership with industries and service providers in their respective areas. The report identifies products and accomplishments from each of the four consortia in meeting the goal of providing smarter and more efficient transportation services. The products and results emerging from the program are being implemented in transportation operations and services through state and local agencies. The Environmental Assessment and Application Consortium (NCRST-E) provides leadership for developing and deploying cost effective environmental and transportation planning services, and integrates CRSGT advances for achieving smarter and cost effective corridor planning. The Infrastructure Management Consortium (NCRST-I) provides leadership in technologies that achieve smarter and cheaper ways of managing transportation infrastructure assets, operation, and inspection, and integrates CRSGT advances for achieving infrastructure security. The Traffic Flow Consortium (NCRST-F) provides leadership to develop new tools for regional traffic flow management including heavy vehicles and intermodal flow of freight, and integrates CRSGT advances for complementing and extending the reach of ITS user services. The Safety, Hazards and Disasters (NCRST-H) provides leadership for deploying remote sensing technology to locate transportation hazards and improve disaster recovery, and integrates CRSGT advances for application to protect transportation systems from terrorism. The DOT-NASA team is proud to present this report of accomplishments on products and results emerging from the joint program for application to transportation practice.

  20. Formation of National Partnerships by Centers to Increase Diversity

    NASA Astrophysics Data System (ADS)

    Tolbert, M. E.

    2008-05-01

    As scientists seek innovative ways for their research results to have greater impact, they are using many strategies to implement their ideas to add value to the process. Some have decided to remain individual researchers while others have identified partners with whom to work. The idea behind forming partnerships is that a synergistic effect would result and there would be value added with a research center approach. Eight research center programs are sponsored by the National Science Foundation (NSF) to take advantage of this type of synergy. These centers form strong partnerships with multiple institutions thereby enabling the conduct of research, education, and knowledge transfer. The added value of the centers is critical as these interdisciplinary entities exploit opportunities in science, technology, engineering, and mathematics. Additionally, they address racial and ethnic diversity while conducting innovative research. Important for the survival of these centers is the formation of strong, long-term partnerships. In this presentation, Science and Technology Centers that focus on earth, atmospheric, and ocean sciences - fields in which racial and ethnic diversity is lacking - will be highlighted. These centers have developed recruitment and retention strategies to increase the number of under- represented minorities in these fields. The discussion will include a description of these strategies, degrees earned, and employment data on persons in the target fields. Special attention will be paid to partnerships and other characteristics that put these centers on the road to success, especially in the integration of research and education and the fostering of ethnic and racial diversity.

  1. FY 2005 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olszewski, M

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and DaimlerChrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from ''Freedom'' and ''Cooperative Automotive Research''), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Vehicle Systems subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive and heavy truck technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles and heavy trucks will function as a unified system to improve fuel efficiency. This work also supports the development of advanced automotive accessories and the reduction of parasitic losses (e.g., aerodynamic drag, thermal management, friction and wear, and rolling resistance). In supporting the development of hybrid propulsion systems, the Vehicle Systems subprogram has enabled the development of technologies that will significantly improve fuel economy, comply with projected emissions and safety regulations, and use fuels produced domestically. The Vehicle Systems subprogram supports the efforts of the FreedomCAR and Fuel and the 21st Century Truck Partnerships through a three-phase approach intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements, then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the Vehicle Systems subprogram will help remove technical and cost barriers to enable technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR Program. A key element in making hybrid electric vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include: (1) Novel traction motor designs that result in increased power density and lower cost; (2) Inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) Converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) More effective thermal control and packaging technologies; and (5) Integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, Power Electronics and Electric Machinery Program. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2004 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work.« less

  2. Developing Partnerships between Higher Education Faculty, K-12 Science Teachers, and School Administrators via MSP initiatives: The RITES Model

    NASA Astrophysics Data System (ADS)

    Caulkins, J. L.; Kortz, K. M.; Murray, D. P.

    2011-12-01

    The Rhode Island Technology Enhanced Science Project (RITES) is a NSF-funded Math and Science Partnership (MSP) project that seeks to improve science education. RITES is, at its core, a unique partnership that fosters relationships between middle and high school science teachers, district and school administrators, higher education (HE) faculty members, and science education researchers. Their common goal is to enhance scientific inquiry, increase classroom technology usage, and improve state level science test scores. In one of the more visible examples of this partnership, middle and high school science teachers work closely with HE science faculty partners to design and teach professional development (PD) workshops. The PD sessions focus on technology-enhanced scientific investigations (e.g. use of probes, online simulations, etc.), exemplify inquiry-based instruction, and relate expert content knowledge. Teachers from these sessions express substantial satisfaction in the program, report increased comfort levels in teaching the presented materials (both via post-workshop surveys), and show significant gains in content knowledge (via pre-post assessments). Other benefits to this kind of partnership, in which K-12 and HE teachers are considered equals, include: 1) K-12 teachers are empowered through interactions with HE faculty and other science teachers in the state; 2) HE instructors become more informed not only about good pedagogical practices, but also practical aspects of teaching science such as engaging students; and 3) the PD sessions tend to be much stronger than ones designed and presented solely by HE scientists, for while HE instructors provide content expertise, K-12 teachers provide expertise in K-12 classroom practice and implementation. Lastly, the partnership is mutually beneficial for the partners involved because both sides learn practical ways to teach science and inquiry at different levels. In addition to HE faculty and K-12 science teacher interactions, RITES gives district-level administrators, HE faculty and teacher-leaders the opportunity to meet and set mutual teaching goals, enhancing the partnership and a sense of ownership within it.

  3. Building capacity in implementation science research training at the University of Nairobi.

    PubMed

    Osanjo, George O; Oyugi, Julius O; Kibwage, Isaac O; Mwanda, Walter O; Ngugi, Elizabeth N; Otieno, Fredrick C; Ndege, Wycliffe; Child, Mara; Farquhar, Carey; Penner, Jeremy; Talib, Zohray; Kiarie, James N

    2016-03-08

    Health care systems in sub-Saharan Africa, and globally, grapple with the problem of closing the gap between evidence-based health interventions and actual practice in health service settings. It is essential for health care systems, especially in low-resource settings, to increase capacity to implement evidence-based practices, by training professionals in implementation science. With support from the Medical Education Partnership Initiative, the University of Nairobi has developed a training program to build local capacity for implementation science. This paper describes how the University of Nairobi leveraged resources from the Medical Education Partnership to develop an institutional program that provides training and mentoring in implementation science, builds relationships between researchers and implementers, and identifies local research priorities for implementation science. The curriculum content includes core material in implementation science theory, methods, and experiences. The program adopts a team mentoring and supervision approach, in which fellows are matched with mentors at the University of Nairobi and partnering institutions: University of Washington, Seattle, and University of Maryland, Baltimore. A survey of program participants showed a high degree satisfaction with most aspects of the program, including the content, duration, and attachment sites. A key strength of the fellowship program is the partnership approach, which leverages innovative use of information technology to offer diverse perspectives, and a team model for mentorship and supervision. As health care systems and training institutions seek new approaches to increase capacity in implementation science, the University of Nairobi Implementation Science Fellowship program can be a model for health educators and administrators who wish to develop their program and curricula.

  4. Examining the Instructional Design of a Technology Enhanced Course for New Mentor Teachers

    ERIC Educational Resources Information Center

    Schneider, Rebecca M.

    2009-01-01

    To be effective, teacher education programs need to engage teachers in learning as professionals. This includes learning experiences grounded in classroom practice and guidance to develop as professionals so teachers can take on roles of leaders and mentors in their classrooms and in partnerships with universities. New web-based communication…

  5. Natural Gas Compression Technician: Apprenticeship Course Outline. Apprenticeship and Industry Training. 5311.1

    ERIC Educational Resources Information Center

    Alberta Advanced Education and Technology, 2011

    2011-01-01

    The graduate of the Natural Gas Compression Technician apprenticeship program is a certified journeyperson who will be able to install, commission, maintain and repair equipment used to gather store and transmit natural gas. Advanced Education and Technology has prepared this course outline in partnership with the Natural Gas Compression…

  6. Using Technology to Develop a High School Career Awareness Workshop: The REACH Program

    ERIC Educational Resources Information Center

    Friery, Kathleen; Nelson, J. Gordon

    2004-01-01

    This article describes a collaborative project between business and industry, local school systems and Jacksonville State University (Jacksonville, Alabama). This project resulted in a new education and business/industry partnership called Readiness Education for Achieving Career Heights (REACH). The Calhoun County Chamber of Commerce saw a need…

  7. Customized On-site Resource Training Services (CORTS): A Partnership Program.

    ERIC Educational Resources Information Center

    Macquarie Univ., North Ryde (Australia). Special Education Centre.

    In 1983, New Brunswick Community College-Moncton (NBCCM) was awarded funding to establish a Computer Aided Drafting/Manufacturing (CAD/CAM) resource center to train students and assist industry in researching and adopting CAD/CAM technology. However, inherent constraints in industry and the absorption of college resources by in-house training…

  8. Hedging the Commons: Google Books, Libraries, and Open Access to Knowledge

    ERIC Educational Resources Information Center

    Bottando, Evelyn

    2012-01-01

    This dissertation analyzes the legal, social, technological, and cultural environment that gave rise to Google's library partnership program in order to propose an institutional corrective to Google's project to digitize cultural heritage. Interview research done with those actively involved with Google's project revealed the need for a history of…

  9. Sustainable Schools Program and Practice: Partnership Building with the Tempe Union High School District

    ERIC Educational Resources Information Center

    Koster, Auriane; Denker, Brendan

    2012-01-01

    Arizona State University's (ASU) Global Institute of Sustainability (GIOS) was awarded a five-year National Science Foundation (NSF) GK-12 grant in 2009 entitled "Sustainability Science for Sustainable Schools." The general focus of the grant is on science, technology, engineering, and math (STEM) education in K-12 schools. The…

  10. NREL: International Activities - U.S.-China Renewable Energy Partnership

    Science.gov Websites

    broader package of cooperative clean energy programs between the two countries. Both sides embraced a collaboration between the two countries. The next REIF is slated for 2019. If you are interested in bolster the deployment of technologies and led to commercial opportunities between the two countries

  11. All about Reading and Technology.

    ERIC Educational Resources Information Center

    Karbal, Harold, Ed.

    1985-01-01

    The central theme in this journal issue is the use of the computer in teaching reading. The following articles are included: "The Use of Computers in the Reading Program: A District Approach" by Nora Forester; "Reading and Computers: A Partnership" by Dr. Martha Irwin; "Rom, Ram and Reason" by Candice Carlile; "Word Processing: Practical Ideas and…

  12. Creating Resiliency and Pathways to Opportunity. Strategies for Transformative Change

    ERIC Educational Resources Information Center

    Powell, M.; Hatch, M. A.; Fians, E.; Shinert, A.; Richie, D.

    2016-01-01

    Like many colleges funded by the U.S. Department of Labor's TAACCCT program, the goal of the Northeast Resiliency Consortium (NRC) (a Round Three grantee) was to enhance the capacity of colleges to accelerate learning, ensure that students attain industry-recognized credentials, foster innovative employer partnerships, use new technologies, and…

  13. Opening the Classroom Door: Professional Learning Communities in the Math and Science Partnership Program

    ERIC Educational Resources Information Center

    Hamos, James E.; Bergin, Kathleen B.; Maki, Daniel P.; Perez, Lance C.; Prival, Joan T.; Rainey, Daphne Y.; Rowell, Ginger H.; VanderPutten, Elizabeth

    2009-01-01

    This article looks at how professional learning communities (PLCs) have become an operational approach for professional development with potential to de-isolate the teaching experience in the fields of science, technology, engineering, and mathematics (STEM). The authors offer a short synopsis of the intellectual origins of PLCs, provide multiple…

  14. Lightweight, High Strength Metals With Enhanced Radiation Shielding - Technology Advancing Partnerships Challenge Project

    NASA Technical Reports Server (NTRS)

    Wright, Maria Clara (Compiler)

    2015-01-01

    The Technology Advancing Partnership (TAP) Challenge will seek to foster innovation throughout the Center by allowing the KSC workforce to identify a specific technology idea that needs improvement and to then work with an external partner to develop that technology. This Challenge will enable competitive partnerships with outside entities that will increase the value by bringing leveraged resources. The selected proposal from the University of Florida will develop new lightweight technologies with radiation mitigation for spacecraft.

  15. 2015 Annual Report - Geothermal Technologies Office

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-04-01

    Over the past year, the U.S. Department of Energy’s (DOE’s) Geothermal Technologies Office (GTO) supported a number of exciting initiatives and research and development (R&D)activities! The GTO budget was increased in Fiscal Years (FY) 2015-2016, providing the opportunity to invest in new technologies and initiatives, such as the DOE-wide Subsurface Crosscut Initiative, and the Small Business Vouchers (SBV)Program, which is focused on growing our small business and national laboratory partnerships. These efforts will continue to advance geothermal as an economically competitive renewable energy.

  16. EPA Partnership Programs for the Green Team

    EPA Pesticide Factsheets

    Through its partnership programs, EPA works collaboratively with companies, organizations, academic institutions, communities, and individuals to address a wide range of environmental needs. There are now close to 50 EPA partnership programs that companie

  17. Exploring Educational Partnerships: A Case Study of Client-Provider Technology Education Partnerships in New Zealand Primary Schools

    ERIC Educational Resources Information Center

    Weal, Brenda; Coll, Richard

    2007-01-01

    This paper explores the notion of educational partnerships and reports on research on client-provider partnerships between full primary schools and external technology education providers for Year 7 and 8 New Zealand students (age range approx. 12 to 13 years). Educational reforms in New Zealand and the introduction of a more holistic technology…

  18. NASA Northeast Regional Technology Transfer Center

    NASA Technical Reports Server (NTRS)

    Dunn, James P.

    2001-01-01

    This report is a summary of the primary activities and metrics for the NASA Northeast Regional Technology Transfer Center, operated by the Center for Technology Commercialization, Inc. (CTC). This report covers the contract period January 1, 2000 - March 31, 2001. This report includes a summary of the overall CTC Metrics, a summary of the Major Outreach Events, an overview of the NASA Business Outreach Program, a summary of the Activities and Results of the Technology into the Zone program, and a Summary of the Major Activities and Initiatives performed by CTC in supporting this contract. Between January 1, 2000 and March 31, 2001, CTC has facilitated 10 license agreements, established 35 partnerships, provided assistance 517 times to companies, and performed 593 outreach activities including participation in 57 outreach events. CTC also assisted Goddard in executing a successful 'Technology into the Zone' program.' CTC is pleased to have performed this contract, and looks forward to continue providing their specialized services in support of the new 5 year RTTC Contract for the Northeast region.

  19. EarthCube Cyberinfrastructure: The Importance of and Need for International Strategic Partnerships to Enhance Interconnectivity and Interoperability

    NASA Astrophysics Data System (ADS)

    Ramamurthy, M. K.; Lehnert, K.; Zanzerkia, E. E.

    2017-12-01

    The United States National Science Foundation's EarthCube program is a community-driven activity aimed at transforming the conduct of geosciences research and education by creating a well-connected cyberinfrastructure for sharing and integrating data and knowledge across all geoscience disciplines in an open, transparent, and inclusive manner and to accelerate our ability to understand and predict the Earth system. After five years of community engagement, governance, and development activities, EarthCube is now transitioning into an implementation phase. In the first phase of implementing the EarthCube architecture, the project leadership has identified the following architectural components as the top three priorities, focused on technologies, interfaces and interoperability elements that will address: a) Resource Discovery; b) Resource Registry; and c) Resource Distribution and Access. Simultaneously, EarthCube is exploring international partnerships to leverage synergies with other e-infrastructure programs and projects in Europe, Australia, and other regions and discuss potential partnerships and mutually beneficial collaborations to increase interoperability of systems for advancing EarthCube's goals in an efficient and effective manner. In this session, we will present the progress of EarthCube on a number of fronts and engage geoscientists and data scientists in the future steps toward the development of EarthCube for advancing research and discovery in the geosciences. The talk will underscore the importance of strategic partnerships with other like eScience projects and programs across the globe.

  20. Low-Cost Sensors Deliver Nanometer-Accurate Measurements

    NASA Technical Reports Server (NTRS)

    2015-01-01

    As part of a unique partnership program, Kennedy Space Center collaborated with a nearby business school to allow MBA students to examine and analyze the market potential for a selection of NASA-patented technologies. Following the semester, a group of students decided to form Winter Park, Florida-based Juntura Group Inc. to license and sell a technology they had worked with: a sensor capable of detecting position changes as small as 10 nanometers-approximately the thickness of a cell wall.

  1. NASA Earth Science Partnerships - A Multi-Level Approach to Effectively Collaborating with Communities and Organizations to Utilize Earth Science Data for Societal Benefit

    NASA Astrophysics Data System (ADS)

    Favors, J.

    2016-12-01

    NASA's Earth Science Division (ESD) seeks to develop a scientific understanding of the Earth as a dynamic, integrated system of diverse components that interact in complex ways - analogous to the human body. The Division approaches this goal through a coordinated series of satellite and airborne missions, sponsored basic and applied research, technology development, and science education. Integral to this approach are strong collaborations and partnerships with a spectrum of organizations that produce substantive benefit to communities - both locally and globally. This presentation will showcase various ways ESD approaches partnering and will highlight best practices, challenges, and provide case studies related to rapid partnerships, co-location of scientists and end-user communities, capacity building, and ESD's new Partnerships Program which is built around taking an innovative approach to partnering that fosters interdisplinary teaming & co-production of knowledge to broaden the applicability of Earth observations and answer new, big questions for partners and NASA, alike.

  2. 15 CFR 1160.3 - Assistance to industrial technology partnerships.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Assistance to industrial technology... Trade (Continued) TECHNOLOGY ADMINISTRATION, DEPARTMENT OF COMMERCE PRODUCTIVITY, TECHNOLOGY AND INNOVATION Promotion of Private Sector Industrial Technology Partnerships § 1160.3 Assistance to industrial...

  3. FY04 Engineering Technology Reports Technology Base

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharpe, R M

    2005-01-27

    Lawrence Livermore National Laboratory's Engineering Directorate has two primary discretionary avenues for its investment in technologies: the Laboratory Directed Research and Development (LDRD) program and the ''Tech Base'' program. This volume summarizes progress on the projects funded for technology-base efforts in FY2004. The Engineering Technical Reports exemplify Engineering's more than 50-year history of researching and developing (LDRD), and reducing to practice (technology-base) the engineering technologies needed to support the Laboratory's missions. Engineering has been a partner in every major program and project at the Laboratory throughout its existence, and has prepared for this role with a skilled workforce and technicalmore » resources. This accomplishment is well summarized by Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow''. LDRD is the vehicle for creating those technologies and competencies that are cutting edge. These require a significant level of research or contain some unknown that needs to be fully understood. Tech Base is used to apply those technologies, or adapt them to a Laboratory need. The term commonly used for Tech Base projects is ''reduction to practice''. Tech Base projects effect the natural transition to reduction-to-practice of scientific or engineering methods that are well understood and established. They represent discipline-oriented, core competency activities that are multi-programmatic in application, nature, and scope. The objectives of technology-base funding include: (1) the development and enhancement of tools and processes to provide Engineering support capability, such as code maintenance and improved fabrication methods; (2) support of Engineering science and technology infrastructure, such as the installation or integration of a new capability; (3) support for technical and administrative leadership through our technology Centers; and (4) the initial scoping and exploration of selected technology areas with high strategic potential, such as assessment of university, laboratory, and industrial partnerships. Engineering's five Centers, in partnership with the Division Leaders and Department Heads, focus and guide longer-term investments within Engineering. The Centers attract and retain top staff, develop and maintain critical core technologies, and enable programs. Through their technology-base projects, they oversee the application of known engineering approaches and techniques to scientific and technical problems. The Centers and their Directors are as follows: (1) Center for Computational Engineering: Robert M. Sharpe; (2) Center for Microtechnology and Nanotechnology: Raymond P. Mariella, Jr. (3) Center for Nondestructive Characterization: Harry E. Martz, Jr.; (4) Center for Precision Engineering: Keith Carlisle; and (5) Center for Complex Distributed Systems: Gregory J. Suski, Acting Director.« less

  4. 75 FR 60771 - Critical Infrastructure Partnership Advisory Council (CIPAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ... DEPARTMENT OF HOMELAND SECURITY [Docket No. DHS-2010-0080] Critical Infrastructure Partnership..., Section Chief Partnership Programs, Partnership and Outreach Division, Office of Infrastructure Protection... Outreach Division, Office of Infrastructure Protection, National Protection and Programs Directorate...

  5. An Overview of Air-Breathing Propulsion Efforts for 2015 SBIR Phase I

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights 24 of the innovative SBIR 2015 Phase I projects that emphasize one of NASA Glenn Research Center's six core competencies-Air-Breathing Propulsion. The technologies cover a wide spectrum of applications such as hybrid nanocomposites for efficient aerospace structures; plasma flow control for drag reduction; physics-based aeroanalysis methods for open rotor conceptual designs; vertical lift by series hybrid power; fast pressure-sensitive paint systems for production wind tunnel testing; rugged, compact, and inexpensive airborne fiber sensor interrogators based on monolithic tunable lasers; and high sensitivity semiconductor sensor skins for multi-axis surface pressure characterization. Each featured technology describes an innovation and technical objective and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.

  6. An Overview of 2014 SBIR Phase 1 and Phase 2 Air-Breathing Propulsion

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.

    2015-01-01

    NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights nine of the innovative SBIR 2014 Phase I and Phase II projects that emphasize one of NASA Glenn Research Center's six core competencies-Air-Breathing Propulsion. The technologies cover a wide spectrum of applications such as development of X-ray computed tomography (CT) imaging method for the measurement of complex 3D ice shapes, phased array techniques for low signal-to-noise ratio wind tunnels, compact kinetic mechanisms for petroleum-derived and alternative aviation fuels, and hybrid electric propulsion systems for a multirotor aircraft. Each featured technology describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report provides as an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.

  7. An Overview of SBIR Phase 2 Airbreathing Propulsion Technologies

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.; Bitler, Dean W.

    2014-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing areas in Airbreathing Propulsion which is one of six core competencies at NASA Glenn Research Center. There are twenty technologies featured with emphasis on a wide spectrum of applications such as with a Turbo-Brayton cryocooler for aircraft superconducting systems, braided composite rotorcraft structures, engine air brake, combustion control valve, flexible composite driveshaft, and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.

  8. The Consortium of Advanced Residential Buildings (CARB) - A Building America Energy Efficient Housing Partnership

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robb Aldrich; Lois Arena; Dianne Griffiths

    2010-12-31

    This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis bymore » 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at Clipper Mill (mixed, humid climate) - William Ryan Homes - Tampa (hot, humid climate).« less

  9. NASA/Goddard Thermal Technology Overview 2014

    NASA Technical Reports Server (NTRS)

    Butler, Daniel; Swanson, Theodore D.

