Implementing Technology with Industrial Community: The SBIR Example
NASA Technical Reports Server (NTRS)
Ghuman, Parminder
2005-01-01
The Earth-Sun system Technology Office (ESTO) works with Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs to supplement its own technology development program. The SBIR/STTR program is a highly competitive program that encourages small business to explore their technological potential to fulfill technology needs identified by ESTO. SBIR program has three phases. The Phase 1 contracts last for 6 months with a maximum funding of $70,000, and Phase 2 contracts last for 24 months with a maximum funding of $600,000. For Phase 3, the small business must find funding in the private sector or other non-SBIR federal agency funding. During this phase ESTO evaluates Phase 2 graduates and selects those that need to be further developed for airborne or spaceflight demonstration and provides funding. This paper will discuss the all three phases in and role of ESTO in this program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moran, Traci L.; Larche, Michael R.; Denslow, Kayte M.
The Pacific Northwest National Laboratory (PNNL) located in Richland, Washington, hosted and administered Sensor Effectiveness Testing that allowed four different participants to demonstrate the NDE volumetric inspection technologies that were previously demonstrated during the Technology Screening session. This document provides a Sensor Effectiveness Testing report for the final part of Phase I of a three-phase NDE Technology Development Program designed to identify and mature a system or set of non-visual volumetric NDE technologies for Hanford DST primary liner bottom inspection. Phase I of the program will baseline the performance of current or emerging non-visual volumetric NDE technologies for their abilitymore » to detect and characterize primary liner bottom flaws, and identify candidate technologies for adaptation and maturation for Phase II of the program.« less
An Overview of 2014 SBIR Phase 1 and Phase 2 Communications Technology and Development
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.
2015-01-01
NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights eight of the innovative SBIR 2014 Phase I and Phase II projects that emphasize one of NASA Glenn Research Center's six core competencies-Communication Technology and Development. The technologies cover a wide spectrum of applications such as X-ray navigation, microsensor instrument for unmanned aerial vehicle airborne atmospheric measurements, 16-element graphene-based phased array antenna system, interferometric star tracker, ultralow power fast-response sensor, and integrated spacecraft navigation and communication. Each featured technology describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.
ERIC Educational Resources Information Center
Far West Lab. for Educational Research and Development, San Francisco, CA.
This report on Phase IV, of a four-phase study, provided for the development of evaluation templates and instruments to be used by the California Department of Education to facilitate systematic assessment of state funded educational technology programs and projects. These assessment documents comprised the major data collection sources for the…
KSC SBIR/STTR 2004 Program Year Report
NASA Technical Reports Server (NTRS)
2005-01-01
The Kennedy Space Center Level III SBIR/STTR management staff is under the Technology Transfer Office within the Spaceport Engineering and Technology Directorate. The SBIR and STTR programs provide an opportunity for small high technology companies and research institutions to participate in Government-sponsored research and development (R&D) programs in key technology areas. The SBIR program was established by Congress in 1982 to provide increased opportunities for small businesses to participate in R&D programs, increase employment, and improve U.S. competitiveness. The program's specific objectives are to stimulate U.S. technological innovation, use small businesses to meet Federal research and development needs, increase private sector commercialization of innovations, and foster and encourage participation by socially disadvantaged businesses. Legislation enacted in December 2000 reauthorized the program and strengthened emphasis on pursuing commercial applications of SBIR projects. An SBIR Phase I contract is the opportunity to establish the feasibility and technical merit of a proposed innovation. Selected competitively, the Phase I contract lasts for 6 months and is funded up to $70,000. SBIR Phase II contracts continue the most promising Phase I projects based on scientific! technical merit, expected value to NASA, company capability, and commercial potential. Phase II contracts are usually for a period of 24 months and may not exceed $600,000. NASA usually selects approximately 40 percent of Phase I projects to continue to the Phase II level. Phase III is the process of furthering the development of a product to make it commercially available. The STTR program awards contracts to small business concerns for cooperative R&D with a nonprofit research institution. Research institutions include nonprofit research organizations, Federal laboratories, or universities. The goal of the program established by Congress is to facilitate the transfer of technology developed by a research institution through the entrepreneurship of a small business. The STIR program is smaller in funding than the SBIR program. While the proposal is submitted by the small business concern, at least 30 percent of the funding and work must originate with the research institution. STTR Phase I projects receive up to $100K for a one-year effort, and a Phase II contract receives up to $600K for two years.
Small Business Innovation Research, Post-Phase II Opportunity Assessment
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2015-01-01
This report outlines current Small Business Innovation Research (SBIR) Post-Phase II opportunity contract award results for the SBIR technology program from 2007 to 2011 for NASA's Aeronautics Research Mission Directorate (ARMD), Human Exploration and Operations Mission Directorate (HEOMD), Science Mission Directorate (SMD), and Space Technology Mission Directorate (STMD). The report provides guidelines for incorporating SBIR technology into NASA programs and projects and provides a quantitative overview of the post-Phase II award patterns that correspond with each mission directorate at NASA Glenn Research Center (GRC). In recent years, one of NASA's goals has been to not only transfer SBIR technologies to commercial industries, but to ensure that NASA mission directorates incorporate SBIR technologies into their program and project activities. Before incorporating technologies into MD programs, it is important to understand each mission directorate structure because each directorate has different objectives and needs. The directorate program structures follow.
An Overview of 2014 SBIR Phase I and Phase II Materials Structures for Extreme Environments
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.
2015-01-01
NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights nine of the innovative SBIR 2014 Phase I and Phase II projects that emphasize one of NASA Glenn Research Center's six core competencies-Materials and Structures for Extreme Environments. The technologies cover a wide spectrum of applications such as high temperature environmental barrier coating systems, deployable space structures, solid oxide fuel cells, and self-lubricating hard coatings for extreme temperatures. Each featured technology describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.
Continued Development and Improvement of Pneumatic Heavy Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert J. Englar
2005-07-15
The objective of this applied research effort led by Georgia Tech Research Institute is the application of pneumatic aerodynamic technology previously developed and patented by us to the design of an appropriate Heavy Vehicle (HV) tractor-trailer configuration, and experimental confirmation of this pneumatic configuration's improved aerodynamic characteristics. In Phases I to IV of our previous DOE program (Reference 1), GTRI has developed, patented, wind-tunnel tested and road-tested blown aerodynamic devices for Pneumatic Heavy Vehicles (PHVs) and Pneumatic Sports Utility Vehicles (PSUVs). To further advance these pneumatic technologies towards HV and SUV applications, additional Phase V tasks were included in themore » first year of a continuing DOE program (Reference 2). Based on the results of the Phase IV full-scale test programs, these Phase V tasks extended the application of pneumatic aerodynamics to include: further economy and performance improvements; increased aerodynamic stability and control; and safety of operation of Pneumatic HVs. Continued development of a Pneumatic SUV was also conducted during the Phase V program. Phase V was completed in July, 2003; its positive results towards development and confirmation of this pneumatic technology are reported in References 3 and 4. The current Phase VI of this program was incrementally funded by DOE in order to continue this technology development towards a second fuel economy test on the Pneumatic Heavy Vehicle. The objectives of this current Phase VI research and development effort (Ref. 5) fall into two categories: (1) develop improved pneumatic aerodynamic technology and configurations on smaller-scale models of the advanced Pneumatic Heavy Vehicle (PHV); and based on these findings, (2) redesign, modify, and re-test the modified full-scale PHV test vehicle. This second objective includes conduct of an on-road preliminary road test of this configuration to prepare it for a second series of SAE Type-U fuel economy evaluations, as described in Ref. 5. Both objectives are based on the pneumatic technology already developed and confirmed for DOE OHVT/OAAT in Phases I-V. This new Phase VI effort was initiated by contract amendment to the Phase V effort using carryover FY02 funds. This were conducted under a new and distinct project number, GTRI Project A-6935, separate from the Phase I-IV program. However, the two programs are closely integrated, and thus Phase VI continues with the previous program and goals.« less
An Overview of 2014 SBIR Phase 1 and Phase 2 Air-Breathing Propulsion
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.
2015-01-01
NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights nine of the innovative SBIR 2014 Phase I and Phase II projects that emphasize one of NASA Glenn Research Center's six core competencies-Air-Breathing Propulsion. The technologies cover a wide spectrum of applications such as development of X-ray computed tomography (CT) imaging method for the measurement of complex 3D ice shapes, phased array techniques for low signal-to-noise ratio wind tunnels, compact kinetic mechanisms for petroleum-derived and alternative aviation fuels, and hybrid electric propulsion systems for a multirotor aircraft. Each featured technology describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report provides as an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.
1987-06-15
001 GENERAL DYNAMICS 00 FORT WORTH DIVISION INDUSTRIAL TECHNOLOGY MODERNIZATION PROGRAM Phase 2 Final Project Repc t JUNG 0 ?7 PROJECT 28 AUTOMATION...DYNAMICS FORT WORTH DIVISION INDUSTRIAL TECHNOLOGY MODERNIZATION PROGRAM Phase 2 Final Project Report PROJECT 28 AUTOMATION OF RECEIVING, RECEIVING...13 6 PROJECT ASSUMPTIONS 20 7 PRELIMINARY/FINAL DESIGN AND FINDINGS 21 8 SYSTEM/EQUIPMENT/MACHINING SPECIFICATIONS 37 9 VENDOR/ INDUSTRY ANALYSIS
Report of the Defense Science Board Task Force on National Aero-Space Plane (NASP) Program
NASA Technical Reports Server (NTRS)
1992-01-01
Six years ago, the Defense Science Board (DSB) initiated a review of the concept, technical basis, program content, and missions of the National Aerospace Plane (NASP) program. The report was completed in Sep. 1988, and the recommendations contributed to strengthening the technical efforts in the NASP program. Since then, substantial technological progress has been made in the technology development phase (Phase 2) of the program. Phase 2 of the program is currently scheduled to end in late Fiscal Year 1993, with a decision whether to proceed to the experimental flight vehicle phase (Phase 3) to be made at that time. This decision will be a very significant one for the Department of Defense (DoD) and the National Aeronautics and Space Administration (NASA). In February of this year, the DSB was chartered to revisit the NASP program to assess the degree to which the many technical challenges of the program have been resolved, or are likely to be resolved by the end of Phase 2.
GaAs MMIC elements in phased-array antennas
NASA Technical Reports Server (NTRS)
Leonard, Regis F.
1988-01-01
Over the last six years NASA Lewis Research Center has carried out a program aimed at the development of advanced monolithic microwave integrated circuit technology, principally for use in phased-array antenna applications. Arising out of the Advanced Communications Technology Satellite (ACTS) program, the initial targets of the program were chips which operated at 30 and 20 GHz. Included in this group of activities were monolithic power modules with an output of 2 watts at GHz, variable phase shifters at both 20 and 30 GHz, low noise technology at 30 GHz, and a fully integrated (phase shifter, variable gain amplifier, power amplifier) transmit module at 20 GHz. Subsequent developments are centered on NASA mission requirements, particularly Space Station communications systems and deep space data communications.
Vapor Phase Catalytic Ammonia Reduction
NASA Technical Reports Server (NTRS)
Flynn, Michael T.; Harper, Lynn D. (Technical Monitor)
1994-01-01
This paper discusses the development of a Vapor Phase Catalytic Ammonia Reduction (VPCAR) teststand and the results of an experimental program designed to evaluate the potential of the technology as a water purification process. In the experimental program the technology is evaluated based upon product water purity, water recovery rate, and power consumption. The experimental work demonstrates that the technology produces high purity product water and attains high water recovery rates at a relatively high specific power consumption. The experimental program was conducted in 3 phases. In phase I an Igepon(TM) soap and water mixture was used to evaluate the performance of an innovative Wiped-Film Rotating-Disk evaporator and associated demister. In phase II a phenol-water solution was used to evaluate the performance of the high temperature catalytic oxidation reactor. In phase III a urine analog was used to evaluate the performance of the combined distillation/oxidation functions of the processor.
NASA Technical Reports Server (NTRS)
Egerman, Robert; Matthews, Gary W.; Johnson, Matthew; Ferland, Albert; Stahl, H. Philip; Eng, Ron; Effinger, Michael R.
2015-01-01
The Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. Under Science and Technology funding, NASA's Marshall Space Flight Center (MSFC) and Exelis have developed a more cost effective process to make up to 4m monolithic spaceflight UV quality, low areal density, thermally and dynamically stable primary mirrors. Under a Phase I program, a proof of concept mirror was completed at Exelis and tested down to 250K at MSFC which would allow imaging out to 2.5 microns. In 2014, Exelis and NASA started a Phase II program to design and build a 1.5m mirror to demonstrate lateral scalability to a 4m monolithic primary mirror. The current status of the Phase II development program will be provided along with a Phase II program summary.
Defense Acquisitions: Assessments of Selected Weapon Programs
2012-03-01
knowledge-based practices. As a result , most of these programs will carry technology, design, and production risks into subsequent phases of the...acquisition process that could result in cost growth or schedule delays. GAO also assessed the implementation of selected acquisition reforms and found...knowledge-based practices. As a result , most of these programs will carry technology, design, and production risks into subsequent phases of the
An Overview of SBIR Phase 2 Communications Technology and Development
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2015-01-01
Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing areas in Communications Technology and Development which is one of six core competencies at NASA Glenn Research Center. There are eighteen technologies featured with emphasis on a wide spectrum of applications such as with a security-enhanced autonomous network management, secure communications using on-demand single photons, cognitive software-defined radio, spacesuit audio systems, multiband photonic phased-array antenna, and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.
NASA Astrophysics Data System (ADS)
Kramer, Warner
1993-01-01
This publication contains technical and contractual summaries of the MIMIC program's Phase 3 technology support programs. Each project description includes a discussion of the objectives of the effort, the approach pursued, and recent progress. Also identified are the performing organization(s), principal investigator and/or other key personnel, contract number, program funding and duration, and program monitor/COTR. Concluding the document is a directory of the personnel associated with these projects, from whom more information may be requested.
Space station experiment definition: Long-term cryogenic fluid storage
NASA Technical Reports Server (NTRS)
Jetley, R. L.; Scarlotti, R. D.
1987-01-01
The conceptual design of a space station Technology Development Mission (TDM) experiment to demonstrate and evaluate cryogenic fluid storage and transfer technologies is presented. The experiment will be deployed on the initial operational capability (IOC) space station for a four-year duration. It is modular in design, consisting of three phases to test the following technologies: passive thermal technologies (phase 1), fluid transfer (phase 2), and active refrigeration (phase 3). Use of existing hardware was a primary consideration throughout the design effort. A conceptual design of the experiment was completed, including configuration sketches, system schematics, equipment specifications, and space station resources and interface requirements. These requirements were entered into the NASA Space Station Mission Data Base. A program plan was developed defining a twelve-year development and flight plan. Program cost estimates are given.
NASA Technical Reports Server (NTRS)
Knouse, G.; Weber, W.
1985-01-01
A three phase development program for ground and space segment technologies which will enhance and enable the second and third generation mobile satellite systems (MSS) is outlined. Phase 1, called the Mobile Satellite Experiment (MSAT-X), is directed toward the development of ground segment technology needed for future MSS generations. Technology validation and preoperational experiments with other government agencies will be carried out during the two year period following launch. The satellite channel capacity needed to carry out these experiments will be obtained from industry under a barter type agreement in exchange for NASA provided launch services. Phase 2 will develop and flight test the multibeam spacecraft antenna technology needed to obtain substantial frequency reuse for second generation commercial systems. Industry will provide the antenna, and NASA will fly it on the Shuttle and test it in orbit. Phase 3 is similar to Phase 2 but will develop an even larger multibeam antenna and test it on the space station.
NASA Astrophysics Data System (ADS)
Knouse, G.; Weber, W.
1985-04-01
A three phase development program for ground and space segment technologies which will enhance and enable the second and third generation mobile satellite systems (MSS) is outlined. Phase 1, called the Mobile Satellite Experiment (MSAT-X), is directed toward the development of ground segment technology needed for future MSS generations. Technology validation and preoperational experiments with other government agencies will be carried out during the two year period following launch. The satellite channel capacity needed to carry out these experiments will be obtained from industry under a barter type agreement in exchange for NASA provided launch services. Phase 2 will develop and flight test the multibeam spacecraft antenna technology needed to obtain substantial frequency reuse for second generation commercial systems. Industry will provide the antenna, and NASA will fly it on the Shuttle and test it in orbit. Phase 3 is similar to Phase 2 but will develop an even larger multibeam antenna and test it on the space station.
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2015-01-01
This report is intended to help NASA program and project managers incorporate Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) technologies that have gone through Phase II of the SBIR program into NASA Aeronautics and Mission Directorate (ARMD) programs. Other Government and commercial program managers can also find this information useful.
Solar power satellite system definition study, phase 2.
NASA Technical Reports Server (NTRS)
1979-01-01
A program plan for the Solar Power Satellite Program is presented. The plan includes research, development, and evaluation phase, engineering and development and cost verification phase, prototype construction, and commercialization. Cost estimates and task requirements are given for the following technology areas: (1) solar arrays; (2) thermal engines and thermal systems; (3) power transmission (to earth); (4) large space structures; (5) materials technology; (6) system control; (7) space construction; (8) space transportation; (9) power distribution, and space environment effects.
Teachers' Use of Technology: Lessons Learned from the Teacher Education Program to the Classroom
ERIC Educational Resources Information Center
Wright, Vivian H.; Wilson, Elizabeth K.
2011-01-01
This paper describes 10 teachers' perceptions of technology integration and technology use in their classrooms, five years after their graduation from a teacher education program which encouraged technology use in teaching and learning. The researchers used Hooper and Rieber's (1999) five phases of technology use (familiarization, utilization,…
Advanced Microstrip Antenna Developments : Volume I. Technology Studies for Aircraft Phased Arrays
DOT National Transportation Integrated Search
1981-06-01
Work has continued on improvement of microstrip phased-array antenna technology since the first microstrip phased-array was flight-tested during the FAA 1974-1975 ATS-6 test program. The present development has extended this earlier work in three are...
1984-10-01
8 iii "i t-. Table of Contents (cont.) Section Title Page -APPENDIX A Acronyms, Definitions, Nomenclature and Units of Measure B Scope of Work, Task...Identification/Records Search Phase II - Problem Confirmation and Quantification Phase III - Technology Base Development Phase IV - Corrective Action Only...Problem Identification/Records Search Phase II - Problem Confirmation and Quantification Phase III - Technology Base Development Phase IV - Corrective
Technology demonstrator program for Space Station Environmental Control Life Support System
NASA Technical Reports Server (NTRS)
Adams, Alan M.; Platt, Gordon K.; Claunch, William C.; Humphries, William R.
1987-01-01
The main objectives and requirements of the NASA/Marshall Space Flight Center Technology Demonstration Program are discussed. The program consists of a comparative test and a 90-day manned system test to evaluate an Environmental Control and Life Support System (ECLSS). In the comparative test phase, 14 types of subsystems which perform oxygen and water reclamation functions are to be examined in terms of performance maintenance/service requirements, reliability, and safety. The manned chamber testing phase involves a four person crew using a partial ECLSS for 90 days. The schedule for the program and the program hardware requirements are described.
Solid Polymer Electrolyte (SPE) fuel cell technology program
NASA Technical Reports Server (NTRS)
1979-01-01
The overall objectives of the Phase IV Solid Polymer Electrolyte Fuel Cell Technology Program were to: (1) establish fuel cell life and performance at temperatures, pressures and current densities significantly higher than those previously demonstrated; (2) provide the ground work for a space energy storage system based on the solid polymer electrolyte technology (i.e., regenerative H2/O2 fuel cell); (3) design, fabricate and test evaluate a full-scale single cell unit. During this phase, significant progress was made toward the accomplishment of these objectives.
Technology advancements for the U.S. manned Space Station - An overview
NASA Technical Reports Server (NTRS)
Simon, William E.
1987-01-01
The structure and methodology of the Johnson Space Center (JSC) advanced development program is described. An overview of the program is given, and the technology transfer process to other disciplines is described. The test bed and flight experiment programs are described, as is the technology assessment which was performed at the end of the Phase B program. The technology program within each discipline is summarized, and the coordination and integration of the JSC program with the activities of other NASA centers and with work package contractors are discussed.
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2015-01-01
This report is intended to help NASA program and project managers incorporate Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) technologies that have gone through Phase II of the SBIR program into NASA Science Mission Directorate (SMD) programs. Other Government and commercial project managers can also find this information useful.
Helping to Meet Today's Energy Demands: Natural Gas Technician Training in Algeria
ERIC Educational Resources Information Center
Dutton, Bernard
1976-01-01
The training program, located in Arzew, Algeria, is designed to train technicians in all phases of gas technology. The program provides classroom instruction, on-the-job training, and language instruction. The different phases involved in the training program are described. (EC)
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2016-01-01
This report is intended to help NASA program and project managers incorporate Glenn Research Center Small Business Innovation Research/Small Business Technology Transfer (SBIR)/(STTR) technologies into NASA Human Exploration and Operations Mission Directorate (HEOMD) programs and projects. Other Government and commercial project managers can also find this useful. Introduction Incorporating Small Business Innovation Research (SBIR)-developed technology into NASA projects is important, especially given the Agency's limited resources for technology development. The SBIR program's original intention was for technologies that had completed Phase II to be ready for integration into NASA programs, however, in many cases there is a gap between Technology Readiness Levels (TRLs) 5 and 6 that needs to be closed. After SBIR Phase II projects are completed, the technology is evaluated against various parameters and a TRL rating is assigned. Most programs tend to adopt more mature technologies-at least TRL 6 to reduce the risk to the mission rather than adopt TRLs between 3 and 5 because those technologies are perceived as too risky. The gap between TRLs 5 and 6 is often called the "Valley of Death" (Figure 1), and historically it has been difficult to close because of a lack of funding support from programs. Several papers have already suggested remedies on how to close the gap (Refs. 1 to 4).
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2015-01-01
This report is intended to help NASA program and project managers incorporate Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) technologies that have gone through Phase II of the SBIR program into NASA Human Exploration and Operations Mission Directorate (HEOMD) programs. Other Government and commercial project managers can also find this information useful.
NASA Technical Reports Server (NTRS)
Mathews, Douglas; Bock, Larry A.; Bielak, Gerald W.; Dougherty, R. P.; Premo, John W.; Scharpf, Dan F.; Yu, Jia
2014-01-01
Major airports in the world's air transportation systems face a serious problem in providing greater capacity to meet the ever increasing demands of air travel. This problem could be relieved if airports are allowed to increase their operating time, now restricted by curfews and by relaxing present limits on takeoffs and landings. The key operational issue in extending the present curfews is noise. In response to these increasing restrictive noise regulations, NASA has launched a program to validate through engine testing, noise reduction concepts and technologies that have evolved from the Advanced Subsonic Technologies (AST) Noise Reduction Program. The goal of this AST program was to develop and validate technology that reduces engine noise and improves nacelle suppression effectiveness relative to 1992 technology. Contract NAS3-97144 titled "Engine Validation of Noise Reduction Concepts" (EVNRC) was awarded to P&W on August 12, 1997 to conduct full scale noise reduction tests in two Phases on a PW4098 engine. The following Section 1.2 provides a brief description of the overall program. The remainder of this report provides a detailed documentation of Phase I of the program.
Technology Refresh Program Launches Phase II | Poster
The Technology Refresh Program (TRP) is an NCI-funded initiative designed to promote efficient spending on computer equipment by providing staff members with access to the latest technology to meet their computing needs, said Kyle Miller, IT coordinator, Computer and Statistical Services (C&SS), NCI at Frederick.
Technology Development Report: CDDF, Dual Use Partnerships, SBIR/STTR: Fiscal Year 2003 Activities
NASA Technical Reports Server (NTRS)
Bailey, John W.
2004-01-01
The FY2003 NASA John C. Stennis Stennis Space Center (SSC) Technology Development Report provides an integrated report of all technology development activities at SSC. This report actually combines three annual reports: the Center Director's Discretionary Fund (CDDF) Program Report, Dual Use Program Report, and the Small Business Innovation Research (SBIR)/Small Business Technology Transfer (STTR) Program Report. These reports are integrated in one document to summarize all technology development activities underway in support of the NASA missions assigned to SSC. The Dual Use Program Report provides a summary review of the results and status of the nine (9) Dual Use technology development partnership projects funded and managed at SSC during FY2003. The objective of these partnership projects is to develop or enhance technologies that will meet the technology needs of the two NASA SSC Mission Areas: Propulsion Test and Earth Science Applications. During FY2003, the TDTO managed twenty (20) SBIR Phase II Projects and two (2) STTR Phase II Projects. The SBIR contracts support low TRL technology development that supports both the Propulsion Test and the Earth Science Application missions. These projects are shown in the SBIR/STTR Report. In addition to the Phase II contracts, the TDTO managed ten (10) SBIR Phase I contracts which are fixed price, six month feasibility study contracts. These are not listed in this report. Together, the Dual Use Projects and the SBIR/STTR Projects constitute a technology development partnership approach that has demonstrated that success can be achieved through the identification of the technical needs of the NASA mission and using various available partnership techniques to maximize resource utilization to achieve mutual technology goals. Greater use of these partnership techniques and the resource leveraging they provide, is a goal of the TDTO, providing more support to meet the technology development needs of the mission areas at SSC.
NASA Technical Reports Server (NTRS)
Wood, Richard J.
1992-01-01
The Architecture for Survivable Systems Processing (ASSP) program is a two phase program whose objective is the derivation, specification, development and validation of an open system architecture capable of supporting advanced processing needs of space, ground, and launch vehicle operations. The output of the first phase is a set of hardware and software standards and specifications defining this architecture at three levels. The second phase will validate these standards and develop the technology necessary to achieve strategic hardness, packaging density, throughput requirements, and interoperability/interchangeability.
NRMRL-RTP-193b Miller*, C.A., Dreher, KL, Wentsel*, R., and Nadeau*, R.J. Environmental Impacts of the Use of Orimulsion (R): Report to Congress on Phase I of the Orimulsion Technology Assessment Program, Volume 2. 2001. EPA/600/R-01/056b (NTIS PB2002-109040). 05/15/2000 The rep...
PUB REPORT NRMRL-RTP-193a Miller*, C.A., Dreher, KL, Wentsel*, R., and Nadeau*, R.J. Environmental Impacts of the Use of Orimulsion: Report to Congress on Phase 1 of the Orimulsion Technology Assessmernt Program: Volume 1:. 2001. EPA/600/R-01/056a (NTIS PB2002-109039). 05/15/200...
ERIC Educational Resources Information Center
Far West Lab. for Educational Research and Development, San Francisco, CA.
This report, the fourth in a series of six, describes the evaluative studies conducted during Phase II of the California Educational Technology Assessment Program, the California Technology Project (CTP), and the CTP Regional Consortia. The report begins with background information on the CTP, starting with the earlier statewide network of…
Multi-megawatt inverter/converter technology for space power applications
NASA Technical Reports Server (NTRS)
Myers, Ira T.; Baumann, Eric D.; Kraus, Robert; Hammoud, Ahmad N.
1992-01-01
Large power conditioning mass reductions will be required to enable megawatt power systems envisioned by the Strategic Defense Initiative, the Air Force, and NASA. Phase 1 of a proposed two phase interagency program has been completed to develop an 0.1 kg/kW DC/DC converter technology base for these future space applications. Three contractors, Hughes, General Electric (GE), and Maxwell were Phase 1 contractors in a competitive program to develop a megawatt lightweight DC/DC converter. Researchers at NASA Lewis Research Center and the University of Wisconsin also investigated technology in topology and control. All three contractors, as well as the University of Wisconsin, concluded at the end of the Phase 1 study, which included some critical laboratory work, that 0.1-kg/kW megawatt DC/DC converters can be built. This is an order of magnitude lower specific weight than is presently available. A brief description of each of the concepts used to meet the ambitious goals of this program are presented.
State perspectives on clean coal technology deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreland, T.
1997-12-31
State governments have been funding partners in the Clean Coal Technology program since its beginnings. Today, regulatory and market uncertainties and tight budgets have reduced state investment in energy R and D, but states have developed program initiatives in support of deployment. State officials think that the federal government must continue to support these technologies in the deployment phase. Discussions of national energy policy must include attention to the Clean Coal Technology program and its accomplishments.
The NASA program in Space Energy Conversion Research and Technology
NASA Astrophysics Data System (ADS)
Mullin, J. P.; Flood, D. J.; Ambrus, J. H.; Hudson, W. R.
The considered Space Energy Conversion Program seeks advancement of basic understanding of energy conversion processes and improvement of component technologies, always in the context of the entire power subsystem. Activities in the program are divided among the traditional disciplines of photovoltaics, electrochemistry, thermoelectrics, and power systems management and distribution. In addition, a broad range of cross-disciplinary explorations of potentially revolutionary new concepts are supported under the advanced energetics program area. Solar cell research and technology are discussed, taking into account the enhancement of the efficiency of Si solar cells, GaAs liquid phase epitaxy and vapor phase epitaxy solar cells, the use of GaAs solar cells in concentrator systems, and the efficiency of a three junction cascade solar cell. Attention is also given to blanket and array technology, the alkali metal thermoelectric converter, a fuel cell/electrolysis system, and thermal to electric conversion.
The NASA program in Space Energy Conversion Research and Technology
NASA Technical Reports Server (NTRS)
Mullin, J. P.; Flood, D. J.; Ambrus, J. H.; Hudson, W. R.
1982-01-01
The considered Space Energy Conversion Program seeks advancement of basic understanding of energy conversion processes and improvement of component technologies, always in the context of the entire power subsystem. Activities in the program are divided among the traditional disciplines of photovoltaics, electrochemistry, thermoelectrics, and power systems management and distribution. In addition, a broad range of cross-disciplinary explorations of potentially revolutionary new concepts are supported under the advanced energetics program area. Solar cell research and technology are discussed, taking into account the enhancement of the efficiency of Si solar cells, GaAs liquid phase epitaxy and vapor phase epitaxy solar cells, the use of GaAs solar cells in concentrator systems, and the efficiency of a three junction cascade solar cell. Attention is also given to blanket and array technology, the alkali metal thermoelectric converter, a fuel cell/electrolysis system, and thermal to electric conversion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abe, Katsunori; Kohyama, Akira; Tanaka, Satoru
This report describes an outline of the activities of the JUPITER-II collaboration (japan-USA program of Irradiation/Integration test for Fusion Research-II), Which has bee carried out through six years (2001-2006) under Phase 4 of the collabroation implemented by Amendment 4 of Annex 1 to the DOE (United States Department of Energy)-MEXT (Ministry of Education ,Culture,Sports,Science and Technology) Cooperation. This program followed the RTNS-II Program (Phase1:1982-4986), the FFTF/MOTA Program (Phase2:1987-1994) and the JUPITER Program (Phase 3: 1995-2000) [1].
Advanced Natural Gas Reciprocating Engine(s)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pike, Edward
The objective of the Cummins ARES program, in partnership with the US Department of Energy (DOE), is to develop advanced natural gas engine technologies that increase engine system efficiency at lower emissions levels while attaining lower cost of ownership. The goals of the project are to demonstrate engine system achieving 50% Brake Thermal Efficiency (BTE) in three phases, 44%, 47% and 50% (starting baseline efficiency at 36% BTE) and 0.1 g/bhp-hr NOx system out emissions (starting baseline NOx emissions at 2 – 4 g/bhp-hr NOx). Primary path towards above goals include high Brake Mean Effective Pressure (BMEP), improved closed cyclemore » efficiency, increased air handling efficiency and optimized engine subsystems. Cummins has successfully demonstrated each of the phases of this program. All targets have been achieved through application of a combined set of advanced base engine technologies and Waste Heat Recovery from Charge Air and Exhaust streams, optimized and validated on the demonstration engine and other large engines. The following architectures were selected for each Phase: Phase 1: Lean Burn Spark Ignited (SI) Key Technologies: High Efficiency Turbocharging, Higher Efficiency Combustion System. In production on the 60/91L engines. Over 500MW of ARES Phase 1 technology has been sold. Phase 2: Lean Burn Technology with Exhaust Waste Heat Recovery (WHR) System Key Technologies: Advanced Ignition System, Combustion Improvement, Integrated Waste Heat Recovery System. Base engine technologies intended for production within 2 to 3 years Phase 3: Lean Burn Technology with Exhaust and Charge Air Waste Heat Recovery System Key Technologies: Lower Friction, New Cylinder Head Designs, Improved Integrated Waste Heat Recovery System. Intended for production within 5 to 6 years Cummins is committed to the launch of next generation of large advanced NG engines based on ARES technology to be commercialized worldwide.« less
Cast Aluminum Structures Technology (CAST) Phase VI. Technology Transfer.
1980-04-01
and other aspects of the program was provided as follows: o Phase I--Preliminary Design Richard C. Jones o Phase il--Manufacturing Methods Richard G...Christner o Phase Ill--Detailed Design Richard C. Jones o Phase IV--Fabrication of Demonstration Richard G. Christner Articles and Production... Richard C. Jones, assisted by Carlos J. Romero, Christian K. Gunther, Cecil E. Parsons, and Donald D. Goehler; and by Walter Hyler of Battelle Columbus
ERIC Educational Resources Information Center
Far West Lab. for Educational Research and Development, San Francisco, CA.
This report, the second in a series of six, presents the findings of evaluative studies of six Level I Model Technology School sites which were conducted as part of Phase II of the California Educational Technology Assessment Program. The project sites are: Alhambra City School District (two schools); Cupertino Union Elementary District and…
Advanced Turbine Systems annual program review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koop, W.E.
1995-10-01
Integrated High Performance Turbine Engine Technology (IHPTET) is a joint Air Force, Navy, Army, NASA, ARPA, and industry program focused on developing turbine engine technologies, with the goal of doubling propulsion capability by around the turn-of-the-century, and thus providing smaller, lighter, more durable, more affordable turbine engines in the future. IHPTET`s technology development plan for increasing propulsion capability with respect to time is divided into three phases. This phased approach reduces the technological risk of taking one giant leap, and also reduces the {open_quotes}political{close_quotes} risk of not delivering a product for an extended period of time, in that the phasingmore » allows continuous transfer of IHPTET technologies to our warfighters and continuous transfer to the commercial sector (dual-use). The IHPTET program addresses the three major classes of engines: turbofan/turbojet, turboshaft/turboprop, and expendables.« less
Brayton advanced heat receiver development program
NASA Technical Reports Server (NTRS)
Heidenreich, G. R.; Downing, R. S.; Lacey, Dovie E.
