ERIC Educational Resources Information Center
Kelani, Raphael R.; Gado, Issaou
2018-01-01
Following the calls of international conferences related to the teaching of science and technology, technology education (TE) was integrated as a component of physical sciences programmes in Benin, West Africa. This study investigates physical science teachers' attitudes towards the integration of TE topics in secondary school science curricula in…
42 CFR 493.1449 - Standard; Technical supervisor qualifications.
Code of Federal Regulations, 2010 CFR
2010-10-01
... earned doctoral degree in a chemical, physical, biological or clinical laboratory science from an... chemical, physical, biological or clinical laboratory science or medical technology from an accredited..., physical, or biological science or medical technology from an accredited institution; and (ii) Have at...
42 CFR 493.1449 - Standard; Technical supervisor qualifications.
Code of Federal Regulations, 2012 CFR
2012-10-01
... earned doctoral degree in a chemical, physical, biological or clinical laboratory science from an... chemical, physical, biological or clinical laboratory science or medical technology from an accredited..., physical, or biological science or medical technology from an accredited institution; and (ii) Have at...
42 CFR 493.1449 - Standard; Technical supervisor qualifications.
Code of Federal Regulations, 2014 CFR
2014-10-01
... earned doctoral degree in a chemical, physical, biological or clinical laboratory science from an... chemical, physical, biological or clinical laboratory science or medical technology from an accredited..., physical, or biological science or medical technology from an accredited institution; and (ii) Have at...
42 CFR 493.1449 - Standard; Technical supervisor qualifications.
Code of Federal Regulations, 2013 CFR
2013-10-01
... earned doctoral degree in a chemical, physical, biological or clinical laboratory science from an... chemical, physical, biological or clinical laboratory science or medical technology from an accredited..., physical, or biological science or medical technology from an accredited institution; and (ii) Have at...
Physics Problems Based on Up-to-Date Science and Technology.
NASA Astrophysics Data System (ADS)
Folan, Lorcan M.; Tsifrinovich, Vladimir I.
2007-03-01
We observe a huge chasm between up-to-date science and undergraduate education. The result of this chasm is that current student interest in undergraduate science is low. Consequently, students who are graduating from college are often unable to take advantage of the many opportunities offered by science and technology. Cutting edge science and technology frequently use the methods learned in undergraduate courses, but up-to-date applications are not normally used as examples or for problems in undergraduate courses. There are many physics problems which contain information about the latest achievements in science and technology. But typically, the level of these problems is too advanced for undergraduates. We created physics problems for undergraduate science and engineering students, which are based on the latest achievements in science and technology. These problems have been successfully used in our courses at the Polytechnic University in New York. We believe that university faculty may suggest such problems in order to provide information about the frontiers of science and technological, demonstrate the importance of undergraduate physics in solving contemporary problems and raise the interest of talented students in science. From the other side, our approach may be considered an indirect way for advertising advanced technologies, which undergraduate students and, even more important, future college graduates could use in their working lives.
Development and implications of technology in reform-based physics laboratories
NASA Astrophysics Data System (ADS)
Chen, Sufen; Lo, Hao-Chang; Lin, Jing-Wen; Liang, Jyh-Chong; Chang, Hsin-Yi; Hwang, Fu-Kwun; Chiou, Guo-Li; Wu, Ying-Tien; Lee, Silvia Wen-Yu; Wu, Hsin-Kai; Wang, Chia-Yu; Tsai, Chin-Chung
2012-12-01
Technology has been widely involved in science research. Researchers are now applying it to science education in an attempt to bring students’ science activities closer to authentic science activities. The present study synthesizes the research to discuss the development of technology-enhanced laboratories and how technology may contribute to fulfilling the instructional objectives of laboratories in physics. To be more specific, this paper discusses the engagement of technology to innovate physics laboratories and the potential of technology to promote inquiry, instructor and peer interaction, and learning outcomes. We then construct a framework for teachers, scientists, and programmers to guide and evaluate technology-integrated laboratories. The framework includes inquiry learning and openness supported by technology, ways of conducting laboratories, and the diverse learning objectives on which a technology-integrated laboratory may be focused.
JPRS Report Science & Technology, USSR: Science & Technology Policy
1989-02-17
Nikolay Ilich Ionov, doctor of physical and mathematical sciences, Mikhail Aleksandrovich Mitstev, Vladimir Ilich Paleyev, candidates of physical...Petrovich Stepa- nov, doctor of chemical sciences, deputy director, Niko- lay Grigoryevich Ilyushchenko, Vladimir Yakovlevich Kudyakov and Mikhail ...Shestakov, USSR Academy of Sciences corre- sponding member, Mikhail Viktorovich Gusev, Andrey Borisovich Rubin and Feliks Fedorovich Litvin
Motivating Non-Science Majors: The Technology of Electromagnetic Waves
ERIC Educational Resources Information Center
Henrich, Victor E.
2018-01-01
To address the need for physics courses that stimulate non- STEM majors' interest in, and appreciation of, science, the Department of Applied Physics has developed a popular course for Yale College undergraduates, The Technological World, that explains the physics behind technologies that students use every day. The course provides an in-depth…
Microgravity: A Teacher's Guide with Activities in Science, Mathematics, and Technology
NASA Technical Reports Server (NTRS)
Rogers, Melissa J.B.; Vogt, Gregory L.; Wargo, Michael J.
1997-01-01
Microgravity is the subject of this teacher's guide. This publication identifies the underlying mathematics, physics, and technology principles that apply to microgravity. The topics included in this publication are: 1) Microgravity Science Primer; 2) The Microgravity Environment of Orbiting Spacecraft; 3) Biotechnology; 4) Combustion Science; 5) Fluid Physics; 6) Fundamental Physics; and 7) Materials Science; 8) Microgravity Research and Exploration; and 9) Microgravity Science Space Flights. This publication also contains a glossary of selected terms.
ERIC Educational Resources Information Center
Hutem, Artit; Kerdmee, Supoj
2013-01-01
The propose of this study is to study Physics Learning Achievement, projectile motion, using the Mathematica program of Faculty of Science and Technology Phetchabun Rajabhat University students, comparing with Faculty of Science and Technology Phetchabun Rajabhat University students who study the projectile motion experiment set. The samples are…
NASA Astrophysics Data System (ADS)
2014-03-01
Almost dry but never dull: ASE 2014 EuroPhysicsFun shows physics to Europe Institute of Physics for Africa (IOPfA) South Sudan Report October 2013 Celebrating the centenary of x-ray diffraction The Niels Bohr Institute—an EPS Historical Site Nordic Research Symposium on Science Education (NFSUN) 2014: inquiry-based science education in technology-rich environments Physics World Cup 2013
NASA-HBCU Space Science and Engineering Research Forum Proceedings
NASA Technical Reports Server (NTRS)
Sanders, Yvonne D. (Editor); Freeman, Yvonne B. (Editor); George, M. C. (Editor)
1989-01-01
The proceedings of the Historically Black Colleges and Universities (HBCU) forum are presented. A wide range of research topics from plant science to space science and related academic areas was covered. The sessions were divided into the following subject areas: Life science; Mathematical modeling, image processing, pattern recognition, and algorithms; Microgravity processing, space utilization and application; Physical science and chemistry; Research and training programs; Space science (astronomy, planetary science, asteroids, moon); Space technology (engineering, structures and systems for application in space); Space technology (physics of materials and systems for space applications); and Technology (materials, techniques, measurements).
Technology for Science: Overview of the Project.
ERIC Educational Resources Information Center
Crismond, David; And Others
Technology for Science is a National Science Foundation funded program that is developing and testing curriculum units for teacher materials built around a series of design-oriented science problems called "challenges," mainly for ninth-grade general and physical science classes. Technology for science challenges have a clear connection…
Teaching physics as a service subject
NASA Astrophysics Data System (ADS)
Lowe, T. L.; Hayes, M.
1986-07-01
At South Glamorgan Institute of Higher Education physics is taught over a wide range of courses. In addition to the more conventional courses found in science, technology and education faculties there is a physics input into areas such as beauty therapy, applied biology, catering, chiropody, dental technology, environmental health, food technology, hairdressing, human-movement studies, industrial design, applied life sciences, marine technology, medical laboratory science, physiological measurement, nursing and speech therapy. Due to the fundamental differences in emphasis required when teaching physics as a 'minor' subject on these types of courses, and since the authors have no courses which lead to a 'major' physics qualification, it is necessary to develop a rational strategy for teaching physics as a 'service' subject. If this is not achieved then staff satisfaction and student interest are likely to suffer. They describe their strategy.
Significant Accomplishments in Science and Technology
NASA Technical Reports Server (NTRS)
1975-01-01
The proceedings of a symposium on significant accomplishments in science and technology are presented. The symposium was held at the Goddard Space Flight Center in December 1973. The subjects discussed are as follows: (1) cometary physics, (2) X-ray and gamma ray astronomy, (3) solar and terrestrial physics, (4) spacecraft technology, (5) Earth Resources Technology Satellite, (6) earth and ocean physics, (6) communications and navigation, (7) mission operations and data systems, and (8) networks systems and operations.
Multi-Modalities Sensor Science
2015-02-28
enhanced multi-mode sensor science. bio -sensing, cross-discipling, multi-physics, nano-technology sailing He +46-8790 8465 1 Final Report for SOARD Project...spectroscopy, nano-technology, biophotonics and multi-physics modeling to produce adaptable bio -nanostructure enhanced multi-mode sensor science. 1...adaptable bio -nanostructure enhanced multi-mode sensor science. The accomplishments includes 1) A General Method for Designing a Radome to Enhance
NASA Astrophysics Data System (ADS)
Payne, Anneliese
The composition of the workforce has begun to undergo a change. The U.S. Department of Labor estimates that women, minorities, and immigrants will constitute 80 percent of the additions to the labor force between 1987 and the year 2000 (Oakes, 1990). The National Science Foundation projects that the United States may have a shortfall of 400,000 scientists and over 250,000 engineers by the year 2006 (Argonne, 1990). Since women are among those who are significantly underrepresented among individuals preparing for a career in science, thirty women who are currently pursuing a successful career in physical science and technology were interviewed. This study determined participants' perceptions of the factors that first influenced an early interest in physical science and technology. The investigation included perceptions regarding: (1) whether certain identifiable events or experiences influenced the decision to pursue science as a career and what those events and experiences were; (2) at what age these events occurred; (3) whether an adult(s) was influential and which adult(s) it was; and (4) identification of where these events and experiences occurred. The interview technique was selected as the best research method for collecting the qualitative and demographic data needed for this study. The results represent the participants' recollections of out-of-school and in-school activities, family, friends and teacher support, self-image during the formative years, parents as the most important factor which influenced an interest in physical science, and major obstacles that had to be overcome by the participants in order to pursue successful careers in physical science and technology. Also included is participants' advice to parents and teachers who want to encourage females to pursue a career in physical science and technology.
Once a physicist: Lydia Harriss
NASA Astrophysics Data System (ADS)
2018-01-01
Lydia Harriss is head of physical sciences at the UK's Parliamentary Office of Science and Technology, which provides independent advice on science, technology and social science topics to MPs and peers.
Motivating Non-science Majors: The Technology of Electromagnetic Waves
NASA Astrophysics Data System (ADS)
Henrich, Victor E.
2018-01-01
To address the need for physics courses that stimulate non-STEM majors' interest in, and appreciation of, science, the Department of Applied Physics has developed a popular course for Yale College undergraduates, The Technological World, that explains the physics behind technologies that students use every day. The course provides an in-depth development of electromagnetic waves, applying them to technologies as diverse as LCD displays, GPS, fiber optics, CAT scans, LEDs, and stealth aircraft. It utilizes a conventional lecture format, with many in-class demonstrations.
Effects of Three Typical Resistivity Models on Pulsed Inductive Plasma Acceleration Modeling
NASA Astrophysics Data System (ADS)
Sun, Xin-Feng; Jia, Yan-Hui; Zhang, Tian-Ping; Wu, Chen-Chen; Wen, Xiao-Dong; Guo, Ning; Jin, Hai; Ke, Yu-Jun; Guo, Wei-Long
2017-12-01
Not Available Supported by the Fund of Science and Technology on Vacuum Technology and Physics Laboratory of Lanzhou Institute of Physics under Grant No YSC0715, the National Natural Science Foundation of China under Grant No 62601210, and the Civil Aerospace Technology Research Project under Grant No D010509.
Beyond Our Boundaries: Research and Technology
NASA Technical Reports Server (NTRS)
1996-01-01
Topics considered include: Propulsion and Fluid Management; Structures and Dynamics; Materials and Manufacturing Processes; Sensor Technology; Software Technology; Optical Systems; Microgravity Science; Earth System Science; Astrophysics; Solar Physics; and Technology Transfer.
NASA Tech Briefs, June 1993. Volume 17, No. 6
NASA Technical Reports Server (NTRS)
1993-01-01
Topics include: Imaging Technology: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, February 1993. Volume 17, No. 2
NASA Technical Reports Server (NTRS)
1993-01-01
Topics include: Communication Technology; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA's Plans for Materials Science on ISS: Cooperative Utilization of the MSRR-MSL
NASA Technical Reports Server (NTRS)
Chiaramonte, Francis; Szofran, Frank
2008-01-01
The ISS Research Project draws Life (non-human) and Physical Sciences investigations on the ISS, free flyer and ground-based into one coordinated project. The project has two categories: I. Exploration Research Program: a) Utilizes the ISS as a low Technology Readiness Level (TRL) test bed for technology development, demonstration and problem resolution in the areas of life support, fire safety, power, propulsion, thermal management, materials technology, habitat design, etc.; b) Will include endorsement letters from other ETDP projects to show relevancy. II. Non-Exploration Research Program; a) Not directly related to supporting the human exploration program. Research conducted in the life (non-human) and physical sciences; b) The program will sustain, to the maximum extent practicable, the United States scientific expertise and research capability in fundamental microgravity research. Physical Sciences has about 44 grants, and Life Sciences has approximately 32 grants, mostly with universities, to conduct low TRL research; this includes grants to be awarded from the 2008 Fluid Physics and Life Science NRA's.
NASA Technical Reports Server (NTRS)
Potter, P. Y.
1990-01-01
The annual report of the Marshall Space Flight Center for 1990 is presented. Brief summaries of research are presented for work in the fields of transportation systems, space systems, data systems, microgravity science, astronomy, astrophysics, solar physics, magnetospheric physics, atomic physics, aeronomy, Earth science and applications, propulsion technology, materials and processes, structures and dynamics, automated systems, space systems, and avionics.
Emerging Technologies in Physics Education
ERIC Educational Resources Information Center
Krusberg, Zosia A. C.
2007-01-01
Three emerging technologies in physics education are evaluated from the interdisciplinary perspective of cognitive science and physics education research. The technologies--Physlet Physics, the Andes Intelligent Tutoring System (ITS), and Microcomputer-Based Laboratory (MBL) Tools--are assessed particularly in terms of their potential at promoting…
NASA Tech Briefs, January 1994. Volume 18, No. 1
NASA Technical Reports Server (NTRS)
1994-01-01
Topics include: Communications Technology; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Reports.
Code of Federal Regulations, 2014 CFR
2014-01-01
... applicant for chemical, physical, or microbiological analyses and tests at a Science and Technology Division... Science and Technology Division laboratory, or by a laboratory approved and recognized by the Division to... quality control of procedures. Official plant or Science and Technology Division laboratories can analyze...
Code of Federal Regulations, 2013 CFR
2013-01-01
... applicant for chemical, physical, or microbiological analyses and tests at a Science and Technology Division... Science and Technology Division laboratory, or by a laboratory approved and recognized by the Division to... quality control of procedures. Official plant or Science and Technology Division laboratories can analyze...
Code of Federal Regulations, 2012 CFR
2012-01-01
... applicant for chemical, physical, or microbiological analyses and tests at a Science and Technology Division... Science and Technology Division laboratory, or by a laboratory approved and recognized by the Division to... quality control of procedures. Official plant or Science and Technology Division laboratories can analyze...
7 CFR 94.3 - Analyses performed and locations of laboratories.
Code of Federal Regulations, 2013 CFR
2013-01-01
... by AMS Science and Technology (S&T) personnel for microbiological, chemical, and physical attributes..., microorganism, dextrin, or other substance. (e) The AMS Science and Technology's Eastern Laboratory shall... samples are performed at the following USDA location: USDA, AMS, Science & Technology, Eastern Laboratory...
7 CFR 94.3 - Analyses performed and locations of laboratories.
Code of Federal Regulations, 2012 CFR
2012-01-01
... by AMS Science and Technology (S&T) personnel for microbiological, chemical, and physical attributes..., microorganism, dextrin, or other substance. (e) The AMS Science and Technology's Eastern Laboratory shall... samples are performed at the following USDA location: USDA, AMS, Science & Technology, Eastern Laboratory...
7 CFR 94.3 - Analyses performed and locations of laboratories.
Code of Federal Regulations, 2014 CFR
2014-01-01
... by AMS Science and Technology (S&T) personnel for microbiological, chemical, and physical attributes..., microorganism, dextrin, or other substance. (e) The AMS Science and Technology's Eastern Laboratory shall... samples are performed at the following USDA location: USDA, AMS, Science & Technology, Eastern Laboratory...
Translations on USSR Science and Technology, Physical Sciences and Technology, Number 51
1978-09-27
Leningrad) Kuznetsov , Mikhail Vladimirovich, engineer (Moscow) Kulayev, Konstantin Vladimirovich, candidate of technical sciences, deputy minister...Ministry of Railroads of the USSR (Moscow) Kushner, Eduard Fedorovich, candidate of technical sciences, IK AN USSR (Kiev) Lisov, Oleg Ivanovich
The 2017 Plasma Roadmap: Low temperature plasma science and technology
USDA-ARS?s Scientific Manuscript database
Journal of Physics D: Applied Physics published the first Plasma Roadmap in 2012 consisting of the individual perspectives of 16 leading experts in the various sub-fields of low temperature plasma science and technology. The 2017 Plasma Roadmap is the first update of a planned series of periodic upd...
Urban Elementary STEM Initiative
ERIC Educational Resources Information Center
Parker, Carolyn; Abel, Yolanda; Denisova, Ekaterina
2015-01-01
The new standards for K-12 science education suggest that student learning should be more integrated and should focus on crosscutting concepts and core ideas from the areas of physical science, life science, Earth/space science, and engineering/technology. This paper describes large-scale, urban elementary-focused science, technology, engineering,…
Science and Technology Centers.
ERIC Educational Resources Information Center
Danilov, Victor J.
Science and technology centers, which are relative newcomers to the museum field, differ from traditional museums in a number of respects. They are concerned with furthering public understanding and appreciation of the physical and biological sciences, engineering, technology, and health and seek to accomplish this goal by making museums both…
NASA Astrophysics Data System (ADS)
Izadi, Dina; Azad, Masoud Torabi; Mahmoudi, Nafiseh; Izadipanah, Nona; Eshghi, Najmeh
2013-03-01
For the 4th IUPAP International Conference of Women in Physics, we report on activities in science and engineering in Iran, and conditions for women in physics, in the three years since the 3rd IUPAP International Conference of Women in Physics was held in 2008. Iran has made prominent advancements and astonishing progress in laser technology, biotechnology, nanotechnology, genetics, computer software and hardware, and robotics. Iranian scientists have been very productive in several experimental fields, such as pharmaceutical, organic, and polymer chemistry. Conditions for women in physics have improved greatly in recent years. A project to improve the environment for learning physics, and science in general, by focusing on real-life applications, and the creation of new student competitions in Iran, have increased the numbers of both women and men in physics and all sciences in recent years.
Research and technology, fiscal year 1982
NASA Technical Reports Server (NTRS)
1982-01-01
Advanced studies are reviewed. Atmospheric sciences, magnetospheric physics, solar physics, gravitational physics, astronomy, and materials processing in space comprise the research programs. Large space systems, propulsion technology, materials and processes, electrical/electronic systems, data bases/design criteria, and facilities development comprise the technology development activities.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-30
... in physics, chemistry, mathematics, computer science, or engineering. Institutions should have a 4..., mathematics, computer science, or engineering with work experiences in laboratories or other settings...-0141-01] Professional Research Experience Program in Chemical Science and Technology Laboratory...
78 FR 29757 - Request for Nominations for Voting Members on Public Advisory Panels or Committees
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-21
... physical sciences, biological and life sciences, food science, risk assessment, nutrition, food technology... science, food technology, pediatric development, or nanotechnology in food. Nominations will be accepted..., food science, nutrition, and other food-related health issues that the FDA considers of primary...
Informal Science: Family Education, Experiences, and Initial Interest in Science
ERIC Educational Resources Information Center
Dabney, Katherine P.; Tai, Robert H.; Scott, Michael R.
2016-01-01
Recent research and public policy have indicated the need for increasing the physical science workforce through development of interest and engagement with informal and formal science, technology, engineering, and mathematics experiences. This study examines the association of family education and physical scientists' informal experiences in…
ERIC Educational Resources Information Center
Miliszewska, Iwona; Venables, Anne; Tan, Grace
2010-01-01
Information technology has been transforming various disciplines of life sciences and physical sciences as a tool (for "doing" science) and a technique (for conducting experiments and creating models). This evolution in the application of IT in science demands that science students be equipped with appropriate IT skills and that the…
Science Anxiety and Gender in Students Taking General Education Science Courses
ERIC Educational Resources Information Center
Udo, M. K.; Ramsey, G. P.; Mallow, J. V.
2004-01-01
Earlier studies [Mallow, J. V. (1994). Gender-related science anxiety: A first binational study. "Journal of Science Education and Technology" 3: 227-238; Udo, M. K., Ramsey, G. P., Reynolds-Alpert, S., and Mallow, J. V. (2001). Does physics teaching affect gender-based science anxiety? "Journal of Science Education and Technology" 10: 237-247] of…
ERIC Educational Resources Information Center
Ballinger, Jack T.; Wolf, Lawrence J.
This study guide is part of an interdisciplinary program of studies entitled the Science and Engineering Technician (SET) Curriculum. This curriculum integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology with the objective of training technicians in the use of electronic…
Technology-Based Inquiry for Middle School
ERIC Educational Resources Information Center
Christmann, Edwin
2006-01-01
Activities featured in this new compendium--a collection of 26 articles published in Science Scope, NSTA's member journal for middle school teachers--will show how. Technology-Based Inquiry offers fresh approaches that teachers and students can use to explore physical science, Earth and space science, life science, and more. It covers the…
ERIC Educational Resources Information Center
Dixon, Peggy; And Others
This study guide is part of a program of studies entitled Science and Engineering Technician (SET) Curriculum. The SET Curriculum integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology. The objective of this curriculum development project is to train technicians in the use of…
ERIC Educational Resources Information Center
Sax, Linda J.; Lehman, Kathleen J.; Barthelemy, Ramón S.; Lim, Gloria
2016-01-01
The dearth of women in science, technology, engineering, and math (STEM) fields has been lamented by scholars, administrators, policymakers, and the general public for decades, and the STEM gender gap is particularly pronounced in physics. While previous research has demonstrated that this gap is largely attributable to a lack of women pursuing…
Accelerator science and technology in Europe: EuCARD 2012
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.
2012-05-01
Accelerator science and technology is one of a key enablers of the developments in the particle physic, photon physics and also applications in medicine and industry. The paper presents a digest of the research results in the domain of accelerator science and technology in Europe, shown during the third annual meeting of the EuCARD - European Coordination of Accelerator Research and Development. The conference concerns building of the research infrastructure, including in this advanced photonic and electronic systems for servicing large high energy physics experiments. There are debated a few basic groups of such systems like: measurement - control networks of large geometrical extent, multichannel systems for large amounts of metrological data acquisition, precision photonic networks of reference time, frequency and phase distribution.
The Road to Success in the Study of Nanophosphors and Nanotubes in Vietnam
NASA Astrophysics Data System (ADS)
Tran, Kim Anh
2009-04-01
I studied physics for three years in a bamboo hut in the forest. It was during the war and my school had fled Hanoi. I subsequently earned my bachelor's degree in physics from Hanoi University and my PhD from the Polish Academy of Science. I am now a member of the National Basic Research Program of Vietnam on Optical Properties of Photonic Materials at the Institute of Materials Science of the Vietnamese Academy of Science and Technology. In 2005 I received the National Award of Vietnam for Science and Technology. This is the story of how I came to love physics more at each step of my education and career.
Memories for life: a review of the science and technology
O'Hara, Kieron; Morris, Richard; Shadbolt, Nigel; Hitch, Graham J; Hall, Wendy; Beagrie, Neil
2006-01-01
This paper discusses scientific, social and technological aspects of memory. Recent developments in our understanding of memory processes and mechanisms, and their digital implementation, have placed the encoding, storage, management and retrieval of information at the forefront of several fields of research. At the same time, the divisions between the biological, physical and the digital worlds seem to be dissolving. Hence, opportunities for interdisciplinary research into memory are being created, between the life sciences, social sciences and physical sciences. Such research may benefit from immediate application into information management technology as a testbed. The paper describes one initiative, memories for life, as a potential common problem space for the various interested disciplines. PMID:16849265
Radiation and Health: A Workshop for Science Educators
NASA Astrophysics Data System (ADS)
Krieger, Kenneth
2010-03-01
This workshop covers nuclear science and technology topics suitable for science teachers to use in grade 4-12 classes. Subjects included are Fundamentals of Radiation, Exposure to natural and man- made Radiation, Cellular Biology and Radiation Effects, Radioactive Waste Management, Health Physics and Radiation Physics, and Career possibilities in Nuclear Technology. Schools of participants will receive a working Geiger Counter. Workshop presenter is a TEA-approved CPE Provider. Limited to 20 participants - 3 hours - Cost 2.00
ERIC Educational Resources Information Center
Friedman, Lawrence B.; Margolin, Jonathan; Swanlund, Andrew; Dhillon, Sonica; Liu, Feng
2017-01-01
Playground Physics is a technology-based application and accompanying curriculum designed by New York Hall of Science (NYSCI) to support middle school students' science engagement and learning of force, energy, and motion. The program includes professional development, the Playground Physics app, and a curriculum aligned with New York State…
Who Needs To Learn Physics in the 21st Century--And Why?
ERIC Educational Resources Information Center
Redish, Edward F.
This paper considers what physics can offer students, both as physics majors and in other sciences. The recent increases in the technological character of the workplace appear likely to continue, leading to increasing numbers of individuals who should learn something about science. For many of these people, understanding the character of science,…
NASA Tech Briefs, April 1989. Volume 13, No. 4
NASA Technical Reports Server (NTRS)
1989-01-01
A special feature of this issue is an article about the evolution of high technology in Texas. Topics include: Electronic Components & and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences.
NASA Tech Briefs, Winter 1977. Volume 2, No. 4
NASA Technical Reports Server (NTRS)
1977-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Summer 1979. Volume 4, No. 2
NASA Technical Reports Server (NTRS)
1979-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of neW products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Summer 1981. Volume 6, No. 2
NASA Technical Reports Server (NTRS)
1981-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Winter 1980. Volume 5, No. 4
NASA Technical Reports Server (NTRS)
1980-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you In learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Fall 1980. Volume 5, No. 3
NASA Technical Reports Server (NTRS)
1980-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovatio.ns of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Fall 1978. Volume 3, No. 3
NASA Technical Reports Server (NTRS)
1978-01-01
Topics covered: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Summer 1984. Volume 8, No. 4
NASA Technical Reports Server (NTRS)
1984-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Science.
NASA Tech Briefs, Fall/Winter 1981. Vol. 6, No. 3
NASA Technical Reports Server (NTRS)
1981-01-01
Topics covered: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Spring 1978. Volume 3, No. 1
NASA Technical Reports Server (NTRS)
1978-01-01
Topics covered include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Winter 1978. Volume 3, No. 4
NASA Technical Reports Server (NTRS)
1978-01-01
Topics covered include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Winter 1983. Volume 8, No. 2
NASA Technical Reports Server (NTRS)
1983-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences;
NASA Tech Briefs, Winter 1982. Volume 7, No. 2
NASA Technical Reports Server (NTRS)
1982-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Spring 1981. Volume 6, No. 1
NASA Technical Reports Server (NTRS)
1981-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you In learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Spring 1984. Volume 8, No. 3
NASA Technical Reports Server (NTRS)
1984-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Fall 1976. Volume 1, No. 3
NASA Technical Reports Server (NTRS)
1976-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of seloc.ted Innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Technical Reports Server (NTRS)
1978-01-01
Topics covered include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Solar Energy; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Winter 1979. Volume 4, No. 4
NASA Technical Reports Server (NTRS)
1979-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you In learning about and applying NASA technology; New Product Ideas: A summary of selected Innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Fall 1977. Volume 2, No. 3
NASA Technical Reports Server (NTRS)
1977-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected Innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Summer 1980. Volume 5, No. 2
NASA Technical Reports Server (NTRS)
1980-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Spring 1977. Volume 2, No. 1
NASA Technical Reports Server (NTRS)
1977-01-01
Topics: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selted innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Fall 1982. Volume 7, No. 1
NASA Technical Reports Server (NTRS)
1982-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected innovations of value to manufacturers for the develop ment of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Spring 1979. Volume 4, No. 1
NASA Technical Reports Server (NTRS)
1979-01-01
Topics covered include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected Innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences;
NASA Tech Briefs, Fall 1983. Volume 8, No. 1
NASA Technical Reports Server (NTRS)
1983-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected Innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Winter 1976. Volume 1, No. 4
NASA Technical Reports Server (NTRS)
1976-01-01
Topics covered include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of val ue to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Summer 1977. Volume 2, No. 2
NASA Technical Reports Server (NTRS)
1977-01-01
Topics: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected Innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Spring 1983. Volume 7, No. 3
NASA Technical Reports Server (NTRS)
1983-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences;
NASA Tech Briefs, Spring 1980. Volume 5, No. 1
NASA Technical Reports Server (NTRS)
1980-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Fall 1979. Volume 4, No. 3
NASA Technical Reports Server (NTRS)
1979-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Summer 1983. Volume 7, No. 4
NASA Technical Reports Server (NTRS)
1983-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and information Sciences.
NASA Astrophysics Data System (ADS)
2000-10-01
CERN, ESA and ESO Put Physics On Stage [1] Summary Can you imagine how much physics is in a simple match of ping-pong, in throwing a boomerang, or in a musical concert? Physics is all around us and governs our lives. The World-Wide Web and mobile communication are only two examples of technologies that have rapidly found their way from science into the everyday life. [Go to Physics On Stage Website at CERN] But who is going to maintain these technologies and develop new ones in the future? Probably not young Europeans, as recent surveys show a frightening decline of interest in physics and technology among Europe's citizens, especially schoolchildren. Fewer and fewer young people enrol in physics courses at university. The project "Physics on Stage" tackles this problem head on. An international festival of 400 physics educators from 22 European countries [2] gather at CERN in Geneva from 6 to 10 November to show how fascinating and entertaining physics can be . In a week-long event innovative methods of teaching physics and demonstrations of the fun that lies in physics are presented in a fair, in 10 spectacular performances, and presentations. Workshops on 14 key themes will give the delegates - teachers, professors, artists and other physics educators - the chance to discuss and come up with solutions for the worrying situation of disenchantment with Science in Europe. The European Science and Technology Week 2000 "Physics on Stage" is a joint project organised by the European Organisation for Nuclear Research (CERN) , the European Space Agency (ESA) and the European Southern Observatory (ESO) , Europe's leading physics research organisations. This is the first time that these three organisations have worked together in such close collaboration to catalyse a change in attitude towards science and technology education. Physics on Stage is funded in part by the European Commission and happens as an event in the European Science and Technology Week 2000, an initiative of the EC to raise public awareness of science and technology. Other partners are the European Physical Society (EPS) and the European Association for Astronomy Education (EAAE). European Commissioner Busquin to Visit Physics On Stage On Thursday, November 9, Philippe Busquin , Commissioner for Research, European Commission, Prof. Luciano Maiani , Director-General of CERN, Antonio Rodota , Director-General of ESA, Dr. Catherine Cesarsky , Director-General of ESO, and Dr. Achilleas Mitsos , Director-General of the Research DG in the European Commission, will participate in the activities of the Physics on Stage Festival. On this occasion, Commissioner Busquin will address conference delegates and the Media on the importance of Science and of innovative science and technology education. The Festival Each of the more than 400 delegates of the festival has been selected during the course of the year by committees in each of the 22 countries for outstanding projects promoting science. For example, a group of Irish physics teachers and their students will give a concert on instruments made exclusively of plumbing material, explaining the physics of sound at the same time. A professional theatre company from Switzerland stages a play on antimatter. Or two young Germans invite spectators to their interactive physics show where they juggle, eat fire and perform stunning physics experiments on stage. The colourful centrepiece of this week is the Physics Fair. Every country has its own stands where delegates show their projects, programmes or experiments and gain inspiration from the exhibits from other countries. Physics on Stage is a unique event. Nothing like it has ever happened in terms of international exchange, international collaboration and state of the art science and technology education methods. The Nobel prizewinners of 2030 are at school today. What ideas can Europe's teachers put forward to boost their interest in science? An invitation to the media We invite journalists to take part in this both politically and visually interesting event. We expect many useful results from this exchange of experience, there will a large choice of potential interview partners and of course uncountable images and impressions. Please fill in the form below and fax it back to CERN under +41 22 7850247. Go to the Webpage http://www.cern.ch/pos to find out all about Physics on Stage Festival at CERN. The main "Physics on Stage" web address is: http://www.estec.esa.nl/outreach/pos There is also a Physics On Stage webpage at ESO Notes [1] This is a joint Press Release by the European Organization for Nuclear Research (CERN) , the European Space Agency (ESA) and the European Southern Observatory (ESO). [2] The 22 countries are the member countries of at least one of the participating organisations or the European Union: Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Luxembourg, the Netherlands, Norway, Poland, Portugal, the Slovak Republic, Spain, Sweden, Switzerland, United Kingdom.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-03-01
Abstracts of papers published during the previous calendar year, arranged in accordance with the project titles used in the USDOE Schedule 189 Budget Proposals, are presented. The collection of abstracts supplements the listing of papers published in the Schedule 189. The following subject areas are represented: high-energy physics; nuclear physics; basic energy sciences (nuclear science, materials sciences, solid state physics, materials chemistry); molecular, mathematical, and earth sciences (fundamental interactions, processes and techniques, mathematical and computer sciences); environmental research and development; physical and technological studies (characterization, measurement and monitoring); and nuclear research and applications.