    2014-01-01

    This presentation summarizes the current plans and efforts at NASA Goddard to develop new thermal control technology for anticipated future missions. It will also address some of the programmatic developments currently underway at NASA, especially with respect to the Technology Development Program at NASA. While funding for basic technology development is still scarce, significant efforts are being made in direct support of flight programs. New technology development continues to be driven by the needs of future missions, and applications of these technologies to current Goddard programs will be addressed. Many of these technologies also have broad applicability to DOD, DOE, and commercial programs. Partnerships have been developed with the Air Force, Navy, and various universities to promote technology development. In addition, technology development activities supported by internal research and development (IRAD) program, the Small Business Innovative Research (SBIR) program, and the NASA Engineering and Safety Center (NESC), are reviewed in this presentation. Specific technologies addressed include; two-phase systems applications and issues on NASA missions, latest developments of electro-hydrodynamically pumped systems, development of high electrical conductivity coatings, and various other research activities. New Technology program underway at NASA, although funding is limited center dot NASA/GSFC's primary mission of science satellite development is healthy and vibrant, although new missions are scarce - now have people on overhead working new missions and proposals center dot Future mission applications promise to be thermally challenging center dot Direct technology funding is still very restricted - Projects are the best source for direct application of technology - SBIR thermal subtopic resurrected in FY 14 - Limited Technology development underway via IRAD, NESC, other sources - Administrator pushing to revive technology and educational programs at NASA - new HQ directorate established

  10. NASA's Space Environments and Effects (SEE) Program: Contamination Engineering Technology Development

    NASA Technical Reports Server (NTRS)

    Pearson, Steven D.; Clifton, K. Stuart

    1999-01-01

    ABSTRACT The return of the Long Duration Exposure Facility (LDEF) in 1990 brought a wealth of space exposure data on materials, paints, solar cells, etc. and data on the many space environments. The effects of the harsh space environments can provide damaging or even disabling effects on spacecraft, its materials, and its instruments. In partnership with industry, academia, and other government agencies, National Aeronautics & Space Administration's (NASA's) Space Environments & Effects (SEE) Program defines the space environments and provides technology development to accommodate or mitigate these harmful environments on the spacecraft. This program provides a very comprehensive and focused approach to understanding the space environment, to define the best techniques for both flight and ground-based experimentation, to update the models which predict both the environments and the environmental effects on spacecraft, and finally to ensure that this information is properly maintained and inserted into spacecraft design programs. This paper will describe the current SEE Program and will present SEE contamination engineering technology development and risk mitigation for future spacecraft design.

  11. NASA's Space Environments and Effects (SEE) program: contamination engineering technology development

    NASA Astrophysics Data System (ADS)

    Pearson, Steven D.; Clifton, K. Stuart

    1999-10-01

    The return of the Long Duration Exposure Facility (LDEF) in 1990 brought a wealth of space exposure data on materials, paints, solar cells, etc. and data on the many space environments. The effects of the harsh space environments can provide damaging or even disabling effects on spacecraft, its materials, and its instruments. In partnership with industry, academia, and other government agencies, National Aeronautics & Space Administration's (NASA's) Space Environments & Effects (SEE) Program defines the space environments and provides technology development to accommodate or mitigate these harmful environments on the spacecraft. This program provides a very comprehensive and focused approach to understanding the space environment, to define the best techniques for both flight and ground-based experimentation, to update the models which predict both the environments and the environmental effects on spacecraft, and finally to ensure that this information is properly maintained and inserted into spacecraft design programs. This paper will describe the current SEE Program and will present SEE contamination engineering technology development and risk mitigation for future spacecraft design.

  12. The Bowie State University Professional Development Schools Network Partnership

    ERIC Educational Resources Information Center

    Garin, Eva; Taylor, Traki; Madden, Maggie; Beiter, Judy; Davis, Julius; Farmer, Cynthia; Nowlin, Dawn

    2015-01-01

    The Bowie State University PDS Network Partnership is one of the 2015 Exemplary PDS Partnerships recognized by the National Association for Professional Development Schools. This partnership is built on a series of signature programs that define and support our partnership work. This article describes each of those signature programs that make our…

  13. 75 FR 39052 - Meeting of National Council on the Humanities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ... Partnership--Room 507 Digital Humanities--Room 402 Education Programs--Room 315 Public Programs--Room 421... Grants. b. Federal/State Partnership. c. Digital Humanities. d. Education Programs. e. Public Programs. f.... until Adjourned Challenge Grants and Federal/State Partnership--Room 507 Digital Humanities--Room 402...

  14. Big Sky Carbon Sequestration Partnership

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susan M. Capalbo

    2005-11-01

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork ismore » in place to provide an assessment of storage capabilities for CO2 utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research agenda in Carbon Sequestration. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other DOE regional partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound MMV is critical for public acceptance of these technologies. Deliverables for the 7th Quarter reporting period include (1) for the geological efforts: Reports on Technology Needs and Action Plan on the Evaluation of Geological Sinks and Pilot Project Deployment (Deliverables 2 and 3), and Report on the Feasibility of Mineralization Trapping in the Snake River Plain Basin (Deliverable 14); (2) for the terrestrial efforts: Report on the Evaluation of Terrestrial Sinks and a Report of the Best Production Practices for Soil C Sequestration (Deliverables 8 and 15). In addition, the 7th Quarter activities for the Partnership included further development of the proposed activities for the deployment and demonstration phase of the carbon sequestration pilots including geological and terrestrial pilots, expansion of the Partnership to encompass regions and institutions that are complimentary to the steps we have identified, building greater collaborations with industry and stakeholders in the region, contributed to outreach efforts that spanned all partnerships, co-authorship on the Carbon Capture and Separation report, and developed a regional basis to address future energy opportunities in the region. The deliverables and activities are discussed in the following sections and appended to this report. The education and outreach efforts have resulted in a comprehensive plan which serves as a guide for implementing the outreach activities under Phase I. The public website has been expanded and integrated with the GIS carbon atlas. We have made presentations to stakeholders and policy makers including two tribal sequestration workshops, and made connections to other federal and state agencies concerned with GHG emissions, climate change, and efficient and environmentally-friendly energy production. In addition, the Partnership has plans for integration of our outreach efforts with students, especially at the tribal colleges and at the universities involved in our Partnership. This includes collaboration with MSU and with the U.S.-Norway Summer School, extended outreach efforts at LANL and INEEL, and with the student section of the ASME. Finally, the Big Sky Partnership was involved in key meetings and symposium in the 7th quarter including the USDOE Wye Institute Conference on Carbon Sequestration and Capture (April, 2005); the DOE/NETL Fourth Annual Conference on Carbon Capture and Sequestration (May 2005); Coal Power Development Conference (Denver, June 2005) and meetings with our Phase II industry partners and Governor's staff.« less

  15. Building Stronger State Energy Partnerships with the U.S. Department of Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marks, Kate

    2011-09-30

    This final technical report details the results of total work efforts and progress made from October 2007 – September 2011 under the National Association of State Energy Officials (NASEO) cooperative agreement DE-FC26-07NT43264, Building Stronger State Energy Partnerships with the U.S. Department of Energy. Major topical project areas in this final report include work efforts in the following areas: Energy Assurance and Critical Infrastructure, State and Regional Technical Assistance, Regional Initiative, Regional Coordination and Technical Assistance, and International Activities in China. All required deliverables have been provided to the National Energy Technology Laboratory and DOE program officials.

  16. Addressing the needs of the telecoms industry for optical fibre communication in Africa

    NASA Astrophysics Data System (ADS)

    Leitch, Andrew W. R.; Conibear, Ann B.

    2005-10-01

    We report on a successful partnership between the Department of Physics at the Nelson Mandela Metropolitan University (NMMU) and Telkom, South Africa's national telecommunications company, to train physics students in the important fields related to optical fibre technology. The partnership, which began in 2001 and forms part of Telkom's Centre of Excellence program in South Africa, is currently being extended to other countries in Africa. The training being conducted in the Physics Department has as one of its main goals an increased understanding of polarisation mode dispersion (PMD), an effect that will ultimately limit the transmission speeds through optical fibre.

  17. 24 CFR 92.200 - Private-public partnership.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... private sector in accordance with section 221 of the Act. ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Private-public partnership. 92.200... Development HOME INVESTMENT PARTNERSHIPS PROGRAM Program Requirements § 92.200 Private-public partnership...

  18. 24 CFR 92.1 - Overview.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... INVESTMENT PARTNERSHIPS PROGRAM General § 92.1 Overview. This part implements the HOME Investment Partnerships Act (the HOME Investment Partnerships Program). In general, under the HOME Investment Partnerships... jurisdictions may use HOME funds to carry out multi-year housing strategies through acquisition, rehabilitation...

  19. Partnerships for Reform: Changing Teacher Preparation through the Title II HEA Partnership Program: Interim Report. PPSS 2003-8

    ERIC Educational Resources Information Center

    US Department of Education, 2004

    2004-01-01

    The Title II Higher Education Amendment (HEA) Partnership Grants Program provides grants to fund partnerships among colleges of education, schools of arts and sciences and local school districts in high-need areas. The goal of the program is to improve student achievement by increasing the quality of teachers. This evaluation examined the extent…

  20. Collaborative Research on the Ultra High Bypass Ratio Engine Cycle to Reduce Noise, Emissions and Fuel Consumption

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher

    2008-01-01

    A pictorial history of NASA development of advanced engine technologies for reducing environmental emissions and increasing performance from the 1970s to present is presented. The goals of the Subsonic Fixed Wing Program portion of the NASA Fundamental Aeronautics Program are addressed, along with the areas of investigation currently being pursued by the Ultra High Bypass Partnership Element of the Subsonic Fixed Wing Program to meet the goals. Ultra High Bypass cycle research collaboration successes with Pratt & Whitney are presented.

  1. The NASA 2017 Eclipse Education Program: Through the Eyes of NASA to the Hearts of a Nation

    NASA Astrophysics Data System (ADS)

    Young, C. Alex; Mayo, Louis; Ng, Carolyn; Cline, Troy D.; Lewis, Elaine; Stephenson, Bryan; Odenwald, Sten; Hill, Steele; Bleacher, Lora; Kirk, Michael S.; jones, andrea

    2016-05-01

    The August 21, 2017, eclipse across America will be seen by an estimated 500 million people from northern Canada to South America as well as parts of western Europe and Africa. Through This "Great American Eclipse" NASA in partnership with Google, the American Parks Network, American Astronomical Society, the Astronomical League, and numerous other science, education, outreach, and public communications groups and organizations will develop the approaches, resources, partnerships, and technology applications necessary to bring the excitement and the science of the August 21st, 2017 total solar eclipse across America to formal and informal audiences in the US and around the world. This effort will be supported by the highly visible and successful Sun Earth Days program and will be the main theme for Sun-Earth Days 2017.This presentation will discuss NASA's education and communication plans for the eclipse and will detail a number of specific programs and partnerships from across the country being leveraged to enhance our reach and impact. We also discuss the observations and science of current and future NASA missions such as SDO, Hinode and Solar Probe Plus along with their relationship to such a unique celestial event as a total solar eclipse.

  2. 21st Century Apprenticeships: Embracing Nontraditional Partnerships and Technologies

    ERIC Educational Resources Information Center

    Stoner, Gayla; Bird, Bruce; Gaal, John

    2011-01-01

    While concerns for skill shortages within the world of trades workers have been a focal point of a variety of recent studies and reports, the reactive alarm has not been sounded in the modernized registered apprenticeship program. Registered apprenticeship is a combination of on-the-job learning (OJL) and related classroom and shop instruction. A…

  3. Agricultural Awareness Days: Integrating Agricultural Partnerships and STEM Education

    ERIC Educational Resources Information Center

    Campbell, Brian T.; Wilkinson, Carol A.; Shepherd, Pamela J.

    2014-01-01

    In the United States there is a need to educate young children in science, technology, and agriculture. Through collaboration with many agricultural groups, the Southern Piedmont Agricultural Research and Education Center has set up a program that works with 3rd grade students and teachers to reinforce the science that has been taught in the…

  4. Celebrate with SATELLITES: An International Polar Year Partnership to Study Earth's Materials

    ERIC Educational Resources Information Center

    Hedley, Mikell Lynne; Czajkowski, Kevin; Struble, Janet; Benko, Terri; Shellito, Brad; Sheridan, Scott; Stasiuk, Mandy Munroe

    2009-01-01

    The SATELLITES program uses geospatial technologies to study surface temperatures of Earth's materials, such as sand, soil, grass, and water. Data are collected using Global Learning and Observations to Benefit the Environment (GLOBE) protocols, which are then used in research projects that are a part of the International Polar Year (IPY).…

  5. Democratizing Computer Science Knowledge: Transforming the Face of Computer Science through Public High School Education

    ERIC Educational Resources Information Center

    Ryoo, Jean J.; Margolis, Jane; Lee, Clifford H.; Sandoval, Cueponcaxochitl D. M.; Goode, Joanna

    2013-01-01

    Despite the fact that computer science (CS) is the driver of technological innovations across all disciplines and aspects of our lives, including participatory media, high school CS too commonly fails to incorporate the perspectives and concerns of low-income students of color. This article describes a partnership program -- Exploring Computer…

  6. Fermilab Friends for Science Education | About Us

    Science.gov Websites

    photo From a modest, grass-roots organization at its inception in 1983, FFSE has grown to become a use of technology. Programs continue to be developed through a partnership between FFSE and the Historical Review Testimonials Our Donors Board of Directors Board Tools Calendar Join Us Donate Now Get

  7. CubeSat Batteries

    NASA Image and Video Library

    2017-01-11

    Daniel Perez, Ph.D., a graduate student from the University of Miami, displays a piece of the prototype structure for a new solid-state battery in the Prototype Laboratory at NASA's Kennedy Space Center in Florida. The size of the battery is so small that it could be a prime candidate for use in microsatellites, including CubeSats. Researchers at Kennedy are collaborating with experts at the University of Miami. The university partnership is funded through the Small Spacecraft Technology Program, in NASA's Space Technology Mission Directorate.

  8. CubeSat Batteries

    NASA Image and Video Library

    2017-01-11

    Daniel Perez, Ph.D., a graduate student from the University of Miami, prepares layers of the prototype structure for a new solid-state battery in the Prototype Laboratory at NASA's Kennedy Space Center in Florida. The size of the battery is so small that it could be a prime candidate for use in microsatellites, including CubeSats. Researchers at Kennedy are collaborating with experts at the University of Miami. The university partnership is funded through the Small Spacecraft Technology Program, in NASA's Space Technology Mission Directorate.

  9. The value of partnerships in state obesity prevention and control programs.

    PubMed

    Hersey, James; Kelly, Bridget; Roussel, Amy; Curtis, LaShawn; Horne, Joseph; Williams-Piehota, Pamela; Kuester, Sarah; Farris, Rosanne

    2012-03-01

    State health departments funded by the Centers for Disease Control and Prevention's Nutrition, Physical Activity, and Obesity Program collaborate with multiple partners to develop and implement comprehensive obesity prevention and control programs. A mixed-methods evaluation of 28 state programs over a 5-year period assessed states' progress on program requirements, including developing statewide partnerships and coordinating with partners to support obesity prevention and control efforts. States with greater partnership involvement leveraged more funding support for their programs, passed more obesity-related policies, and were more likely to implement obesity interventions in multiple settings. Case studies provided guidance for establishing and maintaining strong partnerships. Findings from this study offer emerging evidence to support assumptions about the centrality of partnerships to states' success in obesity program development and implementation and related health promotion activities.

  10. More than Money Matters: Establishing Effective School-Corporate Partnerships

    ERIC Educational Resources Information Center

    Flynn, Nancy

    2007-01-01

    Given the financial constraints facing U.S. schools and the expense of cutting-edge technology, partnerships between schools and corporations that specialize in technology are becoming more vital in the quest to remain competitive in today's educational market. Schools can benefit from these partnerships by receiving the latest hardware and…

  11. 24 CFR 92.501 - HOME Investment Partnership Agreement.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false HOME Investment Partnership... Housing and Urban Development HOME INVESTMENT PARTNERSHIPS PROGRAM Program Administration § 92.501 HOME Investment Partnership Agreement. Allocated and reallocated funds will be made available pursuant to a HOME...

  12. 24 CFR 92.501 - HOME Investment Partnership Agreement.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 1 2014-04-01 2014-04-01 false HOME Investment Partnership... Housing and Urban Development HOME INVESTMENT PARTNERSHIPS PROGRAM Program Administration § 92.501 HOME Investment Partnership Agreement. Allocated and reallocated funds will be made available pursuant to a HOME...

  13. 24 CFR 92.501 - HOME Investment Partnership Agreement.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 1 2011-04-01 2011-04-01 false HOME Investment Partnership... Housing and Urban Development HOME INVESTMENT PARTNERSHIPS PROGRAM Program Administration § 92.501 HOME Investment Partnership Agreement. Allocated and reallocated funds will be made available pursuant to a HOME...

  14. 24 CFR 92.501 - HOME Investment Partnership Agreement.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 1 2012-04-01 2012-04-01 false HOME Investment Partnership... Housing and Urban Development HOME INVESTMENT PARTNERSHIPS PROGRAM Program Administration § 92.501 HOME Investment Partnership Agreement. Allocated and reallocated funds will be made available pursuant to a HOME...

  15. 24 CFR 92.501 - HOME Investment Partnership Agreement.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 1 2013-04-01 2013-04-01 false HOME Investment Partnership... Housing and Urban Development HOME INVESTMENT PARTNERSHIPS PROGRAM Program Administration § 92.501 HOME Investment Partnership Agreement. Allocated and reallocated funds will be made available pursuant to a HOME...

  16. An Overview of Power, Energy Storage, and Conversion Efforts for 2014 SBIR Phases I and II

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights 15 of the innovative SBIR 2014 Phase I and II projects that focus on one of NASA Glenn Research Center's six core competencies-Power, Energy Storage and Conversion. The technologies cover a wide spectrum of applications such as high-radiation-tolerant ceramic voltage isolators, development of hermetic sealing glasses for solid oxide fuel cells, rechargeable lithium metal cells, high-efficiency direct methane solid oxide fuel cell systems, Li metal protection for high-energy space batteries, isolated bidirectional direct current converters for distributed battery energy applications, and high-efficiency rad-hard ultrathin Si photovoltaic cell technology for space. Each article describes an innovation and technical objective and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.

  17. 76 FR 3609 - Proposed Information Collection; Comment Request; Census in Schools and Partnership Program Research

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... in Schools and Partnership Program Research AGENCY: U.S. Census Bureau, Commerce. ACTION: Notice... Schools (CIS) Program and the Partnership Program (PP) with three primary objectives: (1) To increase the mail-back response rate of census forms; (2) to improve the accuracy and reduce differential undercount...

  18. Let's Go Where the Kids Are: A Successful ICHEP Outreach Program

    NASA Astrophysics Data System (ADS)

    Bardeen, Marjorie

    2017-01-01

    The ICHEP Local Organizing Committee created a partnership with the Chicago Public Library to put on physics presentations at neighborhood libraries in conjunction with ICHEP 2016. Each engaging presentation was offered by two physicists or engineers with interest and experience in outreach from universities and labs around the world. Most were ICHEP attendees, but some were local presenters including a group of graduate students from the University of Chicago and the Illinois Institute of Technology. The conference was committed to community outreach, and we were delighted to ``pop-up'' in Chicago neighborhoods with a science program geared for children ages 6-18. We reached over 675 ``neighbors'' at 30 libraries citywide. The presentations were so successful that the libraries plan to host more presentations offered by Fermilab during the school year. We describe our experience as a model adaptable for other meetings and conferences or as part of a university outreach program and in partnership with other venues such park districts.

  19. International Development Partnerships and Diffusion of Renewable Energy Technologies in Developing Countries: Cases in Latin America

    NASA Astrophysics Data System (ADS)

    Platonova, Inna

    Access to energy is vital for sustainable development and poverty alleviation, yet billions of people in developing countries continue to suffer from constant exposure to open fires and dangerous fuels, such as kerosene. Renewable energy technologies are being acknowledged as suitable solutions for remote rural communities in much of the developing world and international development non-governmental organizations (NGOs) increasingly play important roles in the diffusion of these technologies via development partnerships. While these partnerships are widely promoted, many questions related to their functioning and effectiveness remain open. To advance the theory and practice, this interdisciplinary exploratory research provides in-depth insights into the nature of international NGO-driven development partnerships in rural renewable energy and their effectiveness based on the case studies in Talamanca, Costa Rica and Cajamarca, Peru. The analysis of the nature of development partnerships shows that partnerships in the case studies differ in structure, size and diversity of actors due to differentiation in the implementation strategies, technological complexities, institutional and contextual factors. A multi-theoretical approach is presented to explain the multiple drivers of the studied development partnerships. The research highlights partnership constraints related to the provision of rural renewable energy, the organizational type and institutional environments. Based on the case studies this research puts forward theoretical propositions regarding the factors that affect the effectiveness of the partnerships. In terms of the partnership dynamics dimension, several key factors of success are confirmed from the existing literature, namely shared values and goals, complementary expertise and capacities, confidence and trust, clear roles and responsibilities, effective communication. Additional factors identified are personality match and continuity of staff. In terms of the partnership outcomes dimension, a previously under-researched aspect of partnerships, this study found that success was associated with a local champion who is trusted by the community, has the resources and skills to educate and engage the community and build capacities for sustainable provision of energy services, and institutionalizes its learning processes. Providing affordable technological solutions that meet people's needs and are developed in a participatory way are other important factors found to be positively associated with the effectiveness of the studied partnerships.

  20. 75 FR 73027 - Cooperative Conservation Partnership Initiative and Wetlands Reserve Enhancement Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ... Corporation Cooperative Conservation Partnership Initiative and Wetlands Reserve Enhancement Program AGENCY... Initiative. SUMMARY: The Natural Resources Conservation Service (NRCS) announces the availability of... Partnership Initiative (CCPI) and up to $25 million in the Wetlands Reserve Enhancement Program (WREP) through...

  1. 77 FR 26019 - Healthy Tomorrows Partnership for Children Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... Tomorrows Partnership for Children Program AGENCY: Health Resources and Services Administration (HRSA... Tomorrows Partnership for Children Program (HTPCP), community-based grants that address priority issues.../local maternal and child health agencies, and other private sector partners in HTPCP projects to promote...

  2. Sandia National Labs: Manufacturing Science and Technology

    Science.gov Websites

    Additional Resources R&D Projects Current Partnerships Creating Partnerships Welcome to the Manufacturing Science and Technology home page Manufacturing Science and Technology Showcase The Manufacturing Science & Technology Center develops and applies advanced manufacturing processes for realization of

  3. NREL Photovoltaic Program FY 1996 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report summarizes the in-house and subcontract research and development (R&D) activities under the National Renewable Energy Laboratory (NREL) Photovoltaics (PV) Program from October 1, 1995 through September 30, 1996 (fiscal year [FY] 1996). The NREL PV Program is part of the U.S. Department of Energy's (DOE) National Photovoltaics Program, as described in the DOE Photovoltaics Program Plan, FY 1991 - FY 1995. The mission of the DOE National Photovoltaics Program is to: "Work in partnership with U.S. industry to develop and deploy photovoltaic technology for generating economically competitive electric power, making photovoltaics an important contributor to the nation's andmore » the world's energy use and environmental improvement. The two primary goals of the national program are to (1) maintain the U.S. PV industry's world leadership in research and technology development and (2) help the U.S. industry remain a major, profitable force in the world market. The NREL PV Program provides leadership and support to the national program toward achieving its mission and goals.« less

  4. NASA'S Changing Role in Technology Development and Transfer

    NASA Technical Reports Server (NTRS)

    Griner, Carolyn S.; Craft, Harry G., Jr.

    1997-01-01

    National Aeronautics and Space Administration NASA has historically had to develop new technology to meet its mission objectives. The newly developed technologies have then been transferred to the private sector to assist US industry's worldwide competitiveness and thereby spur the US economy. The renewed emphasis by the US Government on a proactive technology transfer approach has produced a number of contractual vehicles that assist technology transfer to industrial, aerospace and research firms. NASA's focus has also been on leveraging the shrinking space budget to accomplish "more with less." NASA's cooperative agreements and resource sharing agreements are measures taken to achieve this goal, and typify the changing role of government technology development and transfer with industry. Large commercial partnerships with aerospace firms, as typified by the X-33 and X-34 Programs, are evolving. A new emphasis on commercialization in the Small Business Innovative Research and Dual Use programs paves the way for more rapid commercial application of new technologies developed for NASA.