1989-01-01
NASA Lewis Research Center is managing an advanced solar dynamic (ASD) space power program. The objective of the ASD program is to develop small and lightweight solar dynamic systems which show significant improvement in efficiency and specific mass over the baseline design derived from the Space Station Freedom technology. The advanced heat receiver development program is a phased program to design, fabricate and test elements of a 7-kWe heat-receiver/thermal-energy-storage subsystem. Receivers for both Brayton and Stirling heat engines are being developed under separate contracts. Phase I, described here, is the current eighteen month effort to design and perform critical technology experiments on innovative concepts designed to reduce mass without compromising thermal efficiency and reliability.
An Overview of SBIR Phase 2 Physical Sciences and Biomedical Technologies in Space
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2015-01-01
Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing areas in physical sciences and biomedical technologies in space, which is one of six core competencies at NASA Glenn Research Center. There are twenty two technologies featured with emphasis on a wide spectrum of applications such as reusable handheld electrolyte, sensor for bone markers, wideband single crystal transducer, mini treadmill for musculoskeletal, and much more. Each article in this report describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.
Using Avatars to Model Weight Loss Behaviors: Participant Attitudes and Technology Development
Napolitano, Melissa A.; Hayes, Sharon; Russo, Giuseppe; Muresu, Debora; Giordano, Antonio; Foster, Gary D.
2013-01-01
Background: Virtual reality and other avatar-based technologies are potential methods for demonstrating and modeling weight loss behaviors. This study examined avatar-based technology as a tool for modeling weight loss behaviors. Methods: This study consisted of two phases: (1) an online survey to obtain feedback about using avatars for modeling weight loss behaviors and (2) technology development and usability testing to create an avatar-based technology program for modeling weight loss behaviors. Results: Results of phase 1 (n = 128) revealed that interest was high, with 88.3% stating that they would participate in a program that used an avatar to help practice weight loss skills in a virtual environment. In phase 2, avatars and modules to model weight loss skills were developed. Eight women were recruited to participate in a 4-week usability test, with 100% reporting they would recommend the program and that it influenced their diet/exercise behavior. Most women (87.5%) indicated that the virtual models were helpful. After 4 weeks, average weight loss was 1.6 kg (standard deviation = 1.7). Conclusion: This investigation revealed a high level of interest in an avatar-based program, with formative work indicating promise. Given the high costs associated with in vivo exposure and practice, this study demonstrates the potential use of avatar-based technology as a tool for modeling weight loss behaviors. PMID:23911189
Installation Restoration Program. Phase II--Confirmation/Quantification. Stage 1.
1985-03-01
four phases. Phase I, Initial Assessment/ Records Search, is designed to identify possible hazardous waste contami- nated sites and potential...7 71 -. - - IL’ -, 1% 33 AihlIII Is 33 n~iL t iiC UII! ii CL C LU 1-3, Phase II, Confirmation and Quantification, is designed to confirm the...additional monitoring data upon which design of mitigative actions are based. In Phase III, Technology Base Development, appropriate technology is selected and
Microgravity fluid management requirements of advanced solar dynamic power systems
NASA Technical Reports Server (NTRS)
Migra, Robert P.
1987-01-01
The advanced solar dynamic system (ASDS) program is aimed at developing the technology for highly efficient, lightweight space power systems. The approach is to evaluate Stirling, Brayton and liquid metal Rankine power conversion systems (PCS) over the temperature range of 1025 to 1400K, identify the critical technologies and develop these technologies. Microgravity fluid management technology is required in several areas of this program, namely, thermal energy storage (TES), heat pipe applications and liquid metal, two phase flow Rankine systems. Utilization of the heat of fusion of phase change materials offers potential for smaller, lighter TES systems. The candidate TES materials exhibit large volume change with the phase change. The heat pipe is an energy dense heat transfer device. A high temperature application may transfer heat from the solar receiver to the PCS working fluid and/or TES. A low temperature application may transfer waste heat from the PCS to the radiator. The liquid metal Rankine PCS requires management of the boiling/condensing process typical of two phase flow systems.
NASA Technical Reports Server (NTRS)
1985-01-01
Technology payoffs of representative ground based (Phase 1) and space based (Phase 2) mid lift/drag ratio aeroassisted orbit transfer vehicles (AOTV) were assessed and prioritized. A narrative summary of the cost estimates and work breakdown structure/dictionary for both study phases is presented. Costs were estimated using the Grumman Space Programs Algorithm for Cost Estimating (SPACE) computer program and results are given for four AOTV configurations. The work breakdown structure follows the standard of the joint government/industry Space Systems Cost Analysis Group (SSCAG). A table is provided which shows cost estimates for each work breakdown structure element.
1987-06-15
GENERAL DYNAMICS FORT WORTH DIVISION INDUSTRIAL TECHNOLOGY00 N MODERNIZATION PROGRAM Phase 2 Final Project Report DT C JUNO 7 1989J1K PROJECT 20...CLASSIFICATION O THIS PAGE All other editions are obsolete. unclassified Honeywell JUNE 15, 1987 GENERAL DYNAMICS FORT WORTH DIVISION INDUSTRIAL ...SYSTEMIEQUIPMENT/MACHINING SPECIFICATIONS 33 9 VENDOR/ INDUSTRY ANALYSIS FINDING 39 10 MIS REQUIREMENTS/IMPROVEMENTS 45 11 COST BENEFIT ANALYSIS 48 12 IMPLEMENTATION
An Overview of Power, Energy Storage, and Conversion Efforts for 2014 SBIR Phases I and II
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2016-01-01
Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights 15 of the innovative SBIR 2014 Phase I and II projects that focus on one of NASA Glenn Research Center's six core competencies-Power, Energy Storage and Conversion. The technologies cover a wide spectrum of applications such as high-radiation-tolerant ceramic voltage isolators, development of hermetic sealing glasses for solid oxide fuel cells, rechargeable lithium metal cells, high-efficiency direct methane solid oxide fuel cell systems, Li metal protection for high-energy space batteries, isolated bidirectional direct current converters for distributed battery energy applications, and high-efficiency rad-hard ultrathin Si photovoltaic cell technology for space. Each article describes an innovation and technical objective and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.
ERIC Educational Resources Information Center
Miller, James G.
A national program is necessary to discover and implement the best ways to utilize educational technology. Several university centers for research and development on instructional technology could provide a basis for national initiative in this field. These centers should carry out basic research on systems theory, with emphasis on such fields as…
2011-06-01
testing and evaluation of SBIR and STTR technologies in SBIR and STTR Phases II and III. The implementation requirements were specified in the text of...manufacturing technologies through the SBIR and STTR programs. Fourth, Congress clarified the authority to conduct testing and evaluation of SBIR and STTR...17 A. SURVEY GOALS ..........................................................................................17 B. SURVEY DESIGN
The NASA modern technology rotors program
NASA Technical Reports Server (NTRS)
Watts, M. E.; Cross, J. L.
1986-01-01
Existing data bases regarding helicopters are based on work conducted on 'old-technology' rotor systems. The Modern Technology Rotors (MTR) Program is to provide extensive data bases on rotor systems using present and emerging technology. The MTR is concerned with modern, four-bladed, rotor systems presently being manufactured or under development. Aspects of MTR philosophy are considered along with instrumentation, the MTR test program, the BV 360 Rotor, and the UH-60 Black Hawk. The program phases include computer modelling, shake test, model-scale test, minimally instrumented flight test, extensively pressure-instrumented-blade flight test, and full-scale wind tunnel test.
Dental Laboratory Technology. Project Report Phase I with Research Findings.
ERIC Educational Resources Information Center
Sappe', Hoyt; Smith, Debra S.
This report provides results of Phase I of a project that researched the occupational area of dental laboratory technology, established appropriate committees, and conducted task verification. These results are intended to guide development of a program designed to train dental laboratory technicians. Section 1 contains general information:…
Instrumentation Technology. Project Report Phase I with Research Findings.
ERIC Educational Resources Information Center
Sappe', Hoyt; Squires, Sheila S.
This report provides results of Phase I of a project that researched the occupational area of instrumentation technology, established appropriate committees, and conducted task verification. These results are intended to guide development of a program designed to train instrumentation technicians. Section 1 contains general information: purpose of…
40 CFR 90.113 - In-use testing program for Phase 1 engines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... emission control technology which most likely will be used on Phase 2 engines; (2) Engine families using... technology specifically installed to achieve compliance with emission standards of this part; (6) The engine... with itself or its vehicle manufacturer. (2) A test engine should have a maintenance history...
1985-05-24
Tracor INDUSTRIAL TECHNOLOGY MODERNIZATION PROGRAM DTICRt .1ECTE CDJUN07 1989 00 PHASE 3 PROPOSAL CATEGORY 1 PROJECT COUNTERMEASURES ASSEMBLY...package in bin C V_ Put-package back in bin C Put part in plastic bag 0CDV _7 _ ] Seal plastic bag with stapler CDDV _ _- 1 Mark paperwork CDV __ I Peel...part in plastic bag CDV7 Seal plastic bag with stapler C>CDV _ Mark paperwork ~CV_ _ Peel preprinted tag from sheet ~ D Put preprinted tag on plastic
An Overview of Air-Breathing Propulsion Efforts for 2015 SBIR Phase I
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2016-01-01
NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights 24 of the innovative SBIR 2015 Phase I projects that emphasize one of NASA Glenn Research Center's six core competencies-Air-Breathing Propulsion. The technologies cover a wide spectrum of applications such as hybrid nanocomposites for efficient aerospace structures; plasma flow control for drag reduction; physics-based aeroanalysis methods for open rotor conceptual designs; vertical lift by series hybrid power; fast pressure-sensitive paint systems for production wind tunnel testing; rugged, compact, and inexpensive airborne fiber sensor interrogators based on monolithic tunable lasers; and high sensitivity semiconductor sensor skins for multi-axis surface pressure characterization. Each featured technology describes an innovation and technical objective and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.
An Overview of SBIR Phase 2 Airbreathing Propulsion Technologies
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.; Bitler, Dean W.
2014-01-01
Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing areas in Airbreathing Propulsion which is one of six core competencies at NASA Glenn Research Center. There are twenty technologies featured with emphasis on a wide spectrum of applications such as with a Turbo-Brayton cryocooler for aircraft superconducting systems, braided composite rotorcraft structures, engine air brake, combustion control valve, flexible composite driveshaft, and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.
Large deployable antenna program. Phase 1: Technology assessment and mission architecture
NASA Technical Reports Server (NTRS)
Rogers, Craig A.; Stutzman, Warren L.
1991-01-01
The program was initiated to investigate the availability of critical large deployable antenna technologies which would enable microwave remote sensing missions from geostationary orbits as required for Mission to Planet Earth. Program goals for the large antenna were: 40-meter diameter, offset-fed paraboloid, and surface precision of 0.1 mm rms. Phase 1 goals were: to review the state-of-the-art for large, precise, wide-scanning radiometers up to 60 GHz; to assess critical technologies necessary for selected concepts; to develop mission architecture for these concepts; and to evaluate generic technologies to support the large deployable reflectors necessary for these missions. Selected results of the study show that deployable reflectors using furlable segments are limited by surface precision goals to 12 meters in diameter, current launch vehicles can place in geostationary only a 20-meter class antenna, and conceptual designs using stiff reflectors are possible with areal densities of 2.4 deg/sq m.
Description and Flight Test Results of the NASA F-8 Digital Fly-by-Wire Control System
NASA Technical Reports Server (NTRS)
1975-01-01
A NASA program to develop digital fly-by-wire (DFBW) technology for aircraft applications is discussed. Phase I of the program demonstrated the feasibility of using a digital fly-by-wire system for aircraft control through developing and flight testing a single channel system, which used Apollo hardware, in an F-8C airplane. The objective of Phase II of the program is to establish a technology base for designing practical DFBW systems. It will involve developing and flight testing a triplex digital fly-by-wire system using state-of-the-art airborne computers, system hardware, software, and redundancy concepts. The papers included in this report describe the Phase I system and its development and present results from the flight program. Man-rated flight software and the effects of lightning on digital flight control systems are also discussed.
The SITE Program funded a field demonstration to evaluate the Eco Logic Gas-Phase Chemical Reduction Process developed by ELI Eco Logic International Inc. (ELI), Ontario, Canada. The Demonstration took place at the Middleground Landfill in Bay City, Michigan using landfill wa...
The Boeing Company's Manufacturing Technology Student Internship. Evaluation Report.
ERIC Educational Resources Information Center
Owens, Thomas R.
The Boeing Company contracted with the Northwest Regional Educational Laboratory to evaluate its student internship program, part of a "school-to-work" effort modeled after the nationally recognized Tech Prep initiative. The company's involvement in the Tech Prep Program has been implemented in three phases: (1) the initial phase helped…
2008-04-01
a recommendation to the Phase I Sponsor, the NAVSEA SBIR Program Manager, and the PCO between 90 and 180 days after Phase I contract execution...determine eligibility for Phase II and send recommendations to sponsor Between 90 and 180 days after contract execution PCO Invites Phase II Proposals...manning study to evaluate the claim of inadequate numbers of contracting personnel. Although there were symptoms that contract delays were in part
Finding the Funds for Technology.
ERIC Educational Resources Information Center
Wodarz, Nan
1996-01-01
Describes strategies to meet the increasing demands for technological innovation in the face of increasingly severe budgetary constraints. Long-term planning is the key to a successful technological program. Describes the options of leasing, financing, and phased-in purchases. (LMI)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donley, Tim
2014-12-31
Cooper completed an investigation into new tire technology using a novel approach to develop and demonstrate a new class of fuel efficient tires using innovative materials technology and tire design concepts. The objective of this work was to develop a new class of fuel efficient tires, focused on the “replacement market” that would improve overall passenger vehicle fuel efficiency by 3% while lowering the overall tire weight by 20%. A further goal of this project was to accomplish the objectives while maintaining the traction and wear performance of the control tire. This program was designed to build on what hasmore » already been accomplished in the tire industry for rolling resistance based on the knowledge and general principles developed over the past decades. Cooper’s CS4 (Figure #1) premium broadline tire was chosen as the control tire for this program. For Cooper to achieve the goals of this project, the development of multiple technologies was necessary. Six technologies were chosen that are not currently being used in the tire industry at any significant level, but that showed excellent prospects in preliminary research. This development was divided into two phases. Phase I investigated six different technologies as individual components. Phase II then took a holistic approach by combining all the technologies that showed positive results during phase one development.« less
Rigid Polyurethane Foam (RPF) Technology for Countermines (Sea) Program Phase II
DOE Office of Scientific and Technical Information (OSTI.GOV)
WOODFIN,RONALD L.; FAUCETT,DAVID L.; HANCE,BRADLEY G.
This Phase II report documents the results of one subtask initiated under the joint Department of Energy (DOE)/Department of Defense (DoD) Memorandum of Understanding (MOU) for Countermine Warfare. The development of Rigid Polyurethane Foams for neutralization of mines and barriers in amphibious assault was the objective of the tasking. This phase of the program concentrated on formation of RPF in water, explosive mine simulations, and development of foam and fabric pontoons. Field experimentation was done primarily at the Energetic Materials Research and Testing Center (EMRTC) of the New Mexico Institute of Mining and Technology, Socorro, NM between February 1996 andmore » September 1998.« less
NASA Technical Reports Server (NTRS)
Houpt, Tracy; Ridgely, Margaret
1991-01-01
The Air Force Manufacturing Technology program is involved with the improvement of radar transmit/receive modules for use in active phased array radars for advanced fighter aircraft. Improvements in all areas of manufacture and test of these modules resulting in order of magnitude improvements in the cost of and the rate of production are addressed, as well as the ongoing transfer of this technology to the Navy.
Technology transfer program: Perspective
NASA Technical Reports Server (NTRS)
Toyshov, A. J.
1981-01-01
Most of NASA's technology transfer activities are in the area of land use (development, suitability, and planning); forestry (including wildlife and range and vegetation inventories) agriculture related activities; and water resources. The technology dissemination function is exercised through three regional applications centers which are involved in 91 applications projects within 22 states. In addition there are approximately eight application system verification transfer (ASVT) projects, 21 university applications branches, institutionalized liason activities with public interest groups, and user requirements activities. As the result of budget cuts, the ASVT and user requirements and awareness programs are to be phased out at the end of FY81. The university applications programs are to be phased down and terminated by 1985. NASA will continue to work with the user more in an R & D and an applications development capacity, and not in a national scale or administrative way.
Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Parag Kulkarni; Wei Wei
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research is developing an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE was awarded a contract frommore » U.S. DOE NETL to develop the UFP technology. Work on the Phase I program started in October 2000, and work on the Phase II effort started in April 2005. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions with an estimated efficiency higher than IGCC with conventional CO2 separation. The Phase I R&D program established the feasibility of the integrated UFP technology through lab-, bench- and pilot-scale testing and investigated operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The Phase I effort integrated experimental testing, modeling and preliminary economic studies to demonstrate the UFP technology. The Phase II effort will focus on three high-risk areas: economics, sorbent attrition and lifetime, and product gas quality for turbines. The economic analysis will include estimating the capital cost as well as the costs of hydrogen and electricity for a full-scale UFP plant. These costs will be benchmarked with IGCC polygen costs for plants of similar size. Sorbent attrition and lifetime will be addressed via bench-scale experiments that monitor sorbent performance over time and by assessing materials interactions at operating conditions. The product gas from the third reactor (high-temperature vitiated air) will be evaluated to assess the concentration of particulates, pollutants and other impurities relative to the specifications required for gas turbine feed streams. This is the eighteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974) and GE. This report summarizes program accomplishments for the Phase II period starting July 01, 2005 and ending September 30, 2005. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including process modeling, scale-up and economic analysis.« less
NASA Technical Reports Server (NTRS)
Cadogan, Dave; Lingo, Bob
1996-01-01
In July of 1996, ILC Dover was awarded Phase 1 of a contract for NASA to develop a prototype Power Assisted Space Suit glove to enhance the performance of astronauts during Extra-Vehicular Activity (EVA). This report summarizes the work performed to date on Phase 1, and details the work to be conducted on Phase 2 of the program. Phase 1 of the program consisted of research and review of related technical sources, concept brainstorming, baseline design development, modeling and analysis, component mock-up testing, and test data analysis. ILC worked in conjunction with the University of Maryland's Space Systems Laboratory (SSL) to develop the power assisted glove. Phase 2 activities will focus on the design maturation and the manufacture of a working prototype system. The prototype will be tested and evaluated in conjunction with existing space suit glove technology to determine the performance enhancement anticipated with the implementation of the power assisted joint technology in space suit gloves.
Cadilhac, Dominique A; Moloczij, Natasha; Denisenko, Sonia; Dewey, Helen; Disler, Peter; Winzar, Bruce; Mosley, Ian; Donnan, Geoffrey A; Bladin, Christopher
2014-02-01
Urgent treatment of acute stroke in rural Australia is problematic partly because of limited access to medical specialists. Utilization of telemedicine could improve delivery of acute stroke treatments in rural communities. The study aims to demonstrate enhanced clinical decision making for use of thrombolysis within 4·5 h of ischemic stroke symptom onset in a rural setting using a telemedicine specialist support model. A formative program evaluation research design was used. The Victorian Stroke Telemedicine program was developed and will be evaluated over five stages to ensure successful implementation. The phases include: (a) preimplementation phase to establish the Victorian Stroke Telemedicine program including the clinical pathway, data collection tools, and technology processes; (b) pilot clinical application phase to test the pathway in up to 10 patients; (c) modification phase to refine the program; (d) full clinical implementation phase where the program is maintained for one-year; and (e) a sustainability phase to assess project outcomes over five-years. Qualitative (clinician interviews) and quantitative data (patient, clinician, costs, and technology processes) are collected in each phase. The primary outcome is to achieve a minimum 10% absolute increase in eligible patients treated with thrombolysis. Secondary outcomes are utilization of the telestroke pathway and improvements in processes of stroke care (e.g., time to brain scan). We will report door to telemedicine consultation time, length of telemedicine consultation, clinical utility and acceptability from the perspective of clinicians, and 90-day patient outcomes. This research will provide evidence for an effective telestroke program for use in regional Australian hospitals. © 2013 The Authors. International Journal of Stroke © 2013 World Stroke Organization.
Small Business Innovation Research. Program solicitation. Closing date: July 21, 1992
NASA Technical Reports Server (NTRS)
1992-01-01
The National Aeronautics and Space Administration (NASA) invites small businesses to submit Phase 1 proposals in response to its Small Business Innovation Research (SBIR) Program Solicitation 92-1. Firms with research or research and development capabilities (R/R&D) in science or engineering in any of the areas listed are encouraged to participate. This, the tenth annual SBIR solicitation by NASA, describes the program, identifies eligibility requirements, describes the proposal evaluation and award selection process, and provides other information to assist those interested in participating in NASA's SBIR program. It also identifies, in Section 8.0, the technical topics and subtopics in which SBIR Phase 1 proposals are solicited in 1992. These topics and subtopics cover a broad range of current NASA interests but do not necessarily include all areas in which NASA plans or currently conducts research. The NASA SBIR program seeks innovative approaches that respond to the needs, technical requirements, and new opportunities described in the subtopics. The focus is on innovation through the use of emerging technologies, novel applications of existing technologies, exploitation of scientific breakthroughs, or new capabilities or major improvements to existing technologies. NASA plans to select about 320 high-quality research or research and development proposals for Phase 1 contract awards on the basis of this Solicitation. Phase 1 contracts are normally six months in duration and funded up to $50,000, including profit. Selections will be based on the competitive merits of the offers and on NASA needs and priorities.
An Overview of SBIR Phase 2 In-Space Propulsion and Cryogenic Fluids Management
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2015-01-01
Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing Areas in In-Space Propulsion and Cryogenic Fluids Management which is one of six core competencies at NASA Glenn Research Center. There are nineteen technologies featured with emphasis on a wide spectrum of applications such as high-performance Hall thruster support system, thruster discharge power converter, high-performance combustion chamber, ion thruster design tool, green liquid monopropellant thruster, and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.
An Overview of SBIR Phase 2 Materials Structures for Extreme Environments
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2015-01-01
Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing Areas in Materials and Structures for Extreme Environments which is one of six core competencies at NASA Glenn Research Center. There are twenty three technologies featured with emphasis on a wide spectrum of applications such as fine-filament superconductor wire, composite oxide cathode materials, nano-composites, high radiation solar cell, wrapped multilayer insulation, thin aerogel, and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2016-01-01
NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for Agency programs. This report highlights 11 of the innovative SBIR 2014 Phase I and II projects from 2010 to 2012 that focus on one of NASA Glenn Research Center's six core competencies-In-Space Propulsion and Cryogenic Fluids Management. The technologies cover a wide spectrum of applications such as divergent field annular ion engines, miniature nontoxic nitrous oxide-propane propulsion, noncatalytic ignition systems for high-performance advanced monopropellant thrusters, nontoxic storable liquid propulsion, and superconducting electric boost pumps for nuclear thermal propulsion. Each article describes an innovation and technical objective and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.
1985-03-01
ability to use high technology and the ability to learn new technology as it develops. Soldiers need more than training. They need enough education to...WORK UNIT NUMBERS Florida State Universi ty Center for Educational Technology Tallahassee, FL 32306 2Q263743A794 11. CONTROLLING OFFICE NAME AND...7 - 7 7 7. * Research Note 85-46 Job Skills Education Program: Phase I Report Robert K. Branson I Florida State University * 01 and Lois Wison
Lancioni, Giulio E; Singh, Nirbhay N; O'Reilly, Mark F; Sigafoos, Jeff; Alberti, Gloria; Perilli, Viviana; Zimbaro, Carmen; Boccasini, Adele; Mazzola, Carlo; Russo, Roberto
2018-06-01
This study assessed a technology-aided program (monitoring responding, and ensuring preferred stimulation and encouragements) for promoting physical activity with 11 participants with severe/profound intellectual and multiple disabilities. Each participant was provided with an exercise device (e.g. a static bicycle and a stepper) and exposed to the program according to an ABAB design, in which A and B represented baseline and intervention phases, respectively. Data recording concerned (a) the participants' responses with the exercise device (e.g. pedaling) during baseline and intervention phases and (b) their heart rates during the last intervention phase. The results showed that all participants had significant increases in responding with the exercise devices during the intervention phases. Heart-rate values during the intervention sessions indicated that the participants' responding during those sessions mostly amounted to moderate-intensity physical activity, with potential benefits for their overall physical condition. Implications of the findings and questions for future research in the area were discussed.
NASA's PEM Fuel Cell Power Plant Development Program for Space Applications
NASA Technical Reports Server (NTRS)
Hoberecht, Mark A.
2008-01-01
A three-center NASA team led by the Glenn Research Center in Cleveland, Ohio is completing a five-year PEM fuel cell power plant development program for future space applications. The focus of the program has been to adapt commercial PEM fuel cell technology for space applications by addressing the key mission requirements of using pure oxygen as an oxidant and operating in a multi-gravity environment. Competing vendors developed breadboard units in the 1 to 5 kW power range during the first phase of the program, and a single vendor developed a nominal 10-kW engineering model power pant during the second phase of the program. Successful performance and environmental tests conducted by NASA established confidence that PEM fuel cell technology will be ready to meet the electrical power needs of future space missions.
Knowledge Capture and Management for Space Flight Systems
NASA Technical Reports Server (NTRS)
Goodman, John L.
2005-01-01
The incorporation of knowledge capture and knowledge management strategies early in the development phase of an exploration program is necessary for safe and successful missions of human and robotic exploration vehicles over the life of a program. Following the transition from the development to the flight phase, loss of underlying theory and rationale governing design and requirements occur through a number of mechanisms. This degrades the quality of engineering work resulting in increased life cycle costs and risk to mission success and safety of flight. Due to budget constraints, concerned personnel in legacy programs often have to improvise methods for knowledge capture and management using existing, but often sub-optimal, information technology and archival resources. Application of advanced information technology to perform knowledge capture and management would be most effective if program wide requirements are defined at the beginning of a program.
Phased Retrofits in Existing Homes in Florida Phase I: Shallow and Deep Retrofits
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. Parker; Sutherland, K.; Chasar, D.
2016-02-01
The U.S. Department of Energy (DOE) Building America program, in collaboration with Florida Power and Light (FPL), conducted a phased residential energy-efficiency retrofit program. This research sought to establish impacts on annual energy and peak energy reductions from the technologies applied at two levels of retrofit - shallow and deep, with savings levels approaching the Building America program goals of reducing whole-house energy use by 40%. Under the Phased Deep Retrofit (PDR) project, we have installed phased, energy-efficiency retrofits in a sample of 56 existing, all-electric homes. End-use savings and economic evaluation results from the phased measure packages and singlemore » measures are summarized in this report.« less
NASA Technical Reports Server (NTRS)
Francoeur, J. R.
1992-01-01
The Strategic Technologies in Automation and Robotics (STEAR) program is managing a number of development contracts to improve the protection of spacecraft materials from the Low Earth Orbit (LEO) space environment. The project is structured in two phases over a 3 to 4 year period with a budget of 3 to 4 million dollars. Phase 1 is designed to demonstrate the technical feasibility and commercial potential of a coating/substrate system and its associated application process. The objective is to demonstrate a prototype fabrication capability using a full scale component of a commercially viable process for the protection of materials and surface finishes from the LEO space environment, and to demonstrate compliance with a set of performance requirements. Only phase 1 will be discussed in this paper.
Gill, Dawn P; Blunt, Wendy; Bartol, Cassandra; Pulford, Roseanne W; De Cruz, Ashleigh; Simmavong, P Karen; Gavarkovs, Adam; Newhouse, Ian; Pearson, Erin; Ostenfeldt, Bayley; Law, Barbi; Karvinen, Kristina; Moffit, Pertice; Jones, Gareth; Watson, Cori; Zou, Guangyong; Petrella, Robert J
2017-02-07
Physical inactivity is one of the leading causes of chronic disease in Canadian adults. With less than 50% of Canadian adults reaching the recommended amount of daily physical activity, there is an urgent need for effective programs targeting this risk factor. HealtheSteps™ is a healthy lifestyle prescription program, developed from an extensive research base to address risk factors for chronic disease such as physical inactivity, sedentary behaviour and poor eating habits. HealtheSteps™ participants are provided with in-person lifestyle coaching and access to eHealth technologies delivered in community-based primary care clinics and health care organizations. To determine the effectiveness of Healthesteps™, we will conduct a 6-month pragmatic randomized controlled trial with integrated process and economic evaluations of HealtheSteps™ in 5 clinic settings in Southwestern Ontario. 110 participants will be individually randomized (1:1; stratified by site) to either the intervention (HealtheSteps™ program) or comparator (Wait-list control). There are 3 phases of the HealtheSteps™ program, lasting 6 months each. The active phase consists of bi-monthly in-person coaching with access to a full suite of eHealth technology supports. During the maintenance phase I, the in-person coaching will be removed, but participants will still have access to the full suite of eHealth technology supports. In the final stage, maintenance phase II, access to the full suite of eHealth technology supports is removed and participants only have access to publicly available resources and tools. This trial aims to determine the effectiveness of the program in increasing physical activity levels and improving other health behaviours and indicators, the acceptability of the HealtheSteps™ program, and the direct cost for each person participating in the program as well as the costs associated with delivering the program at the different community sites. These results will inform future optimization and scaling up of the program into additional community-based primary care sites. NCT02413385 (Clinicaltrials.gov). Date Registered: April 6, 2015.
NASA Goddard Thermal Technology Overview 2018
NASA Technical Reports Server (NTRS)
Butler, Dan; Swanson, Ted
2018-01-01
This presentation summarizes the current plans and efforts at NASA/Goddard to develop new thermal control technology for anticipated future missions. It will also address some of the programmatic developments currently underway at NASA, especially with respect to the NASA Technology Development Program. The effects of the recently submitted NASA budget will also be addressed. While funding for basic technology development is still tight, significant efforts are being made in direct support of flight programs. Thermal technology Implementation on current flight programs will be reviewed, and the recent push for Cube-sat mission development will also be addressed. Many of these technologies also have broad applicability to DOD, DOE, and commercial programs. Partnerships have been developed with the Air Force, Navy, and various universities to promote technology development. In addition, technology development activities supported by internal research and development (IRAD) program and the Small Business Innovative Research (SBIR) program are reviewed in this presentation. Specific technologies addressed include; two-phase systems applications and issues on NASA missions, latest developments of thermal control coatings, Atomic Layer Deposition (ALD), Micro-scale Heat Transfer, and various other research activities.
Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parag Kulkarni; Jie Guan; Raul Subia
In the near future, the nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It is necessary to improve both the process efficiency and environmental impact of fossil fuel utilization including greenhouse gas management. GE Global Research (GEGR) investigated an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology with potential to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP technology offers the long-term potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions. GE was awarded a contract from U.S. DOEmore » NETL to investigate and develop the UFP technology. Work started on the Phase I program in October 2000 and on the Phase II effort in April 2005. In the UFP technology, coal, water and air are simultaneously converted into (1) hydrogen rich stream that can be utilized in fuel cells or turbines, (2) CO{sub 2} rich stream for sequestration, and (3) high temperature/pressure vitiated air stream to produce electricity in a gas turbine expander. The process produces near-zero emissions with an estimated efficiency higher than Integrated Gasification Combined Cycle (IGCC) process with conventional CO{sub 2} separation. The Phase I R&D program established the chemical feasibility of the major reactions of the integrated UFP technology through lab-, bench- and pilot-scale testing. A risk analysis session was carried out at the end of Phase I effort to identify the major risks in the UFP technology and a plan was developed to mitigate these risks in the Phase II of the program. The Phase II effort focused on three high-risk areas: economics, lifetime of solids used in the UFP process, and product gas quality for turbines (or the impact of impurities in the coal on the overall system). The economic analysis included estimating the capital cost as well as the costs of hydrogen and electricity for a full-scale UFP plant. These costs were benchmarked with IGCC polygen plants with similar level of CO{sub 2} capture. Based on the promising economic analysis comparison results (performed with the help from Worley Parsons), GE recommended a 'Go' decision in April 2006 to continue the experimental investigation of the UFP technology to address the remaining risks i.e. solids lifetime and the impact of impurities in the coal on overall system. Solids attrition and lifetime risk was addressed via bench-scale experiments that monitor solids performance over time and by assessing materials interactions at operating conditions. The product gas under the third reactor (high-temperature vitiated air) operating conditions was evaluated to assess the concentration of particulates, pollutants and other impurities relative to the specifications required for gas turbine feed streams. During this investigation, agglomeration of solids used in the UFP process was identified as a serious risk that impacts the lifetime of the solids and in turn feasibility of the UFP technology. The main causes of the solids agglomeration were the combination of oxygen transfer material (OTM) reduction at temperatures {approx}1000 C and interaction between OTM and CO{sub 2} absorbing material (CAM) at high operating temperatures (>1200 C). At the end of phase II, in March 2008, GEGR recommended a 'No-go' decision for taking the UFP technology to the next level of development, i.e. development of a 3-5 MW prototype system, at this time. GEGR further recommended focused materials development research programs on improving the performance and lifetime of solids materials used in UFP or chemical looping technologies. The scale-up activities would be recommended only after mitigating the risks involved with the agglomeration and overall lifetime of the solids. This is the final report for the phase II of the DOE-funded Vision 21 program entitled 'Fuel-Flexible Gasification-Combustion Technology for Production of H{sub 2} and Sequestration-Ready CO{sub 2}' (DOE Award No. DE-FC26-00NT40974). The report focuses on the major accomplishments and lessons learned in analyzing the risks of the novel UFP technology during Phase II of the DOE program.« less
High Cycle Fatigue (HCF) Science and Technology Program 2002 Annual Report
2003-08-01
Turbine Engine Airfoils, Phase I 4.3 Probabilistic Design of Turbine Engine Airfoils, Phase II 4.4 Probabilistic Blade Design System 4.5...XTL17/SE2 7.4 Conclusion 8.0 TEST AND EVALUATION 8.1 Characterization Test Protocol 8.2 Demonstration Test Protocol 8.3 Development of Multi ...transparent and opaque overlays for processing. The objective of the SBIR Phase I program was to identify and evaluate promising methods for
NASA Astrophysics Data System (ADS)
Malloy, Matt; Thiel, Brad; Bunday, Benjamin D.; Wurm, Stefan; Mukhtar, Maseeh; Quoi, Kathy; Kemen, Thomas; Zeidler, Dirk; Eberle, Anna Lena; Garbowski, Tomasz; Dellemann, Gregor; Peters, Jan Hendrik
2015-03-01
SEMATECH aims to identify and enable disruptive technologies to meet the ever-increasing demands of semiconductor high volume manufacturing (HVM). As such, a program was initiated in 2012 focused on high-speed e-beam defect inspection as a complement, and eventual successor, to bright field optical patterned defect inspection [1]. The primary goal is to enable a new technology to overcome the key gaps that are limiting modern day inspection in the fab; primarily, throughput and sensitivity to detect ultra-small critical defects. The program specifically targets revolutionary solutions based on massively parallel e-beam technologies, as opposed to incremental improvements to existing e-beam and optical inspection platforms. Wafer inspection is the primary target, but attention is also being paid to next generation mask inspection. During the first phase of the multi-year program multiple technologies were reviewed, a down-selection was made to the top candidates, and evaluations began on proof of concept systems. A champion technology has been selected and as of late 2014 the program has begun to move into the core technology maturation phase in order to enable eventual commercialization of an HVM system. Performance data from early proof of concept systems will be shown along with roadmaps to achieving HVM performance. SEMATECH's vision for moving from early-stage development to commercialization will be shown, including plans for development with industry leading technology providers.