ERIC Educational Resources Information Center
Chang, Jen-Mei; Kwon, Chuhee; Stevens, Lora; Buonora, Paul
2016-01-01
This article presents implementation details and findings of a National Science Foundation Scholarship in Science, Technology, Engineering, and Mathematics Program (S-STEM) consisting of many high-impact practices to recruit and retain students in the physical sciences and mathematics programs, particularly first-generation and underrepresented…
PREFACE: APCTP-ASEAN Workshop on Advanced Materials Science and Nanotechnology (AMSN08)
NASA Astrophysics Data System (ADS)
Van Hieu, Nguyen
2009-09-01
Dear friends To contribute to the enhancement of the international scientific cooperation of the ASEAN countries and in reply to the proposal of the Vietnam Academy of Science and Technology (VAST), the Asia-Pacific Center for Theoretical Physics (APCTP) and the Sub Committee on Materials Science and Technology (SCMST) of the ASEAN Committee of Science and Technology (ASEAN COST) agreed to organize this APCTP-ASEAN Workshop on Advanced Materials Science and Nanotechnology with the participation of the Ministry of Science and Technology of Vietnam, the Vietnam Academy of Science and Technology, Rencontres du Vietnam, the Vietnam Physical Society, the Vietnam National University in Ho Chi Minh City and the Vietnam National University in Hanoi. As well as the participants from 9 of the 10 ASEAN countries and many other countries/regions of APCTP (Australia, China, Chinese Taipei, Japan and Korea) we warmly welcome the guests from Europe, the United States, Canada and Israel. Without the financial support of the Asia-Pacific Center for Theoretical Physics APCTP, Abdus Salam International Center for Theoretical Physics ICTP, the Asian Office of Aerospace Research and Development AOARD, the US Office of Naval Research Global-Asia ONRG, the Ministry of Science and Technology of Vietnam MOST, the Vietnam Academy of Science and Technology VAST, the Vietnam National University in Ho Chi Minh City VNU HCMC and other Sponsors, we would have been unable to hold this Workshop. On behalf of the International and Local Organizing Committees I would like to express our deep gratitude to the Sponsors. We highly appreciate the support and advice of the members of the International Advisory Committee, the scientific contribution of the invited speakers and all participants. We acknowledge the warm reception of the Khanh Hoa province Administration and citizens, and the hard work of the VAST staff for the success of the Workshop. We cordially wish all participants lively scientific discussions and enjoyable meetings at the Workshop and a pleasant stay in beautiful Nha Trang. We do hope that all foreign participants will take away good impressions of Vietnamese hospitality. Nguyen Van Hieu VAST and APCTP Chairman of the Workshop
ERIC Educational Resources Information Center
Greenslade, Thomas B., Jr.
2018-01-01
Some of you may remember the 1979 television series "Connections" that was written and narrated by James Burke, a British science writer. Burke's technique was to choose a number of seemingly unrelated ideas and show how they led to developments in science and technology. This is an enjoyable business, even if some of the connections…
ERIC Educational Resources Information Center
Kondrick, Linda C.
The under-representation of women in physical science, technology, engineering, and mathematics (PSTEM) career fields is a persistent problem. This paper summarizes an extensive review of the literature pertaining to the many issues that surround this problem. The review revealed a wide range of viewpoints and a broad spectrum of research…
ERIC Educational Resources Information Center
Tho, Siew Wei; Chan, Ka Wing; Yeung, Yau Yuen
2015-01-01
In this study, a new physics education programme is specifically developed for a famous theme park in Hong Kong to provide community-based science learning to her visitors, involving her three newly constructed rides. We make innovative use of digital technologies in this programme and incorporate a rigorous evaluation of the learning…
ERIC Educational Resources Information Center
Science News, 1982
1982-01-01
Highlights major science news stories of 1982 reported in "Science News." Categories include space/astronomy, biology, chemistry, medicine, energy, physics, anthropology/paleontology, earth sciences, technology, behavior, science/society, and the environment. (JN)
Physics Matters: An Introduction to Conceptual Physics
NASA Astrophysics Data System (ADS)
Trefil, James; Hazen, Robert M.
2003-12-01
From amusement park rides to critical environmental issues such as energy generation-physics affects almost every aspect of our world. In PHYSICS MATTERS, James Trefil and Robert Hazen examine the fundamental physics principles at work behind the many practical applications that fuel our society and individual lives. Their goal is to promote a deeper understanding of how the great ideas of physics connect to form a much larger understanding of the universe in which we live. Highlights Helps readers build a general knowledge of key ideas in physics and their connection to technology and other areas of science. Promotes an appreciation of what science is, how scientific knowledge is developed, and how it differs from other intellectual activities. Examines modern technologies, including GPS, the Internet, and information technologies, as well as medical technologies, such as MRI, PET scans, CAT scans, and radioisotope tracers. Explores key issues facing the world today, such as global warning, nuclear waste, and government funding for research.
Physics Matters: An Introduction to Conceptual Physics, Activity Book
NASA Astrophysics Data System (ADS)
Trefil, James; Hazen, Robert M.
2004-02-01
From amusement park rides to critical environmental issues such as energy generation-physics affects almost every aspect of our world. In PHYSICS MATTERS, James Trefil and Robert Hazen examine the fundamental physics principles at work behind the many practical applications that fuel our society and individual lives. Their goal is to promote a deeper understanding of how the great ideas of physics connect to form a much larger understanding of the universe in which we live. Highlights Helps readers build a general knowledge of key ideas in physics and their connection to technology and other areas of science. Promotes an appreciation of what science is, how scientific knowledge is developed, and how it differs from other intellectual activities. Examines modern technologies, including GPS, the Internet, and information technologies, as well as medical technologies, such as MRI, PET scans, CAT scans, and radioisotope tracers. Explores key issues facing the world today, such as global warning, nuclear waste, and government funding for research.
Particle and nuclear physics instrumentation and its broad connections
Demarteau, Marcel; Lipton, Ron; Nicholson, Howard; ...
2016-12-20
Subatomic physics shares with other basic sciences the need to innovate, invent, and develop tools, techniques, and technologies to carry out its mission to explore the nature of matter, energy, space, and time. In some cases, entire detectors or technologies developed specifically for particle physics research have been adopted by other fields of research or in commercial applications. In most cases, however, the development of new devices and technologies by particle physics for its own research has added value to other fields of research or to applications beneficial to society by integrating them in the existing technologies. Thus, detector researchmore » and development has not only advanced the current state of technology for particle physics, but has often advanced research in other fields of science and has underpinned progress in numerous applications in medicine and national security. At the same time particle physics has profited immensely from developments in industry and applied them to great benefit for the use of particle physics detectors. Finally, this symbiotic relationship has seen strong mutual benefits with sometimes unexpected far reach.« less
Particle and nuclear physics instrumentation and its broad connections
NASA Astrophysics Data System (ADS)
Demarteau, M.; Lipton, R.; Nicholson, H.; Shipsey, I.
2016-10-01
Subatomic physics shares with other basic sciences the need to innovate, invent, and develop tools, techniques, and technologies to carry out its mission to explore the nature of matter, energy, space, and time. In some cases, entire detectors or technologies developed specifically for particle physics research have been adopted by other fields of research or in commercial applications. In most cases, however, the development of new devices and technologies by particle physics for its own research has added value to other fields of research or to applications beneficial to society by integrating them in the existing technologies. Thus, detector research and development has not only advanced the current state of technology for particle physics, but has often advanced research in other fields of science and has underpinned progress in numerous applications in medicine and national security. At the same time particle physics has profited immensely from developments in industry and applied them to great benefit for the use of particle physics detectors. This symbiotic relationship has seen strong mutual benefits with sometimes unexpected far reach.
Particle and nuclear physics instrumentation and its broad connections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demarteau, Marcel; Lipton, Ron; Nicholson, Howard
Subatomic physics shares with other basic sciences the need to innovate, invent, and develop tools, techniques, and technologies to carry out its mission to explore the nature of matter, energy, space, and time. In some cases, entire detectors or technologies developed specifically for particle physics research have been adopted by other fields of research or in commercial applications. In most cases, however, the development of new devices and technologies by particle physics for its own research has added value to other fields of research or to applications beneficial to society by integrating them in the existing technologies. Thus, detector researchmore » and development has not only advanced the current state of technology for particle physics, but has often advanced research in other fields of science and has underpinned progress in numerous applications in medicine and national security. At the same time particle physics has profited immensely from developments in industry and applied them to great benefit for the use of particle physics detectors. Finally, this symbiotic relationship has seen strong mutual benefits with sometimes unexpected far reach.« less
Japanese Science & Technology (1): The Coming Challenge
ERIC Educational Resources Information Center
Douglas, John H.
1977-01-01
Assesses Japanese science and technology and finds it to be in excellent shape for the shift into a post-industrial age. Speculates about physical and psychological reasons why Japan is able to adapt. (CP)
ERIC Educational Resources Information Center
Richards, Adrian F.; Richards, Efrosine A.
The Inventory of Innovative Learning Materials in Marine Science and Technology includes 32 computer-, 148 video-, 16 film-, and 11 CD-ROM-based entries. They concern materials in biosciences (67), chemistry (5), geosciences (16), physics (23), technology (76) and other (20). This first, initial compilations is conceived as the basis for more…
NASA Tech Briefs, Summer 1976. Volume 1, No. 2
NASA Technical Reports Server (NTRS)
1976-01-01
Topics covered include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences. Also included are; NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; and New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products.
Howard University program for radiotherapeutic technology.
Tabron, M J
1975-01-01
The Howard University program for radiotherapeutic technology provides for a career ladder with steps of two years. After the first two years everyone must take and pass examination in radiotherapeutic technology given by The American Registry of Radiologic Technologists. The candidate then can proceed with two years of university courses to a Bachelor of Science degree. Depending upon his interest, he can emphasize business, education, or science. The latter would qualify him for application medical school. The core of the curriculum for the first two years consists of clinical work in the radiotherapy department every morning and of two integrated multidisciplinary courses in the afternoon, namely, life sciences (anatomy, physiology, pathology and oncology) and natural sciences (mathematics, physics, radiation physics and treatment planning).
The effects of calculator-based laboratories on standardized test scores
NASA Astrophysics Data System (ADS)
Stevens, Charlotte Bethany Rains
Nationwide, the goal of providing a productive science and math education to our youth in today's educational institutions is centering itself around the technology being utilized in these classrooms. In this age of digital technology, educational software and calculator-based laboratories (CBL) have become significant devices in the teaching of science and math for many states across the United States. Among the technology, the Texas Instruments graphing calculator and Vernier Labpro interface, are among some of the calculator-based laboratories becoming increasingly popular among middle and high school science and math teachers in many school districts across this country. In Tennessee, however, it is reported that this type of technology is not regularly utilized at the student level in most high school science classrooms, especially in the area of Physical Science (Vernier, 2006). This research explored the effect of calculator based laboratory instruction on standardized test scores. The purpose of this study was to determine the effect of traditional teaching methods versus graphing calculator teaching methods on the state mandated End-of-Course (EOC) Physical Science exam based on ability, gender, and ethnicity. The sample included 187 total tenth and eleventh grade physical science students, 101 of which belonged to a control group and 87 of which belonged to the experimental group. Physical Science End-of-Course scores obtained from the Tennessee Department of Education during the spring of 2005 and the spring of 2006 were used to examine the hypotheses. The findings of this research study suggested the type of teaching method, traditional or calculator based, did not have an effect on standardized test scores. However, the students' ability level, as demonstrated on the End-of-Course test, had a significant effect on End-of-Course test scores. This study focused on a limited population of high school physical science students in the middle Tennessee Putnam County area. The study should be reproduced in various school districts in the state of Tennessee to compare the findings.
Primary and Secondary School Science.
ERIC Educational Resources Information Center
Educational Documentation and Information, 1984
1984-01-01
This 344-item annotated bibliography presents overview of science teaching in following categories: science education; primary school science; integrated science teaching; teaching of biology, chemistry, physics, earth/space science; laboratory work; computer technology; out-of-school science; science and society; science education at…
NASA Technical Reports Server (NTRS)
1986-01-01
Activities of the Goddard Space Flight Center are described in the areas of planets and interplanetary media, comets, astronomy and high-energy physics, solar physics, atmospheres, terrestrial physics, ocean science, sensors and space technology, techniques, user space data systems, space communications and navigation, and system and software engineering. Flight projects and mission definition studies are presented, and institutional technology is described.
ERIC Educational Resources Information Center
Holbrow, C. H.
1983-01-01
A course was developed to teach physics concepts and to help students understand mathematics, the nature and role of engineers and engineering in society, and to distinguish between science/technology from pseudo-science. Includes course goals/content, mechanics, start-up, and long-term projects. (JN)
Translations on USSR Science and Technology, Physical Sciences and Technology, Number 5
1976-12-30
Corresponding Member, AN SSSR; Ibragim Ibishevich Ibragimov, Academician, Azerbaydzhan Academy of Sciences; Mikhail Mikhaylovich Lavrent’yev...SSSR: Viktor Dmitriyevich Kupradze, Academician, Georgian Academy of Sciences; Viktor Petrovich Makeyev , Corresponding Member AN SSSR; Dmitriy...Corresponding Member AN SSSR; Vasiliy Vladimirovich Korshak, Corresponding Member AN SSSR; Mikhail Mikhaylovich Koton, Corres- ponding Member AN SSSR
Physics Education and STSE: Perspectives from the Literature
ERIC Educational Resources Information Center
MacLeod, Katarin
2013-01-01
Science, technology, society, and environment (STSE) education has recently received attention in educational research, policy, and science curricular development. Fewer strides have been made in examining the connections between STSE education and learning/teaching physics. Examples of moving STSE theory into practice within a physics classroom…
NASA Astrophysics Data System (ADS)
Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Al-Bataineh, H.; Al-Ta'ani, H.; Alexander, J.; Alfred, M.; Andrews, K. R.; Angerami, A.; Aoki, K.; Apadula, N.; Aphecetche, L.; Appelt, E.; Aramaki, Y.; Armendariz, R.; Aronson, S. H.; Asai, J.; Asano, H.; Aschenauer, E. C.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bai, X.; Baksay, G.; Baksay, L.; Baldisseri, A.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Barnes, P. D.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Batsouli, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belikov, S.; Belmont, R.; Ben-Benjamin, J.; Bennett, R.; Berdnikov, A.; Berdnikov, Y.; Bhom, J. H.; Bickley, A. A.; Bing, X.; Black, D.; Blau, D. S.; Boissevain, J. G.; Bok, J. S.; Borel, H.; Boyle, K.; Brooks, M. L.; Broxmeyer, D.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Camacho, C. M.; Campbell, S.; Caringi, A.; Castera, P.; Chang, B. S.; Chang, W. C.; Charvet, J.-L.; Chen, C.-H.; Chernichenko, S.; Chi, C. Y.; Chiba, J.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Churyn, A.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cleven, C. R.; Cole, B. A.; Comets, M. P.; Conesa del Valle, Z.; Connors, M.; Constantin, P.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Danchev, I.; Das, K.; Datta, A.; Daugherity, M. S.; David, G.; Dayananda, M. K.; Deaton, M. B.; DeBlasio, K.; Dehmelt, K.; Delagrange, H.; Denisov, A.; d'Enterria, D.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Ding, L.; Dion, A.; Do, J. H.; Donadelli, M.; Drapier, O.; Drees, A.; Drees, K. A.; Dubey, A. K.; Durham, J. M.; Durum, A.; Dutta, D.; Dzhordzhadze, V.; D'Orazio, L.; Edwards, S.; Efremenko, Y. V.; Egdemir, J.; Ellinghaus, F.; Emam, W. S.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Gadrat, S.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, H.; Gong, X.; Gonin, M.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grim, G.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guo, L.; Guragain, H.; Gustafsson, H.-Å.; Hachiya, T.; Hadj Henni, A.; Haegemann, C.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Han, R.; Han, S. Y.; Hanks, J.; Harada, H.; Harper, C.; Hartouni, E. P.; Haruna, K.; Hasegawa, S.; Hashimoto, K.; Haslum, E.; Hayano, R.; Hayashi, S.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hiejima, H.; Hill, J. C.; Hobbs, R.; Hohlmann, M.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hori, Y.; Hornback, D.; Hoshino, T.; Huang, J.; Huang, S.; Ichihara, T.; Ichimiya, R.; Ide, J.; Iinuma, H.; Ikeda, Y.; Imai, K.; Imazu, Y.; Imrek, J.; Inaba, M.; Inoue, Y.; Iordanova, A.; Isenhower, D.; Isenhower, L.; Ishihara, M.; Isinhue, A.; Isobe, T.; Issah, M.; Isupov, A.; Ivanischev, D.; Ivanishchev, D.; Iwanaga, Y.; Jacak, B. V.; Javani, M.; Jeon, S. J.; Jezghani, M.; Jia, J.; Jiang, X.; Jin, J.; Jinnouchi, O.; John, D.; Johnson, B. M.; Jones, T.; Joo, E.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kamin, J.; Kanda, S.; Kaneta, M.; Kaneti, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kanou, H.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kihara, K.; Kijima, K. M.; Kikuchi, J.; Kim, A.; Kim, B. I.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.; Kim, E.-J.; Kim, H.-J.; Kim, H. J.; Kim, K.-B.; Kim, M.; Kim, S. H.; Kim, Y.-J.; Kim, Y. K.; Kinney, E.; Kiriluk, K.; Kiss, Á.; Kistenev, E.; Kiyomichi, A.; Klatsky, J.; Klay, J.; Klein-Boesing, C.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kochenda, L.; Kochetkov, V.; Kofarago, M.; Komatsu, Y.; Komkov, B.; Konno, M.; Koster, J.; Kotchetkov, D.; Kotov, D.; Kozlov, A.; Král, A.; Kravitz, A.; Krizek, F.; Kubart, J.; Kunde, G. J.; Kurihara, N.; Kurita, K.; Kurosawa, M.; Kweon, M. J.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Layton, D.; Lebedev, A.; Lee, B.; Lee, D. M.; Lee, G. H.; Lee, J.; Lee, K.; Lee, K. B.; Lee, K. S.; Lee, M. K.; Lee, S. H.; Lee, S. R.; Lee, T.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Leitner, E.; Lenzi, B.; Lewis, B.; Li, X.; Lichtenwalner, P.; Liebing, P.; Lim, S. H.; Linden Levy, L. A.; Liška, T.; Litvinenko, A.; Liu, H.; Liu, M. X.; Love, B.; Luechtenborg, R.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Ma, M.; Malakhov, A.; Malik, M. D.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Maruyama, T.; Mašek, L.; Masui, H.; Masumoto, S.; Matathias, F.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Midori, J.; Mignerey, A. C.; Mikeš, P.; Miki, K.; Miller, A. J.; Miller, T. E.; Milov, A.; Mioduszewski, S.; Mishra, D. K.; Mishra, M.; Mitchell, J. T.; Mitrovski, M.; Miyachi, Y.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Montuenga, P.; Moon, H. J.; Moon, T.; Morino, Y.; Morreale, A.; Morrison, D. P.; Moskowitz, M.; Motschwiller, S.; Moukhanova, T. V.; Mukhopadhyay, D.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagata, Y.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nam, S.; Nattrass, C.; Nederlof, A.; Netrakanti, P. K.; Newby, J.; Nguyen, M.; Nihashi, M.; Niida, T.; Norman, B. E.; Nouicer, R.; Novak, T.; Novitzky, N.; Nukariya, A.; Nyanin, A. S.; Oakley, C.; Obayashi, H.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Ohnishi, H.; Oide, H.; Oka, M.; Okada, K.; Omiwade, O. O.; Onuki, Y.; Orjuela Koop, J. D.; Oskarsson, A.; Ouchida, M.; Ozaki, H.; Ozawa, K.; Pak, R.; Pal, D.; Palounek, A. P. T.; Pantuev, V.; Papavassiliou, V.; Park, B. H.; Park, I. H.; Park, J.; Park, S.; Park, S. K.; Park, W. J.; Pate, S. F.; Patel, L.; Patel, M.; Pei, H.; Peng, J.-C.; Pereira, H.; Perepelitsa, D. V.; Perera, G. D. N.; Peresedov, V.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Purwar, A. K.; Qu, H.; Rak, J.; Rakotozafindrabe, A.; Ravinovich, I.; Read, K. F.; Rembeczki, S.; Reuter, M.; Reygers, K.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Riveli, N.; Roach, D.; Roche, G.; Rolnick, S. D.; Romana, A.; Rosati, M.; Rosen, C. A.; Rosendahl, S. S. E.; Rosnet, P.; Rowan, Z.; Rubin, J. G.; Rukoyatkin, P.; Ružička, P.; Rykov, V. L.; Ryu, M. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakai, S.; Sakashita, K.; Sakata, H.; Sako, H.; Samsonov, V.; Sano, M.; Sano, S.; Sarsour, M.; Sato, S.; Sato, T.; Savastio, M.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sekiguchi, Y.; Semenov, A. Yu.; Semenov, V.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shaver, A.; Shein, I.; Shevel, A.; Shibata, T.-A.; Shigaki, K.; Shim, H. H.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Skolnik, M.; Skutnik, S.; Slunečka, M.; Sodre, T.; Solano, S.; Soldatov, A.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Soumya, M.; Sourikova, I. V.; Sparks, N. A.; Staley, F.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Stone, M. R.; Sugitate, T.; Suire, C.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Tabaru, T.; Takagi, S.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarján, P.; Tennant, E.; Themann, H.; Thomas, D.; Thomas, T. L.; Timilsina, A.; Todoroki, T.; Togawa, M.; Toia, A.; Tojo, J.; Tomášek, L.; Tomášek, M.; Tomita, Y.; Torii, H.; Towell, M.; Towell, R.; Towell, R. S.; Tram, V.-N.; Tserruya, I.; Tsuchimoto, Y.; Tsuji, T.; Utsunomiya, K.; Vale, C.; Valle, H.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Vinogradov, A. A.; Virius, M.; Voas, B.; Vossen, A.; Vrba, V.; Vznuzdaev, E.; Wagner, M.; Walker, D.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Wessels, J.; Whitaker, S.; White, S. N.; Winter, D.; Wolin, S.; Wood, J. P.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Xia, B.; Xie, W.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamaura, K.; Yang, R.; Yanovich, A.; Yasin, Z.; Ying, J.; Yokkaichi, S.; Yoo, J. S.; Yoon, I.; You, Z.; Young, G. R.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zaudtke, O.; Zelenski, A.; Zhang, C.; Zhou, S.; Zimányi, J.; Zolin, L.
2014-12-01
We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, a sponsored research grant from Renaissance Technologies LLC, Abilene Christian University Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (USA), Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan), Conselho Nacional de Desenvolvimento Científico e Tecnológico and Fundação de Amparo à Pesquisa do Estado de São Paulo (Brazil), Natural Science Foundation of China, (People's Republic of China), Ministry of Science, Education, and Sports (Croatia), Ministry of Education, Youth and Sports (Czech Republic), Centre National de la Recherche Scientifique, Commissariat à l'Énergie Atomique, and Institut National de Physique Nucléaire et de Physique des Particules (France), Bundesministerium für Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany), OTKA NK 101 428 grant and the Ch. Simonyi Fund (Hungary), Department of Atomic Energy and Department of Science and Technology (India), Israel Science Foundation (Israel), National Research Foundation and WCU program of the Ministry Education Science and Technology (Republic of Korea), Physics Department, Lahore University of Management Sciences (Pakistan), Ministry of Education and Science, Russian Academy of Sciences, Federal Agency of Atomic Energy (Russia), VR and Wallenberg Foundation (Sweden), the US Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, and the US-Israel Binational Science Foundation.
NASA Astrophysics Data System (ADS)
Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Al-Bataineh, H.; Al-Ta'ani, H.; Alexander, J.; Alfred, M.; Andrews, K. R.; Angerami, A.; Aoki, K.; Apadula, N.; Aphecetche, L.; Appelt, E.; Aramaki, Y.; Armendariz, R.; Aronson, S. H.; Asai, J.; Asano, H.; Aschenauer, E. C.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bai, X.; Baksay, G.; Baksay, L.; Baldisseri, A.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Barnes, P. D.; Barnes, P. D.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Batsouli, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belikov, S.; Belmont, R.; Ben-Benjamin, J.; Bennett, R.; Berdnikov, A.; Berdnikov, Y.; Bhom, J. H.; Bickley, A. A.; Bing, X.; Black, D.; Blau, D. S.; Boissevain, J. G.; Bok, J.; Bok, J. S.; Borel, H.; Boyle, K.; Brooks, M. L.; Broxmeyer, D.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Camacho, C. M.; Campbell, S.; Caringi, A.; Castera, P.; Chang, B. S.; Chang, W. C.; Charvet, J.-L.; Chen, C.-H.; Chernichenko, S.; Chi, C. Y.; Chiba, J.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Churyn, A.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cleven, C. R.; Cole, B. A.; Comets, M. P.; Conesa del Valle, Z.; Connors, M.; Constantin, P.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Danchev, I.; Das, K.; Datta, A.; Daugherity, M. S.; David, G.; Dayananda, M. K.; Deaton, M. B.; DeBlasio, K.; Dehmelt, K.; Delagrange, H.; Denisov, A.; d'Enterria, D.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Ding, L.; Dion, A.; Do, J. H.; Donadelli, M.; Drapier, O.; Drees, A.; Drees, K. A.; Dubey, A. K.; Durham, J. M.; Durum, A.; Dutta, D.; Dzhordzhadze, V.; D'Orazio, L.; Edwards, S.; Efremenko, Y. V.; Egdemir, J.; Ellinghaus, F.; Emam, W. S.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Gadrat, S.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, H.; Gong, X.; Gonin, M.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grim, G.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guo, L.; Guragain, H.; Gustafsson, H.-Å.; Hachiya, T.; Hadj Henni, A.; Haegemann, C.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Han, R.; Han, S. Y.; Hanks, J.; Harada, H.; Harper, C.; Hartouni, E. P.; Haruna, K.; Hasegawa, S.; Hashimoto, K.; Haslum, E.; Hayano, R.; Hayashi, S.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hiejima, H.; Hill, J. C.; Hobbs, R.; Hohlmann, M.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hori, Y.; Hornback, D.; Hoshino, T.; Huang, J.; Huang, S.; Ichihara, T.; Ichimiya, R.; Ide, J.; Iinuma, H.; Ikeda, Y.; Imai, K.; Imazu, Y.; Imrek, J.; Inaba, M.; Inoue, Y.; Iordanova, A.; Isenhower, D.; Isenhower, L.; Ishihara, M.; Isinhue, A.; Isobe, T.; Issah, M.; Isupov, A.; Ivanischev, D.; Ivanishchev, D.; Iwanaga, Y.; Jacak, B. V.; Javani, M.; Jeon, S. J.; Jezghani, M.; Jia, J.; Jiang, X.; Jin, J.; Jinnouchi, O.; John, D.; Johnson, B. M.; Jones, T.; Joo, E.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kamin, J.; Kanda, S.; Kaneta, M.; Kaneti, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kanou, H.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kihara, K.; Kijima, K. M.; Kikuchi, J.; Kim, A.; Kim, B. I.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.; Kim, E.-J.; Kim, H.-J.; Kim, H. J.; Kim, K.-B.; Kim, M.; Kim, S. H.; Kim, Y.-J.; Kim, Y. K.; Kinney, E.; Kiriluk, K.; Kiss, Á.; Kistenev, E.; Kiyomichi, A.; Klatsky, J.; Klay, J.; Klein-Boesing, C.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kochenda, L.; Kochetkov, V.; Kofarago, M.; Komatsu, Y.; Komkov, B.; Konno, M.; Koster, J.; Kotchetkov, D.; Kotov, D.; Kozlov, A.; Král, A.; Kravitz, A.; Krizek, F.; Kubart, J.; Kunde, G. J.; Kurihara, N.; Kurita, K.; Kurosawa, M.; Kweon, M. J.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Layton, D.; Lebedev, A.; Lee, B.; Lee, D. M.; Lee, G. H.; Lee, J.; Lee, K.; Lee, K. B.; Lee, K. S.; Lee, M. K.; Lee, S. H.; Lee, S. R.; Lee, T.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Leitner, E.; Lenzi, B.; Lewis, B.; Li, X.; Lichtenwalner, P.; Liebing, P.; Lim, S. H.; Linden Levy, L. A.; Liška, T.; Litvinenko, A.; Liu, H.; Liu, M. X.; Love, B.; Luechtenborg, R.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Maai, M.; Malakhov, A.; Malik, M. D.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Maruyama, T.; Mašek, L.; Masui, H.; Masumoto, S.; Matathias, F.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Midori, J.; Mignerey, A. C.; Mikeš, P.; Miki, K.; Miller, A. J.; Miller, T. E.; Milov, A.; Mioduszewski, S.; Mishra, D. K.; Mishra, M.; Mitchell, J. T.; Mitrovski, M.; Miyachi, Y.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Montuenga, P.; Moon, H. J.; Moon, T.; Morino, Y.; Morreale, A.; Morrison, D. P.; Moskowitz, M.; Motschwiller, S.; Moukhanova, T. V.; Mukhopadhyay, D.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagata, Y.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nam, S.; Nattrass, C.; Nederlof, A.; Netrakanti, P. K.; Newby, J.; Nguyen, M.; Nihashi, M.; Niida, T.; Norman, B. E.; Nouicer, R.; Novak, T.; Novitzky, N.; Nukariya, A.; Nyanin, A. S.; Oakley, C.; Obayashi, H.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Ohnishi, H.; Oide, H.; Oka, M.; Okada, K.; Omiwade, O. O.; Onuki, Y.; Orjuela Koop, J. D.; Oskarsson, A.; Ouchida, M.; Ozaki, H.; Ozawa, K.; Pak, R.; Pal, D.; Palounek, A. P. T.; Pantuev, V.; Papavassiliou, V.; Park, B. H.; Park, I. H.; Park, J.; Park, S.; Park, S. K.; Park, W. J.; Pate, S. F.; Patel, L.; Patel, M.; Pei, H.; Peng, J.-C.; Pereira, H.; Perepelitsa, D. V.; Perera, G. D. N.; Peresedov, V.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Purwar, A. K.; Qu, H.; Rak, J.; Rakotozafindrabe, A.; Ravinovich, I.; Read, K. F.; Rembeczki, S.; Reuter, M.; Reygers, K.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Riveli, N.; Roach, D.; Roche, G.; Rolnick, S. D.; Romana, A.; Rosati, M.; Rosen, C. A.; Rosendahl, S. S. E.; Rosnet, P.; Rowan, Z.; Rubin, J. G.; Rukoyatkin, P.; Ružička, P.; Rykov, V. L.; Ryu, M. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakai, S.; Sakashita, K.; Sakata, H.; Sako, H.; Samsonov, V.; Sano, M.; Sano, S.; Sarsour, M.; Sato, S.; Sato, T.; Savastio, M.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sekiguchi, Y.; Semenov, A. Yu.; Semenov, V.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shaver, A.; Shein, I.; Shevel, A.; Shibata, T.-A.; Shigaki, K.; Shim, H. H.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Skolnik, M.; Skutnik, S.; Slunečka, M.; Sodre, T.; Solano, S.; Soldatov, A.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Soumya, M.; Sourikova, I. V.; Sparks, N. A.; Staley, F.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Stone, M. R.; Sugitate, T.; Suire, C.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Tabaru, T.; Takagi, S.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarján, P.; Tennant, E.; Themann, H.; Thomas, D.; Thomas, T. L.; Timilsina, A.; Todoroki, T.; Togawa, M.; Toia, A.; Tojo, J.; Tomášek, L.; Tomášek, M.; Tomita, Y.; Torii, H.; Towell, M.; Towell, R.; Towell, R. S.; Tram, V.-N.; Tserruya, I.; Tsuchimoto, Y.; Tsuji, T.; Utsunomiya, K.; Vale, C.; Valle, H.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Vinogradov, A. A.; Virius, M.; Voas, B.; Vossen, A.; Vrba, V.; Vznuzdaev, E.; Wagner, M.; Walker, D.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Wessels, J.; Whitaker, S.; White, S. N.; Winter, D.; Wolin, S.; Wood, J. P.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Xia, B.; Xie, W.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamaura, K.; Yang, R.; Yanovich, A.; Yasin, Z.; Ying, J.; Yokkaichi, S.; Yoo, J. S.; Yoon, I.; You, Z.; Young, G. R.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zaudtke, O.; Zelenski, A.; Zhang, C.; Zhou, S.; Zimányi, J.; Zolin, L.
2014-11-01
We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, a sponsored research grant from Renaissance Technologies LLC, Abilene Christian University Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (USA), Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan), Conselho Nacional de Desenvolvimento Científico e Tecnológico and Fundaç ao de Amparo à Pesquisa do Estado de São Paulo (Brazil), Natural Science Foundation of China (People's Republic of China), Ministry of Science, Education, and Sports (Croatia), Ministry of Education, Youth and Sports (Czech Republic), Centre National de la Recherche Scientifique, Commissariat à l'Énergie Atomique, and Institut National de Physique Nucléaire et de Physique des Particules (France), Bundesministerium für Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany), OTKA NK 101 428 grant and the Ch. Simonyi Fund (Hungary), Department of Atomic Energy and Department of Science and Technology (India), Israel Science Foundation (Israel), National Research Foundation and WCU program of the Ministry Education Science and Technology (Korea), Physics Department, Lahore University of Management Sciences (Pakistan), Ministry of Education and Science, Russian Academy of Sciences, Federal Agency of Atomic Energy (Russia), VR and Wallenberg Foundation (Sweden), the US Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, and the US-Israel Binational Science Foundation.
NASA Tech Briefs, December 2002
NASA Technical Reports Server (NTRS)
2002-01-01
Topics covered include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; and Life Sciences.
ERIC Educational Resources Information Center
Science News, 1983
1983-01-01
Highlights important 1983 news stories reported in Science News. Stories are categorized under: anthropology/paleontology; behavior; biology; chemistry; earth sciences; energy; environment; medicine; physics; science and society; space sciences and astronomy; and technology and computers. (JN)
Commentary: China Will Change Our Teaching
ERIC Educational Resources Information Center
Parslow, Graham R.