  5. Education and Outreach Programs Offered by the Center for High Pressure Research and the Consortium for Materials Properties Research in Earth Sciences

    NASA Astrophysics Data System (ADS)

    Richard, G. A.

    2003-12-01

    Major research facilities and organizations provide an effective venue for developing partnerships with educational organizations in order to offer a wide variety of educational programs, because they constitute a base where the culture of scientific investigation can flourish. The Consortium for Materials Properties Research in Earth Sciences (COMPRES) conducts education and outreach programs through the Earth Science Educational Resource Center (ESERC), in partnership with other groups that offer research and education programs. ESERC initiated its development of education programs in 1994 under the administration of the Center for High Pressure Research (CHiPR), which was funded as a National Science Foundation Science and Technology Center from 1991 to 2002. Programs developed during ESERC's association with CHiPR and COMPRES have targeted a wide range of audiences, including pre-K, K-12 students and teachers, undergraduates, and graduate students. Since 1995, ESERC has offered inquiry-based programs to Project WISE (Women in Science and Engineering) students at a high school and undergraduate level. Activities have included projects that investigated earthquakes, high pressure mineral physics, and local geology. Through a practicum known as Project Java, undergraduate computer science students have developed interactive instructional tools for several of these activities. For K-12 teachers, a course on Long Island geology is offered each fall, which includes an examination of the role that processes in the Earth's interior have played in the geologic history of the region. ESERC has worked with Stony Brook's Department of Geosciences faculty to offer courses on natural hazards, computer modeling, and field geology to undergraduate students, and on computer programming for graduate students. Each summer, a four-week residential college-level environmental geology course is offered to rising tenth graders from the Brentwood, New York schools in partnership with Stony Brook's Department of Technology and Society. During the academic year, a college-level Earth science course is offered to tenth graders from Sayville, New York. In both programs, students conduct research projects as one of their primary responsibilities. In collaboration with the Museum of Long Island Natural Sciences on the Stony Brook campus, two programs have been developed that enable visiting K-12 school classes to investigate earthquakes and phenomena that operate in the Earth's deep interior. From 1997 to 1999, the weekly activity-based Science Enrichment for the Early Years (SEEY) program, focusing on common Earth materials and fundamental Earth processes, was conducted at a local pre-K school. Since 2002, ESERC has worked with the Digital Library for Earth System Education (DLESE) to organize the Skills Workshops for their Annual Meeting and with EarthScope for the development of their Education and Outreach Program Plan. Future education programs and tools developed through COMPRES partnerships will place an increased emphasis on deep Earth materials and phenomena.

  6. Diffusion of Energy Efficient Technology in Commercial Buildings: An Analysis of the Commercial Building Partnerships Program

    NASA Astrophysics Data System (ADS)

    Antonopoulos, Chrissi Argyro

    This study presents findings from survey and interview data investigating replication of green building measures by Commercial Building Partnership (CBP) partners that worked directly with the Pacific Northwest National Laboratory (PNNL). PNNL partnered directly with 12 organizations on new and retrofit construction projects, which represented approximately 28 percent of the entire U.S. Department of Energy (DOE) CBP program. Through a feedback survey mechanism, along with personal interviews, quantitative and qualitative data were gathered relating to replication efforts by each organization. These data were analyzed to provide insight into two primary research areas: 1) CBP partners' replication efforts of green building approaches used in the CBP project to the rest of the organization's building portfolio, and, 2) the market potential for technology diffusion into the total U.S. commercial building stock, as a direct result of the CBP program. The first area of this research focused specifically on replication efforts underway or planned by each CBP program participant. The second area of this research develops a diffusion of innovations model to analyze potential broad market impacts of the CBP program on the commercial building industry in the United States. Findings from this study provided insight into motivations and objectives CBP partners had for program participation. Factors that impact replication include motivation, organizational structure and objectives firms have for implementation of energy efficient technologies. Comparing these factors between different CBP partners revealed patterns in motivation for constructing energy efficient buildings, along with better insight into market trends for green building practices. The optimized approach to the CBP program allows partners to develop green building parameters that fit the specific uses of their building, resulting in greater motivation for replication. In addition, the diffusion model developed for this analysis indicates that this method of market prediction may be used to adequately capture cumulative construction metrics for a whole-building analysis as opposed to individual energy efficiency measures used in green building.

  7. United States Automotive Materials Partnership LLC (USAMP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    United States Automotive Materials Partnership

    2011-01-31

    The United States Automotive Materials Partnership LLC (USAMP) was formed in 1993 as a partnership between Chrysler Corporation, Ford Motor Company, and General Motors Corporation. Since then the U.S. Department of Energy (DOE) has supported its activities with funding and technical support. The mission of the USAMP is to conduct vehicle-oriented research and development in materials and materials processing to improve the competitiveness of the U.S. Auto Industry. Its specific goals are: (1) To conduct joint research to further the development of lightweight materials for improved automotive fuel economy; and (2) To work with the Federal government to explore opportunitiesmore » for cooperative programs with the national laboratories, Federal agencies such as the DOE and universities. As a major component of the DOE's Office of FreedomCAR and Vehicle Technologies Program (FCVT) collaboration with the USAMP, the Automotive Lightweighting Materials (ALM) program focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. The FCVT was announced in FY 2002 and implemented in FY 2003, as a successor of the Partnership for a New Generation of Vehicles (PNGV), largely addressed under the first Cooperative Agreement. This second USAMP Cooperative Agreement with the DOE has expanded a unique and valuable framework for collaboratively directing industry and government research efforts toward the development of technologies capable of solving important societal problems related to automobile transportation. USAMP efforts are conducted by the domestic automobile manufacturers, in collaboration with materials and manufacturing suppliers, national laboratories, universities, and other technology or trade organizations. These interactions provide a direct route for implementing newly developed materials and technologies, and have resulted in significant technical successes to date, as discussed in the individual project summary final reports. Over 70 materials-focused projects have been established by USAMP, in collaboration with participating suppliers, academic/non-profit organizations and national laboratories, and executed through its original three divisions: the Automotive Composites Consortium (ACC), the Automotive Metals Division (AMD), and Auto/Steel Partnership (A/SP). Two new divisions were formed by USAMP in 2006 to drive research emphasis on integration of structures incorporating dissimilar lightweighting materials, and on enabling technology for nondestructive evaluation of structures and joints. These new USAMP divisions are: Multi-Material Vehicle Research and Development Initiative (MMV), and the Non-Destructive Evaluation Steering Committee (NDE). In cooperation with USAMP and the FreedomCAR Materials Technical Team, a consensus process has been established to facilitate the development of projects to help move leveraged research to targeted development projects that eventually migrate to the original equipment manufacturers (OEMs) as application engineering projects. Research projects are assigned to one of three phases: concept feasibility, technical feasibility, and demonstration feasibility. Projects are guided through ongoing monitoring and USAMP offsite reviews, so as to meet the requirements of each phase before they are allowed to move on to the next phase. As progress is made on these projects, the benefits of lightweight construction and enabling technologies will be transferred to the supply base and implemented in production vehicles. The single greatest barrier to automotive use of lightweight materials is their high cost; therefore, priority is given to activities aimed at reducing costs through development of new materials, forming technologies, and manufacturing processes. The emphasis of the research projects reported in this document was largely on applied research and evaluation of mass savings opportunities through the aggressive application of lightweight materials, advanced computational methods, and the demonstration of production capable manufacturing processes intended for high-volume applications, all directed towards the FreedomCAR Program goals. Priority lightweighting materials include advanced high-strength steels (AHSS), aluminum, magnesium, titanium, and composites such as metal-matrix materials, and glass- and carbon-fiber-reinforced thermosets and thermoplastics. Besides developing valuable new design and material property information, several projects have extensively used computer-based product modeling and simulation technologies to optimize designs and materials usage while addressing the cost-performance issues. The purpose of this Summary Final Closeout Report is to document the successes, degree of progress, technology dissemination efforts, and lessons learned.« less

  8. Dual-use technology programs

    NASA Astrophysics Data System (ADS)

    Johns, Lionel S.

    1994-10-01

    The paper presents the Clinton Administration's commitment to American industrial competitiveness through a strategic focus on research and development and to dual-use technologies in particular. Working in partnership with industry, the dual-use approach is essential for giving our armed forces the world's best, most technically advanced military equipment at affordable cost. The President has set a goal of shifting from a dominant role for military technologies in our Federal R&D investments to a roughly equal balance between military on the one hand and civilian and dual-use on the other. We have already made significant progress toward this goal.

  9. A public health training center experience: professional continuing education at schools of public health.

    PubMed

    Potter, Margaret A; Fertman, Carl I; Eggleston, Molly M; Holtzhauer, Frank; Pearsol, Joanne

    2008-01-01

    The Public Health Training Center (PHTC) national program was first established at accredited schools of public health in 2000. The PHTC program used the US Health Resources and Services Administration's grants to build workforce development programs, attracting schools as training providers and the workforce as training clients. This article is a reflection on the experience of two schools, whose partnership supported one of the PHTCs, for the purpose of opening a conversation about the future of continuing education throughout schools and degree programs of public health. This partnership, the Pennsylvania & Ohio Public Health Training Center (POPHTC), concentrated its funding on more intensive training of public healthcare workers through a relatively narrow inventory of courses that were delivered typically in-person rather than by distance-learning technologies. This approach responded to the assessed needs and preferences of the POPHTC's workforce population. POPHTC's experience may not be typical among the PHTCs nationally, but the collective experience of all PHTCs is instructive to schools of public health as they work to meet an increasing demand for continuing education from the public health workforce.

  10. NPOESS Preparatory Project Validation Program for the Cross-track Infrared Sounder

    NASA Astrophysics Data System (ADS)

    Barnet, C.; Gu, D.; Nalli, N. R.

    2009-12-01

    The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Program, in partnership with National Aeronautical Space Administration (NASA), will launch the NPOESS Preparatory Project (NPP), a risk reduction and data continuity mission, prior to the first operational NPOESS launch. The NPOESS Program, in partnership with Northrop Grumman Aerospace Systems, will execute the NPP Calibration and Validation (Cal/Val) program to ensure the data products comply with the requirements of the sponsoring agencies. The Cross-track Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS) are two of the instruments that make up the suite of sensors on NPP. Together, CrIS and ATMS will produce three Environmental Data Records (EDRs) including the Atmospheric Vertical Temperature Profile (AVTP), Atmospheric Vertical Moisture Profile (AVMP), and the Atmospheric Vertical Pressure Profile (AVPP). The AVTP and the AVMP are both NPOESS Key Performance Parameters (KPPs). The validation plans establish science and user community leadership and participation, and demonstrated, cost-effective Cal/Val approaches. This presentation will provide an overview of the collaborative data, techniques, and schedule for the validation of the NPP CrIS and ATMS environmental data products.

  11. Best Practices in NASA's Astrophysics Education and Public Outreach Projects

    NASA Astrophysics Data System (ADS)

    Hasan, H.; Smith, D.

    2015-11-01

    NASA's Astrophysics Education and Public Outreach (EPO) program has partnered scientists and educators since its inception almost twenty years ago, leading to authentic STEM experiences and products widely used by the education and outreach community. We present examples of best practices and representative projects. Keys to success include effective use of unique mission science/technology, attention to audience needs, coordination of effort, robust partnerships and publicly accessible repositories of EPO products. Projects are broadly targeted towards audiences in formal education, informal education, and community engagement. All NASA programs are evaluated for quality and impact. New technology is incorporated to engage young students being raised in the digital age. All projects focus on conveying the excitement of scientific discoveries from NASA's Astrophysics missions, advancing scientific literacy, and engaging students in science and technology careers.

  12. Green Power Partnership Requirements

    EPA Pesticide Factsheets

    The U.S. EPA's Green Power Partnership is a voluntary partnership program designed to reduce the environmental impact of electricity generation by promoting renewable energy. To join, organizations must meet EPA's program requirements.

  13. The National Shipbuilding Research Program. 1997 Ship Production Symposium, Paper Number 20: Design and Production of ANZAC Frigates for the RAN and RNZN: Progress Towards International Competitiveness

    DTIC Science & Technology

    1997-04-01

    and New Zealand Industry Involvement ANZIP Australian and New Zealand Industry Program ASSC ANZAC Ship Support Centre ASTEC Australian Science...of performance measurement systems and benchmarking.” In September 1994, the Australian Science, Technology and Engineering Council ( ASTEC ) commenced...more in- depth analysis of the key issues facing Australia in a number of areas. Five Partnerships have been established, one of which is the ASTEC

  14. "Planning Your Partnership": Report on Statewide Teleconference Presented by the California Academic Partnership Program (February 23, 1989).

    ERIC Educational Resources Information Center

    Karwin, Thomas J.

    "Planning Your Partnership," a statewide teleconference presented by the California Academic Partnership Program (CAPP), is described and evaluated in this report. Teleconference objectives included the solicitation of high-quality proposals for CAPP grants, increased information dissemination, and expanded experience with teleconference…

  15. Possibilities for global governance of converging technologies

    NASA Astrophysics Data System (ADS)

    Roco, Mihail C.

    2008-01-01

    The convergence of nanotechnology, modern biology, the digital revolution and cognitive sciences will bring about tremendous improvements in transformative tools, generate new products and services, enable opportunities to meet and enhance human potential and social achievements, and in time reshape societal relationships. This paper focuses on the progress made in governance of such converging, emerging technologies and suggests possibilities for a global approach. Specifically, this paper suggests creating a multidisciplinary forum or a consultative coordinating group with members from various countries to address globally governance of converging, emerging technologies. The proposed framework for governance of converging technologies calls for four key functions: supporting the transformative impact of the new technologies; advancing responsible development that includes health, safety and ethical concerns; encouraging national and global partnerships; and establishing commitments to long-term planning and investments centered on human development. Principles of good governance guiding these functions include participation of all those who are forging or affected by the new technologies, transparency of governance strategies, responsibility of each participating stakeholder, and effective strategic planning. Introduction and management of converging technologies must be done with respect for immediate concerns, such as privacy, access to medical advancements, and potential human health effects. At the same time, introduction and management should also be done with respect for longer-term concerns, such as preserving human integrity, dignity and welfare. The suggested governance functions apply to four levels of governance: (a) adapting existing regulations and organizations; (b) establishing new programs, regulations and organizations specifically to handle converging technologies; (c) building capacity for addressing these issues into national policies and institutions; and (d) making international agreements and partnerships. Several possibilities for improving the governance of converging technologies in the global self-regulating ecosystem are recommended: using open-source and incentive-based models, establishing corresponding science and engineering platforms, empowering the stakeholders and promoting partnerships among them, implementing long-term planning that includes international perspectives, and institute voluntary and science-based measures for risk management.

  16. An Overview of SBIR Phase 2 In-Space Propulsion and Cryogenic Fluids Management

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing Areas in In-Space Propulsion and Cryogenic Fluids Management which is one of six core competencies at NASA Glenn Research Center. There are nineteen technologies featured with emphasis on a wide spectrum of applications such as high-performance Hall thruster support system, thruster discharge power converter, high-performance combustion chamber, ion thruster design tool, green liquid monopropellant thruster, and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.

  17. An Overview of SBIR Phase 2 Materials Structures for Extreme Environments

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing Areas in Materials and Structures for Extreme Environments which is one of six core competencies at NASA Glenn Research Center. There are twenty three technologies featured with emphasis on a wide spectrum of applications such as fine-filament superconductor wire, composite oxide cathode materials, nano-composites, high radiation solar cell, wrapped multilayer insulation, thin aerogel, and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.

  18. An Overview of In-Space Propulsion and Cryogenics Fluids Management Efforts for 2014 SBIR Phases I and II

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for Agency programs. This report highlights 11 of the innovative SBIR 2014 Phase I and II projects from 2010 to 2012 that focus on one of NASA Glenn Research Center's six core competencies-In-Space Propulsion and Cryogenic Fluids Management. The technologies cover a wide spectrum of applications such as divergent field annular ion engines, miniature nontoxic nitrous oxide-propane propulsion, noncatalytic ignition systems for high-performance advanced monopropellant thrusters, nontoxic storable liquid propulsion, and superconducting electric boost pumps for nuclear thermal propulsion. Each article describes an innovation and technical objective and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.

  19. Partnership of Environmental Education and Research-A compilation of student research, 1999-2008

    USGS Publications Warehouse

    Bradley, Michael W.; Armstrong, Patrice; Byl, Thomas D.

    2011-01-01

    The U.S. Geological Survey (USGS) Tennessee Water Science Center and the College of Engineering and Technology at Tennessee State University developed a Partnership in Environmental Education and Research (PEER) to support environmental research at TSU and to expand the environmental research capabilities of the USGS in Tennessee. The PEER program is driven by the research needs to better define the occurrence, fate, and transport of contaminants in groundwater and surface water. Research in the PEER program has primarily focused on the transport and remediation of organic contamination in karst settings. Research conducted through the program has also expanded to a variety of media and settings. Research areas include contaminant occurrence and transport, natural and enhanced bioremediation, geochemical conditions in karst aquifers, mathematical modeling for contaminant transport and degradation, new methods to evaluate groundwater contamination, the resuspension of bacteria from sediment in streams, the use of bioluminescence and chemiluminescence to identify the presence of contaminants, and contaminant remediation in wetlands. The PEER program has increased research and education opportunities for students in the College of Engineering, Technology, and Computer Science and has provided students with experience in presenting the results of their research. Students in the program have participated in state, regional, national and international conferences with more than 140 presentations since 1998 and more than 40 student awards. The PEER program also supports TSU outreach activities and efforts to increase minority participation in environmental and earth science programs at the undergraduate and graduate levels. TSU students and USGS staff participate in the TSU summer programs for elementary and high school students to promote earth sciences. The 2007 summer camps included more than 130 students from 20 different States and Washington DC.

  20. 78 FR 52505 - Manufacturing Extension Partnership Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-23

    ... DEPARTMENT OF COMMERCE National Institute of Standards and Technology Manufacturing Extension Partnership Advisory Board AGENCY: National Institute of Standards and Technology, Commerce. ACTION: Notice of Open Meeting. SUMMARY: The National Institute of Standards and Technology (NIST) announces that the...

  1. 78 FR 32240 - Manufacturing Extension Partnership Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ... DEPARTMENT OF COMMERCE National Institute of Standards and Technology Manufacturing Extension Partnership Advisory Board AGENCY: National Institute of Standards and Technology, Commerce. ACTION: Notice of open meeting. SUMMARY: The National Institute of Standards and Technology (NIST) announces that the...

  2. The GLOBE Program in Alabama: A Mentoring Approach to State-wide Implementation

    NASA Astrophysics Data System (ADS)

    Cox, G. N.

    2003-12-01

    Established in 1997, the GLOBE in Alabama (GIA) partnership has trained more than 1,000 teachers in almost 500 schools - over 25% of the total number of K-12 schools in Alabama. Over those five years, GIA has strived to achieve recognition of GLOBE as the "glue" to Alabama's new education program, the Alabama Math, Science and Technology Initiative (AMSTI). In 2003, GIA trained over 370 AMSTI K-8 teachers at two AMSTI hub sites in north Alabama. As the AMSTI program grows with the addition of future hub sites (eleven are planned), GIA must ready itself to train thousands of AMSTI teachers during the two-week summer professional development institutes that are part of AMSTI. A key component of AMSTI is a mentoring program conducted by math and science specialists - classroom educators loaned to the AMSTI hub sites by the school systems each hub site serves. The AMSTI mentoring program mirrors the GIA mentoring model begun in 1999 that originally funded regional GLOBE master teachers to provide technical assistance, feedback, and coaching for other GLOBE teachers. In schools where GIA mentor teachers were working, nearly a 100% increase in GLOBE student data reporting was noted. The GIA mentors now work within the hub site framework to ensure implementation of GLOBE as an integrated part of AMSTI. With the continued support of the State of Alabama, GIA will establish a network of mentors who work with the AMSTI hub site specialists in providing support for all AMSTI teachers. GIA is administered by the National Space Science and Technology Center, a partnership between NASA and the State of Alabama's seven research universities. Operational funding for GIA has been provided by the University of Alabama in Huntsville's Earth System Science Center, the NASA Marshall Space Flight Center, the Alabama Space Grant Consortium, The Alabama Department of Economic and Community Affairs, the Alabama State Department of Education, and Legacy. GIA has been able to build on these strong funding partnerships by leveraging the infrastructure provided by the NASA-led GLOBE Program (www.globe.gov).

  3. School Business Community Partnership Brokers. Program Guidelines, 2010-2013

    ERIC Educational Resources Information Center

    Australian Government Department of Education, Employment and Workplace Relations, 2009

    2009-01-01

    These guidelines for 2010-2013 relate specifically to the Partnership Brokers program. This program is part of the Australian Government's contribution to the Youth Attainment and Transitions National Partnership and will commence on 1 January 2010. These Guidelines set out the requirements for the provision of services by organisations contracted…

  4. Reciprocal Technology Transfer: Changing Partnerships.

    ERIC Educational Resources Information Center

    Barton, Lyle; Cartwright, G. Phillip

    1997-01-01

    Partnerships between businesses and higher education institutions can help meet the training and information-technology needs of businesses and simultaneously increase the expertise and technology base of the institutions. Challenges include obtaining venture capital, personnel, cultural differences, and legal issues. A Kent State University…

  5. Green Power Partnership Program Success Metrics

    EPA Pesticide Factsheets

    The U.S. EPA's Green Power Partnership is a voluntary program designed to reduce the environmental impact of electricity generation by promoting renewable energy. EPA evaluates partnership metrics annually to determine progress toward programmatic goals.

  6. Building A Collaborative And Distributed E&O Program For EarthScope

    NASA Astrophysics Data System (ADS)

    Hall-Wallace, M. K.; Boyd, T.; Richard, G.; Ellins, K.; Meertens, C.; Semken, S.; Taber, J.; Benthien, M.; Wald, L.; Marvinney, R.

    2003-12-01

    EarthScope's education and outreach (E&O) mission is to ensure that the EarthScope experiment creates as its legacy a public more knowledgeable and understanding of the scientific and societal contributions made by the EarthScope experiment and Earth science. It will fulfill this commitment by developing and disseminating programs and products that utilize the data, models, technology and discoveries of EarthScope. The EarthScope Education and Outreach Network (EON), consisting of local EON alliances, the EarthScope facilities, partner organizations and a coordinating office, will facilitate this E&O mission. The local EON alliances, which will vary in size and purpose to respond quickly and to meet the specific needs in a region, will carry out the bulk of the effort. Thus, EarthScope EON can provide customized services that engage culturally, economically and geographically diverse audiences at the national and local scales. The EarthScope facilities and research community will provide access to data, models, and visualization tools for educational purposes. Partnerships with other national and local science education and outreach programs at colleges, universities, research facilities and professional societies within the EarthScope community as well as relevant programs at museums and parks, state geologic surveys and emergency management agencies, and K-12 schools are critical to EON's success. These partnerships will allow EON to use existing resources, networks and expertise to gear up quickly and efficiently. As EON develops, it will reciprocate by contributing new resources and expertise to the partnerships that help improve public understanding of Earth systems overall and promote effective application of EarthScope discoveries. In this presentation, we will outline major programs and products envisioned for EarthScope, plans for evaluating those programs locally and nationally, and mechanisms for collaborating with existing E&O programs.

  7. Opening the Black Box of ICT4D: Advancing Our Understanding of ICT4D Partnerships

    ERIC Educational Resources Information Center

    Park, Sung Jin

    2013-01-01

    The term, Information and Communication Technologies for Development (ICT4D), pertains to programs or projects that strategically use ICTs (e.g. mobile phones, computers, and the internet) as a means toward the socio-economic betterment for the poor in developing contexts. Gaining the political and financial support of the international community…

  8. Genome Science: A Video Tour of the Washington University Genome Sequencing Center for High School and Undergraduate Students

    ERIC Educational Resources Information Center

    Flowers, Susan K.; Easter, Carla; Holmes, Andrea; Cohen, Brian; Bednarski, April E.; Mardis, Elaine R.; Wilson, Richard K.; Elgin, Sarah C. R.