Hybrid Propulsion Technology Program, phase 1. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1989-01-01
The study program was contracted to evaluate concepts of hybrid propulsion, select the most optimum, and prepare a conceptual design package. Further, this study required preparation of a technology definition package to identify hybrid propulsion enabling technologies and planning to acquire that technology in Phase 2 and demonstrate that technology in Phase 3. Researchers evaluated two design philosophies for Hybrid Rocket Booster (HRB) selection. The first is an ASRM modified hybrid wherein as many components/designs as possible were used from the present Advanced Solid Rocket Motor (ASRM) design. The second was an entirely new hybrid optimized booster using ASRM criteria as a point of departure, i.e., diameter, thrust time curve, launch facilities, and external tank attach points. Researchers selected the new design based on the logic of optimizing a hybrid booster to provide NASA with a next generation vehicle in lieu of an interim advancement over the ASRM. The enabling technologies for hybrid propulsion are applicable to either and vehicle design may be selected at a downstream point (Phase 3) at NASA's discretion. The completion of these studies resulted in ranking the various concepts of boosters from the RSRM to a turbopump fed (TF) hybrid. The scoring resulting from the Figure of Merit (FOM) scoring system clearly shows a natural growth path where the turbopump fed solid liquid staged combustion hybrid provides maximized payload and the highest safety, reliability, and low life cycle costing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-12-31
The US DOE has initiated a program for advanced turbine systems (ATS) that will serve industrial power generation markets. The ATS will provide ultra-high efficiency, environmental superiority, and cost competitiveness. The ATS will foster (1) early market penetration that enhances the global competitiveness of US industry, (2) public health benefits resulting from reduced exhaust gas emissions of target pollutants, (3) reduced cost of power used in the energy-intensive industrial marketplace and (4) the retention and expansion of the skilled US technology base required for the design, development and maintenance of state-of-the-art advanced turbine products. The Industrial ATS Development and Demonstrationmore » program is a multi-phased effort. Solar Turbines Incorporated (Solar) has participated in Phases 1 and 2 of the program. On September 14, 1995 Solar was awarded a Cooperative Agreement for Phases 3 and 4 of the program. Phase 3 of the work is separated into two subphases: Phase 3A entails Component Design and Development Phase 3B will involve Integrated Subsystem Testing. Phase 4 will cover Host Site Testing. Forecasts call for completion of the program within budget as originally estimated. Scheduled completion is forecasted to be approximately 3 years late to original plan. This delay has been intentionally planned in order to better match program tasks to the anticipated availability of DOE funds. To ensure the timely realization of DOE/Solar program goals, the development schedule for the smaller system (Mercury 50) and enabling technologies has been maintained, and commissioning of the field test unit is scheduled for May of 2000. As of the end of the reporting period work on the program is 22.80% complete based upon milestones completed. This measurement is considered quite conservative as numerous drawings on the Mercury 50 are near release. Variance information is provided in Section 4.0-Program Management.« less
Development of a Hydrologic Characterization Technology for Fault Zones Phase II 2nd Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karasaki, Kenzi; Doughty, Christine; Gasperikova, Erika
2011-03-31
This is the 2nd report on the three-year program of the 2nd phase of the NUMO-LBNL collaborative project: Development of Hydrologic Characterization Technology for Fault Zones under NUMO-DOE/LBNL collaboration agreement. As such, this report is a compendium of the results by Kiho et al. (2011) and those by LBNL.
ERIC Educational Resources Information Center
Miami-Dade Junior Coll., FL. Div. of Allied Health Studies.
During Phase I of an Allied Health Professions Basic Improvement Grant, a five-member committee developed a curriculum for a medical laboratory technology program at Miami-Dade Junior College by: (1) defining competencies which differentiate a certified laboratory assistant from a medical laboratory technician, (2) translating expected laboratory…
The Need for Technology Maturity of Any Advanced Capability to Achieve Better Life Cycle Cost (LCC)
NASA Technical Reports Server (NTRS)
Robinson, John W.; Levack, Daniel J. H.; Rhodes, Russel E.; Chen, Timothy T.
2009-01-01
Programs such as space transportation systems are developed and deployed only rarely, and they have long development schedules and large development and life cycle costs (LCC). They have not historically had their LCC predicted well and have only had an effort to control the DDT&E phase of the programs. One of the factors driving the predictability, and thus control, of the LCC of a program is the maturity of the technologies incorporated in the program. If the technologies incorporated are less mature (as measured by their Technology Readiness Level - TRL), then the LCC not only increases but the degree of increase is difficult to predict. Consequently, new programs avoid incorporating technologies unless they are quite mature, generally TRL greater than or equal to 7 (system prototype demonstrated in a space environment) to allow better predictability of the DDT&E phase costs unless there is no alternative. On the other hand, technology development programs rarely develop technologies beyond TRL 6 (system/subsystem model or prototype demonstrated in a relevant environment). Currently the lack of development funds beyond TRL 6 and the major funding required for full scale development leave little or no funding available to prototype TRL 6 concepts so that hardware would be in the ready mode for safe, reliable and cost effective incorporation. The net effect is that each new program either incorporates little new technology or has longer development schedules and costs, and higher LCC, than planned. This paper presents methods to ensure that advanced technologies are incorporated into future programs while providing a greater accuracy of predicting their LCC. One method is having a dedicated organization to develop X-series vehicles or separate prototypes carried on other vehicles. The question of whether such an organization should be independent of NASA and/or have an independent funding source is discussed. Other methods are also discussed. How to make the choice of which technologies to pursue to the prototype level is also discussed since, to achieve better LCC, first the selection of the appropriate technologies.
Technology for aircraft energy efficiency
NASA Technical Reports Server (NTRS)
Klineberg, J. M.
1977-01-01
Six technology programs for reducing fuel use in U.S. commercial aviation are discussed. The six NASA programs are divided into three groups: Propulsion - engine component improvement, energy efficient engine, advanced turboprops; Aerodynamics - energy efficient transport, laminar flow control; and Structures - composite primary structures. Schedules, phases, and applications of these programs are considered, and it is suggested that program results will be applied to current transport derivatives in the early 1980s and to all-new aircraft of the late 1980s and early 1990s.
Developing an Inflatable Solar Array
NASA Technical Reports Server (NTRS)
Malone, Patrick K.; Jankowski, Francis J.; Williams, Geoffery T.; Vendura, George J., Jr.
1992-01-01
Viewgraphs describing the development of an inflatable solar array as part of the Inflatable Torus Solar Array Technology (ITSAT) program are presented. Program phases, overall and subsystem designs, and array deployment are addressed.
This report summarizes the results of Phase I of a program to identify and assess international technologies that could be utilized for hazardous waste site remediation within the United States. Data was obtained through a comprehensive literature survey and through telephone con...
Llanusa, Susana B; Rojo, Nereida; Caraballoso, Magali; Pérez, Julia S
2008-04-01
Introduction Information and communication technologies were introduced in community-based polyclinics as a result of a Cuban health system policy to make information more readily accessible to health professionals and other health workers at the primary health care level. Objective Assess phase one of the Program to Introduce Information and Communication Technologies in Primary Health Care (PICT-PHC), as implemented in Havana, and in particular to determine the aspects of structure, process and outcomes with the greatest impact on this phase's effectiveness. Methods From May to October 2003, an assessment was carried out in all Havana community-based polyclinics where phase one of the Program was underway. Study dimensions, criteria, and standards were established through consultation with experts and considering the level of performance expected by program directors, thus providing timely analysis to the directors concerning problem areas in need of attention. This paper concentrates on the five dimensions which were thought to have the most bearing on effectiveness of information and communication technologies (ICTs) installed in the polyclinics' libraries: librarians' competencies in IT skills, training received by librarians, training received by users, Program monitoring and follow-up, and exploitation of the technologies. Six data collection instruments were devised. Participants in the study included 41 librarians and 544 users. Data were processed to obtain indicators corresponding to study criteria. Each indicator was then compared with the established standard. Validity of results was established through analysis and comparison. Results Overall, the first phase of the PICT-PHC in Havana succeeded in making online information resources more readily available to health professionals and technicians. Some librarians had insufficient basic IT competencies, which had an impact on the quality of their work. Moreover, it was found that monitoring and follow-up activities were focused chiefly on implementation process rather than outcomes. There was consistency between the achievements and problems found for some criteria and dimensions, and their impact on related ones. Conclusion This study furnished evidence of the need for greater emphasis on human resources training (particularly of librarians) in the use of ICTs in the primary health care system. Information and communication technologies, ICTs, primary health care, public health informatics, medical informatics applications, library science, access to information, public health, health systems, informatics, Health Information Technologies, HIT.
Alternative Solvents/Technologies for Paint Stripping: Phase 1.
1994-03-01
processes . Three phases of study are defined: Phase I, identify alternate solvents/strippers and screen them; Phase II, field test solvent/ strippers...Section Title Page 1 Metal Refinishing Process - Immersion Method ............... 8 2 Phase Summary Chart ........................ 12 3 The...of the following: (a) nontoxic chemical formulations, (b) new process development, and (c) new coating reformulations. This program consists of three
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.
2015-01-01
This document is intended to enable the more effective transition of NASA Glenn Research Center (GRC) SBIR technologies funded by the Small Business Innovation Research (SBIR) program as well as its companion, the Small Business Technology Transfer (STTR) program into NASA Aeronautics Research Mission Directorate (ARMD) projects. Primarily, it is intended to help NASA program and project managers find useful technologies that have undergone extensive research and development (RRD), through Phase II of the SBIR program; however, it can also assist non-NASA agencies and commercial companies in this process. aviation safety, unmanned aircraft, ground and flight test technique, low emissions, quiet performance, rotorcraft
Space Operations Center system analysis study extension. Volume 2: Programmatics and cost
NASA Technical Reports Server (NTRS)
1982-01-01
A summary of Space Operations Center (SOC) orbital space station costs, program options and program recommendations is presented. Program structure, hardware commonality, schedules and program phasing are considered. Program options are analyzed with respect to mission needs, design and technology options, and anticipated funding constraints. Design and system options are discussed.
National Program for e-Learning in Taiwan
ERIC Educational Resources Information Center
Chang, Maiga; Wang, Chin-Yeh; Chen, Gwo-Dong
2009-01-01
Taiwan government has initiated a five-year program since 2002: the National Science and Technology Program for e-Learning. The national program started from 2003 and was completed at the end of year 2007, involving thirteen government agencies. This paper describes the results that the national program has accomplished at its first phase, 2003 to…
NASA Technical Reports Server (NTRS)
Kerr, James R.; Haskins, James F.
1987-01-01
Advanced composites will play a key role in the development of the technology for the design and fabrication of future supersonic vehicles. However, incorporating the material into vehicle usage is contingent on accelerating the demonstration of service capacity and design technology. Because of the added material complexity and lack of extensive data, laboratory replication of the flight service will provide the most rapid method to document the airworthiness of advanced composite systems. Consequently, a laboratory program was conducted to determine the time-temperature-stress capabilities of several high temperature composites. Tests included were thermal aging, environmental aging, fatigue, creep, fracture, tensile, and real-time flight simulation exposure. The program had two phases. The first included all the material property determinations and aging and simulation exposures up through 10,000 hours. The second continued these tests up to 50,000 cumulative hours. This report presents the results of the Phase 1 baseline and 10,000-hr aging and flight simulation studies, the Phase 2 50,000-hr aging studies, and the Phase 2 flight simulation tests, some of which extended to almost 40,000 hours.
Redding Responder phase I final report.
DOT National Transportation Integrated Search
2005-12-19
The Redding Responder Study was initiated as a component of the Redding Incident : Management Enhancement (RIME) Program. The goals of the RIME program are to leverage : technology and communications deployments for emergency communication providers ...
NASA Technical Reports Server (NTRS)
Lohmann, R. P.; Fear, J. S.
1982-01-01
In connection with increases in the cost of fuels and the reduced availability of high quality petroleum crude, a modification of fuel specifications has been considered to allow acceptance of poorer quality fuels. To obtain the information upon which a selection of appropriate fuels for aircraft can be based, the Broad Specification Fuels Combustion Technology program was formulated by NASA. A description is presented of program-related investigations conducted by an American aerospace company. The specific objective of Phase I of this program has been to evaluate the impact of the use of broadened properties fuels on combustor design through comprehensive combustor rig testing. Attention is given to combustor concepts, experimental evaluation, results obtained with single stage combustors, the stage combustor concept, and the capability of a variable geometry combustor.
EVALUATION OF OXYGEN-ENRICHED MSW/SEWAGE SLUDGE CO-INCINERATION DEMONSTRATION PROGRAM
This report provides an evaluation of a two-phased demonstration program conducted for the U.S. Environmental Protection Agency's Municipal Solid Waste Innovative Technology Evaluation Program, and the results thereof, of a recently developed method of sewage sludge managemen...
ERIC Educational Resources Information Center
Clavaud, Donna; And Others
Based on experience in the field, this training program was developed to help Peace Corps trainers teach appropriate community technology to Peace Corps volunteers and community workers. The 8-week, 104-session training program is organized in six phases that cover the following topics: introduction to training; earthen construction and…
ERIC Educational Resources Information Center
Rogers, Robert H.
In 1979, the National Aeronautics and Space Administration (NASA) and the Environmental Research Institute of Michigan (ERIM) initiated a program to investigate methods of making Landsat (satellite imagery) technology available to private sector firms through a network comprising NASA, a university or research institute, local community colleges,…
40 CFR 90.113 - In-use testing program for Phase 1 engines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... emission control technology which most likely will be used on Phase 2 engines; (2) Engine families using...) This section applies only to Phase 1 engines. In-use testing provisions for Phase 2 engines are found... certified in that model year. (2) An engine manufacturer with total projected annual production of 75,000...
40 CFR 90.113 - In-use testing program for Phase 1 engines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... emission control technology which most likely will be used on Phase 2 engines; (2) Engine families using...) This section applies only to Phase 1 engines. In-use testing provisions for Phase 2 engines are found... certified in that model year. (2) An engine manufacturer with total projected annual production of 75,000...
40 CFR 90.113 - In-use testing program for Phase 1 engines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... emission control technology which most likely will be used on Phase 2 engines; (2) Engine families using...) This section applies only to Phase 1 engines. In-use testing provisions for Phase 2 engines are found... certified in that model year. (2) An engine manufacturer with total projected annual production of 75,000...
40 CFR 90.113 - In-use testing program for Phase 1 engines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... emission control technology which most likely will be used on Phase 2 engines; (2) Engine families using...) This section applies only to Phase 1 engines. In-use testing provisions for Phase 2 engines are found... certified in that model year. (2) An engine manufacturer with total projected annual production of 75,000...
NASA Technical Reports Server (NTRS)
1972-01-01
A fuel cell technology program was established to advance the state-of-the art of hydrogen oxygen fuel cells using low temperature, potassium hydroxide electrolyte technology as the base. Cell and component testing confirmed that low temperature, potassium hydroxide electrolyte technology is compatible with the requirements of the space shuttle Phase B contractors. Testing of the DM-1 powerplant demonstrated all of the important requirements of the shuttle except operating life. Testing also identified DM-1 powerplant life limiting mechanisms; hydrogen pump gear wear and pressurization of the cell stack over its design limits.
NASA Goddard Thermal Technology Overview 2017
NASA Technical Reports Server (NTRS)
Butler, Dan; Swanson, Ted
2017-01-01
This presentation summarizes the current plans and efforts at NASA Goddard to develop new thermal control technology for anticipated future missions. It will also address some of the programmatic developments currently underway at NASA, especially with respect to the NASA Technology Development Program. The effects of the recently enacted FY 17 NASA budget, which includes a sizeable increase, will also be addressed. While funding for basic technology development is still tight, significant efforts are being made in direct support of flight programs. Thermal technology Implementation on current flight programs will be reviewed, and the recent push for CubeSat mission development will also be addressed. Many of these technologies also have broad applicability to DOD (Dept. of Defense), DOE (Dept. of the Environment), and commercial programs. Partnerships have been developed with the Air Force, Navy, and various universities to promote technology development. In addition, technology development activities supported by internal research and development (IRAD) program and the Small Business Innovative Research (SBIR) program are reviewed in this presentation. Specific technologies addressed include; two-phase systems applications and issues on NASA missions, latest developments of electro-hydrodynamically pumped systems, Atomic Layer Deposition (ALD), Micro-scale Heat Transfer, and various other research activities.
NASA Goddard Thermal Technology Overview 2016
NASA Technical Reports Server (NTRS)
Butler, Dan; Swanson, Ted
2016-01-01
This presentation summarizes the current plans and efforts at NASA Goddard to develop new thermal control technology for anticipated future missions. It will also address some of the programmatic developments currently underway at NASA, especially with respect to the NASA Technology Development Program. The effects of the recently enacted FY 16 NASA budget, which includes a sizeable increase, will also be addressed. While funding for basic technology development is still tight, significant efforts are being made in direct support of flight programs. Thermal technology implementation on current flight programs will be reviewed, and the recent push for Cube-sat mission development will also be addressed. Many of these technologies also have broad applicability to DOD, DOE, and commercial programs. Partnerships have been developed with the Air Force, Navy, and various universities to promote technology development. In addition, technology development activities supported by internal research and development (IRAD) program and the Small Business Innovative Research (SBIR) program are reviewed in this presentation. Specific technologies addressed include; two-phase systems applications and issues on NASA missions, latest developments of electro-hydrodynamically pumped systems, Atomic Layer Deposition (ALD), Micro-scale Heat Transfer, and various other research activities.
Near Zero Emissions at 50 Percent Thermal Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2012-12-31
Detroit Diesel Corporation (DDC) has successfully completed a 10 year DOE sponsored heavy-duty truck engine program, hereafter referred to as the NZ-50 program. This program was split into two major phases. The first phase was called Near-Zero Emission at 50 Percent Thermal Efficiency, and was completed in 2007. The second phase was initiated in 2006, and this phase was named Advancements in Engine Combustion Systems to Enable High-Efficiency Clean Combustion for Heavy-Duty Engines. This phase was completed in September, 2010. The key objectives of the NZ-50 program for this first phase were to: Quantify thermal efficiency degradation associated with reductionmore » of engine-out NOx emissions to the 2007 regulated level of ~1.1 g/hp-hr. Implement an integrated analytical/experimental development plan for improving subsystem and component capabilities in support of emerging engine technologies for emissions and thermal efficiency goals of the program. Test prototype subsystem hardware featuring technology enhancements and demonstrate effective application on a multi-cylinder, production feasible heavy-duty engine test-bed. Optimize subsystem components and engine controls (calibration) to demonstrate thermal efficiency that is in compliance with the DOE 2005 Joule milestone, meaning greater than 45% thermal efficiency at 2007 emission levels. Develop technology roadmap for meeting emission regulations of 2010 and beyond while mitigating the associated degradation in engine fuel consumption. Ultimately, develop technical prime-path for meeting the overall goal of the NZ-50 program, i.e., 50% thermal efficiency at 2010 regulated emissions. These objectives were successfully met during the course of the NZ-50 program. The most noteworthy achievements in this program are summarized as follows: Demonstrated technologies through advanced integrated experiments and analysis to achieve the technical objectives of the NZ-50 program with 50.2% equivalent thermal efficiency under EPA 2010 emissions regulations. Experimentally demonstrate brake efficiency of 48.5% at EPA 2010 emission level at single steady-state point. Analytically demonstrated additional brake efficiency benefits using advanced aftertreatment configuration concept and air system enhancement including, but not limited to, turbo-compound, variable valve actuator system, and new cylinder head redesign, thus helping to achieve the final program goals. Experimentally demonstrated EPA 2010 emissions over FTP cycles using advanced integrated engine and aftertreatment system. These aggressive thermal efficiency and emissions results were achieved by applying a robust systems technology development methodology. It used integrated analytical and experimental tools for subsystem component optimization encompassing advanced fuel injection system, increased EGR cooling capacity, combustion process optimization, and advanced aftertreatment technologies. Model based controls employing multiple input and output techniques enabled efficient integration of the various subsystems and ensured optimal performance of each system within the total engine package. . The key objective of the NZ-50 program for the second phase was to explore advancements in engine combustion systems using high-efficiency clean combustion (HECC) techniques to minimize cylinder-out emissions, targeting a 10% efficiency improvement. The most noteworthy achievements in this phase of the program are summarized as follows: Experimentally and analytically evaluated numerous air system improvements related to the turbocharger and variable valve actuation. Some of the items tested proved to be very successful and modifications to the turbine discovered in this program have since been incorporated into production hardware. The combustion system development continued with evaluation of various designs of the 2-step piston bowl. Significant improvements in engine emissions have been obtained, but fuel economy improvements have been tougher to realize. Development of a neural network control system progressed to the point that the system was fully functional and showing significant fuel economy gains in transient engine testing. Development of the QuantLogic injector with the capability of both a hollow cone spray during early injection and conventional diesel injection at later injection timings was undertaken and proved to be problematic. This injector was designed to be a key component in a PCCI combustion system, but this innovative fuel injector required significantly more development effort than this programâ's resources or timing would allow.« less
NASA Technical Reports Server (NTRS)
Bock, Larry A.; Hauser, Joseph E.; Mathews, Douglas C.; Topol, David A.; Bielak, Gerald W.; Lan, Justin H.; Premo, John W.
2014-01-01
This report presents results of the work completed in Phase 2 of the Engine Validation of Noise Reduction Concepts (EVNRC) contract. The purpose of the program is to validate, through engine testing, advanced noise reduction concepts aimed at reducing engine noise up to 6 EPNdB and improving nacelle suppression by 50 percent relative to 1992 technology. Phase 1 of the program is completed and is summarized in NASA/CR-2014-218088.
1985-08-30
technology for objective assessment of adverse effects. A Phase III requirement can be identified at any time during the program. 4. Phase IV - Operations...earth’s field can be asso- ciated with naturally occurring materials, or buried iron objects and remnant cultural features associated with man’s...for as * adequately as that of its own personnel.I 2. Obviously, such objectives can be attained only by the cooperation of all concerned. Therefore, it
DIGIMEN, optical mass memory investigations, volume 2
NASA Technical Reports Server (NTRS)
1977-01-01
The DIGIMEM phase of the Optical Mass Memory Investigation Program addressed problems related to the analysis, design, and implementation of a direct digital optical recorder/reproducer. Effort was placed on developing an operational archival mass storage system to support one or more key NASA missions. The primary activity of the DIGIMEM program phase was the design, fabrication, and test and evaluation of a breadboard digital optical recorder/reproducer. Starting with technology and subsystem perfected during the HOLOMEM program phase, a fully operational optical spot recording breadboard that met or exceeded all program goals was evaluated. A thorough evaluation of several high resolution electrophotographic recording films was performed and a preliminary data base management/end user requirements survey was completed.
NASA Technical Reports Server (NTRS)
Mayo, L. H.
1971-01-01
A preliminary provisional assessment of the prospects for the establishment of an adequate technology assessment function and the implications of the assessment function for the public decision process are presented. Effects of the technology assessment function on each phase of the public decision process and briefly explored. Significant implications during the next decade are projected with respect to the following phases: invention and development of alternative means (technological configurations); evaluation, selection and promotion of preferred courses of action; and modification of statutory scheme or social action program as an outcome of continuing monitoring and appraisal.
NASA Technical Reports Server (NTRS)
Wigley, D. A.
1985-01-01
Interrelated research and development activities, phased development of stepped specimen program are documented and a sequence for a specific program of machining, validation and heat treatment cycles for one material are described. Proposed work for the next phase of dimensional stability research is presented and further technology development activities are proposed.
Army Enlisted Personnel Competency Assessment Program: Phase III Pilot Tests
2007-03-01
Officer’s Representatives and Subject Matter POCs: Tonia Heffner and Peter Greenston Contract for Manpower, Personnel, Leader Development, and Training ...3926 March 2007 Army Project Number Personnel Performance 622785A790 and Training Technology Approved for public release; distribution is unlimited. 111...8217 ARMY ENLISTED PERSONNEL COMPETENCY ASSESSMENT PROGRAM: PHASE III PILOT TESTS EXECUTIVE SUMMARY Research Requirement: The Army Training and Leader
NASA Astrophysics Data System (ADS)
Noé, Pierre; Vallée, Christophe; Hippert, Françoise; Fillot, Frédéric; Raty, Jean-Yves
2018-01-01
Chalcogenide phase-change materials (PCMs), such as Ge-Sb-Te alloys, have shown outstanding properties, which has led to their successful use for a long time in optical memories (DVDs) and, recently, in non-volatile resistive memories. The latter, known as PCM memories or phase-change random access memories (PCRAMs), are the most promising candidates among emerging non-volatile memory (NVM) technologies to replace the current FLASH memories at CMOS technology nodes under 28 nm. Chalcogenide PCMs exhibit fast and reversible phase transformations between crystalline and amorphous states with very different transport and optical properties leading to a unique set of features for PCRAMs, such as fast programming, good cyclability, high scalability, multi-level storage capability, and good data retention. Nevertheless, PCM memory technology has to overcome several challenges to definitively invade the NVM market. In this review paper, we examine the main technological challenges that PCM memory technology must face and we illustrate how new memory architecture, innovative deposition methods, and PCM composition optimization can contribute to further improvements of this technology. In particular, we examine how to lower the programming currents and increase data retention. Scaling down PCM memories for large-scale integration means the incorporation of the PCM into more and more confined structures and raises materials science issues in order to understand interface and size effects on crystallization. Other materials science issues are related to the stability and ageing of the amorphous state of PCMs. The stability of the amorphous phase, which determines data retention in memory devices, can be increased by doping the PCM. Ageing of the amorphous phase leads to a large increase of the resistivity with time (resistance drift), which has up to now hindered the development of ultra-high multi-level storage devices. A review of the current understanding of all these issues is provided from a materials science point of view.
NASA developments in solid state power amplifiers
NASA Technical Reports Server (NTRS)
Leonard, Regis F.
1990-01-01
Over the last ten years, NASA has undertaken an extensive program aimed at development of solid state power amplifiers for space applications. Historically, the program may be divided into three phases. The first efforts were carried out in support of the advanced communications technology satellite (ACTS) program, which is developing an experimental version of a Ka-band commercial communications system. These first amplifiers attempted to use hybrid technology. The second phase was still targeted at ACTS frequencies, but concentrated on monolithic implementations, while the current, third phase, is a monolithic effort that focusses on frequencies appropriate for other NASA programs and stresses amplifier efficiency. The topics covered include: (1) 20 GHz hybrid amplifiers; (2) 20 GHz monolithic MESFET power amplifiers; (3) Texas Instruments' (TI) 20 GHz variable power amplifier; (4) TI 20 GHz high power amplifier; (5) high efficiency monolithic power amplifiers; (6) GHz high efficiency variable power amplifier; (7) TI 32 GHz monolithic power amplifier performance; (8) design goals for Hughes' 32 GHz variable power amplifier; and (9) performance goals for Hughes' pseudomorphic 60 GHz power amplifier.
Inflatable Structures Technology Handbook. Chapter 21; Inflatable Habitats
NASA Technical Reports Server (NTRS)
Kennedy, Kriss J.; Raboin, Jasen; Spexarth, Gary; Valle, Gerard
2000-01-01
The technologies required to design, fabricate, and utilize an inflatable module for space applications has been demonstrated and proven by the TransHab team during the development phase of the program. Through testing and hands-on development several issues about inflatable space structures have been addressed , such as: ease of manufacturing, structural integrity, micrometeorite protection, folding , and vacuum deployment. The TransHab inflatable technology development program has proven that not only are inflatable structures a viable option, but they also offer significant advantages over conventional metallic structures.
1977-08-01
inadequacy of specifications, the undeveloped state of applicable techniques, and fragmentation of effort among disciplines. It recommends the development...of the technology and routine application to system acquisition. It describes major projects within the discipline and summarizes the state of the art...tolerance may be an unnecessary refinement in one application , merely desirable in a second, and essential in the third. In a mission-critical system
Deep Throttle Turbopump Technology Testing
NASA Technical Reports Server (NTRS)
Ferguson, T. V.; Guinzburg, A.; McGlynn, R. D.; Williams, M.
2002-01-01
The objectives of this viewgraph presentation were to: (1) enhance and demonstrate critical technologies in support of planned RBCC flight test programs; and (2) obtain knowledge of wide flow range as it is applicable to liquid rocket engine turbopumps operating over extreme throttle ranges. This program was set up to demonstrate wide flow range diffuser technologies. The testing phase of the contract to provide data to anchor initial designs was partially successful. Data collected suggest flow phenomena exists at off-design flow rates.
Bridging the Technology Valley of Death in Joint Medical Development
2015-11-01
Force lieutenant colonel, is the Air Force Medical Support Agency Advanced Development Liaison Field Engineer in Falls Church, Virginia. Prusaczyk is...Awareness, communication and coordination may be mini - mal among Service S&T and AD programs. Joint Transition Planning Process A Joint Transition...Human Proof of Phase III NDA/BLA ling Approval, Launch Concept*** Launch Review Program Initiation Materiel Technology Engineering & Production
Advanced Technology Composite Fuselage: Program Overview
NASA Technical Reports Server (NTRS)
Ilcewicz, L. B.; Smith, P. J.; Hanson, C. T.; Walker, T. H.; Metschan, S. L.; Mabson, G. E.; Wilden, K. S.; Flynn, B. W.; Scholz, D. B.; Polland, D. R.;
1997-01-01
The Advanced Technology Composite Aircraft Structures (ATCAS) program has studied transport fuselage structure with a large potential reduction in the total direct operating costs for wide-body commercial transports. The baseline fuselage section was divided into four 'quadrants', crown, keel, and sides, gaining the manufacturing cost advantage possible with larger panels. Key processes found to have savings potential include (1) skins laminated by automatic fiber placement, (2) braided frames using resin transfer molding, and (3) panel bond technology that minimized mechanical fastening. The cost and weight of the baseline fuselage barrel was updated to complete Phase B of the program. An assessment of the former, which included labor, material, and tooling costs, was performed with the help of design cost models. Crown, keel, and side quadrant cost distributions illustrate the importance of panel design configuration, area, and other structural details. Composite sandwich panel designs were found to have the greatest cost savings potential for most quadrants. Key technical findings are summarized as an introduction to the other contractor reports documenting Phase A and B work completed in functional areas. The current program status in resolving critical technical issues is also highlighted.
Human factors phase III : effects of train control technology on operator performance
DOT National Transportation Integrated Search
2005-01-01
This report describes a study evaluating the effects of train control technology on locomotive engineer performance. Several types : of train control systems were evaluated: partial automation (cruise control and programmed stop) and full automation ...
Human factors phase III : effects of train control technology on operator performance.
DOT National Transportation Integrated Search
2005-01-31
This report describes a study evaluating the effects of train control technology on locomotive engineer performance. Several types of train control systems were evaluated: partial automation (cruise control and programmed stop) and full automation we...
Hybrid Propulsion Technology Program, phase 1. Volume 2: Technical discussion
NASA Technical Reports Server (NTRS)
1989-01-01
Information on hybrid propulsion system concepts is given largely in the form of outlines, charts and graphs. Included are the concept definition, trade study data generation, concept evaluation and selection, conceptual design definition, and technology definition.
NASA Technical Reports Server (NTRS)
Smith-Taylor, Rudeen; Tanner, Sharon E.
1993-01-01
The NASA Controls-Structures Interaction (CSI) Guest Investigator program is described in terms of its support of the development of CSI technologies. The program is based on the introduction of CSI researchers from industry and academia to available test facilities for experimental validation of technologies and methods. Phase 1 experimental results are reviewed with attention given to their use of the Mini-MAST test facility and the facility for the Advance Control Evaluation of Structures. Experiments were conducted regarding the following topics: collocated/noncollocated controllers, nonlinear math modeling, controller design, passive/active suspension systems design, and system identification and fault isolation. The results demonstrate that significantly enhanced performance from the control techniques can be achieved by integrating knowledge of the structural dynamics under consideration into the approaches.
NASA Astrophysics Data System (ADS)
Cady, E. C.
1997-01-01
The Solar Thermal Upper Stage Technology Demonstrator (STUSTD) Liquid Hydrogen Storage and Feed System (LHSFS) Test Program is described. The test program consists of two principal phases. First, an engineering characterization phase includes tests performed to demonstrate and understand the expected tank performance. This includes fill and drain; baseline heat leak; active Thermodynamic Vent System (TVS); and flow tests. After the LHSFS performance is understood and performance characteristics are determined, a 30 day mission simulation test will be conducted. This test will simulate a 30 day transfer mission from low earth orbit (LEO) to geosynchronous equatorial orbit (GEO). Mission performance predictions, based on the results of the engineering characterization tests, will be used to correlate the results of the 30 day mission simulation.
Avionics Technology Contract Project Report Phase I with Research Findings.