2013-01-01
The current spurt in life science activity in China has been driven by repatriating researchers trained in the prestigious institutions of the world. China's publications show a clear concentration in the physical sciences and technology, with materials science, chemistry, and physics predominant. Also clear is that the growth areas include…
ERIC Educational Resources Information Center
What Works Clearinghouse, 2012
2012-01-01
"Technology Enhanced Elementary and Middle School Science" ("TEEMSS") is a physical science curriculum for grades 3-8 that utilizes computers, sensors, and interactive models to support investigations of real-world phenomena. Through 15 inquiry-based instructional units, students interact with computers, gather and analyze…
JPRS Report, Science & Technology, USSR: Science & Technology Policy
1989-12-07
technologies. —The restoration of the biosphere and its return to an ecologically clean, healthy state; the preservation and reproduction of soils and the...and Geochemistry of Combustible Materials Institute, Casting Problems Institute, Technical Thermal Physics Institute, Gas Insti- tute, Social and...academician, honorary director of the Institute of Geochemistry imeni A.P. Vinogradov of the Siberian Department of the USSR Academy of Sciences
The Effect of Internet Usage on Technology Comprehension of Physics Students: A Case Study
ERIC Educational Resources Information Center
Guzel, Hatice
2011-01-01
Rapid technological enhancements and changes necessitate people who can understand the relation between science and technology and perceive as well as comment on technological enhancements. The aim of the present study was to determine physics students comprehension of the operation principles of wired telephone, mobile phone, and latest medical…
1988-09-01
Institute for Physical Science and Teennology rUniversity of Maryland o College Park, MD 20742 B. Gix) Engineering Mechanics Research Corporation Troy...OF THE FINITE ELEMENT METHOD by Ivo Babuska Institute for Physical Science and Technology University of Maryland College Park, MD 20742 B. Guo 2...2Research partially supported by the National Science Foundation under Grant DMS-85-16191 during the stay at the Institute for Physical Science and
Physics First: Impact on SAT Math Scores
ERIC Educational Resources Information Center
Bouma, Craig E.
2013-01-01
Improving science, technology, engineering, and mathematics (STEM) education has become a national priority and the call to modernize secondary science has been heard. A Physics First (PF) program with the curriculum sequence of physics, chemistry, and biology (PCB) driven by inquiry- and project-based learning offers a viable alternative to the…
Big physics quartet win government backing
NASA Astrophysics Data System (ADS)
Banks, Michael
2014-09-01
Four major physics-based projects are among 10 to have been selected by Japan’s Ministry of Education, Culture, Sports, Science and Technology for funding in the coming decade as part of its “roadmap” of big-science projects.
NASA Astrophysics Data System (ADS)
Feranie, Selly; Efendi, Ridwan; Karim, Saeful; Sasmita, Dedi
2016-08-01
The PISA results for Indonesian Students are lowest among Asian countries in the past two successive results. Therefore various Innovations in science learning process and its effectiveness enhancing student's science literacy is needed to enrich middle school science teachers. Literacy strategies have been implemented on health technologies theme learning to enhance Indonesian Junior high school Student's Physics literacy in three different health technologies e.g. Lasik surgery that associated with application of Light and Optics concepts, Ultra Sonographer (USG) associated with application of Sound wave concepts and Work out with stationary bike and walking associated with application of motion concepts. Science learning process involves at least teacher instruction, student learning and a science curriculum. We design two main part of literacy strategies in each theme based learning. First part is Integrated Reading Writing Task (IRWT) is given to the students before learning process, the second part is scientific investigation learning process design packed in Problem Based Learning. The first part is to enhance student's science knowledge and reading comprehension and the second part is to enhance student's science competencies. We design a transformation from complexity of physics language to Middle school physics language and from an expensive and complex science investigation to a local material and simply hands on activities. In this paper, we provide briefly how literacy strategies proposed by previous works is redesigned and applied in classroom science learning. Data were analysed using t- test. The increasing value of mean scores in each learning design (with a significance level of p = 0.01) shows that the implementation of this literacy strategy revealed a significant increase in students’ physics literacy achievement. Addition analysis of Avarage normalized gain show that each learning design is in medium-g courses effectiveness category according to Hake's classification.
Science and Technology Text Mining: Global Technology Watch
2003-07-01
22217 PHONE: 703-696-4198 FAX: 703-696-4274 INTERNET: KOSTOFR@ONR.NAVY.MIL http:// ww2 .onr.navy.mil/test/technowatch/default.htm (THE VIEWS IN THIS...is used in science and technology as an abbreviation for InfraRed (physics), Immuno-Reactivity (biology), Ischemia-Reperfusion (medicine), current(I
NASA Tech Briefs, August 1992. Volume 16, No. 8
NASA Technical Reports Server (NTRS)
1992-01-01
Topics include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, September 1992. Volume 16, No.9
NASA Technical Reports Server (NTRS)
1992-01-01
Topics include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Technical Reports Server (NTRS)
1985-01-01
Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, January 1993. Volume 17, No. 1
NASA Technical Reports Server (NTRS)
1993-01-01
Topics include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences;
NASA Tech Briefs, November 1992. Volume 16, No. 11
NASA Technical Reports Server (NTRS)
1992-01-01
Topics include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences;
NASA Tech Briefs, December 1992. Volume 16, No. 12
NASA Technical Reports Server (NTRS)
1992-01-01
Topics include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences;
NASA Technical Reports Server (NTRS)
1985-01-01
Topic include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
ERIC Educational Resources Information Center
Science News, 1988
1988-01-01
Reviews major science news stories of 1988 as reported in the pages of Science News. Covers the areas of anthropology, astronomy, behavior, biology, biomedicine, chemistry, earth sciences, environment, food science, mathematics and computers, paleobiology, physics, science and society, space sciences, and technology. (YP)
ERIC Educational Resources Information Center
Karam, Rita; Straus, Susan G.; Byers, Albert; Kase, Courtney A.; Cefalu, Matthew
2018-01-01
This study explores the diffusion of Web 2.0 technologies among science educators and the ways that these technologies are used to build teacher professional communities of practice (CoP) in life sciences and physical sciences. We used surveys and web analytics collected over a 21-month period to examine factors that motivate teachers to…
ERIC Educational Resources Information Center
Science News, 1985
1985-01-01
Highlights important 1985 science stories appearing in "Science News" under these headings: anthropology and paleontology, astronomy, behavior, biology, biomedicine, chemistry, computers and mathematics, earth sciences, environment, physics, science and society, space sciences, and technology. Each entry includes the volume and page…
Brookhaven highlights. Report on research, October 1, 1992--September 30, 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowe, M.S.; Belford, M.; Cohen, A.
This report highlights the research activities of Brookhaven National Laboratory during the period dating from October 1, 1992 through September 30, 1993. There are contributions to the report from different programs and departments within the laboratory. These include technology transfer, RHIC, Alternating Gradient Synchrotron, physics, biology, national synchrotron light source, applied science, medical science, advanced technology, chemistry, reactor physics, safety and environmental protection, instrumentation, and computing and communications.
Translations on USSR Science and Technology, Physical Sciences and Technology, Number 45
1978-08-14
hundred pages. [Question] In the public’s perception a cosmonaut seems to be, in terms of physical and mental fitness, something like a superman . How ...indicate how the original information was processed. Where no processing indicator is given, the information was summarized or extracted. Unfamiliar... how the original Information was processed. Where no processing indicator is given, the information was sipmarized or extracted, unfamiliar names
Publications of LASL research, 1972--1976
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersen, L.
1977-04-01
This bibliography is a compilation of unclassified work done at the Los Alamos Scientific Laboratory and published during the years 1972 to 1976. Publications too late for inclusion in earlier compilations are also listed. Declassification of previously classified reports is considered to constitute publication. The bibliography includes LASL reports, journal articles, books, conference papers, papers published in congressional hearings, theses, patents, etc. The following subject areas are included: aerospace studies; analytical technology; astrophysics; atomic and molecular physics, equation of state, opacity; biology and medicine; chemical dynamics and kinetics; chemistry; cryogenics; crystallography; CTR and plasma physics; earth science and engineering; energymore » (nonnuclear); engineering and equipment; EPR, ESR, NMR studies; explosives and detonations; fission physics; health and safety; hydrodynamics and radiation transport; instruments; lasers; mathematics and computers; medium-energy physics; metallurgy and ceramics technology; neutronics and criticality studies; nuclear physics; nuclear safeguards; physics; reactor technology; solid state science; and miscellaneous (including Project Rover). (RWR)« less
NASA Tech Briefs, October 1989. Volume 13, No. 10
NASA Technical Reports Server (NTRS)
1989-01-01
Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences
NASA Tech Briefs, February 1990. Volume 14, No. 2
NASA Technical Reports Server (NTRS)
1990-01-01
Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences
NASA Tech Briefs, January 1990. Volume 14, No. 1
NASA Technical Reports Server (NTRS)
1990-01-01
Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences
NASA Tech Briefs, November 1989. Volume 13, No. 11
NASA Technical Reports Server (NTRS)
1989-01-01
Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences
NASA Tech Briefs, September 1989. Volume 13, No. 9
NASA Technical Reports Server (NTRS)
1989-01-01
Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences.
NASA Tech Briefs, October 1992. Volume 16, No. 10
NASA Technical Reports Server (NTRS)
1992-01-01
Topics covered include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, December 1989. Volume 13, No. 12
NASA Technical Reports Server (NTRS)
1989-01-01
Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences.
NASA Tech Briefs, April 1993. Volume 17, No. 4
NASA Technical Reports Server (NTRS)
1993-01-01
Topics include: Optoelectronics; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences;
NASA Tech Briefs, March 1990. Volume 14, No. 3
NASA Technical Reports Server (NTRS)
1990-01-01
Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences
Leveraging Citizen Science and Information Technology for Population Physical Activity Promotion.
King, Abby C; Winter, Sandra J; Sheats, Jylana L; Rosas, Lisa G; Buman, Matthew P; Salvo, Deborah; Rodriguez, Nicole M; Seguin, Rebecca A; Moran, Mika; Garber, Randi; Broderick, Bonnie; Zieff, Susan G; Sarmiento, Olga Lucia; Gonzalez, Silvia A; Banchoff, Ann; Dommarco, Juan Rivera
2016-05-15
While technology is a major driver of many of society's comforts, conveniences, and advances, it has been responsible, in a significant way, for engineering regular physical activity and a number of other positive health behaviors out of people's daily lives. A key question concerns how to harness information and communication technologies (ICT) to bring about positive changes in the health promotion field. One such approach involves community-engaged "citizen science," in which local residents leverage the potential of ICT to foster data-driven consensus-building and mobilization efforts that advance physical activity at the individual, social, built environment, and policy levels. The history of citizen science in the research arena is briefly described and an evidence-based method that embeds citizen science in a multi-level, multi-sectoral community-based participatory research framework for physical activity promotion is presented. Several examples of this citizen science-driven community engagement framework for promoting active lifestyles, called "Our Voice", are discussed, including pilot projects from diverse communities in the U.S. as well as internationally. The opportunities and challenges involved in leveraging citizen science activities as part of a broader population approach to promoting regular physical activity are explored. The strategic engagement of citizen scientists from socio-demographically diverse communities across the globe as both assessment as well as change agents provides a promising, potentially low-cost and scalable strategy for creating more active, healthful, and equitable neighborhoods and communities worldwide.
Leveraging Citizen Science and Information Technology for Population Physical Activity Promotion
King, Abby C.; Winter, Sandra J.; Sheats, Jylana L.; Rosas, Lisa G.; Buman, Matthew P.; Salvo, Deborah; Rodriguez, Nicole M.; Seguin, Rebecca A.; Moran, Mika; Garber, Randi; Broderick, Bonnie; Zieff, Susan G.; Sarmiento, Olga Lucia; Gonzalez, Silvia A.; Banchoff, Ann; Dommarco, Juan Rivera
2016-01-01
PURPOSE While technology is a major driver of many of society’s comforts, conveniences, and advances, it has been responsible, in a significant way, for engineering regular physical activity and a number of other positive health behaviors out of people’s daily lives. A key question concerns how to harness information and communication technologies (ICT) to bring about positive changes in the health promotion field. One such approach involves community-engaged “citizen science,” in which local residents leverage the potential of ICT to foster data-driven consensus-building and mobilization efforts that advance physical activity at the individual, social, built environment, and policy levels. METHOD The history of citizen science in the research arena is briefly described and an evidence-based method that embeds citizen science in a multi-level, multi-sectoral community-based participatory research framework for physical activity promotion is presented. RESULTS Several examples of this citizen science-driven community engagement framework for promoting active lifestyles, called “Our Voice”, are discussed, including pilot projects from diverse communities in the U.S. as well as internationally. CONCLUSIONS The opportunities and challenges involved in leveraging citizen science activities as part of a broader population approach to promoting regular physical activity are explored. The strategic engagement of citizen scientists from socio-demographically diverse communities across the globe as both assessment as well as change agents provides a promising, potentially low-cost and scalable strategy for creating more active, healthful, and equitable neighborhoods and communities worldwide. PMID:27525309
ERIC Educational Resources Information Center
Huang, Shaobo; Mejia, Joel Alejandro; Becker, Kurt; Neilson, Drew
2015-01-01
Improving high school physics teaching and learning is important to the long-term success of science, technology, engineering, and mathematics (STEM) education. Efforts are currently in place to develop an understanding of science among high school students through formal and informal educational experiences in engineering design activities…
ERIC Educational Resources Information Center
Dabney, Katherine P.; Tai, Robert H.
2014-01-01
The majority of existing science, technology, engineering, and mathematics (STEM) research studies compare women to men, yet a paucity of research exists that examines what differentiates female career choice within the physical sciences. In light of these research trends and recommendations, this study examines the following question: On average,…
Empathy in Future Teachers of the Pedagogical and Technological University of Colombia
ERIC Educational Resources Information Center
Herrera Torres, Lucía; Buitrago Bonilla, Rafael Enrique; Avila Moreno, Aida Karina
2016-01-01
This study analyzes cognitive and emotional empathy in students who started their training at the Education Science Faculty of the Pedagogical and Technological University of Colombia. The sample was formed by 317 students enrolled in the study programs of Preschool, Plastic Arts, Natural Sciences, Physical Education, Philosophy, Computer Science,…
ERIC Educational Resources Information Center
Boe, Maria Vetleseter; Henriksen, Ellen Karoline; Lyons, Terry; Schreiner, Camilla
2011-01-01
Young people's participation in science, technology, engineering and mathematics (STEM) is a matter of international concern. Studies and careers that require physical sciences and advanced mathematics are most affected by the problem and women in particular are under-represented in many STEM fields. This article views international research about…
What Will Happen If...Young Children and the Scientific Mind.
ERIC Educational Resources Information Center
Sprung, Barbara; And Others
Based on the premise that exposure to science and technology is important in early childhood curricula, this guide was developed to help teachers incorporate mathematics, sciences, and technology-related activities into existing programs. Activities contained in this guide focus on concepts in the physical sciences and in the development of…
Translations on USSR Science and Technology Physical Sciences and Technology No. 7
1977-02-28
cybernetics. [Answer] Immediately after the war , when the restoration of the national economy, which had been wrecked by the enemy, was started, Soviet...cyberneticization of economics and science will be developed at accelerated rates. 8545 CSO: 1870 CYBERNETICS, COMPUTERS AND AUTOMATION TECHNOLOGY...working storage of the machine exceeds 64 thousand alpha-numeric characters. Communication with the external world is effected by means of a main
NASA Tech Briefs, January 1989. Volume 13, No. 1
NASA Technical Reports Server (NTRS)
1989-01-01
Topics include: Electronic Components & and Circuits. Electronic Systems, A Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences.
NASA Tech Briefs, November 1993. Volume 17, No. 11
NASA Technical Reports Server (NTRS)
1993-01-01
Topics covered: Advanced Manufacturing; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
ERIC Educational Resources Information Center
Science News, 1989
1989-01-01
Presented is a review of important science news stories of 1989 as reported in the pages of "Science News." Topics include anthropology, astronomy, behavior, biology, biomedicine, chemistry, environment, food science, math and computers, paleobiology, physics, science and society, space sciences, and technology. (CW)
Outstanding Science Trade Books for Students K-12.
ERIC Educational Resources Information Center
Science and Children, 2002
2002-01-01
Introduces a list of outstanding science trade books for grade levels K-12 in the areas of Archaeology, Anthropology, Paleontology, Biography, Life Sciences, Integrated Science, Physical Science, Science Related Careers, and Technology and Engineering. Includes information on the selection process. (YDS)
ERIC Educational Resources Information Center
Science News, 1984
1984-01-01
Reviews important science news stories reported during 1984 in "Science News" magazine. These stories are in the categories of: anthropology and paleontology; behavior; biology; chemistry; computers; mathematics; earth science; the environment; medicine; physics; science and society; space sciences and astronomy; and technology. (JN)
WIP and WIT-Women in Physics and Technology
NASA Astrophysics Data System (ADS)
Iga, Kenichi
We review the status of Japanese women researchers in science and technology. Although the ratio of women working in science and technology has not necessarily been large in Japan, some active programs have been conducted to promote gender equalization by government, universities, research organizations, industries, and academic societies. Some examples in Tokyo Institute of Technology and Japan Women's University will be introduced.
Research and technology report, 1981
NASA Technical Reports Server (NTRS)
1981-01-01
The Marshall Space Flight Center programs of research and technology for 1981 in various areas of aerospace science are reviewed. Each activity reviewed has a high probability of application to current or future programs or is an application of the results of current programs. Projects in atmospheric and magnetospheric science, solar physics, astronomy, and space technology are included.
NASA Tech Briefs, May 1992. Volume 16, No. 5
NASA Technical Reports Server (NTRS)
1992-01-01
Topics include: New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, July 1992. Volume 16, No. 7
NASA Technical Reports Server (NTRS)
1992-01-01
Topics include: New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, March 1992. Volume 16, No. 3
NASA Technical Reports Server (NTRS)
1992-01-01
Topics include: New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, September 1994. Volume 18, No. 9
NASA Technical Reports Server (NTRS)
1994-01-01
Topics: Sensors; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Reports.
Science and Technological Innovation.
ERIC Educational Resources Information Center
Braun, Ernest
1979-01-01
This article is based on a presentation at the 1979 conference of the Education Group of The Institute of Physics which was held in Cambridge, England. It discusses the interaction between science and technological innovation using a historical approach: the development of microelectronics. (HM)
A Trial of Physics Education for Liberal Arts Students Using the Advancing Physics
NASA Astrophysics Data System (ADS)
Ochi, Nobuaki
A new approach to physics education for liberal arts students was performed in a Japanese university. The Advancing Physics, a modern textbook developed by the Institute of Physics, was employed as the base of this approach. The textbook includes a variety of modern topics about science and technology with beautiful pictures, while the use of math is kept to a minimum. From results of the questionnaire after one-semester lectures, it turned out that students' interest in science and technology rose substantially. On the other hand, there were some difficulties in lecturing, mathematical techniques in particular, which should be modified by the next trial. This result is an indication of a potential of the Advancing Physics for liberal arts education.
NASA Astrophysics Data System (ADS)
Murray, Marissa
This past summer I interned at the American Institute of Physics and helped research and write articles for the FYI Science Policy Bulletin. FYI is an objective digest of science policy developments in Washington, D.C. that impact the greater physical sciences community. Over the course of the summer, I independently attended, analyzed, and reported on a variety of science, technology, and funding related events including congressional hearings, government agency advisory committee meetings, and scientific society events. I wrote and co-wrote three articles on basic energy research legislation, the National Institute of Standards and Technology improvement act, and the National Science Foundation's big ideas for future investment. I had the opportunity to examine some challenging questions such as what is the role of government in funding applied research? How should science priorities be set? What is the right balance of funding across different agencies and programs? I learned about how science policy is a two-way street: science is used to inform policy decisions and policy is made to fund and regulate the conduct of science. I will conclude with how my summer working with FYI showed me the importance of science advocacy, being informed, and voting. Society of Physics Students.
LASER Tech Briefs, Winter 1994. Volume 2, No. 1
NASA Technical Reports Server (NTRS)
Schnirring, Bill (Editor)
1994-01-01
Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, Life Sciences, and Books and reports
NASA Tech Briefs, May 1993. Volume 17, No. 5
NASA Technical Reports Server (NTRS)
1993-01-01
Topics include: Advanced Composites and Plastics; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, February 1992. Volume 16, No. 2
NASA Technical Reports Server (NTRS)
1992-01-01
Topics covered include: New Product Development; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, Fall 1985. Volume 9, No. 3
NASA Technical Reports Server (NTRS)
1985-01-01
Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, July 1993. Volume 17, No. 7
NASA Technical Reports Server (NTRS)
1993-01-01
Topics include: Data Acquisition and Analysis: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, June 1992. Volume 16, No. 6
NASA Technical Reports Server (NTRS)
1992-01-01
Topics covered include: New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, January 1995. Volume 19, No. 1
NASA Technical Reports Server (NTRS)
1995-01-01
Topics include: Sensors; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Reports
Research briefing on contemporary problems in plasma science
NASA Technical Reports Server (NTRS)
1991-01-01
An overview is presented of the broad perspective of all plasma science. Detailed discussions are given of scientific opportunities in various subdisciplines of plasma science. The first subdiscipline to be discussed is the area where the contemporary applications of plasma science are the most widespread, low temperature plasma science. Opportunities for new research and technology development that have emerged as byproducts of research in magnetic and inertial fusion are then highlighted. Then follows a discussion of new opportunities in ultrafast plasma science opened up by recent developments in laser and particle beam technology. Next, research that uses smaller scale facilities is discussed, first discussing non-neutral plasmas, and then the area of basic plasma experiments. Discussions of analytic theory and computational plasma physics and of space and astrophysical plasma physics are then presented.
ERIC Educational Resources Information Center
Olund, Jeanine K.
2012-01-01
Although the number of women entering science, technology, engineering, and mathematics (STEM) disciplines has increased in recent years, overall there are still more men than women completing four-year degrees in these fields, especially in physics, engineering, and computer science. At higher levels of education and within the workplace, the…
ERIC Educational Resources Information Center
Fakomogbon, Michael Ayodele; Adebayo, Rachael Funmi; Adegbija, Mosiforeba Victoria; Shittu, Ahmed Tajudeen; Oyelekan, Oloyede Solomon
2014-01-01
This study examined Kwara State secondary school science teachers' perception of [information and communications technology] ICT for instruction based on their area of specialization. Participants were 630 science teachers of Biology, Chemistry, Physics and Mathematics from both public and private senior secondary schools in 12 Local Government…
NASA Tech Briefs Index, 1976. [bibliography
NASA Technical Reports Server (NTRS)
1976-01-01
Abstracts of new technology derived from the research and development activities of the National Aeronautics and Space Administration are presented. Emphasis is placed on information considered likely to be transferrable across industrial, regional, or disciplinary lines. Subject matter covered includes: electronic components and circuits; electronic systems; physical sciences; materials; life sciences; mechanics; machinery; fabrication technology; and mathematics and information sciences.
Overview of the Microgravity Science Glovebox (MSG)
NASA Technical Reports Server (NTRS)
Wright, Mary Etta
1999-01-01
MSG is a third generation glovebox for Microgravity Science investigations: SpaceLab Glovebox (GBX); Middeck/MIR Gloveboxes (M/MGBX); and GBX and M/MGBX developed by Bradford Engineering (NL). Previous flights have demonstrated utility of glovebox facilities: Contained environment enables broader range of science experiments; Affords better control of video and photographic imaging (a prime data source); Provides better environmental control than cabin atmosphere; and Useful for contingency operations. MSG developed in response to demands for increased work volume, increased capabilities and additional resources. MSG is multi-user facility to support a wide range of small science and technology investigations: Fluid physics; Combustion science; Material science; Biotechnology (cell culturing and protein crystal growth); Space processing; Fundamental physics; and Technology demonstrations. Topics included in this viewgraph are: MSG capabilities; MSG hardware items; MSG, GSE, and OSE items; MSG development approach; and Science utilization.
Translations on USSR Science and Technology Physical Sciences and Technology, Number 44
1978-08-10
COPYRIGHT: UkrNIINTI, 1978 8545 CSO: 1870 30 CYBERNETICS, COMPUTERS, AND AUTOMATION TECHNOLOGY SERIOUS PROBLEMS IN COORDINATING DEVELOPMENT OF...producer of the indispensable amino acid L-lysine. The first plant in the world for the production of a fodder concen- trate of lysine was built in...Sciences Faculty of the Univer- sity of Latvia. During the Great Patriotic War he was a radio operator and military correspondent for the front-line
One Hundred Ninth Critical Bibliography of the History of Science and Its Cultural Influences.
ERIC Educational Resources Information Center
Neu, John, Ed.
1984-01-01
This four-part bibliography includes: references to histories and to histographical, philosophical, and humanistic aspects of science; general books and articles relating to specific sciences (philosophy, mathematics, physical sciences, earth sciences, biological sciences, sciences of man, technology, medicine, pseudo-sciences); and citations…
One Hundred Eighth Critical Bibliography of the History of Science and Its Cultural Influences.
ERIC Educational Resources Information Center
Neu, John, Ed.
1983-01-01
This four-part bibliography includes: references to histories of sciences and to histographical, philosophical, sociological, and humanistic aspects of science; general books and articles relating to specific sciences (philosophy, mathematics, physical sciences, earth sciences, biological sciences, sciences of man, technology, medicine,…
The Peoples Republic of China High-Frequency Gravitational Wave Research Program
NASA Astrophysics Data System (ADS)
Baker, Robert M. L.
2009-03-01
For the past decade the Peoples Republic of China has been increasingly active in the pursuit of High-Frequency Gravitational Wave (HFGW) research. Much of their progress has been during 2008. An epochal achievement was the publication of the theoretical analysis of the Li-Baker HFGW detector in the European Physical Journal C (Li, et al., 2008), "Perturbative Photon Fluxes Generated by High-Frequency Gravitational Waves and Their Physical Effects"). Many Chinese scientists and graduate students have participated in these HFGW studies and their contributions are briefly discussed. Some of the key scientists and their institutions are as follows: first from Chongqing University: Zhenyun Fang, Director of the Institute of Theoretical Physics, Xing gang Wu, The Institute of Theoretical Physics, Nan Yang, The Institute of Gravitational Physics; Jun Luo, Huazhong University of Science and Technology (HUST), Wuhan, China, the Head of Gravitational Laboratory, Yang Zhang, University of Science and Technology of China, Associate Dean of the College of Sciences, Biao Li, Institute of Electronic Engineering of China Academy of Engineering Physics (CAEP), Chief of Microwave Antenna Division, Chuan-Ming Zhou, Technology Committee of Institute of Electronic Engineering of the CAEP, Jie Zhou, Institute of Electronic Engineering of the CAEP, Chief of the Signal Processing Division; Weijia Wen, Department of Physics, The Hong Kong University of Science and Technology. This Chinese HFGW team includes two parts: (1) Theoretical study and (2) Experimental investigation. These two parts have closed relations, and many cross projects, including cooperation between the American GravWave and Chinese HFGW teams. Referring to financial support, The Institute of Electronic Engineering (i.e., Microwave Laboratory) has already (June 2008) provided support more than three million Yuan for the HFGW detection project and this activity is discussed.
Physical Science Connected Classrooms: Case Studies
ERIC Educational Resources Information Center
Irving, Karen; Sanalan, Vehbi; Shirley, Melissa
2009-01-01
Case-study descriptions of secondary and middle school classrooms in diverse contexts provide examples of how teachers implement connected classroom technology to facilitate formative assessment in science instruction. Connected classroom technology refers to a networked system of handheld devices designed for classroom use. Teachers were…
NASA Tech Briefs, May 1991. Volume 15, No. 5
NASA Technical Reports Server (NTRS)
1991-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, January 1991. Volume 15, No. 1
NASA Technical Reports Server (NTRS)
1991-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences;Life Sciences.
NASA Tech Briefs, September 1991. Volume 15, No. 9
NASA Technical Reports Server (NTRS)
1991-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, June 1990. Volume 14, No. 6
NASA Technical Reports Server (NTRS)
1990-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, August 1991. Volume 15, No. 8
NASA Technical Reports Server (NTRS)
1991-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, February 1991. Volume 15, No. 2
NASA Technical Reports Server (NTRS)
1991-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, March 1991. Volume 15, No. 3
NASA Technical Reports Server (NTRS)
1991-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, December 1990. Volume 14, No. 12
NASA Technical Reports Server (NTRS)
1990-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, June 1991. Volume 15, No. 6
NASA Technical Reports Server (NTRS)
1991-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, August 1993. Volume 17, No. 8
NASA Technical Reports Server (NTRS)
1993-01-01
Topics include: Computer Graphics; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Reports.
NASA Tech Briefs, May 1990. Volume 14, No. 5
NASA Technical Reports Server (NTRS)
1990-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, Winter 1985. Volume 9, No. 4
NASA Technical Reports Server (NTRS)
1985-01-01
Topics covered include: NASA TU Services; New Product Ideas; Electronic Components and Circuits;Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, March 1993. Volume 17, No. 3
NASA Technical Reports Server (NTRS)
1993-01-01
Topics include: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences;
NASA Tech Briefs, April 1991. Volume 15, No. 4
NASA Technical Reports Server (NTRS)
1991-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, October 1990. Volume 14, No. 10
NASA Technical Reports Server (NTRS)
1990-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical' Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, January/February 1986. Volume 10, No. 1
NASA Technical Reports Server (NTRS)
1986-01-01
Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, October 1991. Volume 15, No. 10
NASA Technical Reports Server (NTRS)
1991-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
ERIC Educational Resources Information Center
Zhou, Qiaoying
2012-01-01
Academic achievement and student participation in physics are lower than desired. Research has shown that there is a shortage of college students entering science and technology fields such as physics. E-learning may provide the technology-oriented Net Generation learner an option for taking courses such as physics in a course modality with which…
ERIC Educational Resources Information Center
Adeleke, A. A.; Joshua, E. O.
2015-01-01
Physics literacy plays a crucial part in global technological development as several aspects of science and technology apply concepts and principles of physics in their operations. However, the acquisition of scientific literacy in physics in our society today is not encouraging enough to the desirable standard. Therefore, this study focuses on…
The earth in technological balance
NASA Astrophysics Data System (ADS)
Stout, Dorothy L.
1998-08-01
The K-12 National Science Education Standards have been developed and published by the National Research Council (1995)to "improve scientific literacy across the nation to prepare our students to be scientifically literate". The Standards stress that a quality science education requires an "active learning" approach to science inquiry within the areas of science teaching, professional development, assessment, science content, science education programs and science education systems. In this time of increasing technological advance, the equal treatment of earth and space science alongside biology, physics and chemistry bodes well for the future.
NASA Tech Briefs, September 1988. Volume 12, No. 8
NASA Technical Reports Server (NTRS)
1988-01-01
Topics include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, July/August 1988. Volume 12, No. 7
NASA Technical Reports Server (NTRS)
1988-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
LASER Tech Briefs, Fall 1994. Volume 2, No. 4
NASA Technical Reports Server (NTRS)
1994-01-01
Topics in this issue of LASER Tech briefs include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences
NASA Tech Briefs, October 1988. Volume 12, No. 9
NASA Technical Reports Server (NTRS)
1988-01-01
Topics include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, July 1991. Volume 15, No. 7
NASA Technical Reports Server (NTRS)
1991-01-01
Topics include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, March 1987. Volume 11, No. 3
NASA Technical Reports Server (NTRS)
1987-01-01
Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, May 1987. Volume 11, No. 5
NASA Technical Reports Server (NTRS)
1987-01-01
Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, October 1987. Volume 11, No. 9
NASA Technical Reports Server (NTRS)
1987-01-01
Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, June 1989. Volume 13, No. 6
NASA Technical Reports Server (NTRS)
1989-01-01
Topics include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, February 1987. Volume 11, No. 2
NASA Technical Reports Server (NTRS)
1987-01-01
Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, January 1987. Volume 11, No. 2
NASA Technical Reports Server (NTRS)
1987-01-01
Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, July 1990. Volume 14, No. 7
NASA Technical Reports Server (NTRS)
1990-01-01
Topics include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, August 1990. Volume 14, No. 8
NASA Technical Reports Server (NTRS)
1990-01-01
Topics covered: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, April 1987. Volume 11, No. 4
NASA Technical Reports Server (NTRS)
1987-01-01
Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, September 1987. Volume 11, No. 8
NASA Technical Reports Server (NTRS)
1987-01-01
Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, August 1994. Volume 18, No. 8
NASA Technical Reports Server (NTRS)
1994-01-01
Topics covered include: Computer Hardware; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Reports.
NASA Tech Briefs, June 1987. Volume 11, No. 6
NASA Technical Reports Server (NTRS)
1987-01-01
Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, August 1989. Volume 13, No. 8
NASA Technical Reports Server (NTRS)
1989-01-01
Topics covered: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Astrophysics Data System (ADS)
President Ronald Reagan has announced his intention to nominate Richard S. Nicholson as assistant director of the National Science Foundation (NSF) for mathematical and physical sciences. Nicholson has been acting deputy director and staff director of NSF since 1983.A research chemist by training, Nicholson was an associate professor of chemistry at Michigan State University before joining NSF in 1970. He served in a number of capacities at NSF, including executive director of the National Science Board commission on precollege education in mathematics, science, and technology, deputy assistant director for the mathematical and physical sciences, and senior planning officer for mathematical and physical sciences. The nomination is subject to Senate confirmation.
NASA Astrophysics Data System (ADS)
Stecklein, Jason Jeffrey
The utilization of interactive technologies will affect learning in science classrooms of the future. And although these technologies have improved in form and function, their effective employment in university science classrooms has lagged behind the rapid development of new constructivist pedagogies and means of instruction. This dissertation examines the enlistment of instructional technologies, in particular tablet PCs and DyKnow Interactive Software, in a technologically enhanced, university-level, introductory physics course. Results of this qualitative case study of three university students indicate that (1) the use of interactive technology positively affects both student learning within force and motion and self-reported beliefs about physics, (2) ad hoc use of instructional technologies may not sufficient for effective learning in introductory physics, (3) student learners dictate the leveraging of technology in any classroom, and (4) that purposeful teacher structuring of classroom activities with technologies are essential for student construction of knowledge. This includes designing activities to elicit attention and make knowledge visible for low-level content, while augmenting student interactions and modelling procedural steps for higher-level content.
7 CFR 94.3 - Analyses performed and locations of laboratories.
Code of Federal Regulations, 2010 CFR
2010-01-01
... by AMS Science and Technology (S&T) personnel for microbiological, chemical, and physical attributes... product samples may be analyzed for extraneous material, color, color additive, pesticide, heavy metal, microorganism, dextrin, or other substance. (e) The AMS Science and Technology's Eastern Laboratory shall...
ERIC Educational Resources Information Center
Eccles, Jacquelynne S.
2005-01-01
This chapter describes the history of the Eccles et al. Expectancy Value Model and research on the influence of social and psychological factors on gender and ethnic differences in math, science, and information technology choices. (Contains 1 figure.)
NASA Tech Briefs, November 1988. Volume 12, No. 10
NASA Technical Reports Server (NTRS)
1988-01-01
Topics covered include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, September/October 1986. Volume 10, No. 5
NASA Technical Reports Server (NTRS)
1986-01-01
Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, November/December 1986. Volume 10, No. 6
NASA Technical Reports Server (NTRS)
1986-01-01
Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, October 1993. Volume 17, No. 10
NASA Technical Reports Server (NTRS)
1993-01-01
Topics include: Sensors; esign and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication technology; Mathematics and Information Sciences; Life Sciences; Books and Reports.