    2005-01-01

    Sequencing of the human genome has ushered in a new era of biology. The technologies developed to facilitate the sequencing of the human genome are now being applied to the sequencing of other genomes. In 2004, a partnership was formed between Washington University School of Medicine Genome Sequencing Center's Outreach Program and Washington…

  9. A resolution expressing support for a public diplomacy program promoting advancements in science, technology, engineering, and mathematics made by or in partnership with the people of the United States.

    THOMAS, 111th Congress

    Sen. Kaufman, Edward E. [D-DE

    2010-09-28

    Senate - 09/28/2010 Submitted in the Senate, considered, and agreed to without amendment and with a preamble by Unanimous Consent. (All Actions) Tracker: This bill has the status Agreed to in SenateHere are the steps for Status of Legislation:

  10. The J-School Debate: Is the Timing Finally Right for University Journalism Programs and the Rest of the University Community to Work Together?

    ERIC Educational Resources Information Center

    Camp, Michael

    2012-01-01

    Liberal arts universities are under mounting pressure to maintain their position of relevance in an increasingly technological and economically competitive world, while professional journalism is steadily losing ground to social media. This essay argues that a new partnership between journalism schools and the academic community would be…

  11. K-20 Partnerships: Literature Review and Recommendations for Research. WCER Working Paper No. 2008-3

    ERIC Educational Resources Information Center

    Clifford, Matthew; Millar, Susan B.

    2008-01-01

    Federal programs, such as the National Science Foundation's Math and Science Partnership program, are promoting partnerships between K-12 school districts and higher education institutions (K-20 partnerships) in hopes of fostering greater alignment and cooperation among participating institutions and pooling resources to address persistent…

  12. Mapping International University Partnerships Identified by East African Universities as Strengthening Their Medicine, Nursing, and Public Health Programs.

    PubMed

    Yarmoshuk, Aaron N; Guantai, Anastasia Nkatha; Mwangu, Mughwira; Cole, Donald C; Zarowsky, Christina

    International university partnerships are recommended for increasing the capacity of sub-Saharan African universities. Many publications describe individual partnerships and projects, and tools are available for guiding collaborations, but systematic mappings of the basic, common characteristics of partnerships are scarce. To document and categorize the international interuniversity partnerships deemed significant to building the capacity of medicine, nursing, and public health programs of 4 East African universities. Two universities in Kenya and 2 in Tanzania were purposefully selected. Key informant interviews, conducted with 42 senior representatives of the 4 universities, identified partnerships they considered significant for increasing the capacity of their institutions' medicine, nursing, and public health programs in education, research, or service. Interviews were transcribed and analyzed. Partners were classified by country of origin and corresponding international groupings, duration, programs, and academic health science components. One hundred twenty-nine university-to-university partnerships from 23 countries were identified. Each university reported between 25 and 36 international university partners. Seventy-four percent of partnerships were with universities in high-income countries, 15% in low- and middle-income countries, and 11% with consortia. Seventy percent included medicine, 37% nursing, and 45% public health; 15% included all 3 programs. Ninety-two percent included an education component, 47% research, and 24% service; 12% included all 3 components. This study confirms the rapid growth of interuniversity cross-border health partnerships this century. It also finds, however, that there is a pool of established international partnerships from numerous countries at each university. Most partnerships that seek to strengthen universities in East Africa should likely ensure they have a significant education component. Universities should make more systematic information about past and existing partnerships available publicly. Copyright © 2016. Published by Elsevier Inc.

  13. Scientist-Educator Partnerships: the Cornerstone of Astrophysics E/PO

    NASA Astrophysics Data System (ADS)

    Meinke, Bonnie K.; Smith, Denise A.; Lawton, Brandon; Eisenhamer, Bonnie; Jirdeh, Hussein

    2015-11-01

    For nearly two decades, NASA has partnered scientists and educators by embedding Education and Public Outreach (E/PO) programs and funding in its science missions and research activities. This enables scientist and educators to work side-by-side in translating cutting-edge NASA science and technology for classrooms, museums, and public venues.The Office of Public Outreach at the Space Telescope Science Institute (STScI) is uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. As home to both Hubble Space Telescope and the future James Webb Space Telescope, STScI leverages the expertise of its scientists to create partnerships with its collocated Education Team to translate cutting-edge NASA science into new and effective learning tools. In addition, STScI is home of the NASA Science Mission Directorate (SMD) Astrophysics Science E/PO Forum, which facilitates connections both within the SMD E/PO community and beyond to scientists and educators across all NASA Astrophysics missions. These collaborations strengthen partnerships, build best practices, and enhance coherence for NASA SMD-funded E/PO missions and programs.We will present examples of astronomers’ engagement in our E/PO efforts, such as NASA Science4Girls.

  14. The Committed Intimate Partnerships of Incarcerated African-American Men: Implications for Sexual HIV Transmission Risk and Prevention Opportunities.

    PubMed

    Khan, Maria R; El-Bassel, Nabila; Golin, Carol E; Scheidell, Joy D; Adimora, Adaora A; Coatsworth, Ashley M; Hu, Hui; Judon-Monk, Selena; Medina, Katie P; Wohl, David A

    2017-10-01

    Incarceration is thought to influence HIV transmission by disrupting partnerships that provide support and protect against sex risk-taking. Current correctional facility-based family-strengthening programs focus on marital partnerships, a minority of inmates' partnerships. Research on the sex partnerships of incarcerated African-American men and the types of partnerships most likely to protect against HIV-related sex risk is limited. Improved understanding can inform expansion of correctional facility-based family-strengthening programs to a greater proportion of protective partnerships and HIV risk reduction programs to partnerships vulnerable to sex risk. Project DISRUPT is a cohort study of African-American men being released from prison in North Carolina who were in committed heterosexual partnerships at prison entry. Using baseline survey data (N = 189), we conducted latent class analysis (LCA) to identify subgroups of participants with distinct relationship profiles and measured associations between relationship characteristics and multiple partnerships of inmates and their partners in the six months before incarceration. LCA indicated a two-class solution, with relationships distinguished by satisfaction/stability (satisfied/stable class: 58.0%; dissatisfied/unstable class: 42.0%); each class had comparable relationship length and levels of marriage and cohabitation. Dissatisfied/unstable relationships were associated with multiple partnerships among participants (AOR 2.93, 95% CI 1.50, 5.72) and partners (AOR 4.95, 95% CI 1.68, 14.58). Satisfaction indicators-versus length, marriage, or cohabitation-were the strongest independent correlates of inmates' and partners' multiple partnerships. Pre-incarceration economic deprivation, mental disorder symptoms, substance use, and violence in relationships were associated with dissatisfaction/instability. Prison-based programs designed to maintain healthy partnerships, strengthen relationship skills, and reduce HIV risk-taking and violence in relationships are warranted and should be targeted to both marital and nonmarital partnerships. Programming also should address the poverty, mental illness, and substance use factors that threaten relationship satisfaction/stability and increase HIV risk.

  15. Graduate Training at the Interface of Computational and Experimental Biology: An Outcome Report from a Partnership of Volunteers between a University and a National Laboratory

    PubMed Central

    von Arnim, Albrecht G.; Missra, Anamika

    2017-01-01

    Leading voices in the biological sciences have called for a transformation in graduate education leading to the PhD degree. One area commonly singled out for growth and innovation is cross-training in computational science. In 1998, the University of Tennessee (UT) founded an intercollegiate graduate program called the UT-ORNL Graduate School of Genome Science and Technology in partnership with the nearby Oak Ridge National Laboratory. Here, we report outcome data that attest to the program’s effectiveness in graduating computationally enabled biologists for diverse careers. Among 77 PhD graduates since 2003, the majority came with traditional degrees in the biological sciences, yet two-thirds moved into computational or hybrid (computational–experimental) positions. We describe the curriculum of the program and how it has changed. We also summarize how the program seeks to establish cohesion between computational and experimental biologists. This type of program can respond flexibly and dynamically to unmet training needs. In conclusion, this study from a flagship, state-supported university may serve as a reference point for creating a stable, degree-granting, interdepartmental graduate program in computational biology and allied areas. PMID:29167223

  16. Engaging underserved audiences in informal science education through community-based partnerships

    NASA Astrophysics Data System (ADS)

    Bouzo, Suzanne

    This thesis explores the impact of the Science Education and Engagement of Denver (SEED) Partnership on three of its participant families. The partnership, consisting of large informal science organizations, as well as small community-based organizations, created its programming based on prior research identifying barriers to minority participation in informal science education programs. SEED aims to engage youth and families of emerging populations in science and nature. Three families were examined as a case study to have an in depth investigation about their involvement in the programs sponsored by the partnership. Findings suggest a positive impact on participant feelings and engagement in science and nature. Future recommendations are made for furthering programming as well as conducting a larger scale, more comprehensive program evaluation. This research addresses prior studies that have identified several barriers toward participation of underserved audiences in informal science education programs and how the SEED partnership has addressed specific identified barriers.

  17. Child Health Partnerships: a review of program characteristics, outcomes and their relationship.

    PubMed

    Jayaratne, Kapila; Kelaher, Margaret; Dunt, David

    2010-06-17

    Novel approaches are increasingly employed to address the social determinants of health of children world-wide. Such approaches have included complex social programs involving multiple stakeholders from different sectors jointly working together (hereafter Child Health Partnerships). Previous reviews have questioned whether these programs have led to significant improvements in child health and related outcomes. We aim to provide definitive answers to this question as well as identifying the characteristics of successful partnerships. A comprehensive literature search identified 11 major Child Health Partnerships in four comparable developed countries. A critical review is focused on various aspects of these including their target groups, program mechanics and outcomes. There was evidence of success in several major areas from the formation of effective joint operations of partners in different partnership models to improvement in both child wellbeing and parenting. There is emerging evidence that Child Health Partnerships are cost-effective. Population characteristics and local contexts need to be taken into account in the introduction and implementation of these programs.

  18. Transfer of Analytical Skills From Subject to Subject - Reality or Fiction?

    NASA Astrophysics Data System (ADS)

    de Oliveira, G.; Murray, D. P.; Veeger, A.; Caulkin, J.; Brand, S.; Fogleman, J.; Dooley, H.

    2013-12-01

    The Rhode Island Technology Enhanced Science (RITES) Project is a partnership aimed at improving science education in Rhode Island. Most of the school districts in the state and five institutions of higher education participate in it. RITES was funded by the NSF Math and Science Partnership program, to a large extent because a statewide partnership would elucidate strategies that could be implemented in a diversity of environments throughout the country. The project has become an authentic and equal partnership that benefits both K-12 and higher education institutions; it has succeeded in improving science education by several measures, including gains in teacher content knowledge and in student performance on standardized exams. One of the centerpieces of the project is a professional development (PD) program, which has engaged more than 65% of the middle and secondary levels science teachers in the state. In this presentation we discuss outcomes of the PD, which shed light on questions of general interest to science educators. It is widely held that inquiry skills should be transferrable from one scientific domain to another regardless of content, and this premise was central to the original design philosophy of RITES PD. Nevertheless, although many educators embrace this view, it is a hypothesis that has been mostly untested. That is because there are few environments where an appropriate tool is in place to measure inquiry skills. RITES was uniquely positioned to measure the impact of its PD on student inquiry skills, and whether those skills would translate to topics not covered in classroom activities. New England has a multi-state consortium with a common assessment program, which measures inquiry skills in addition to content knowledge. Inquiry tasks on the New England Common Assessment Program (NECAP) may use any science topic. RITES offers technology-based classroom investigations for all areas of science, but it is nigh impossible to match inquiry opportunities during the academic year with the content of the NECAP inquiry tasks, as the latter continually change. An analysis of the NECAP inquiry assessment shows that students of RITES teachers do significantly better than others on inquiry. Moreover, no correlation has been found between the topics of the PDs and the NECAP inquiry tasks. These results will be discussed in this presentation along with insights from pre/post assessments of content knowledge specific to RITES investigations.

  19. Young People and the Learning Partnerships Program: Shifting Negative Attitudes to Help-Seeking

    ERIC Educational Resources Information Center

    Cahill, Helen; Coffey, Julia

    2013-01-01

    This article discusses research which explored the impact of the Learning Partnerships program on young people's attitudes to help-seeking. The Learning Partnerships program brings classes of high school students into universities to teach pre-service teachers and doctors how to communicate effectively with adolescents about sensitive issues such…

  20. Youth-Adult Partnerships and Youth Identity Style.

    PubMed

    Ramey, Heather L; Rose-Krasnor, Linda; Lawford, Heather L

    2017-02-01

    Youth-adult partnerships (e.g., youth leading programs, participating as members of advisory boards) are a common and widely recommended practice in youth work and youth-serving program settings. Although researchers have suggested that these opportunities contribute to youth's identity development, empirical evidence is lacking. In the current study, we tested associations between identity style and degree of youth voice, collaborative youth-adult relationships, and youth's program engagement in 194 youth participating in youth-adult partnerships (M age  = 17.6, 62 % female). We found that these characteristics of youth-adult partnerships predicted higher informational identity style, although only program engagement emerged as a unique predictor. Furthermore, exploratory analysis indicated that these associations were moderated by the type of organization. The findings suggest the need for more research on the multiple dimensions of youth-adult partnerships and their association with youth functioning, as well as pointing to the importance of the broader organizational context of youth-adult partnerships.

  1. North-South Partnership in Water Resource Education and Research - Lessons learnt from U.S.-Ethiopia Partnership

    NASA Astrophysics Data System (ADS)

    Gebremichael, M.

    2015-12-01

    In 2010, Ethiopian and U.S. universities formed partnership to train critical mass of Ethiopians in modern water resources tools, techniques, skills and knowledge, and to strengthen the institutional capacity of Ethiopian universities to establish graduate-level programs in Ethiopia. The partnership established Ethiopia's first water resource research institute, two graduate-level programs (water resource engineering and management, water and health) that are currently training about 100 students at M.S. and Ph.D. levels, summer undergraduate outreach program that provided community-based research experience in water resource for undergraduate students, and short-term trainings to practitioners and policy makers. The design, implementation and impact of these programs have had limitations and successes. In this presentation, I will provide lessons learnt from this partnership, and suggestions of elements required for successful North-South partnership in higher education and research.

  2. The Value of Strategic Partnerships

    ScienceCinema

    Gould, Josh; Narayan, Amit; McNutt, Ty

    2018-05-30

    Strong strategic partnerships can be the difference between those technologies that only achieve success in the lab and those that actually break into the marketplace. Two ARPA-E awardees—AutoGrid and APEI—have forged strategic partnerships that have positioned their technologies to achieve major success in the market. This video features remarks from ARPA-E Technology-to-Market Advisor Josh Gould and interviews with technologists at AutoGrid and APEI, who each tell the story of how their company leveraged relationships with strategic partners to broaden their customer base and bring their technology to life.

  3. Why American business demands twenty-first century learning: A company perspective.

    PubMed

    Knox, Allyson

    2006-01-01

    Microsoft is an innovative corporation demonstrating the kind and caliber of job skills needed in the twenty-first century. It demonstrates its commitment to twenty-first century skills by holding its employees accountable to a set of core competencies, enabling the company to run effectively. The author explores how Microsoft's core competencies parallel the Partnership for 21st Century Skills learning frameworks. Both require advanced problem-solving skills and a passion for technology, both expect individuals to be able to work in teams, both look for a love of learning, and both call for the self-confidence to honestly self-evaluate. Microsoft also works to cultivate twenty-first century skills among future workers, investing in education to help prepare young people for competitive futures. As the need for digital literacy has become imperative, technology companies have taken the lead in facilitating technology training by partnering with schools and communities. Microsoft is playing a direct role in preparing students for what lies ahead in their careers. To further twenty-first century skills, or core competencies, among the nation's youth, Microsoft has established Partners in Learning, a program that helps education organizations build partnerships that leverage technology to improve teaching and learning. One Partners in Learning grantee is Global Kids, a nonprofit organization that trains students to design online games focused on global social issues resonating with civic and global competencies. As Microsoft believes the challenges of competing in today's economy and teaching today's students are substantial but not insurmountable, such partnerships and investments demonstrate Microsoft's belief in and commitment to twenty-first century skills.

  4. GLOBE Observer and the Association of Science & Technology Centers: Leveraging Citizen Science and Partnerships for an International Science Experiment to Build Climate Literacy

    NASA Astrophysics Data System (ADS)

    Riebeek Kohl, H.; Chambers, L. H.; Murphy, T.

    2016-12-01

    For more that 20 years, the Global Learning and Observations to Benefit the Environment (GLOBE) Program has sought to increase environment literacy in students by involving them in the process of data collection and scientific research. In 2016, the program expanded to accept observations from citizen scientists of all ages through a relatively simple app. Called GLOBE Observer, the new program aims to help participants feel connected to a global community focused on advancing the scientific understanding of Earth system science while building climate literacy among participants and increasing valuable environmental data points to expand both student and scientific research. In October 2016, GLOBE Observer partnered with the Association of Science & Technology Centers (ASTC) in an international science experiment in which museums and patrons around the world collected cloud observations through GLOBE Observer to create a global cloud map in support of NASA satellite science. The experiment was an element of the International Science Center and Science Museum Day, an event planned in partnership with UNESCO and ASTC. Museums and science centers provided the climate context for the observations, while GLOBE Observer offered a uniform experience and a digital platform to build a connected global community. This talk will introduce GLOBE Observer and will present the results of the experiment, including evaluation feedback on gains in climate literacy through the event.

  5. School Counselor Technology Use and School-Family-Community Partnerships

    ERIC Educational Resources Information Center

    Cronin, Sarah; Ohrtman, Marguerite; Colton, Emily; Crouse, Brita; Depuydt, Jessica; Merwin, Camille; Rinn, Megan

    2018-01-01

    Research in understanding effective strategies to develop stakeholder engagement is needed to further define the school counselor role and best outreach practices. School counselors are increasing their daily technology use. This study explores how school counselor technology use is related to school-family-community partnerships. School…

  6. Air Breathing Propulsion Controls and Diagnostics Research at NASA Glenn Under NASA Aeronautics Research Mission Programs

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2015-01-01

    The Intelligent Control and Autonomy Branch (ICA) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet the goals of the NASA Aeronautics Research Mission Directorate (ARMD) Programs. These efforts are primarily under the various projects under the Advanced Air Vehicles Program (AAVP), Airspace Operations and Safety Program (AOSP) and Transformative Aeronautics Concepts Program (TAC). The ICA Branch is focused on advancing the state-of-the-art of aero-engine control and diagnostics technologies to help improve aviation safety, increase efficiency, and enable operation with reduced emissions. This paper describes the various ICA research efforts under the NASA Aeronautics Research Mission Programs with a summary of motivation, background, technical approach, and recent accomplishments for each of the research tasks.

  7. Faculty Perceptions of Race to the Top Policy Influence on a University-Based Preparation Program Partnership

    ERIC Educational Resources Information Center

    Reyes-Guerra, Daniel; Lochmiller, Chad R.

    2016-01-01

    Florida's Race to the Top (RTTT) competition invited university-district partnerships to compete for funds aimed at improving principal preparation programs. In this article, we report findings from a qualitative case study focused on one program partnership funded by RTTT. Drawing upon interviews with faculty and relevant documents, we conducted…

  8. In and of the City: Theory of Action and the NYU Partnership School Program

    ERIC Educational Resources Information Center

    McDonald, Joseph P.; Domingo, Myrrh; Jeffery, Jill V.; Pietanza, Rosa Riccio; Pignatosi, Frank

    2013-01-01

    This article explores the theory of action underlying New York University's (NYU's) Partnership Schools Program--explaining in the process what a theory of action is, and how it can be constructed for other innovations in other contexts. NYU's Partnership Program involves 23 schools, K-12, spanning several of New York City's most economically…

  9. Wisconsin Workplace Partnership Training Program (National Workplace Literacy Program). June 1, 1992-December 31, 1993. Final Report.

    ERIC Educational Resources Information Center

    Wisconsin State Board of Vocational, Technical and Adult Education, Madison. Wisconsin Technical Coll. System.

    The Wisconsin Workplace Partnership Training Program involved the state's technical college system board, state chapter of the AFL-CIO, Wisconsin Manufacturers and Commerce, and Madison Center on Education and Work. The state-level education-labor-management partnership was mirrored at the local level in 28 worksite education centers. Instruction…

  10. Preparing High School Students for College: An Exploratory Study of College Readiness Partnership Programs in Texas

    ERIC Educational Resources Information Center

    Barnett, Elisabeth A.; Corrin, William; Nakanishi, Aki; Bork, Rachel Hare; Mitchell, Claire; Sepanik, Susan

    2012-01-01

    The current study examines a number of college readiness partnership programs operating in Texas and identifies their features, targeted students, and intended outcomes. It also examines the partnerships that created these programs. The findings presented here are based on a search and analysis of the relevant research and Texas policy…

  11. Building a Bright Future. The Hydro Research Foundation's Fellowship Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaughn, Brenna; Linke, Deborah M.

    The Hydro Fellowship Program (program) began as an experiment to discover whether the hydropower industry could find mechanisms to attract new entrants through conducting relevant research to benefit the industry. This nationwide, new-to-the-world program was started through funding from the Wind and Water Power Technologies Office of the Energy Efficiency and Renewable Energy (EERE) Office of the Department of Energy (DOE). Between 2010-2015, the Hydro Research Foundation (HRF) designed and implemented a program to conduct valuable research and attract new entrants to the hydro workforce. This historic grant has empowered and engaged industry members from 25 organizations by working withmore » 91 students and advisors at 24 universities in 19 states. The work funded answered pressing research needs in the fields of civil, mechanical, environmental, and electrical engineering, as well as law, energy engineering and materials innovation. In terms of number of individuals touched through funding, 148 individuals were supported by this work through direct research, mentorship, oversight of the work, partnerships and the day-to-day program administration. Based on the program results, it is clear that the funding achieved the hoped-for outcomes and has the capacity to draw universities into the orbit of hydropower and continue the conversation about industry research and development needs. The Foundation has fostered unique partnerships at the host universities and has continued to thrive with the support of the universities, advisors, industry and the DOE. The Foundation has demonstrated industry support through mentorships, partnerships, underwriting the costs and articulating the universities’ support through in-kind cost sharing. The Foundation recommends that future work be continued to nurture these graduate level programs using the initial work and improvements in the successor program, the Research Awards Program, while stimulating engagement of academia at the community college level for operations and maintenance workforce development.« less

  12. Businesses assisting K--12 science instruction: Four case studies of long-term school partnerships

    NASA Astrophysics Data System (ADS)

    van Trieste, Lynne M.

    Businesses lack enough qualified applicants to fill the increasing need for scientists and engineers while educators lack many resources for science programs in K-12 schools. This series of case studies searched for successful collaborations between the two in four geographic locations: Boise, Idaho; Dallas, Texas; Los Angeles County, California, and Orange County, California. These science education partnerships were investigated to gain an understanding of long-term partnership structure, functioning and evaluation methods. Forty-nine individual interviews with representatives from the groups of stakeholders these programs impact were also conducted. Stakeholder groups included students, teachers, parents, school administrators, business liaisons, and non-profit representatives. Several recurring themes in these partnerships reinforced the existing literature research findings. Collaboration and communication between partners, teacher professional development, the need for more minority and female representation in physical science careers, and self-efficacy in relation to how people come to view their scientific abilities, are among these themes. Topics such as program replication, the importance of role models, programs using "hands-on" activities, reward systems for program participants, and program outcome measurement also emerged from the cases investigated. Third-party assistance by a non-profit entity is occurring within all of these partnerships. This assistance ranges from a service providing material resources such as equipment, lesson plans and meeting space, to managing the partnership fundraising, program development and evaluations. Discussions based upon the findings that support or threaten sustainment of these four partnerships, what a "perfect" partnership might look like, and areas in need of further investigation conclude this study.