ERIC Educational Resources Information Center
Sappe', Hoyt; Squires, Shiela S.
This document reports on Phase I of a project that examined the occupation of avionics technician, established appropriate committees, and conducted task verification. Results of this phase provide the basic information required to develop the program standards and to guide and set up the committee structure to guide the project. Section 1…
A Preliminary Assessment of Phase Separator Ground-Based and Reduced-Gravity Testing for ALS Systems
NASA Technical Reports Server (NTRS)
Hall, Nancy Rabel
2006-01-01
A viewgraph presentation of phase separator ground-based and reduced-gravity testing for Advanced Life Support (ALS) systems is shown. The topics include: 1) Multiphase Flow Technology Program; 2) Types of Separators; 3) MOBI Phase Separators; 4) Experiment set-up; and 5) Preliminary comparison/results.
Microwave Power Transmission System Studies. Volume 1: Executive Summary
NASA Technical Reports Server (NTRS)
Maynard, O. E.; Brown, W. C.; Edwards, A.; Meltz, G.; Haley, J. T.; Howell, J. M.; Nathan, A.
1975-01-01
A study of microwave power generation, transmission, reception and control was conducted as a part of a program to demonstrate the feasibility of power transmission from geosynchronous orbit. A summary is presented of results concerning design approaches, estimated costs (ROM), critical technology, associated ground and orbital test programs with emphasis on dc to rf conversion, transmitting antenna, phase control, mechanical systems, flight operations, ground power receiving-rectifying antenna with systems analysis, and evaluation. Recommendations for early further in-depth studies complementing the technology program are included.
High performance flexible heat pipes
NASA Technical Reports Server (NTRS)
Shaubach, R. M.; Gernert, N. J.
1985-01-01
A Phase I SBIR NASA program for developing and demonstrating high-performance flexible heat pipes for use in the thermal management of spacecraft is examined. The program combines several technologies such as flexible screen arteries and high-performance circumferential distribution wicks within an envelope which is flexible in the adiabatic heat transport zone. The first six months of work during which the Phase I contract goal were met, are described. Consideration is given to the heat-pipe performance requirements. A preliminary evaluation shows that the power requirement for Phase II of the program is 30.5 kilowatt meters at an operating temperature from 0 to 100 C.
Phosphoric and electric utility fuel cell technology development
NASA Astrophysics Data System (ADS)
Breault, R. D.; Briggs, T. A.; Congdon, J. V.; Demarche, T. E.; Gelting, R. L.; Goller, G. J.; Luoma, W. I.; McCloskey, M. W.; Mientek, A. P.; Obrien, J. J.
1984-01-01
The advancement of electric utility cell stack technology and reduction of cell stack cost was initiated. The cell stack has a nominal 10 ft (2) active area and operates at 120 psia/405(0)F. The program comprises six parallel phases, which culminate in a full height, 10-ft(2) stack verification test: (1) provides the information and services needed to manage the effort, including definition of the prototype commercial power plant; (2) develops the technical base for long term improvements to the cell stack; (3) develops materials and processing techniques for cell stack components incorporating the best available technology; (4) provides the design of hardware and conceptual processing layouts, and updates the power plant definition of Phase 1 to reflect the results of Phases 2 and 3; Phase 5 manufactures the hardware to verify the achievements of Phases 2 and 3, and analyzes the cost of this hardware; and Phase 6 tests the cell stacks assembled from the hardware of Phase 5 to assess the state of development.
Preparing for a New Century: Information Technology Workforce Needs.
ERIC Educational Resources Information Center
Teeter, Thomas A.; Bailey, Janet L.; Cherepski, Don D.; Faucett, John; Hines, Robert J.; Jovanovic, Nickolas S.; Tschumi, Pete; Walker, Jeffery T.; Watson, Gretchen B.
The purpose of this project was to determine workforce needs in the new information technology/knowledge-based world in order to design a coherent minor program in information technology at the University of Arkansas at Little Rock for the non-technically oriented college student. The process consisted of three phases: site visits to five…
NASA Technical Reports Server (NTRS)
Kuehn, T. J.; Nawrocki, P. M.
1978-01-01
It is suggested that federal programs for hastening the adoption of alternative energy sources must operate within the free market structure. Five phases of the free market commercialization process are described. Federal role possibilities include information dissemination and funding to stimulate private sector activities within these five phases, and federally sponsored procedures for accelerating commercialization of solar thermal small power systems are considered.
Nollen, Nicole L.; Hutcheson, Tresza; Carlson, Susan; Rapoff, Michael; Goggin, Kathy; Mayfield, Carlene; Ellerbeck, Edward
2013-01-01
Mobile technologies hold promise for improving diet and physical activity, but little attention is given to creating programs that adolescents like and will use. This study developed a personal digital assistant (PDA) program to promote increased intake of fruits and vegetables (FV) in predominately low-income, ethnic minority girls. This study used a three-phase community-engaged process, including (i) engagement of a Student Advisory Board (SAB) to determine comfort with PDAs; (ii) early testing of Prototype I and rapid re-design by the SAB and (iii) feasibility testing of Prototype II in a new sample of girls. Phase 1 results showed that girls were comfortable with the PDA. Testing of Prototype I in Phase 2 showed that acceptability was mixed, with girls responding to 47.3% of the prompts. Girls wanted more reminders, accountability in monitoring FV, help in meeting daily goals and free music downloads based on program use. The PDA was reprogrammed and testing of Prototype II in Phase 3 demonstrated marked improvement in use (78.3%), increases in FV intake (1.8 ± 2.6 daily servings) and good overall satisfaction. Findings suggest that mobile technology designed with the early input of youth is a promising way to improve adolescent health behaviors. PMID:22949499
This collection of papers, which is the first coordinated publication of results from the Phase II Supersites Program, reflects the objectives of the program - to characterize particulate matter, to provide information, such as source-receptor relationships, that support health...
Mobile satellite communications technology - A summary of NASA activities
NASA Technical Reports Server (NTRS)
Dutzi, E. J.; Knouse, G. H.
1986-01-01
Studies in recent years indicate that future high-capacity mobile satellite systems are viable only if certain high-risk enabling technologies are developed. Accordingly, NASA has structured an advanced technology development program aimed at efficient utilization of orbit, spectrum, and power. Over the last two years, studies have concentrated on developing concepts and identifying cost drivers and other issues associated with the major technical areas of emphasis: vehicle antennas, speech compression, bandwidth-efficient digital modems, network architecture, mobile satellite channel characterization, and selected space segment technology. The program is now entering the next phase - breadboarding, development, and field experimentation.
California four cities program, 1971 - 1973. [aerospace-to-urban technology application
NASA Technical Reports Server (NTRS)
Macomber, H. L.; Wilson, J. H.
1974-01-01
A pilot project in aerospace-to-urban technology application is reported. Companies assigned senior engineering professionals to serve as Science and Technology Advisors to participating city governments. Technical support was provided by the companies and JPL. The cities, Anaheim, Fresno, Pasadena, and San Hose, California, provided the working environment and general service support. Each city/company team developed and carried out one or more technical or management pilot projects together with a number of less formalized technology efforts and studies. An account and evaluation is provided of the initial two-year phase of the program.
Conformal Membrane Reflectors for Deployable Optics
NASA Technical Reports Server (NTRS)
Hood, Patrick J.; Keys, Andrew S. (Technical Monitor)
2002-01-01
This presentation reports the Phase I results on NASA's Gossamer Spacecraft Exploratory Research and Technology Program. Cornerstone Research Group, Inc., the University of Rochester, and International Photonics Consultants collaborated to investigate the feasibility of free-standing, liquid-crystal-polymer (LCP) reflectors for integration into space-based optical systems. The goal of the program was to achieve large-diameter, broadband. reflective membranes that are resistant to the effects of space, specifically cryogenic environments and gamma-ray irradiation. Additionally, we assessed the applicability of utilizing the technology as tight sails, since, by their very nature, these films offer high-reflectivity at specified wavelengths. Previous research programs have demonstrated all-polymer, narrow-band Specular reflectors and diffuse membrane reflectors. The feasibility of fabricating an all-polymer broadband specular reflector and a narrow-band specular membrane reflector was assessed in the Phase I Gossamer program. In addition, preliminary gamma irradiation studies were conducted to determine the stability of the polymer reflectors to radiation. Materials and process technology were developed to fabricate coupon-scale reflectors of both broad- and narrow-band specular reflectors in Phase 1. This presentation will report the results of these studies, including, the performance of a narrow-band specular membrane. Gamma irradiation exposures indicate limited impact on the optical performance although additional exposure studies are warranted. Plans to scale up the membrane fabrication process will be presented.
Installation Restoration Program Records Search for Westover Air Force Base, Massachusetts.
1982-04-01
Phase III (not part of this contract) consists of a technology base development study to support the development of project plans for controlling...determine the extent and magnitude of the contaminant migration. Phase III (not part of this contract) consists of a technology base development study to...number of vegetation studies have attempted to classify the potential climax vegetation within the region of Westover AFB (Braun, 1972; Kuchler, 1975
Multi-fuel reformers for fuel cells used in transportation. Phase 1: Multi-fuel reformers
NASA Astrophysics Data System (ADS)
1994-05-01
DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.
ERIC Educational Resources Information Center
Scadden, Lawrence A.
2001-01-01
Introduces Program for Persons with Disabilities (PPD). Explains the next phase of the program beginning in 2002 which is an academic partnership between four- and two-year colleges called the Regional Alliances for Persons with Disabilities in Science, Mathematics, Engineering, and Technology Education (RAD). (YDS)
Technology transfer of military space microprocessor developments
NASA Astrophysics Data System (ADS)
Gorden, C.; King, D.; Byington, L.; Lanza, D.
1999-01-01
Over the past 13 years the Air Force Research Laboratory (AFRL) has led the development of microprocessors and computers for USAF space and strategic missile applications. As a result of these Air Force development programs, advanced computer technology is available for use by civil and commercial space customers as well. The Generic VHSIC Spaceborne Computer (GVSC) program began in 1985 at AFRL to fulfill a deficiency in the availability of space-qualified data and control processors. GVSC developed a radiation hardened multi-chip version of the 16-bit, Mil-Std 1750A microprocessor. The follow-on to GVSC, the Advanced Spaceborne Computer Module (ASCM) program, was initiated by AFRL to establish two industrial sources for complete, radiation-hardened 16-bit and 32-bit computers and microelectronic components. Development of the Control Processor Module (CPM), the first of two ASCM contract phases, concluded in 1994 with the availability of two sources for space-qualified, 16-bit Mil-Std-1750A computers, cards, multi-chip modules, and integrated circuits. The second phase of the program, the Advanced Technology Insertion Module (ATIM), was completed in December 1997. ATIM developed two single board computers based on 32-bit reduced instruction set computer (RISC) processors. GVSC, CPM, and ATIM technologies are flying or baselined into the majority of today's DoD, NASA, and commercial satellite systems.
Next Generation Solar Collectors for CSP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molnar, Attila; Charles, Ruth
The intent of “Next Generation Solar Collectors for CSP” program was to develop key technology elements for collectors in Phase 1 (Budget Period 1), design these elements in Phase 2 (Budget Period 2) and to deploy and test the final collector in Phase 3 (Budget Period 3). 3M and DOE mutually agreed to terminate the program at the end of Budget Period 1, primarily due to timeline issues. However, significant advancements were achieved in developing a next generation reflective material and panel that has the potential to significantly improve the efficiency of CSP systems.
ERIC Educational Resources Information Center
East Los Angeles Coll., CA.
In this curriculum guide, courses in a three-phase community college program for training import automobile technicians are provided. Following an introducation to the guide, the background of the development of the program, the program, the instruction, support for instruction, and the import automobile industry are discussed. Sample options for…
NASA Technical Reports Server (NTRS)
Matsumoto, Joy Hamerman; Rogers, Steven; Mccauley, Michael; Salinas, AL
1992-01-01
The U.S. Army Crew Station Research and Development Branch (CSRDB) of the Aircraft Simulation Division (AVSCOM) was tasked by the Light Helicopter Program Manager (LH-PM) to provide training to Army personnel in advanced aircraft simulation technology. The purpose of this training was to prepare different groups of pilots to support and evaluate two contractor simulation efforts during the Demonstration/Validation (DEM/VAL) phase of the LH program. The personnel in the CSRDB developed mission oriented training programs to accomplish the objectives, conduct the programs, and provide guidance to army personnel and support personnel throughout the DEM/VAL phase.
Direct Broadcast Satellite: Radio Program
NASA Astrophysics Data System (ADS)
Hollansworth, James E.
1992-10-01
NASA is committed to providing technology development that leads to the introduction of new commercial applications for communications satellites. The Direct Broadcast Satellite-Radio (DBS-R) Program is a joint effort between The National Aeronautics and Space Administration (NASA) and The United States Information Agency/Voice of America (USIA/VOA) directed at this objective. The purpose of this program is to define the service and develop the technology for a direct-to-listener satellite sound broadcasting system. The DBS-R Program, as structured by NASA and VOA, is now a three-phase program designed to help the U.S. commercial communications satellite and receiver industry bring about this new communications service. Major efforts are being directed towards frequency planning hardware and service development, service demonstration, and experimentation with new satellite and receiver technology.
Application and Design Characteristics of Generalized Training Devices.
ERIC Educational Resources Information Center
Parker, Edward L.
This program identified applications and developed design characteristics for generalized training devices. The first of three sequential phases reviewed in detail new developments in Naval equipment technology that influence the design of maintenance training devices: solid-state circuitry, modularization, digital technology, standardization,…
The Space Shuttle focused-technology program - Lessons learned
NASA Technical Reports Server (NTRS)
Fitzgerald, P. E., Jr.; Gabris, E. A.
1983-01-01
The results of a focused technology program (FTP), its management structure, the development of the Space Shuttle, and lessons applicable to future space programs such as a space station are discussed. A committee was formed by NASA in 1969 to define the technologies necessary for a reusable spacecraft. Basic and applied research assessments were featured at the beginning of the process. Working groups were established to cover all necessary areas, e.g., Operations, Structures and Materials, Aerothermodynamics, etc., and tasks were distributed to appropriate NASA centers. Funding was drawn from existing budgets. The FTP proceeded successfully because of an understanding of the respective roles of industry and government, the willingness of industry to invest early in a new technology, and the unclassified status of information generated by the program. The in-house design and technology transfer methods that brought the project to a technology demonstration phase are explored, noting the necessity for users to take part in the development within their field.
NASA SBIR product catalog, 1990
NASA Technical Reports Server (NTRS)
Schwenk, F. Carl; Gilman, J. A.
1990-01-01
Since 1983 the NASA Small Business Innovation Research (SBIR) program has benefitted both the agency and the high technology small business community. By making it possible for more small businesses to participate in NASA's research and development, SBIR also provides opportunities for these entrepreneurs to develop products which may also have significant commercial markets. Structured in three phases, the SBIR program uses Phase 1 to assess the technical feasibility of novel ideas proposed by small companies and Phase 2 to conduct research and development on the best concepts. Phase 3, not funded by SBIR, is the utilization and/or commercialization phase. A partial list of products of NASA SBIR projects which have advanced to some degree into Phase 3 are provided with a brief description.
Connected vehicle pilot deployment program phase 2, data management plan - Wyoming
DOT National Transportation Integrated Search
2017-04-10
The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...
NASA Technical Reports Server (NTRS)
Dodds, W. J.; Ekstedt, E. E.; Bahr, D. W.; Fear, J. S.
1982-01-01
A program is being conducted to develop the technology required to utilize fuels with broadened properties in aircraft gas turbine engines. The first phase of this program consisted of the experimental evaluation of three different combustor concepts to determine their potential for meeting several specific emissions and performance goals, when operated on broadened property fuels. The three concepts were a single annular combustor; a double annular combustor; and a short single annular combustor with variable geometry. All of these concepts were sized for the General Electric CF6-80 engine. A total of 24 different configurations of these concepts were evaluated in a high pressure test facility, using four test fuels having hydrogen contents between 11.8 and 14%. Fuel effects on combustor performance, durability and emissions, and combustor design features to offset these effects were demonstrated.
NASA/Goddard Thermal Technology Overview 2014
NASA Technical Reports Server (NTRS)
Butler, Daniel; Swanson, Theodore D.
2014-01-01
This presentation summarizes the current plans and efforts at NASA Goddard to develop new thermal control technology for anticipated future missions. It will also address some of the programmatic developments currently underway at NASA, especially with respect to the Technology Development Program at NASA. While funding for basic technology development is still scarce, significant efforts are being made in direct support of flight programs. New technology development continues to be driven by the needs of future missions, and applications of these technologies to current Goddard programs will be addressed. Many of these technologies also have broad applicability to DOD, DOE, and commercial programs. Partnerships have been developed with the Air Force, Navy, and various universities to promote technology development. In addition, technology development activities supported by internal research and development (IRAD) program, the Small Business Innovative Research (SBIR) program, and the NASA Engineering and Safety Center (NESC), are reviewed in this presentation. Specific technologies addressed include; two-phase systems applications and issues on NASA missions, latest developments of electro-hydrodynamically pumped systems, development of high electrical conductivity coatings, and various other research activities. New Technology program underway at NASA, although funding is limited center dot NASA/GSFC's primary mission of science satellite development is healthy and vibrant, although new missions are scarce - now have people on overhead working new missions and proposals center dot Future mission applications promise to be thermally challenging center dot Direct technology funding is still very restricted - Projects are the best source for direct application of technology - SBIR thermal subtopic resurrected in FY 14 - Limited Technology development underway via IRAD, NESC, other sources - Administrator pushing to revive technology and educational programs at NASA - new HQ directorate established
Center for Nanoscale Science and Technology
National Institute of Standards and Technology Data Gateway
NIST Center for Nanoscale Science and Technology (Program website, free access) Currently there is no database matching your keyword search, but the NIST Center for Nanoscale Science and Technology website may be of interest. The Center for Nanoscale Science and Technology enables science and industry by providing essential measurement methods, instrumentation, and standards to support all phases of nanotechnology development, from discovery to production.
ERIC Educational Resources Information Center
deVille, Barry, Ed.
This is a preliminary examination of the present status and future prospects of educational technology in Nova Scotian schools. It is aimed at developing a plan to enhance the quality of educational technology by concentrating on systems which will be conducive to realizing educational goals at a reasonable cost. An overview of the institutional…
Low Loss Graded Index Polymer Optical Fiber for Local Networking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Claus, Richard Otto
The objective of this Department of Energy SBIR program has been to develop technology for the advancement of advanced computing systems. NanoSonic worked with two subcontractors, the Polymicro Division of Molex, a U.S.-based manufacturer of specialized optical fiber and fiber components, and Virginia Tech, a research university involved through the Global Environment for Network Innovations (GENI) program in high-speed computer networking research. NanoSonic developed a patented molecular-level self-assembly process to manufacture polymer-based optical fibers in a way similar to the modified chemical vapor deposition (MCVD) approach typically used to make glass optical fibers. Although polymer fiber has a higher attenuationmore » per unit length than glass fiber, short connectorized polymer fiber jumpers offer significant cost savings over their glass counterparts, particularly due to the potential use of low-cost plastic fiber connectors. As part of the SBIR commercialization process, NanoSonic exclusively licensed this technology to a large ($100B+ market cap) U.S.-based manufacturing conglomerate near the end of the first year of the Phase II program. With this base technology developed and licensed, NanoSonic then worked with Polymicro to address secondary program goals of using related but not conflicting production methods to enhance the performance of other specialty optical fiber products and components, and Virginia Tech continued its evaluation of developed polymer fibers in its network infrastructure system on the university campus. We also report our current understanding of the observation during the Phase I program of quantum conductance and partial quantum conductance in metal-insulator-metal (MIM) devices. Such conductance behavior may be modeled as singlemode behavior in one-dimensional electrically conducting waveguides, similar in principle to singlemode optical propagation in dielectric fiber waveguides. Although NanoSonic has not licensed any of the additional technology developed during the second year of the program, several proprietary discussions with major materials companies are underway as of the conclusion of Phase II.« less
NASA Technical Reports Server (NTRS)
Agnew, Donald L.; Jones, Peter A.
1989-01-01
A study was conducted to define reasonable and representative LDR system concepts for the purpose of defining a technology development program aimed at providing the requisite technological capability necessary to start LDR development by the end of 1991. This volume presents thirteen technology assessments and technology development plans, as well as an overview and summary of the LDR concepts. Twenty-two proposed augmentation projects are described (selected from more than 30 candidates). The five LDR technology areas most in need of supplementary support are: cryogenic cooling; astronaut assembly of the optically precise LDR in space; active segmented primary mirror; dynamic structural control; and primary mirror contamination control. Three broad, time-phased, five-year programs were synthesized from the 22 projects, scheduled, and funding requirements estimated.
Defense program pushes microchip frontiers
NASA Astrophysics Data System (ADS)
Julian, K.
1985-05-01
The very-high-speed integrated circuit (VHSIC) program of the Department of Defense will have a significant effect on the expansion of integrated circuit technology. This program, which is to cost several hundred million dollars, is accelerating the trend toward higher-speed, denser circuitry for microchips through innovative design and fabrication techniques. Teams in six different American companies are to design and fabricate a military useful 'brassboard' system which would employ chips developed in the first phase of the VHSIC program. Military objectives envisaged include automatic monitoring of displays in tactical aircraft by means of an artificial intelligence system, a brassboard used in airborne electronic warfare system, and antisubmarine warfare applications. After a fivefold improvement in performance achieved in the first phase, the second phase is concerned with a further 20-fold increase. The entire VHSIC program is, therefore, to produce a 100-fold gain over the state of the art found when the program started.
NASA Technical Reports Server (NTRS)
1973-01-01
The results are reported of the NASA/Drexel research effort which was conducted in two separate phases. The initial phase stressed exploration of the problem from the point of view of three primary research areas and the building of a multidisciplinary team. The final phase consisted of a clinical demonstration program in which the research associates consulted with the County Executive of New Castle County, Delaware, to aid in solving actual problems confronting the County Government. The three primary research areas of the initial phase are identified as technology, management science, and behavioral science. Five specific projects which made up the research effort are treated separately. A final section contains the conclusions drawn from total research effort as well as from the specific projects.
PRIMUS: autonomous navigation in open terrain with a tracked vehicle
NASA Astrophysics Data System (ADS)
Schaub, Guenter W.; Pfaendner, Alfred H.; Schaefer, Christoph
2004-09-01
The German experimental robotics program PRIMUS (PRogram for Intelligent Mobile Unmanned Systems) is focused on solutions for autonomous driving in unknown open terrain, over several project phases under specific realization aspects for more than 12 years. The main task of the program is to develop algorithms for a high degree of autonomous navigation skills with off-the-shelf available hardware/sensor technology and to integrate this into military vehicles. For obstacle detection a Dornier-3D-LADAR is integrated on a tracked vehicle "Digitized WIESEL 2". For road-following a digital video camera and a visual perception module from the Universitaet der Bundeswehr Munchen (UBM) has been integrated. This paper gives an overview of the PRIMUS program with a focus on the last program phase D (2001 - 2003). This includes the system architecture, the description of the modes of operation and the technology development with the focus on obstacle avoidance and obstacle classification using a 3-D LADAR. A collection of experimental results and a short look at the next steps in the German robotics program will conclude the paper.
Low cost carbon fiber technology development for carbon fiber composite applications : phase 1.
DOT National Transportation Integrated Search
2008-01-01
The main goals of this research program at UTSI were: 1) to produce low cost carbon fibers and 2) to develop specific carbonbased : material technologies to meet current and future high performance fiber-reinforced composite needs of FTA and other : ...
Communications technology satellite output-tube design and development
NASA Technical Reports Server (NTRS)
Connolly, D. J.; Forman, R.; Jones, C. L.; Kosmahl, H.; Sharp, G. R.
1977-01-01
The design and development of a 200-watt-output, traveling-wave tube (TWT) for the Communications Technology Satellite (CTS) is discussed, with emphasis on the design evolution during the manufacturing phase of the development program. Possible further improvements to the tube design are identified.
An update on SCARLET hardware development and flight programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, P.A.; Murphy, D.M.; Piszczor, M.F.
1995-10-01
Solar Concentrator Array with Refractive Linear Element Technology (SCARLET) is one of the first practical photovoltaic concentrator array technologies that offers a number of benefits for space applications (i.e. high array efficiency, protection from space radiation effects, a relatively light weight system, minimized plasma interactions, etc.) The line-focus concentrator concept, however, also offers two very important advantages: (1) low-cost mass production potential of the lens material; and (2) relaxation of precise array tracking requirements to only a single axis. These benefits offer unique capabilities to both commercial and government spacecraft users, specifically those interested in high radiation missions, such asmore » MEO orbits, and electric-powered propulsion LEO-to-GEO orbit raising applications. SCARLET is an aggressive hardware development and flight validation program sponsored by the Ballistic Missile Defense Organization (BMDO) and NASA Lewis Research Center. Its intent is to bring technology to the level of performance and validation necessary for use by various government and commercial programs. The first phase of the SCARLET program culminated with the design, development and fabrication of a small concentrator array for flight on the METEOR satellite. This hardware will be the first in-space demonstration of concentrator technology at the `array level` and will provide valuable in-orbit performance measurements. The METEOR satellite is currently planned for a September/October 1995 launch. The next phase of the program is the development of large array for use by one of the NASA New Millenium Program missions. This hardware will incorporate a number of the significant improvements over the basic METEOR design. This presentation will address the basic SCARLET technology, examine its benefits to users, and describe the expected improvements for future missions.« less
The New Millennium Program Space Technology 5 (ST-5) Mission
NASA Technical Reports Server (NTRS)
Webb, Evan H.; Carlisle, Candace C.; Slavin, James A.
2005-01-01
The Space Technology 5 (ST-5) Project is part of NASA's New Millennium Program. ST-5 will consist of a constellation of three 25kg microsatellites. The mission goals are to demonstrate the research-quality science capability of the ST-5 spacecraft; to operate the three spacecraft as a constellation; and to design, develop and flight-validate three capable microsatellites with new technologies. ST-5 will be launched by a Pegasus XL into an elliptical polar (sun-synchronous) orbit. The three-month flight demonstration phase, beginning in March 2006, will validate the ability to perform science measurements, as well as the technologies and constellation operations. ST-5's technologies and concepts will enable future microsatellite science missions.
Project plan hydrogen energy systems technology. Phase 1: Hydrogen energy systems technology study
NASA Technical Reports Server (NTRS)
1974-01-01
An overview of the potential need for hydrogen as a source of energy in the future was presented in order to identify and define the technology requirements for the most promising approaches to meet that need. The following study objectives were discussed: (1) determination of the future demand for hydrogen, based on current trends and anticipated new uses, (2) identification of the critical research and technology advances required to meet this need considering, to the extent possible, raw material limitations, economics, and environmental effects, and (3) definition and recommendation of the scope and space of a National Hydrogen Energy Systems Technology Program and outline of a Program Development Plan.
DOT National Transportation Integrated Search
2016-03-14
The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...
Connected vehicle pilot deployment program phase 2, data privacy plan – Wyoming.
DOT National Transportation Integrated Search
2016-04-14
The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...
Connected vehicle pilot deployment program phase 2 : data management plan - Tampa (THEA).
DOT National Transportation Integrated Search
2017-10-01
The Tampa Hillsborough Expressway Authority (THEA) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication technology to re...
Connected vehicle pilot deployment program phase 1, safety management plan – ICF/Wyoming.
DOT National Transportation Integrated Search
2016-03-14
The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...
Industrial Technology Modernization Program. Project 32. Factory Vision. Phase 2
1988-04-01
instructions for the PWA’s, generating the numerical control (NC) program instructions for factory assembly equipment, controlling the process... generating the numerical control (NC) program instructions for factory assembly equipment, controlling the production process instructions and NC... Assembly Operations the "Create Production Process Program" will automatically generate a sequence of graphics pages (in paper mode), or graphics screens
Alternative Technology for Transit Bus Air Conditioning : The Rotary Screw Compressor
DOT National Transportation Integrated Search
1984-11-01
This report summarizes the results of the test and evaluation of a prototype rotary screw compressor design. The UMTA-funded R&D program consisted of two phases. The objectives of the first phase were to ascertain the extent of the problems with curr...
Northrop Grumman TR202 LOX/LH2 Deep Throttling Engine Project Status
NASA Technical Reports Server (NTRS)
Gromski, J.; Majamaki, A. N.; Chianese, S. G.; Weinstock, V. D.; Kim, T.
2010-01-01
NASA's Propulsion and Cryogenic Advanced Development (PCAD) project is currently developing enabling propulsion technologies in support of the Exploration Initiative, with a particular focus on the needs of the Altair Project. To meet Altair requirements, several technical challenges need to be overcome, one of which is the ability for the lunar descent engine(s) to operate over a deep throttle range with cryogenic propellants. To address this need, PCAD has enlisted Northrop Grumman Aerospace Systems (NGAS) in a technology development effort associated with the TR202, a LOX/LH2 expander cycle engine driven by independent turbopump assemblies and featuring a variable area pintle injector similar to the injector used on the TR200 Apollo Lunar Module Descent Engine (LMDE). Since the Apollo missions, NGAS has continued to mature deep throttling pintle injector technology. The TR202 program has completed two phases of pintle injector testing. The first phase of testing used ablative thrust chambers and demonstrated igniter operation as well as stable performance at several power levels across the designed 10:1 throttle range. The second phase of testing was performed on a calorimeter chamber and demonstrated injector performance at various power levels (75%, 50%, 25%, 10%, and 7.5%) across the throttle range as well as chamber heat flux to show that the engine can close an expander cycle design across the throttle range. This paper provides an overview of the TR202 program. It describes the different phases of the program with the key milestones of each phase. It then shows when those milestones were met. Next, it describes how the test data was used to update the conceptual design and how the test data has created a database for deep throttling cryogenic pintle technology that is readily scaleable and can be used to again update the design once the Altair program's requirements are firm. The final section of the paper describes the path forward, which includes demonstrating continuously throttling with an actuator and pursuing a path towards integrated engine sea-level test-bed testing.
High Voltage, Solid-State Switch for Fusion Science Applications
NASA Astrophysics Data System (ADS)
Ziemba, Timothy; Prager, James; Miller, Kenneth E.; Slobodov, Ilia
2017-10-01
Eagle Harbor Technologies, Inc. is developing a series stack of solid-state switches to produce a single high voltage switch that can be operated at over 35 kV. During the Phase I program, EHT developed two high voltage switch modules: one with isolated power gate drive and a second with inductively coupled gate drive. These switches were tested at 15 kV and up to 300 A at switching frequencies up to 500 kHz for 10 ms bursts. Robust switching was demonstrated for both IGBTs and SiC MOSFETs. During the Phase II program, EHT will develop a higher voltage switch (>35 kV) that will be suitable for high pulsed and average power applications. EHT will work with LTX to utilize these switches to design, build, and test a pulsed magnetron driver that will be delivered to LTX before the completion of the program. EHT will present data from the Phase I program as well as preliminary results from the start of the Phase II program. With support of DOE SBIR.
NASA Technical Reports Server (NTRS)
1989-01-01
This photo depicts the AFTI F-16 in the configuration used midway through the program. The sensor pods were added to the fuselage, but the chin canards remained in place. Painted in non-standard gray tones, it carried Sidewinder air-to-air missles on its wingtips. During the 1980s and 1990s, NASA and the U.S. Air Force participated in a joint program to integrate and demonstrate new avionics technologies to improve close air support capabilities in next-generation aircraft. The testbed aircraft, seen here in flight over the desert at NASA's Dryden Flight Research Center, Edwards, California, was called the Advanced Fighter Technology Integration (AFTI) F-16. The tests demonstrated technologies to improve navigation and the pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. The aircraft--an F-16A Fighting Falcon (Serial #75-0750)--underwent numerous modifications. A relatively low-cost testbed, it evaluated the feasability of advanced, intergrated-sensor, avionics, and flight control technologies. During the first phase of the AFTI/F-16 program, which began in 1983, the aircraft demonstrated voice-actuated commands, helmet-mounted sights, flat turns, and selective fuselage pointing using forward-mounted canards and a triplex digital flight control computer system. The second phase of research, which began in the summer of 1991, demonstrated advanced technologies and capabilities to find and destroy ground targets day or night, and in adverse weather while using maneuverability and speed at low altitude. This phase was known as the close air support and battlefield air interdiction (CAS/BAI) phase. Finally, the aircraft was used to assess the Automatic Ground Collision Avoidance System (Auto - GCAS), a joint project with the Swedish Government. For these tests, the pilot flew the aircraft directly toward the ground, simulating a total loss of control. The GCAS was designed to take command in such emergencies and bring the aircraft back to level flight. The AFTI F-16 program ended at Dryden on November 4, 1997 after 15 years and over 700 research flights. The USAF continued to fly the aircraft until retiring it to the Air Force Museum on January 9, 2001.
Portable Computer Technology (PCT) Research and Development Program Phase 2
NASA Technical Reports Server (NTRS)
Castillo, Michael; McGuire, Kenyon; Sorgi, Alan
1995-01-01
The subject of this project report, focused on: (1) Design and development of two Advanced Portable Workstation 2 (APW 2) units. These units incorporate advanced technology features such as a low power Pentium processor, a high resolution color display, National Television Standards Committee (NTSC) video handling capabilities, a Personal Computer Memory Card International Association (PCMCIA) interface, and Small Computer System Interface (SCSI) and ethernet interfaces. (2) Use these units to integrate and demonstrate advanced wireless network and portable video capabilities. (3) Qualification of the APW 2 systems for use in specific experiments aboard the Mir Space Station. A major objective of the PCT Phase 2 program was to help guide future choices in computing platforms and techniques for meeting National Aeronautics and Space Administration (NASA) mission objectives. The focus being on the development of optimal configurations of computing hardware, software applications, and network technologies for use on NASA missions.