NASA Tech Briefs, May/June 1986. Volume 10, No. 3
NASA Technical Reports Server (NTRS)
1986-01-01
Topics discussed include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, September 1990. Volume 14, No. 9
NASA Technical Reports Server (NTRS)
1990-01-01
Topics covered include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, November/December 1987. Volume 11, No. 10
NASA Technical Reports Server (NTRS)
1987-01-01
Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, February 1994. Volume 18, No. 2
NASA Technical Reports Server (NTRS)
1994-01-01
Topics covered include: Test and Measurement; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Reports
NASA Tech Briefs, March 1988. Volume 12, No. 3
NASA Technical Reports Server (NTRS)
1988-01-01
Topics include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; and Life Sciences.
NASA Tech Briefs, July/August 1987. Volume 11, No. 7
NASA Technical Reports Server (NTRS)
1987-01-01
Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.
NASA Astrophysics Data System (ADS)
Greenslade, Thomas B.
2018-05-01
Some of you may remember the 1979 television series "Connections" that was written and narrated by James Burke, a British science writer. Burke's technique was to choose a number of seemingly unrelated ideas and show how they led to developments in science and technology. This is an enjoyable business, even if some of the connections seem to be stretched at times, and led to a book by Burke. In a number of talks that I have given over the years, I have made somewhat less fanciful connections that suggest how the technologies of high vacuum and high voltage led to what used to be called "modern physics." Today we might limit the "modern" era to the years from 1890 to 1920 that gave the first workable theories of small-scale physics.
NASA Technical Reports Server (NTRS)
2010-01-01
Topics covered include: Technology Focus: Mechanical Components; Electronics/Computers; Software; Materials; Mechanics/Machinery; Manufacturing; Bio-Medical; Physical Sciences; Information Sciences; and Books and Reports.
Women in Physics in South Africa: The Story to 2008
NASA Astrophysics Data System (ADS)
Diale, M.; Buchner, S. J.; Buthelezi, Z.; Gledhill, I. M. A.; Grayson, D. J.; Kgabi, N. A.
2009-04-01
Overall about 40% of South African researchers in science, engineering, and technology are women, but the percentage of women in the physical sciences is significantly lower. In 2006, it appeared that about 16% of the 500 members of the South African Institute of Physics were women. Many of the issues of women in physics in South Africa parallel those of black physicists, including discrimination, both conscious and unconscious, in hiring and in awarding grants. The situation is slowly improving with the advent of policies aimed at redress and with far-reaching joint projects from the South African Department of Science and Technology and the South African Institute of Physics. Women in Physics in South Africa Project (WiPiSA), launched in 2005, aims to stimulate an increased interest in physics among girls and women, and assist in removing or overcoming obstacles to the study of physics and to work in physics-related careers. WiPiSA conducted a baseline survey of women who graduated with postgraduate degrees in physics between 1995 and 2005, and a surprisingly large database of 188 women has been formed. WiPiSA has also overseen a number of additional projects aimed at students, teachers, physics departments, and graduates.
ERIC Educational Resources Information Center
Dare, Emily A.; Ellis, Joshua A.; Roehrig, Gillian H.
2014-01-01
It is difficult to ignore the increased use of technological innovations in today's world, which has led to various calls for the integration of engineering into K-12 science standards. The need to understand how engineering is currently being brought to science classrooms is apparent and necessary in order to address these calls for integration.…
Nanotechnology: emerging tool for diagnostics and therapeutics.
Chakraborty, Mainak; Jain, Surangna; Rani, Vibha
2011-11-01
Nanotechnology is an emerging technology which is an amalgamation of different aspects of science and technology that includes disciplines such as electrical engineering, mechanical engineering, biology, physics, chemistry, and material science. It has potential in the fields of information and communication technology, biotechnology, and medicinal technology. It involves manipulating the dimensions of nanoparticles at an atomic scale to make use of its physical and chemical properties. All these properties are responsible for the wide application of nanoparticles in the field of human health care. Promising new technologies based on nanotechnology are being utilized to improve diverse aspects of medical treatments like diagnostics, imaging, and gene and drug delivery. This review summarizes the most promising nanomaterials and their application in human health.
NASA Tech Briefs Index, 1978. [bibliography
NASA Technical Reports Server (NTRS)
1978-01-01
Approximately 601 announcements of new technology derived from the research and development activities of the National Aeronautics and Space Administration are presented. Emphasis is placed on information considered likely to be transferrable across industrial, regional, or disciplinary lines. Subject matter covered includes: electronic components and circuits; electron systems; physical sciences; materials; life sciences; mechanics; machinery; fabrication technology; and mathematics and information sciences.
ERIC Educational Resources Information Center
Stoney, Sheila M.; Reid, Margaret I.
A 1-year project was conducted to explore ways and suggest possible strategies by which Further Education staff in Great Britain can help improve women's participation, progress, and attainment in physical science and technology, particularly at technician and craft levels. Data were collected by a questionnaire survey of heads of science and…
Translations on USSR Science and Technology. Physical Sciences and Technology, No. 6
1977-02-01
Key Words and Document Analysis . USSR Aeronautics Astronomy Astrophysics Atmospheric Sciences Chemistry Computers Cybernetics Earth...publications include the Bulletin of Technoeconomic Information, the handbook Leading Experience in Agricultural Production, the abstract review...efficiency data of the activities of the information service of the Krivorog Metallurgical Plant imeni V. I. Lenin, obtained from the VDNKh (Exhibition of
NASA Tech Briefs, March/April 1986. Volume 10, No. 2
NASA Technical Reports Server (NTRS)
1986-01-01
Topics covered include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
ERIC Educational Resources Information Center
Geesaman, Donald P.; Abrahamson, Dean E.
1973-01-01
Forensic science is an approach to study desirability of specific technologies in the context of value objectives and biological imperatives of society. Such groups should be formed with people from various physical and social sciences. (PS)
NASA Tech Briefs, January 1988. Volume 12, No. 1
NASA Technical Reports Server (NTRS)
1988-01-01
Topics covered include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; and Life Sciences.
Microgravity: A Teacher's Guide With Activities in Science, Mathematics, and Technology
NASA Technical Reports Server (NTRS)
Rogers, Melissa J. B.; Vogt, Gregory L.; Wargo, Michael J.
1997-01-01
The purpose of this curriculum supplement guide is to define and explain microgravity and show how microgravity can help us learn about the phenomena of our world. The front section of the guide is designed to provide teachers of science, mathematics, and technology at many levels with a foundation in microgravity science and applications. It begins with background information for the teacher on what microgravity is and how it is created. This is followed with information on the domains of microgravity science research; biotechnology, combustion science, fluid physics, fundamental physics, materials science, and microgravity research geared toward exploration. The background section concludes with a history of microgravity research and the expectations microgravity scientists have for research on the International Space Station. Finally, the guide concludes with a suggested reading list, NASA educational resources including electronic resources, and an evaluation questionnaire.
NASA Tech Briefs, December 1991. Volume 15, No. 12
NASA Technical Reports Server (NTRS)
1991-01-01
Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences,
Physics teaching in developing countries
NASA Astrophysics Data System (ADS)
Talisayon, V. M.
1984-05-01
The need for endogeneous learning materials that will relate physics to the student's culture and environment spurred countries like India, Thailand, The Philippines and Indonesia to develop their own physics curriculum materials and laboratory equipment. Meagre resources and widespread poverty necessitated the development of laboratory materials from everyday items, recycled materials and other low-cost or no-cost local materials. The process of developing learning materials for one's teaching-learning needs in physics and the search from within for solutions to one's problems contribute in no small measure to the development of self-reliance in physics teaching of a developing country. Major concerns of developing countries are food supply, livelihood, health, nutrition and growth of economy. At the level of the student and his family, food, health, and livelihood are also primary concerns. Many physics teaching problems can be overcome on a large scale, given political support and national will. In countries where national leadership recognises that science and technology developed is essential to national development and that science education in turn is crucial to science and technology development, scarce resources can be allocated to science education. In developing countries where science education receives little or no political support, the most important resource in the physics classroom is the physics teacher. A highly motivated and adequately trained teacher can rise above the constraining circumstances of paucity of material resources and government apathy. In developing countries the need is great for self-reliance in physics teaching at the country level, and more importantly at the teacher level.
Outstanding Science Trade Books for Children in 1989.
ERIC Educational Resources Information Center
Science and Children, 1990
1990-01-01
Listed are 100 trade books with brief descriptions and availability information. Categories include animals, biography, space science and astronomy, anthropology and paleontology, life sciences, earth science, conservation, medical and health sciences, physics, technology, and engineering. Criteria for inclusion in this annual list are presented.…
Report on enhancing young scholars in science and technology the Center for Excellence in Education
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The present stock and flow of highly talented young persons engaged in the global discovery and application of science and technology are critical to the future pace of innovation. Historically, the world`s largest reservoirs of scientists and engineers have been in the Western economies. Overtime, however, Asia has begun to build equivalent pools of scientists and engineers among their university graduates. According to 1993 data from the National Science Foundation and the UNESCO World Science Report, Germany leads all economies with a 67% ratio of science and engineering degrees to total first university degrees compared to the United States withmore » a distant fifth place at 32% behind Italy, Mexico and Poland. If the nation is to keep its scientific and technological prowess, it must capture its very best talent in the science and technology fields. The question is then raised as to the source within the United States of the science and technology talent pool. While between 1978 and 1991 there was an overall decline in male participation in undergraduate (-9%) and graduate degrees (-12%), the number of women receiving undergraduate (+8%) and graduate degrees (+34%) rose dramatically. These numbers are encouraging for women`s participation overall, however, women earn only a small percentage of physical science and engineering degrees. Why are there so few women in mathematics, engineering, and the physical sciences? The answers are complex and begin early in a woman`s exposure to science and mathematics. This report presents results on a study of careers of alumni from the Research Science Institute. Investigations were concerned with the timing of decision processes concerned with the sciences and math and factors that influenced people to turn away from or proceed with careers in science and math.« less
Translations on USSR Science and Technology, Physical Sciences and Technology, Number 17
1977-08-23
the amelioration of soils, particularly alkali soils, regula- tion of the activity of the lymphatic and venous vessels, the physiology of digestion...strength of useful and harmful invertebrates, animal toxoplasmosis and rabid- ity, the physiology and biochemistry of microorganisms, the genetics and
Participation of Females in Physics Programs at the University of Botswana
NASA Astrophysics Data System (ADS)
Maabong, Kelebogile
2005-10-01
The number of females enrolling in medical and health-related fields is substantially higher than in engineering and technology. Females tend to express a preference for careers with a strong element of social services. The level of interest and achievement in science and technology between females and males is quite different. Much of the research argues that stereotyping influences the attitudes and beliefs of young children, and these attitudes and beliefs are reinforced at home and school to create a marked effect on participation of females and their subject choices in science and technology education. These attitudes affect the level of self-confidence and enjoyment that females develop about science, especially physics. Girls tend to view physics in a negative way, claiming that it is difficult, time consuming, and masculine. They may believe that they can only understand a concept if they can put it into a broader world view, whereas males are pleased if there is internal coherence within the concept learned, and appear to enjoy physics more than biology and chemistry, viewing it as valuable in itself. The University of Botswana is facing this low participation and lower performance of females in physics programs compared with males.
Outstanding Science Trade Books for Students K-12.
ERIC Educational Resources Information Center
Science Scope, 2002
2002-01-01
Presents a list of outstanding science trade books published in 2001 for use in the K-12 grade levels. Includes the areas of archaeology, anthropology, and paleontology; biography; life sciences; integrated science; physical sciences; science related careers; and technology and engineering. Provides information on the books and the selection…
NASA Technical Reports Server (NTRS)
Aaron, Kim
1991-01-01
The Sample Acquisition, Analysis, and Preservation Project is summarized in outline and graphic form. The objective of the project is to develop component and system level technology to enable the unmanned collection, analysis and preservation of physical, chemical and mineralogical data from the surface of planetary bodies. Technology needs and challenges are identified and specific objectives are described.
Libros de Ciencias en Espanol: A Selection of Recent Science Trade Books in Spanish.
ERIC Educational Resources Information Center
Schon, Isabel
2001-01-01
Introduces a list of trade books written in Spanish that can be used for science education. Categorizes the list under five headings for the very young, biology, general science, physical science, and technology. (YDS)
NASA Tech Briefs, November 1991. Volume 15, No. 11
NASA Technical Reports Server (NTRS)
1991-01-01
Topics include: Electronic Components & and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, and Mathematics and Information Sciences,
Brookhaven National Laboratory
... Sciences Center for Functional Nanomaterials Chemistry Condensed Matter Physics & Materials Science National Synchrotron Light Source II Sustainable ... and Technology Nonproliferation and National Security Nuclear & Particle ... Magnet RIKEN BNL ...
Code of Federal Regulations, 2011 CFR
2011-07-01
... physical, life, or computer sciences, mathematics, technology, engineering, or a critical foreign language..., DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND MATHEMATICS...
Code of Federal Regulations, 2013 CFR
2013-07-01
... physical, life, or computer sciences, mathematics, technology, engineering, or a critical foreign language..., DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND MATHEMATICS...
Code of Federal Regulations, 2012 CFR
2012-07-01
... physical, life, or computer sciences, mathematics, technology, engineering, or a critical foreign language..., DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND MATHEMATICS...
Code of Federal Regulations, 2014 CFR
2014-07-01
... physical, life, or computer sciences, mathematics, technology, engineering, or a critical foreign language..., DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND MATHEMATICS...
Meteor Observations as Big Data Citizen Science
NASA Astrophysics Data System (ADS)
Gritsevich, M.; Vinkovic, D.; Schwarz, G.; Nina, A.; Koschny, D.; Lyytinen, E.
2016-12-01
Meteor science represents an excellent example of the citizen science project, where progress in the field has been largely determined by amateur observations. Over the last couple of decades technological advancements in observational techniques have yielded drastic improvements in the quality, quantity and diversity of meteor data, while even more ambitious instruments are about to become operational. This empowers meteor science to boost its experimental and theoretical horizons and seek more advanced scientific goals. We review some of the developments that push meteor science into the Big Data era that requires more complex methodological approaches through interdisciplinary collaborations with other branches of physics and computer science. We argue that meteor science should become an integral part of large surveys in astronomy, aeronomy and space physics, and tackle the complexity of micro-physics of meteor plasma and its interaction with the atmosphere. The recent increased interest in meteor science triggered by the Chelyabinsk fireball helps in building the case for technologically and logistically more ambitious meteor projects. This requires developing new methodological approaches in meteor research, with Big Data science and close collaboration between citizen science, geoscience and astronomy as critical elements. We discuss possibilities for improvements and promote an opportunity for collaboration in meteor science within the currently established BigSkyEarth http://bigskyearth.eu/ network.
NASA Tech Briefs, July/August 1986. Volume 10, No. 4
NASA Technical Reports Server (NTRS)
1986-01-01
Topic include: NASA TU Serv1ces; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Materials; Computer Programs; Mechanics; Physical Sciences; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences. 3
NASA Tech Briefs, October 1994. Volume 18, No. 10
NASA Technical Reports Server (NTRS)
1994-01-01
Topics: Data Acquisition and Analysis; Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Reports
NASA Astrophysics Data System (ADS)
Nishitani-Gamo, Mikka
2009-04-01
Since 2001, the Japan Society of Applied Physics (JSAP) Committee for Diversity Promotion in Science and Technology has worked to promote gender equality, both within and between academic societies, and in society as a whole. Main activities of the Committee are: (1) organizing symposia and informal meetings during domestic JSAP conferences to stimulate discussion and raise awareness; (2) encouraging young researchers in pursuit of their careers through the newly designed "career-explorer mark;" (3) offering childcare at biannual JSAP conferences; and (4) helping future scientists and engineers prepare to lead the fields of science and technology on a global level with the creation of an educational roadmap. In this presentation, recent activities of the JSAP Committee are introduced and reviewed.
Science and Technology Research Directions for the International Space Station
1999-07-09
investigations into solar studies, cosmic rays, the physical and chemical composition of the space environment, as well as the presence of dark matter in the...the mass distribution of the various cosmic rays? Where is the dark matter in the universe? (AMS: see Fundamental Physics section) Science and
Physics of the Cosmos (PCOS) Technology Development Program Overview
NASA Astrophysics Data System (ADS)
Pham, B. Thai; Clampin, M.; Werneth, R. L.
2014-01-01
The Physics of the Cosmos (PCOS) Program Office was established in FY11 and resides at the NASA Goddard Space Flight Center (GSFC). The office serves as the implementation arm for the Astrophysics Division at NASA Headquarters for PCOS Program related matters. We present an overview of the Program’s technology management activities and the Program’s technology development portfolio. We discuss the process for addressing community-provided technology needs and the Technology Management Board (TMB)-vetted prioritization and investment recommendations. This process improves the transparency and relevance of technology investments, provides the community a voice in the process, and leverages the technology investments of external organizations by defining a need and a customer. Goals for the PCOS Program envisioned by the National Research Council’s (NRC) “New Worlds, New Horizons in Astronomy and Astrophysics” (NWNH) Decadal Survey report include science missions and technology development for dark energy, gravitational waves, X-ray, and inflation probe science.
Outstanding Science Trade Books for Children in 1987.
ERIC Educational Resources Information Center
Science and Children, 1988
1988-01-01
Contains the annotated bibliographies of 78 trade books from 1987. Includes an explanation of the criteria for selection of books. Categories include animals, biography, space science and astronomy, earth science, environment and conservation, life sciences, medical and health sciences, physics, technology and engineering, and others. (CW)
Translations on USSR Science and Technology, Physical Sciences and Technology, Number 14.
1977-07-14
colored filament of the sandy beach , swamps, tiny lakes, and forests are clearly visible. The forest vegetation has its own range of colors. Large... handball , chess, skating, classical wrestling, underwater swimming, sport orientation, and bow and arrow shooting. One team of the institute is
An Evaluation of Multimodal Interactions with Technology while Learning Science Concepts
ERIC Educational Resources Information Center
Anastopoulou, Stamatina; Sharples, Mike; Baber, Chris
2011-01-01
This paper explores the value of employing multiple modalities to facilitate science learning with technology. In particular, it is argued that when multiple modalities are employed, learners construct strong relations between physical movement and visual representations of motion. Body interactions with visual representations, enabled by…
Translations on USSR Science and Technology, Physical Sciences and Technology, Number 39
1978-06-30
11111111111111 \\"-m Twice-Awarded Hero of the Soviet Union, USSR Pilot-Cosmonaut A. A. Leonov exercises on a trampoline . Training cannot be limited to a...Mongolia, Poland, Romania, USSR, and Czechoslovakia participated in the conference. The Soviet delegation was headed by Academician B. N. Petrov
NASA Central Operation of Resources for Educators (CORE): Educational Materials Catalog
NASA Technical Reports Server (NTRS)
1999-01-01
This catalog contains order information for video cassettes with topics such as: aeronautics, earth science, weather, space exploration/satellites, life sciences, energy, living in space, manned spaceflight, social sciences, space art, space sciences, technology education and utilization, and mathematics/physics.
Spacelab mission 1 experiment descriptions, third edition
NASA Technical Reports Server (NTRS)
Craven, P. D. (Editor)
1983-01-01
Experiments and facilities selected for flight on the first Spacelab mission are described. Chosen from responses to the Announcement of Opportunity for the Spacelab 1 mission, the experiments cover five broad areas of investigation: atmospheric physics and Earth observations; space plasma physics; astronomy and solar physics; material sciences and technology; and life sciences. The name of the principal investigator and country is listed for each experiment.
NASA Tech Briefs, June 1995. Volume 19, No. 6
NASA Technical Reports Server (NTRS)
1995-01-01
Topics include: communications technology, electronic components and circuits, electronic systems, physical sciences, materials, computer programs, mechanics, machinery, manufacturing/fabrication, mathematics and information sciences, life sciences, books and reports, a special section of laser Tech Briefs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Steven
The Fermi Award is a Presidential award and is one of the oldest and most prestigious science and technology honors bestowed by the U.S. Government. On May 7, 2012 it was conferred upon two exceptional scientists: Dr. Mildred Dresselhaus, 'for her scientific leadership, her major contributions to science and energy policy, her selfless work in science education and the advancement of diversity in the scientific workplace, and her highly original and impactful research,' and Dr. Burton Richter, 'for the breadth of his influence in the multiple disciplines of accelerator physics and particle physics, his profound scientific discoveries, his visionary leadershipmore » as SLAC Director, his leadership of science, and his notable contributions in energy and public policy.' Dr. John Holder, Director of the White House Office of Science and Technology Policy, opened the ceremony, and Dr. Bill Brinkman, Director of DOE's Office of Science introduced the main speaker, Dr. Steven Chu, U.S. Energy Secretary.« less
Success for ``Physics on Stage'' Festival in Geneva
NASA Astrophysics Data System (ADS)
Madsen, C.; West, R.
2000-12-01
Can you imagine how much physics is in a simple match of ping-pong, in throwing a boomerang, or in a musical concert? Physics is all around us and governs our lives. But who is going to maintain these technologies and develop new ones in the future? Recent surveys show a frightening decline of interest in physics and technology among E u r o p e 's citizens, especially school children. Fewer and fewer young people enrol in physics courses at Europe's universities while scepticism towards science and technology is spreading and causing great concern among governments and educators.
Outstanding Science Trade Books for Children--2001: Books Published in 2000.
ERIC Educational Resources Information Center
Science and Children, 2001
2001-01-01
Lists outstanding science trade books published in 2000. Explains the selection process and places the books into categories including: (1) Archaeology, Anthropology, and Paleontology; (2) Biography; (3) Earth and Space Science; (4) Environment and Ecology; (5) Life Science; (6) Physical Science; (7) Science-Related Careers; and (8) Technology and…
Federal Technology Catalog 1982: Summaries of practical technology
NASA Astrophysics Data System (ADS)
The catalog presents summaries of practical technology selected for commercial potential and/or promising applications to the fields of computer technology, electrotechnology, energy, engineering, life sciences, machinery and tools, manufacturing, materials, physical sciences, and testing and instrumentation. Each summary not only describes a technology, but gives a source for further information. This publication describes some 1,100 new processes, inventions, equipment, software, and techniques developed by and for dozens of Federal agencies during 1982. Included is coverage of NASA Tech Briefs, DOE Energygrams, and Army Manufacturing Notes.
Translations on USSR Science and Technology Physical Sciences and Technology No. 18
1977-09-19
and Avetik Gukasyan discuss component arrangement alternatives. COPYRIGHT: Notice not available 8545 CSO: 1870 CYBERNETICS, COMPUTERS AND...1974. COPYRIGHT: Notice not available 8545 CSO: 1870 CYBERNETICS, COMPUTERS AND AUTOMATION TECHNOLOGY ’PROYEKC’ COMPUTER-ASSISTED DESIGN SYSTEM...throughout the world are struggling. The "Proyekt" system, produced in the Institute of Cybernetics, assists in automating the design and manufacture of
Science and engineering research opportunities at the National Science Foundation.
Demir, Semahat S
2004-01-01
Research at the interface of the physical sciences and life sciences has produced remarkable advances and understanding in biology and medicine over the past fifty years. These bases for many of these healthcare and research advances have been discoveries in the quantitative sciences and engineering approaches to applying them. The National Science Foundation supports research and development in the physical sciences which underpins multi-disciplinary approaches to addressing problems in biology and medicine. This presentation will cover research opportunities offered by the NSF and collaborative programs with the NIH to transfer the resulting advances and technologies.
NASA Tech Briefs, April 1992. Volume 16, No. 4
NASA Technical Reports Server (NTRS)
1992-01-01
Topics covered include: New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
Outstanding Science Trade Books for Children in 1988.
ERIC Educational Resources Information Center
Science and Children, 1989
1989-01-01
Lists annotations of books based on accuracy of contents, readability, format, and illustrations. Includes number of pages in each entry, price, and availability. Topics cover animals, biographies, space science, astronomy, archaeology, anthropology, earth and life sciences, medical and health sciences, physics, technology, and engineering. (RT)
ERIC Educational Resources Information Center
Savitz, Maxine L.
1973-01-01
A science program was developed which is based on a mobile laboratory containing scientific experiments in biology, chemistry, physics, applied science, and mathematics. Discussion and experiments differ from the normal classroom setting as they utilize small groups and center around the relationship of modern science and technology of the urban…
NASA Astrophysics Data System (ADS)
2013-03-01
Event: UK to host Science on Stage Travel: Gaining a more global perspective on physics Event: LIYSF asks students to 'cross scientific boundaries' Competition: Young Physicists' tournament is international affair Conference: Learning in a changing world of new technologies Event: Nordic physical societies meet in Lund Conference: Tenth ESERA conference to publish ebook Meeting: Rugby meeting brings teachers together Note: Remembering John L Lewis OBE
Rethinking Technology-Enhanced Physics Teacher Education: From Theory to Practice
ERIC Educational Resources Information Center
Milner-Bolotin, Marina
2016-01-01
This article discusses how modern technology, such as electronic response systems, PeerWise system, data collection and analysis tools, computer simulations, and modeling software can be used in physics methods courses to promote teacher-candidates' professional competencies and their positive attitudes about mathematics and science education. We…
NASA Astrophysics Data System (ADS)
Hueso, R.; Sanchez-Lavega, A.; Pérez-Hoyos, S.
2011-12-01
Planetary science is a highly multidisciplinary field traditionally associated to Astronomy, Physics or Earth Sciences Departments. Spanish universities do not generally offer planetary sciences courses but some departments give courses associated to studies on Astronomy or Geology. We show a different perspective obtained at the Engeneering School at the Universidad del País Vasco in Bilbao, Spain, which offers a Master in Space Science and Technology to graduates in Engineering or Physics. Here we detail the experience acquired in two years of this master which offers several planetary science courses: Solar System Physics, Astronomy, Planetary Atmospheres & Space Weather together with more technical courses. The university also owns an urban observatory in the Engineering School which is used for practical exercises and student projects. The planetary science courses have also resulted in motivating part of the students to do their master thesis in scientific subjects in planetary sciences. Since the students have very different backgrounds their master theses have been quite different: From writing open software tools to detect bolides in video observations of Jupiter atmosphere to the photometric calibration and scientific use or their own Jupiter and Saturn images or the study of atmospheric motions of the Venus' South Polar Vortex using data from the Venus Express spacecraft. As a result of this interaction with the students some of them have been engaged to initiate Ph.D.s in planetary sciences enlarging a relative small field in Spain. Acknowledgements: The Master in Space Science and Technology is offered by the Aula Espazio Gela at the Universidad del País Vasco Engineer School in Bilbao, Spain and is funded by Diputación Foral de Bizkaia.
Empowering Girls with Chemistry, Exercise and Physical Activity
ERIC Educational Resources Information Center
Clapham, Emily D.; Ciccomascolo, Lori E.; Clapham, Andrew J.
2015-01-01
Research suggests that a girl's career interests in the areas of science, technology, engineering and mathematics (STEM) declines between grades 6 and 8. Similarly, in middle school, there is a decrease in physical activity among girls. Researchers at the University of Rhode Island (URI) conducted a chemistry-based science camp that took place…
The Force of Multimedia Slide Shows
ERIC Educational Resources Information Center
Santangelo, Darcy; Guy, Mark
2004-01-01
Many teachers look for a creative and engaging way to bring physical science topics of force and motion to life for their students. In this project, fourth-grade students weren't "forced" to investigate physical science topics--they were thrilled to! With the help of various technology tools--digital cameras, the Internet, computers, and…
Workshop on Research for Space Exploration: Physical Sciences and Process Technology
NASA Technical Reports Server (NTRS)
Singh, Bhim S.
1998-01-01
This report summarizes the results of a workshop sponsored by the Microgravity Research Division of NASA to define contributions the microgravity research community can provide to advance the human exploration of space. Invited speakers and attendees participated in an exchange of ideas to identify issues of interest in physical sciences and process technologies. This workshop was part of a continuing effort to broaden the contribution of the microgravity research community toward achieving the goals of the space agency in human exploration, as identified in the NASA Human Exploration and Development of Space (HEDS) strategic plan. The Microgravity program is one of NASA'a major links to academic and industrial basic research in the physical and engineering sciences. At present, it supports close to 400 principal investigators, who represent many of the nation's leading researchers in the physical and engineering sciences and biotechnology. The intent of the workshop provided a dialogue between NASA and this large, influential research community, mission planners and industry technical experts with the goal of defining enabling research for the Human Exploration and Development of Space activities to which the microgravity research community can contribute.
NASA Tech Briefs, May 1988. Volume 12, No. 5
NASA Technical Reports Server (NTRS)
1988-01-01
Topics : New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics ; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, November 1990. Volume 14, No. 11
NASA Technical Reports Server (NTRS)
1990-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, April 1990. Volume 14, No. 4
NASA Technical Reports Server (NTRS)
1990-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, February 1989. Volume 13, No. 2
NASA Technical Reports Server (NTRS)
1989-01-01
This issue contains a special feature on shaping the future with Ceramics. Other topics include: Electronic Components & and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences,
A Course in Coal Science and Technology.
ERIC Educational Resources Information Center
Wheelock, T. D.
1978-01-01
This course introduces graduate students and advanced undergraduates to coal science and technology. Topics include: (1) the nature and occurrence of coal, (2) its chemical and physical characteristics, (3) methods of cleaning and preparing coal, and (4) processes for converting coal into clean solid, liquid, and gaseous fuels, as well as coke.…
Electronics Teacher's Guide. Science and Technology Document Series No. 40.
ERIC Educational Resources Information Center
Lewis, John
This is the second document on the teaching of electronics to appear as part of UNESCO's science and technology education program. An introductory section describes the role that electronics plays as part of the physics curriculum. The following section outlines the content of the electronics course. The outline includes guidelines for determining…
ERIC Educational Resources Information Center
Lindberg, Andrew; Bay, Robert
This study guide is part of a program of studies entitled Science and Engineering Technician (SET) Curriculum. The SET Curriculum integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology with the objective of training technicians in the use of electronic instruments and their…
A Photovoltaics Module for Incoming Science, Technology, Engineering and Mathematics Undergraduates
ERIC Educational Resources Information Center
Dark, Marta L.
2011-01-01
Photovoltaic-cell-based projects have been used to train eight incoming undergraduate women who were part of a residential summer programme at a women's college. A module on renewable energy and photovoltaic cells was developed in the physics department. The module's objectives were to introduce women in science, technology, engineering and…
ERIC Educational Resources Information Center
Lindberg, Andrew; And Others
This study guide is part of a curriculum entitled Science and Engineering Technician (SET) Curriculum, a program of studies which integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology. The purpose of this national curriculum development project was to provide a framework for…
Retaining Students in Science, Technology, Engineering, and Mathematics (STEM) Majors
ERIC Educational Resources Information Center
Watkins, Jessica; Mazur, Eric
2013-01-01
In this paper we present results relating undergraduate student retention in science, technology, engineering, and mathematics (STEM) majors to the use of Peer Instruction (PI) in an introductory physics course at a highly selective research institution. We compare the percentages of students who switch out of a STEM major after taking a physics…
NASA Tech Briefs, Spring/Summer 1982. Volume 6, No. 4
NASA Technical Reports Server (NTRS)
1982-01-01
Topics covered include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; and Machinery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perl, Martin L.; /SLAC
In this talk I discuss a range of topics on developing creativity and innovation in engineering and science: the constraints on creativity and innovation such as the necessity of a fitting into the realities of the physical world; necessary personal qualities; getting a good idea in engineering and science; the art of obsession; the technology you use; and the technology of the future.
Physical sciences research plans for the International Space Station.
Trinh, E H
2003-01-01
The restructuring of the research capabilities of the International Space Station has forced a reassessment of the Physical Sciences research plans and a re-targeting of the major scientific thrusts. The combination of already selected peer-reviewed flight investigations with the initiation of new research and technology programs will allow the maximization of the ISS scientific and technological potential. Fundamental and applied research will use a combination of ISS-based facilities, ground-based activities, and other experimental platforms to address issues impacting fundamental knowledge, industrial and medical applications on Earth, and the technology required for human space exploration. The current flight investigation research plan shows a large number of principal investigators selected to use the remaining planned research facilities. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.
Physical sciences research plans for the International Space Station
NASA Technical Reports Server (NTRS)
Trinh, E. H.
2003-01-01
The restructuring of the research capabilities of the International Space Station has forced a reassessment of the Physical Sciences research plans and a re-targeting of the major scientific thrusts. The combination of already selected peer-reviewed flight investigations with the initiation of new research and technology programs will allow the maximization of the ISS scientific and technological potential. Fundamental and applied research will use a combination of ISS-based facilities, ground-based activities, and other experimental platforms to address issues impacting fundamental knowledge, industrial and medical applications on Earth, and the technology required for human space exploration. The current flight investigation research plan shows a large number of principal investigators selected to use the remaining planned research facilities. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.
Tribology. LC Science Tracer Bullet.
ERIC Educational Resources Information Center
Havas, George D., Comp.
Tribology is the science and technology of interacting surfaces in relative motion. It incorporates a number of scientific fields, including friction, wear, lubrication, materials science, and various branches of surface physics and surface chemistry. Tribology forms a vital part of engineering science. The interacting surfaces may be on machinery…
NASA Tech Briefs, June 1988. Volume 12, No. 6
NASA Technical Reports Server (NTRS)
1988-01-01
Topics covered: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, April 1988. Volume 12, No. 4
NASA Technical Reports Server (NTRS)
1988-01-01
Topics include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
Space station needs, attributes and architectural options study. Volume 2: Appendix C
NASA Technical Reports Server (NTRS)
1983-01-01
Planetary science, Earth observation, space physics, astronomy, solar astronomy, life/biological sciences, materials processing, commercial materials processing, commercial communications, and technology development are discussed.
NASA Tech Briefs, July 1989. Volume 13, No. 7
NASA Technical Reports Server (NTRS)
1989-01-01
Topics include New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials;;Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
Role of Suzanne Mubarak Science Exploration Center in Motivating Physics Learning (abstract)
NASA Astrophysics Data System (ADS)
Mohsen, Mona
2009-04-01
The role of Science Exploration centers to promote learning ``beyond school walls'' is demonstrated. The Suzane Mubarak Science Exploration Center (www.smsec.com) at Hadaek El Kobba, Cairo, was inaugurated in 1998 with the assistance of Zusane Mubarak, the first lady of Egypt and the minister of education. It was the first interactive science and technology center in Egypt. After 10 years, the number of centers has increased to 33 nationwide. Since its inauguration the center has received over 3 million visitors. Through different facilities, such as the internet, science cities, multimedia, and virtual reality programs, basic principles of science are simplified and their technological applications in our daily lives are explored. These facilities are fully equipped with new media such as video conferencing, videotapes, overhead projectors, data shows, and libraries, as well as demonstration tools for basic science. The main objectives of the science exploration centers are discussed such as: (1) curricula development for on-line learning; (2) integration of e-learning programs into basic science (physics, mathematics, chemistry, and biology) and (3) workshops and organizations for students, teachers, and communities dealing with basic science programs.