  13. Critical Elements of Scientist-Teacher Partnerships and Lessons Learned About Partnership Program Design

    NASA Astrophysics Data System (ADS)

    Walker, B.; Hall, M. K.; Regens, N. L.

    2006-05-01

    Partnerships between scientists and K-12 teachers have the potential for long-term impacts, but there are many barriers to forming sustainable relationships between these two work environment cultures. By analyzing data from an NSF GK-12 program that pairs graduate and undergraduate students (fellows) with K-12 teachers, we identified several key attributes of effective partnerships. Our data indicate that communicating openly about goals, roles, and dissatisfaction is the foundation of successful partnership evolution. Although it was possible to develop strong communication, goals, and roles over time, partnership pairs that achieved these elements through deliberate and early action experienced less frustration than those who did not. Undefined goals and roles represented major barriers to partnership formation. Often, dissatisfaction was related to one partner perceiving the other as being uninvested in the relationship. Direct communication about dissatisfaction was rare, but the majority of fellows and teachers who discussed their frustrations benefited. Communicating openly demonstrated partners' desire and commitment to collaborate and led to increased planning time, a shared division of labor, the exchange of scientific and pedagogical resources, and the development of new knowledge and skills. Program design is an influential factor in developing sustainable partnerships as well. We will give examples of how the GK-12 program studied has been modified over the last five years to promote the partnership characteristics that we identified. We will also discuss program elements that facilitate communication, goal setting, role definition, and planning time.

  14. Vehicle Electronics and Architecture

    DTIC Science & Technology

    2011-08-26

    NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Chris Mocnik 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION ...NAME(S) AND ADDRESS(ES) US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI 48397-5000, USA 8. PERFORMING ORGANIZATION REPORT NUMBER 22245 9...processes throughout VEA organization 3.3 Strengthen strategic partnerships, alliances, and technology transfer 4.3 Strengthen strategic

  15. NSF-OEDG Manoomin Science Camp Project: A Model for Engaging American Indian Students in Science, Technology, Engineering, and Mathematics

    ERIC Educational Resources Information Center

    Dalbotten, Diana; Ito, Emi; Myrbo, Amy; Pellerin, Holly; Greensky, Lowana; Howes, Thomas; Wold, Andrew; Breckenridge, Rachel; Drake, Christa; Bucar, Leslie; Kowalczak, Courtney; Lindner, Cameron; Olson, Carolyn; Ray, T. J.; Rhodes, Richard; Woods, Philip; Yellowman, Tom

    2014-01-01

    The Manoomin ''wild rice'' Science Camp program, a partnership between the University of Minnesota, the Fond du Lac Tribal and Community College, and the Fond du Lac Band of Lake Superior Chippewa is an example of how a community-based participatory research project can become the catalyst for STEM learning for an entire community, providing…

  16. TARDEC Annual Report 2011

    DTIC Science & Technology

    2012-01-01

    installing the Army’s first smart -charging microgrid at Wheeler Army Airfield in Hawaii. Aloha Microgrid 1 consists of a 25 kW solar power array, 200...in DoD’s Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) program, a joint capabilities technology...in the TACOM LCMC Small Business Fair in our attempts to begin partnerships with a growing number of small business technologists and entrepreneurs

  17. Innovative Arts Programs Require Innovative Partnerships: A Case Study of STEAM Partnering between an Art Gallery and a Natural History Museum

    ERIC Educational Resources Information Center

    Grant, Jacqualine; Patterson, Delaney

    2016-01-01

    The arts animate learning because they are inherently experiential and because of their potential to develop creative and critical thinking skills in students. These same skills are valued in science, technology, engineering, and math (STEM) education, but the arts have not been consistently included in STEM lessons. We transformed our STEM…

  18. NREL Announces New Technology Development and Innovation Project Selections

    Science.gov Websites

    support of the TD&I program, NREL and DOE plan to host an open house in summer 2018 to provide an in about potential partnership opportunities with NREL. The open house will focus on current needs and gaps from the 2017 open house, or for information on the upcoming open house (when available), please visit

  19. Advancing Geospatial Technologies in Science and Social Science: A Case Study in Collaborative Education

    NASA Astrophysics Data System (ADS)

    Williams, N. A.; Morris, J. N.; Simms, M. L.; Metoyer, S.

    2007-12-01

    The Advancing Geospatial Skills in Science and Social Sciences (AGSSS) program, funded by NSF, provides middle and high school teacher-partners with access to graduate student scientists for classroom collaboration and curriculum adaptation to incorporate and advance skills in spatial thinking. AGSSS Fellows aid in the delivery of geospatially-enhanced activities utilizing technology such as geographic information systems, remote sensing, and virtual globes. The partnership also provides advanced professional development for both participating teachers and fellows. The AGSSS program is mutually beneficial to all parties involved. This successful collaboration of scientists, teachers, and students results in greater understanding and enthusiasm for the use of spatial thinking strategies and geospatial technologies. In addition, the partnership produces measurable improvements in student efficacy and attitudes toward processes of spatial thinking. The teacher partner training and classroom resources provided by AGSSS will continue the integration of geospatial activities into the curriculum after the project concludes. Time and resources are the main costs in implementing this partnership. Graduate fellows invest considerable time and energy, outside of academic responsibilities, to develop materials for the classroom. Fellows are required to be available during K-12 school hours, which necessitates forethought in scheduling other graduate duties. However, the benefits far outweigh the costs. Graduate fellows gain experience in working in classrooms. In exchange, students gain exposure to working scientists and their research. This affords graduate fellows the opportunity to hone their communication skills, and specifically allows them to address the issue of translating technical information for a novice audience. Teacher-partners and students benefit by having scientific expertise readily available. In summation, these experiences result in changes in teacher/student perceptions of science and scientists. Evidence of the aforementioned changes are provided through external evaluation and results obtained from several assessment tools. The program also utilizes an internal evaluator to monitor participants thoughts and opinions on the previous years' collaboration. Additionally, graduate fellows maintain a reflective journal to provide insight into experiences occurring both in-class and among peers. Finally, student surveys administered prior to and concluding the academic year assess changes in student attitudes and self-perception of spatial thinking skills.

  20. Educational Technology Dissemination: Its Impact on Learning, Instruction, and Educational Policy.

    ERIC Educational Resources Information Center

    Hawkes, Mark

    The Council of Great Lakes Governors and GTE North, Inc. developed a partnership titled "Pioneering Partners for Educational Technology" to disseminate innovative educational technologies developed by classroom teachers in eight states of the Great Lakes region. To accomplish this, Pioneering Partners provides a Partnership Summer Summit…

  1. Application of capital social of Bali cattle farmers that participate in the partnership system in Barru Regency, South Sulawesi Province

    NASA Astrophysics Data System (ADS)

    Sirajuddin, S. N.; Siregar, A. R.; Mappigau, P.

    2018-05-01

    There are four models of partnership that is centralized models, multipartite models, intermediary models and informal model application in all livestock commodities, including beef cattle. Partnership in the beef cattle business has been done in Barruie the program showroom cattle (SRS).This study aimed to known application the social capital of beef cattle breeders who followed the partnership system (program showroom cattle) in Barru. This research was conducted in April 2017 in the district Tanete Riaja. The population is all the farmers in Barru Regency who joined the partnership system (showroom program) and the sample is beef cattle breeders who followed the partnership system in Tanete Riaja district, Barru regency. This type of research is quantitative descriptive. This type of data is quantitative and qualitative. The resource data are primary data and secondary data. Data analysis uses descriptive statistical analysis with Likert scale. The results research show that social capital (trust, linkage, norm) of beef cattle breeders who joined the partnership system (cattle showroom program) at high scale

  2. Sandia National Laboratories: Strategic Partnership Projects, Non-Federal

    Science.gov Websites

    Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for Development Agreement (CRADA) Strategic Partnership Projects, Non-Federal Entity (SPP/NFE) Agreements New Sandia Strategic Partnership Projects, Non-Federal Entity (SPP/NFE) Agreements Alt text Potential

  3. Physics and Innovation: A Large-Company Perspective

    NASA Astrophysics Data System (ADS)

    Doering, Robert

    2013-03-01

    With regard to its influence on innovation (i.e., creating new commercial technologies), physics continuously faces the challenge of ``keeping ahead of engineering'' and ``moving on'' to new concepts as well as to potentially new roles with respect to industrial research. For most large companies, the R&D model has undergone significant transformation over the past three decades. This has been driven, in part, by the increasing cost of continuously developing new technologies upon which to base state-of-the-art products. Part of this challenge is to select which new concepts and ``emerging technologies'' to pursue. A poor decision at this point wastes development resources and can be very difficult to overcome later. Therefore, a key feature of many new R&D models is collaboration with entities outside of the corporation. Such partnerships reduce both the cost and risk of exploring multiple lines of research which may lead to new technologies. One flexible approach to organizing R&D partnerships is via the establishment of a consortium. The semiconductor industry has successfully used research consortia since the founding of the Semiconductor Research Corporation (SRC) in 1982 and SEMATECH a few years later. The automotive industry has also used the consortium approach for many years since the formation of the United States Council for Automotive Research (USCAR) in 1992. In the case of the SRC, the principal operating methodology is for the members to create requests for proposals leading to the collective funding of university research. This is often done in partnership with federal agencies. For example, the Focus Center Research Program (FCRP, an SRC subsidiary) is co-funded with DARPA. Another SRC subsidiary, the Nanoelectronics Research Initiative (NRI) is jointly supported with the NSF and NIST. This NRI-agency partnership has partly been enabled by the National Nanotechnology Initiative's Signature Initiative on ``Nanoelectronics for 2020 and Beyond.'' Within the SRC portfolio, the NRI research is particularly ``physics intensive''! Of course, in addition to consortia, the new models typically include external R&D through consulting arrangements, IP licensing, and acquisition of smaller companies that have developed useful new technologies, supported in some cases by SBIRs and other forms of government investment in growth of the economy.

  4. 76 FR 81491 - Agency Information Collection Activities; Proposed Collection; Comment Request; Reporting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-28

    ...: Mollie Lemon, Climate Protection Partnerships Division, Office of Atmospheric Programs, MC 6202J.... Partners are organizational entities that have volunteered to participate in either Partnership program.... Dated: December 21, 2011. Elizabeth Craig, Director, Climate Protection Partnerships Division. [FR Doc...

  5. Training for Trade: A Partnership Strategy.

    ERIC Educational Resources Information Center

    Wismer, Jack N.

    1994-01-01

    Discusses the role of community colleges in providing international trade education and training, highlighting the importance of building partnerships. Describes methods for building partnerships, eight current community college training-for-trade (TFT) programs, and training services and resources. Suggests that TFT programs must become a…

  6. HBCU Summer Undergraduate Training Program in Prostate Cancer: A Partnership Between USU-CPDR and UDC

    DTIC Science & Technology

    2015-10-02

    conferences. 3 BODY Task 1: Selection Process: USU-CPDR summer internship program announcements for 2015 were made at the UDC through...AD_________________ Award Number: W81XWH-14-2-0142 TITLE: HBCU Summer Undergraduate Training Program in Prostate Cancer: A Partnership Between...DATES COVERED (From - To) 30 Sep 2014 - 29 Sep 2015 4. TITLE AND SUBTITLE: HBCU Summer Undergraduate Training Program in Prostate Cancer: A Partnership

  7. 77 FR 24992 - OSHA Strategic Partnership Program for Worker Safety and Health (OSPP); Extension of the Office...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-26

    ... Strategic Partnership Program for Worker Safety and Health (OSPP); Extension of the Office of Management and... specified in the OSHAs Strategic Partnership Program for Worker Safety and Health (OSPP). DATES: Comments... accepted during the Department of Labor's and Docket Office's normal business hours, 8:15 a.m. to 4:45 p.m...

  8. Preparing High School Students for College: An Exploratory Study of College Readiness Partnership Programs in Texas. Executive Summary

    ERIC Educational Resources Information Center

    Barnett, Elisabeth A.; Corrin, William; Nakanishi, Aki; Bork, Rachel Hare; Mitchell, Claire; Sepanik, Susan

    2012-01-01

    This paper presents an executive summary of a study that examines a number of college readiness partnership programs operating in Texas and identifies their features, targeted students, and intended outcomes. It also examines the partnerships that created these programs. The findings presented here are based on a search and analysis of the…

  9. Novel approaches to HIV prevention and sexual health promotion among Guatemalan gay and bisexual men, MSM, and transgender persons.

    PubMed

    Rhodes, Scott D; Alonzo, Jorge; Mann, Lilli; Downs, Mario; Simán, Florence M; Andrade, Mario; Martinez, Omar; Abraham, Claire; Villatoro, Guillermo R; Bachmann, Laura H

    2014-08-01

    The burden of HIV is disproportionate for Guatemalan sexual minorities (e.g., gay and bisexual men, men who have sex with men [MSM], and transgender persons). Our bi-national partnership used authentic approaches to community-based participatory research (CBPR) to identify characteristics of potentially successful programs to prevent HIV and promote sexual health among Guatemalan sexual minorities. Our partnership conducted Spanish-language focus groups with 87 participants who self-identified as male (n=64) or transgender (n=23) and individual in-depth interviews with ten formal and informal gay community leaders. Using constant comparison, an approach to grounded theory, we identified 20 characteristics of potentially successful programs to reduce HIV risk, including providing guidance on accessing limited resources; offering supportive dialogue around issues of masculinity, socio-cultural expectations, love, and intimacy; using Mayan values and images; harnessing technology; increasing leadership and advocacy skills; and mobilizing social networks. More research is clearly needed, but participants reported needing and wanting programming and had innovative ideas to prevent HIV exposure and transmission.

  10. In Brief: Revitalizing Earth science education

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-12-01

    A 5-year, $3.9-million U.S. National Science Foundation Math Science Partnership grant to Michigan Technological University (MTU), in Houghton, aims to improve instruction in middle-school Earth and space science courses. The program will enable geoscience and education researchers to work with middle-school science teachers to test strategies designed to reform science, technology, engineering, and math (STEM) education. Project lead researcher Bill Rose said the project could be a template for improvement in STEM throughout the United States. Rose, one of seven MTU faculty members involved with the Michigan Institute for Teaching Excellence Program (MITEP), said the project is ``trying to do something constructive to attract more talented young people to advanced science, math, and technology.'' The project includes data collection and analysis overseen by an evaluation team from the Colorado School of Mines. Also participating in the project are scientists from Grand Valley State University, Allendale, Mich.; the Grand Rapids (Mich.) Area Pre-College Engineering Program; the American Geological Institute; and the U.S. National Park Service.

  11. Improving Energy Efficiency Via Optimized Charge Motion and Slurry Flow in Plant Scale Sag Mills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raj K. Rajamani

    2006-07-21

    A research team from the University of Utah is working to make inroads into saving energy in these SAG mills. In 2003, Industries of the Future Program of the Department of Energy tasked the University of Utah team to build a partnership between the University and the mining industry for the specific purpose of reducing energy consumption in SAG mills. A partnership was formed with Cortez Gold Mines, Outokumpu Technology, Kennecott Utah Copper Corporation, and Process Engineering Resources Inc. At Cortez Gold Operations the shell and pulp lifters of the semiautogenous grinding mill was redesigned. The redesigned shell lifter hasmore » been in operation for over three years and the redesigned pulp lifter has been in operation for over nine months now. This report summarizes the dramatic reductions in energy consumption. Even though the energy reductions are very large, it is safe to say that a 20% minimum reduction would be achieved in any future installations of this technology.« less

  12. Public Trust and Initiatives for New Health Care Partnerships

    PubMed Central

    Mechanic, David

    1998-01-01

    Effective communication between doctor and patient is a critical component of high-quality care. The physician's credibility has a significant effect on treatment outcomes. Because changes in medicine and larger cultural trends challenge the ability of clinicians to engage their patients' trust, new kinds of partnerships must be created. To do this effectively, physicians have to sharpen their communication skills and devise strategies for assuring that their patients become informed allies in their own treatment. A number of innovations are helping to build these alliances: training in communication skills; creative uses of the Internet and videotape technologies; improved “customer service” programs; critical pathways for patients; and special educational aids. All these tools promise to be useful, but they require careful development and evaluation. PMID:9614423

  13. Public trust and initiatives for new health care partnerships.

    PubMed

    Mechanic, D

    1998-01-01

    Effective communication between doctor and patient is a critical component of high-quality care. The physician's credibility has a significant effect on treatment outcomes. Because changes in medicine and larger cultural trends challenge the ability of clinicians to engage their patients' trust, new kinds of partnerships must be created. To do this effectively, physicians have to sharpen their communication skills and devise strategies for assuring that their patients become informed allies in their own treatment. A number of innovations are helping to build these alliances: training in communication skills; creative uses of the Internet and videotape technologies; improved "customer service" programs; critical pathways for patients; and special educational aids. All these tools promise to be useful, but they require careful development and evaluation.

  14. New Media and Models for Engaging Under-Represented Students in Science

    NASA Astrophysics Data System (ADS)

    Mayhew, Laurel M.; Finkelstein, Noah D.

    2008-10-01

    We describe the University of Colorado Partnerships for Informal Science Education in the Community (PISEC) program in which university students participate in classroom and after school science activities with local precollege children. Across several different formal and informal educational environments, we use new technological tools, such as stop action motion (SAM) movies [1] to engage children so that they may develop an understanding of science through play and "show and tell". This approach provides a complementary avenue for reaching children who are otherwise underrepresented in science and under-supported in more formal educational settings. We present the model of university community partnership and demonstrate its utility in a case study involving an African American third grade student learning about velocity and acceleration.

  15. 76 FR 6688 - Land Border Carrier Initiative Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-08

    ... [Docket No. USCBP-2006-0132; CBP Dec. No. 11-04] RIN 1651-AA68 Land Border Carrier Initiative Program... Carrier Initiative Program (LBCIP). The LBCIP was established as a voluntary industry partnership program... Initiative Program (LBCIP) was established as a CBP-industry partnership regulatory program enlisting the...

  16. FY2010 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olszewski, Mitchell

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from ''Freedom'' and ''Cooperative Automotive Research''), it represents DOE's commitment to developing public-private partnerships to fund high risk, high payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ranmore » from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Advanced Power Electronics and Electric Machines (APEEM) subprogram within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the APEEM subprogram has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three phase approach intended to: (1) identify overall propulsion and vehicle related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and PE; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), battery electric vehicles, and fuel-cell-powered automobiles that meet the goals of the VTP. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the PE and electrical machines subsystems of the traction drive system. Areas of development include: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency, with the ability to accommodate higher temperature environments while achieving high reliability; (3) converter concepts that use methods of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control through innovative packaging technologies; and (6) integrated motor/inverter concepts. ORNL's Power Electronics and Electric Machines Research Program conducts fundamental research, evaluates hardware, and assists in the technical direction of the VTP APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2010 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, and they are indicated at the end of each section for readers interested in pursuing details of the work.« less

  17. FY2009 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olszewski, Mitchell

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Oak Ridge National Laboratory's (ORNL's) Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), all electric vehicles, and fuel-cell-powered automobiles that meet the goals of the Vehicle Technologies Program. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency, with the ability to accommodate higher-temperature environments while achieving high reliability; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control and packaging technologies; and (6) integrated motor/inverter concepts. ORNL's Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2009 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work.« less

  18. Air Breathing Propulsion Controls and Diagnostics Research at NASA Glenn Under NASA Aeronautics Research Mission Programs

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2014-01-01

    The Intelligent Control and Autonomy Branch (ICA) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet the goals of the NASA Aeronautics Research Mission Directorate (ARMD) Programs. These efforts are primarily under the various projects under the Fundamental Aeronautics Program (FAP) and the Aviation Safety Program (ASP). The ICA Branch is focused on advancing the state-of-the-art of aero-engine control and diagnostics technologies to help improve aviation safety, increase efficiency, and enable operation with reduced emissions. This paper describes the various ICA research efforts under the NASA Aeronautics Research Mission Programs with a summary of motivation, background, technical approach, and recent accomplishments for each of the research tasks.

  19. Learning Without Boundaries: A NASA - National Guard Bureau Distance Learning Partnership

    NASA Technical Reports Server (NTRS)

    Anderson, Susan H.; Chilelli, Christopher J.; Picard, Stephan

    2003-01-01

    With a variety of high-quality live interactive educational programs originating at the Johnson Space Center in Houston, Texas and other space and research centers, the US space agency NASA (National Aeronautics and Space Administration) has a proud track record of connecting with students throughout the world and stimulating their creativity and collaborative skills by teaching them underlying scientific and technological underpinnings of space exploration. However, NASA desires to expand its outreach capability for this type of interactive instruction. In early 2002, NASA and the National Guard Bureau -- using the Guard's nationwide system of state-ofthe-art classrooms and high bandwidth network -- began a collaboration to extend the reach of NASA content and educational programs to more of America's young people. Already, hundreds of elementary, middle, and high school students have visited Guard e-Learning facilities and participated in interactive NASA learning events. Topics have included experimental flight, satellite imagery-interpretation, and Mars exploration. Through this partnership, NASA and the National Guard are enabling local school systems throughout the United States (and, increasingly, the world) to use the excitement of space flight to encourage their students to become passionate about the possibility of one day serving as scientists, mathematicians, technologists, and engineers. At the 54th International Astronautical Conference MAJ Stephan Picard, the guiding visionary behind the Guard's partnership with NASA, and Chris Chilelli, an educator and senior instructional designer at NASA, will share with attendees background on NASA's educational products and the National Guard's distributed learning network; will discuss the unique opportunity this partnership already has provided students and teachers throughout the United States; will offer insights into the formation by government entities of e-Learning partnerships with one another; and will suggest a possible future for the NASA - National Guard Bureau partnership, one potentially to include live multi-party interaction of hundreds of students in several countries with astronauts, scientists, engineers and designers. To inspire the next generation of explorers as only NASA can!

  20. 15 CFR 1160.22 - Goal of the Strategic Partnership initiative.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... INNOVATION Strategic Partnership Initiative § 1160.22 Goal of the Strategic Partnership initiative. (a) This... the innovation activities for a broad range of applications made possible by that technology. The... precompetitive stage of innovation. In contrast, Strategic Partnerships are made up generally of noncompeting...

  1. 15 CFR 1160.22 - Goal of the Strategic Partnership initiative.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... INNOVATION Strategic Partnership Initiative § 1160.22 Goal of the Strategic Partnership initiative. (a) This... the innovation activities for a broad range of applications made possible by that technology. The... precompetitive stage of innovation. In contrast, Strategic Partnerships are made up generally of noncompeting...

  2. 15 CFR 1160.22 - Goal of the Strategic Partnership initiative.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... INNOVATION Strategic Partnership Initiative § 1160.22 Goal of the Strategic Partnership initiative. (a) This... the innovation activities for a broad range of applications made possible by that technology. The... precompetitive stage of innovation. In contrast, Strategic Partnerships are made up generally of noncompeting...