NASA Technical Reports Server (NTRS)
1972-01-01
The planning data are presented for subsequent phases of free-flying teleoperator program (FFTO) and includes costs, schedules and supporting research and technology activities required to implement the free-flying teleoperator system and associated flight equipment. The purpose of the data presented is to provide NASA with the information needed to continue development of the FFTO and integrate it into the space shuttle program. The planning data describes three major program phases consisting of activities and events scheduled to effect integrated design, development, fabrication and operation of an FFTO system. Phase A, Concept Generation, represents a study effort directed toward generating and evaluating a number of feasible FFTO experiment system concepts. Phase B, Definition, will include preliminary design and supporting analysis of the FFTO, the shuttle based equipment and ground support equipment. Phase C/D, Design, Development and Operations will include detail design of the operational FFTO, its integration into the space shuttle, hardware fabrication and testing, delivery of flight hardware and support of flight operations. Emphasis is placed on the planning for Phases A and B since these studies will be implemented early in the development cycle. Phase C/D planning is more general and subject to refinement during the definition phase.
NASA Astrophysics Data System (ADS)
Oishi, Ikuo; Nishijima, Kenichi
2002-03-01
A 70 MW class superconducting model generator was designed, manufactured, and tested from 1988 to 1999 as Phase I, which was Japan's national project on applications of superconducting technologies to electric power apparatuses that was commissioned by NEDO as part of New Sunshine Program of AIST and MITI. Phase II then is now being carried out by almost same organization as Phase I. With the development of the 70 MW class superconducting model generator, technologies for a 200 MW class pilot generator were established. The world's largest output (79 MW), world's longest continuous operation (1500 h), and other sufficient characteristics were achieved on the 70 MW class superconducting model generator, and key technologies of design and manufacture required for the 200 MW class pilot generator were established. This project contributed to progress of R&D of power apparatuses. Super-GM has started the next project (Phase II), which shall develop the key technologies for larger-capacity and more-compact machine and is scheduled from 2000 to 2003. Phase II shall be the first step for commercialization of superconducting generator.
Mandl, Kenneth D; Mandel, Joshua C; Murphy, Shawn N; Bernstam, Elmer Victor; Ramoni, Rachel L; Kreda, David A; McCoy, J Michael; Adida, Ben; Kohane, Isaac S
2012-01-01
The Substitutable Medical Applications, Reusable Technologies (SMART) Platforms project seeks to develop a health information technology platform with substitutable applications (apps) constructed around core services. The authors believe this is a promising approach to driving down healthcare costs, supporting standards evolution, accommodating differences in care workflow, fostering competition in the market, and accelerating innovation. The Office of the National Coordinator for Health Information Technology, through the Strategic Health IT Advanced Research Projects (SHARP) Program, funds the project. The SMART team has focused on enabling the property of substitutability through an app programming interface leveraging web standards, presenting predictable data payloads, and abstracting away many details of enterprise health information technology systems. Containers--health information technology systems, such as electronic health records (EHR), personally controlled health records, and health information exchanges that use the SMART app programming interface or a portion of it--marshal data sources and present data simply, reliably, and consistently to apps. The SMART team has completed the first phase of the project (a) defining an app programming interface, (b) developing containers, and (c) producing a set of charter apps that showcase the system capabilities. A focal point of this phase was the SMART Apps Challenge, publicized by the White House, using http://www.challenge.gov website, and generating 15 app submissions with diverse functionality. Key strategic decisions must be made about the most effective market for further disseminating SMART: existing market-leading EHR vendors, new entrants into the EHR market, or other stakeholders such as health information exchanges.
Engine Validation of Noise and Emission Reduction Technology Phase I
NASA Technical Reports Server (NTRS)
Weir, Don (Editor)
2008-01-01
This final report has been prepared by Honeywell Aerospace, Phoenix, Arizona, a unit of Honeywell International, Inc., documenting work performed during the period December 2004 through August 2007 for the NASA Glenn Research Center, Cleveland, Ohio, under the Revolutionary Aero-Space Engine Research (RASER) Program, Contract No. NAS3-01136, Task Order 8, Engine Validation of Noise and Emission Reduction Technology Phase I. The NASA Task Manager was Dr. Joe Grady of the NASA Glenn Research Center. The NASA Contract Officer was Mr. Albert Spence of the NASA Glenn Research Center. This report is for a test program in which NASA funded engine validations of integrated technologies that reduce aircraft engine noise. These technologies address the reduction of engine fan and jet noise, and noise associated with propulsion/airframe integration. The results of these tests will be used by NASA to identify the engineering tradeoffs associated with the technologies that are needed to enable advanced engine systems to meet stringent goals for the reduction of noise. The objectives of this program are to (1) conduct system engineering and integration efforts to define the engine test-bed configuration; (2) develop selected noise reduction technologies to a technical maturity sufficient to enable engine testing and validation of those technologies in the FY06-07 time frame; (3) conduct engine tests designed to gain insight into the sources, mechanisms and characteristics of noise in the engines; and (4) establish baseline engine noise measurements for subsequent use in the evaluation of noise reduction.
Polymer Energy Rechargeable System (PERS) Development Program
NASA Technical Reports Server (NTRS)
Baldwin, Richard S.; Manzo, Michelle A.; Dalton, Penni J.; Marsh, Richard A.; Surampudi, Rao
2001-01-01
The National Aeronautics and Space Administration (NASA) and the Air Force Research Laboratory (AFRL) have recently established a collaborative effort to support the development of polymer-based, lithium-based cell chemistries and battery technologies to address the next generation of aerospace applications and mission needs. The overall objective of this development program, which is referred to as PERS, Polymer Energy Rechargeable System, is to establish a world-class technology capability and U.S. leadership in polymer-based battery technology for aerospace applications. Programmatically, the PERS initiative will exploit both interagency collaborations to address common technology and engineering issues and the active participation of academia and private industry. The initial program phases will focus on R&D activities to address the critical technical issues and challenges at the cell level.
EVALUATING TREATMENT TECHNOLOGIES - QA APPROACHES IN THE USA AND GERMANY
The US EPA and the German Federal Ministry of Education and Research entered into a Bilateral Agreement in 1990 to gain a better understanding of each country's efforts in developing and demonstrating remedial technologies. Under Phase II of the Agreement, SITe Program quality ma...
NASA's Plans for Developing Life Support and Environmental Monitoring and Control Systems
NASA Technical Reports Server (NTRS)
Lawson, B. Michael; Jan, Darrell
2006-01-01
Life Support and Monitoring have recently been reworked in response to the Vision for Space Exploration. The Exploration Life Support (ELS) Project has replaced the former Advanced Life Support Element of the Human Systems Research and Technology Office. Major differences between the two efforts include: the separation of thermal systems into a new stand alone thermal project, deferral of all work in the plant biological systems, relocation of food systems to another organization, an addition of a new project called habitation systems, and overall reduction in the number of technology options due to lower funding. The Advanced Environmental Monitoring and Control (AEMC) Element is retaining its name but changing its focus. The work planned in the ELS and AEMC projects is organized around the three major phases of the Exploration Program. The first phase is the Crew Exploration Vehicle (CEV). The ELS and AEMC projects will develop hardware for this short duration orbital and trans-lunar vehicle. The second phase is sortie landings on the moon. Life support hardware for lunar surface access vehicles including upgrades of the CEV equipment and technologies which could not be pursued in the first phase due to limited time and budget will be developed. Monitoring needs will address lunar dust issues, not applicable to orbital needs. The ELS and AEMC equipment is of short duration, but has different environmental considerations. The third phase will be a longer duration lunar outpost. This will consist of a new set of hardware developments better suited for long duration life support and associated monitoring needs on the lunar surface. The presentation will show the planned activities and technologies that are expected to be developed by the ELS and AEMC projects for these program phases.
DOT National Transportation Integrated Search
2016-07-01
The Tampa Hillsborough Expressway Authority (THEA) Connected Vehicle (CV) Pilot Deployment Program is part of a national effort to advance CV technologies by deploying, demonstrating, testing and offering lessons learned for future deployers. The THE...
DOT National Transportation Integrated Search
2016-09-01
The Tampa Hillsborough Expressway Authority (THEA) Connected Vehicle (CV) Pilot Deployment Program intends to develop a suite of applications that utilize vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication technology to reduce...
Connected vehicle pilot deployment program phase 1, concept of operations (ConOps), ICF/Wyoming.
DOT National Transportation Integrated Search
2015-12-01
The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...
Connected Vehicle Pilot Deployment Program Phase 1, Human Use Approval Summary – ICF/Wyoming.
DOT National Transportation Integrated Search
2016-07-18
The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...
DOT National Transportation Integrated Search
2016-06-22
The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...
DOT National Transportation Integrated Search
2016-08-12
The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...
DOT National Transportation Integrated Search
2016-09-01
The Tampa Hillsborough Expressway Authority (THEA) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication technology to re...
DOT National Transportation Integrated Search
2016-09-13
The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...
Connected vehicle pilot deployment program phase II data privacy plan – Tampa (THEA).
DOT National Transportation Integrated Search
2017-02-01
The Tampa Hillsborough Expressway Authority (THEA) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to re...
DOE Office of Scientific and Technical Information (OSTI.GOV)
DOE; ORNL; NREL
1999-10-15
The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NOx) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices formore » multiple levels of fuel sulfur content. This interim report discusses the results of the DECSE test program that demonstrates the potential of NOx adsorber catalyst technology across the range of diesel engine operation with a fuel economy penalty less than 4%.« less
Advanced Technologies for Space Life Science Payloads on the International Space Station
NASA Technical Reports Server (NTRS)
Hines, John W.; Connolly, John P. (Technical Monitor)
1997-01-01
SENSORS 2000! (S2K!) is a specialized, high-performance work group organized to provide advanced engineering and technology support for NASA's Life Sciences spaceflight and ground-based research and development programs. In support of these objectives, S2K! manages NASA's Advanced Technology Development Program for Biosensor and Biotelemetry Systems (ATD-B), with particular emphasis on technologies suitable for Gravitational Biology, Human Health and Performance, and Information Technology and Systems Management. A concurrent objective is to apply and transition ATD-B developed technologies to external, non-NASA humanitarian (medical, clinical, surgical, and emergency) situations and to stimulate partnering and leveraging with other government agencies, academia, and the commercial/industrial sectors. A phased long-term program has been implemented to support science disciplines and programs requiring specific biosensor (i.e., biopotential, biophysical, biochemical, and biological) measurements from humans, animals (mainly primates and rodents), and cells under controlled laboratory and simulated microgravity situations. In addition to the technology programs described above, NASA's Life and Microgravity Sciences and Applications Office has initiated a Technology Infusion process to identify and coordinate the utilization and integration of advanced technologies into its International Space Station Facilities. This project has recently identified a series of technologies, tasks, and products which, if implemented, would significantly increase the science return, decrease costs, and provide improved technological capability. This presentation will review the programs described above and discuss opportunities for collaboration, leveraging, and partnering with NASA.
First NASA/Industry High Speed Research Program Nozzle Symposium
NASA Technical Reports Server (NTRS)
Long-Davis, Mary Jo
1999-01-01
The First High Speed Research (HSR) Nozzle Symposium was hosted by NASA Lewis Research Center on November 17-19, 1992 in Cleveland, Ohio, and was sponsored by the HSR Source Noise Working Group. The purpose of this symposium was to provide a national forum for the government, industry, and university participants in the program to present and discuss important low noise nozzle research results and technology issues related to the development of appropriate nozzles for a commercially viable, environmentally compatible, U.S. High-Speed Civil Transport. The HSR Phase I research program was initiated in FY90 and is approaching the first major milestone (end of FY92) relative to an initial FAR 36 Stage 3 nozzle noise assessment. Significant research results relative to that milestone were presented. The opening session provided a brief overview of the Program and status of the Phase H plan. The next five sessions were technically oriented and highlighted recent significant analytical and experimental accomplishments. The last Session included a panel discussion by the Session Chairs, summarizing the progress seen to date and discussing issues relative to further advances in technology necessary to achieve the Program Goals. Attendance at the Symposium was by invitation only and included only industry, academic, and government participants who are actively involved in the High-Speed Research Program. The technology presented in this meeting is considered commercially sensitive.
ULTRA-LOW POWER CO2 SENSOR FOR INTELLIGENT BUILDING CONTROL - PHASE I
The proposed EPA SBIR Phase I program will create a novel ultra-low power and low-cost microfabricated CO2 sensor. The initial developments of sensor technology will serve the very large Demand Controlled Ventilation market that has been identified by KWJ and its...
Evolution of Ada technology in the flight dynamics area: Design phase analysis
NASA Technical Reports Server (NTRS)
Quimby, Kelvin L.; Esker, Linda
1988-01-01
The software engineering issues related to the use of the Ada programming language during the design phase of an Ada project are analyzed. Discussion shows how an evolving understanding of these issues is reflected in the design processes of three generations of Ada projects.
In support of the U.S. Environmental Protection Agency’s (EPA) Superfund Innovative Technology Evaluation (SITE) Program, a pilot-scale demonstration of a slurry-phase bioremediation process was performed May 1991 at the EPA’s Test & Evaluation Facility in Cincinnati, OH. In this...
Disseminating and Replicating an Effective Emerging Literacy Technology Curriculum: A Final Report
ERIC Educational Resources Information Center
Hutinger, Patricia; Bell, Carol; Daytner, Gary; Johanson, Joyce
2005-01-01
Emerging Literacy Technology Curriculum (ELiTeC 2, [referred to as E2 in this report]), housed at the Center for Best Practices in Early Childhood at Western Illinois University, was funded in 2000 by the U.S. Department of Education's Office of Special Education Programs (OSEP) as a 3-year Phase 3 Steppingstones of Technology Research on…
Manned spacecraft electrical power systems
NASA Technical Reports Server (NTRS)
Simon, William E.; Nored, Donald L.
1987-01-01
A brief history of the development of electrical power systems from the earliest manned space flights illustrates a natural trend toward a growth of electrical power requirements and operational lifetimes with each succeeding space program. A review of the design philosophy and development experience associated with the Space Shuttle Orbiter electrical power system is presented, beginning with the state of technology at the conclusion of the Apollo Program. A discussion of prototype, verification, and qualification hardware is included, and several design improvements following the first Orbiter flight are described. The problems encountered, the scientific and engineering approaches used to meet the technological challenges, and the results obtained are stressed. Major technology barriers and their solutions are discussed, and a brief Orbiter flight experience summary of early Space Shuttle missions is included. A description of projected Space Station power requirements and candidate system concepts which could satisfy these anticipated needs is presented. Significant challenges different from Space Shuttle, innovative concepts and ideas, and station growth considerations are discussed. The Phase B Advanced Development hardware program is summarized and a status of Phase B preliminary tradeoff studies is presented.
Integrated In-space Transportation Plan
NASA Technical Reports Server (NTRS)
Farris, B.; Eberle, B.; Woodcock, G.; Negast, B.; Johnson, Les (Technical Monitor)
2002-01-01
The purpose of this report is to provide the reader with a readily accessible reference volume and history for the Integrated In-Space Transportation Plan (IISTP) phase I effort. This report was prepared by Gray Research, Inc. as a partial fulfillment of the Integrated Technology Assessment Center subcontract No. 4400037135 in support of the IISTP phase I effort within the In-Space Investment Area of the Advanced Space Transportation Program managed at Marshall Space Flight Center, Huntsville, Alabama. Much of the data used in the preparation of this report was taken from analyses, briefings, and reports prepared by the vast number of dedicated engineers and scientists who participated in the IISTP phase I effort. The opinions and ideas expressed in this report are solely those of the authors and do not necessarily reflect those of NASA in whole or in part. Reaching the outer solar system is a struggle against time and distance. The most distant planets are 4.5 to 6 billion kilometers from the Sun and to reach them in any reasonable time requires much higher values of specific impulse than can be achieved with conventional chemical rockets. In addition, the few spacecraft that have reached beyond Jupiter have used gravity assist, mainly by Jupiter, that is only available for a few months' period every 13 or so years. This permits only very infrequent missions and mission planners are very reluctant to accept travel times greater than about ten years since this is about the maximum for which one can have a realistic program plan. Advanced In-Space Propulsion (ISP) technologies will enable much more effective exploration of our Solar System and will permit mission designers to plan missions to "fly anytime, anywhere and complete a host of science objectives at the destinations' with greater reliability and safety. With a wide range of possible missions and candidate propulsion technologies with very diverse characteristics, the question of which technologies are "best" for future missions is a difficult one. The primary focus of the IISTP Phase I efforts were to: Develop, iterate and baseline future NASA requirements for In-Space Transportation; Define preliminary integrated architectures utilizing advanced ISP technologies; Identify and prioritize ISP technologies. The primary efforts of the IISTP Phase I process was to: Address Customer defined missions, mission priorities, mission requirements and technology preferences. Provide a forum for Technologists to advocate and have sufficiently considered any ISP technology for any mission of interest defined by the customer. Perform Systems analyses of the customer defined prioritized mission set to the degree necessary to support evaluation and prioritization of each technology advocated by the technologists. Perform Cost analyses on each of the technologies that were determined by systems analyses to be viable candidates for the customer defined mission set. Integrate all customers, technologists, systems, cost, program and project inputs into the final IISTP Prioritized set of technologies. The primary products of the IISTP Phase I effort were: Prioritized set of advanced ISP technologies that meet customer-provided requirements for customer prioritized mission sets; Recommendations of relative technology payoffs to guide augmentation investments.
Integrated In-Space Transportation Plan
NASA Astrophysics Data System (ADS)
Farris, B.; Eberle, B.; Woodcock, G.; Negast, B.
2002-10-01
The purpose of this report is to provide the reader with a readily accessible reference volume and history for the Integrated In-Space Transportation Plan (IISTP) phase I effort. This report was prepared by Gray Research, Inc. as a partial fulfillment of the Integrated Technology Assessment Center subcontract No. 4400037135 in support of the IISTP phase I effort within the In-Space Investment Area of the Advanced Space Transportation Program managed at Marshall Space Flight Center, Huntsville, Alabama. Much of the data used in the preparation of this report was taken from analyses, briefings, and reports prepared by the vast number of dedicated engineers and scientists who participated in the IISTP phase I effort. The opinions and ideas expressed in this report are solely those of the authors and do not necessarily reflect those of NASA in whole or in part. Reaching the outer solar system is a struggle against time and distance. The most distant planets are 4.5 to 6 billion kilometers from the Sun and to reach them in any reasonable time requires much higher values of specific impulse than can be achieved with conventional chemical rockets. In addition, the few spacecraft that have reached beyond Jupiter have used gravity assist, mainly by Jupiter, that is only available for a few months' period every 13 or so years. This permits only very infrequent missions and mission planners are very reluctant to accept travel times greater than about ten years since this is about the maximum for which one can have a realistic program plan. Advanced In-Space Propulsion (ISP) technologies will enable much more effective exploration of our Solar System and will permit mission designers to plan missions to "fly anytime, anywhere and complete a host of science objectives at the destinations' with greater reliability and safety. With a wide range of possible missions and candidate propulsion technologies with very diverse characteristics, the question of which technologies are "best" for future missions is a difficult one. The primary focus of the IISTP Phase I efforts were to: Develop, iterate and baseline future NASA requirements for In-Space Transportation; Define preliminary integrated architectures utilizing advanced ISP technologies; Identify and prioritize ISP technologies. The primary efforts of the IISTP Phase I process was to: Address Customer defined missions, mission priorities, mission requirements and technology preferences. Provide a forum for Technologists to advocate and have sufficiently considered any ISP technology for any mission of interest defined by the customer. Perform Systems analyses of the customer defined prioritized mission set to the degree necessary to support evaluation and prioritization of each technology advocated by the technologists. Perform Cost analyses on each of the technologies that were determined by systems analyses to be viable candidates for the customer defined mission set. Integrate all customers, technologists, systems, cost, program and project inputs into the final IISTP Prioritized set of technologies. The primary products of the IISTP Phase I effort were: Prioritized set of advanced ISP technologies that meet customer-provided requirements for customer prioritized mission sets; Recommendations of relative technology payoffs to guide augmentation investments.
Wireless Roadside Inspection Proof of Concept Test Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capps, Gary J; Franzese, Oscar; Knee, Helmut E
2009-03-01
The U.S. Department of Transportation (DOT) FMCSA commissioned the Wireless Roadside Inspection (WRI) Program to validate technologies and methodologies that can improve safety through inspections using wireless technologies that convey real-time identification of commercial vehicles, drivers, and carriers, as well as information about the condition of the vehicles and their drivers. It is hypothesized that these inspections will: -- Increase safety -- Decrease the number of unsafe commercial vehicles on the road; -- Increase efficiency -- Speed up the inspection process, enabling more inspections to occur, at least on par with the number of weight inspections; -- Improve effectiveness --more » Reduce the probability of drivers bypassing CMV inspection stations and increase the likelihood that fleets will attempt to meet the safety regulations; and -- Benefit industry -- Reduce fleet costs, provide good return-on-investment, minimize wait times, and level the playing field. The WRI Program is defined in three phases which are: Phase 1: Proof of Concept Test (POC) Testing of commercially available off-the-shelf (COTS) or near-COTS technology to validate the wireless inspection concept. Phase 2: Pilot Test Safety technology maturation and back office system integration Phase 3: Field Operational Test Multi-vehicle testing over a multi-state instrumented corridor This report focuses on Phase 1 efforts that were initiated in March, 2006. Technical efforts dealt with the ability of a Universal Wireless Inspection System (UWIS) to collect driver, vehicle, and carrier information; format a Safety Data Message Set from this information; and wirelessly transmit a Safety Data Message Set to a roadside receiver unit or mobile enforcement vehicle.« less
ERIC Educational Resources Information Center
Berney, Mary F.
Plans for the field-testing and implementation of the Accreditation Plus Model (APM) for evaluation of teacher preparation programs are described. Field-testing is taking place in the Center for Teacher Education Evaluation at Tennessee Technological University (Cookeville). The APM is based on the professional judgment approach to program…
NASA Technical Reports Server (NTRS)
1992-01-01
The AFTI F-16 in its final configuration, flying in the vicinity of Edwards Air Force Base, California. During this phase, the two forward infrared turrets were added ahead of the cockpit, the chin canards were removed, and the aircraft was repainted in a standard Air Force scheme. A fuel drop tank is visible below the wing. During the 1980s and 1990s, NASA and the U.S. Air Force participated in a joint program to integrate and demonstrate new avionics technologies to improve close air support capabilities in next-generation aircraft. The testbed aircraft, seen here in flight over the desert at NASA's Dryden Flight Research Center, Edwards, California, was called the Advanced Fighter Technology Integration (AFTI) F-16. The tests demonstrated technologies to improve navigation and the pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. The aircraft--an F-16A Fighting Falcon (Serial #75-0750)--underwent numerous modifications. A relatively low-cost testbed, it evaluated the feasability of advanced, intergrated-sensor, avionics, and flight control technologies. During the first phase of the AFTI/F-16 program, which began in 1983, the aircraft demonstrated voice-actuated commands, helmet-mounted sights, flat turns, and selective fuselage pointing using forward-mounted canards and a triplex digital flight control computer system. The second phase of research, which began in the summer of 1991, demonstrated advanced technologies and capabilities to find and destroy ground targets day or night, and in adverse weather while using maneuverability and speed at low altitude. This phase was known as the close air support and battlefield air interdiction (CAS/BAI) phase. Finally, the aircraft was used to assess the Automatic Ground Collision Avoidance System (Auto - GCAS), a joint project with the Swedish Government. For these tests, the pilot flew the aircraft directly toward the ground, simulating a total loss of control. The GCAS was designed to take command in such emergencies and bring the aircraft back to level flight. The AFTI F-16 program ended at Dryden on November 4, 1997 after 15 years and over 700 research flights. The USAF continued to fly the aircraft until retiring it to the Air Force Museum on January 9, 2001.
An Overview of Materials Structures for Extreme Environments Efforts for 2015 SBIR Phases I and II
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2017-01-01
Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for Agency projects. This report highlights innovative SBIR 2015 Phase I and II projects that specifically address areas in Materials and Structures for Extreme Environments, one of six core competencies at NASA Glenn Research Center. Each article describes an innovation, defines its technical objective, and highlights NASA applications as well as commercial and industrial applications. Ten technologies are featured: metamaterials-inspired aerospace structures, metallic joining to advanced ceramic composites, multifunctional polyolefin matrix composite structures, integrated reacting fluid dynamics and predictive materials degradation models for propulsion system conditions, lightweight inflatable structural airlock (LISA), copolymer materials for fused deposition modeling 3-D printing of nonstandard plastics, Type II strained layer superlattice materials development for space-based focal plane array applications, hydrogenous polymer-regolith composites for radiation-shielding materials, a ceramic matrix composite environmental barrier coating durability model, and advanced composite truss printing for large solar array structures. This report serves as an opportunity for NASA engineers, researchers, program managers, and other personnel to learn about innovations in this technology area as well as possibilities for collaboration with innovative small businesses that could benefit NASA programs and projects.
NASA Technical Reports Server (NTRS)
Johnson, Ted; Sleight, David W.; Martin, Robert A.
2013-01-01
A description of the Phase I structures and design work of the Composite Cryotank Technology Demonstration (CCTD) Project is in this paper. The goal of the CCTD Project in the Game Changing Development (GCD) Program is to design and build a composite liquid-hydrogen cryogenic tank that can save 30% in weight and 25% in cost compared to state-of-the-art aluminum metallic cryogenic tank technology when the wetted composite skin wall is at an allowable strain of 5000 in/in. Three Industry teams developed composite cryogenic tank concepts that are compared for weight to an aluminum-lithium (Al-Li) cryogenic tank designed by NASA in Phase I of the CCTD Project. The requirements used to design all of the cryogenic tanks in Phase I will be discussed and the resulting designs, analyses, and weight of the concepts developed by NASA and Industry will be reviewed and compared.
Technology assessment of portable energy RDT and P, phase 1
NASA Technical Reports Server (NTRS)
Spraul, J. R. (Compiler)
1975-01-01
A technological assessment of portable energy research, development, technology, and production was undertaken to assess the technical, economic, environmental, and sociopolitical issues associated with portable energy options. Those courses of action are discussed which would impact aviation and air transportation research and technology. Technology assessment workshops were held to develop problem statements. The eighteen portable energy problem statements are discussed in detail along with each program's objective, approach, task description, and estimates of time and costs.
A case history of technology transfer
NASA Technical Reports Server (NTRS)
1981-01-01
A sequence of events, occurring over the last 25 years, are described that chronicle the evolution of ion-bombardment electric propulsion technology. Emphasis is placed on the latter phases of this evolution, where special efforts were made to pave the way toward the use of this technology in operational space flight systems. These efforts consisted of a planned program to focus the technology toward its end applications and an organized process that was followed to transfer the technology from the research-technology NASA Center to the user-development NASA Center and its industry team. Major milestones in this evolution, which are described, include the development of thruster technology across a large size range, the successful completion of two space electric rocket tests, SERT I and SERT II, development of power-processing technology for electric propulsion, completion of a program to make the technology ready for flight system development, and finally the technology transfer events.
Enabling propulsion materials for high-speed civil transport engines
NASA Technical Reports Server (NTRS)
Stephens, Joseph R.; Herbell, Thomas P.
1992-01-01
NASA Headquarters and LeRC have advocated an Enabling Propulsion Materials Program (EPM) to begin in FY-92. The High Speed Research Phase 1 program which began in FY-90 has focused on the environmental acceptability of a High Speed Civil Transport (HSCT). Studies by industry, including Boeing, McDonnell Douglas, GE Aircraft Engines, and Pratt & Whitney Aircraft, and in-house studies by NASA concluded that NO(x) emissions and airport noise reduction can only be economically achieved by revolutionary advancements in materials technologies. This is especially true of materials for the propulsion system where the combustor is the key to maintaining low emissions, and the exhaust nozzle is the key to reducing airport noise to an acceptable level. Both of these components will rely on high temperature composite materials that can withstand the conditions imposed by commercial aircraft operations. The proposed EPM program will operate in conjunction with the HSR Phase 1 Program and the planned HSR Phase 2 program slated to start in FY-93. Components and subcomponents developed from advanced materials will be evaluated in the HSR Phase 2 Program.
IMPROVED TUBULARS FOR BETTER ECONOMICS IN DEEP GAS WELL DRILLING USING MICROWAVE TECHNOLOGY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinesh Agrawal; Paul Gigl; Mahlon Dennis
2005-03-01
The main objective of the research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration, by utilizing the latest developments in the microwave materials technology. Originally, it was proposed to accomplish this by developing an efficient and economically viable continuous microwave process to sinter continuously formed/extruded steel powder for the manufacture of seamless coiled tubing and other tubular products. However, based on the results and faced with insurmountable difficulties in the extrusion and de-waxing processes,more » the approach of achieving the goals of the program has been slightly changed. In the continuation proposal an approach of microwave sintering combined with Cold Isostatic Press (CIP) and joining (by induction or microwave) is adopted. This process can be developed into a semi-continuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. Originally, the entire program was spread over three phases with the following goals: Phase I: Demonstration of the feasibility concept of continuous microwave sintering process for tubular steel products. Phase II: Design, building and testing of a prototype microwave system which shall be combined with a continuous extruder for steel tubular objects. Phase III: Execution of the plan for commercialization of the technology by one of the industrial partners. However, since some of the goals of the phase I were not completed, an extension of nine months was granted and we continued extrusion experiments, designed and built semicontinuous microwave sintering unit.« less
Software reuse issues affecting AdaNET
NASA Technical Reports Server (NTRS)
Mcbride, John G.
1989-01-01
The AdaNet program is reviewing its long-term goals and strategies. A significant concern is whether current AdaNet plans adequately address the major strategic issues of software reuse technology. The major reuse issues of providing AdaNet services that should be addressed as part of future AdaNet development are identified and reviewed. Before significant development proceeds, a plan should be developed to resolve the aforementioned issues. This plan should also specify a detailed approach to develop AdaNet. A three phased strategy is recommended. The first phase would consist of requirements analysis and produce an AdaNet system requirements specification. It would consider the requirements of AdaNet in terms of mission needs, commercial realities, and administrative policies affecting development, and the experience of AdaNet and other projects promoting the transfer software engineering technology. Specifically, requirements analysis would be performed to better understand the requirements for AdaNet functions. The second phase would provide a detailed design of the system. The AdaNet should be designed with emphasis on the use of existing technology readily available to the AdaNet program. A number of reuse products are available upon which AdaNet could be based. This would significantly reduce the risk and cost of providing an AdaNet system. Once a design was developed, implementation would proceed in the third phase.
Proton-Exchange-Membrane Fuel Cell Powerplants Developed and Tested for Exploration Missions
NASA Technical Reports Server (NTRS)
Hoberecht, Mark A.; Pham, Nang T.
2005-01-01
Proton-exchange-membrane fuel cell (PEMFC) technology has received major attention for terrestrial applications, such as the automotive and residential markets, for the past 20 years. This attention has significantly advanced the maturity of the technology, resulting in ever more compact, efficient, reliable, and inexpensive PEMFC designs. In comparison to the terrestrial operating environment, the space operating environment is much more demanding. Microgravity to high-gravity loads and the need to use pure oxygen (rather than air) as the fuel cell oxidizer place more stringent demands on PEMFC technology. NASA and its partners from industry are leveraging terrestrial PEMFC advancements by conducting parallel space technology development for future exploration missions. A team from the NASA Glenn Research Center, NASA Johnson Space Center, and NASA Kennedy Space Center recently completed the first phase of a PEMFC powerplant development effort for exploration missions. The industry partners for this phase of the development effort were ElectroChem, Inc., and Teledyne Energy Systems, Inc. Under contract to Glenn, both of these industry partners successfully designed, fabricated, and tested a breadboard PEMFC powerplant in the 1- to 5-kW power range. These powerplants were based on existing company-proprietary fuel cell stack designs, combined with off-the-shelf components, which formed the balance of the powerplant design. Subsequent to the contractor development efforts, both powerplants were independently tested at Johnson to verify operational and performance characteristics, and to determine suitability for further technology development in the second phase of the NASA-led effort. Following the independent NASA testing, Teledyne Energy Systems, Inc., was selected to develop an engineering model PEMFC powerplant. This effort was initiated by the 2nd Generation Reusable Launch Vehicle (RLV) Program Office in 2001; it transitioned to the Next Generation Launch Technologies (NGLT) Program Office in 2003. The effort is now being funded by the Exploration Program Office. We plan to summarize the results from the ongoing engineering model PEMFC powerplant development in a future Research & Technology article.
Proton-Exchange-Membrane Fuel Cell Powerplants Developed and Tested for Exploration Missions
NASA Astrophysics Data System (ADS)
Hoberecht, Mark A.; Pham, Nang T.
2005-06-01
Proton-exchange-membrane fuel cell (PEMFC) technology has received major attention for terrestrial applications, such as the automotive and residential markets, for the past 20 years. This attention has significantly advanced the maturity of the technology, resulting in ever more compact, efficient, reliable, and inexpensive PEMFC designs. In comparison to the terrestrial operating environment, the space operating environment is much more demanding. Microgravity to high-gravity loads and the need to use pure oxygen (rather than air) as the fuel cell oxidizer place more stringent demands on PEMFC technology. NASA and its partners from industry are leveraging terrestrial PEMFC advancements by conducting parallel space technology development for future exploration missions. A team from the NASA Glenn Research Center, NASA Johnson Space Center, and NASA Kennedy Space Center recently completed the first phase of a PEMFC powerplant development effort for exploration missions. The industry partners for this phase of the development effort were ElectroChem, Inc., and Teledyne Energy Systems, Inc. Under contract to Glenn, both of these industry partners successfully designed, fabricated, and tested a breadboard PEMFC powerplant in the 1- to 5-kW power range. These powerplants were based on existing company-proprietary fuel cell stack designs, combined with off-the-shelf components, which formed the balance of the powerplant design. Subsequent to the contractor development efforts, both powerplants were independently tested at Johnson to verify operational and performance characteristics, and to determine suitability for further technology development in the second phase of the NASA-led effort. Following the independent NASA testing, Teledyne Energy Systems, Inc., was selected to develop an engineering model PEMFC powerplant. This effort was initiated by the 2nd Generation Reusable Launch Vehicle (RLV) Program Office in 2001; it transitioned to the Next Generation Launch Technologies (NGLT) Program Office in 2003. The effort is now being funded by the Exploration Program Office. We plan to summarize the results from the ongoing engineering model PEMFC powerplant development in a future Research & Technology article.