Ozak, Sule Tugba; Ozkan, Pelin
2013-01-01
Nanotechnology deals with the physical, chemical, and biological properties of structures and their components at nanoscale dimensions. Nanotechnology is based on the concept of creating functional structures by controlling atoms and molecules on a one-by-one basis. The use of this technology will allow many developments in the health sciences as well as in materials science, bio-technology, electronic and computer technology, aviation, and space exploration. With developments in materials science and biotechnology, nanotechnology is especially anticipated to provide advances in dentistry and innovations in oral health-related diagnostic and therapeutic methods. PMID:23408486
LASER Tech Briefs, September 1993. Volume 1, No. 1
NASA Technical Reports Server (NTRS)
Schnirring, Bill (Editor)
1993-01-01
This edition of LASER Tech briefs contains a feature on photonics. The other topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, Life Sciences and books and reports.
NASA Tech Briefs, September 1995. Volume 19, No. 9
NASA Technical Reports Server (NTRS)
1995-01-01
A special focus for this issue is Sensors. Topics covered include : Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; and Mathematics and Information Sciences. A section of Laser Tech Briefs is included.
The Life Cycle of Everyday Stuff.
ERIC Educational Resources Information Center
Reeske, Mike; Ireton, Shirley Watt
Life cycle assessment is an important tool for technology planning as solid waste disposal options dwindle and energy prices continue to increase. This guide investigates the life cycles of products. The activities in this book are suitable for secondary earth science, environmental science, physical science, or integrated science lessons. The…
Putting Science into Elementary Science Fairs.
ERIC Educational Resources Information Center
Russell, Helen Ross
In a world where science has become too confined to books and too reliant on technology, and science fairs have been taken over by parents, this paper offers suggestions to help young people have actual hands-on experience with nature. Topics include soil formation; ants; earthworms; temperature; weather predictions; rain acidity; physical science…
Continuity and Coherence in the Science Curriculum.
ERIC Educational Resources Information Center
James, E. O.
1988-01-01
Exposes concerns related to physics in the period of mandatory education levels. Discussed are primary science, the transition from primary to secondary, content and process, double award GSCE science, science and technology, and reform of GCE advanced level. Argues toward a reappraisal of the mechanism for curricular reform. (CW)
ERIC Educational Resources Information Center
Murray, Joelle L.; Atkinson, Elizabeth J. O.; Gilbert, Brian D.; Kruchten, Anne E.
2014-01-01
Successfully creating and implementing interdisciplinary curricula in introductory science, technology, engineering, and mathematics (STEM) courses is challenging, but doing so is increasingly more important as current problems in science become more interdisciplinary. Opening up the silos between science disciplines and overcoming common…
U.S. initiatives to strengthen forensic science & international standards in forensic DNA.
Butler, John M
2015-09-01
A number of initiatives are underway in the United States in response to the 2009 critique of forensic science by a National Academy of Sciences committee. This article provides a broad review of activities including efforts of the White House National Science and Technology Council Subcommittee on Forensic Science and a partnership between the Department of Justice (DOJ) and the National Institute of Standards and Technology (NIST) to create the National Commission on Forensic Science and the Organization of Scientific Area Committees. These initiatives are seeking to improve policies and practices of forensic science. Efforts to fund research activities and aid technology transition and training in forensic science are also covered. The second portion of the article reviews standards in place or in development around the world for forensic DNA. Documentary standards are used to help define written procedures to perform testing. Physical standards serve as reference materials for calibration and traceability purposes when testing is performed. Both documentary and physical standards enable reliable data comparison, and standard data formats and common markers or testing regions are crucial for effective data sharing. Core DNA markers provide a common framework and currency for constructing DNA databases with compatible data. Recent developments in expanding core DNA markers in Europe and the United States are discussed. Published by Elsevier Ireland Ltd.
U.S. initiatives to strengthen forensic science & international standards in forensic DNA
Butler, John M.
2015-01-01
A number of initiatives are underway in the United States in response to the 2009 critique of forensic science by a National Academy of Sciences committee. This article provides a broad review of activities including efforts of the White House National Science and Technology Council Subcommittee on Forensic Science and a partnership between the Department of Justice (DOJ) and the National Institute of Standards and Technology (NIST) to create the National Commission on Forensic Science and the Organization of Scientific Area Committees. These initiatives are seeking to improve policies and practices of forensic science. Efforts to fund research activities and aid technology transition and training in forensic science are also covered. The second portion of the article reviews standards in place or in development around the world for forensic DNA. Documentary standards are used to help define written procedures to perform testing. Physical standards serve as reference materials for calibration and traceability purposes when testing is performed. Both documentary and physical standards enable reliable data comparison, and standard data formats and common markers or testing regions are crucial for effective data sharing. Core DNA markers provide a common framework and currency for constructing DNA databases with compatible data. Recent developments in expanding core DNA markers in Europe and the United States are discussed. PMID:26164236
Terahertz science and technology of carbon nanomaterials.
Hartmann, R R; Kono, J; Portnoi, M E
2014-08-15
The diverse applications of terahertz (THz) radiation and its importance to fundamental science makes finding ways to generate, manipulate and detect THz radiation one of the key areas of modern applied physics. One approach is to utilize carbon nanomaterials, in particular, single-wall carbon nanotubes and graphene. Their novel optical and electronic properties offer much promise to the field of THz science and technology. This article describes the past, current, and future of THz science and technology of carbon nanotubes and graphene. We will review fundamental studies such as THz dynamic conductivity, THz nonlinearities and ultrafast carrier dynamics as well as THz applications such as THz sources, detectors, modulators, antennas and polarizers.
Quantum Sensing for High Energy Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Bibber, Karl; Boshier, Malcolm; Demarteau, Marcel
The Coordinating Panel for Advanced Detectors (CPAD) of the APS Division of Particles and Fields organized a first workshop on Quantum Sensing for High Energy Physics (HEP) in early December 2017 at Argonne National Laboratory. Participants from universities and national labs were drawn from the intersecting fields of Quantum Information Science (QIS), high energy physics, atomic, molecular and optical physics, condensed matter physics, nuclear physics and materials science. Quantum-enabled science and technology has seen rapid technical advances and growing national interest and investments over the last few years. The goal of the workshop was to bring the various communities togethermore » to investigate pathways to integrate the expertise of these two disciplines to accelerate the mutual advancement of scientific progress.« less
JPRS Report, Science & Technology, USSR: Science & Technology Policy
1990-06-25
observations of volunteers, who consumed pork, broiler meat, eggs, and milk, which were obtained with the use of protein-vitamin concentrate, did not...pork will decrease by 10 percent, broiler meat—by 13 percent, and eggs—by 7 percent. Our diet, which is limited as it is, will become even more...of the digestive organs. 5. Doctor of Technical Sciences Anatoliy Petrovich Burdukov, deputy director of the Institute of Thermal Physics of the
Quantum Opportunities and Challenges for Fundamental Sciences in Space
NASA Technical Reports Server (NTRS)
Yu, Nan
2012-01-01
Space platforms offer unique environment for and measurements of quantum world and fundamental physics. Quantum technology and measurements enhance measurement capabilities in space and result in greater science returns.
NASA Tech Briefs, August 2002. Volume 26, No. 8
NASA Technical Reports Server (NTRS)
2002-01-01
Topics include: a technology focus on computers, electronic components and systems, software, materials, mechanics, machinery/automation, manufacturing, physical sciences, information sciences, book and reports, and Motion control Tech Briefs.
Life as a Mather Intern at the Committee on Science, Space, and Technology
NASA Astrophysics Data System (ADS)
Stankus, Katherine
2014-03-01
The AIP Mather Public Policy Internship, sponsored by Nobel Laureate Dr. John Mather and facilitated by the American Institute of Physics Society of Physics Students Summer Internship Program, was designed to help undergraduate physics students explore the interface between science and policy. As a Mather Public Policy Intern in 2013, I worked for the U.S. House of Representatives Committee on Science, Space, and Technology where I conducted written research and analyses for staff members, prepared background materials and reports, and assisted at hearings and markups. In addition to my internship duties I also had the opportunity to meet several different representatives, go to various receptions and luncheons held on the Hill, and meet some influential people in society. During this talk I will discuss my experience and how it helped further my interest in doing analytical work and gave me exposure to public policy issues at the national level. AIP Society of Physics Students.
TPACK Levels of Physics and Science Teacher Candidates: Problems and Possible Solutions
ERIC Educational Resources Information Center
Bozkurt, Ersin
2014-01-01
This research examined whether the technological pedagogical content knowledge (TPACK) of physics and science teachers is at a sufficient level and whether the TPACK level affected the academic achievements of the students. In the research, a mixed method was used quantitatively and qualitatively. In the quantitative part of the research, Provus'…
Experimental Physical Sciences Vitae 2017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kippen, Karen Elizabeth; Del Mauro, Diana; Patterson, Eileen Frances
Frequently our most basic research experiments stimulate solutions for some of the most intractable national security problems, such as nuclear weapons stewardship, homeland security, intelligence and information analysis, and nuclear and alternative energy. This publication highlights our talented and creative staff who deliver solutions to these complex scientific and technological challenges by conducting cutting-edge multidisciplinary physical science research.
Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing
2011-01-01
Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century. PMID:21444779
Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing
2011-04-05
Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century.
1990-07-06
Tung in Silicon-Molecular Beam Epitaxy. vol. 11 eds. Erich Kasper and John C . Bean, CRC Press, Boca Raton, FL (1988), or J. Derrien and F. Arnaud...mum~ J goS-MS AD- A24 6 363 ..T.. C .... Magnetbic Mean eiteral C dstibtio I Edliited.b Gary A . ....... MagntOc aeria Series B: Physics Vol. 259 ’o98...NATO Scientific Affairs Division A Life Sciences Plenum Publishing Corporation B Physics New York and London C Mathematical and Physical Sciences Kluwer
NASA Tech Briefs, August 1995. Volume 19, No. 8
NASA Technical Reports Server (NTRS)
1995-01-01
There is a special focus on computer graphics and simulation in this issue. Topics covered include : Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer programs, Mechanics; Machinery; Fabrication Technology; and Mathematics and Information Sciences. There is a section on for Laser Technology, which includes a feature on Moving closer to the suns power.
User needs as a basis for advanced technology. [U.S. civil space program
NASA Technical Reports Server (NTRS)
Mankins, John C.; Reck, Gregory M.
1992-01-01
The NASA Integrated Technology Plan (ITP) is described with treatment given to the identification of U.S. technology needs, space research and technology programs, and some ITP implementations. The ITP is based on the development and transfer of technologies relevant to the space program that also have significant implications for general technological research. Among the areas of technological research identified are: astrophysics, earth sciences, microgravity, and space physics. The Office of Space Science and Applications prioritizes the technology needs in three classes; the highest priority is given to submm and microwave technologies for earth sciences and astrophysics study. Other government and commercial needs are outlined that include cryogenic technologies, low-cost engines, advanced data/signal processing, and low-cost ELVs. It is demonstrated that by identifying and addressing these areas of user technology needs NASA's research and technology program can enhance U.S. trade and industrial competitiveness.
NASA Astrophysics Data System (ADS)
Pletser, Vladimir; Clervoy, Jean-Fran; Gharib, Thierry; Gai, Frederic; Mora, Christophe; Rosier, Patrice
Aircraft parabolic flights provide repetitively up to 20 seconds of reduced gravity during ballis-tic flight manoeuvres. Parabolic flights are used to conduct short microgravity investigations in Physical and Life Sciences and in Technology, to test instrumentation prior to space flights and to train astronauts before a space mission. The European Space Agency (ESA) has organized since 1984 more than fifty parabolic flight campaigns for microgravity research experiments utilizing six different airplanes. More than 600 experiments were conducted spanning several fields in Physical Sciences and Life Sciences, namely Fluid Physics, Combustion Physics, Ma-terial Sciences, fundamental Physics and Technology tests, Human Physiology, cell and animal Biology, and technical tests of Life Sciences instrumentation. Since 1997, ESA uses the Airbus A300 'Zero G', the largest airplane in the world used for this type of experimental research flight and managed by the French company Novespace, a subsidiary of the French space agency CNES. From 2010 onwards, ESA and Novespace will offer the possibility of flying Martian and Moon parabolas during which reduced gravity levels equivalent to those on the Moon and Mars will be achieved repetitively for periods of more than 20 seconds. Scientists are invited to submit experiment proposals to be conducted at these partial gravity levels. This paper presents the technical capabilities of the Airbus A300 Zero-G aircraft used by ESA to support and conduct investigations at Moon-, Mars-and micro-gravity levels to prepare research and exploration during space flights and future planetary exploration missions. Some Physiology and Technology experiments performed during past ESA campaigns at 0, 1/6 an 1/3 g are presented to show the interest of this unique research tool for microgravity and partial gravity investigations.
7 CFR 91.5 - Where services are offered.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Science and Technology Programs National Science Laboratory. A variety of proximate for composition, chemical, physical, microbiological and biomolecular (DNA-based) tests and laboratory analyses performed on..., honey, meat and meat products, fiber products and processed foods are performed at the Science and...
7 CFR 91.5 - Where services are offered.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Science and Technology Programs National Science Laboratory. A variety of proximate for composition, chemical, physical, microbiological and biomolecular (DNA-based) tests and laboratory analyses performed on..., honey, meat and meat products, fiber products and processed foods are performed at the Science and...
7 CFR 91.5 - Where services are offered.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Science and Technology Programs National Science Laboratory. A variety of proximate for composition, chemical, physical, microbiological and biomolecular (DNA-based) tests and laboratory analyses performed on..., honey, meat and meat products, fiber products and processed foods are performed at the Science and...
7 CFR 91.5 - Where services are offered.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Science and Technology Programs National Science Laboratory. A variety of proximate for composition, chemical, physical, microbiological and biomolecular (DNA-based) tests and laboratory analyses performed on..., honey, meat and meat products, fiber products and processed foods are performed at the Science and...
ERIC Educational Resources Information Center
Schoon, Kenneth J., Ed.; Wiles, Clyde A., Ed.
This booklet contains mathematics unit plans for Biology, Chemistry, and Physical Science developed by PACE (Promoting Academic Excellence In Mathematics, Science & Technology for Workers of the 21st Century). Each unit plan contains suggested timing, objectives, skills to be acquired, workplace relationships, learning activities with suggested…
34 CFR 691.17 - Determination of eligible majors.
Code of Federal Regulations, 2010 CFR
2010-07-01
... majors in the physical, life, or computer sciences, mathematics, technology, engineering, critical... EDUCATION, DEPARTMENT OF EDUCATION ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND MATHEMATICS... years of study in mathematics and three years of study in the sciences, with a laboratory component in...
34 CFR 691.17 - Determination of eligible majors.
Code of Federal Regulations, 2011 CFR
2011-07-01
... majors in the physical, life, or computer sciences, mathematics, technology, engineering, critical... EDUCATION, DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND... years of study in mathematics and three years of study in the sciences, with a laboratory component in...
34 CFR 691.17 - Determination of eligible majors.
Code of Federal Regulations, 2014 CFR
2014-07-01
... majors in the physical, life, or computer sciences, mathematics, technology, engineering, critical... EDUCATION, DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND... years of study in mathematics and three years of study in the sciences, with a laboratory component in...
34 CFR 691.17 - Determination of eligible majors.
Code of Federal Regulations, 2012 CFR
2012-07-01
... majors in the physical, life, or computer sciences, mathematics, technology, engineering, critical... EDUCATION, DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND... years of study in mathematics and three years of study in the sciences, with a laboratory component in...
34 CFR 691.17 - Determination of eligible majors.
Code of Federal Regulations, 2013 CFR
2013-07-01
... majors in the physical, life, or computer sciences, mathematics, technology, engineering, critical... EDUCATION, DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND... years of study in mathematics and three years of study in the sciences, with a laboratory component in...
feature extraction, human-computer interaction, and physics-based modeling. Professional Experience 2009 ., computer science, University of Colorado at Boulder M.S., computer science, University of Colorado at Boulder B.S., computer science, New Mexico Institute of Mining and Technology
ERIC Educational Resources Information Center
Contino, Julie; Anderson, O. Roger
2013-01-01
In New York State (NYS), Earth science teachers use the "National Science Education Standards" (NSES), the NYS "Learning Standards for Mathematics, Science and Technology" (NYS Standards), and the "Physical Setting/Earth Science Core Curriculum" (Core Curriculum) to create local curricula and daily lessons. In this…
Science in Cinema. Teaching Science Fact through Science Fiction Films.
ERIC Educational Resources Information Center
Dubeck, Leroy W.; And Others
Many feel that secondary school graduates are not prepared to compete in a world of rapidly expanding technology. High school and college students in the United States often prefer fantasy to science. This book offers a strategy for overcoming student apathy toward the physical sciences by harnessing the power of the cinema. In it, ten popular…
A Possible Pathway for High School Science in a STEM World
ERIC Educational Resources Information Center
Sneider, Cary
2011-01-01
Today's high school science teachers find themselves in a period of transition. For the past decade there have been calls for replacing a narrow focus on science education--the traditional courses in physics, chemistry, biology, and Earth and space science--with a broader curriculum on STEM (that is, the four allied fields of science, technology,…
The Utility of a Physics Education in Science Policy
NASA Astrophysics Data System (ADS)
Roberts, Drew
2016-03-01
In order for regulators to create successful policies on technical issues, ranging from environmental protection to distribution of national Grant money, the scientific community must play an integral role in the legislative process. Through a summer-long internship with the Science, Space, and Technology Committee of the U.S. House of Representatives, I have learned that skills developed while pursuing an undergraduate degree in physics are very valuable in the policy realm. My physics education provided me the necessary tools to bridge the goals of the scientific and political communities. The need for effective comprehension and communication of technical subjects provides an important opportunity for individuals with physics degrees to make substantial contributions to government policy. Science policy should be encouraged as one of the many career pathways for physics students. Society of Physics Students, John and Jane Mather Foundation for Science and the Arts.
Testimony to the House Science Space and Technology Committee.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Church, Michael Kenton; Tannenbaum, Benn
Chairman Smith, Ranking Member Johnson, and distinguished members of the Committee on Science, Space, and Technology, I thank you for the opportunity to testify today on the role of science, engineering, and research at Sandia National Laboratories, one of the nation’s premiere national labs and the nation’s largest Federally Funded Research and Development Center (FFRDC) laboratory. I am Dr. Susan Seestrom, Sandia’s Associate Laboratories Director for Advanced Science & Technology (AST) and Chief Research Officer (CRO). As CRO I am responsible for research strategy, Laboratory Directed Research & Development (LDRD), partnerships strategy, and technology transfer. As director and line managermore » for AST I manage capabilities and mission delivery across a variety of the physical and mathematical sciences and engineering disciplines, such as pulsed power, radiation effects, major environmental testing, high performance computing, and modeling and simulation.« less
NASA Tech Briefs, February 1988. Volume 12, No. 2
NASA Technical Reports Server (NTRS)
1988-01-01
Topics covered include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Systems; and Life Sciences.
NASA Tech Briefs, April 2000. Volume 24, No. 4
NASA Technical Reports Server (NTRS)
2000-01-01
Topics covered include: Imaging/Video/Display Technology; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Bio-Medical; Test and Measurement; Mathematics and Information Sciences; Books and Reports.
NASA Tech Briefs, May 2002. Volume 26, No. 5
NASA Technical Reports Server (NTRS)
2002-01-01
Topics include: a technology focus on engineering materials, electronic components and circuits, software, mechanics, machinery/automation, manufacturing, physical sciences, information sciences, book and reports, and a special section of Photonics Tech Briefs.
NASA Astrophysics Data System (ADS)
Bezruczko, N.; Stanley, T.; Battle, M.; Latty, C.
2016-11-01
Despite broad sweeping pronouncements by international research organizations that social sciences are being integrated into global research programs, little attention has been directed toward obstacles blocking productive collaborations. In particular, social sciences routinely implement nonlinear, ordinal measures, which fundamentally inhibit integration with overarching scientific paradigms. The widely promoted general linear model in contemporary social science methods is largely based on untransformed scores and ratings, which are neither objective nor linear. This issue has historically separated physical and social sciences, which this report now asserts is unnecessary. In this research, nonlinear, subjective caregiver ratings of confidence to care for children supported by complex, medical technologies were transformed to an objective scale defined by logits (N=70). Transparent linear units from this transformation provided foundational insights into measurement properties of a social- humanistic caregiving construct, which clarified physical and social caregiver implications. Parameterized items and ratings were also subjected to multivariate hierarchical analysis, then decomposed to demonstrate theoretical coherence (R2 >.50), which provided further support for convergence of mathematical parameterization, physical expectations, and a social-humanistic construct. These results present substantial support for improving integration of social sciences with contemporary scientific research programs by emphasizing construction of common variables with objective, linear units.
Proceedings of the Workshop on the Scientific Applications of Clocks in Space
NASA Technical Reports Server (NTRS)
Maleki, Lute (Editor)
1997-01-01
The Workshop on Scientific Applications of Clocks in space was held to bring together scientists and technologists interested in applications of ultrastable clocks for test of fundamental theories, and for other science investigations. Time and frequency are the most precisely determined of all physical parameters, and thus are the required tools for performing the most sensitive tests of physical theories. Space affords the opportunity to make measurement, parameters inaccessible on Earth, and enables some of the most original and sensitive tests of fundamental theories. In the past few years, new developments in clock technologies have pointed to the opportunity for flying ultrastable clocks in support of science investigations of space missions. This development coincides with the new NASA paradigm for space flights, which relies on frequent, low-cost missions in place of the traditional infrequent and high-cost missions. The heightened interest in clocks in space is further advanced by new theoretical developments in various fields. For example, recent developments in certain Grand Unified Theory formalisms have vastly increased interest in fundamental tests of gravitation physics with clocks. The workshop included sessions on all related science including relativity and gravitational physics, cosmology, orbital dynamics, radio science, geodynamics, and GPS science and others, as well as a session on advanced clock technology.
NASA Astrophysics Data System (ADS)
Hart, Quyen N.
2015-01-01
We present a successful model for organizing a small University-sponsored summer camp that integrates astronomy and physics content with other science disciplines and computer programming content. The aim of our science and technology camp is to engage middle school students in a wide array of critical thinking tasks and hands-on activities centered on science and technology. Additionally, our program seeks to increase and maintain STEM interest among children, particularly in under-represented populations (e.g., Hispanic, African-American, women, and lower socioeconomic individuals) with hopes of decreasing disparities in diversity across many STEM fields.During this four-day camp, organized and facilitated by faculty volunteers, activities rotated through many STEM modules, including optics, telescopes, circuit building, computer hardware, and programming. Specifically, we scaffold camp activities to build upon similar ideas and content if possible. Using knowledge and skills gained through the AAS Astronomy Ambassadors program, we were able to integrate several astronomy activities into the camp, leading students through engaging activities, and conduct educational research. We present best practices on piloting a similar program in a university environment, our efforts to connect the learning outcomes common across all the modules, specifically in astronomy and physics, outline future camp activities, and the survey results on the impact of camp activities on attitudes toward science, technology, and science careers.
PREFACE: IV Nanotechnology International Forum (RUSNANOTECH 2011)
NASA Astrophysics Data System (ADS)
Dvurechenskii, Anatoly; Alfimov, Mikhail; Suzdalev, Igor; Osiko, Vyacheslav; Khokhlov, Aleksey; Son, Eduard; Skryabin, Konstantin; Petrov, Rem; Deev, Sergey
2012-02-01
Logo The RUSNANOTECH 2011 International Forum on Nanotechnology was held from 26-28 October 2011, in Moscow, Russia. It was the fourth forum organized by RUSNANO (Russian Corporation of Nanotechnologies) since 2008. In March 2011 RUSNANO was established as an open joint-stock company through the reorganization of the state corporation Russian Corporation of Nanotechnologies. RUSNANO's mission is to develop the Russian nanotechnology industry through co-investment in nanotechnology projects with substantial economic potential or social benefit. Within the framework of the Forum Science and Technology Program, presentations on key trends of nanotechnology development were given by foreign and Russian scientists, R&D officers of leading international companies, universities and scientific centers. The science and technology program of the Forum was divided into four sections as follows (by following hyperlinks you may find each section's program including videos of all oral presentations): Nanoelectronics and Nanophotonics Nanomaterials Nanotechnology and Green Energy Nanotechnology in Healthcare and Pharma (United business and science & technology section on 'RUSNANOTECH 2011') The scientific program of the forum included more than 50 oral presentations by leading scientists from 15 countries. Among them were world-known specialists such as Professor S Bader (Argonne National Laboratory, USA), Professor O Farokzhad (Harvard Medical School, USA), Professor K Chien (Massachusetts General Hospital, USA), Professor L Liz-Marzan (University of Vigo), A Luque (Polytechnic University of Madrid) and many others. The poster session consisted of over 120 presentations, 90 of which were presented in the framework of the young scientists' nanotechnology papers competition. This volume of Journal of Physics: Conference Series includes a selection of 47 submissions. Section editors of the proceedings: Nanoelectronics and nanophotonics Corresponding Member of Russian Academy of Sciences, Professor Anatoly Dvurechenskii (Institute of Semiconductor Physics, RAS). Nanomaterials Member of Russian Academy of Sciences, Professor Mikhail Alfimov (Photochemistry Center, RAS), Professor Igor Suzdalev (Semenov Institute of Chemical Physics, RAS), Member of Russian Academy of Science, Professor Vyacheslav Osiko (Prokhorov General Physics Institute, RAS), Member of Russian Academy of Science, Professor Aleksey Khokhlov (Physical department of Moscow State University). Nanotechnology and green energy Corresponding Member of Russian Academy of Sciences, Professor Eduard Son (Joint Institute for High Temperatures, RAS). Nanotechnology in Healthcare and Pharma Member of Russian Academy of Sciences, Professor Konstantin Skryabin (Bioengineering Center, RAS), Member of Russian Academy of Sciences, Professor Rem Petrov (RAS), Corresponding Member of Russian Academy of Sciences, Professor Sergey Deev (Institute of Bioorganic Chemistry).
NASA Tech Briefs, March 1989. Volume 13, No. 3
NASA Technical Reports Server (NTRS)
1989-01-01
This issue's special features cover the NASA inventor of the year, and the other nominees for the year. Other Topics include: Electronic Components & and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences
NASA Tech Briefs, Spring 1976. Volume 1, No. 1
NASA Technical Reports Server (NTRS)
1976-01-01
Topics covered include : Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; and Mathematics and Information Sciences. Also included are NEW PRODUCT IDEAS: A summary of selected innovations of value to manufacturers for the development of new products.
Student opinion in England about science and technology
NASA Astrophysics Data System (ADS)
Jenkins, Edgar W.
2006-05-01
An earlier paper in this Journal (Jenkins & Nelson, 2005) drew upon the findings of the Relevance of Science Education Project (ROSE) to report the attitudes of students in England towards their secondary school science education. The present paper draws upon the same project to explore what the same students, almost all in their penultimate year of compulsory schooling, think about science and technology. It suggests that several basic research questions need to be addressed and answered if the present widespread decline in the industrialised world in the popularity of the physical sciences as subjects of advanced study is to be halted.
Website for the Space Science Division
NASA Technical Reports Server (NTRS)
Schilling, James; DeVincenzi, Donald (Technical Monitor)
2002-01-01
The Space Science Division at NASA Ames Research Center is dedicated to research in astrophysics, exobiology, advanced life support technologies, and planetary science. These research programs are structured around Astrobiology (the study of life in the universe and the chemical and physical forces and adaptions that influence life's origin, evolution, and destiny), and address some of the most fundamental questions pursued by science. These questions examine the origin of life and our place in the universe. Ames is recognized as a world leader in Astrobiology. In pursuing our mission in Astrobiology, Space Science Division scientists perform pioneering basic research and technology development.
Chu, Steven [Dept. of Energy (DOE), Washington DC (United States)
2018-06-12
The Fermi Award is a Presidential award and is one of the oldest and most prestigious science and technology honors bestowed by the U.S. Government. On May 7, 2012 it was conferred upon two exceptional scientists: Dr. Mildred Dresselhaus, 'for her scientific leadership, her major contributions to science and energy policy, her selfless work in science education and the advancement of diversity in the scientific workplace, and her highly original and impactful research,' and Dr. Burton Richter, 'for the breadth of his influence in the multiple disciplines of accelerator physics and particle physics, his profound scientific discoveries, his visionary leadership as SLAC Director, his leadership of science, and his notable contributions in energy and public policy.' Dr. John Holder, Director of the White House Office of Science and Technology Policy, opened the ceremony, and Dr. Bill Brinkman, Director of DOE's Office of Science introduced the main speaker, Dr. Steven Chu, U.S. Energy Secretary.
Summaries of FY 1982 research in the chemical sciences
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1982-09-01
The purpose of this booklet is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. These summaries are intended to provide a rapid means for becoming acquainted with the Chemical Sciences program to members of the scientific and technological public and interested persons in the Legislative and Executive Branches of the Government. Areas of research supported by the Division are to be seen in the section headings, the index and the summaries themselves. Energymore » technologies which may be advanced by use of the basic knowledge discovered in this program can be seen in the index and again (by reference) in the summaries. The table of contents lists the following: photochemical and radiation sciences; chemical physics; atomic physics; chemical energy; separation and analysis; chemical engineering sciences; offsite contracts; equipment funds; special facilities; topical index; institutional index for offsite contracts; investigator index.« less
The New Millennium and an Education That Captures the Basic Spirit of Science.
ERIC Educational Resources Information Center
Bybee, Rodger W.
This document discusses reflections of the old and new millennium on education that capture the basic spirit of science. The explanation includes basic scientific ideas in physical sciences, earth systems, solar system and space; living systems; basic scientific thinking; the basic distinction between science and technology; basic connections…
Publications of LASL research, 1974
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerr, A.K.
1975-05-01
This bibliography includes Los Alamos Scientific Laboratory reports, papers released as non-Los Alamos reports, journal articles, books, chapters of books, conference papers (whether published separately or as part of conference proceedings issued as books or reports), papers published in congressional hearings, theses, and U. S. patents. Publications by LASL authors which are not records of Laboratory-sponsored work are included when the Library becomes aware of them. The entries are arranged in sections by broad subject categories; within each section they are alphabetical by title. The following subject categories are included: aerospace studies; analytical technology; astrophysics; atomic and molecular physics, equationmore » of state, opacity; biology and medicine; chemical dynamics and kinetics; chemistry; cryogenics; crystallography; CTR and plasma studies; earth science and engineering; energy (non-nuclear); engineering and equipment; EPR, ESR, NMR studies; explosives and detonations; fission physics; health and safety; hydrodynamics and radiation transport; instruments; lasers; mathematics and computers; medium-energy physics; metallurgy and ceramics technology; neutronic and criticality studies; nuclear physics; nuclear safeguards; physics; reactor technology; solid state science; and miscellaneous (including Project Rover). Author, numerical and KWIC indexes are included. (RWR)« less
NASA Astrophysics Data System (ADS)
Chen, Jean Chi-Jen
Physics is fundamental for science, engineering, medicine, and for understanding many phenomena encountered in people's daily lives. The purpose of this study was to investigate the relationships between student success in college-level introductory physics courses and various educational and background characteristics. The primary variables of this study were gender, high school mathematics and science preparation, preference and perceptions of learning physics, and performance in introductory physics courses. Demographic characteristics considered were age, student grade level, parents' occupation and level of education, high school senior grade point average, and educational goals. A Survey of Learning Preference and Perceptions was developed to collect the information for this study. A total of 267 subjects enrolled in six introductory physics courses, four algebra-based and two calculus-based, participated in the study conducted during Spring Semester 2002. The findings from the algebra-based physics courses indicated that participant's educational goal, high school senior GPA, father's educational level, mother's educational level, and mother's occupation in the area of science, engineering, or computer technology were positively related to performance while participant age was negatively related. Biology preparation, mathematics preparation, and additional mathematics and science preparation in high school were also positively related to performance. The relationships between the primary variables and performance in calculus-based physics courses were limited to high school senior year GPA and high school physics preparation. Findings from all six courses indicated that participant's educational goal, high school senior GPA, father's educational level, and mother's occupation in the area of science, engineering, or computer technology, high school preparation in mathematics, biology, and the completion of additional mathematics and science courses were positively related to performance. No significant performance differences were found between male and female students. However, there were significant gender differences in physics learning perceptions. Female participants tended to try to understand physics materials and relate the physics problems to real world situations while their male counterparts tended to rely on rote learning and equation application. This study found that participants performed better by trying to understand the physics material and relate physics problems to real world situations. Participants who relied on rote learning did not perform well.