  3. Leisure Today: Youth Program Success Stories.

    ERIC Educational Resources Information Center

    Swedburg, Randy; And Others

    1995-01-01

    Eleven articles highlight successful youth programs in health, physical education, and recreation, examining partnerships between schools, community agencies, and parks and recreation departments. The articles discuss issues of program evaluation, cultural diversity, inner city programs, skating, interagency collaboration, partnerships in…

  4. Minority University Research and Education Division (MURED) Update

    NASA Technical Reports Server (NTRS)

    Malone, John

    2000-01-01

    Program priorities include: (1) Expand and advance NASA's scientific and technological base by building on prior year's efforts in research and academic infrastructure; (2) Increase exposure to NASA's unique mission and facilities by developing closer relationships with NASA Strategic Enterprises; (3) Increase involvement in competitive peer review and merit selection processes; (4) Contribute significantly to the Agency's strategic goals and objectives; (5) Create systemic and sustainable change through partnerships and programs that enhance research and education programs; (6) Prepare faculty and students at HBCU's for NASA-related fields and increase number of students that enter and successfully complete degrees in NASA-related fields; (7) Establish measurable program goals and objectives; and (8) Improve financial management performance.

  5. Implementing falls prevention research into policy and practice: an overview of a new National Health and Medical Research Council Partnership Grant.

    PubMed

    Lord, Stephen R; Delbaere, Kim; Tiedemann, Anne; Smith, Stuart T; Sturnieks, Daina L

    2011-06-01

    Preventing falls and fall-related injuries among older people is an urgent public health challenge. This paper provides an overview of the background to and research planned for a 5-year National Health and Medical Research Council Partnership Grant on implementing falls prevention research findings into policy and practice. This program represents a partnership between key Australian falls prevention researchers, policy makers and information technology companies which aims to: (1) fill gaps in evidence relating to the prevention of falls in older people, involving new research studies of risk factor assessment and interventions for falls prevention; (2) translate evidence into policy and practice, examining the usefulness of new risk-identification tools in clinical practice; and (3) disseminate evidence to health professionals working with older people, via presentations, new evidence-based guidelines, improved resources and learning tools, to improve the workforce capacity to prevent falls and associated injuries in the future.

  6. Deploying Innovation

    Science.gov Websites

    ; Sponsored Work Regional Economic Development Technology Opportunities User Facilities About Us Metrics In diverse economic development. With an integrated portfolio of R&D work, we leverage partnerships with Partnerships & Sponsored Work Regional Economic Development Technology Opportunities User Facilities

  7. NREL: International Activities - Working with Us

    Science.gov Websites

    opportunities to develop technology partnerships and researcher-driven collaboration. Technology Partnerships expertise, including our energy analysis capabilities. Researcher-Driven Collaboration NREL scientists formal means, such as collaboration on specific technical topics. NREL researchers also actively

  8. Briefing to University of Porto on NASA Airborne Science Program and Ames UAVs

    NASA Technical Reports Server (NTRS)

    Fladeland, Matthew

    2015-01-01

    NASA Ames is exploring a partnership with the University of Portugal to jointly develop and test new autonomous vehicle technologies. As part of the discussions I will be briefing the University of Portugal faculty on the NASA Airborne Science Program (ASP) and associated activities at NASA Ames Research Center. The presentation will communicate the requirements that drive the program, the assets available to NASA researchers, and discuss research projects that have used unmanned aircraft systems including MIZOPEX, Surprise Valley, and Florida Keys Coral Reef assessment. Other topics will include the SIERRA and Dragon Eye UAV projects operated at Ames.

  9. Testing a potential national strategy for cost-effective medical technology

    NASA Astrophysics Data System (ADS)

    Fitch, J. Patrick

    1995-10-01

    The Center for Healthcare Technologies at Lawrence Livermore National Laboratory is a partnership among government, industry, and universities that focuses on improving healthcare through development of cost-effective technology. With the guidance of healthcare providers, medical institutions, and medical instrument manufacturers, technology can be harnessed to reduce healthcare costs. The partnership is a miniature test case for a potential national strategy for development and adoption of technology specifically to reduce costs.

  10. 2015 Annual Report for the Flight Opportunities Program

    NASA Technical Reports Server (NTRS)

    Van Dijk, Alexander

    2015-01-01

    Welcome to this third edition of the Flight Opportunities program annual report. In this edition, we continue our story of pathfinding NASA's role in the partnership with the U.S. commercial space and space technology R&D communities to advance national space interests and develop technologies critical to NASA's future missions. 2015 was the year in which a planned change to our payload solicitation strategy saw its first tangible result. As you might remember from our 2014 annual report, in 2015 we set out to facilitate a more direct interaction between flight providers and technology developers by providing fixed funding awards to researchers to directly purchase the flight service(s) that best meet their needs. The selection and award of the first six REDDI-F1 flight grants to non-U.S. government researchers was an important milestone in this regard. From now on, using the REDDI-F1 solicitation appendix, the program will enable non-U.S. government researchers to directly purchase flight services on the emerging suborbital market. The same (or similar) commercial flight services will be available to NASA and other U.S. government agencies (OGA) through commercial contracts that NASA has established through our program. For the latter, our program is available to provide campaign management services, similar to the role we play(ed) for technology payloads remaining in our pool from earlier selections. The full impact of this broader strategic change will likely become more visible in the years ahead as our legacy pool gets depleted and we have implemented a new NASA- and OGA-specific call for proposals. One observation that can already be made after two rounds of REDDI-F1 solicitations is that through this change, the list of commercial flight service providers of interest to non-U.S. government researchers has grown from five in 2014 to nine in 2015. On the industry development front, our Announcement of Collaborative Opportunities (ACO) solicitation was promoted to an STMD-wide solicitation and released in 2015 in combination with the Tipping Point solicitation. A total of 22 awards was announced in November 2015, 12 of which are ACO awards, and six of these are funded by Flight Opportunities. Through these ACO awards, the program funds NASA technical expertise and NASA test facilities to aid industry partners in maturing key space technologies, in our case focusing on small launch vehicle technology development. Flight test activity in 2015 saw a steady 13 campaigns with 31 payload-flights (29 unique payloads). Thirteen new payloads were selected into the program in FY2015, and 14 payloads completed flight testing, bringing the total number of completed technology demonstration payloads to 69. Overall, we are pleased with the evolution and growth of the Flight Opportunities program and look forward to continued success in our partnership with the technology R&D community and the commercial space sector.

  11. The 2014 tanana inventory pilot: A USFS-NASA partnership to leverage advanced remote sensing technologies for forest inventory

    Treesearch

    Hans-Erik Andersen; Chad Babcock; Robert Pattison; Bruce Cook; Doug Morton; Andrew Finley

    2015-01-01

    Interior Alaska (approx. 112 million forested acres in size) is the last remaining forested area within the United States where the Forest Inventory and Analysis (FIA) program is not currently implemented. A joint NASA-FIA inventory pilot project was carried out in 2014 to increase familiarity with interior Alaska logistics and evaluate the utility of state-of-the-art...

  12. A Partnership between a Midwest Community College and the Highly Regulated Power Production Industry: A Case Study Regarding the Development of an Energy Production Technology Program

    ERIC Educational Resources Information Center

    Flowers, Kenneth W.

    2015-01-01

    With nearly every industry predicting severe employee shortages, the available worker pipeline, including the employed, may need to upgrade their skills. In addition, the number of jobs available will soon exceed the number of available workers, even if all the workers were skilled. This study investigated the perceptions held by key individuals…

  13. Thin Film Photovoltaic Partnership Project | Photovoltaic Research | NREL

    Science.gov Websites

    Thin Film Photovoltaic Partnership Project Thin Film Photovoltaic Partnership Project NREL's Thin Film Photovoltaic (PV) Partnership Project led R&D on emerging thin-film solar technologies in the National Laboratory developed low-cost transparent encapsulation schemes for CIGS cells that reduced power

  14. Green Power Partnership Program Overview

    EPA Pesticide Factsheets

    The U.S. EPA's Green Power Partnership is a voluntary program designed to reduce the environmental impact of electricity generation by promoting renewable energy. This page provides a brief program overview, including vision and accomplishments.

  15. Green Power Partnership Related Programs & Organizations

    EPA Pesticide Factsheets

    The U.S. EPA's Green Power Partnership is a voluntary program designed to reduce the environmental impact of electricity generation by promoting renewable energy. This page provides a brief program overview, including vision and accomplishments.

  16. Nuclear energy related capabilities at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickering, Susan Y.

    2014-02-01

    Sandia National Laboratories' technology solutions are depended on to solve national and global threats to peace and freedom. Through science and technology, people, infrastructure, and partnerships, part of Sandia's mission is to meet the national needs in the areas of energy, climate and infrastructure security. Within this mission to ensure clean, abundant, and affordable energy and water is the Nuclear Energy and Fuel Cycle Programs. The Nuclear Energy and Fuel Cycle Programs have a broad range of capabilities, with both physical facilities and intellectual expertise. These resources are brought to bear upon the key scientific and engineering challenges facing themore » nation and can be made available to address the research needs of others. Sandia can support the safe, secure, reliable, and sustainable use of nuclear power worldwide by incorporating state-of-the-art technologies in safety, security, nonproliferation, transportation, modeling, repository science, and system demonstrations.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    DOE-EERE's Bioenergy Technologies Office (BETO) works to accelerate the development of a sustainable, cost-competitive, advanced biofuel industry that can strengthen U.S. energy security, environmental quality, and economic vitality, through research, development, and demonstration projects in partnership with industry, academia, and national laboratory partners. BETO’s Advanced Algal Systems Program (also called the Algae Program) has a long-term applied research and development (R&D) strategy to increase the yields and lower the costs of algal biofuels. The team works with partners to develop new technologies, to integrate technologies at commercially relevant scales, and to conduct crosscutting analyses to better understand the potential andmore » challenges of the algal biofuels industry. Research has indicated that this industry is capable of producing billions of gallons of renewable diesel, gasoline, and jet fuels annually. R&D activities are integrated with BETO’s longstanding effort to accelerate the commercialization of lignocellulosic biofuels.« less

  18. Big City/Small Town Partnerships.

    ERIC Educational Resources Information Center

    Brouillette, Mary; Bothereau, Elizabeth

    1984-01-01

    Describes (1) the Dallas (Texas) Adopt-a-School program, which is a partnership not only between the Dallas Independent School District and business, its primary source of support, but also with higher education, civic groups, the religious community, and individual volunteers; and (2) Minneapolis Suburban Partnerships, a program of mutual benefit…

  19. Increasing the Diversity of Teachers in Mathematics and Science Partnerships

    ERIC Educational Resources Information Center

    Moyer-Packenham, Patricia S.; Parker, Jana L.; Kitsantas, Anastasia; Bolyard, Johnna J.; Huie, Faye

    2009-01-01

    This study examines teacher diversity in a federally-funded mathematics and science partnership program. Each of the partnerships in the program provided preservice and/or inservice education for teachers in mathematics, science, or both. Researchers used qualitative and quantitative methods to examine the effect of strategies implemented by the…

  20. A Narrative Inquiry into Corporate Unknowns: Faculty Experiences Concerning Privatized-Partnership Matriculation Pathway Programs

    ERIC Educational Resources Information Center

    Winkle, Carter Allen

    2011-01-01

    Host universities of Intensive English Programs (IEPs) commonly found on university campuses as a means to preparing English language learners (ELL) for tertiary education are being targeted by for-profit educational service providers for privatized partnerships. Partnership agreements generally include provisions for assumption of international…

  1. Using Partnerships to Promote Health and Physical Education

    ERIC Educational Resources Information Center

    Hicks, Lisa; Hancher-Rauch, Heidi; Casselman, Katelin

    2012-01-01

    School and higher education partnerships are an excellent opportunity for all involved to receive mutually beneficial outcomes. This article describes the benefits of a P-12-university partnership, as well as specific examples of projects and assignments that can serve as advocacy resources, creative programming, program assessment, or to meet…

  2. Engineering, global health, and inclusive innovation: focus on partnership, system strengthening, and local impact for SDGs.

    PubMed

    Clifford, Katie L; Zaman, Muhammad H

    2016-01-01

    The recent drafting of the Sustainable Development Goals challenges the research community to rethink the traditional approach to global health and provides the opportunity for science, technology, engineering, and mathematical (STEM) disciplines, particularly engineering, to demonstrate their benefit to the field. Higher education offers a platform for engineering to intersect with global health research through interdisciplinary partnerships among international universities that provide excellence in education, attract nontraditional STEM students, and foster a sense of innovation. However, a traditional lack of engineering-global health collaborations, as well as limited faculty and inadequate STEM research funding in low-income countries, has stifled progress. Still, the impact of higher education on development efforts holds great potential. This value will be realized in low-income countries through strengthening local capacity, supporting innovation through educational initiatives, and encouraging the inclusion of women and minorities in STEM programs. Current international university-level partnerships are working towards integrating engineering into global health research and strengthening STEM innovation among universities in low-income countries, but more can be done. Global health research informs sustainable development, and through integrating engineering into research efforts through university partnerships, we can accelerate progress and work towards a healthier future for all.

  3. Large Composite Structures Processing Technologies for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.; Vickers, J. H.; McMahon, W. M.; Hulcher, A. B.; Johnston, N. J.; Cano, R. J.; Belvin, H. L.; McIver, K.; Franklin, W.; Sidwell, D.

    2001-01-01

    Significant efforts have been devoted to establishing the technology foundation to enable the progression to large scale composite structures fabrication. We are not capable today of fabricating many of the composite structures envisioned for the second generation reusable launch vehicle (RLV). Conventional 'aerospace' manufacturing and processing methodologies (fiber placement, autoclave, tooling) will require substantial investment and lead time to scale-up. Out-of-autoclave process techniques will require aggressive efforts to mature the selected technologies and to scale up. Focused composite processing technology development and demonstration programs utilizing the building block approach are required to enable envisioned second generation RLV large composite structures applications. Government/industry partnerships have demonstrated success in this area and represent best combination of skills and capabilities to achieve this goal.

  4. Linking Sustainability Research to Intervention Types

    PubMed Central

    2013-01-01

    Researchers, funders, and managers of health programs and interventions have become concerned about their long-term sustainability. However, most research about sustainability has not considered the nature of the program to be sustained. Health-related interventions may differ in their likelihood of sustainability and in the factors likely to influence continuation. I suggest a framework for analyzing the sustainability of 6 types of interventions: (1) those implemented by individual providers; (2) programs requiring coordination among multiple staff; (3) new policies, procedures, or technologies; (4) capacity or infrastructure building; (5) community partnerships or collaborations; and (6) broad-scale system change. Hypotheses for future research and strategies that program managers might use to achieve sustainability also differ by program or intervention type. PMID:23409904

  5. Implementation of new clinical programs in the VHA healthcare system: the importance of early collaboration between clinical leadership and research.

    PubMed

    Wu, R Ryanne; Kinsinger, Linda S; Provenzale, Dawn; King, Heather A; Akerly, Patricia; Barnes, Lottie K; Datta, Santanu K; Grubber, Janet M; Katich, Nicholas; McNeil, Rebecca B; Monte, Robert; Sperber, Nina R; Atkins, David; Jackson, George L

    2014-12-01

    Collaboration between policy, research, and clinical partners is crucial to achieving proven quality care. The Veterans Health Administration has expended great efforts towards fostering such collaborations. Through this, we have learned that an ideal collaboration involves partnership from the very beginning of a new clinical program, so that the program is designed in a way that ensures quality, validity, and puts into place the infrastructure necessary for a reliable evaluation. This paper will give an example of one such project, the Lung Cancer Screening Demonstration Project (LCSDP). We will outline the ways that clinical, policy, and research partners collaborated in design, planning, and implementation in order to create a sustainable model that could be rigorously evaluated for efficacy and fidelity. We will describe the use of the Donabedian quality matrix to determine the necessary characteristics of a quality program and the importance of the linkage with engineering, information technology, and clinical paradigms to connect the development of an on-the-ground clinical program with the evaluation goal of a learning healthcare organization. While the LCSDP is the example given here, these partnerships and suggestions are salient to any healthcare organization seeking to implement new scientifically proven care in a useful and reliable way.

  6. HBCU Summer Undergraduate Training Program in Prostate Cancer: A Partnership Between USU-CPDR and UDC

    DTIC Science & Technology

    2016-10-01

    Award Number: W81XWH-14-2-0142 TITLE: HBCU Summer Undergraduate Training Program in Prostate Cancer : A Partnership Between USU-CPDR and UDC... Cancer : A Partnership Between USU-CPDR and UDC 5a. CONTRACT NUMBER: 5b. GRANT NUMBER: W81XWH-14-2-0142 5c. PROGRAM ELEMENT NUMBER: 6. AUTHOR(S...second year of the award (2016), 4 meritorious students were selected under HBCU Summer Undergraduate Training Program in Prostate Cancer by USU-CPDR

  7. Working better together: new approaches for understanding the value and challenges of organizational partnerships.

    PubMed

    Riggs, Elisha; Block, Karen; Warr, Deborah; Gibbs, Lisa

    2014-12-01

    Inter-agency partnerships are critical for addressing the interrelated circumstances associated with the social and health determinants of health inequalities. However, there are many challenges in evaluating partnership processes and outcomes. We discuss a mixed methods study that explored partnership processes in an innovative program that aims to promote social and economic inclusion for young newly arrived refugees. A theoretically informed evaluation was designed and data collected in three ways: an organizational ethnographic approach; a partnership self-assessment tool and semi-structured interviews. Partnership assessments and interviews were collected at two points in time providing progressive process data. Analyses explore divergent levels of staff satisfaction with the partnership's operations, particularly between staff working in program development (strategic management) and program delivery (service provision) roles. Follow-up data collection indicated satisfaction with partnership processes had improved. The partnership did achieve its aim of increasing the level of cooperation between service providers to support young people from refugee backgrounds. This paper presents insights into how to evaluate inter-agency partnerships and reports both methodological and empirical findings. It provides an approach for a better understanding of the levels at which individuals operate within such partnerships, indicates areas where support and attention is needed. © The Author (2013). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Partnership Green Power Use Requirements

    EPA Pesticide Factsheets

    The U.S. EPA's Green Power Partnership is a voluntary partnership program designed to reduce the environmental impact of electricity generation by promoting renewable energy. This pages details green power use requirements for Partnership.

  9. Robotic surgical training.

    PubMed

    Ben-Or, Sharon; Nifong, L Wiley; Chitwood, W Randolph

    2013-01-01

    In July 2000, the da Vinci Surgical System (Intuitive Surgical, Inc) received Food and Drug Administration approval for intracardiac applications, and the first mitral valve repair was done at the East Carolina Heart Institute in May 2000. The system is now approved and used in many surgical specialties. With this disruptive technology and accepted use, surgeons and hospitals are seeking the most efficacious training pathway leading to safe use and responsible credentialing.One of the most important issues related to safe use is assembling the appropriate team of professionals involved with patient care. Moreover, proper patient selection and setting obtainable goals are also important.Creation and maintenance of a successful program are discussed in the article focusing on realistic goals. This begins with a partnership between surgeon leaders, hospital administrators, and industry support. Through this partnership, an appropriate training pathway and clinical pathway for success can be outlined. A timeline can then be created with periods of data analysis and adjustments as necessary. A successful program is attainable by following this pathway and attending to every detail along the journey.

  10. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Science.gov Websites

    Transfer Browse Technology Portfolios Technology Partnerships Business, Industry, & Non-Profits Agreements Cooperative Research and Development Agreement (CRADA) Strategic Partnership Projects, Non-Federal atmospheric flight with emphasis on aerodynamics; navigation, guidance and control; and thermal protection

  11. Partnerships in Action. Building Partnerships for Quality Education in Rural America.

    ERIC Educational Resources Information Center

    Department of Education, Washington, DC.

    Twenty-one profiles of rural partnerships are included in this conference handout. Following a proclamation by President Ronald Reagan declaring 1983-1984 the National Year of Partnerships in Education, a list of the partnership programs with meeting places, time assignments, and presiders is provided for presentations on the partnerships in…

  12. 34 CFR 692.94 - What requirements must a State satisfy, as the administrator of a partnership, to receive GAP...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... partnership, to receive GAP Program funds? To receive GAP Program funds for any fiscal year— (a) A State must... administrator of a partnership, to receive GAP Program funds? 692.94 Section 692.94 Education Regulations of the...)(2)(ii) of this section. (Authority: 20 U.S.C. 1070c-3a) How Does a State Apply to Participate in GAP? ...

  13. A Smart Partnership: Integrating Educational Technology for Underserved Children in India

    ERIC Educational Resources Information Center

    Charania, Amina; Davis, Niki

    2016-01-01

    This paper explores the evolution of a large multi-stakeholder partnership that has grown since 2011 to scale deep engagement with learning through technology and decrease the digital divide for thousands of underserved school children in India. Using as its basis a case study of an initiative called integrated approach to technology in education…

  14. Green Power Partnership Events and Webinars

    EPA Pesticide Factsheets

    EPA's Green Power Partnership hosts variety of events, such as webinars and presentations at conferences, on a regular basis. Topics include the Green Power Partnership, green power technologies and products, and information on procuring green power.

  15. 20 CFR 628.525 - Limitations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR PROGRAMS UNDER TITLE II OF THE JOB TRAINING PARTNERSHIP ACT Program Design Requirements for Programs Under Title II of the Job Training Partnership Act § 628.525 Limitations. Neither eligibility for nor participation in a JTPA program...

  16. NASA's Additive Manufacturing Development Materials Science to Technology Infusion - Connecting the Digital Dots

    NASA Technical Reports Server (NTRS)

    Vickers, John

    2017-01-01

    At NASA, the first steps of the Journey to Mars are well underway with the development of NASA's next generation launch system and investments in research and technologies that should increase the affordability, capability, and safety of exploration activities. Additive Manufacturing presents a disruptive opportunity for NASA to design and manufacture hardware with new materials at dramatically reduced cost and schedule. Opportunities to incorporate additive manufacturing align very well with NASA missions and with most NASA programs related to space, science, and aeronautics. The Agency also relies on many partnerships with other government agencies, industry and academia.

  17. 20 CFR 628.540 - Volunteer program.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR PROGRAMS UNDER TITLE II OF THE JOB TRAINING PARTNERSHIP ACT Program Design Requirements for Programs Under Title II of the Job Training Partnership Act § 628.540 Volunteer program. Pursuant to sections 204(c)(6) and 264(d)(7) of the...

  18. 20 CFR 628.530 - Referrals of participants to non-title II programs.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... programs. 628.530 Section 628.530 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR PROGRAMS UNDER TITLE II OF THE JOB TRAINING PARTNERSHIP ACT Program Design Requirements for Programs Under Title II of the Job Training Partnership Act § 628.530 Referrals of participants to non...

  19. Concentrated solar power in the built environment

    NASA Astrophysics Data System (ADS)

    Montenon, Alaric C.; Fylaktos, Nestor; Montagnino, Fabio; Paredes, Filippo; Papanicolas, Costas N.

    2017-06-01

    Solar concentration systems are usually deployed in large open spaces for electricity generation; they are rarely used to address the pressing energy needs of the built environment sector. Fresnel technology offers interesting and challenging CSP energy pathways suitable for the built environment, due to its relatively light weight (<30 kg.m-2) and low windage. The Cyprus Institute (CyI) and Consorzio ARCA are cooperating in such a research program; we report here the construction and integration of a 71kW Fresnel CSP system into the HVAC (Heating, Ventilation, and Air Conditioning) system of a recently constructed office & laboratory building, the Novel Technologies Laboratory (NTL). The multi-generative system will support cooling, heating and hot water production feeding the system of the NTL building, as a demonstration project, part of the STS-MED program (Small Scale Thermal Solar District Units for Mediterranean Communities) financed by the European Commission under the European Neighbourhood and Partnership Instrument (ENPI), CBCMED program.

  20. Spinoff 1995

    NASA Technical Reports Server (NTRS)

    Haggerty, James J.