Robotics and telepresence for moon missions
NASA Technical Reports Server (NTRS)
Sallaberger, Christian
1994-01-01
An integrated moon program has often been proposed as a logical next step for today's space efforts. In the context of preparing for the possibility of launching a moon program, the European Space Agency is currently conducting an internal study effort which is focusing on the assessment of key technologies. Current thinking has this moon program organized into four phases. Phase 1 will deal with lunar resource exploration. The goal would be to produce a complete chemical inventory of the moon, including oxygen, water, other volatiles, carbon, silicon, and other resources. Phase 2 will establish a permanent robotic presence on the moon via a number of landers and surface rovers. Phase 3 will extend the second phase and concentrate on the use and exploitation of local lunar resources. Phase 4 will be the establishment of a first human outpost. Some preliminary work such as the building of the outpost and the installation of scientific equipment will be done by unmanned systems before a human crew is sent to the moon.
Adiabatic Wankel type rotary engine
NASA Technical Reports Server (NTRS)
Kamo, R.; Badgley, P.; Doup, D.
1988-01-01
This SBIR Phase program accomplished the objective of advancing the technology of the Wankel type rotary engine for aircraft applications through the use of adiabatic engine technology. Based on the results of this program, technology is in place to provide a rotor and side and intermediate housings with thermal barrier coatings. A detailed cycle analysis of the NASA 1007R Direct Injection Stratified Charge (DISC) rotary engine was performed which concluded that applying thermal barrier coatings to the rotor should be successful and that it was unlikely that the rotor housing could be successfully run with thermal barrier coatings as the thermal stresses were extensive.
DOT National Transportation Integrated Search
2016-05-01
The Tampa Hillsborough Expressway Authority (THEA) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to re...
DOT National Transportation Integrated Search
2016-06-06
The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...
Development of New Laser-Protective Dyes. Phase 1.
1990-10-30
technology to stabilize cyanine and squarylium dyes . This accomplishment will justify continued research on the synthesis and process development of...beyond. This is the subject of a proposed Phase II program. RESULTS AND DISCUSSION THERMAL STABILITY: In Phase I, dyes of the cyanine and squarylium ...Test in Appendix 1). Table 1 shows that the squarylium dyes are inherently more thermally stable than the cyanines. This observation supports
Space shuttle electrical power generation and reactant supply system
NASA Technical Reports Server (NTRS)
Simon, W. E.
1985-01-01
The design philosophy and development experience of fuel cell power generation and cryogenic reactant supply systems are reviewed, beginning with the state of technology at the conclusion of the Apollo Program. Technology advancements span a period of 10 years from initial definition phase to the most recent space transportation system (STS) flights. The development program encompassed prototype, verification, and qualification hardware, as well as post-STS-1 design improvements. Focus is on the problems encountered, the scientific and engineering approaches employed to meet the technological challenges, and the results obtained. Major technology barriers are discussed, and the evolving technology development paths are traced from their conceptual beginnings to the fully man-rated systems which are now an integral part of the shuttle vehicle.
Automotive Stirling engine Market and Industrial Readiness Program (MIRP), phase 1
NASA Astrophysics Data System (ADS)
1982-05-01
A program, begun in 1978, has the goal of transferring Stirling engine technology from United Stirling of Sweden to the US and, then, following design, fabrication, and prototype testing, to secure US manufacturers for the engine. The ultimate objective is the large-scale commercial use of the Automotive Stirling Engine (ASE) by the year 2000. The fist phase of the Market and Industrial Readiness Program for the ASE was concerned with defining the market, product, economic and technical factors necessary to be addressed to assure a reasonable chance of ultimate commercial acceptance. Program results for this first phase are reported and discussed. These results pertain to licensing strategy development, economic analysis, market factors, product planning, market growth, cost studies, and engine performance as measured by fuel economy using conventional fuels and by vehicle speed and acceleration characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ring, S
1994-12-01
The U.S. Department of Energy (DOE) chartered the Phosphoric Acid Fuel-Cell (PAFC) Bus Program to demonstrate the feasibility of fuel cells in heavy-duty transportation systems. As part of this program, PAFC- powered buses are being built to meet transit industry design and performance standards. Test-bed bus-1 (TBB-1) was designed in 1993 and integrated in March 1994. TBB-2 and TBB-3 are under construction and should be integrated in early 1995. In 1987 Phase I of the program began with the development and testing of two conceptual system designs- liquid- and air-cooled systems. The liquid-cooled PAFC system was chosen to continue, throughmore » a competitive award, into Phase H, beginning in 1991. Three hybrid buses, which combine fuel-cell and battery technologies, were designed during Phase III. After completing Phase II, DOE plans a comprehensive performance testing program (Phase HI) to verify that the buses meet stringent transit industry requirements. The Phase III study will evaluate the PAFC bus and compare it to a conventional diesel bus. This NREL study assesses the environmental, health, and safety (EH&S) issues that may affect the commercialization of the PAFC bus. Because safety is a critical factor for consumer acceptance of new transportation-based technologies the study focuses on these issues. The study examines health and safety together because they are integrally related. In addition, this report briefly discusses two environmental issues that are of concern to the Environmental Protection Agency (EPA). The first issue involves a surge battery used by the PAFC bus that contains hazardous constituents. The second issue concerns the regulated air emissions produced during operation of the PAFC bus.« less
NASA Astrophysics Data System (ADS)
Ring, Shan
1994-12-01
The U.S. Department of Energy (DOE) chartered the Phosphoric Acid Fuel-Cell (PAFC) Bus Program to demonstrate the feasibility of fuel cells in heavy-duty transportation systems. As part of this program, PAFC- powered buses are being built to meet transit industry design and performance standards. Test-bed bus-1 (TBB-1) was designed in 1993 and integrated in March 1994. TBB-2 and TBB-3 are under construction and should be integrated in early 1995. In 1987 Phase 1 of the program began with the development and testing of two conceptual system designs- liquid- and air-cooled systems. The liquid-cooled PAFC system was chosen to continue, through a competitive award, into Phase H, beginning in 1991. Three hybrid buses, which combine fuel-cell and battery technologies, were designed during Phase 3. After completing Phase 2, DOE plans a comprehensive performance testing program (Phase H1) to verify that the buses meet stringent transit industry requirements. The Phase 3 study will evaluate the PAFC bus and compare it to a conventional diesel bus. This NREL study assesses the environmental, health, and safety (EH&S) issues that may affect the commercialization of the PAFC bus. Because safety is a critical factor for consumer acceptance of new transportation-based technologies the study focuses on these issues. The study examines health and safety together because they are integrally related. In addition, this report briefly discusses two environmental issues that are of concern to the Environmental Protection Agency (EPA). The first issue involves a surge battery used by the PAFC bus that contains hazardous constituents. The second issue concerns the regulated air emissions produced during operation of the PAFC bus.
INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Hnat; L.M. Bartone; M. Pineda
2001-07-13
This Summary Report summarizes the progress of Phases 3, 3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLWmore » and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the Material Handling and Conditioning System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, Bruce
Cloud County Community College's (CCCC) Wind Energy Technology (WET) program is a leader in the renewable energy movement across Kansas and the USA. The field of renewable energy is a growing industry which continues to experience high demand for career opportunities. This CCCC/DOE project entailed two phases: 1) the installation of two Northwind 100 wind turbines, and 2) the continued development of the WET program curriculum, including enhancement of the CCCC Blade Repair Certificate program. This report provides a technical account of the total work performed, and is a comprehensive description of the results achieved.
Iwayanagi, Takao; Miyamoto, Sei; Konno, Takeshi; Mizutani, Hisashi; Hirai, Tomohiro; Shigemoto, Yasumasa; Gojobori, Takashi; Sugawara, Hideaki
2012-09-01
The Targeted Proteins Research Program (TPRP) promoted by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan is the phase II of structural biology project (2007-2011) following the Protein 3000 Project (2002-2006) in Japan. While the phase I Protein 3000 Project put partial emphasis on the construction and maintenance of pipelines for structural analyses, the TPRP is dedicated to revealing the structures and functions of the targeted proteins that have great importance in both basic research and industrial applications. To pursue this objective, 35 Targeted Proteins (TP) Projects selected in the three areas of fundamental biology, medicine and pharmacology, and food and environment are tightly collaborated with 10 Advanced Technology (AT) Projects in the four fields of protein production, structural analyses, chemical library and screening, and information platform. Here, the outlines and achievements of the 35 TP Projects are summarized in the system named TP Atlas. Progress in the diversified areas is described in the modules of Graphical Summary, General Summary, Tabular Summary, and Structure Gallery of the TP Atlas in the standard and unified format. Advances in TP Projects owing to novel technologies stemmed from AT Projects and collaborative research among TP Projects are illustrated as a hallmark of the Program. The TP Atlas can be accessed at http://net.genes.nig.ac.jp/tpatlas/index_e.html .
ERDA-NASA wind energy project ready to involve users
NASA Technical Reports Server (NTRS)
Thomas, R.; Puthoff, R.; Savino, J.; Johnson, W.
1976-01-01
The NASA contribution to the Wind Energy Project is discussed. NASA is responsible for the following: (1) identification of cost-effective configurations and sizes of wind-conversion systems, (2) the development of technology needed to produce these systems, (3) the design of wind-conversion systems that are compatible with user requirements, particularly utility networks, and (4) technology transfer obtained from the program to stimulate rapid commercial application of wind systems. Various elements of the NASA program are outlined, including industry-built user operation, the evaluation phase, the proposed plan and schedule for site selection and user involvement, supporting research and technology (e.g., energy storage), and component and subsystem technology development.
Clock Technology Development in the Laser Cooling and Atomic Physics (LCAP) Program
NASA Technical Reports Server (NTRS)
Seidel, Dave; Thompson, R. J.; Klipstein, W. M.; Kohel, J.; Maleki, L.
2000-01-01
This paper presents the Laser Cooling and Atomic Physics (LCAP) program. It focuses on clock technology development. The topics include: 1) Overview of LCAP Flight Projects; 2) Space Clock 101; 3) Physics with Clocks in microgravity; 4) Space Clock Challenges; 5) LCAP Timeline; 6) International Space Station (ISS) Science Platforms; 7) ISS Express Rack; 8) Space Qualification of Components; 9) Laser Configuration; 10) Clock Rate Comparisons: GPS Carrier Phase Frequency Transfer; and 11) ISS Model Views. This paper is presented in viewgraph form.
NASA Technical Reports Server (NTRS)
Hanley, G. M.
1981-01-01
Guidelines and ground rules followed in the development of requirements for the SPS are presented. Development planning objectives are specified in each of these areas, and evolutionary SPS program scenarios are described for the various concepts studied during the past one year contract. Program descriptions are presented as planning packages of technical tasks, and schedule phasing. Each package identifies the ground based technology effort that will facilitate SPS definitions, designs, development, and operations.
ERIC Educational Resources Information Center
Zia, Lee L.; Van de Sompel, Herbert; Beit-Arie, Oren; Gambles, Anne
2001-01-01
Includes three articles that discuss the National Science Foundation's National Science, Mathematics, Engineering, and Technology Education Digital Library (NSDL) program; the OpenURL framework for open reference linking in the Web-based scholarly information environment; and HeadLine (Hybrid Electronic Access and Delivery in the Library Networked…
Geothermal Resource Verification for Air Force Bases,
1981-06-01
phase of reservoir - ... geothermal techniques will begin to focus on the deeer, iso ’i fined reservoirs that will have little or no definitive surfa...1976. ;L-ison, D. L., PROGRAM REVIEW, GEOTHERMAL EXPLORATION AND ASSESSMENT TECHNOLOGY PROGRAM, U. S. Department of Energy, DOE/ET/ 27002 -6, December 1979
Creation of security engineering programs by the Southwest Surety Institute
NASA Astrophysics Data System (ADS)
Romero, Van D.; Rogers, Bradley; Winfree, Tim; Walsh, Dan; Garcia, Mary Lynn
1998-12-01
The Southwest Surety Institute includes Arizona State University (ASU), Louisiana State University (LSU), New Mexico Institute of Mining and Technology (NM Tech), New Mexico State University (NMSU), and Sandia National Laboratories (SNL). The universities currently offer a full spectrum of post-secondary programs in security system design and evaluation, including an undergraduate minor, a graduate program, and continuing education programs. The programs are based on the methodology developed at Sandia National Laboratories over the past 25 years to protect critical nuclear assets. The programs combine basic concepts and principles from business, criminal justice, and technology to create an integrated performance-based approach to security system design and analysis. Existing university capabilities in criminal justice (NMSU), explosives testing and technology (NM Tech and LSU), and engineering technology (ASU) are leveraged to provide unique science-based programs that will emphasize the use of performance measures and computer analysis tools to prove the effectiveness of proposed systems in the design phase. Facility managers may then balance increased protection against the cost of implementation and risk mitigation, thereby enabling effective business decisions. Applications expected to benefit from these programs include corrections, law enforcement, counter-terrorism, critical infrastructure protection, financial and medical care fraud, industrial security, and border security.
2013-03-01
9 B. REQUIREMENTS ANALYSIS PROCESS ..................................................9 1. Requirements Management and... Analysis Plan ................................9 2. Knowledge Point Reviews .................................................................11 3...are Identified .......12 5. RMAP/CDD Process Analysis and Results......................................13 IV. TD PHASE BEGINS
The report describes in detail the source testing, construction, and data reduction/analysis activities that comprise the three phases of a technology demonstration program. Phase I consisted of a detailed baseline evaluation of several paint spray booths operated at the Barstow,...
Emergency vehicle alert system (EVAS)
NASA Technical Reports Server (NTRS)
Reed, Bill; Crump, Roger; Harper, Warren; Myneni, Krishna
1995-01-01
The Emergency Vehicle Alert System (EVAS) program is sponsored by the NASA/MSFC Technology Utilization (TU) office. The program was conceived to support the needs of hearing impaired drivers. The objective of the program is to develop a low-cost, small device which can be located in a personal vehicle and warn the driver, via a visual means, of the approach of an emergency vehicle. Many different technologies might be developed for this purpose and each has its own advantages and drawbacks. The requirements for an acoustic detection system, appear to be pretty stringent and may not allow the development of a reliable, low-cost device in the near future. The problems include variations in the sirens between various types of emergency vehicles, distortions due to wind and surrounding objects, competing background noise, sophisticated signal processing requirements, and omni-directional coverage requirements. Another approach is to use a Radio Frequency (RF) signal between the Emergency Vehicle (EV) and the Personal Vehicle (PV). This approach requires a transmitter on each EV and a receiver in each PV, however it is virtually assured that a system can be developed which works. With this approach, the real technology issue is how to make a system work as inexpensively as possible. This report gives a brief summary of the EVAS program from its inception and concentrates on describing the activities that occurred during Phase 4. References 1-3 describe activities under Phases 1-3. In the fourth phase of the program, the major effort to be expended was in development of the microcontroller system for the PV, refinement of some system elements and packaging for demonstration purposes. An EVAS system was developed and demonstrated which used standard spread spectrum modems with minor modifications.
NASA Astrophysics Data System (ADS)
Little, M. M.; Moe, K.; Komar, G.
2014-12-01
NASA's Earth Science Technology Office (ESTO) manages a wide range of information technology projects under the Advanced Information Systems Technology (AIST) Program. The AIST Program aims to support all phases of NASA's Earth Science program with the goal of enabling new observations and information products, increasing the accessibility and use of Earth observations, and reducing the risk and cost of satellite and ground based information systems. Recent initiatives feature computational technologies to improve information extracted from data streams or model outputs and researchers' tools for Big Data analytics. Data-centric technologies enable research communities to facilitate collaboration and increase the speed with which results are produced and published. In the future NASA anticipates more small satellites (e.g., CubeSats), mobile drones and ground-based in-situ sensors will advance the state-of-the-art regarding how scientific observations are performed, given the flexibility, cost and deployment advantages of new operations technologies. This paper reviews the success of the program and the lessons learned. Infusion of these technologies is challenging and the paper discusses the obstacles and strategies to adoption by the earth science research and application efforts. It also describes alternative perspectives for the future program direction and for realizing the value in the steps to transform observations from sensors to data, to information, and to knowledge, namely: sensor measurement concepts development; data acquisition and management; data product generation; and data exploitation for science and applications.
NASA's commercial research plans and opportunities
NASA Technical Reports Server (NTRS)
Arnold, Ray J.
1992-01-01
One of the primary goals of the National Aeronautics and Space Administration's (NASA) commercial space development plan is to encourage the development of space-based products and markets, along with the infrastructure and transportation that will support those products and markets. A three phased program has been instituted to carry out this program. The first phase utilizes government grants through the Centers for the Commercial Development of Space (CCDS) for space-related, industry driven research; the development of a technology data base; and the development of commercial space transportation and infrastructure. The second phase includes the development of these technologies by industry for new commercial markets, and features unique industry/government collaborations such as Joint Endeavor Agreements. The final phase will feature technical applications actually brought to the marketplace. The government's role will be to support industry required infrastructure to encourage start-up markets and industries through follow-on development agreements such as the Space Systems Development Agreement. The Office of Commercial Programs has an aggressive flight program underway on the Space Shuttle, suborbital rockets, orbital expendable launch vehicles, and the Commercial Middeck Accommodation Module with SPACEHAB Inc. The Office of Commercial Program's has been allocated 35 percent of the U.S. share of the Space Station Freedom resources for 1997 utilization. A utilization plan has been developed with the Centers for the Commercial Development of Space and has identified eleven materials processing and biotechnology payloads occupying 5 double racks in the pressurized module as well as two payloads external to the module in materials exposure and environment monitoring. The Office of Commercial Programs will rely on the Space Station Freedom to provide the long duration laboratory component for space-based commercial research.
NASA's commercial research plans and opportunities
NASA Astrophysics Data System (ADS)
Arnold, Ray J.
One of the primary goals of the National Aeronautics and Space Administration's (NASA) commercial space development plan is to encourage the development of space-based products and markets, along with the infrastructure and transportation that will support those products and markets. A three phased program has been instituted to carry out this program. The first phase utilizes government grants through the Centers for the Commercial Development of Space (CCDS) for space-related, industry driven research; the development of a technology data base; and the development of commercial space transportation and infrastructure. The second phase includes the development of these technologies by industry for new commercial markets, and features unique industry/government collaborations such as Joint Endeavor Agreements. The final phase will feature technical applications actually brought to the marketplace. The government's role will be to support industry required infrastructure to encourage start-up markets and industries through follow-on development agreements such as the Space Systems Development Agreement. The Office of Commercial Programs has an aggressive flight program underway on the Space Shuttle, suborbital rockets, orbital expendable launch vehicles, and the Commercial Middeck Accommodation Module with SPACEHAB Inc. The Office of Commercial Program's has been allocated 35 percent of the U.S. share of the Space Station Freedom resources for 1997 utilization. A utilization plan has been developed with the Centers for the Commercial Development of Space and has identified eleven materials processing and biotechnology payloads occupying 5 double racks in the pressurized module as well as two payloads external to the module in materials exposure and environment monitoring. The Office of Commercial Programs will rely on the Space Station Freedom to provide the long duration laboratory component for space-based commercial research.
Mandel, Joshua C; Murphy, Shawn N; Bernstam, Elmer Victor; Ramoni, Rachel L; Kreda, David A; McCoy, J Michael; Adida, Ben; Kohane, Isaac S
2012-01-01
Objective The Substitutable Medical Applications, Reusable Technologies (SMART) Platforms project seeks to develop a health information technology platform with substitutable applications (apps) constructed around core services. The authors believe this is a promising approach to driving down healthcare costs, supporting standards evolution, accommodating differences in care workflow, fostering competition in the market, and accelerating innovation. Materials and methods The Office of the National Coordinator for Health Information Technology, through the Strategic Health IT Advanced Research Projects (SHARP) Program, funds the project. The SMART team has focused on enabling the property of substitutability through an app programming interface leveraging web standards, presenting predictable data payloads, and abstracting away many details of enterprise health information technology systems. Containers—health information technology systems, such as electronic health records (EHR), personally controlled health records, and health information exchanges that use the SMART app programming interface or a portion of it—marshal data sources and present data simply, reliably, and consistently to apps. Results The SMART team has completed the first phase of the project (a) defining an app programming interface, (b) developing containers, and (c) producing a set of charter apps that showcase the system capabilities. A focal point of this phase was the SMART Apps Challenge, publicized by the White House, using http://www.challenge.gov website, and generating 15 app submissions with diverse functionality. Conclusion Key strategic decisions must be made about the most effective market for further disseminating SMART: existing market-leading EHR vendors, new entrants into the EHR market, or other stakeholders such as health information exchanges. PMID:22427539
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEmore » EER (prime contractor) was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE EER, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling work, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the tenth quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting January 1, 2003 and ending March 31, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, and program management.« less
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEmore » EER was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling work, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the ninth quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2002 and ending December 31, 2002. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab- and bench-scale experimental testing, pilot-scale design and assembly, and program management.« less
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research (GEGR) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEGR (prime contractor) was awardedmore » a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GEGR, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling with best-case scenario assumptions, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the eleventh quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting April 1, 2003 and ending June 30, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, and program management.« less
Broad Specification Fuels Combustion Technology Program, Phase 2
NASA Technical Reports Server (NTRS)
Lohmann, R. P.; Jeroszko, R. A.; Kennedy, J. B.
1990-01-01
An experimental evaluation of two advanced technology combustor concepts was conducted to evolve and assess their capability for operation on broadened properties fuels. The concepts were based on the results of Phase 1 of the Broad Specification Fuel Combustor Technology Program which indicated that combustors with variable geometry or staged combustion zones had a flexibility of operation that could facilitate operation on these fuels. Emphasis in defining these concepts included the use of single pipe as opposed to duplex or staged fuels systems to avoid the risk of coking associated with the reduction in thermal stability expected in broadened properties fuels. The first concept was a variable geometry combustor in which the airflow into the primary zone could be altered through valves on the front while the second was an outgrowth of the staged Vorbix combustor, evolved under the NASA/P&W ECCP and EEE programs incorporating simplified fuel and air introduction. The results of the investigation, which involved the use of Experimental Referee Broad Specification (ERBS) fuel, indicated that in the form initially conceived, both of these combustor concepts were deficient in performance relative to many of the program goals for performance emissions. However, variations of both combustors were evaluated that incorporated features to simulate conceptual enhancement to demonstrate the long range potential of the combustor. In both cases, significant improvements relative to the program goals were observed.
NIH Data Commons Pilot Phase | Informatics Technology for Cancer Research (ITCR)
The NIH, under the BD2K program, will be launching a Data Commons Pilot Phase to test ways to store, access and share Findable, Accessible, Interoperable and Reusable (FAIR) biomedical data and associated tools in the cloud. The NIH Data Commons Pilot Phase is expected to span fiscal years 2017-2020, with an estimated total budget of approximately $55.5 Million, pending available funds.
Spray Forming Aluminum - Final Report (Phase II)
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. D. Leon
1999-07-08
The U.S. Department of Energy - Office of Industrial Technology (DOE) has an objective to increase energy efficient and enhance competitiveness of American metals industries. To support this objective, ALCOA Inc. entered into a cooperative program to develop spray forming technology for aluminum. This Phase II of the DOE Spray Forming Program would translate bench scale spray forming technology into a cost effective world class process for commercialization. Developments under DOE Cooperative Agreement No. DE-FC07-94ID13238 occurred during two time periods due to budgetary constraints; April 1994 through September 1996 and October 1997 and December 1998. During these periods, ALCOA Incmore » developed a linear spray forming nozzle and specific support processes capable of scale-up for commercial production of aluminum sheet alloy products. Emphasis was given to alloys 3003 and 6111, both being commercially significant alloys used in the automotive industry. The report reviews research performed in the following areas: Nozzel Development, Fabrication, Deposition, Metal Characterization, Computer Simulation and Economics. With the formation of a Holding Company, all intellectual property developed in Phases I and II of the Project have been documented under separate cover for licensing to domestic producers.« less
A comprehensive methodology for intelligent systems life-cycle cost modelling
NASA Technical Reports Server (NTRS)
Korsmeyer, David J.; Lum, Henry, Jr.
1993-01-01
As NASA moves into the last part on the twentieth century, the desire to do 'business as usual' has been replaced with the mantra 'faster, cheaper, better'. Recently, new work has been done to show how the implementation of advanced technologies, such as intelligent systems, will impact the cost of a system design or in the operational cost for a spacecraft mission. The impact of the degree of autonomous or intelligent systems and human participation on a given program is manifested most significantly during the program operational phases, while the decision of who performs what tasks, and how much automation is incorporated into the system are all made during the design and development phases. Employing intelligent systems and automation is not an either/or question, but one of degree. The question is what level of automation and autonomy will provide the optimal trade-off between performance and cost. Conventional costing methodologies, however, are unable to show the significance of technologies like these in terms of traceable cost benefits and reductions in the various phases of the spacecraft's lifecycle. The proposed comprehensive life-cycle methodology can address intelligent system technologies as well as others that impact human-machine operational modes.
Ceramic applications in turbine engines
NASA Technical Reports Server (NTRS)
Helms, H. E.; Heitman, P. W.; Lindgren, L. C.; Thrasher, S. R.
1984-01-01
The application of ceramic components to demonstrate improved cycle efficiency by raising the operating temperature of the existing Allison IGI 404 vehicular gas turbine engine is discussed. This effort was called the Ceramic Applications in Turbine Engines (CATE) program and has successfully demonstrated ceramic components. Among these components are two design configurations featuring stationary and rotating caramic components in the IGT 404 engine. A complete discussion of all phases of the program, design, materials development, fabrication of ceramic components, and testing-including rig, engine, and vehicle demonstation test are presented. During the CATE program, a ceramic technology base was established that is now being applied to automotive and other gas turbine engine programs. This technology base is outlined and also provides a description of the CATE program accomplishments.
Applications of nuclear power to lunar and Mars missions
NASA Technical Reports Server (NTRS)
Friedlander, Alan; Cole, Kevin
1988-01-01
The initial elements of an ambitious program for human exploration beyond Earth have been developed and presented to NASA management for its consideration. The Outpost on the Moon and Humans to Mars are two key U.S. programs (Ride 1987). A major space goal of this magnitude can only be implemented by a series of program phases evolving from precursor robotic missions, to initial development of temporary surface stations and buildup of operational experience, through the eventual establishment of permanent and sustained surface bases. Each phase of the separate (or linked) lunar and Mars scenarios will require distinctly different levels and types of power sources to support both transportation and on-surface operations, i.e., the nuclear power reactor. Discussed are the respective types and specific amounts of power required for all major systems in a phased program of lunar and Mars exploration over the period 1990 to 2040. A comparative assessment of technology tradeoffs and special design problems is made to ascertain the most appropriate application for the different phases, as well as to identify synergistic developments across the programs.
Conceptual Design of a Supersonic Business Jet Propulsion System
NASA Technical Reports Server (NTRS)
Bruckner, Robert J.
2002-01-01
NASA's Ultra-Efficient Engine Technology Program (UEETP) is developing a suite of technology to enhance the performance of future aircraft propulsion systems. Areas of focus for this suite of technology include: Highly Loaded Turbomachinery, Emissions Reduction, Materials and Structures, Controls, and Propulsion-Airframe Integration. The two major goals of the UEETP are emissions reduction of both landing and take-off nitrogen oxides (LTO-NO(x)) and mission carbon dioxide (CO2) through fuel burn reductions. The specific goals include a 70 percent reduction in the current LTO-NO(x) rule and an 8 percent reduction in mission CO2 emissions. In order to gain insight into the potential applications and benefits of these technologies on future aircraft, a set of representative flight vehicles was selected for systems level conceptual studies. The Supersonic Business Jet (SBJ) is one of these vehicles. The particular SBJ considered in this study has a capacity of 6 passengers, cruise Mach Number of 2.0, and a range of 4,000 nautical miles. Without the current existence of an SBJ the study of this vehicle requires a two-phased approach. Initially, a hypothetical baseline SBJ is designed which utilizes only current state of the art technology. Finally, an advanced SBJ propulsion system is designed and optimized which incorporates the advanced technologies under development within the UEETP. System benefits are then evaluated and compared to the program and design requirements. Although the program goals are only concerned with LTO-NO(x) and CO2 emissions, it is acknowledged that additional concerns for an SBJ include take-off noise, overland supersonic flight, and cruise NO(x) emissions at high altitudes. Propulsion system trade-offs in the conceptual design phase acknowledge these issues as well as the program goals. With the inclusion of UEETP technologies a propulsion system is designed which performs at 81% below the LTO-NO(x) rule, and reduces fuel burn by 23 percent compared to the current technology.
A superconducting large-angle magnetic suspension
NASA Technical Reports Server (NTRS)
Downer, James R.; Anastas, George V., Jr.; Bushko, Dariusz A.; Flynn, Frederick J.; Goldie, James H.; Gondhalekar, Vijay; Hawkey, Timothy J.; Hockney, Richard L.; Torti, Richard P.
1992-01-01
SatCon Technology Corporation has completed a Small Business Innovation Research (SBIR) Phase 2 program to develop a Superconducting Large-Angle Magnetic Suspension (LAMS) for the NASA Langley Research Center. The Superconducting LAMS was a hardware demonstration of the control technology required to develop an advanced momentum exchange effector. The Phase 2 research was directed toward the demonstration for the key technology required for the advanced concept CMG, the controller. The Phase 2 hardware consists of a superconducting solenoid ('source coils') suspended within an array of nonsuperconducting coils ('control coils'), a five-degree-of-freedom positioning sensing system, switching power amplifiers, and a digital control system. The results demonstrated the feasibility of suspending the source coil. Gimballing (pointing the axis of the source coil) was demonstrated over a limited range. With further development of the rotation sensing system, enhanced angular freedom should be possible.
A superconducting large-angle magnetic suspension
NASA Astrophysics Data System (ADS)
Downer, James R.; Anastas, George V., Jr.; Bushko, Dariusz A.; Flynn, Frederick J.; Goldie, James H.; Gondhalekar, Vijay; Hawkey, Timothy J.; Hockney, Richard L.; Torti, Richard P.
1992-12-01
SatCon Technology Corporation has completed a Small Business Innovation Research (SBIR) Phase 2 program to develop a Superconducting Large-Angle Magnetic Suspension (LAMS) for the NASA Langley Research Center. The Superconducting LAMS was a hardware demonstration of the control technology required to develop an advanced momentum exchange effector. The Phase 2 research was directed toward the demonstration for the key technology required for the advanced concept CMG, the controller. The Phase 2 hardware consists of a superconducting solenoid ('source coils') suspended within an array of nonsuperconducting coils ('control coils'), a five-degree-of-freedom positioning sensing system, switching power amplifiers, and a digital control system. The results demonstrated the feasibility of suspending the source coil. Gimballing (pointing the axis of the source coil) was demonstrated over a limited range. With further development of the rotation sensing system, enhanced angular freedom should be possible.
Experimental clean combustor program, phase 2
NASA Technical Reports Server (NTRS)
Gleason, C. C.; Rogers, D. W.; Bahr, D. W.
1976-01-01
The primary objectives of this three-phase program are to develop technology for the design of advanced combustors with significantly lower pollutant emission levels than those of current combustors, and to demonstrate these pollutant emission reductions in CF6-50C engine tests. The purpose of the Phase 2 Program was to further develop the two most promising concepts identified in the Phase 1 Program, the double annular combustor and the radial/axial staged combustor, and to design a combustor and breadboard fuel splitter control for CF6-50 engine demonstration testing in the Phase 3 Program. Noise measurement and alternate fuels addendums to the basic program were conducted to obtain additional experimental data. Twenty-one full annular and fifty-two sector combustor configurations were evaluated. Both combustor types demonstrated the capability for significantly reducing pollutant emission levels. The most promising results were obtained with the double annular combustor. Rig test results corrected to CF-50C engine conditions produced EPA emission parameters for CO, HC, and NOX of 3.4, 0.4, and 4.5 respectively. These levels represent CO, HC, and NOX reductions of 69, 90, and 42 percent respectively from current combustor emission levels. The combustor also met smoke emission level requirements and development engine performance and installation requirements.
Improvement of the Processes of Liquid-Phase Epitaxial Growth of Nanoheteroepitaxial Structures
NASA Astrophysics Data System (ADS)
Maronchuk, I. I.; Sanikovich, D. D.; Potapkov, P. V.; Vel‧chenko, A. A.
2018-05-01
We have revealed the shortcomings of equipment and technological approaches in growing nanoheteroepitaxial structures with quantum dots by liquid-phase epitaxy. We have developed and fabricated a new vertical barreltype cassette for growing quantum dots and epitaxial layers of various thicknesses in one technological process. A physico-mathematical simulation has been carried out of the processes of liquid-phase epitaxial growth of quantumdimensional structures with the use of the program product SolidWorks (FlowSimulation program). Analysis has revealed the presence of negative factors influencing the growth process of the above structures. The mathematical model has been optimized, and the equipment has been modernized without additional experiments and measurements. The flow dynamics of the process gas in the reactor at various flow rates has been investigated. A method for tuning the thermal equipment has been developed. The calculated and experimental temperature distributions in the process of growing structures with high reproducibility are in good agreement, which confirms the validity of the modernization made.
NASA Technical Reports Server (NTRS)
Giamei, A. F.; Salkeld, R. W.; Hayes, C. W.
1981-01-01
The objective of the High-Pressure Turbine Fabrication Program was to demonstrate the application and feasibility of Pratt & Whitney Aircraft-developed two-piece, single crystal casting and bonding technology on the turbine blade and vane configurations required for the high-pressure turbine in the Energy Efficient Engine. During the first phase of the program, casting feasibility was demonstrated. Several blade and vane halves were made for the bonding trials, plus solid blades and vanes were successfully cast for materials evaluation tests. Specimens exhibited the required microstructure and chemical composition. Bonding feasibility was demonstrated in the second phase of the effort. Bonding yields of 75 percent for the vane and 30 percent for the blade were achieved, and methods for improving these yield percentages were identified. A bond process was established for PWA 1480 single crystal material which incorporated a transient liquid phase interlayer. Bond properties were substantiated and sensitivities determined. Tooling die materials were identified, and an advanced differential thermal expansion tooling concept was incorporated into the bond process.
A Low Temperature, Reverse Brayton Cryocooler
NASA Technical Reports Server (NTRS)
Swift, Walter L.