PREFACE: Rusnanotech 2010 International Forum on Nanotechnology
NASA Astrophysics Data System (ADS)
Kazaryan, Konstantin
2011-03-01
The Rusnanotech 2010 International Forum on Nanotechnology was held from November 1-3, 2010, in Moscow, Russia. It was the third forum organized by RUSNANO (Russian Corporation of Nanotechnologies) since 2008. In March 2011 RUSNANO was established as an open joint-stock company through the reorganization of the state corporation Russian Corporation of Nanotechnologies. RUSNANO's mission is to develop the Russian nanotechnology industry through co-investment in nanotechnology projects with substantial economic potential or social benefit. Within the framework of the Forum Science and Technology Program, presentations on key trends of nanotechnology development were given by foreign and Russian scientists, R&D officers of leading international companies, universities and scientific centers. The science and technology program of the Forum was divided into eight sections as follows (by following hyperlinks you may find each section's program including videos of all oral presentations): Catalysis and Chemical Industry Nanobiotechnology Nanodiagnostics Nanoelectronics Nanomaterials Nanophotonics Nanotechnolgy In The Energy Industry Nanotechnology in Medicine The scientific program of the forum included 115 oral presentations by leading scientists from 15 countries. Among them in the "Nanomaterials" section was the lecture by Dr Konstantin Novoselov, winner of the Nobel Prize in Physics 2010. The poster session consisted of over 500 presentations, 300 of which were presented in the framework of the young scientists' nanotechnology papers competition. This volume of the Journal of Physics: Conference Series includes a selection of 57 submissions. The scientific program committee: Prof Zhores Alferov, AcademicianVice-president of Russian Academy of Sciences, Nobel Prize winner, Russia, Chairman of the Program CommitteeProf Sergey Deev, Corresponding Member of Russian Academy of SciencesHead of the Laboratory of Molecular Immunology, M M Shemyakin and Yu A Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Russia, Deputy Chairman of the Program CommitteeProf Alexander Aseev, AcademicianVice-president of Russian Academy of Sciences Director, A V Rzhanov-Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, RussiaProf Sergey Bagaev, AcademicianDirector, Institute of Laser Physics, Siberian Branch of Russian Academy of Sciences, RussiaProf Alexander Gintsburg, Ademician, Russian Academy of Medical SciencesDirector Gamaleya Research Institute of Epidemiology and Microbiology, Russian Academy of Medical Sciences, RussiaProf Anatoly Grigoryev, Academician, Russian Academy of Sciences, Russian Academy of Medical SciencesVice-president, Russian Academy of Medical Sciences, RussiaProf Michael Kovalchuk, RAS Corresponding MemberDirector, Kurchatov Institute Russian Scientific Center, RussiaProf Valery Lunin, AcademicianDean, Department of Chemistry, Lomonosov Moscow State University, RussiaProf Valentin Parmon, Academician, DirectorBoreskov Institute of Catalysis, Siberian Branch of Russian Academy of Sciences, RussiaProf Rem Petrov, AcademicianAdvisor, Russian Academy of Sciences, RussiaProf Konstantin Skryabin, AcademicianDirector, Bioinzheneriya Center, Russian Academy of Sciences, RussiaProf Vsevolod Tkachuk, Academician, Russian Academy of Sciences, Russian Academy of Medical SciencesDean, Faculty of Fundamental Medicine, Lomonosov Moscow State University, RussiaProf Vladimir Fortov, AcademicianDirector, Joint Institute for High Temperatures, Russian Academy of Sciences, RussiaProf Alexey Khokhlov, AcademicianVice Principal, Head of Innovation, Information and International Scientific Affairs Department, Lomonosov Moscow State University, RussiaProf Valery Bukhtiyarov, RAS Corresponding MemberDirector, Physicochemical Research Methods Dept., Boreskov Institute of Catalysis, Siberian Branch of Russian Academy of Sciences, RussiaProf Anatoly Dvurechensky, RAS Corresponding MemberDeputy Director, Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, RussiaProf Vladimir Kvardakov, Corresponding Member of Russian Academy of SciencesExecutive Director, Kurchatov Center of Synchrotron Radiation and Nanotechnology, RussiaProf Edward Son, Corresponding member of Russian Academy of SciencesScientific Deputy Director, Joint Institute for High Temperatures, Russian Academy of Sciences, RussiaProf Andrey GudkovSenior Vice President, Basic Science Chairman, Department of Cell Stress Biology, Roswell Park Cancer Institute, USAProf Robert NemanichChair, Department of Physics, Arizona State University, USAProf Kandlikar SatishProfessor, Rochester Institute of Technology, USAProf Xiang ZhangUC Berkeley, Director of NSF Nano-scale Science and Engineering Center (NSEC), USAProf Andrei ZvyaginProfessor, Macquarie University, AustraliaProf Sergey KalyuzhnyDirector of the Scientific and Technological Expertise Department, RUSNANO, RussiaKonstantin Kazaryan, PhDExpert of the Scientific and Technological Expertise Department, RUSNANO, Russia, Program Committee SecretarySimeon ZhavoronkovHead of Nanotechnology Programs Development Office, Rusnanotech Forum Fund for the Nanotechnology Development, Russia Editors of the proceedings: Section "Nanoelectronics" - Corresponding Member of Russian Academy of Sciences, Professor Anatoly Dvurechenskii (Institute of Semiconductor Physics, RAS).Section "Nanophotonics" - Professor Vasily Klimov (Institute of Physics, RAS).Section "Nanodiagnostics" - Professor P Kashkarov (Russian Scientific Center, Kurchatov Institute).Section "Nanotechnology for power engineering" - Corresponding Member of Russian Academy of Sciences, Professor Eduard Son (Joint Institute for High Temperatures, RAS).Section "Catalysis and chemical industry" - Member of Russian Academy of Sciences, Professor Valentin Parmon (Institute of Catalysis SB RAS).Section "Nanomaterials" - E Obraztsova, PhD (Institute of Physics, RAS), Marat Gallamov PhD (Moscow State University).Section "Nanotechnology in medicine" - Denis Logunov, PhD (Gamaleya Research Institute of Epidemiology and Microbiology, RAMS).Section "Nanobiotechnology" - Member of Russian Academy of Sciences, Professor Konstantin Skryabin (Bioengineering Center, RAS), Member of Russian Academy of Sciences, Professor Rem Petrov (RAS), Corresponding Member of Russian Academy of Sciences, Professor Sergey Deev (Institute of Bioorganic Chemistry).
Science and Technology Review, July-August 1998: Celebrating Edward Teller at 90
DOE R&D Accomplishments Database
Smart, J.
1998-07-01
On the occasion of Edward Teller's 90th birthday, Science and Technology Review (S&TR) has the pleasure of honoring Lawrence Livermore's co-founder and most influential scientist. Teller is known for his inventive work in physics, his concepts leading to thermonuclear explosions, and his strong stands on such issues as science education, the nation's strategic defense, the needs for science in the future, and sharing scientific information. The articles in this issue also show him, as always, tirelessly moving forward with his new and changing interests.
Nicholson Medal for Human Outreach Talk: Attracting girls to physics: the itinerant science project
NASA Astrophysics Data System (ADS)
Barbosa, Marcia
2010-03-01
Women are underrepresented in physics in Brazil. The percentage of women taking undergraduate studies in physics is below 20% much below medicine where women are now days the majority of the undergraduate students. In order to attract girls to physics the we developed a science truck that visits suburbs as well as the underdeveloped areas of the city. During this visits the kids are exposed to the applications of physics to the world and in particular to technology. They have the chance to manipulate experiments and to learn how they are related to real life technology. After playing with the experiments they answer a simple questionnaire designed to understand how their view about physics have changed due to this experience. We observed that the girls exhibit a less active behavior when given the chance make experiments becoming more active when stimulated. When questioned about the change in their perception regarding physics after being exposed to the experiments the girls show a more significant change in perception than the boys.
Teachers' Beliefs and Their Intention to Use Interactive Simulations in Their Classrooms
ERIC Educational Resources Information Center
Kriek, Jeanne; Stols, Gerrit
2010-01-01
In this pilot study, we sought to examine the influence of the beliefs of Grade 10 to 12 physical science teachers on their intended and actual usage of interactive simulations (Physics Education Technology, or PhET) in their classrooms. A combination of the Theory of Planned Behaviour, the Technology Acceptance Model and the Innovation Diffusion…
THE ROLE OF THE PHYSICAL SCIENCES IN ELECTRICAL-ELECTRONIC TECHNOLOGY. PROGRESS REPORT.
ERIC Educational Resources Information Center
BARLOW, MELVIN L.; SCHILL, WILLIAM J.
TO DETERMINE THE RELATIVE IMPORTANCE OF CHEMISTRY AND PHYSICS FOR INSTRUCTION IN ELECTRICAL AND ELECTRONIC TECHNOLOGY, 51 TECHNICAL WORKERS, 51 JUNIOR COLLEGE INSTRUCTORS, AND 11 EXPERTS RATED 240 SCIENTIFIC PRINCIPLES AS TO THEIR VALUE IN A TECHNICIAN'S WORK. THE THREE GROUPS AGREED ON THE RANK ORDER OF 15 TOPICS--(1) CURRENT ELECTRICITY, (2)…
Committee on Atomic, Molecular and Optical Sciences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lancaster, James
The Committee on Atomic, Molecular, and Optical Sciences (CAMOS) is a standing activity of the National Research Council (NRC) that operates under the auspices of the Board on Physics and Astronomy. CAMOS is one of five standing committees of the BPA that are charged with assisting it in achieving its goals—monitoring the health of physics and astronomy, identifying important new developments at the scientific forefronts, fostering interactions with other fields, strengthening connections to technology, facilitating effective service to the nation, and enhancing education in physics. CAMOS provides these capabilities for the atomic, molecular and optical (AMO) sciences.
NASA Astrophysics Data System (ADS)
2015-09-01
The International Conference on Bio-Medical Instrumentation and related Engineering and Physical Sciences (BIOMEP 2015) took place in the Technological Educational Institute (TEI) of Athens, Greece on June 18-20, 2015 and was organized by the Department of Biomedical Engineering. The scope of the conference was to provide a forum on the latest developments in Biomedical Instrumentation and related principles of Physical and Engineering sciences. Scientists and engineers from academic, industrial and health disciplines were invited to participate in the Conference and to contribute both in the promotion and dissemination of the scientific knowledge.
Research and technology, 1993. Salute to Skylab and Spacelab: Two decades of discovery
NASA Technical Reports Server (NTRS)
1993-01-01
A summary description of Skylab and Spacelab is presented. The section on Advanced Studies includes projects in space science, space systems, commercial use of space, and transportation systems. Within the Research Programs area, programs are listed under earth systems science, space physics, astrophysics, and microgravity science and applications. Technology Programs include avionics, materials and manufacturing processes, mission operations, propellant and fluid management, structures and dynamics, and systems analysis and integration. Technology transfer opportunities and success are briefly described. A glossary of abbreviations and acronyms is appended as is a list of contract personnel within the program areas.
Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siemann, R.H.; /SLAC
Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.
IUPESM: the international umbrella organisation for biomedical engineering and medical physics.
Nagel, Jh
2007-07-01
An account of the development, aims and activities of the International Union for Physical and Engineering Sciences in Medicine (IUPESM) is presented. Associations with the International Council of Science (ICSU) and the World Health Organization (WHO) are leading to exciting new projects towards improving global health, healthcare, quality of life and support of health technologies in developing countries.
Using Video Analysis and Biomechanics to Engage Life Science Majors in Introductory Physics
NASA Astrophysics Data System (ADS)
Stephens, Jeff
There is an interest in Introductory Physics for the Life Sciences (IPLS) as a way to better engage students in what may be their only physical science course. In this talk I will present some low cost and readily available technologies for video analysis and how they have been implemented in classes and in student research projects. The technologies include software like Tracker and LoggerPro for video analysis and low cost high speed cameras for capturing real world events. The focus of the talk will be on content created by students including two biomechanics research projects performed over the summer by pre-physical therapy majors. One project involved assessing medial knee displacement (MKD), a situation where the subject's knee becomes misaligned during a squatting motion and is a contributing factor in ACL and other knee injuries. The other project looks at the difference in landing forces experienced by gymnasts and cheer-leaders while performing on foam mats versus spring floors. The goal of this talk is to demonstrate how easy it can be to engage life science majors through the use of video analysis and topics like biomechanics and encourage others to try it for themselves.
12th Annual Science and Engineering Technology Conference/DoD TECH Exposition
2011-06-23
compound when planning horizons grow: long design - test - build-field-adapt lead-times exacerbate uncertain futures problems, overload designs , and...ERS Environment ERS: Tools and Technologies to Facilitate Adaptability & Trustability 4. Tying design , physical and computational testing 6...science, engineering concepts, processes, and design tools to: • Continuously coordinate design , testing , and production with warfighter review to
ERIC Educational Resources Information Center
Eddy, Sarah L.; Brownell, Sara E.
2016-01-01
This focused collection explores inequalities in the experiences of women in physics. Yet, it is important for researchers to also be aware of and draw insights from common patterns in the experiences of women across science, technology, engineering and mathematics (STEM) disciplines. Here, we review studies on gender disparities across college…
Case Study: Rocket Mail--Using Historic Articles as Case Studies in Physics and Engineering
ERIC Educational Resources Information Center
Brown, Todd; Brown, Katrina
2014-01-01
In the early 1900s science magazines were published with a goal of interesting and exciting the public about science and technology. Articles described technology that was possible and perhaps even tested, but never embraced because of practical limitations. Articles were written in an effort to instill creativity in the reader and to stimulate…
ERIC Educational Resources Information Center
Siyanbola, W. O.; Olaopa, O. R.; Hassan, O. M.
2013-01-01
The authors examine how a realistic science, technology and innovation policy can be formulated to enhance the development and management of a nation's physical and human assets and to accelerate socio-economic development through focused S&T engagement. The paper traces the evolution of S&T policies in Nigeria, particularly between 1986…
Space Science Research and Technology at NASA's Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Johnson, Charles L.
2007-01-01
This presentation will summarize the various projects and programs managed in the Space Science Programs and Projects Office at NASA's Marshall Space Flight Center in Huntsville, Alabama. Projects in the portfolio include NASA's Chandra X-Ray telescope, Hinode solar physics satellite, various advanced space propulsion technologies, including solar sails and tethers, as well as NASA's Discovery and New Frontiers Programs.
CERN, ESA and ESO Launch "Physics On Stage"
NASA Astrophysics Data System (ADS)
2000-03-01
Physics is everywhere . The laws of physics govern the Universe, the Sun, the Earth and even our own lives. In today's rapidly developing society, we are becoming increasingly dependent on high technology - computers, transport, and communication are just some of the key areas that are the result of discoveries by scientists working in physics. But how much do the citizens of Europe really know about physics? Here is a unique opportunity to learn more about this elusive subject! [Go to Physics On Stage Website] Beginning in February 2000, three major European research organisations are organising a unique Europe-wide programme to raise the public awareness of physics and related sciences. "Physics on Stage" is launched by the European Laboratory for Particle Physics (CERN) , the European Space Agency (ESA) and the European Southern Observatory (ESO) , with support from the European Union. Other partners are the European Physical Society (EPS) and the European Association for Astronomy Education (EAAE). This exciting programme is part of the European Week for Science and Technology and will culminate in a Science Festival during November 6-11, 2000, on the CERN premises at the French-Swiss border near Geneva. Why "Physics on Stage"? The primary goal of "Physics on Stage" is to counteract the current decline in interest and knowledge about physics among Europe's citizens by means of a series of highly visible promotional activities. It will bring together leading scientists and educators, government bodies and the media, to confront the diminishing attraction of physics to young people and to develop strategies to reverse this trend. The objective in the short term is to infuse excitement and to provide new educational materials. In the longer term, "Physics on Stage" will generate new developments by enabling experts throughout Europe to meet, exchange and innovate. "Physics on Stage" in 22 European Countries "Physics on Stage" has been initiated in 22 European countries [2]. In each of these, a dedicated National Steering Committee is being formed which will be responsible for its own national programme. A list of contact addresses is attached below. "Physics on Stage" is based on a series of high-profile physics-related activities that will inform the European public in general and European high school physics teachers and media representatives in particular about innovative ways to convey information about physics. It will stress the intimate connection of this natural science with our daily lives. It will be accompanied by a broad media debate on these subjects. This effort is undertaken in the context of a progressive decline of physics literacy amongst the European population at all levels. Fewer and fewer young people are attracted towards careers in core sciences and technologies - this could potentially lead to a crisis in European technology in the coming decades unless action is taken now. Too few people possess the basic knowledge that is necessary to understand even common physical phenomena. And not enough are able to form their own substantiated opinions about them. What will happen during "Physics on Stage"? During the first phase of "Physics on Stage" , from now until October 2000, the individual National Steering Committees (NSCs) will survey the situation in their respective countries. The NSCs will collaborate with national media to identify new and exciting educational approaches to physics. These may involve demonstrations, interactive experiments, video and CD-Rom presentations, Web applications, virtual reality, theatre performances, etc. Nationally run competitions will select some of the best and most convincing new ideas for presentations and educational materials which will receive development support from "Physics on Stage" . The project will culminate in November 2000, with approximately 400 delegates converging on CERN, in Geneva, for the Physics on Stage Festival . During this event, the national competion winners, science teachers, science communicators, publishers, top scientists and high-level representatives of the ministries and European organisations will brainstorm future solutions to bolster physics' popularity. The programme will also include spectacular demonstrations of new educational tools; the best will be disseminated over the national TV networks and other media to the European public. Why CERN, ESA and ESO? As Europe's principal organisations in physics research (particle physics, space and astronomy), the three recognised their mutual responsibility to address the issue through the creation of a new initiative and the creative use of their own research to attract the public and teachers alike. About the "European Science and Technology Week" [Go to EWST Website] The objective of the European Science and Technology Week is to improve the public's knowledge and understanding of science and technology - including the associated benefits for society as a whole. The Week focuses on the European dimension of research, such as pan-European scientific and technological co-operation. The rationale for holding the Week has its roots in the importance of the role of science and technology in modern societies and the need, therefore, to ensure that the public recognises its significance in our lives. The Week is a framework for special TV programmes, exhibitions, contests, conferences, electronic networking, and other science related activities to promote the public understanding of science and technology. The Week was launched in 1993, on the initiative of the European Commission. Raising public awareness of science and technology is now the subject of a clearly defined action within the Human Potential Programme of the Fifth Framework Programme. Notes [1] This is a joint Press Release by the European Organization for Nuclear Research (CERN) , the European Space Agency (ESA) and the European Southern Observatory (ESO). [1] The 22 countries are the member countries of at least one of the participating organisations or the European Union: Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Luxembourg, the Netherlands, Norway, Poland, Portugal, the Slovak Republic, Spain, Sweden, Switzerland, United Kingdom. Statements by the Directors General of CERN, ESA and ESO Luciano Maiani (CERN) : "Science is a critical resource for mankind and, among natural sciences, physics will continue to play a crucial role, well into the next century. The young people of Europe deserve the best possible physics teaching. An enormous resource of first class teachers, teaching materials and innovative thinking exists in our countries. The "Physics on Stage" project will bring these together to generate a new interest in physics education which will be to the long term benefit of children all over Europe. CERN is delighted to take part in this collaboration between the European Community and the continent's three leading physics research organizations." Antonio Rodotà (ESA) : "Space has become an integral part of every day life. The immense technological development that has led to this achievement has taken place and might be taken for granted. But now is the time to follow up and form the future on this basis, a future that has to made by the youth and has to give its benefits to the youth. The European Space Agency is dedicated to support the youth in its development to become a space generation. Many activities have been done and are taking place, and many more are planned for the future. Teachers and educational institutions and organisations form a key role in this development. ESA is enthusiastic about co-operating with ESO and CERN to create an opportunity to receiving ideas from the educational society and will perform a dedicated effort in finding ways to support the realisation of those ideas." Catherine Cesarsky (ESO) : "Astronomy and Astrophysics are at the very heart of modern physics. As vibrant research disciplines they use the most advanced technology available to humanity to explore Cosmos. It is also a science of extreme conditions - the largest distances, the longest periods of time, the highest temperatures, the strongest electrical and magnetic fields, the highest and lowest densities and the most extreme energies. Cosmos is indeed the greatest physics laboratory. For years, ESO - Europe's Astronomy Organisation - has been engaged in communicating the outcome of the exciting research programmes carried out at the ESO observatories to a wide audience and in particular to Europe's youth. I warmly welcome the broad international collaboration within "Physics on Stage". I am confident that working together with the European Union and our sister organisations ESA and CERN, as well as teachers' organisations and dedicated individuals in all member countries, this innovative education programme will make a most important contribution towards raising the interest in fundamental research in Europe." About CERN, ESA and ESO CERN , the European Organization for Nuclear Research , has its headquarters in Geneva. At present, its Member States are Austria, Belgium,Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom. Israel, Japan, the Russian Federation, the United States of America, Turkey, the European Commission and Unesco have observer status. The European Space Agency (ESA) is an international/intergovernmental organisation made of 15 member states: Austria, Belgium, Denmark, Finland, France, Germany, Ireland, Italy, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and the United Kingdom. ESA provides and promotes, for peaceful purposes only, cooperation among its member states in space research, technology and their applications. With ESA, Europe shapes and shares space for people, companies and the scientific community. The European Southern Observatory (ESO) is an intergovernmental organisation supported by Belgium, Denmark, France, Germany, Italy, the Netherlands, Sweden and Switzerland. Portugal has an agreement with ESO aiming at full membership. ESO is a major driving force in European astronomy, performing tasks that are beyond the capabilities of the individual member countries. The ESO La Silla observatory (Chile) is one of the largest and best-equipped in the world. ESO's Very Large Telescope Array (VLT) is under construction at Cerro Paranal (Chile). When completed in 2001, the VLT will be the largest optical telescope in the world. Useful Physics On Stage addresses "Physics on Stage" webaddress: http://www.estec.esa.nl/outreach/pos International Steering Committee (ISC) Clovis de Matos (Executive Coordinator) ESA/ESTEC European Space Research and Technology Centre Office for Educational Outreach Activities Keplerlaan 1 Postbus 299 NL-2200 AG Noordwijk The Netherlands email: cdematos@estec.esa.nl Telephone: +31-71-565- 5518 Fax: +31-71-565 5590
Women in physics in the UK: Update 2008-2011
NASA Astrophysics Data System (ADS)
Thompson, Carol; Marks, Ann; Wilkin, Nicola; Leslie, Dawn; D'Amico, Irene; Dyer, Jennifer
2013-03-01
Positive progress has continued in the past three years for women in physics in the UK. The Institute of Physics has aggressively advocated and organized initiatives for women in science through its Diversity Programme and its Women in Physics Group. Surveys are routinely carried out and acted upon, most recently on postdoctoral researchers and childcare issues. The Institute's Juno Award program encourages higher education institutes to address the underrepresentation of women in physics. The UK Resource Centre for Women in SET (science, engineering, and technology) provides resources and support for women working in physics and other science and engineering disciplines. The Equality Act of 2010 provides renewed focus on equality and a framework within which women physicists can continue to push for progress. The recent achievements of women physicists are noted.
Translations on USSR Science and Technology, Biomedical and Behavioral Sciences, Number 35.
1978-07-14
the course of vital functions. The level thereof at relative rest is about 90 kcal/h and it increases by 6-7 times when performing physical work...and moisture from it. Such a method of heat regulation is ineffective in long-term space flights, when a cosmonaut is subject to intensive physical ...P. Leshchinskaya, and I. S. Cherfus, I. M. Sechenov Yalta Scientific Research Institute of Physical Methods of Treatment and Medical Climatology
The Design of Collaborative Learning for Teaching Physics in Vocational Secondary School
NASA Astrophysics Data System (ADS)
Ismayati, Euis
2018-04-01
Vocational secondary school (Sekolah Menengah Kejuruan or SMK) is a vocational education that is based on the principle of human resource investment (human capital investment) referring to the quality of education and productivity to compete in the global job market. Therefore, vocational education relates directly to business world/industry which fulfills the needs of the skilled worker. According to the results of some researches, the work ethics of vocational graduates are still unsatisfying. Most of them are less able to perform their works, to adapt to the changes and development of technology and science, to be retrained, to develop themselves, to collaborate, and to argue. Meanwhile, the employers in the world of work and industries require their employees to have abilities to think creatively and working collaboratively. In addition, the students’ abilities to adapt to the technology in working environment are greatly influenced by the learning process in their schools, especially in science learning. The process of science learning which can help the students to think and act scientifically should be implemented by teachers using a learning approach which is appropriate to the students’ need and the material taught to the students. To master technology and industry needs science mastery. Physics, as a part of science, has an important role in the development of technology since the products of technology strongly support further development of science. In order to develop the abilities to think critically and working collaboratively, education should be given to the students through the learning process using learning model which refers to a collaborative group discussion system called Collaborative Learning. Moreover, Collaborative learning for teaching Physics in vocational secondary school should be designed in such a way that the goal of teaching and learning can be achieved. Collaborative Learning is advantageous to improve the students’ creative thinking and collaborative working.
Translations on USSR Science and Technology, Physical Sciences and Technology, Number 24
1977-11-30
8217 UPMVLYAYUSHCHIYE SISTEM I MA.SHIWY’ No 3, 1977 (UPMVLYAYUSHCHIYE SISTEMI I MA.SHIEY, May/jun 77)... 6k CYBERNETICS, COMPUTERS MD AUTOMATION TECHNOLOGY...insert pp 5-8) [Five articles from the insert] [Text] The organizing of the scientific and production complexes in the "Svetlana" association has...documentation and issuing copies to the corresponding subdivisions of the NPK [scientific and produc- tion complex ], work got underway on a broad
NASA Tech Briefs, November 2002. Volume 26, No. 11
NASA Technical Reports Server (NTRS)
2002-01-01
Topics include: a technology focus on engineering materials, electronic components and systems, software, mechanics, machinery/automation, manufacturing, bio-medical, physical sciences, information sciences book and reports, and a special section of Photonics Tech Briefs.
NASA Tech Briefs, October 2002. Volume 26, No. 10
NASA Technical Reports Server (NTRS)
2002-01-01
Topics include: a technology focus on sensors, electronic components and systems, software, materials, materials, mechanics, manufacturing, physical sciences, information sciences, book and reports, motion control and a special section of Photonics Tech Briefs.
NASA Tech Briefs, July 2002. Volume 26, No. 7
NASA Technical Reports Server (NTRS)
2002-01-01
Topics include: a technology focus sensors, software, electronic components and systems, materials, mechanics, machinery/automation, manufacturing, bio-medical, physical sciences, information sciences, book and reports, and a special section of Photonics Tech Briefs.
Libros, de Ciencias en Espanol (A Selection of Trade Books in Spanish).
ERIC Educational Resources Information Center
Schon, Isabel
2002-01-01
Lists a selection of trade books written in Spanish for young readers. Books are categorized under the headings For the Very Young, Biology, Ecology, General Science, Physical Science, and Technology. (YDS)
Higher Education: Teaching about the Colonization of Space.
ERIC Educational Resources Information Center
Huebner, Jay S.
1980-01-01
Describes an upper-division science course offered at the University of North Florida, Colonization of Space. The course presents several current issues in the areas of physical science and includes topics in science and technology likely to influence the future lives of present college students. (CS)
Future Directions in Medical Physics: Models, Technology, and Translation to Medicine
NASA Astrophysics Data System (ADS)
Siewerdsen, Jeffrey
The application of physics in medicine has been integral to major advances in diagnostic and therapeutic medicine. Two primary areas represent the mainstay of medical physics research in the last century: in radiation therapy, physicists have propelled advances in conformal radiation treatment and high-precision image guidance; and in diagnostic imaging, physicists have advanced an arsenal of multi-modality imaging that includes CT, MRI, ultrasound, and PET as indispensible tools for noninvasive screening, diagnosis, and assessment of treatment response. In addition to their role in building such technologically rich fields of medicine, physicists have also become integral to daily clinical practice in these areas. The future suggests new opportunities for multi-disciplinary research bridging physics, biology, engineering, and computer science, and collaboration in medical physics carries a strong capacity for identification of significant clinical needs, access to clinical data, and translation of technologies to clinical studies. In radiation therapy, for example, the extraction of knowledge from large datasets on treatment delivery, image-based phenotypes, genomic profile, and treatment outcome will require innovation in computational modeling and connection with medical physics for the curation of large datasets. Similarly in imaging physics, the demand for new imaging technology capable of measuring physical and biological processes over orders of magnitude in scale (from molecules to whole organ systems) and exploiting new contrast mechanisms for greater sensitivity to molecular agents and subtle functional / morphological change will benefit from multi-disciplinary collaboration in physics, biology, and engineering. Also in surgery and interventional radiology, where needs for increased precision and patient safety meet constraints in cost and workflow, development of new technologies for imaging, image registration, and robotic assistance can leverage collaboration in physics, biomedical engineering, and computer science. In each area, there is major opportunity for multi-disciplinary collaboration with medical physics to accelerate the translation of such technologies to clinical use. Research supported by the National Institutes of Health, Siemens Healthcare, and Carestream Health.
NASA Astrophysics Data System (ADS)
McNall, Rebecca Lee
This study explored how 10 beginning secondary science teachers who had completed the newly revised technology-integrated science teacher education program at the University of Virginia used educational technology in their science instruction during the induction year. Nine of the beginning teachers taught in Virginia or Maryland high schools, while one taught overseas in an international school. Participants taught biology, earth science, chemistry, physics, or general science. A revised version of the Technology Usage and Needs of Science Teachers survey (Pedersen & Yerrick, 2000) was administered to all 10 participants in early fall 2002 and late spring 2003 to assess their confidence using educational technology tools in teaching science. Follow-up interviews were conducted with all participants subsequent to survey administration to explore their views toward educational technology as an instructional tool, their use of educational technology in science instruction, and factors influencing their use. In addition, four participants were purposefully selected to characterize participants' instructional use of educational technology and to increase the likelihood of observing its use. Selection criteria of this subgroup included factors summarized from the research literature: (a) high confidence using educational technology, (b) strong intent to use educational technology instructionally, (c) access to technology tools, and (d) collegial or technology support. Survey responses were analyzed using descriptive statistics, and interview and classroom observation data were analyzed using analytic induction methods developed by Erickson (1986). Analysis of survey responses indicated that participants were confident using educational technology tools in science instruction and were most confident using word processing, spreadsheets, PowerPoint, and telecommunications applications. Classroom observations and interview responses indicated that participants used educational technology to provide visual representations of science concepts, support authentic science explorations and inquiry, and create real-world connections to science content. Limited access to educational technology resources, unfamiliarity with the curriculum, and limited time were factors limiting their use. While participants used educational technology less than they had originally intended, they continued to believe educational technology was a potentially powerful tool for teaching science and planned to continue to explore ways of incorporating it in their science instruction.
A photovoltaics module for incoming science, technology, engineering and mathematics undergraduates
NASA Astrophysics Data System (ADS)
Dark, Marta L.
2011-05-01
Photovoltaic-cell-based projects have been used to train eight incoming undergraduate women who were part of a residential summer programme at a women's college. A module on renewable energy and photovoltaic cells was developed in the physics department. The module's objectives were to introduce women in science, technology, engineering and mathematics (STEM) majors to physical phenomena, to develop quantitative literacy and communication skills, and to increase the students' interest in physics. The students investigated the performance of commercially available silicon semiconductors through experiments they designed, carried out and analysed. They fabricated and tested organic dye-based solar cells. This article describes the programme, the solar cell module, and presents some experimental results obtained by the students.
The Science in Science Fiction: Using Popular Entertainment as a Gateway
NASA Astrophysics Data System (ADS)
Basri, Gibor S.
2011-05-01
Science fiction on television and in movies reaches a wide audience of young people. Some of them are avid fans of particular stories, and more are enthralled by some of the special effects and other science fiction themes that have become ever more compelling as media technology improves. It actually doesn't matter whether the physics behind the science fiction is solid, the latest in speculative theory, or absolute nonsense - all provide a backdrop against which to present solid science. I'll talk about the opportunities provided by a few recent series and movies and how they can be woven into discussions of physics, astrophysics, or how science really works.
NASA Technical Reports Server (NTRS)
1993-01-01
This bibliography contains 1237 annotated references to reports and journal articles of Commonwealth of Independent States (CIS) intellectual origin entered into the NASA Scientific and Technical Information System during 1992. Representative subject areas include the following: aeronautics, astronautics, chemistry and materials, engineering, geosciences, life sciences, mathematical and computer sciences, physics, social sciences, and space sciences.
Laboratory Directed Research and Development Annual Report for 2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Pamela J.
2012-04-09
This report documents progress made on all LDRD-funded projects during fiscal year 2011. The following topics are discussed: (1) Advanced sensors and instrumentation; (2) Biological Sciences; (3) Chemistry; (4) Earth and space sciences; (5) Energy supply and use; (6) Engineering and manufacturing processes; (7) Materials science and technology; (8) Mathematics and computing sciences; (9) Nuclear science and engineering; and (10) Physics.
Aeronautics research and technology program and specific objectives
NASA Technical Reports Server (NTRS)
1981-01-01
Aeronautics research and technology program objectives in fluid and thermal physics, materials and structures, controls and guidance, human factors, multidisciplinary activities, computer science and applications, propulsion, rotorcraft, high speed aircraft, subsonic aircraft, and rotorcraft and high speed aircraft systems technology are addressed.
CERN launches high-school internship programme
NASA Astrophysics Data System (ADS)
Johnston, Hamish
2017-07-01
The CERN particle-physics lab has hosted 22 high-school students from Hungary in a pilot programme designed to show teenagers how science, technology, engineering and mathematics is used at the particle-physics lab.
PREFACE: 1st International Conference in Applied Physics and Materials Science
NASA Astrophysics Data System (ADS)
2015-06-01
We are delighted to come up with thirty two (32) contributed research papers in these proceedings, focusing on Materials Science and Applied Physics as an output of the 2013 International Conference in Applied Physics and Materials Science (ICAMS2013) held on October 22-24, 2013 at the Ateneo de Davao University, Davao City, Philippines. The conference was set to provide a high level of international forum and had brought together leading academic scientists, industry professionals, researchers and scholars from universities, industries and government agencies who have shared their experiences, research results and discussed the practical challenges encountered and the solutions adopted as well as the advances in the fields of Applied Physics and Materials Science. This conference has provided a wide opportunity to establish multidisciplinary collaborations with local and foreign experts. ICAMS2013, held concurrently with 15th Samahang Pisika ng Visayas at Mindanao (SPVM) National Physics Conference and 2013 International Meeting for Complex Systems, was organized by the Samahang Pisika ng Visayas at Mindanao (Physics Society of Visayas and Mindanao) based in MSU-Iligan Institute of Technology, Iligan City, Philippines. The international flavor of converging budding researchers and experts on Materials Science and Applied Physics was the first to be organized in the 19 years of SPVM operation in the Philippines. We highlighted ICAMS2013 gathering by the motivating presence of Dr. Stuart Parkin, a British Physicist, as one of our conference's plenary speakers. Equal measures of gratitude were also due to all other plenary speakers, Dr. Elizabeth Taylor of Institute of Physics (IOP) in London, Dr. Surya Raghu of Advanced Fluidics in Maryland, USA and Prof. Hitoshi Miyata of Niigata University, Japan, Prof. Djulia Onggo of Institut Teknologi Bandung, Indonesia, and Dr. Hironori Katagiri of Nagaoka National College of Technology, Japan. The warm hospitality of the host university, Ateneo de Davao University, Davao City, Philippines blended with the overwhelming enthusiasm of the conference speakers, participants, and the unwavering support of the conference sponsors and donors and the administration of the MSU-Iligan Institute of Technology, Iligan City, Philippines, all have brought realization to the production of these proceedings.
Opportunities for Computational Discovery in Basic Energy Sciences
NASA Astrophysics Data System (ADS)
Pederson, Mark
2011-03-01
An overview of the broad-ranging support of computational physics and computational science within the Department of Energy Office of Science will be provided. Computation as the third branch of physics is supported by all six offices (Advanced Scientific Computing, Basic Energy, Biological and Environmental, Fusion Energy, High-Energy Physics, and Nuclear Physics). Support focuses on hardware, software and applications. Most opportunities within the fields of~condensed-matter physics, chemical-physics and materials sciences are supported by the Officeof Basic Energy Science (BES) or through partnerships between BES and the Office for Advanced Scientific Computing. Activities include radiation sciences, catalysis, combustion, materials in extreme environments, energy-storage materials, light-harvesting and photovoltaics, solid-state lighting and superconductivity.~ A summary of two recent reports by the computational materials and chemical communities on the role of computation during the next decade will be provided. ~In addition to materials and chemistry challenges specific to energy sciences, issues identified~include a focus on the role of the domain scientist in integrating, expanding and sustaining applications-oriented capabilities on evolving high-performance computing platforms and on the role of computation in accelerating the development of innovative technologies. ~~
Science, Technology and the Nuclear Arms Race
NASA Astrophysics Data System (ADS)
Schroeer, Dietrich
1984-09-01
A comprehensive survey of the nuclear arms race from a technological point of view, which will appeal to the scientist and non-scientist alike. Provides information for the layman on this current topic and is designed for undergraduate courses in political science, history, international studies, as well as physics courses on the subject. Explores the motivation behind the development of various nuclear arms technologies and their deployment and examines the effects these technologies have on military, political and social strategies. Discusses the nature of deterrence and alternatives to it, arms control, and disarmament.