    1995-01-01

    Recognizing the great potential of the technology bank, Congress charged NASA with stimulating the widest possible use of this valuable resource in the national interest. NASA's instrument of that purpose is the Technology Transfer Program, which seeks to broaden and accelerate the spinoff process. Its intent is to spur expanded national benefit, in terms of new products and new jobs, by facilitating the commercial application of the technology; it encourages greater use of the storehouse of knowledge by providing a channel linking the technology and those who might be able to put it to advantageous use. In July 1994, NASA implemented an Agenda for Change - a new way of doing business in partnership with the private sector. This Agenda marks the beginning of a new focus to further improve our contributions to America's economic security through the pursuit of aeronautics and space missions. This publication is an implement of the Technology Transfer Program intended to heighten awareness among potential users of the technology available for transfer and the economic and social benefits that might be realized by applications of NASA technology to US commercial interests. Spinoff 1995 is organized in three sections. Section 1 outlines NASA's mainline effort, the major programs that generate new technology and therefore replenish and expand the bank of technical knowledge available for application. Section 2, the focal point of this volume, contains a representative sampling of spinoff products and processes that resulted from applications of technology originally developed to meet NASA aerospace goals. Section 3, describes the various mechanisms NASA employs to stimulate technology transfer and lists, in an appendix, contact sources for further information about the Technology Transfer Program.

  1. QuEST: Qualifying Environmentally Sustainable Technologies. Vol. 3

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie (Editor)

    2008-01-01

    This is an exciting new chapter for the NASA Technology Evaluation for Environmental Risk Mitigation Principal Center (TEERM). The Principal Center's past successes have created new opportunities for partnership and technology implementation. TEERM is continuing to support the current NASA Programs while reaching out and offering our assistance and experience to Constellation. NASA has also assumed Chairmanship responsibility of the Joint Group on Pollution Prevention (JG-PP) and Chairmanship of the JG-PP Working Group (WG). Both JG-PP and TEERM strive to improve mission readiness and reduce risk to personnel and assets by solving joint problems through cooperation. JG-PP and TEERM not only show our commitment to environmental stewardship, but also our commitment to fiscal responsibility.

  2. Recent Investments by NASA's National Force Measurement Technology Capability

    NASA Technical Reports Server (NTRS)

    Commo, Sean A.; Ponder, Jonathan D.

    2016-01-01

    The National Force Measurement Technology Capability (NFMTC) is a nationwide partnership established in 2008 and sponsored by NASA's Aeronautics Evaluation and Test Capabilities (AETC) project to maintain and further develop force measurement capabilities. The NFMTC focuses on force measurement in wind tunnels and provides operational support in addition to conducting balance research. Based on force measurement capability challenges, strategic investments into research tasks are designed to meet the experimental requirements of current and future aerospace research programs and projects. This paper highlights recent and force measurement investments into several areas including recapitalizing the strain-gage balance inventory, developing balance best practices, improving calibration and facility capabilities, and researching potential technologies to advance balance capabilities.

  3. Environmental Management Science Program Workshop. Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1998-07-01

    The Department of Energy Office of Environmental Management (EM), in partnership with the Office of Energy Research (ER), designed, developed, and implemented the Environmental Management Science Program as a basic research effort to fund the scientific and engineering understanding required to solve the most challenging technical problems facing the government's largest, most complex environmental cleanup program. The intent of the Environmental Management Science Program is to: (1) Provide scientific knowledge that will revolutionize technologies and cleanup approaches to significantly reduce future costs, schedules, and risks. (2) Bridge the gap between broad fundamental research that has wide-ranging applications such as thatmore » performed in the Department's Office of Energy Research and needs-driven applied technology development that is conducted in Environmental Management's Office of Science and Technology. (3) Focus the nation's science infrastructure on critical Department of Energy environmental problems. In an effort to share information regarding basic research efforts being funded by the Environmental Management Science Program and the Environmental Management/Energy Research Pilot Collaborative Research Program (Wolf-Broido Program), this CD includes summaries for each project. These project summaries, available in portable document format (PDF), were prepared in the spring of 1998 by the principal investigators and provide information about their most recent project activities and accomplishments.« less

  4. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susan M. Capalbo

    The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the second performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources foundmore » in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies. Two key deliverables were completed this quarter--a literature review/database to assess the soil carbon on rangelands, and the draft protocols, contracting options for soil carbon trading. To date, there has been little research on soil carbon on rangelands, and since rangeland constitutes a major land use in the Big Sky region, this is important in achieving a better understanding of terrestrial sinks. The protocols developed for soil carbon trading are unique and provide a key component of the mechanisms that might be used to efficiently sequester GHG and reduce CO{sub 2} concentrations. Progress on other deliverables is noted in the PowerPoint presentations. A series of meetings held during the second quarter have laid the foundations for assessing the issues surrounding the implementation of a market-based setting for soil C credits. These meetings provide a connection to stakeholders in the region and a basis on which to draw for the DOE PEIS hearings. Finally, the education and outreach efforts have resulted in a comprehensive plan and process which serves as a guide for implementing the outreach activities under Phase I. While we are still working on the public website, we have made many presentations to stakeholders and policy makers, connections to other federal and state agencies concerned with GHG emissions, climate change, and efficient and environmentally-friendly energy production. In addition, we have laid plans for integration of our outreach efforts with the students, especially at the tribal colleges and at the universities involved in our partnership. This includes collaboration with the film and media arts departments at MSU, with outreach efforts at LANL, and with student section of the ASME. Finally, both Pam Tomski, outreach coordinator, and Susan Capalbo, PI for the Big Sky Partnership will be involved in future U.S.-Norway bilaterals in an effort to provide for an exchange of research and students/faculty.« less

  5. Evaluating virtual STEM mentoring programs: The SAGANet.org experience

    NASA Astrophysics Data System (ADS)

    Som, S. M.; Walker, S. I.; Miller, E.; Anbar, M.; Kacar, B.; Forrester, J. H.

    2014-12-01

    Many school districts within the United States continue to seek new ways of engaging students within Science, Technology, Engineering, and Mathematics (STEM) disciplines. SAGANet.org, a web-based 501c3 Astrobiology outreach initiative, works with a number of schools, partnering K-12 students and their families with professional scientist mentors from around the world to teach and inspire students using virtual technology platforms. Current programs include two mentoring partnerships: pairing scientist-mentors with at-risk youth at the Pittsburg Community School in Pittsburg CA, and pairing scientist-mentors with families from the Kyrene del Cielo Elementary School in Chandler AZ. These programs represent two very different models for utilizing the virtual media platform provided by SAGANet.org to engage K-12 students and their families in STEM. For the former, scientists mentor the students of the Pittsburg School as part of the formal in-class curriculum. For the latter, scientists work with K-5 students and their families through Cielo's Science & Engineering Discovery Room to develop a science project as part of an informal learning experience that is independent of the formal curriculum. In this presentation, we (1) discuss the challenges and successes of engaging these two distinct audiences through virtual media, (2) present the results of how these two very-different mentoring partnership impact K-12 students science self-efficacy, interest in science, and STEM career awareness, and (3) share the impact of the mentoring experience on the mentor's confidence and self-efficacy with communicating science to the public.

  6. Rural District's Partnerships Bear Fruit in Three Years.

    ERIC Educational Resources Information Center

    Jensen, Dennis

    1996-01-01

    A partnership between Wayne State College, Wayne (Nebraska) community schools, and the local chamber of commerce produced fiber-optic telecommunications, Internet access, technology integration, automated libraries, computer networking, and a technology curriculum. The article describes project design, implementation, and growth, as well as…

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    O`Leary, H.R.

    The author first gives a tribute to clean coal pioneers and partnerships from a historical perspective. She then discusses the environmental advantages of clean coal technologies, the success of CCT because industry picked the technologies, not government mandate, Congress`s commitment to results, future possibilities, and the power of partnerships.

  8. DESALINATION AND WATER TREATMENT RESEARCH AT SANDIA NATIONAL LABORATORIES.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigali, Mark J.; Miller, James E.; Altman, Susan J.

    Water is the backbone of our economy - safe and adequate supplies of water are vital for agriculture, industry, recreation, and human consumption. While our supply of water today is largely safe and adequate, we as a nation face increasing water supply challenges in the form of extended droughts, demand growth due to population increase, more stringent health-based regulation, and competing demands from a variety of users. To meet these challenges in the coming decades, water treatment technologies, including desalination, will contribute substantially to ensuring a safe, sustainable, affordable, and adequate water supply for the United States. This overview documentsmore » Sandia National Laboratories' (SNL, or Sandia) Water Treatment Program which focused on the development and demonstration of advanced water purification technologies as part of the larger Sandia Water Initiative. Projects under the Water Treatment Program include: (1) the development of desalination research roadmaps (2) our efforts to accelerate the commercialization of new desalination and water treatment technologies (known as the 'Jump-Start Program),' (3) long range (high risk, early stage) desalination research (known as the 'Long Range Research Program'), (4) treatment research projects under the Joint Water Reuse & Desalination Task Force, (5) the Arsenic Water Technology Partnership Program, (6) water treatment projects funded under the New Mexico Small Business Administration, (7) water treatment projects for the National Energy Technology Laboratory (NETL) and the National Renewable Energy Laboratory (NREL), (8) Sandia- developed contaminant-selective treatment technologies, and finally (9) current Laboratory Directed Research and Development (LDRD) funded desalination projects.« less

  9. Steps to Join Green Power Partnership

    EPA Pesticide Factsheets

    The U.S. EPA's Green Power Partnership is a voluntary partnership program designed to reduce the environmental impact of electricity generation by promoting renewable energy. This page details steps organizations should take to join the Partnership.

  10. School Partnerships in Education: A Rural Consortium.

    ERIC Educational Resources Information Center

    Ryan, Charles W.; And Others

    Partnerships between higher education and public schools in rural areas can lead to improved education in both sectors. When launching a partnership, all concerned must convince a wide sector of the community that such programs are cost effective and will lead to more successful educational programming. By providing such a rationale early, the…

  11. Implementing an Alcohol and Other Drug Use Prevention Program Using University-High School Partnerships: Challenges and Lessons Learned

    ERIC Educational Resources Information Center

    Milroy, Jeffrey J.; Orsini, Muhsin Michael; Wyrick, David L.; Fearnow-Kenney, Melodie; Wagoner, Kimberly G.; Caldwell, Rebecca

    2015-01-01

    Background: School-based alcohol and other drug use prevention remains an important national strategy. Collaborative partnerships between universities and high schools have the potential to enhance prevention programming; however, there are challenges to sustaining such partnerships. Purpose: The purpose of this commentary is to underscore…

  12. Salem Program Demonstrates Five Keys to a Successful Business--School Partnership.

    ERIC Educational Resources Information Center

    Jensen, Mary Cihak

    1985-01-01

    Partnerships between schools and businesses are becoming more frequent and more reciprocal as the two find common interests; the Salem-Keizer (Oregon) Public Schools provide a nationally recognized example of such a partnership. Salem's program began in 1981 with a joint school board and Chamber of Commerce policy statement. Despite economic…

  13. Measuring Satisfaction with Family-Professional Partnership in Early Intervention and Early Childhood Special Education Programs in Qatar

    ERIC Educational Resources Information Center

    Al-Hadad, Nawal Khalil

    2010-01-01

    Family-professional partnership has been considered a recommended practice in Early Intervention/Early Childhood Special Education (EI/ECSE) programs for young children with disabilities and their families for the past two decades. The importance of establishing successful partnerships between families and professionals in educational planning has…

  14. Promoting School-University Partnerships: Professional Development of Teachers through the Collaborative School Improvement Program.

    ERIC Educational Resources Information Center

    Hackmann, Donald G.; Schmitt, Donna M.

    One method of training principals and teachers to lead substantive change initiatives lies in partnership activities between schools and the local university. The Collaborative School Improvement Program (C-SIP) is a successful school-university partnership that focuses upon collaborative relationships between Eastern Michigan University and area…

  15. Twenty-first Century Space Science in The Urban High School Setting: The NASA/John Dewey High School Educational Outreach Partnership

    NASA Astrophysics Data System (ADS)

    Fried, B.; Levy, M.; Reyes, C.; Austin, S.

    2003-05-01

    A unique and innovative partnership has recently developed between NASA and John Dewey High School, infusing Space Science into the curriculum. This partnership builds on an existing relationship with MUSPIN/NASA and their regional center at the City University of New York based at Medgar Evers College. As an outgrowth of the success and popularity of our Remote Sensing Research Program, sponsored by the New York State Committee for the Advancement of Technology Education (NYSCATE), and the National Science Foundation and stimulated by MUSPIN-based faculty development workshops, our science department has branched out in a new direction - the establishment of a Space Science Academy. John Dewey High School, located in Brooklyn, New York, is an innovative inner city public school with students of a diverse multi-ethnic population and a variety of economic backgrounds. Students were recruited from this broad spectrum, which covers the range of learning styles and academic achievement. This collaboration includes students of high, average, and below average academic levels, emphasizing participation of students with learning disabilities. In this classroom without walls, students apply the strategies and methodologies of problem-based learning in solving complicated tasks. The cooperative learning approach simulates the NASA method of problem solving, as students work in teams, share research and results. Students learn to recognize the complexity of certain tasks as they apply Earth Science, Mathematics, Physics, Technology and Engineering to design solutions. Their path very much follows the NASA model as they design and build various devices. Our Space Science curriculum presently consists of a one-year sequence of elective classes taken in conjunction with Regents-level science classes. This sequence consists of Remote Sensing, Planetology, Mission to Mars (NASA sponsored research program), and Microbiology, where future projects will be astronomy related. This program has been well received by both students and parents and has motivated some students to consider careers in the field of space science and related areas. [This program is partially supported by NASA MU-SPIN NCC5-330 and NASA Space Science/Minority Initiative NAG5-10142

  16. Spinoff 2002: Fortieth Anniversary Technology Utilization Program

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Since its inception 40 years ago, NASA's Technology Transfer Program has led the way for our nation to benefit from cutting-edge aerospace technologies. In addition to contributing to U.S. economic growth, these technologies are improving the quality of life on Earth while finding new ways to protect and preserve it. NASA's research and development efforts have advanced areas in medicine, communications, manufacturing, computer technology, and homeland security. These breakthroughs, translated into commercial products, are enhancing the lives of Americans everywhere. When a congressional mandate led NASA to develop the Scientific and Technical Information (STI) Program, the Agency began a wide dissemination of its research and development results. In doing so, NASA recognized that many of its technologies were transferable to industry for the development of commercial products. As a result, the Technology Utilization Program was born in 1962. The successful program went through several changes over the years, as its philosophy, mission, and goals adapted into the Technology Transfer Program we know today. The program strives to make the latest technologies available to industry as soon as they are developed. Each year, NASA's Spinoff publication showcases new products and services resulting from commercial partnerships between NASA and private industry. In the 2002 issue, the NASA field centers reflect upon the growth that has made these innovations available to the public. The Research and Development section examines past achievements, current successes, and future goals for each of the ten NASA centers. The Commercial Benefits section proudly highlights 51 new spinoff products, including a heart pump for patients needing a heart transplant, as well as an air purifier that destroys anthrax spores. The Technology Transfer and Outreach section describes the outreach achievements and educational successes made possible through the NASA Commercial Technology Network. Each section of Spinoff 2002 provides compelling evidence of the Technology Transfer Program's success and value. With commercial products and successes spanning from work on the Apollo missions to the International Space Station, the 40th anniversary of the Technology Transfer Program invites us to celebrate our history while planning the future.

  17. Spinoff 2001: Special Millennium Feature

    NASA Technical Reports Server (NTRS)

    2001-01-01

    For the past 43 years, NASA has devoted its facilities, labor force, and expertise to sharing the abundance of technology developments used for its missions with the nation's industries. These countless technologies have not only successfully contributed to the growth of the U.S. economy, but also to the quality of life on Earth. For the past 25 years, NASA's Spinoff publication has brought attention to thousands of technologies, products, and services that were developed as a direct result of commercial partnerships between NASA and the private business sector. Many of these exciting technologies included advances in ceramics, computer technology, fiber optics, and remote sensing. New and ongoing research at the NASA field centers covers a full spectrum of technologies that will provide numerous advantages for the future, many of which have made significant strides in the commercial market. The NASA Commercial Technology Network plays a large role in transferring this progress. By applying NASA technologies such as data communication, aircraft de-icing technologies, and innovative materials to everyday functions, American consumers and the national economy benefit. Moving forward into the new millennium, these new technologies will further advance our country's position as the world leader in scientific and technical innovation. These cutting-edge innovations represent the investment of the U.S. citizen in the Space Program. Some of these technologies are highlighted in Spinoff 2001, an example of NASA's commitment to technology transfer and commercialization assistance. This year's issue spotlights the commercial technology efforts of NASA's John F. Kennedy Space Center. Kennedy's extensive network of commercial technology opportunities has enabled them to become a leader in technology transfer outreach. This kind of leadership is exemplified through Kennedy's recent partnership with the State of Florida, working toward the development of the Space Experiment Research and Processing Laboratory. The new laboratory is the first step toward the development of a proposed 400-acre Space Commerce Park, located at Kennedy Space Center. Spinoff, once again, successfully showcases the variety of commercial successes and benefits resulting from the transfer of NASA technology to private industry. It is with great pride and pleasure that we present Spinoff 2001 with a Special Millennium Feature. With help from U.S. industry and commercial technology programs, NASA will continue to assist in the presentation of innovative new products to our nation.

  18. Creating value-added linkages through creative programming: a partnership for nursing education.

    PubMed

    Caldwell, Linda M; Luke, Gerri; Tenofsky, Linda M

    2007-01-01

    Academic and clinical institutions can effectively collaborate to deliver programs that enhance the educational level of the nursing staff. Creative programming, which offers flexibility and convenience, and a reasonable cost are key elements in the success of a program. Open communication and mutual recognition and respect of the talents, abilities, and values of all developers of the program are essential factors in effective collaborations leading to successful partnerships. Although clear expectations and clarity of functions are important once the partnership has developed, flexibility and a desire to "own" both the problems and the successes of a program are crucial to success.

  19. QuEST: Qualifying Environmentally Sustainable Technologies. Volume 2

    NASA Technical Reports Server (NTRS)

    Brown, Christina (Editor)

    2007-01-01

    TEERM focuses its validation efforts on technologies that have shown promise in laboratory testing, but lack testing under realistic or field environment. Mature technologies have advantages over those that are still in the developmental stage such as being more likely to be transitioned into a working environment. One way TEERM begins to evaluate the suitability of technologies is through Technology Readiness Levels (TRLs). TRLs are a systematic metric/measurement system that supports assessments of the maturity of a particular technology and the consistent comparison of maturity between different types of technology. TEERM generally works on demonstrating/validating alternatives that fall within TRLs 5-9. In instances where a mature technology does not exist for a particular Agency application, TEERM works with technology development groups and programs such as NASA's Innovative Partnerships Program (IPP). The IPP's purpose is to identify and document available technologies in light of NASA's needs, evaluate and prioritize those technologies, and reach out to find new partners. All TEERM projects involve multiple partners. Partnering reduces duplication of effort that otherwise might occur if individuals worked their problems alone. Partnering also helps reduce individual contributors' shares of the total cost of technology validation. Through collaboration and financial commitment from project stakeholders and third-party sources, it is possible to fully fund expensive demonstration/validation efforts.

  20. The PISCES Project: How Teacher-Scientist Partners can Enhance Elementary Science Instruction

    NASA Astrophysics Data System (ADS)

    Reif, C.; Oechel, W.

    2003-12-01

    The PISCES Project (Partnerships Involving the Scientific Community in Elementary Schools www.sdsa.org/pisces) is an innovative program that brings high quality standards-based elementary science curriculum and hands-on laboratory materials into San Diego County's classrooms. The project is funded by the NSF Graduate Teaching Fellows in K-12 Education (GK-12) program. The project was designed and is administered through cooperation among faculty at San Diego State University and the Science Department of the San Diego County Office of Education. Undergraduate and graduate students enrolled in science programs in San Diego area universities including San Diego State University, California State University San Marcos, and University of California San Diego partner with elementary school teachers. Through this partnership, the scientist brings scientific expertise to the classroom while the teacher delivers the lesson using current pedagogic methods. This is accomplished during a 3 month partnership in which the scientist joins the teacher in the classroom a few days each week to complete professional kit-based curriculum such as that available from FOSS (Full Option Science System) and STC (Science and Technology for Children). The teachers remain in the program for two years during which they have continuous access to the kit-based curriculum as well as two to three partnership cycles. Teachers receive assistance outside of the classroom as well attending professional development institutes three times a year to establish and maintain effective science teaching methods. The San Diego Science Alliance and other community and industry supporters provide the additionalfunding necessary to provide this teacher professional development Currenty, PISCES is present in over 40 schools and is able to provide partnerships to over 100 classrooms each year. In addition to the work done in San Diego, the project has expanded to Barrow, Alaska with plans to expand to La Paz, Mexico where there are SDSU climate research stations. San Diego and Alaska scientists travel to Barrow twice a year to participate in an intense, month-long science instruction partnership. PISCES collects a variety of data including student work, science attitude surveys, interviews with students and teachers, video, as well as science content knowledge. The students find themselves enjoying science and are deeply impacted by the presence of an actual scientist in their classroom. As PISCES enters its fifth year, it is evident that the combination of continuous support inside and outside of the classroom is successful in developing teacher engagement in science instruction.

  1. 77 FR 32656 - Critical Infrastructure Partnership Advisory Council (CIPAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... DEPARTMENT OF HOMELAND SECURITY [Docket No. DHS-2012-0008] Critical Infrastructure Partnership... Critical Infrastructure Partnership Advisory Council (CIPAC) by notice published in the Federal Register... Federal Officer, Critical Infrastructure Partnership Advisory Council, Sector Outreach and Programs...

  2. Partnerships Across Organizations. [SITE 2002 Section].

    ERIC Educational Resources Information Center

    2002

    This document contains the following papers on partnerships across organizations from the SITE (Society for Information Technology & Teacher Education) 2002 conference: (1) "Modeling Instruction with Modern Information and Communications Technology: The MIMIC Project" (Ronale J. Abate; Jim Meinke; Mary Jo Cherry; Pam Cook; Jennifer Merritt); (2)…

  3. 15 CFR 1160.23 - Assistance in establishing Strategic Partnerships.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Assistance in establishing Strategic Partnerships. 1160.23 Section 1160.23 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) TECHNOLOGY ADMINISTRATION, DEPARTMENT OF COMMERCE PRODUCTIVITY, TECHNOLOGY AND...

  4. Sandia National Laboratories: Pulsed-Power Science and Technology

    Science.gov Websites

    Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for Development Agreement (CRADA) Strategic Partnership Projects, Non-Federal Entity (SPP/NFE) Agreements New and diagnostic tools to analyze results from Z and other experimental platforms. The results also

  5. 15 CFR 1160.3 - Assistance to industrial technology partnerships.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... INNOVATION Promotion of Private Sector Industrial Technology Partnerships § 1160.3 Assistance to industrial...) Workshops. Upon request, the Secretary may hold workshops with representatives from the private sector and... information. Accordingly, the Department will develop and maintain a list of specific public and private...

  6. 15 CFR 1160.3 - Assistance to industrial technology partnerships.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... INNOVATION Promotion of Private Sector Industrial Technology Partnerships § 1160.3 Assistance to industrial...) Workshops. Upon request, the Secretary may hold workshops with representatives from the private sector and... information. Accordingly, the Department will develop and maintain a list of specific public and private...

  7. 15 CFR 1160.3 - Assistance to industrial technology partnerships.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... INNOVATION Promotion of Private Sector Industrial Technology Partnerships § 1160.3 Assistance to industrial...) Workshops. Upon request, the Secretary may hold workshops with representatives from the private sector and... information. Accordingly, the Department will develop and maintain a list of specific public and private...