2001-01-01
This status report covers the fifty-second month of a project to develop a low temperature, reverse-Brayton cryocooler using turbomachines. This program consists of a Basic Phase and four Option Phases. Each of the Phases is directed to a particular load/temperature combination. The technology and fundamental design features of the components used in these systems are related but differ somewhat in size, speed, and some details in physical geometry. Each of the Phases can be carried out independently of the others, except that all of the Phases rely on the technology developed and demonstrated during the Basic Phase. The Basic Phase includes the demonstration of a critical component and the production of a prototype model cryocooler. The critical technology demonstration will be the test of a small turboalternator over a range of conditions at temperatures down to 6 K. These tests will provide design verification data useful for the further design of the other coolers. The prototype model cooler will be designed to provide at least 5 mW of cooling at 6 K. The heat rejection temperature for this requirement is 220 K or greater. The input power to the system at these conditions is to be less than 60 W.
Workshop on Applications of Phase Diagrams in Metallurgy and Ceramics
NASA Technical Reports Server (NTRS)
Bennett, L. H.; Carter, G. C.
1977-01-01
A workshop was held to assess the current national and international status of phase diagram determinations and evaluations for alloys, ceramics, and semiconductors; to determine the needs and priorities, especially technological, for phase diagram determinations and evaluations; and to estimate the resources being used and potentially available for phase diagram evaluation. Highlights of the workshop, description of a new poster board design used in the poster sessions, lists of attendees and demonstrations, the program, and descriptions of the presentations are included.
The R/D of high power proton accelerator technology in China
NASA Astrophysics Data System (ADS)
Xialing, Guan
2002-12-01
In China, a multipurpose verification system as a first phase of our ADS program consists of a low energy accelerator (150 MeV/3 mA proton LINAC) and a swimming pool light water subcritical reactor. In this paper the activities of HPPA technology related to ADS in China, which includes the intense proton ECR source, the RFQ accelerator and some other technology of HPPA, are described.
Enabling technologies for Chinese Mars lander guidance system
NASA Astrophysics Data System (ADS)
Jiang, Xiuqiang; Li, Shuang
2017-04-01
Chinese first Mars exploration activity, orbiting landing and roaming collaborative mission, has been programmed and started. As a key technology, Mars lander guidance system is intended to serve atmospheric entry, descent and landing (EDL) phases. This paper is to report the formation process of enabling technology road map for Chinese Mars lander guidance system. First, two scenarios of the first-stage of the Chinese Mars exploration project are disclosed in detail. Second, mission challenges and engineering needs of EDL guidance, navigation, and control (GNC) are presented systematically for Chinese Mars exploration program. Third, some useful related technologies developed in China's current aerospace projects are pertinently summarized, especially on entry guidance, parachute descent, autonomous hazard avoidance and safe landing. Finally, an enabling technology road map of Chinese Mars lander guidance is given through technological inheriting and improving.
Technology base for microgravity horticulture
NASA Technical Reports Server (NTRS)
Sauer, R. L.; Magnuson, J. W.; Scruby, R. R.; Scheld, H. W.
1987-01-01
Advanced microgravity plant biology research and life support system development for the spacecraft environment are critically hampered by the lack of a technology base. This inadequacy stems primarily from the fact that microgravity results in a lack of convective currents and phase separation as compared to the one gravity environment. A program plan is being initiated to develop this technology base. This program will provide an iterative flight development effort that will be closely integrated with both basic science investigations and advanced life support system development efforts incorporating biological processes. The critical considerations include optimum illumination methods, root aeration, root and shoot support, and heat rejection and gas exchange in the plant canopy.
Solid Polymer Electrolyte Fuel Cell Technology Program
NASA Technical Reports Server (NTRS)
1980-01-01
Work is reported on phase 5 of the Solid Polymer Electrolyte (SPE) Fuel Cell Technology Development program. The SPE fuel cell life and performance was established at temperatures, pressures, and current densities significantly higher than those previously demonstrated in sub-scale hardware. Operation of single-cell Buildup No. 1 to establish life capabilities of the full-scale hardware was continued. A multi-cell full-scale unit (Buildup No. 2) was designed, fabricated, and test evaluated laying the groundwork for the construction of a reactor stack. A reactor stack was then designed, fabricated, and successfully test-evaluated to demonstrate the readiness of SPE fuel cell technology for future space applications.
U.S. Supersonic Commercial Aircraft: Assessing NASA's High Speed Research Program
NASA Technical Reports Server (NTRS)
1997-01-01
The legislatively mandated objectives of the National Aeronautics and Space Administration (NASA) include "the improvement of the usefulness, performance, speed, safety, and efficiency of aeronautical and space vehicles" and "preservation of the United States' preeminent position in aeronautics and space through research and technology development related to associated manufacturing processes." Most of NASA's activities are focused on the space-related aspects of these objectives. However, NASA also conducts important work related to aeronautics. NASA's High Speed Research (HSR) Program is a focused technology development program intended to enable the commercial development of a high speed (i.e., supersonic) civil transport (HSCT). However, the HSR Program will not design or test a commercial airplane (i.e., an HSCT); it is industry's responsibility to use the results of the HSR Program to develop an HSCT. An HSCT would be a second generation aircraft with much better performance than first generation supersonic transports (i.e., the Concorde and the Soviet Tu-144). The HSR Program is a high risk effort: success requires overcoming many challenging technical problems involving the airframe, propulsion system, and integrated aircraft. The ability to overcome all of these problems to produce an affordable HSCT is far from certain. Phase I of the HSR Program was completed in fiscal year 1995; it produced critical information about the ability of an HSCT to satisfy environmental concerns (i-e., noise and engine emissions). Phase II (the final phase according to current plans) is scheduled for completion in 2002. Areas of primary emphasis are propulsion, airframe materials and structures, flight deck systems, aerodynamic performance, and systems integration.
Design and demonstration of an advanced data collection/position location system
NASA Technical Reports Server (NTRS)
1977-01-01
The final report on a breadboard evaluation and demonstration program is reported concerning the applicability of MSK modulation and chirp-z transformer technology in Advanced Data Collection/Position Location (ADC/PL) systems. The program effort consisted of three phases - design, testing, and evaluation. Section 2 describes the breadboard hardware built during the design phase of the program, Section 3 describes the tests conducted on the breadboard and the results of the tests, and Section 4 presents a brief analysis and summary of the findings of the breadboard tests and develops a sample ADC/PL system which incorporates both MSK modulation and a chirp-z transformer.
U.S. Department of Energy's Regional Carbon Sequestration Partnership Program: Overview
Litynski, J.; Plasynski, S.; Spangler, L.; Finley, R.; Steadman, E.; Ball, D.; Nemeth, K.J.; McPherson, B.; Myer, L.
2009-01-01
The U.S. Department of Energy (DOE) has formed a nationwide network of seven regional partnerships to help determine the best approaches for capturing and permanently storing gases that can contribute to global climate change. The Regional Carbon Sequestration Partnerships (RCSPs) are tasked with determining the most suitable technologies, regulations, and infrastructure for carbon capture, transport, and storage in their areas of the country and parts of Canada. The seven partnerships include more than 350 state agencies, universities, national laboratories, private companies, and environmental organizations, spanning 42 states, two Indian nations, and four Canadian provinces. The Regional Partnerships initiative is being implemented in three phases: ???Characterization Phase (2003-2005): The objective was to collect data on CO2 sources and sinks and develop the human capital to support and enable future carbon sequestration field tests and deployments. The completion of this Phase was marked by release of the Carbon Sequestration Atlas of the United States and Canada-Version 1 which included a common methodology for capacity assessment and reported over 3,000GT of storage capacity in saline formations, depleted oil and gas fields, and coal seams.???Validation Phase (2005-2009): The objective is to plan and implement small-scale (<1??million tons CO2) field testing of storage technologies in areas determined to be favorable for carbon storage. The partnerships are currently conducting over 20 small-scale geologic field tests and 11 terrestrial field tests.???Development Phase (2008-2018): The primary objective is the development of large-scale (>1??million tons of CO2) Carbon Capture and Storage (CCS) projects, which will demonstrate that large volumes of CO2 can be injected safely, permanently, and economically into geologic formations representative of large storage capacity. Even though the RCSP Program is being implemented in three phases, it should be viewed as an integrated whole, with many of the goals and objectives transitioning from one phase to the next. Accomplishments and results from the Characterization Phase have helped to refine goals and activities in the Validation and Deployment Phases. The RCSP Program encourages and requires open information sharing among its members by sponsoring both general workshops and meetings to facilitate information exchange. Although each RCSP has its own objectives and field tests, mutual cooperation has been an important part of the Program thus far. The primary goal of the RCSP initiative is to promote the development of a regional framework and the infrastructure necessary to validate and deploy carbon sequestration technologies within each Partnership's region. ?? 2009 Elsevier Ltd. All rights reserved.
Weight Measurements and Standards for Soldiers, Phase 2
2015-10-01
H.E.A.L.T.H.) (1). This program was designed to address weight management needs and non -compliance with the Army Weight Control Program (AWCP) (2) and...basis (minority of users), versus registering on the program and never returning (majority of users). This is similar to other trials of this nature...in civilian technology programs for weight management. Also, enrollment and use in target groups (overweight) are more likely than non -target groups
The systematic evolution of a NASA software technology, Appendix C
NASA Technical Reports Server (NTRS)
Deregt, M. P.; Dulfer, J. E.
1972-01-01
A long range program is described whose ultimate purpose is to make possible the production of software in NASA within predictable schedule and budget constraints and with major characteristics such as size, run-time, and correctness predictable within reasonable tolerances. As part of the program a pilot NASA computer center will be chosen to apply software development and management techniques systematically and determine a set which is effective. The techniques will be developed by a Technology Group, which will guide the pilot project and be responsible for its success. The application of the technology will involve a sequence of NASA programming tasks graduated from simpler ones at first to complex systems in late phases of the project. The evaluation of the technology will be made by monitoring the operation of the software at the users' installations. In this way a coherent discipline for software design, production maintenance, and management will be evolved.
Technology advancement of the static feed water electrolysis process
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Wynveen, R. A.
1977-01-01
A program to advance the technology of oxygen- and hydrogen-generating subsystems based on water electrolysis was studied. Major emphasis was placed on static feed water electrolysis, a concept characterized by low power consumption and high intrinsic reliability. The static feed based oxygen generation subsystem consists basically of three subassemblies: (1) a combined water electrolysis and product gas dehumidifier module; (2) a product gas pressure controller and; (3) a cyclically filled water feed tank. Development activities were completed at the subsystem as well as at the component level. An extensive test program including single cell, subsystem and integrated system testing was completed with the required test support accessories designed, fabricated, and assembled. Mini-product assurance activities were included throughout all phases of program activities. An extensive number of supporting technology studies were conducted to advance the technology base of the static feed water electrolysis process and to resolve problems.
NASA Technical Reports Server (NTRS)
Bobula, G. A.; Wintucky, W. T.; Castor, J. G.
1987-01-01
The Compound Cycle Engine (CCE) is a highly turbocharged, power compounded power plant which combines the lightweight pressure rise capability of a gas turbine with the high efficiency of a diesel. When optimized for a rotorcraft, the CCE will reduce fuel burn for a typical 2 hr (plus 30 min reserve) mission by 30 to 40 percent when compared to a conventional advanced technology gas turbine. The CCE can provide a 50 percent increase in range-payload product on this mission. A program to establish the technology base for a Compound Cycle Engine is presented. The goal of this program is to research and develop those technologies which are barriers to demonstrating a multicylinder diesel core in the early 1990's. The major activity underway is a three-phased contract with the Garrett Turbine Engine Company to perform: (1) a light helicopter feasibility study, (2) component technology development, and (3) lubricant and material research and development. Other related activities are also presented.
NASA Technical Reports Server (NTRS)
Bobula, G. A.; Wintucky, W. T.; Castor, J. G.
1986-01-01
The Compound Cycle Engine (CCE) is a highly turbocharged, power compounded power plant which combines the lightweight pressure rise capability of a gas turbine with the high efficiency of a diesel. When optimized for a rotorcraft, the CCE will reduce fuel burned for a typical 2 hr (plus 30 min reserve) mission by 30 to 40 percent when compared to a conventional advanced technology gas turbine. The CCE can provide a 50 percent increase in range-payload product on this mission. A program to establish the technology base for a Compound Cycle Engine is presented. The goal of this program is to research and develop those technologies which are barriers to demonstrating a multicylinder diesel core in the early 1990's. The major activity underway is a three-phased contract with the Garrett Turbine Engine Company to perform: (1) a light helicopter feasibility study, (2) component technology development, and (3) lubricant and material research and development. Other related activities are also presented.
ERIC Educational Resources Information Center
Tomezsko, Edward S. J.
A composite materials education program was established to train Boeing Helicopter Company employees in the special processing of new filament-reinforced polymer composite materials. During the personnel development phase of the joint Boeing-Penn State University project, an engineering instructor from Penn State completed a 5-month, full-time…
ERIC Educational Resources Information Center
White, Richard N.
A group of interested and academically qualified female Aid to Families with Dependent Children recipients was identified to participate in the assessment of a demonstration program to train female Work incentive Program (WIN) participants. Training for electronics technicians was conducted at DeVry Institute of Technology (Chicago) and Ohio…
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. Parker, K. Sutherland, D. Chasar, J. Montemurno, B. Amos, J. Kono
2017-02-01
The Florida Solar Energy Center (FSEC), in collaboration with Florida Power & Light (FPL), is pursuing a phased residential energy-efficiency retrofit program in Florida. Researchers are looking to establish the impacts of technologies of two retrofit packages -- shallow and deep -- on annual energy and peak energy reductions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2017-02-22
The Florida Solar Energy Center (FSEC), in collaboration with Florida Power & Light (FPL), is pursuing a phased residential energy-efficiency retrofit program in Florida. Researchers are looking to establish the impacts of technologies of two retrofit packages -- shallow and deep -- on annual energy and peak energy reductions.
A Multimedia Program Combining Special Purposes Italian with the Study of the Italian Economy.
ERIC Educational Resources Information Center
Calvi, Licia; Geerts, Walter
This paper describes the first phase of a project that applies multimedia and hypermedia technology to the study of modern languages. The approach differs from taditional ones in that language is not viewed from a conversational or grammatical perspective but through scenarios imitating the contexts of natural language use. In this phase, the…
LSST (Hoop/Column) Maypole Antenna Development Program, phase 1, part 1
NASA Technical Reports Server (NTRS)
Sullivan, M. R.
1982-01-01
The first of a two-phase program was performed to develop the technology necessary to evaluate, design, manufacture, package, transport and deploy the hoop/column deployable antenna reflector by means of a ground based program. The hoop/column concept consists of a cable stiffened large diameter hoop and central column structure that supports and contours a radio frequency reflective mesh surface. Mission scenarios for communications, radiometer and radio astronomy, were studied. The data to establish technology drivers that resulted in a specification of a point design was provided. The point design is a multiple beam quadaperture offset antenna system wich provides four separate offset areas of illumination on a 100 meter diameter symmetrical parent reflector. The periphery of the reflector is a hoop having 48 segments that articulate into a small stowed volume around a center extendable column. The hoop and column are structurally connected by graphite and quartz cables. The prominence of cables in the design resulted in the development of advanced cable technology. Design verification models were built of the hoop, column, and surface stowage subassemblies. Model designs were generated for a half scale sector of the surface and a 1/6 scale of the complete deployable reflector.
Cost estimating methods for advanced space systems
NASA Technical Reports Server (NTRS)
Cyr, Kelley
1994-01-01
NASA is responsible for developing much of the nation's future space technology. Cost estimates for new programs are required early in the planning process so that decisions can be made accurately. Because of the long lead times required to develop space hardware, the cost estimates are frequently required 10 to 15 years before the program delivers hardware. The system design in conceptual phases of a program is usually only vaguely defined and the technology used is so often state-of-the-art or beyond. These factors combine to make cost estimating for conceptual programs very challenging. This paper describes an effort to develop parametric cost estimating methods for space systems in the conceptual design phase. The approach is to identify variables that drive cost such as weight, quantity, development culture, design inheritance and time. The nature of the relationships between the driver variables and cost will be discussed. In particular, the relationship between weight and cost will be examined in detail. A theoretical model of cost will be developed and tested statistically against a historical database of major research and development projects.
Improved Tubulars for Better Economics in Deep Gas Well Drilling Using Microwave Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinesh Agrawal
2006-09-30
The main objective of the entire research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration, by utilizing the latest developments in the microwave materials technology. Based on the results of the Phase I and insurmountable difficulties faced in the extrusion and de-waxing processes, the approach of achieving the goals of the program was slightly changed in the Phase II in which an approach of microwave sintering combined with Cold Isostatic Press (CIP) and joiningmore » (by induction or microwave) has been adopted. This process can be developed into a semicontinuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. The main objective of the Phase II research program is to demonstrate the potential to economically manufacture microwave processed coiled tubing with improved performance for extended useful life under hostile coiled tubing drilling conditions. After the completion of the Phase II, it is concluded that scale up and sintering of a thin wall common O.D. size tubing that is widely used in the market is still to be proved and further experimentation and refinement of the sintering process is needed in Phase III. Actual manufacturing capability of microwave sintered, industrial quality, full length tubing will most likely require several million dollars of investment.« less
Improved Tubulars for Better Economics in Deep Gas Well Drilling using Microwave Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinesh Agrawal; Paul Gigl; Mark Hunt
2007-07-31
The main objective of the entire research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration, by utilizing the latest developments in the microwave materials technology. Based on the results of the Phase I and insurmountable difficulties faced in the extrusion and de-waxing processes, the approach of achieving the goals of the program was slightly changed in the Phase II in which an approach of microwave sintering combined with Cold Isostatic Press (CIP) and joiningmore » (by induction or microwave) has been adopted. This process can be developed into a semicontinuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. The main objective of the Phase II research program is to demonstrate the potential to economically manufacture microwave processed coiled tubing with improved performance for extended useful life under hostile coiled tubing drilling conditions. After the completion of the Phase II, it is concluded that scale up and sintering of a thin wall common O.D. size tubing that is widely used in the market is still to be proved and further experimentation and refinement of the sintering process is needed in Phase III. Actual manufacturing capability of microwave sintered, industrial quality, full length tubing will most likely require several million dollars of investment.« less
Vaccum Gas Tungsten Arc Welding, phase 1
NASA Astrophysics Data System (ADS)
Weeks, J. L.; Krotz, P. D.; Todd, D. T.; Liaw, Y. K.
1995-03-01
This two year program will investigate Vacuum Gas Tungsten Arc Welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. VGTAW appears to offer a significant improvement in weldability because of the clean environment and lower heat input needed. The overall objective of the program is to develop the VGTAW technology and implement it into a manufacturing environment that will result in lower cost, better quality and higher reliability aerospace components for the space shuttle and other NASA space systems. Phase 1 of this program was aimed at demonstrating the process's ability to weld normally difficult-to-weld materials. Phase 2 will focus on further evaluation, a hardware demonstration and a plan to implement VGTAW technology into a manufacturing environment. During Phase 1, the following tasks were performed: (1) Task 11000 Facility Modification - an existing vacuum chamber was modified and adapted to a GTAW power supply; (2) Task 12000 Materials Selection - four difficult-to-weld materials typically used in the construction of aerospace hardware were chosen for study; (3) Task 13000 VGTAW Experiments - welding experiments were conducted under vacuum using the hollow tungsten electrode and evaluation. As a result of this effort, two materials, NARloy Z and Incoloy 903, were downselected for further characterization in Phase 2; and (4) Task 13100 Aluminum-Lithium Weld Studies - this task was added to the original work statement to investigate the effects of vacuum welding and weld pool vibration on aluminum-lithium alloys.
Vaccum Gas Tungsten Arc Welding, phase 1
NASA Technical Reports Server (NTRS)
Weeks, J. L.; Krotz, P. D.; Todd, D. T.; Liaw, Y. K.
1995-01-01
This two year program will investigate Vacuum Gas Tungsten Arc Welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. VGTAW appears to offer a significant improvement in weldability because of the clean environment and lower heat input needed. The overall objective of the program is to develop the VGTAW technology and implement it into a manufacturing environment that will result in lower cost, better quality and higher reliability aerospace components for the space shuttle and other NASA space systems. Phase 1 of this program was aimed at demonstrating the process's ability to weld normally difficult-to-weld materials. Phase 2 will focus on further evaluation, a hardware demonstration and a plan to implement VGTAW technology into a manufacturing environment. During Phase 1, the following tasks were performed: (1) Task 11000 Facility Modification - an existing vacuum chamber was modified and adapted to a GTAW power supply; (2) Task 12000 Materials Selection - four difficult-to-weld materials typically used in the construction of aerospace hardware were chosen for study; (3) Task 13000 VGTAW Experiments - welding experiments were conducted under vacuum using the hollow tungsten electrode and evaluation. As a result of this effort, two materials, NARloy Z and Incoloy 903, were downselected for further characterization in Phase 2; and (4) Task 13100 Aluminum-Lithium Weld Studies - this task was added to the original work statement to investigate the effects of vacuum welding and weld pool vibration on aluminum-lithium alloys.
Stirling convertor performance mapping test results
NASA Astrophysics Data System (ADS)
Qiu, Songgang; Peterson, Allen A.; White, Maurice A.; Faultersack, Franklyn; Redinger, Darin L.; Petersen, Stephen L.
2002-01-01
The Department of Energy (DOE) has selected Free-Piston Stirling Convertors as a technology for future advanced radioisotope space power systems. In August 2000, DOE awarded competitive Phase I, Stirling Radioisotope Generator (SRG) power system integration contracts to three major aerospace contractors, resulting in SRG conceptual designs in February 2001. All three contractors based their designs on the Technology Demonstration Convertor (TDC) developed by Stirling Technology Company (STC) for DOE. The contract award to a single system integration contractor for Phases II and III of the SRG program is anticipated in late 2001. The first potential SRG mission is targeted for a Mars rover. Recent TDC performance data are provided in this paper, together with predictions from Stirling simulation models. .
NASA Astrophysics Data System (ADS)
Geraskin, N. I.; Glebov, V. B.
2017-01-01
The results of implementation of European educational projects CORONA and CORONA II dedicated to preserving and further developing nuclear knowledge and competencies in the area of technologies of light-water nuclear reactors are analyzed. Present article addresses issues of design and implementation of the program for specialized training in the branch of technologies of light-water nuclear reactors. The systematic approach has been used to construct the program for students of nuclear specialties, which corresponding to IAEA standards and commonly accepted nuclear principles recognized in the European Union. Possibilities of further development of the international cooperation between countries and educational institutions are analyzed. Special attention is paid to e-learning/distance training, nuclear knowledge preservation and interaction with European Nuclear Education Network.
The NASA-Lewis/ERDA Solar Heating and Cooling Technology Program
NASA Technical Reports Server (NTRS)
Couch, J. P.; Bloomfield, H. S.
1975-01-01
The NASA Lewis Research Center plans to carry out a major role in the ERDA Solar Heating and Cooling Program. This role would be to create and test the enabling technology for future solar heating, cooling, and combined heating/cooling systems. The major objectives of the project are to achieve reduction in solar energy system costs, while maintaining adequate performance, reliability, life, and maintenance characteristics. The project approach is to move progressively through component, subsystem, and then system technology advancement phases in parallel with continuing manufacturing cost assessment studies. This approach will be accomplished principally by contract with industry to develop advanced components and subsystems. This advanced hardware will be tested to establish 'technology readiness' both under controlled laboratory conditions and under real sun conditions.
Satellite Power System (SPS) concept definition study (exhibit C)
NASA Technical Reports Server (NTRS)
Haley, G. M.
1979-01-01
The major outputs of the study are the constructability studies which resulted in the definition of the concepts for satellite, rectenna, and satellite construction base construction. Transportation analyses resulted in definition of heavy-lift launch vehicle, electric orbit transfer vehicle, personnel orbit transfer vehicle, and intra-orbit transfer vehicle as well as overall operations related to transportation systems. The experiment/verification program definition resulted in the definition of elements for the Ground-Based Experimental Research and Key Technology plans. These studies also resulted in conceptual approaches for early space technology verification. The cost analysis defined the overall program and cost data for all program elements and phases.
Spacecraft applications of advanced global positioning system technology
NASA Technical Reports Server (NTRS)
1988-01-01
This is the final report on the Texas Instruments Incorporated (TI) simulations study of Spacecraft Application of Advanced Global Positioning System (GPS) Technology. This work was conducted for the NASA Johnson Space Center (JSC) under contract NAS9-17781. GPS, in addition to its baselined capability as a highly accurate spacecraft navigation system, can provide traffic control, attitude control, structural control, and uniform time base. In Phase 1 of this program, another contractor investigated the potential of GPS in these four areas and compared GPS to other techniques. This contract was for the Phase 2 effort, to study the performance of GPS for these spacecraft applications through computer simulations. TI had previously developed simulation programs for GPS differential navigation and attitude measurement. These programs were adapted for these specific spacecraft applications. In addition, TI has extensive expertise in the design and production of advanced GPS receivers, including space-qualified GPS receivers. We have drawn on this background to augment the simulation results in the system level overview, which is Section 2 of this report.
ERIC Educational Resources Information Center
Technical Education Research Center, Waco, TX.
A project was conducted to develop a laboratory-based instructional system in physics for two-year technician programs that emphasizes both the analogies between basic physical principles and the applications of the principles in modern technology. The Unified Technical Concepts (UTC) system that was developed is (1) a reorganization of physics…
Terrestrial Planet Finder Interferometer Technology Status and Plans
NASA Technical Reports Server (NTRS)
Lawson, Perter R.; Ahmed, A.; Gappinger, R. O.; Ksendzov, A.; Lay, O. P.; Martin, S. R.; Peters, R. D.; Scharf, D. P.; Wallace, J. K.; Ware, B.
2006-01-01
A viewgraph presentation on the technology status and plans for Terrestrial Planet Finder Interferometer is shown. The topics include: 1) The Navigator Program; 2) TPF-I Project Overview; 3) Project Organization; 4) Technology Plan for TPF-I; 5) TPF-I Testbeds; 6) Nulling Error Budget; 7) Nulling Testbeds; 8) Nulling Requirements; 9) Achromatic Nulling Testbed; 10) Single Mode Spatial Filter Technology; 11) Adaptive Nuller Testbed; 12) TPF-I: Planet Detection Testbed (PDT); 13) Planet Detection Testbed Phase Modulation Experiment; and 14) Formation Control Testbed.
Carrier behavior of HgTe under high pressure revealed by Hall effect measurement
NASA Astrophysics Data System (ADS)
Hu, Ting-Jing; Cui, Xiao-Yan; Li, Xue-Fei; Wang, Jing-Shu; Lv, Xiu-Mei; Wang, Ling-Sheng; Yang, Jing-Hai; Gao, Chun-Xiao
2015-11-01
We investigate the carrier behavior of HgTe under high pressures up to 23 GPa using in situ Hall effect measurements. As the phase transitions from zinc blende to cinnabar, then to rock salt, and finally to Cmcm occur, all the parameters change discontinuously. The conductivity variation under compression is described by the carrier parameters. For the zinc blende phase, both the decrease of carrier concentration and the increase of mobility indicate the overlapped valence band and conduction band separates with pressure. Pressure causes an increase in the hole concentration of HgTe in the cinnabar phase, which leads to the carrier-type inversion and the lowest mobility at 5.6 GPa. In the phase transition process from zinc blende to rock salt, Te atoms are the major ones in atomic movements in the pressure regions of 1.0-1.5 GPa and 1.8-3.1 GPa, whereas Hg atoms are the major ones in the pressure regions of 1.5-1.8 GPa and 3.1-7.7 GPa. The polar optical scattering of the rock salt phase decreases with pressure. Project supported by the National Basic Research Program of China (Grant No. 2011CB808204), the National Natural Science Foundation of China (Grant Nos. 11374121, 51441006, and 51479220), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11404137), the Program for the Development of Science and Technology of Jilin province, China (Grant Nos. 201201079 and 201215222), the Twentieth Five-Year Program for Science and Technology of Education Department of Jilin Province, China (Grant No. 0520306), and the Open Project Program of State Key Laboratory of Superhard Materials of China (Grant No. 201208).
A study of topics for distance education-A survey of U.S. Fish and Wildlife Service employees
Ratz, Joan M.; Schuster, Rudy M.; Marcy, Ann H.
2011-01-01
The purpose of this study was to identify training topics and distance education technologies preferred by U.S. Fish and Wildlife Service employees. This study was conducted on behalf of the National Conservation Training Center to support their distance education strategy planning and implementation. When selecting survey recipients, we focused on employees in positions involving conservation and environmental education and outreach programming. We conducted the study in two phases. First, we surveyed 72 employees to identify useful training topics. The response rate was 61 percent; respondents were from all regions and included supervisors and nonsupervisors. Five topics for training were identified: creating and maintaining partnerships (partnerships), technology, program planning and development (program planning), outreach methods to engage the community (outreach methods), and evaluation methods. In the second phase, we surveyed 1,488 employees to assess preferences for training among the five topics identified in the first survey and preferences among six distance education technologies: satellite television, video conferencing, audio conferencing, computer mediated training, written resources, and audio resources. Two types of instructor-led training were included on the survey to compare to the technology options. Respondents were asked what types of information, such as basic facts or problem solving skills, were needed for each of the five topics. The adjusted response rate was 64 percent; respondents were from all regions and included supervisors and nonsupervisors. The results indicated clear preferences among respondents for certain training topics and technologies. All five training topics were valued, but the topics of partnerships and technology were given equal value and were valued more than the other three topics. Respondents indicated a desire for training on the topics of partnerships, technology, program planning, and outreach methods. For the six distance education technologies, respondents indicated different levels of usability and access. Audio conferencing and written resources were reported to be most usable and accessible. The ratings of technology usability/access differed according to region; respondents in region 9 rated most technologies higher on usability/access. Respondents indicated they would take courses through either onsite or distance education approaches, but they prefer onsite training for most topics and most types of information.
Highlights of Nanosatellite Development Program at NASA-Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Rhee, Michael S.; Zakrzwski, Chuck M.; Thomas, Mike A.; Bauer, Frank H. (Technical Monitor)
2000-01-01
Currently the GN&C's Propulsion Branch of the NASA's Goddard Space Flight Center (GSFC) is conducting a broad technology development program for propulsion devices that are ideally suited for nanosatellite missions. The goal of our program is to develop nanosatellite propulsion systems that can be flight qualified in a few years and flown in support of nanosatellite missions. The miniature cold gas thruster technology, the first product from the GSFC's propulsion component technology development program, will be flown on the upcoming ST-5 mission in 2003. The ST-5 mission is designed to validate various nanosatellite technologies in all major subsystem areas. It is a precursor mission to more ambitious nanosatellite missions such as the Magnetospheric Constellation mission. By teaming with the industry and government partners, the GSFC propulsion component technology development program is aimed at pursuing a multitude of nanosatellite propulsion options simultaneously, ranging from miniaturized thrusters based on traditional chemical engines to MEMS based thruster systems. After a conceptual study phase to determine the feasibility and the applicability to nanosatellite missions, flight like prototypes of selected technology are fabricated for testing. The development program will further narrow down the effort to those technologies that are considered "mission-enabling" for future nanosatellite missions. These technologies will be flight qualified to be flown on upcoming nanosatellite missions. This paper will report on the status of our development program and provide details on the following technologies: Low power miniature cold gas thruster Nanosatellite solid rocket motor. Solid propellant gas generator system for cold gas thruster. Low temperature hydrazine blends for miniature hydrazine thruster. MEMS mono propellant thruster using hydrogen peroxide.
Preliminary Framework for Human-Automation Collaboration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oxstrand, Johanna Helene; Le Blanc, Katya Lee; Spielman, Zachary Alexander
The Department of Energy’s Advanced Reactor Technologies Program sponsors research, development and deployment activities through its Next Generation Nuclear Plant, Advanced Reactor Concepts, and Advanced Small Modular Reactor (aSMR) Programs to promote safety, technical, economical, and environmental advancements of innovative Generation IV nuclear energy technologies. The Human Automation Collaboration (HAC) Research Project is located under the aSMR Program, which identifies developing advanced instrumentation and controls and human-machine interfaces as one of four key research areas. It is expected that the new nuclear power plant designs will employ technology significantly more advanced than the analog systems in the existing reactor fleetmore » as well as utilizing automation to a greater extent. Moving towards more advanced technology and more automation does not necessary imply more efficient and safer operation of the plant. Instead, a number of concerns about how these technologies will affect human performance and the overall safety of the plant need to be addressed. More specifically, it is important to investigate how the operator and the automation work as a team to ensure effective and safe plant operation, also known as the human-automation collaboration (HAC). The focus of the HAC research is to understand how various characteristics of automation (such as its reliability, processes, and modes) effect an operator’s use and awareness of plant conditions. In other words, the research team investigates how to best design the collaboration between the operators and the automated systems in a manner that has the greatest positive impact on overall plant performance and reliability. This report addresses the Department of Energy milestone M4AT-15IN2302054, Complete Preliminary Framework for Human-Automation Collaboration, by discussing the two phased development of a preliminary HAC framework. The framework developed in the first phase was used as the basis for selecting topics to be investigated in more detail. The results and insights gained from the in-depth studies conducted during the second phase were used to revise the framework. This report describes the basis for the framework developed in phase 1, the changes made to the framework in phase 2, and the basis for the changes. Additional research needs are identified and presented in the last section of the report.« less
LSST (Hoop/Column) Maypole Antenna Development Program, phase 1, part 2
NASA Technical Reports Server (NTRS)
Sullivan, M. R.
1982-01-01
Cable technology is discussed. Manufacturing flow and philosophy are considered. Acceptance, gratification and flight tests are discussed. Fifteen-meter and fifty-meter models are considered. An economic assessment is included.
Wireless roadside inspection phase II : final report : [technology brief].
DOT National Transportation Integrated Search
2014-04-01
The Federal Motor Carrier Safety Administration (FMCSA) Wireless Roadside Inspection (WRI) Program is demonstrating the feasibility and value of electronically assessing truck and motorcoach driver and vehicle safety. Electronic assessments (or WRIs)...
LSST (Hoop/Column) Maypole Antenna Development Program, phase 1, part 2
NASA Astrophysics Data System (ADS)
Sullivan, M. R.
1982-06-01
Cable technology is discussed. Manufacturing flow and philosophy are considered. Acceptance, gratification and flight tests are discussed. Fifteen-meter and fifty-meter models are considered. An economic assessment is included.