The material co-construction of hard science fiction and physics
NASA Astrophysics Data System (ADS)
Hasse, Cathrine
2015-12-01
This article explores the relationship between hard science fiction and physics and a gendered culture of science. Empirical studies indicate that science fiction references might spur some students' interest in physics and help develop this interest throughout school, into a university education and even further later inspire the practice of doing science. There are many kinds of fiction within the science fiction genre. In the presented empirical exploration physics students seem particularly fond of what is called `hard science fiction': a particular type of science fiction dealing with technological developments (Hartwell and Cramer in The hard SF renaissance, Orb/TOR, New York, 2002). Especially hard science fiction as a motivating fantasy may, however, also come with a gender bias. The locally materialized techno-fantasies spurring dreams of the terraforming of planets like Mars and travels in time and space may not be shared by all physics students. Especially female students express a need for other concerns in science. The entanglement of physics with hard science fiction may thus help develop some students' interest in learning school physics and help create an interest for studying physics at university level. But research indicates that especially female students are not captured by the hard techno-fantasies to the same extent as some of their male colleagues. Other visions (e.g. inspired by soft science fiction) are not materialized as a resource in the local educational culture. It calls for an argument of how teaching science is also teaching cultural values, ethics and concerns, which may be gendered. Teaching materials, like the use of hard science fiction in education, may not just be (yet another) gender bias in science education but also carrier of particular visions for scientific endeavours.
N° 15-2000: ESA, CERN and ESO launch "Physics on Stage"
NASA Astrophysics Data System (ADS)
2000-03-01
But how much do the citizens of Europe really know about physics? Here is a unique opportunity to learn more about this elusive subject! Beginning in February 2000, three major European research establishments [1] are organising a unique Europe-wide programme to raise the public awareness of physics and related sciences. "Physics on Stage" is launched by the European Space Agency (ESA), the European Laboratory for Particle Physics (CERN), and the European Southern Observatory (ESO), with support from the European Union (EU). Other partners include the European Physical Society (EPS) and the European Association for Astronomy Education (EAAE). This exciting programme is part of the European Week for Science and Technology and will culminate in a Science Festival during November 6-11, 2000, at CERN, Geneva. Why "Physics on Stage"? The primary goal of "Physics on Stage" is to counteract the current decline in interest and knowledge of physics among Europe's citizens by means of a series of highly visible promotional activities. It will bring together leading scientists and educators, government bodies and the media, to confront the diminishing attraction of physics to young people and to develop strategies to reverse this trend. The objective in the short term is to infuse excitement and to provide new educational materials. In the longer term, "Physics on Stage" will generate new developments by enabling experts throughout Europe to meet, exchange and innovate. "Physics on Stage" in 22 European Countries. "Physics on Stage" has been initiated in 22 European countries [2]. In each country, a dedicated National Steering Committee (NSC) is being formed which will be responsible for their own national programme. A list of contact addresses is attached below. "Physics on Stage" is based on a series of high-profile physics-related activities that will inform the European public in general, and European high school physics teachers and media representatives in particular, about innovative ways to convey information about physics. It will stress the intimate connection of this natural science with our daily lives. It will be accompanied by a broad media debate on these subjects. This effort is undertaken in the context of a progressive decline in physics literacy amongst the European population at all levels and ages. Fewer and fewer young people are attracted towards careers in core sciences and technologies - this could potentially lead to a crisis in European technology in the coming decades unless action is taken now. Too few people possess the basic knowledge that is necessary to understand even common physical phenomena. And not enough are able to form their own substantiated opinions about them. What will happen during "Physics on Stage"? During the first phase of "Physics on Stage", from now until October 2000, the individual national steering committees (NSC) will survey the situation in their respective countries. The NSCs will collaborate with national media to identify new and exciting educational approaches to physics. These may involve demonstrations, interactive experiments, video and CD-Rom presentations, web applications, virtual reality, theatre performances, etc. Nationally run competitions will select some of the best and most convincing new ideas for presentations and educational materials which will receive development support from "Physics on Stage". The project will culminate in November 2000, with approximately 400 delegates converging on CERN, in Geneva, for the "Physics on Stage" conference. The conference will enable the national competition winners, science teachers, science communicators, publishers, top scientists and high-level representatives of the ministries and European organisations to brainstorm solutions to bolster physics' popularity. The programme will also include spectacular demonstrations of educational tools; the best will be disseminated over the national TV networks and other media to the European public. Why ESA, CERN, and ESO? As Europe's principal organisations in physics research (particle physics, space and astronomy), the three recognised their mutual responsibility to address the issue with the launch of a new initiative and the creative use of their own research to attract the attention of the general public and teachers alike. About the "European Science and Technology Week" The objective of the "European Science and Technology Week" is to improve the public's knowledge and understanding of science and technology - including the associated benefits for society as a whole. The week focuses on the European dimension of research, such as pan-European scientific and technological co-operation. The rationale for holding the Week has its roots in the importance of the role of science and technology in modern societies and the need therefore, to ensure that the public recognises its significance in our lives. The Week is a framework for special TV programmes, exhibitions, contests, conferences, electronic networking, and other science related activities to promote the public understanding of science and technology. The Week was launched in 1993, on the initiative of the European Commission. Raising public awareness of science and technology is now the subject of a clearly defined action within the Human Potential Programme of the Fifth Framework Programme. Notes [1] The same press release is published also by CERN and ESO. [2] The 22 countries are the member countries of at least one of the participating organisations or the European Union: Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Luxembourg, the Netherlands, Norway, Poland, Portugal, the Slovak Republic, Spain, Sweden, Switzerland, United Kingdom. Statements by the Directors General of ESA, CERN, and ESO Antonio Rodotà (ESA): "Space has become an integral part of every day life. The immense technological development that has led to this achievement has taken place and might be taken for granted. But now is the time to follow up and form the future on this basis, a future that has to be made by the youth and has to give its benefits to the youth. The European Space Agency is dedicated to support the youth in its development to become a space generation. Many activities have been done and are taking place, and many more are planned for the future. Teachers and educational institutions and organisations form a key role in this development. ESA is enthusiastic about co-operating with ESO, CERN and the European Union to create an opportunity to receive ideas from the educational society and will perform a dedicated effort in finding ways to support the realisation of those ideas." Luciano Maiani (CERN): "Science is a critical resource for mankind and, among natural sciences, physics will continue to play a crucial role, well into the next century. The young people of Europe deserve the best possible physics teaching. An enormous resource of first class teachers, teaching materials and innovative thinking exists in our Countries. The "Physics on Stage" project will bring these together to generate a new interest in physics education which will be to the long term benefit of children all over Europe. CERN is delighted to take part in this collaboration between the European Community and the continent's three leading physics research organisations." Catherine Cesarsky (ESO): "Astronomy and Astrophysics are at the very heart of modern physics. As vibrant research disciplines they use the most advanced technology available to humanity to explore Cosmos. It is also a science of extreme conditions - the largest distances, the longest periods of time, the highest temperatures, the strongest electrical and magnetic fields, the highest and lowest densities and the most extreme energies. Cosmos is indeed the greatest physics laboratory. For years, ESO - Europe's Astronomy Organisation - has been engaged in communicating the outcome of the exciting research programmes carried out at the ESO observatories to a wide audience and in particular to Europe's youth. I warmly welcome the broad international collaboration within "Physics on Stage". I am confident that working together with the European Union and our sister organisations ESA and CERN, as well as teachers' organisations and dedicated individuals in all member countries, this innovative education programme will make a most important contribution towards raising the interest in fundamental research in Europe." About ESA, CERN, and ESO The European Space Agency (ESA) is an international/intergovernmental organisation made of 15 member states: Austria, Belgium, Denmark, Finland, France, Germany, Ireland, Italy, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and the United Kingdom. ESA provides and promotes, for peaceful purposes only, co-operation among its member states in space research, technology and their applications. With ESA, Europe shapes and shares space for people, companies and the scientific community. The European Southern Observatory (ESO) is an intergovernmental organisation supported by Belgium, Denmark, France, Germany, Italy, the Netherlands, Sweden and Switzerland. Portugal has an agreement with ESO aiming at full membership. ESO is a major driving force in European astronomy, performing tasks that are beyond the capabilities of the individual member countries. The ESO observatory La Silla in Chile is one of the largest and best-equipped observatories in the world. ESO's Very Large Telescope Array (VLT), an array of giant telescopes, is under construction at Cerro Paranal in the Chilean Atacama Desert. When completed in 2001, the VLT will be the largest and best optical telescope in the world. The CERN, European Organisation for Nuclear Research, has its headquarters in Geneva. At present, its Member States are Austria, Belgium, Bulgaria, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom. Israel, Japan, the Russian Federation, the United States of America, Turkey, the European Commission and Unesco have observer status.
Index to 1982 NASA Tech Briefs, volume 7, numbers 1-4
NASA Technical Reports Server (NTRS)
1986-01-01
Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1982 Tech Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences.
Index to 1984 NASA Tech Briefs, volume 9, numbers 1-4
NASA Technical Reports Server (NTRS)
1987-01-01
Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1984 Tech B Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences.
Index to 1981 NASA Tech Briefs, volume 6, numbers 1-4
NASA Technical Reports Server (NTRS)
1986-01-01
Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1981 Tech Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences.
Index to 1983 NASA Tech Briefs, volume 8, numbers 1-4
NASA Technical Reports Server (NTRS)
1986-01-01
Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1983 Tech Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences.
Index to 1985 NASA Tech Briefs, volume 10, numbers 1-4
NASA Technical Reports Server (NTRS)
1987-01-01
Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1985 Tech Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences.
Index to 1986 NASA Tech Briefs, volume 11, numbers 1-4
NASA Technical Reports Server (NTRS)
1987-01-01
Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1986 Tech Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences.
Activities for the Promotion of Gender Equality in Japan—Japan Society of Applied Physics
NASA Astrophysics Data System (ADS)
Kodate, Kashiko; Tanaka, Kazuo
2005-10-01
Since 1946, the Japan Society of Applied Physics (JSAP) has strived to promote research and development in applied physics for benefits beyond national boundaries. Activities of JSAP involve multidisciplinary fields, from physics and engineering to life sciences. Of its 23,000 members, 48% are from industry, 29% from academia, and about 7% from semi-autonomous national research laboratories. Its large industrial membership is one of the distinctive features of JSAP. In preparation for the First IUPAP International Conference on Women in Physics (Paris, 2002), JSAP members took the first step under the strong leadership of then-JSAP President Toshio Goto, setting up the Committee for the Promotion Equal Participation of Men and Women in Science and Technology. Equality rather than women's advancement is highlighted to further development in science and technology. Attention is also paid to balancing the number of researchers from different age groups and affiliations. The committee has 22 members: 12 female and 10 male; 7 from corporations, 12 from universities, and 3 from semi-autonomous national research institutes. Its main activities are to organize symposia and meetings, conduct surveys among JSAP members, and provide child-care facilities at meetings and conferences. In 2002 the Japan Physics Society and the Chemical Society of Japan jointly created the Japan Inter-Society Liaison Association for the Promotion of Equal Participation of Men and Women in Science and Engineering. Membership has grown to 44 societies (of which 19 are observers) ranging from mathematics, information, and life sciences to civil engineering. Joint activities across sectors and empower the whole. The Gender Equality Bureau in the Cabinet Office recently launched a large-scale project called "Challenge Campaign" to encourage girls to major in natural science and engineering, which JSAP is co-sponsoring.
Physics through the 1990s: Scientific interfaces and technological applications
NASA Technical Reports Server (NTRS)
1986-01-01
The volume examines the scientific interfaces and technological applications of physics. Twelve areas are dealt with: biological physics-biophysics, the brain, and theoretical biology; the physics-chemistry interface-instrumentation, surfaces, neutron and synchrotron radiation, polymers, organic electronic materials; materials science; geophysics-tectonics, the atmosphere and oceans, planets, drilling and seismic exploration, and remote sensing; computational physics-complex systems and applications in basic research; mathematics-field theory and chaos; microelectronics-integrated circuits, miniaturization, future trends; optical information technologies-fiber optics and photonics; instrumentation; physics applications to energy needs and the environment; national security-devices, weapons, and arms control; medical physics-radiology, ultrasonics, MNR, and photonics. An executive summary and many chapters contain recommendations regarding funding, education, industry participation, small-group university research and large facility programs, government agency programs, and computer database needs.
NASA Astrophysics Data System (ADS)
Chao, Jie; Chiu, Jennifer L.; DeJaegher, Crystal J.; Pan, Edward A.
2016-02-01
Deep learning of science involves integration of existing knowledge and normative science concepts. Past research demonstrates that combining physical and virtual labs sequentially or side by side can take advantage of the unique affordances each provides for helping students learn science concepts. However, providing simultaneously connected physical and virtual experiences has the potential to promote connections among ideas. This paper explores the effect of augmenting a virtual lab with physical controls on high school chemistry students' understanding of gas laws. We compared students using the augmented virtual lab to students using a similar sensor-based physical lab with teacher-led discussions. Results demonstrate that students in the augmented virtual lab condition made significant gains from pretest and posttest and outperformed traditional students on some but not all concepts. Results provide insight into incorporating mixed-reality technologies into authentic classroom settings.
ERIC Educational Resources Information Center
Salmun, Haydee; Buonaiuto, Frank
2016-01-01
The Catalyst Scholarship Program at Hunter College of The City University of New York (CUNY) was established with a four-year award from the National Science Foundation (NSF) to fund scholarships to 40 academically talented but financially disadvantaged students majoring in four disciplines of science, technology, engineering and mathematics…
NASA Tech Briefs, October 1995. Volume 19, No. 10
NASA Technical Reports Server (NTRS)
1995-01-01
A special focus in this issue is Data acquisition and analysis. Topics covered include : Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; and Mathematics and Information Sciences. Also included in this issue are Laser Tech Briefs and Industry Focus: Motion Control/ Positioning Equipment
Network science of biological systems at different scales: A review
NASA Astrophysics Data System (ADS)
Gosak, Marko; Markovič, Rene; Dolenšek, Jurij; Slak Rupnik, Marjan; Marhl, Marko; Stožer, Andraž; Perc, Matjaž
2018-03-01
Network science is today established as a backbone for description of structure and function of various physical, chemical, biological, technological, and social systems. Here we review recent advances in the study of complex biological systems that were inspired and enabled by methods of network science. First, we present
Earth's Mysterious Atmosphere: Atlas 1 Teacher's Guide with Activities.
ERIC Educational Resources Information Center
Essex Corp., Huntsville, AL.
This atmospheric studies teacher's guide for use with middle school students blends lessons in chemistry, physics, and the life, earth, and space sciences in an attempt to accomplish the following: to nurture students' natural curiosity and excitement about science, mathematics, and technology; to encourage career exploration in science,…
1995 AAAS annual meeting and science innovation exposition: Unity in diversity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strauss, M.S.; Heasley, C.
1995-12-31
Abstracts are presented from the 161st National Meeting of the American Association for the advancement of Science. Topics include environmental technologies, genetics, physical science research, information management, nuclear weapon issues, and education. Individual topics have been processed separately for the United States Department of Energy databases.
The STEEL/ICI Eureka! Physics Competition.
ERIC Educational Resources Information Center
Walton, C. J.
1989-01-01
Describes the organization of a school's physics competition for middle school students sponsored by Physics Section of STEEL (Science, Technology and Engineering Education in Lancaster) and an industry group. Presents one typical problem, marking, and prizes for the competition. A suggested marking scheme is appended. (YP)
George E. Pake Prize Lecture: Physical Sciences Research at IBM: Still at the Cutting Edge
NASA Astrophysics Data System (ADS)
Theis, Thomas
2015-03-01
The information technology revolution is in its ``build out'' phase. The foundational scientific insights and hardware inventions are now many decades old. The microelectronics industry is maturing. An increasing fraction of the total research investment is in software and services, as applications of information technology transform every business and every sector of the public and private economy. Yet IBM Research continues to make substantial investments in hardware technology and the underlying physical sciences. While some of this investment is aimed at extending the established transistor technology, an increasing fraction is aimed at longer-term and possibly disruptive research - new devices for computing, such as tunneling field-effect transistors and nanophotonic circuits, and new architectures, such as neurosynaptic systems and quantum computing. This research investment is a bet that the old foundations of information technology are ripe for reinvention. After all, today's information technology devices and systems operate far from any fundamental limits on speed and energy efficiency. But how can IBM make risky long-term research investments in an era of global competition, with financial markets focused on the short term? One important answer is partnerships. Since its early days, IBM Research has pursued innovation in information technology and innovation in the ways it conducts the business of research. By continuously evolving new models for research and development partnerships, it has extended its global reach, increased its impact on IBM's customers, and expanded the breadth and depth of its research project portfolio. Research in the physical sciences has often led the way. Currently on assignment to the Semiconductor Research Corporation.
NASA Astrophysics Data System (ADS)
Gales, S.
The development of high power lasers and the combination of such novel devices with accelerator technology has enlarged the science reach of many research fields, in particular Particle and Nuclear Physics, Astrophysics as well as societal applications in Material Science, Nuclear Energy and Medicine. The European Strategic Forum for Research Infrastructures (ESFRI) has selected a proposal based on these new premises called "ELI" for Extreme Light Infrastructure. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for Nuclear Physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10 PW lasers and a Compton back-scattering high-brilliance and intense low-energy gamma beam, a marriage of laser and accelerator technology at the frontier of knowledge. In the present paper, the technical description of the facility, the present status of the project as well as the science, applications and future perspectives will be discussed.
NASA Astrophysics Data System (ADS)
Gales, S.
2015-11-01
The development of high-power lasers and the combination of such novel devices with accelerator technology has enlarged the science reach of many research fields, in particular high-energy nuclear physics and astrophysics, as well as societal applications in material science, nuclear energy and medicine. The European Strategic Forum for Research Infrastructures (ESFRI) has selected a proposal based on these new premises called "ELI" for Extreme Light Infrastructure. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for nuclear physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10-PW lasers and a Compton back-scattering high-brilliance and intense low-energy gamma beam, a marriage of laser and accelerator technology at the frontier of knowledge. In the present paper, the technical description of the facility, the present status of the project as well as the science, applications and future perspectives will be discussed.
An Overview of Rare Earth Science and Technology
NASA Astrophysics Data System (ADS)
Gschneidner, Karl, Jr.
2012-02-01
Currently rare earth science and technology is robust: this includes all the major branches of science -- biochemistry, chemistry, materials and physics. There are, however, currently some anomalies and distortions especially in the technology and applications sector of the rare earth field, which is caused by the dominance of China on the sales of rare earths and rare earth containing products. For the past 5 to 10 years ˜95% of rare earths utilized in commerce came from China. Although Chinese actions have lead to sudden and large price spikes and export embargoes, the rare earths are still available but at a higher cost. The start up of production in 2011 at mines in the USA and Australia will alleviate this situation in about two years. Basic and applied research on the condensed matter physics/materials science has hardly been impacted by these events, but new research opportunities are opening up especially with regard to the USA's military and energy security. Magnets seems to be the hottest topic, but research on battery materials, phosphors and catalysts are also (or should be) strongly considered.
East Europe Report, Scientific Affairs, No. 776.
1983-05-11
Washington, D.C. 20402. Correspondence pertaining to matters other than procurement may be addressed to Joint Publications Research Service, 1000...the beginning of neutrons physics--the science of the properties of the neutron and its interactions-with the nucleus and matter . The science has...media, the magnetic properties of matter and phase transitions; in the physics of nuclear reactors and nuclear technology; in developing and applying
Laboratory directed research and development. FY 1995 progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigil, J.; Prono, J.
1996-03-01
This document presents an overview of Laboratory Directed Research and Development Programs at Los Alamos. The nine technical disciplines in which research is described include materials, engineering and base technologies, plasma, fluids, and particle beams, chemistry, mathematics and computational science, atmic and molecular physics, geoscience, space science, and astrophysics, nuclear and particle physics, and biosciences. Brief descriptions are provided in the above programs.
ERIC Educational Resources Information Center
Chow, Angela; Eccles, Jacquelynne S.; Salmela-Aro, Katariina
2012-01-01
Two independent studies were conducted to extend previous research by examining the associations between task value priority patterns across school subjects and aspirations toward the physical and information technology- (IT-) related sciences. Study 1 measured task values of a sample of 10th graders in the United States (N = 249) across (a)…
NASA Technical Reports Server (NTRS)
Beckley, L. E.
1977-01-01
Progress in various space flight research programs is reported. Emphasis is placed on X-ray astronomy and interplanetary plasma physics. Topics covered include: infrared astronomy, long base line interferometry, geological spectroscopy, space life science experiments, atmospheric physics, and space based materials and structures research. Analysis of galactic and extra-galactic X-ray data from the Small Astronomy Satellite (SAS-3) and HEAO-A and interplanetary plasma data for Mariner 10, Explorers 47 and 50, and Solrad is discussed.
PREFACE: 3rd Iberian Meeting on Aerosol Science and Technology (RICTA 2015)
NASA Astrophysics Data System (ADS)
Orza, J. A. G.; Costa, M. J.
2015-12-01
The Third Iberian Meeting on Aerosol Science and Technology (RICTA 2015) was held in the city of Elche (province of Alicante, Spain) from 29 June to 1 July 2015, at Centro de Congresos Ciutat d'Elx. This event was organized and hosted by the Statistical and Computational Physics Laboratory (SCOLAb) of Universidad Miguel Hernández under the auspices of AECyTA, the Spanish Association for Aerosol Science and Technology Research. As in previous editions, the participation of young researchers was especially welcome, with the organization of the VI Summer School on Aerosol Science and Technology and awards for the best poster and PhD thesis, in recognition of outstanding research or presentations focusing on aerosols, during the early stage of their scientific career. RICTA 2015 aims to present the latest research and advances on the field of aerosols, as well as fostering interaction among the Portuguese and Spanish communities. The meeting gathered over 70 participants from 7 different countries, covering a wide range of aerosol science and technology. It included invited lectures, keynote talks, and several specialized sessions on different issues related to atmospheric aerosols, radiation, instrumentation, fundamental aerosol science, bioaerosols and health effects. The editors would like to express their sincere gratitude to all the participants, in particular, those who contributed to this special issue by submitting their papers to convey the current science discussed at RICTA 2015. In this special issue a series of peer-reviewed papers that cover a wide range of topics are presented: aerosol formation, emission, as well as aerosol composition in terms of physical and optical properties, spatial/temporal distribution of aerosol parameters, aerosol modeling and atmospheric effects, as well as instrumentation devoted to aerosol measurements. Finally, we also thank the referees for their valuable revision of these papers.
ERIC Educational Resources Information Center
Gurbuz, Fatih
2016-01-01
The purpose of this research study is to explore pre-service science teachers' misconceptions on basic astronomy subjects and to examine the effect of micro teaching method supported by educational technologies on correcting misconceptions. This study is an action research. Semi- structured interviews were used in the study as a data collection…
Index to NASA Tech Briefs, 1974
NASA Technical Reports Server (NTRS)
1975-01-01
The following information was given for 1974: (1) abstracts of reports dealing with new technology derived from the research and development activities of NASA or the U.S. Atomic Energy Commission, arranged by subjects: electronics/electrical, electronics/electrical systems, physical sciences, materials/chemistry, life sciences, mechanics, machines, equipment and tools, fabrication technology, and computer programs, (2) indexes for the above documents: subject, personal author, originating center.
On ``The Congressional Fellowship as an Ethnographic Extravaganza''
NASA Astrophysics Data System (ADS)
Narasimhan, T. N.
2006-06-01
Josh Trapani's emerging experience as an AGU Congressional Fellow (Eos, 87(7), 76, 2006) is educational. Spectacular developments in the physical sciences tempt us to believe that finer and finer dissection of matter and sophisticated manipulation of molecules will soon enable us to control nature at will. Increasing knowledge, though, about the Earth and its interconnected biological systems makes us skeptical about the enthusiastic vision of physical sciences. Living things, unlike the nonliving things that are the concern of physical sciences, possess the attribute of `behavior,' associated with `mind' and `instinct.'. Trapani's ethnographic extravaganza is merely a subset of behavior, which lies beyond the scope of relativity, quantum mechanics, or thermodynamics. Rationally, one would expect that with its fine program of liberal education, congressional fellowships, and prestigious academies of sciences, the United States will enjoy a most harmonious interrelationship between science and national policies. Such rational thinking, a reflection of our training in the physical sciences, is valid in the case of inanimate things that are faithfully subject to physical laws. When on occasion we feel dismayed at a lack of harmony between what science tells us and how national policies take shape, we would do well to be reminded by Trapani's ethnographic extravaganza that `behavior' of even the most technologically advanced living things transcends the rationality of the physical sciences.
ERIC Educational Resources Information Center
Menon, Deepika; Chandrasekhar, Meera; Kosztin, Dorina; Steinhoff, Douglas
2017-01-01
While iPads and other mobile devices are gaining popularity in educational settings, challenges associated with teachers' use of technology continue to hold true. Preparing preservice teachers within teacher preparation programs to gain experience learning and teaching science using mobile technologies is critical for them to develop positive…
Towson University's Professional Science Master's Program in Applied Physics: The first 5 years
NASA Astrophysics Data System (ADS)
Kolagani, Rajeswari
It is a well-established fact that the scientific knowledge and skills acquired in the process of obtaining a degree in physics meet the needs of a variety of positions in multiple science and technology sectors. However, in addition to scientific competence, challenging careers often call for skills in advanced communication, leadership and team functions. The professional science master's degree, which has been nick-named as the `Science MBA', aims at providing science graduates an edge both in terms of employability and earning levels by imparting such skills. Our Professional Science Master's Program in Applied Physics is designed to develop these `plus' skills through multiple avenues. In addition to advanced courses in Applied Physics, the curriculum includes graduate courses in project management, business and technical writing, together with research and internship components. I will discuss our experience and lessons learned over the 5 years since the inception of the program in 2010. The author acknowledges support from the Elkins Professorship of the University System of Maryland.
Engineering and physical sciences in oncology: challenges and opportunities.
Mitchell, Michael J; Jain, Rakesh K; Langer, Robert
2017-11-01
The principles of engineering and physics have been applied to oncology for nearly 50 years. Engineers and physical scientists have made contributions to all aspects of cancer biology, from quantitative understanding of tumour growth and progression to improved detection and treatment of cancer. Many early efforts focused on experimental and computational modelling of drug distribution, cell cycle kinetics and tumour growth dynamics. In the past decade, we have witnessed exponential growth at the interface of engineering, physics and oncology that has been fuelled by advances in fields including materials science, microfabrication, nanomedicine, microfluidics, imaging, and catalysed by new programmes at the National Institutes of Health (NIH), including the National Institute of Biomedical Imaging and Bioengineering (NIBIB), Physical Sciences in Oncology, and the National Cancer Institute (NCI) Alliance for Nanotechnology. Here, we review the advances made at the interface of engineering and physical sciences and oncology in four important areas: the physical microenvironment of the tumour and technological advances in drug delivery; cellular and molecular imaging; and microfluidics and microfabrication. We discussthe research advances, opportunities and challenges for integrating engineering and physical sciences with oncology to develop new methods to study, detect and treat cancer, and we also describe the future outlook for these emerging areas.
NASA Astrophysics Data System (ADS)
Shen, Zhan-Wei; Zhang, Feng; Dimitrijev, Sima; Han, Ji-Sheng; Yan, Guo-Guo; Wen, Zheng-Xin; Zhao, Wan-Shun; Wang, Lei; Liu, Xing-Fang; Sun, Guo-Sheng; Zeng, Yi-Ping
2017-09-01
Not Available Project supported by the National Basic Research Program of China (Grant No. 2015CB759600), the National Natural Science Foundation of China (Grant Nos. 61474113 and 61574140), the Beijing NOVA Program, China (Grant No. Z1611000049161132016071), China Academy of Engineering Physics (CAEP) Microsystem and THz Science and Technology Foundation, China (Grant No. CAEPMT201502), the Beijing Municipal Science and Technology Commission Project, China (Grant Nos. Z161100002116018 and D16110300430000), and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2012098)
Once a physicist: Zhengrong Shi
NASA Astrophysics Data System (ADS)
Shi, Zhengrong
2009-02-01
Why did you choose to study physics? I was born on an island called Yangzhong on the Yangtze River in Jiangsu province, China. Though mainly agricultural, Yangzhong was blessed with a good school system and I dedicated myself to my studies. I followed my instincts and interests in science and built a strong foundation in physics. My family always encouraged me to pursue my studies, so I went on to obtain a Bachelor°s degree in optical science from Chang Chun University of Science and Technology in 1983 and a Master°s degree in laser physics from the Shanghai Institute of Optics and Fine Mechanics in 1986.
Code of Federal Regulations, 2010 CFR
2010-01-01
... values. Living resources include natural and cultured plant life, fish, shellfish, marine mammals, and..., Great Lakes, and coastal resources means any discipline or field (including marine sciences and the physical, natural, and biological sciences, and engineering, included therein, marine technology, education...
Code of Federal Regulations, 2013 CFR
2013-01-01
... values. Living resources include natural and cultured plant life, fish, shellfish, marine mammals, and..., Great Lakes, and coastal resources means any discipline or field (including marine sciences and the physical, natural, and biological sciences, and engineering, included therein, marine technology, education...
Code of Federal Regulations, 2011 CFR
2011-01-01
... values. Living resources include natural and cultured plant life, fish, shellfish, marine mammals, and..., Great Lakes, and coastal resources means any discipline or field (including marine sciences and the physical, natural, and biological sciences, and engineering, included therein, marine technology, education...
Code of Federal Regulations, 2014 CFR
2014-01-01
... values. Living resources include natural and cultured plant life, fish, shellfish, marine mammals, and..., Great Lakes, and coastal resources means any discipline or field (including marine sciences and the physical, natural, and biological sciences, and engineering, included therein, marine technology, education...
Code of Federal Regulations, 2012 CFR
2012-01-01
... values. Living resources include natural and cultured plant life, fish, shellfish, marine mammals, and..., Great Lakes, and coastal resources means any discipline or field (including marine sciences and the physical, natural, and biological sciences, and engineering, included therein, marine technology, education...
Students' Attitudes and Enrollment Trends in Physics and Engineering
NASA Astrophysics Data System (ADS)
Banjong, Delphine
Science, Technology, Engineering, and Mathematics (STEM) fields are critical for meeting ever-increasing demands in the U.S. for STEM and related skills, and for ensuring the global competitiveness of the United States in technological advancement and scientific innovation. Nonetheless, few U.S. students consider a STEM degree after high school and fewer STEM students end up graduating with a STEM degree. In 2012, the United States ranked 35th in math and 27th in science out of 64 participating countries in the Program for International Student Assessment (PISA), sponsored by the Organization for Economic Cooperation and Development (OECD). Considering the significant role physics and engineering play in technological advancement, this work investigates the attitudes of students and recent enrollment trends in these important subject areas.
"Physics and Life" for Europe's Science Teachers
NASA Astrophysics Data System (ADS)
2003-04-01
The EIROforum Contribution to the European Science and Technology Week 2003 [Physics on Stage 3 Logo] What do you know about modern science? Was your school science teacher inspiring and enthusiastic? Or was physics class a good time to take a nap? Unfortunately, many young Europeans don't have the fondest memories of science in school, and the result is a widespread disinterest and lack of understanding of science among adults. This has become a real problem - especially at a time when science is having a growing impact on our daily lives, and when society needs more scientists than ever! What can be done? Some of Europe's leading research organisations, scientists and teachers have put their heads together and come up with a unique approach called "Physics on Stage" . This will be the third year that these institutes, with substantial support from the European Commission, are running this project - attacking the problem at its roots. EIROforum and "Physics on Stage 3" [EIROforum Logo] "Physics On Stage 3" is based on the very successful "Physics On Stage" concept that was introduced in 2000. It is directed towards science teachers and students in Europe's secondary schools. It is a part of the year-long build-up to the European Science and Technology Week 2003 (3-9 November), an initiative by the European Commission, and is run by seven of Europe's leading Intergovernmental Research Organizations (the EIROforum) [1]. The project addresses the content and format of science teaching in European schools , seeking to improve the quality of teaching and to find new ways to stimulate pupils to take an interest in science. Innovative and inspirational science teaching is seen as a key component to attract young people to deal with scientific issues, whether or not they finally choose a career in science. Hence, "Physics On Stage 3" aims to stimulate the interest of young people through the school teachers, who can play a key role in reversing the trend of falling interest in science and current scientific research. The goals of "Physics On Stage 3" [EWST Logo] "Physics on Stage 3" also aims to facilitate the exchange of good practice and innovative ideas among Europe's science teachers and to provide a forum for a broad debate among educators, administrators and policy-makers about the key problems in science education today. Moreover, it will make available the considerable, combined expertise of the EIROforum organisations to the European scientific teaching community, in order to promote the introduction of "fresh" science into the curricula and thus to convey a more realistic image of modern science to the pupils. "Physics on Stage 3" is concerned with basic science and also with the cross-over between different science disciplines - a trend becoming more and more important in today's science, which is not normally reflected in school curricula. A key element of the programme is to give teachers an up-to-date "insiders'" view of what is happening in science and to tell them about new, highly-diverse and interesting career opportunities for their pupils. Theme of the activities The theme of "Physics on Stage" this year is "Physics and Life" , reflecting the decision to broaden the Physics on Stage activities to encompass all the natural sciences. Including other sciences will augment the already successful concept, introducing a mixture of cross-over projects that highlight the multidisciplinary aspects of modern science. Among the many subjects to be presented are radiation, physics and the environment, astrobiology (the search for life beyond earth), complex systems, self-organising systems, sports science, the medical applications of physics, mathematics and epidemiology, etc. The main elements National activities "Physics on Stage 3" has already started and National Steering Committees in 22 countries, composed of eminent science teachers, scientists, administrators and others involved in setting school curricula, are now preparing related programs in their countries. Through these national activities, outstanding individuals will be selected to represent their teachers' communities at the final international event, the "Physics on Stage 3" festival. A list of national contact points is attached below. International festival The high-profile "festival" during the European Science and Technology Week 2003 will stimulate the dissemination of successful education tools and methods, identify the most effective ways to support teachers and motivate novel developments in science education. It will take place at the ESA-ESTEC site in Noordwijk (The Netherlands), from November 8 - 15, 2003 . The climax of the event will be the presentation of the European Science Teaching Awards , in recognition of teaching excellence, inspiration and motivation of young people. Online Resource Archive An online archive of the best teaching materials and practices in Europe will be established, forming a unique 'resource centre', which will make available all of the interesting materials identified through the programme and provide a forum for exchange which will last well beyond the duration of the activity. More information Full information about "Physics on Stage 3" is available at the central website: www.physicsonstage.net From here there is also direct connection to the national websites and the many related activities all over Europe. Be sure to check the site at regular intervals for new information about the developments!