  8. A High School-Collegiate Outreach Program in Chemistry and Biology Delivering Modern Technology in a Mobile Van

    NASA Astrophysics Data System (ADS)

    Craney, Chris; Mazzeo, April; Lord, Kaye

    1996-07-01

    During the past five years the nation's concern for science education has expanded from a discussion about the future supply of Ph.D. scientists and its impact on the nation's scientific competitiveness to the broader consideration of the science education available to all students. Efforts to improve science education have led many authors to suggest greater collaboration between high school science teachers and their college/university colleagues. This article reviews the experience and outcomes of the Teachers + Occidental = Partnership in Science (TOPS) van program operating in the Los Angeles Metropolitan area. The program emphasizes an extensive ongoing staff development, responsiveness to teachers' concerns, technical and on-site support, and sustained interaction between participants and program staff. Access to modern technology, including computer-driven instruments and commercial data analysis software, coupled with increased teacher content knowledge has led to empowerment of teachers and changes in student interest in science. Results of student and teacher questionnaires are reviewed.

  9. Developing Orthopaedic Trauma Capacity in Uganda: Considerations From the Uganda Sustainable Trauma Orthopaedic Program.

    PubMed

    OʼHara, Nathan N; OʼBrien, Peter J; Blachut, Piotr A

    2015-10-01

    Uganda, like many low-income countries, has a tremendous volume of orthopaedic trauma injuries. The Uganda Sustainable Trauma Orthopaedic Program (USTOP) is a partnership between the University of British Columbia and Makerere University that was initiated in 2007 to reduce the consequences of neglected orthopaedic trauma in Uganda. USTOP works with local collaborators to build orthopaedic trauma capacity through clinical training, skills workshops, system support, technology development, and research. USTOP has maintained a multidisciplinary approach to training, involving colleagues in anaesthesia, nursing, rehabilitation, and sterile reprocessing. Since the program's inception, the number of trained orthopaedic surgeons practicing in Uganda has more than doubled. Many of these newly trained surgeons provide clinical care in the previously underserved regional hospitals. The program has also worked with collaborators to develop several technologies aimed at reducing the cost of providing orthopaedic care without compromising quality. As orthopaedic trauma capacity in Uganda advances, USTOP strives to continually evolve and provide relevant support to colleagues in Uganda.

  10. Circulation Control in NASA's Vehicle Systems

    NASA Technical Reports Server (NTRS)

    Rich, Paul; McKinley, Bob; Jones, Greg

    2005-01-01

    Specific to the application of any technology to a vehicle, such as circulation control, it is important to understand the process that NASA is using to set its direction in research and development. To see how circulation control fits into any given NASA program requires the reader to understand NASA's Vehicle Systems (VS) Program. The VS Program recently celebrated its first year of existence with an annual review - an opportunity to look back on accomplishments, solicit feedback, expand national advocacy and support for the program, and recognize key contributions. Since its formation last year, Vehicle Systems has coordinated seven existing entities in a streamlined aeronautics research effort. It invests in vehicle technologies to protect the environment, make air travel more accessible and affordable for Americans, enable exploration through new aerospace missions, and augment national security. This past year has seen a series of valuable partnerships with industry, academia, and government agencies to make crucial aeronautics advances and assure America s future in flight.

  11. Strengthening STEM Education through Community Partnerships

    PubMed Central

    Lopez, Colleen A.; Rocha, Jon; Chapman, Matthew; Rocha, Kathleen; Wallace, Stephanie; Baum, Steven; Lawler, Brian R.; Mothé, Bianca R.

    2017-01-01

    California State University San Marcos (CSUSM) and San Marcos Elementary Schools have established a partnership to offer a large-scale community service learning opportunity to enrich science curriculum for K-5 students. It provides an opportunity for science, technology, engineering, and math (STEM) majors to give back to the community, allowing them to experience teaching in an elementary classroom setting, in schools that lack the resources and science instructor specialization needed to instill consistent science curricula. CSUSM responded to this need for more STEM education by mobilizing its large STEM student body to design hands-on, interactive science lessons based on Next Generation Science Standards (NGSS). Since 2012, the program has reached out to over four thousand K-5 students, and assessment data have indicated an increase in STEM academic performance and interest. PMID:28725512

  12. Strengthening STEM Education through Community Partnerships.

    PubMed

    Lopez, Colleen A; Rocha, Jon; Chapman, Matthew; Rocha, Kathleen; Wallace, Stephanie; Baum, Steven; Lawler, Brian R; Mothé, Bianca R

    2016-01-01

    California State University San Marcos (CSUSM) and San Marcos Elementary Schools have established a partnership to offer a large-scale community service learning opportunity to enrich science curriculum for K-5 students. It provides an opportunity for science, technology, engineering, and math (STEM) majors to give back to the community, allowing them to experience teaching in an elementary classroom setting, in schools that lack the resources and science instructor specialization needed to instill consistent science curricula. CSUSM responded to this need for more STEM education by mobilizing its large STEM student body to design hands-on, interactive science lessons based on Next Generation Science Standards (NGSS). Since 2012, the program has reached out to over four thousand K-5 students, and assessment data have indicated an increase in STEM academic performance and interest.

  13. Technology transfer 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1995-01-01

    Technology Transfer 1995 is intended to inform the US industrial and academic sectors about the many opportunities they have to form partnerships with the US Department of Energy (DOE) for the mutual advantage of the individual institutions, DOE, and the nation as a whole. It also describes some of the growing number of remarkable achievements resulting from such partnerships. These partnership success stories offer ample evidence that Americans are learning how to work together to secure major benefits for the nation--by combining the technological, scientific, and human resources resident in national laboratories with those in industry and academia. The benefitsmore » include more and better jobs for Americans, improved productivity and global competitiveness for technology-based industries, and a more efficient government laboratory system.« less

  14. Transcending jurisdictions: developing partnerships for health in Manitoba First Nation communities.

    PubMed

    Eni, Rachel; Phillips-Beck, Wanda

    2011-09-01

    The article describes national, regional and community-level activities that contributed to the Manitoba First Nation partnership in maternal and child health programming. The activities reveal a potential for health change that is possible through working together across jurisdictional boundaries. Although we are only in the early phases of program implementation, the Manitoba First Nation Strengthening Families Maternal Child Health Program already suggests considerable successes and measurable outcomes. The article encourages development of further partnerships in the promotion of First Nation health and wellness programming.

  15. NASA and X PRIZE Announce Winners of Lunar Lander Challenge

    NASA Image and Video Library

    2009-11-05

    NASA and the X PRIZE Foundation announced the winners of the Northrop Grumman Lunar Lander Challenge at an awards ceremony at the Rayburn House Office Building, Thursday, Nov. 5, 2009 in Washington, DC. From left to right, George Nield, Associate Administrator of Commercial Space Transportation, FAA; Charles Bolden, NASA Administrator; Doug Comstock, Director, Innovative Partnerships Program, NASA; David Masten, CEO, Masten Space Systems; Phil Eaton, VP, Operations, Armadillo Aerospace; U.S. Rep. Ralph Hall (R-TX); Peter Diamandis, Chairman and CEO, X PRIZE Foundation and Mitch Waldman, VP, Advanced Programs & Technology, Northrop Grumman. Photo Credit: (NASA/Carla Cioffi)

  16. Portable Automated Test Station: Using Engineering-Design Partnerships to Replace Obsolete Test Systems

    DTIC Science & Technology

    2015-04-01

    troubleshooting avionics system faults while the aircraft is on the ground. The core component of the PATS-30, the ruggedized laptop, is no longer sustainable...as well as trouble shooting avionics system faults while the aircraft is on the ground. The PATS-70 utilizes up-to-date, sustainable technology for...Operational Flight Program (OFP) software loading and diagnostic avionics system testing and includes additional TPSs to enhance its capability

  17. The Mirror and the Canyon: Reflected Images, Echoed Voices How Evidence of GW's Performing Arts Integration Model Is Used to Build Support for Arts Education Integration and to Promote Sustainability

    ERIC Educational Resources Information Center

    Ellrodt, John Charles; Fico, Maria; Harnett, Susanne; Ramsey, Lori Gerstein; Lopez, Angelina

    2014-01-01

    The Global Writes (GW) model is a well-designed performing arts integrated literacy program that builds local and global support among students, teachers, and arts partners through the use of innovative technologies. Through local partnerships between schools and arts organizations forged by GW, classroom teachers and local teaching artists build…

  18. Why Not Extended Deterrence from Romania? U.S. European Phased Adaptive Approach (EPAA) and NATO’s Ballistic Missile Defense (BMD) Site at Deveselu Air Base in Romania

    DTIC Science & Technology

    2011-12-01

    RADM Dorin Danila, both expressed to the CNE-C6F Maritime Partnership Program Team representatives that “it is good to see the strength of America...Military Technology 34, no. 5 (2010): 14. 31. RADM Dorin Danila, interview witnessed by the author, August 17, 2007. 32. Scott Miller, “U.S. 6th

  19. SLICEIT and TAHMO Partnerships: Students Local and International Collaboration for Climate and Environmental Monitoring, Technology Development, Education, Adaptation and Mitigation

    NASA Astrophysics Data System (ADS)

    Aishlin, P. S.; Selker, J. S.

    2015-12-01

    Climate change understanding and impacts vary by community, yet the global nature of climate change requires international collaboration to address education, monitoring, adaptation and mitigation needs. We propose that effective climate change monitoring and education can be accomplished via student-led local and international community partnerships. By empowering students as community leaders in climate-environmental monitoring and education, as well as exploration of adaptation/mitigation needs, well-informed communities and young leadership are developed to support climate change science moving forward. Piloted 2013-2015, the SLICEIT1 program partnered with TAHMO2 to connect student leaders in North America, Europe and Africa. At the international level, schools in the U.S.A and Netherlands were partnered with schools in Ghana, Kenya, and Uganda for science and cultural exchange. Each school was equipped with a climate or other environmental sensing system, real-time data publication and curricula for both formal and informal science, technology, engineering and math education and skill development. African counterparts in TAHMO's School-2-School program collect critically important data for enhanced on-the-ground monitoring of weather conditions in data-scarce regions of Africa. In Idaho, student designed, constructed and installed weather stations provide real time data for classroom and community use. Student-designed formal educational activities are disseminated to project partners, increasing hands-on technology education and peer-based learning. At the local level, schools are partnered with a local agency, research institute, nonprofit organization, industry and/or community partner that supplies a climate science expert mentor to SLICEIT program leaders and teachers. Mentor engagement is facilitated and secured by program components that directly benefit the mentor's organization and local community via climate/environment monitoring, student workforce skill development, community education, and/or adaptation/mitigation activities. Students are motivated by advanced real-world skill development, leadership opportunity, internship, community service and opportunity for international peer communication.

  20. Foundation Resource Guide. A Compilation of Major Foundations That Sponsor Activities Relevant to Community Outreach Partnership Centers.

    ERIC Educational Resources Information Center

    Nelson, Kevin

    This publication highlights national and regional foundations that are most likely to fund colleges and universities to perform activities similar to those undertaken by the Office of University Partnerships' Community Outreach Partnership Center Program (COPC) of the U.S. Department of Housing and Urban Development. The COPC Program provides…

  1. Evaluation of the National Science Foundation's Partnerships for International Research and Education (PIRE) Program, Volume 2: Supplementary Materials. Final Report

    ERIC Educational Resources Information Center

    Martinez, Alina; Epstein, Carter; Parsad, Amanda

    2015-01-01

    The National Science Foundation contracted with Abt Associates to conduct an evaluation of its Partnerships for International Research and Education (PIRE) program, which supports intellectually substantive collaborations between U.S. and foreign researchers in which the international partnership is essential to the research effort. The evaluation…

  2. Evaluation of the National Science Foundation's Partnerships for International Research and Education (PIRE) Program, Volume 1: Final Report

    ERIC Educational Resources Information Center

    Martinez, Alina; Epstein, Carter; Parsad, Amanda

    2015-01-01

    The National Science Foundation contracted with Abt Associates to conduct an evaluation of its Partnerships for International Research and Education (PIRE) program, which supports intellectually substantive collaborations between U.S. and foreign researchers in which the international partnership is essential to the research effort. The evaluation…

  3. Evaluating Form and Function of Regional Partnerships: Applying Social Network Analysis to the "Network for a Healthy California", 2001-2007

    ERIC Educational Resources Information Center

    Gregson, Jennifer; Sowa, Marcy; Flynn, Heather Kohler

    2011-01-01

    Objective: To evaluate the partnership structure of the "Network for a Healthy California" ("Network"), a social marketing program, from 2001-2007, to determine if California's program was able to establish and maintain partnerships that (1) provided access to a local audience, (2) facilitated regional collaboration, (3)…

  4. Social network analysis of public health programs to measure partnership.

    PubMed

    Schoen, Martin W; Moreland-Russell, Sarah; Prewitt, Kim; Carothers, Bobbi J

    2014-12-01

    In order to prevent chronic diseases, community-based programs are encouraged to take an ecological approach to public health promotion and involve many diverse partners. Little is known about measuring partnership in implementing public health strategies. We collected data from 23 Missouri communities in early 2012 that received funding from three separate programs to prevent obesity and/or reduce tobacco use. While all of these funding programs encourage partnership, only the Social Innovation for Missouri (SIM) program included a focus on building community capacity and enhancing collaboration. Social network analysis techniques were used to understand contact and collaboration networks in community organizations. Measurements of average degree, density, degree centralization, and betweenness centralization were calculated for each network. Because of the various sizes of the networks, we conducted comparative analyses with and without adjustment for network size. SIM programs had increased measurements of average degree for partner collaboration and larger networks. When controlling for network size, SIM groups had higher measures of network density and lower measures of degree centralization and betweenness centralization. SIM collaboration networks were more dense and less centralized, indicating increased partnership. The methods described in this paper can be used to compare partnership in community networks of various sizes. Further research is necessary to define causal mechanisms of partnership development and their relationship to public health outcomes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Wyoming Community Colleges Annual Partnership Report, 2014

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2014

    2014-01-01

    The "Annual Partnership Report" catalogs partnerships that Wyoming community colleges established and maintained for each fiscal year. Each community college maintains numerous partnerships for the development and provision of academic, occupational-technical, workforce development, and enrichment educational programs. These partnerships…

  6. Wyoming Community Colleges Annual Partnership Report, 2005

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2006

    2006-01-01

    The "Annual Partnership Report" catalogs all partnerships that Wyoming community colleges established and maintained for each fiscal year. Each community college maintains numerous partnerships for the development and provision of academic, occupational-technical, workforce development, and enrichment educational programs. These…

  7. Wyoming Community Colleges Annual Partnership Report, 2009

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2009

    2009-01-01

    The "Annual Partnership Report" catalogs partnerships that Wyoming community colleges established and maintained for each fiscal year. Each community college maintains numerous partnerships for the development and provision of academic, occupational-technical, workforce development, and enrichment educational programs. These partnerships…

  8. Wyoming Community Colleges Annual Partnership Report, 2008

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2009

    2009-01-01

    The "Annual Partnership Report" catalogs partnerships that Wyoming community colleges established and maintained for each fiscal year. Each community college maintains numerous partnerships for the development and provision of academic, occupational-technical, workforce development, and enrichment educational programs. These partnerships…

  9. Wyoming Community Colleges Annual Partnership Report, 2007

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2008

    2008-01-01

    The "Annual Partnership Report" catalogs all partnerships that Wyoming community colleges established and maintained for each fiscal year. Each community college maintains numerous partnerships for the development and provision of academic, occupational-technical, workforce development, and enrichment educational programs. These…

  10. 76 FR 68511 - Meeting of National Council on the Humanities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-04

    ... a. Challenge Grants b. Federal/State Partnership c. Digital Humanities d. Education Programs e... 9-10:30 a.m. Challenge Grants Federal/State Partnership--Room 507 Digital Humanities--Room 402 Education Programs--Room M-07 Preservation and Access--Room 415 Public Programs--Room 421 Research Programs...

  11. 76 FR 34639 - Funding Opportunity Title: Risk Management Education and Outreach Partnerships Program...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-14

    ... partnership agreements program is to deliver crop insurance education and risk management training to U.S... economic stability of American agriculture. On behalf of FCIC, RMA does this by offering Federal crop... programs, offering programs aimed at equal access and participation of underserved communities, and...

  12. Technology Transfer

    NASA Technical Reports Server (NTRS)

    Bullock, Kimberly R.

    1995-01-01

    The development and application of new technologies in the United States has always been important to the economic well being of the country. The National Aeronautics and Space Administration (NASA) has been an important source of these new technologies for almost four decades. Recently, increasing global competition has emphasized the importance of fully utilizing federally funded technologies. Today NASA must meet its mission goals while at the same time, conduct research and development that contributes to securing US economic growth. NASA technologies must be quickly and effectively transferred into commercial products. In order to accomplish this task, NASA has formulated a new way of doing business with the private sector. Emphasis is placed on forming mutually beneficial partnerships between NASA and US industry. New standards have been set in response to the process that increase effectiveness, efficiency, and timely customer response. This summer I have identified potential markets for two NASA inventions: including the Radially Focused Eddy Current Sensor for Characterization of Flaws in Metallic Tubing and the Radiographic Moire. I have also worked to establish a cooperative program with TAG, private industry, and a university known as the TAG/Industry/Academia Program.

  13. 77 FR 18798 - President's Council of Advisors on Science and Technology (PCAST)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... on Science and Technology (PCAST), and describes the functions of the Council. Notice of this meeting... purpose of this conference call is to discuss PCAST's Advanced Manufacturing Partnership report. DATES... the conference call, PCAST will discuss its Advanced Manufacturing Partnership report. Additional...

  14. Common challenge, collaborative response: a roadmap for US-China cooperation on energy and climate change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2009-01-15

    This Report which was produced in partnership between Asia Society's Center on U.S.-China Relations and Pew Center on Global Climate Change, in collaboration with The Brookings Institution, Council on Foreign Relations, National Committee on U.S.-China Relations, and Environmental Defense Fund presents both a vision and a concrete Roadmap for such Sino-U.S. collaboration. With input from scores of experts and other stakeholders from the worlds of science, business, civil society, policy, and politics in both China and the United States, the Report, or 'Roadmap', explores the climate and energy challenges facing both nations and recommends a concrete program for sustained, high-level,more » bilateral engagement and on-the-ground action. The Report recommends that, as a first step in forging this new partnership, the leaders of the two countries should convene a leaders summit as soon as practically possible following the inauguration of Barack Obama to launch a 'U.S.-China Partnership on Energy and Climate Change'. This presidential summit should outline a major plan of joint-action and empower relevant officials in each country to take the necessary actions to ensure its implementation. Priority areas of collaboration include: deploying low-emissions coal technologies; improving energy efficiency and conservation; developing an advanced electric grid; promoting renewable energy; and quantifying emissions and financing low-carbon technologies. 5 figs., 1 tab., 2 apps.« less

  15. The California Central Coast Research Partnership: Building Relationships, Partnerships and Paradigms for University-Industry Research Collaboration (Abridged Version)

    DTIC Science & Technology

    2004-04-21

    3-4 B. Strategic location ...........................................................................................5 C. Relevant R&D...and technology-based business sectors. The plan recognizes the key role of higher education in preparing a highly skilled work force and transferring...University technology R&D activities; the development of existing technology-based businesses and the creation of new ones; and the generation of

  16. Beyond Coordination: Joint Planning and Program Execution. The IHPRPT Materials Working Group

    NASA Technical Reports Server (NTRS)

    Stropki, Michael A.; Cleyrat, Danial A.; Clinton, Raymond G., Jr.; Rogacki, John R. (Technical Monitor)

    2000-01-01

    "Partnership is more than just coordination," stated then-Commander of the Air Force Research Laboratory (AFRL), Major General Dick Paul (USAF-Ret), at this year's National Space and Missile Materials Symposium. His comment referred to the example of the joint planning and program execution provided by the Integrated High Payoff Rocket Propulsion Technology (IHPRPT) Materials Working Group (IMWG). Most people agree that fiscal pressures imposed by shrinking budgets have made it extremely difficult to build upon our existing technical capabilities. In times of sufficient budgets, building advanced systems poses no major difficulties. However, with today's budgets, realizing enhanced capabilities and developing advanced systems often comes at an unaffordable cost. Overcoming this problem represents both a challenge and an opportunity to develop new business practices that allow us to develop advanced technologies within the restrictions imposed by current funding levels. Coordination of technology developments between different government agencies and organizations is a valuable tool for technology transfer. However, rarely do the newly developed technologies have direct applicability to other ongoing programs. Technology requirements are typically determined up-front during the program planning stage so that schedule risk can be minimized. The problem with this process is that the costs associated with the technology development are often borne by a single program. Additionally, the potential exists for duplication of technical effort. Changing this paradigm is a difficult process but one that can be extremely worthwhile should the right opportunity arise. The IMWG is one such example where NASA, the DoD, and industry have developed joint requirements that are intended to satisfy multiple program needs. More than mere coordination, the organizations comprising the group come together as partners, sharing information and resources, proceeding from a joint roadmap.

  17. Federal Geothermal Research Program Update - Fiscal Year 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrick Laney

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermalmore » electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or economical.« less

  18. Federal Geothermal Research Program Update Fiscal Year 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermalmore » electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or economical.« less

  19. Programs and promotions: approaches by 25 Active Living by Design partnerships.

    PubMed

    Claus, Julie M; Dessauer, Mark; Brennan, Laura K

    2012-11-01

    From 2003 to 2008, a total of 25 community partnerships funded through Active Living by Design (ALbD) implemented physical activity programs and promotions as part of integrated approaches complementing policy and environment changes. This paper reviews the partnerships' efforts with respect to promotions and programs, the breadth and depth of these types of approaches, challenges, successes, and lessons learned. Through a mixed-methods approach, including interviews, focus groups, and web-based tracking, multiple sources of data were collected and analyzed from 2006 to 2010. Evaluators summarized quantitative data by counts or means and qualitative results using systematic coding procedures to identify themes, ideas, and concepts. All 25 community partnerships were engaged in programs and promotions of varying degrees throughout the initiative. Programs were categorized as community walking and biking programs, school programs, afterschool programs, and worksite programs, among others. Promotional strategies were categorized as social marketing campaigns, media, events, and communications. The most common programs included Safe Routes to School, walking clubs, and Bike/Walk to School Day. Media efforts were undertaken by all 25 partnerships, totaling 2659 TV, newspaper, and radio hits. Programs and promotions can be resource-intensive and have limited population impact when offered in isolation; however, these strategies help connect people to their environments (e.g., increase awareness of facilities, provide social support for use of facilities) in order to improve physical activity behaviors. Copyright © 2012 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  20. Midwifery participatory curriculum development: Transformation through active partnership.

    PubMed

    Sidebotham, Mary; Walters, Caroline; Chipperfield, Janine; Gamble, Jenny

    2017-07-01

    Evolving knowledge and professional practice combined with advances in pedagogy and learning technology create challenges for accredited professional programs. Internationally a sparsity of literature exists around curriculum development for professional programs responsive to regulatory and societal drivers. This paper evaluates a participatory curriculum development framework, adapted from the community development sector, to determine its applicability to promote engagement and ownership during the development of a Bachelor of Midwifery curriculum at an Australian University. The structures, processes and resulting curriculum development framework are described. A representative sample of key curriculum development team members were interviewed in relation to their participation. Qualitative analysis of transcribed interviews occurred through inductive, essentialist thematic analysis. Two main themes emerged: (1) 'it is a transformative journey' and (2) focused 'partnership in action'. Results confirmed the participatory curriculum development process provides symbiotic benefits to participants leading to individual and organisational growth and the perception of a shared curriculum. A final operational model using a participatory curriculum development process to guide the development of accredited health programs emerged. The model provides an appropriate structure to create meaningful collaboration with multiple stakeholders to produce a curriculum that is contemporary, underpinned by evidence and reflective of 'real world' practice. Copyright © 2017 Elsevier Ltd. All rights reserved.

Top