Extreme Light Infrastructure - Nuclear Physics Eli-Np Project
NASA Astrophysics Data System (ADS)
Gales, S.
2015-06-01
The development of high power lasers and the combination of such novel devices with accelerator technology has enlarged the science reach of many research fields, in particular High energy, Nuclear and Astrophysics as well as societal applications in Material Science, Nuclear Energy and Medicine. The European Strategic Forum for Research Infrastructures (ESFRI) has selected a proposal based on these new premises called "ELI" for Extreme Light Infrastructure. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for Nuclear Physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10 PW class lasers and a Back Compton Scattering High Brilliance and Intense Low Energy Gamma Beam , a marriage of Laser and Accelerator technology at the frontier of knowledge. In the present paper, the technical description of the facility, the present status of the project as well as the science, applications and future perspectives will be discussed.
The effects of experience and attrition for novice high-school science and mathematics teachers.
Henry, Gary T; Fortner, C Kevin; Bastian, Kevin C
2012-03-02
Because of the current high proportion of novice high-school teachers, many students' mastery of science and mathematics depends on the effectiveness of early-career teachers. In this study, which used value-added models to analyze high-school teachers' effectiveness in raising test scores on 1.05 million end-of-course exams, we found that the effectiveness of high-school science and mathematics teachers increased substantially with experience but exhibited diminishing rates of return by their fourth year; that teachers of algebra 1, algebra 2, biology, and physical science who continued to teach for at least 5 years were more effective as novice teachers than those who left the profession earlier; and that novice teachers of physics, chemistry, physical science, geometry, and biology exhibited steeper growth in effectiveness than did novice non-science, technology, engineering, and mathematics teachers.
Construct-a-Catapult. Science by Design Series.
ERIC Educational Resources Information Center
Pulis, Lee
This book is one of four books in the Science-by-Design Series crated by TERC and funded by the National Science Foundation (NSF). It integrates history, physics, mathematics, and technology in its challenge to high school students to design and build a working catapult system. Students investigate elasticity, projectile launching, and learn about…
Fermilab | Science | Particle Accelerators | Advanced Superconducting Test
Accelerators for science and society Particle Physics 101 Science of matter, energy, space and time How Technology (FAST) Facility is America's only test bed for cutting-edge, record high-intensity particle beams in the United States as a particle beam research facility based on superconducting radio-frequency
The University of Alabama's Integrated Science Program.
ERIC Educational Resources Information Center
Rainey, Larry; Mitrook, Kim
This program, supported by the Center for Communication and Educational Technology at the University of Alabama, incorporates the perspectives of biology, earth/space science, chemistry, and physics into an innovative science curriculum for the middle grades. Students are engaged for 20 minutes 3 times a week by an on-air instructor who is doing…
History of technical protection. 60 years in science: to the jubilee of Prof. V.F. Minin
NASA Astrophysics Data System (ADS)
Shipilov, S. E.; Yakubov, V. P.
2018-05-01
The article briefly describes the scientific achievements of the full Professor, Doctor of Technical Sciences, the founder of the Institute of Applied Physics, the academician of the Russian Academy of Technological Sciences, the winner of the State Prize of the USSR Vladilen F. Minin.
NASA Astrophysics Data System (ADS)
Farrah, S.; Al Yazidi, O.
2016-12-01
The UAE Research Program for Rain Enhancement Science (UAEREP) is an international research initiative designed to advance the science and technology of rain enhancement. It comes from an understanding of the needs of countries suffering from scarcity of fresh water, and its will to support innovation globally. The Program focuses on the following topics: Climate change, Climate modelling, Climatology, Atmospheric physics, Atmospheric dynamics, Weather modification, Cloud physics, Cloud dynamics, Cloud seeding, Weather radars, Dust modelling, Aerosol physics , Aerosol chemistry, Aerosol/cloud interactions, Water resources, Physics, Numerical modelling, Material science, Nanotechnology, Meteorology, Hydrology, Hydrogeology, Rocket technology, Laser technology, Water sustainability, Remote sensing, Environmental sciences... In 2015, three research teams from Japan, Germany and the UAE led by Prof. Masataka Murakami, Volker Wulfmeyer and Linda Zou have been respectively awarded. Together, they are addressing the issue of water security through innovative ideas: algorithms and sensors, land cover modification, and nanotechnologies to accelerate condensation. These three projects are undergoing now with extensive research and progresses. This session will be an opportunity to present their latest results as well as to detail the evolution of research in rain enhancement. In 2016 indeed, the Program saw a remarkable increase in participation, with 91 pre-proposals from 398 scientists, researchers and technologists affiliated to 180 institutes from 45 countries. The projects submitted are now focusing on modelling to predict weather, autonomous vehicles, rocket technology, lasers or new seeding materials… The science of rain enhancement offers considerable potential in terms of research, development and innovation. Though cloud seeding has been pursued since the late 1940s, it has been viewed as a relatively marginal field of interest for scientists. This benign neglect has been recently replaced by a new drive to solve the technical obstacles impeding its potential. There is now a real prospect that this science will come of age and play its rightful part in boosting sustainable water supplies for people at risk in arid and semi-arid regions of the world.
JPRS Report Science & Technology Europe & Latin America.
1997-09-11
mixture of barium, yttrium, copper, and oxygen) was that of the Institute for Research in Non -Traditional Materials of the CNR [National Research...the necessary equipment for this kind of experimental work. The problem now is to coordinate all these branches of research which were begun...Nuclear Physics, the CNR [National Research Council] Institute for Non -Traditional Materials Technology, the physics departments of Naples and Salerno
ERIC Educational Resources Information Center
Andreucci, Colette; Chatoney, Marjolaine; Ginestie, Jacques
2012-01-01
The purpose of this study is to verify whether pupils (15-16 years old) who have received technology education on a systemic approach of industrial systems, are better than other pupils (of the same age but from other academic domains such as literary ones or ones that are economics-based) at solving physical science problems which involve…
Clock Technology Development in the Laser Cooling and Atomic Physics (LCAP) Program
NASA Technical Reports Server (NTRS)
Seidel, Dave; Thompson, R. J.; Klipstein, W. M.; Kohel, J.; Maleki, L.
2000-01-01
This paper presents the Laser Cooling and Atomic Physics (LCAP) program. It focuses on clock technology development. The topics include: 1) Overview of LCAP Flight Projects; 2) Space Clock 101; 3) Physics with Clocks in microgravity; 4) Space Clock Challenges; 5) LCAP Timeline; 6) International Space Station (ISS) Science Platforms; 7) ISS Express Rack; 8) Space Qualification of Components; 9) Laser Configuration; 10) Clock Rate Comparisons: GPS Carrier Phase Frequency Transfer; and 11) ISS Model Views. This paper is presented in viewgraph form.
PREFACE: Nanospintronics design and realization
NASA Astrophysics Data System (ADS)
Akai, Hisazumi; Katayama-Yoshida, Hiroshi; Kasai, Hideaki
2004-12-01
This special issue of Journal of Physics: Condensed Matter contains selected papers from the 1st International Conference on Nanospintronics Design and Realization (ICNDR 2004), which was held in Kyoto, Japan, 24--28 May 2004. This conference was organized by the Nanospintronics Design and Realization project members: Hideaki Kasai, Osaka (Chair of the Conference) Hisazumi Akai, Osaka Hajime Asahi, Osaka Wilson Agerico Diño, Osaka Hiroshi Harima, Kyoto Tomoyuki Kakeshita, Osaka Junjiro Kanamori, Kyoto Hiroshi Katayama-Yoshida, Osaka Koichi Kusakabe, Osaka Hiroshi Nakanishi, Osaka (Secretary) Tamio Oguchi, Hiroshima Teruo Ono, Osaka Naoshi Suzuki, Osaka Hitoshi Tabata, Osaka under the auspices of the Japan Ministry of Education, Culture, Sports, Science and Technology (MEXT) Special Coordination Funds for Promoting Science and Technology, and the sponsorship of Osaka University and the International Institute for Advanced Studies (IIAS). The conference is intended to provide an international forum for experimental and theoretical researchers, in the rapidly developing field of nanospintronics. It aims to: provide an overview of our current understanding of the physics of spin transport in (magnetic) semiconductors and hybrid magnetic/semiconductor structures; provide a venue to present and discuss the latest developments in using spin-dependent phenomena in nano-(opto-) electronics and computing applications; provide a venue for discussion and assessment of other possible means of exploiting the spin-dependent phenomena in future nano-(opto-) electronic and computing applications; address current (and foreseeable future) problems, of fundamental and applied nature, in an effort to bridge the physics and technology gap between semiconducting and magnetic materials. All of these being geared towards bringing about the realization of a functioning nanospintronics. A total of 127 delegates from 15 countries took part in ICNDR 2004, which was comprised of 62 invited oral presentations and 44 contributed posters. The conference also has additional financial support from the Asahi Glass Foundation, the Foundation for Promotion of Material Science and Technology of Japan, the Izumi Science and Technology Foundation, the Kansai Research Foundation for Technology Promotion, the Kao Foundation for Arts and Sciences, the Murata Science Foundation, the Nanotechnology Researchers Network Center of Japan, and the Nippon Sheet Glass Foundation for Materials Science and Engineering. The 2nd International Conference on Nanospintronics Design and Realization will be held in Germany, in 2007, and will be organized by Stefan Blügel, Patrick Bruno, and Dieter Weiss. We hope to see you there.
Translations on USSR Science and Technology, Biomedical and Behavioral Sciences, Number 19
1978-01-12
a rule, re- ceived high ratings from Soviet specialists, In the very near future construction will be completed on a 1,000- bed...framework of the cooperative program in medical technology. One can but enumerate some of them. There are: a number of pieces of physical- therapy ...diagnosis and treatment. Now new medical apparatus is being worked out in the CMEA countries on a large
Technology Literacy: A Key to the New Basic Skills.
ERIC Educational Resources Information Center
Brown, Richard
The United States needs a vocational educational system that delivers, in an applied technological setting, the new basic skills that industry needs, as well as a general education system that provides creative instruction in applied math, physics, and science. To be effective, technological training should encompass, along with machine-specific…
Technology-Based Content through Virtual and Physical Modeling: A National Research Study
ERIC Educational Resources Information Center
Ernst, Jeremy V.; Clark, Aaron C.
2009-01-01
Visualization is becoming more prevalent as an application in science, engineering, and technology related professions. The analysis of static and dynamic graphical visualization provides data solutions and understandings that go beyond traditional forms of communication. The study of technology-based content and the application of conceptual…
Janaszczyk, Agnieszka; Bogusz-Czerniewicz, Marta
2011-01-01
Radiation technology is a discipline of medical science which deals with diagnostics, imaging and radiotherapy, that is treatment by ionizing radiation. To present and compare the existing curricula of radiation technology in selected EU countries. The research work done for the purpose of the comparative analysis was based on the methods of diagnostic test and document analysis. The comparison of curricula in selected countries, namely Austria, France, the Netherlands and Poland, showed that admission criteria to radiation technology courses are varied and depend on regulations of respective Ministries of Health. The most restrictive conditions, including written tests in biology, chemistry and physics, and psychometric test, are those in France. Contents of basic and specialist subject groups are very similar in all the countries. The difference is in the number of ECT points assigned to particular subjects and the number of course hours offered. The longest practical training is provided in the Netherlands and the shortest one in Poland. The duration of studies in the Netherlands is 4 years, while in Poland it is 3 years. Austria is the only country to offer extra practical training in quality management. Graduates in the compared EU countries have similar level of qualifications in the fields of operation of radiological equipment, radiotherapy, nuclear medicine, foreign language and specialist terminology in the field of medical and physical sciences, general knowledge of medical and physical sciences, and detailed knowledge of radiation technology.
Minority Contributions to Science, Engineering, and Medicine.
ERIC Educational Resources Information Center
Funches, Peggy; And Others
Offering an historical perspective on the development of science, engineering, medicine, and technology and providing current role models for minority students, the bulletin lists the outstanding contributions made by: (1) Blacks - medicine, chemistry, architecture, engineering, physics, biology, and exploration; (2) Hispanos - biomedical…
Lambkins Roar as the Top High School in the 27th Colorado Science Bowl |
round of the competition. As they readied to answer rapid-fire physics, math, biology, astronomy, energy group, which is an offshoot of his school's STEAM (science, technology, engineering, art, and math
NASA Tech Briefs, December 1995. Volume 19, No. 12
NASA Technical Reports Server (NTRS)
1995-01-01
Topics include: a special focus section on Bio/Medical technology, electronic components and circuits, electronic systems, physical sciences, materials, computer programs, mechanics, machinery, manufacturing/fabrication, mathematics and information sciences, book and reports, and a special section on Laser Tech Briefs.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., inconvenience, physical impairment, mental anguish, disfigurement, loss of enjoyment of life, loss of society... “OSAI” means the office within the Department of Homeland Security's Directorate of Science and... Science and Technology, SAFETY Act/room 4320, Department of Homeland Security, Washington, DC 20528...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., inconvenience, physical impairment, mental anguish, disfigurement, loss of enjoyment of life, loss of society... “OSAI” means the office within the Department of Homeland Security's Directorate of Science and... Science and Technology, SAFETY Act/room 4320, Department of Homeland Security, Washington, DC 20528...
China and India: A New Sputnik? Federal Funding of Physical Sciences Research
NASA Astrophysics Data System (ADS)
Pierson, Steve
2007-11-01
Federal funding for the physical sciences has been stagnant for many decades, hindering scientific progress in many regards. Meanwhile, in the last decade, countries like China and India have made huge strides in improving their science and technology infrastructure, to the extent that U.S. leadership in many scientific fields is, or will soon be, challenged. The United States is also losing high-tech market share and jobs. Just as Sputnik jolted the U.S. into action 50 years ago, many believe that the current challenges require a Sputnik-like response. The American Physical Society is working hard to convince Members of Congress and the Administration to increase science research funding. In this talk, I will discuss challenges to U.S. science leadership and the APS advocacy. I will also address whether physicists can have an impact in Washington.
ERIC Educational Resources Information Center
Hirça, Necati
2013-01-01
In this study, relationship between prospective science and technology teachers' experiences in conducting Hands on physics experiments and their physics lab I achievement was investigated. Survey model was utilized and the study was carried out in the 2012 spring semester. Seven Hands on physics experiments were conducted with 28 prospective…
ERIC Educational Resources Information Center
Burnette, Samara Fleming
2013-01-01
Currently, little is known about African-American women with doctoral degrees in physics. This study examined the lived experiences of African-American women who completed doctoral programs in physics. Due to factors of race and gender, African-American women automatically enter a double-bind in science, technology, engineering, and mathematics…
Chow, Angela; Eccles, Jacquelynne S; Salmela-Aro, Katariina
2012-11-01
Two independent studies were conducted to extend previous research by examining the associations between task value priority patterns across school subjects and aspirations toward the physical and information technology- (IT-) related sciences. Study 1 measured task values of a sample of 10th graders in the United States (N = 249) across (a) physics and chemistry, (b) math, and (c) English. Study 2 measured task values of a sample of students in the second year of high school in Finland (N = 351) across (a) math and science, (b) Finnish, and (c) the arts and physical education. In both studies, students were classified into groups according to how they ranked math and science in relation to the other subjects. Regression analyses indicated that task value group membership significantly predicted subsequent aspirations toward physical and IT-related sciences measured 1-2 years later. The task value groups who placed the highest priority on math and science were significantly more likely to aspire to physical and IT-related sciences than were the other groups. These findings provide support for the theoretical assumption regarding the predictive role of intraindividual hierarchical patterns of task values for subsequent preferences and choices suggested by the Eccles [Parsons] (1983) expectancy-value model.
Future Scenarios for Mobile Science Learning
NASA Astrophysics Data System (ADS)
Burden, Kevin; Kearney, Matthew
2016-04-01
This paper adopts scenario planning as a methodological approach and tool to help science educators reconceptualise their use of mobile technologies across various different futures. These `futures' are set out neither as predictions nor prognoses but rather as stimuli to encourage greater discussion and reflection around the use of mobile technologies in science education. Informed by the literature and our empirical data, we consider four alternative futures for science education in a mobile world, with a particular focus on networked collaboration and student agency. We conclude that `seamless learning', whereby students are empowered to use their mobile technologies to negotiate across physical and virtual boundaries (e.g. between school and out-of-school activities), may be the most significant factor in encouraging educators to rethink their existing pedagogical patterns, thereby realizing some of the promises of contextualised participatory science learning.
ERIC Educational Resources Information Center
Ontario Dept. of Education, Toronto.
The major portion of this booklet contains detailed specifications for the content of science courses for grades 10-12 in the Arts and Science, Business and Commerce, and Science, Technology, and Trades Branches of Ontario secondary schools. Chemical, physical, and biological topics are emphasized. Brief notes on other science courses are…
Materials sciences programs: Fiscal year 1994
NASA Astrophysics Data System (ADS)
1995-04-01
The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.
Materials sciences programs, fiscal year 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-04-01
The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance andmore » other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.« less
What Is Required In Uganda? The 2007 Report Of The Japan Sci-edu. Support Project
NASA Astrophysics Data System (ADS)
Uchida, Tatsuhiro
2010-07-01
The development of ability for technology and invention is required as self-sustaining growth of science and technology in Asian and African developing countries. Science education that connects to the real world is the required education for the self-sustaining growth. But in fact, it is very common to study for the entrance examination. According to C. Camilla, S. and Sjo/berg, [The Re-emergence of Values in the Science Curriculum. Rotterdam, 2007, Sense Publishers], Ugandan students are the most interested ones in science and technology (I would like to be a scientist, I would like to get a job in technology) in the world. Science education should mortgages future of youth. Especially science education of developing countries should be directly connected to the real world. Because they need a lot of engineers as skilled worker, we implemented physics education that was directly connected with manufacturing by the sci-edu. support project in Uganda. The best results were achieved by contrivance in spite of poverty area. Our education method gave one form of New Science Education in Asia and Africa.
The Rise and Development of Physics in Cuba: An Interview with Hugo Pérez Rojas in May 2009
NASA Astrophysics Data System (ADS)
Baracca, Angelo
Hugo Celso Pérez Rojas was born in 1938, and works as a senior researcher at the Institute of Cybernetics, Mathematics and Physics, at the Ministry of Science and Technology, Cuba. Pérez Rojas is emeritus member of the Academy of Sciences of Cuba, member of the Latin American Academy of Sciences and Fellow TWAS since 1994. He was one of the founders of the School of Physics in the University of Havana in 1962, and moved in 1971 to the Cuban Academy of Sciences. His national awards include the Rafael Maria Mendive and Carlos J. Finlay Medals. He was awarded in 2011 the National Prize in Physics from the Cuban Physical Society. His interests include quantum field theory and its applications to finite temperature problems in high-energy physics and condensed matter. Among these, Pérez Rojas has devoted special attention to quantum electrodynamics in matter and in vacuum in the presence of external fields, phase transitions in electroweak theory, relativistic quantum Hall effect, Bose-Einstein condensation in magnetic fields, and applications of physics to social sciences. He is interviewed here by Angelo Baracca in May 2009.
NASA Astrophysics Data System (ADS)
2011-12-01
A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS) dedicated to the 120th anniversary of the birth of Sergei Ivanovich Vavilov was held in the Conference Hall of the P N Lebedev Physical Institute, RAS, on 30 March 2011. The following reports were put on the session's agenda posted on the web site www.gpad.ac.ru of the Physical Sciences Division, RAS: (1) Masalov A V (P N Lebedev Physical Institute, RAS, Moscow) "S I Vavilov and nonlinear optics"; (2) Basiev T T (Laser Materials and Technology Research Center, A M Prokhorov General Physics Institute, RAS, Moscow) "Luminescent nanophotonics and high-power lasers"; (3) Vitukhnovsky A G (P N Lebedev Physical Institute, RAS, Moscow) "Advances in luminescent light sources and displays"; (4) Aleksandrov E B (Ioffe Physical Technical Institute, RAS, St. Petersburg) "Sergei Ivanovich Vavilov and the special theory of relativity"; (5) Bolotovsky B M (P N Lebedev Physical Institute, RAS, Moscow) "Vavilov-Cherenkov effect"; (6) Vizgin V P (S I Vavilov Institute of the History of Natural Scienses and Technology, RAS, Moscow) "Sergei Ivanovich Vavilov as a historian of science"; (7) Ginzburg A S (Knowledge Society) "Academician S I Vavilov — a devotee of the enlightenment and the first president of the Knowledge Society of the USSR". The papers written on the basis of reports 1-4 and 6 are given below. The main contents of report 5 is reflected in the paper "Vavilov-Cherenkov radiation: its discovery and application" [Usp. Fiz. Nauk 179 1161 (2009); Phys. Usp. 52 1099 (2009)] published earlier by B M Bolotovsky. • S I Vavilov and nonlinear optics, A V Masalov, Z A Chizhikova Physics-Uspekhi, 2011, Volume 54, Number 12, Pages 1257-1262 • Luminescent nanophotonics, fluoride laser ceramics, and crystals, T T Basiev, I T Basieva, M E Doroshenko Physics-Uspekhi, 2011, Volume 54, Number 12, Pages 1262-1268 • Advances in light sources and displays, A G Vitukhnovsky Physics-Uspekhi, 2011, Volume 54, Number 12, Pages 1268-1272 • Direct experimental demonstration of the second special relativity postulate: the speed of light is independent of the speed of the source, E B Aleksandrov, P A Aleksandrov, V S Zapasskii, V N Korchuganov, A I Stirin Physics-Uspekhi, 2011, Volume 54, Number 12, Pages 1272-1278 • Sergei Ivanovich Vavilov as a historian of science, V P Vizgin, A V Kessenikh, K A Tomilin Physics-Uspekhi, 2011, Volume 54, Number 12, Pages 1278-1283
Normal Science Education and Its Dangers: The Case of School Chemistry.
ERIC Educational Resources Information Center
Van Berkel, Berry; De Vos, Wobbe; Verdonk, Adri H.; Pilot, Albert
2000-01-01
Attempts to solve the problem of hidden structure in school chemistry. Argues that normal chemistry education is isolated from common sense, everyday life and society, the history and philosophy of science, technology, school physics, and chemical research. (Author/CCM)
NASA Tech Briefs, October 1998. Volume 22, No. 10
NASA Technical Reports Server (NTRS)
1998-01-01
Topics include: special coverage sections on sensors/imaging and mechanical technology, and sections on electronic components and circuits, electronic systems, software, materials, machinery/automation, manufacturing/fabrication, physical sciences, information sciences, book and reports, and a special section of Photonics Tech Briefs.
34 CFR 691.1 - Scope and purpose.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND MATHEMATICS..., fifth-year undergraduate students who are pursuing eligible majors in the physical, life, or computer sciences, mathematics, technology, or engineering or a critical foreign language meet the cost of their...
34 CFR 691.1 - Scope and purpose.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND MATHEMATICS..., fifth-year undergraduate students who are pursuing eligible majors in the physical, life, or computer sciences, mathematics, technology, or engineering or a critical foreign language meet the cost of their...
34 CFR 691.1 - Scope and purpose.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND MATHEMATICS..., fifth-year undergraduate students who are pursuing eligible majors in the physical, life, or computer sciences, mathematics, technology, or engineering or a critical foreign language meet the cost of their...
34 CFR 691.1 - Scope and purpose.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND MATHEMATICS..., fifth-year undergraduate students who are pursuing eligible majors in the physical, life, or computer sciences, mathematics, technology, or engineering or a critical foreign language meet the cost of their...
NASA Tech Briefs, May 1989. Volume 13, No. 5
NASA Technical Reports Server (NTRS)
1989-01-01
This issue contains a special feature on the flight station of the future, discussing future enhancements to Aircraft cockpits. Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, and Mathematics and Information Sciences.
ERIC Educational Resources Information Center
Johnston, Jennifer; Riordain, Maire Ni; Walshe, Grainne
2014-01-01
The concept and importance of curriculum integration in Science and Mathematics has come to the fore in the recent years (Czerniak, 2007). Ireland's Science and Mathematics performance is well documented and extensively reported in the media and elsewhere (e.g. Expert Group on Future Skills Needs, 2008; Task Force on the Physical Sciences, 2002).…
Laboratory Directed Research and Development FY2010 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, K J
2011-03-22
A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has at its core a primary national security mission - to ensure the safety, security, and reliability of the nation's nuclear weapons stockpile without nuclear testing, and to prevent and counter the spread and use of weapons of mass destruction: nuclear, chemical, and biological. The Laboratory uses the scientific and engineering expertise and facilities developed for its primary mission to pursue advanced technologies to meet other important national security needs - homeland defense, military operations, and missile defense, for example - that evolve in response to emerging threats. For broader nationalmore » needs, LLNL executes programs in energy security, climate change and long-term energy needs, environmental assessment and management, bioscience and technology to improve human health, and for breakthroughs in fundamental science and technology. With this multidisciplinary expertise, the Laboratory serves as a science and technology resource to the U.S. government and as a partner with industry and academia. This annual report discusses the following topics: (1) Advanced Sensors and Instrumentation; (2) Biological Sciences; (3) Chemistry; (4) Earth and Space Sciences; (5) Energy Supply and Use; (6) Engineering and Manufacturing Processes; (7) Materials Science and Technology; Mathematics and Computing Science; (8) Nuclear Science and Engineering; and (9) Physics.« less
NASA Technical Reports Server (NTRS)
Spivey, Reggie A.; Jordan, Lee P.
2012-01-01
The Microgravity Science Glovebox (MSG) is a double rack facility designed for microgravity investigation handling aboard the International Space Station (ISS). The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. Provides two levels of containment via physical barrier, negative pressure, and air filtration. The MSG team and facilities provide quick access to space for exploratory and National Lab type investigations to gain an understanding of the role of gravity in the physics associated research areas.
Frontier applications of electrostatic accelerators
NASA Astrophysics Data System (ADS)
Liu, Ke-Xin; Wang, Yu-Gang; Fan, Tie-Shuan; Zhang, Guo-Hui; Chen, Jia-Er
2013-10-01
Electrostatic accelerator is a powerful tool in many research fields, such as nuclear physics, radiation biology, material science, archaeology and earth sciences. Two electrostatic accelerators, one is the single stage Van de Graaff with terminal voltage of 4.5 MV and another one is the EN tandem with terminal voltage of 6 MV, were installed in 1980s and had been put into operation since the early 1990s at the Institute of Heavy Ion Physics. Many applications have been carried out since then. These two accelerators are described and summaries of the most important applications on neutron physics and technology, radiation biology and material science, as well as accelerator mass spectrometry (AMS) are presented.
An Overview of the Computational Physics and Methods Group at Los Alamos National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Randal Scott
CCS Division was formed to strengthen the visibility and impact of computer science and computational physics research on strategic directions for the Laboratory. Both computer science and computational science are now central to scientific discovery and innovation. They have become indispensable tools for all other scientific missions at the Laboratory. CCS Division forms a bridge between external partners and Laboratory programs, bringing new ideas and technologies to bear on today’s important problems and attracting high-quality technical staff members to the Laboratory. The Computational Physics and Methods Group CCS-2 conducts methods research and develops scientific software aimed at the latest andmore » emerging HPC systems.« less
Physics Goes Live: Introducing the SATIS Project.
ERIC Educational Resources Information Center
Curry, Anabel; Holman, John
1986-01-01
Provides an overview of the approach, objectives, and unit offerings of the Science and Technology in Society (SATIS) project. Lists physics-related SATIS publications and describes selected programs. Suggests how SATIS units can be used as a supplement to existing materials. (ML)
Women in Physics in Lithuania: Challenges and Actions
NASA Astrophysics Data System (ADS)
Šatkovskienė, Dalia
2009-04-01
The gender equality problem in physics is discussed on the basis of Lithuanian statistics and results of the project, "Baltic States Network: Women in Sciences and High Technology" (BASNET), initiated by Lithuanian women physicists and financed by the European Commission.
Clock Technology Development for the Laser Cooling and Atomic Physics (LCAP) Program
NASA Technical Reports Server (NTRS)
Klipstein, W. M.; Thompson, R. J.; Seidel, D. J.; Kohel, J.; Maleki, L.
1998-01-01
The Time and Frequency Sciences and Technology Group at Jet Propulsion Laboratory (JPL) has developed a laser cooling capability for flight and has been selected by NASA to support the Laser-Cooling and Atomic Physics (LCAP) program. Current work in the group includes design and development for tee two laser-cooled atomic clock experiments which have been selected for flight on the International Space Station.
Laboratory directed research and development program FY 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-03-01
This report compiles the annual reports of Laboratory Directed Research and Development projects supported by the Berkeley Lab. Projects are arranged under the following topical sections: (1) Accelerator and fusion research division; (2) Chemical sciences division; (3) Computing Sciences; (4) Earth sciences division; (5) Environmental energy technologies division; (6) life sciences division; (7) Materials sciences division; (8) Nuclear science division; (9) Physics division; (10) Structural biology division; and (11) Cross-divisional. A total of 66 projects are summarized.
The autonomous sciencecraft constellations
NASA Technical Reports Server (NTRS)
Sherwood, R. L.; Chien, S.; Castano, R.; Rabideau, G.
2003-01-01
The Autonomous Sciencecraft Experiment (ASE) will fly onboard the Air Force TechSat 21 constellation of three spacecraft scheduled for launch in 2006. ASE uses onboard continuous planning, robust task and goal-based execution, model-based mode identification and reconfiguration, and onboard machine learning and pattern recognition to radically increase science return by enabling intelligent downlink selection and autonomous retargeting. In this paper we discuss how these AI technologies are synergistically integrated in a hybrid multi-layer control architecture to enable a virtual spacecraft science agent. Demonstration of these capabilities in a flight environment will open up tremendous new opportunities in planetary science, space physics, and earth science that would be unreachable without this technology.
Reaching Out: The Bachelor of Arts Degree In Physics
NASA Astrophysics Data System (ADS)
Hobson, Art
1996-05-01
Physics degrees are not only for physicists. Our department believes that it would be healthy if attorneys, physicians, journalists, politicians, businesspeople, and others had undergraduate degrees in physics. Thus, we have begun offering a Bachelor of Arts degree in physics, for students who want to study physics as a background for other fields such as law (patents, environmental law), medical school, business (high-tech firms), journalism (science reporting, environmental reporting), music (accoustics, electronic music), and essentially any other profession. The program reaches outward, outside of physics, rather than pointing toward further work in physics. It begins with the algebra-based introductory course rather than the calculus-based course for future physicists and engineers. Two new courses are being created to provide these pre-professional students with broad science literacy and knowledge of physics-related technologies. The program is more flexible and less technical than the traditional Bachelor of Science program, allowing students time for outside electives and professional requirements in other fields.
Hanford Atomic Products Operation monthly report for March 1956
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1956-04-20
This is the monthly report for the Hanford Laboratories Operation, March, 1956. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology; financial activities, visits, biology operation, physics and instrumentation research, employee relations, pile technology, safety and radiological sciences are discussed.
ERIC Educational Resources Information Center
Online-Offline, 1998
1998-01-01
Focuses on technology, on advances in such areas as aeronautics, electronics, physics, the space sciences, as well as computers and the attendant progress in medicine, robotics, and artificial intelligence. Describes educational resources for elementary and middle school students, including Web sites, CD-ROMs and software, videotapes, books,…
ERIC Educational Resources Information Center
Craig, Jerry; Stapleton, Jerry
This study guide is part of a program of studies entitled Science and Engineering Technician (SET) Curriculum. The SET Curriculum was developed for the purpose of training technicians in the use of electronic instruments and their applications. It integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology,…
ERIC Educational Resources Information Center
Ballinger, Jack T.; Wolf, Lawrence J.
This study guide is part of a program of studies entitled the Science and Engineering Technician (SET) Curriculum developed to provide a framework for training technicians in the use of electronic instruments and their applications. This interdisciplinary course of study integrates elements from the disciplines of chemistry, physics, mathematics,…
ERIC Educational Resources Information Center
Dabney, Katherine Patricia Traudel
2012-01-01
Science, technology, engineering, and mathematics (STEM) education has become a critical focus in the United States due to economic concerns and public policy (National Academy of Sciences, 2007; U.S. Department of Education, 2006). Part of this focus has been an emphasis on encouraging and evaluating career choice and persistence factors among…
ERIC Educational Resources Information Center
MacLeod, Katarin
2014-01-01
Science, Technology, Society and Environment (STSE) education has received attention in educational research, policy, and science curricula development, yet less advancement has been made in moving theory into practice. There are many examples of STSE-based teaching in science at the elementary and secondary levels, yet little has focused…
ERIC Educational Resources Information Center
Ramírez Díaz, Mario H.; Nieto Betance, Gabriela; García Trujillo, Luís Antonio; Chávez-Campos, David A.
2015-01-01
In its program of studies for preschool level, the Secretary of Public Education of Mexico promoted development of four standards of science: Scientific knowledge, applications of scientific knowledge and technology, skills associated to science, and attitudes associated to science. However, to develop this skills and reach out the standards there…
The Science of Museums: Tapping the Social Sciences to Make Exhibits Fathomable and Fun.
ERIC Educational Resources Information Center
Raloff, Janet
1998-01-01
The most successful science-and-technology center exhibits owe as much to the evaluation of visitor reactions as they do to budgets and planning. Explores different types of visitor-evaluation studies and shares examples of successful exhibit designs built upon visitor evaluations, including children's physics exhibits and jellyfish as living art.…
DebrisLV Hypervelocity Impact Post-Shot Physical Results Summary
2015-02-27
Sheaffer1, Paul M. Adams2, Naoki Hemmi3, Christopher Hartney1 1Space Science Applications Laboratory Physical Sciences Laboratories 2Space Materials...PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Patti M. Sheaffer, Paul M. Adams, Naoki Hemmi, Christopher Hartney 5d. PROJECT NUMBER 5e. TASK NUMBER 5f...this document could not have been acquired without the active help and support of NASA (J.-C. Liou, Robert Markowicz); Jacobs Technologies ( John Opiela