Integrated Requirements Analysis and Technology Roadmaps
NASA Technical Reports Server (NTRS)
1997-01-01
In fiscal year 1997, Strategic Insight performed analytical studies for NASA's Highly Reusable Space Transportation (HRST) program, creating program documents which illuminated technical requirements and critical research opportunities. Studies were performed to structure and confirm HRST's evolving technical requirements, building on Marshall's Phase 1 work, which defined HRST system concepts, analytical tools and high-level issues for assessment in Phase 2. Specifically, Strategic Insight: (1) Performed a requirements analysis to update HRST: An Advanced Concepts Study, Study Guidelines, Version 2.0 of January 22, 1996; only minor changes were recommended for the given parameters of interest to concept designers; (2) Conducted mini-workshops during HRST Working Group meetings on April 14-15, 1997 and July 22-24, 1997; and (3) Created structures for technology road maps of candidate HRST concepts, both subsystem and end-to-end concepts, emerging from the 13 cooperative agreement projects.
Advances in Electrically Driven Thermal Management
NASA Technical Reports Server (NTRS)
Didion, Jeffrey R.
2017-01-01
Electrically Driven Thermal Management is a vibrant technology development initiative incorporating ISS based technology demonstrations, development of innovative fluid management techniques and fundamental research efforts. The program emphasizes high temperature high heat flux thermal management required for future generations of RF electronics and power electronic devices. This presentation reviews i.) preliminary results from the Electrohydrodynamic (EHD) Long Term Flight Demonstration launched on STP-H5 payload in February 2017 ii.) advances in liquid phase flow distribution control iii.) development of the Electrically Driven Liquid Film Boiling Experiment under the NASA Microgravity Fluid Physics Program.
1986-02-27
This photograph shows a modified General Dynamics AFTI/F-111A Aardvark in flight with supercritical mission adaptive wings (MAW) installed. With the phasing out of the TACT program came a renewed effort by the Air Force Flight Dynamics Laboratory to extend supercritical wing technology to a higher level of performance. In the early 1980s the supercritical wing on the F-111A aircraft was replaced with a wing built by Boeing Aircraft Company System called a “mission adaptive wing” (MAW), and a joint NASA and Air Force program called Advanced Fighter Technology Integration (AFTI) was born.
NASA Technical Reports Server (NTRS)
1991-01-01
The AFTI F-16 flying at high angle of attack, shown in the final configuration and paint finish. Dummy Sidewinder air-to-air missles are attached to the wing tips. The white objects visible on the wing racks represent practice bomb dispensers, used in weapon tests. During the 1980s and 1990s, NASA and the U.S. Air Force participated in a joint program to integrate and demonstrate new avionics technologies to improve close air support capabilities in next-generation aircraft. The testbed aircraft, seen here in flight over the desert at NASA's Dryden Flight Research Center, Edwards, California, was called the Advanced Fighter Technology Integration (AFTI) F-16. The tests demonstrated technologies to improve navigation and the pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. The aircraft--an F-16A Fighting Falcon (Serial #75-0750)--underwent numerous modifications. A relatively low-cost testbed, it evaluated the feasability of advanced, intergrated-sensor, avionics, and flight control technologies. During the first phase of the AFTI/F-16 program, which began in 1983, the aircraft demonstrated voice-actuated commands, helmet-mounted sights, flat turns, and selective fuselage pointing using forward-mounted canards and a triplex digital flight control computer system. The second phase of research, which began in the summer of 1991, demonstrated advanced technologies and capabilities to find and destroy ground targets day or night, and in adverse weather while using maneuverability and speed at low altitude. This phase was known as the close air support and battlefield air interdiction (CAS/BAI) phase. Finally, the aircraft was used to assess the Automatic Ground Collision Avoidance System (Auto - GCAS), a joint project with the Swedish Government. For these tests, the pilot flew the aircraft directly toward the ground, simulating a total loss of control. The GCAS was designed to take command in such emergencies and bring the aircraft back to level flight. The AFTI F-16 program ended at Dryden on November 4, 1997 after 15 years and over 700 research flights. The USAF continued to fly the aircraft until retiring it to the Air Force Museum on January 9, 2001.
AFTI/F-16 50th flight team photo
NASA Technical Reports Server (NTRS)
1983-01-01
An early (1983) photograph of the AFTI F-16 team, commemorating the aircraft's 50th flight. It shows the initial configuration and paint finish of the AFTI F-16, as well as the forward mounted canards and the spin chute. During the 1980s and 1990s, NASA and the U.S. Air Force participated in a joint program to integrate and demonstrate new avionics technologies to improve close air support capabilities in next-generation aircraft. The testbed aircraft, seen here in flight over the desert at NASA's Dryden Flight Research Center, Edwards, California, was called the Advanced Fighter Technology Integration (AFTI) F-16. The tests demonstrated technologies to improve navigation and the pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. The aircraft--an F-16A Fighting Falcon (Serial #75-0750)--underwent numerous modifications. A relatively low-cost testbed, it evaluated the feasability of advanced, intergrated-sensor, avionics, and flight control technologies. During the first phase of the AFTI/F-16 program, which began in 1983, the aircraft demonstrated voice-actuated commands, helmet-mounted sights, flat turns, and selective fuselage pointing using forward-mounted canards and a triplex digital flight control computer system. The second phase of research, which began in the summer of 1991, demonstrated advanced technologies and capabilities to find and destroy ground targets day or night, and in adverse weather while using maneuverability and speed at low altitude. This phase was known as the close air support and battlefield air interdiction (CAS/BAI) phase. Finally, the aircraft was used to assess the Automatic Ground Collision Avoidance System (Auto - GCAS), a joint project with the Swedish Government. For these tests, the pilot flew the aircraft directly toward the ground, simulating a total loss of control. The GCAS was designed to take command in such emergencies and bring the aircraft back to level flight. The AFTI F-16 program ended at Dryden on November 4, 1997 after 15 years and over 700 research flights. The USAF continued to fly the aircraft until retiring it to the Air Force Museum on January 9, 2001.
NASA's commercial space program - Initiatives for the future
NASA Technical Reports Server (NTRS)
Rose, James T.; Stone, Barbara A.
1990-01-01
NASA's commercial development of the space program aimed at the stimulation and assistance of expanded private sector involvement and investment in civil space activities is discussed, focusing on major new program initiatives and their implementation. NASA's Centers for the Commercial Development of Space (CCDS) program, composed of competitively selected consortia of universities, industries, and government involved in early research and testing phases of potentially commercially viable technologies is described. The 16 centers concentrate on seven different technical areas such as automation and robotics; remote sensing; life sciences; and space power, propulsion, and structures. Private sector participation, CCDS technology development, government and commercially supplied access to space in support of CCDS programs, CCDS hardware development, and CCDS spinoffs are discussed together with various cooperative and reimbursable agreements between NASA and the private sector.
High Current Density, Long Life Cathodes for High Power RF Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ives, Robert Lawrence; Collins, George; Falce, Lou
2014-01-22
This program was tasked with improving the quality and expanding applications for Controlled Porosity Reservoir (CPR) cathodes. Calabazas Creek Research, Inc. (CCR) initially developed CPR cathodes on a DOE-funded SBIR program to improve cathodes for magnetron injection guns. Subsequent funding was received from the Defense Advanced Research Projects Agency. The program developed design requirements for implementation of the technology into high current density cathodes for high frequency applications. During Phase I of this program, CCR was awarded the prestigious 2011 R&D100 award for this technology. Subsequently, the technology was presented at numerous technical conferences. A patent was issued for themore » technology in 2009. These cathodes are now marketed by Semicon Associates, Inc. in Lexington, KY. They are the world’s largest producer of cathodes for vacuum electron devices. During this program, CCR teamed with Semicon Associates, Inc. and Ron Witherspoon, Inc. to improve the fabrication processes and expand applications for the cathodes. Specific fabrications issues included the quality of the wire winding that provides the basic structure and the sintering to bond the wires into a robust, cohesive structure. The program also developed improved techniques for integrating the resulting material into cathodes for electron guns.« less
Impact of Environmental Issues on the High-Speed Civil Transport
NASA Technical Reports Server (NTRS)
Whitehead, Allen H., Jr.
1998-01-01
This paper provides an overview of the impact of environmental issues on the design and operation of the proposed High-Speed Civil Transport (HSCT). This proposal for a new generation commercial supersonic transport is being pursued by NASA and its US industry partners in the NASA High-Speed Research (HSR) Program. A second related paper describes the overall HSR Program, including a history of supersonic transport development that led to the present program, and a brief outline of the structure of the two-phase program and its management structure. The specific objectives are to address the four major barrier environmental issues and show their impact on the design of the airplane and potentially, its mode of operation. A brief historical perspective shows how HSR Phase I addressed these environmental topics and, with the successful completion of that program, led to the successful advocacy for the Phase II effort that followed. The Phase II program elements were discussed in the earlier paper and addressed technology programs to enhance the economic viability of the HSCT. Since many of the regulations that may effect the certification and operation of the HSCT are either not in place or well documented, a brief treatise is provided to address the status of the rules and the potential impact on the viability of the HSCT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, F. G.; Daniels, E. J.
This report summarizes an assessment conducted by Environmental Technologies Alternatives, Inc., under a subcontract to Argonne National Laboratory. The project was conducted in two phases. An assessment of alternative technologies for recycling of prompt non-tire rubber was conducted in the first phase, and an experimental program focusing on a new technology called the catalytic Regeneration Process offered the greatest opportunity for recovery of high-value recyclable rubber material. An experimental and large-scale test program was undertaken to further delineate the economic potential as an essential step leading to commercial deployment and to determine the course of continued development of the technologymore » by the private sector. The experimental program defined process-operating conditions for the technology and verified the degree of devulcanisation achievable for two rubber compounds: ethylene-propylene-nonconjugated-diene monomer (EPDM) and neoprene. To determine product acceptance, samples of devulcanized EPDM and neoprene were prepared and used in factory trials for the production of automotive moldings (EPDM) and fiber-filled belting (neoprene). The factory trials indicated that the physical properties of the products were acceptable in both cases. The appearance of molded and calendared surface finishes was acceptable, while that of extruded finishes was unsatisfactory. The fiber-filled neoprene belting application offers the greatest economic potential. Process costs were estimated at $0.34/lb for neoprene waste rubber relative to a value of $0.57/lb. The results of the experimental program led to the decision to continue development of this technology is being planned, subject to the availability of about $3 million in financing from private-sector investors. The ability to recycle non-tire rubber scrap could conserve as much as 90,000 Btu/lb, thus yielding an estimated energy savings potential of about 0.25 quad/yr.« less
BBN-Based Portfolio Risk Assessment for NASA Technology R&D Outcome
NASA Technical Reports Server (NTRS)
Geuther, Steven C.; Shih, Ann T.
2016-01-01
The NASA Aeronautics Research Mission Directorate (ARMD) vision falls into six strategic thrusts that are aimed to support the challenges of the Next Generation Air Transportation System (NextGen). In order to achieve the goals of the ARMD vision, the Airspace Operations and Safety Program (AOSP) is committed to developing and delivering new technologies. To meet the dual challenges of constrained resources and timely technology delivery, program portfolio risk assessment is critical for communication and decision-making. This paper describes how Bayesian Belief Network (BBN) is applied to assess the probability of a technology meeting the expected outcome. The network takes into account the different risk factors of technology development and implementation phases. The use of BBNs allows for all technologies of projects in a program portfolio to be separately examined and compared. In addition, the technology interaction effects are modeled through the application of object-oriented BBNs. The paper discusses the development of simplified project risk BBNs and presents various risk results. The results presented include the probability of project risks not meeting success criteria, the risk drivers under uncertainty via sensitivity analysis, and what-if analysis. Finally, the paper shows how program portfolio risk can be assessed using risk results from BBNs of projects in the portfolio.
A Brief History of Meteoroid and Orbital Debris Shielding Technology for US Manned Spacecraft
NASA Technical Reports Server (NTRS)
Bjorkman, Michael D.; Hyde, James L.
2008-01-01
Meteoroid and orbital debris shielding has played an important role from the beginning of manned spaceflight. During the early 60 s, meteoroid protection drove requirements for new meteor and micrometeoroid impact science. Meteoroid protection also stimulated advances in the technology of hypervelocity impact launchers and impact damage assessment methodologies. The first phase of meteoroid shielding assessments closed in the early 70 s with the end of the Apollo program. The second phase of meteoroid protection technology began in the early 80 s when it was determined that there is a manmade Earth orbital debris belt that poses a significant risk to LEO manned spacecraft. The severity of the Earth orbital debris environment has dictated changes in Space Shuttle and ISS operations as well as driven advances in shielding technology and assessment methodologies. A timeline of shielding technology and assessment methodology advances is presented along with a summary of risk assessment results.
Engineering the Business of Defense Acquisition: An Analysis of Program Office Processes
2015-05-01
Information Technology and Business Process Redesign | MIT Sloan Management Review . MIT Sloan Management Review . Retrieved from http://sloanreview.mit.edu...links systems management to process execution Three Phases/ Multi-Year Effort (This Phase) Literature review Model development— Formal and...estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining
In Phase II of the ToxCast program, the U.S. EPA and Tox21 partners screened 1,877 chemicals, including pesticides; food, cosmetics and personal care ingredients; pharmaceuticals; and industrial chemicals. Testing used a 782 in vitro assays across 7 technologies and multiple bi...
ERIC Educational Resources Information Center
Herrmann, Andrea W.; Herrmann, John
To illustrate the capabilities of local area networking (LAN) and integrated software programs, this paper reviews current software programs relevant to writing instruction. It is argued that the technology exists for students sitting at one microcomputer to be able to effectively carry out all phases of the writing process from gathering online…
Power and Energy Systems Technology Program. Research Series No. 43.
ERIC Educational Resources Information Center
Haakenson, Harvey
The overall objective of this project was to develop a training program and materials for power plant training in North Dakota. The project utilized four separate instructional units and four separate enrollment times with eight students enrolling in each phase to a maximum of thirty-two students. The course that resulted from the project is…
Interleaved arrays antenna technology development
NASA Technical Reports Server (NTRS)
1986-01-01
Phase one and two of a program to further develop and investigate advanced graphite epoxy waveguides, radiators, and components with application to space antennas are discussed. The objective of the two phases were to demonstrate mechanical integrity of a small panel of radiators and parts procured under a previous contract and to develop alternate designs and applications of the technology. Most of the emphasis was on the assembly and test of a 5 x 5 element module. This effort was supported by evaluation of adhesives and waveguide joint configurations. The evaluation and final assembly considered not only mechanical performance but also producibility in large scale.
Technology verification phase. Dynamic isotope power system. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halsey, D.G.
1982-03-10
The Phase I requirements of the Kilowatt Isotope Power System (KIPS) program were to make a detailed Flight System Conceptual Design (FSCD) for an isotope fueled organic Rankine cycle power system and to build and test a Ground Demonstration System (GDS) which simulated as closely as possible the operational characteristics of the FSCD. The activities and results of Phase II, the Technology Verification Phase, of the program are reported. The objectives of this phase were to increase system efficiency to 18.1% by component development, to demonstrate system reliability by a 5000 h endurance test and to update the flight systemmore » design. During Phase II, system performance was improved from 15.1% to 16.6%, an endurance test of 2000 h was performed while the flight design analysis was limited to a study of the General Purpose Heat Source, a study of the regenerator manufacturing technique and analysis of the hardness of the system to a laser threat. It was concluded from these tests that the GDS is basically prototypic of a flight design; all components necessary for satisfactory operation were demonstrated successfully at the system level; over 11,000 total h of operation without any component failure attested to the inherent reliability of this type of system; and some further development is required, specifically in the area of performance. (LCL)« less
Rapid prototype fabrication processes for high-performance thrust cells
NASA Technical Reports Server (NTRS)
Hunt, K.; Chwiedor, T.; Diab, J.; Williams, R.
1994-01-01
The Thrust Cell Technologies Program (Air Force Phillips Laboratory Contract No. F04611-92-C-0050) is currently being performed by Rocketdyne to demonstrate advanced materials and fabrication technologies which can be utilized to produce low-cost, high-performance thrust cells for launch and space transportation rocket engines. Under Phase 2 of the Thrust Cell Technologies Program (TCTP), rapid prototyping and investment casting techniques are being employed to fabricate a 12,000-lbf thrust class combustion chamber for delivery and hot-fire testing at Phillips Lab. The integrated process of investment casting directly from rapid prototype patterns dramatically reduces design-to-delivery cycle time, and greatly enhances design flexibility over conventionally processed cast or machined parts.
External Quality Assessment beyond the analytical phase: an Australian perspective.
Badrick, Tony; Gay, Stephanie; McCaughey, Euan J; Georgiou, Andrew
2017-02-15
External Quality Assessment (EQA) is the verification, on a recurring basis, that laboratory results conform to expectations for the quality required for patient care. It is now widely recognised that both the pre- and post-laboratory phase of testing, termed the diagnostic phases, are a significant source of laboratory errors. These errors have a direct impact on both the effectiveness of the laboratory and patient safety. Despite this, Australian laboratories tend to be focussed on very narrow concepts of EQA, primarily surrounding test accuracy, with little in the way of EQA programs for the diagnostic phases. There is a wide range of possibilities for the development of EQA for the diagnostic phases in Australia, such as the utilisation of scenarios and health informatics. Such programs can also be supported through advances in health information and communications technology, including electronic test ordering and clinical decision support systems. While the development of such programs will require consultation and support from the referring doctors, and their format will need careful construction to ensure that the data collected is de-identified and provides education as well as useful and informative data, we believe that there is high value in the development of such programs. Therefore, it is our opinion that all pathology laboratories should strive to be involved in an EQA program in the diagnostic phases to both monitor the diagnostic process and to identify, learn from and reduce errors and near misses in these phases in a timely fashion.
External Quality Assessment beyond the analytical phase: an Australian perspective
Gay, Stephanie; McCaughey, Euan J.; Georgiou, Andrew
2017-01-01
External Quality Assessment (EQA) is the verification, on a recurring basis, that laboratory results conform to expectations for the quality required for patient care. It is now widely recognised that both the pre- and post-laboratory phase of testing, termed the diagnostic phases, are a significant source of laboratory errors. These errors have a direct impact on both the effectiveness of the laboratory and patient safety. Despite this, Australian laboratories tend to be focussed on very narrow concepts of EQA, primarily surrounding test accuracy, with little in the way of EQA programs for the diagnostic phases. There is a wide range of possibilities for the development of EQA for the diagnostic phases in Australia, such as the utilisation of scenarios and health informatics. Such programs can also be supported through advances in health information and communications technology, including electronic test ordering and clinical decision support systems. While the development of such programs will require consultation and support from the referring doctors, and their format will need careful construction to ensure that the data collected is de-identified and provides education as well as useful and informative data, we believe that there is high value in the development of such programs. Therefore, it is our opinion that all pathology laboratories should strive to be involved in an EQA program in the diagnostic phases to both monitor the diagnostic process and to identify, learn from and reduce errors and near misses in these phases in a timely fashion. PMID:28392728
ERIC Educational Resources Information Center
Kirby, Frederick C.; Castagna, Paul A.
The purpose of this study is to estimate costs and benefits and to compute alternative benefit-cost ratios for both the individuals and the Federal Government as a result of investing time and resources in the Training and Technology (TAT) Project. TAT is a continuing experimental program in training skilled workers for private industry. The five…
ERIC Educational Resources Information Center
Tierney, Patrick J.; Moisey, Susan
2014-01-01
This exploratory mixed methods case study examined the use of distance education technology for lifestyle change within the context of obesity treatment and weight management. In the quantitative phase of the study, 19 adults involved in an obesity-related lifestyle change program or change process completed a questionnaire that determined their…
Advanced Platform Systems Technology study. Volume 4: Technology advancement program plan
NASA Technical Reports Server (NTRS)
1983-01-01
An overview study of the major technology definition tasks and subtasks along with their interfaces and interrelationships is presented. Although not specifically indicated in the diagram, iterations were required at many steps to finalize the results. The development of the integrated technology advancement plan was initiated by using the results of the previous two tasks, i.e., the trade studies and the preliminary cost and schedule estimates for the selected technologies. Descriptions for the development of each viable technology advancement was drawn from the trade studies. Additionally, a logic flow diagram depicting the steps in developing each technology element was developed along with descriptions for each of the major elements. Next, major elements of the logic flow diagrams were time phased, and that allowed the definition of a technology development schedule that was consistent with the space station program schedule when possible. Schedules show the major milestone including tests required as described in the logic flow diagrams.
The NASA Lewis large wind turbine program
NASA Technical Reports Server (NTRS)
Thomas, R. L.; Baldwin, D. H.
1981-01-01
The program is directed toward development of the technology for safe, reliable, environmentally acceptable large wind turbines that have the potential to generate a significant amount of electricity at costs competitive with conventional electric generation systems. In addition, these large wind turbines must be fully compatible with electric utility operations and interface requirements. Advances are made by gaining a better understanding of the system design drivers, improvements in the analytical design tools, verification of design methods with operating field data, and the incorporation of new technology and innovative designs. An overview of the program activities is presented and includes results from the first and second generation field machines (Mod-OA, -1, and -2), the design phase of the third generation wind turbine (Mod-5) and the advanced technology projects. Also included is the status of the Department of Interior WTS-4 machine.
10 kW SOFC Power System Commercialization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dan Norrick; Brad Palmer; Charles Vesely
2006-02-01
Cummins Power Generation (CPG) as the prime contractor and SOFCo-EFS Holdings LLC (SOFCo), as their subcontractor, teamed under the Solid-state Energy Conversion Alliance (SECA) program to develop 3-10kW solid oxide fuel cell systems for use in recreational vehicles, commercial work trucks and stand-by telecommunications applications. The program goal is demonstration of power systems that meet commercial performance requirements and can be produced in volume at a cost of $400/kW. This report summarizes the team's activities during the seventh six-month period (July-December 2005) of the four-year Phase I effort. While there has been significant progress in the development of the SOFCmore » subsystems that can support meeting the program Phase 1 goals, the SOFCo ceramic stack technology has progressed significantly slower than plan and CPG consider it unlikely that the systemic problems encountered will be overcome in the near term. SOFCo has struggled with a series of problems associated with inconsistent manufacturing, inadequate cell performance, and the achievement of consistent, durable, low resistance inter-cell connections with reduced or no precious materials. A myriad of factors have contributed to these problems, but the fact remains that progress has not kept pace with the SECA program. A contributing factor in SOFCo's technical difficulties is attributed to their significantly below plan industry cost share spending over the last four years. This has resulted in a much smaller SOFC stack development program, has contributed to SOFCo not being able to aggressively resolve core issues, and clouds their ability to continue into a commercialization phase. In view of this situation, CPG has conducted an independent assessment of the state-of-the-art in planar SOFC's stacks and have concluded that alternative technology exists offering the specific performance, durability, and low cost needed to meet the SECA objectives. We have further concluded that there is insufficient evidence to reliably predict that SOFCo will be able to achieve the SECA performance and cost goals on a schedule consistent with SECA or CPG commercialization goals. CPG believes SOFCo have made a good faith effort consistent with the available resources, but have repeatedly fallen short of achieving the programs scheduled targets. CPG has therefore initiated a process of application for extension of Phase 1 of our SECA program with the intent of transitioning to an alternative stack supplier with more mature SOFC technology, and demonstrating a system meeting the SECA Phase 1 goals by the end of calendar 2006. We have identified an alternative supplier and will be reporting the progress on transition and program planning in monthly technical reports, reviews, and in the next semiannual report.« less
Research planning criteria for regenerative life-support systems applicable to space habitats
NASA Technical Reports Server (NTRS)
Spurlock, J.; Cooper, W.; Deal, P.; Harlan, A.; Karel, M.; Modell, M.; Moe, P.; Phillips, J.; Putnam, D.; Quattrone, P.
1979-01-01
The second phase of analyses that were conducted by the Life Support Systems Group of the 1977 NASA Ames Summer Study is described. This phase of analyses included a preliminary review of relevant areas of technology that can contribute to the development of closed life-support systems for space habitats, the identification of research options in these areas of technology, and the development of guidelines for an effective research program. The areas of technology that were studied included: (1) nutrition, diet, and food processing; (2) higher plant agriculture; (3) animal agriculture; (4) waste conversion and resource recovery; and (5) system stability and safety. Results of these analyses, including recommended research options and criteria for establishing research priorities among these many options, are discussed.
NASA Technical Reports Server (NTRS)
Envia, Edmane; Thomas, Russell
2007-01-01
As part of the Fundamental Aeronautics Program Annual Review, a summary of the progress made in 2007 in acoustics research under the Subsonic Fixed Wing project is given. The presentation describes highlights from in-house and external activities including partnerships and NRA-funded research with industry and academia. Brief progress reports from all acoustics Phase 1 NRAs are also included as are outlines of the planned activities for 2008 and all Phase 2 NRAs. N+1 and N+2 technology paths outlined for Subsonic Fixed Wing noise targets. NRA Round 1 progressing with focus on prediction method advancement. NRA Round 2 initiating work focused on N+2 technology, prediction methods, and validation. Excellent partnerships in progress supporting N+1 technology targets and providing key data sets.
The flight telerobotic servicer and technology transfer
NASA Technical Reports Server (NTRS)
Andary, James F.; Bradford, Kayland Z.
1991-01-01
The Flight Telerobotic Servicer (FTS) project at the Goddard Space Flight Center is developing an advanced telerobotic system to assist in and reduce crew extravehicular activity (EVA) for Space Station Freedom (SSF). The FTS will provide a telerobotic capability in the early phases of the SSF program and will be employed for assembly, maintenance, and inspection applications. The current state of space technology and the general nature of the FTS tasks dictate that the FTS be designed with sophisticated teleoperational capabilities for its internal primary operating mode. However, technologies such as advanced computer vision and autonomous planning techniques would greatly enhance the FTS capabilities to perform autonomously in less structured work environments. Another objective of the FTS program is to accelerate technology transfer from research to U.S. industry.
Energy Efficient Engine exhaust mixer model technology report addendum; phase 3 test program
NASA Technical Reports Server (NTRS)
Larkin, M. J.; Blatt, J. R.
1984-01-01
The Phase 3 exhaust mixer test program was conducted to explore the trends established during previous Phases 1 and 2. Combinations of mixer design parameters were tested. Phase 3 testing showed that the best performance achievable within tailpipe length and diameter constraints is 2.55 percent better than an optimized separate flow base line. A reduced penetration design achieved about the same overall performance level at a substantially lower level of excess pressure loss but with a small reduction in mixing. To improve reliability of the data, the hot and cold flow thrust coefficient analysis used in Phases 1 and 2 was augmented by calculating percent mixing from traverse data. Relative change in percent mixing between configurations was determined from thrust and flow coefficient increments. The calculation procedure developed was found to be a useful tool in assessing mixer performance. Detailed flow field data were obtained to facilitate calibration of computer codes.
Intelligent Propulsion System Foundation Technology: Summary of Research
NASA Technical Reports Server (NTRS)
2008-01-01
The purpose of this cooperative agreement was to develop a foundation of intelligent propulsion technologies for NASA and industry that will have an impact on safety, noise, emissions, and cost. These intelligent engine technologies included sensors, electronics, communications, control logic, actuators, smart materials and structures, and system studies. Furthermore, this cooperative agreement helped prepare future graduates to develop the revolutionary intelligent propulsion technologies that will be needed to ensure pre-eminence of the U.S. aerospace industry. This Propulsion 21 - Phase 11 program consisted of four primary research areas and associated work elements at Ohio universities: 1.0 Turbine Engine Prognostics, 2.0 Active Controls for Emissions and Noise Reduction, 3.0 Active Structural Controls and Performance, and 4.0 System Studies and Integration. Phase l, which was conducted during the period August 1, 2003, through September 30, 2004, has been reported separately.
ATD-1 Avionics Phase 2 Flight Test: Flight Test Operations and Saftey Report (FTOSR)
NASA Technical Reports Server (NTRS)
Boyle, Dan; Rein-Weston, Karl; Berckefeldt, Rick; Eggling, Helmuth; Stankiewicz, Craig; Silverman, George
2017-01-01
The Air Traffic Management Technology Demonstration-1 (ATD-1) is a major applied research and development activity of NASA's Airspace Operations and Safety Program (AOSP). The demonstration is the first of an envisioned series of Air Traffic Management (ATM) Technology Demonstration sub-projects that will demonstrate innovative NASA technologies that have attained a sufficient level of maturity to merit more in-depth research and evaluation at the system level in relevant environments.
Integrated low emissions cleanup system for direct coal-fueled turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lippert, T.E.; Newby, R.A.; Alvin, M.A.
1992-01-01
The Westinghouse Electric Corporation, Science Technology Center (W-STC) is developing an Integrated Low Emissions Cleanup (ILEC) concept for high-temperature gas cleaning to meet environmental standards, as well as to economical gas turbine life. The ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases at temperatures up to 1850[degrees]F for advanced power generation systems (PFBC, APFBC, IGCC, DCF7). The objective of this program is to demonstrate, at a bench scale, the conceptual, technical feasibility of the REC concept. The ELEC development program has a 3 phase structure: Phase 1 - laboratory-scale testing; phase 2more » - bench-scale equipment; design and fabrication; and phase 3 - bench-scale testing. Phase 1 laboratory testing has been completed. In Phase 1, entrained sulfur and alkali sorbent kinetics were measured and evaluated, and commercial-scale performance was projected. Related cold flow model testing has shown that gas-particle contacting within the ceramic barrier filter vessel will provide a good reactor environment. The Phase 1 test results and the commercial evaluation conducted in the Phase 1 program support the bench-scale facility testing to be performed in Phase 3. Phase 2 is nearing completion with the design and assembly of a modified, bench-scale test facility to demonstrate the technical feasibility of the ILEC features. This feasibility testing will be conducted in Phase 3.« less
NASA Technical Reports Server (NTRS)
Pohner, John A.; Dempsey, Brian P.; Herold, Leroy M.
1990-01-01
Space Station elements and advanced military spacecraft will require rejection of tens of kilowatts of waste heat. Large space radiators and two-phase heat transport loops will be required. To minimize radiator size and weight, it is critical to minimize the temperature drop between the heat source and sink. Under an Air Force contract, a unique, high-performance heat exchanger is developed for coupling the radiator to the transport loop. Since fluid flow through the heat exchanger is driven by capillary forces which are easily dominated by gravity forces in ground testing, it is necessary to perform microgravity thermal testing to verify the design. This contract consists of an experiment definition phase leading to a preliminary design and cost estimate for a shuttle-based flight experiment of this heat exchanger design. This program will utilize modified hardware from a ground test program for the heat exchanger.
The experimental clean combustor program: Description and status to November 1975
NASA Technical Reports Server (NTRS)
Niedzwiecki, R. W.
1975-01-01
The generation of technology was studied for the development of advanced commercial CTOL aircraft engines with lower exhaust emissions than current aircraft. The program is in three phases. Phase 1, already completed, consisted of screening tests of low pollution combustor concepts. Phase 2, currently in progress, consists of test rig refinement of the most promising combustor concepts. Phase 2 test results are reported. Phase 3, also currently in progress, consists of incorporating and evaluating the best combustors as part of a complete engine. Engine test plans and pollution sampling techniques are described in this report. Program pollution goals, specified at engine idle and take-off conditions, are idle emission index value of 20 and 4 for carbon monoxide (CO) and total unburned hydrocarbons (THC), respectively, and at take-off are an oxides of nitrogen (NOx) emission index level of 10 and a smoke number of 15. Pollution data were obtained at all engine operating conditions. Results are presented in terms of emission index and also in terms of the Environmental Protection Agency's 1979 Standards Parameter.
NASA Technical Reports Server (NTRS)
Loyselle, Patricia; Prokopius, Kevin
2011-01-01
Proton exchange membrane (PEM) fuel cell technology is the leading candidate to replace the aging alkaline fuel cell technology, currently used on the Shuttle, for future space missions. This test effort marks the final phase of a 5-yr development program that began under the Second Generation Reusable Launch Vehicle (RLV) Program, transitioned into the Next Generation Launch Technologies (NGLT) Program, and continued under Constellation Systems in the Exploration Technology Development Program. Initially, the engineering model (EM) powerplant was evaluated with respect to its performance as compared to acceptance tests carried out at the manufacturer. This was to determine the sensitivity of the powerplant performance to changes in test environment. In addition, a series of tests were performed with the powerplant in the original standard orientation. This report details the continuing EM benchmark test results in three spatial orientations as well as extended duration testing in the mission profile test. The results from these tests verify the applicability of PEM fuel cells for future NASA missions. The specifics of these different tests are described in the following sections.
Space station gas compressor technology study program, phase 1
NASA Technical Reports Server (NTRS)
Hafele, B. W.; Rapozo, R. R.
1989-01-01
The objectives were to identify the space station waste gases and their characteristics, and to investigate compressor and dryer types, as well as transport and storage requirements with tradeoffs leading to a preliminary system definition.
Advanced technology for reducing aircraft engine pollution
NASA Technical Reports Server (NTRS)
Jones, R. E.
1973-01-01
The proposed EPA regulations covering emissions of gas turbine engines will require extensive combustor development. The NASA is working to develop technology to meet these goals through a wide variety of combustor research programs conducted in-house, by contract, and by university grant. In-house efforts using the swirl-can modular combustor have demonstrated sizable reduction in NO emission levels. Testing to reduce idle pollutants has included the modification of duplex fuel nozzles to air-assisted nozzles and an exploration of the potential improvements possible with combustors using fuel staging and variable geometry. The Experimental Clean Combustor Program, a large contracted effort, is devoted to the testing and development of combustor concepts designed to achieve a large reduction in the levels of all emissions. This effort is planned to be conducted in three phases with the final phase to be an engine demonstration of the best reduced emission concepts.
Phase 1 results from the Stirling-powered vehicle project
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.
1988-01-01
The NASA Technology Utilization (TU) Office is sponsoring a multiyear, multiphase demonstration program to assess the technology developed under the DOE/NASA automotive Stirling engine (ASE) program with engines installed in various Air Force vehicles while being evaluated by independent third parties under realistic conditions. This paper reviews the operational history of Phase 1 with a Mod 1 Stirling engine installed in an Air Force multistop van in a variety of missions. Ten months of operation were with Air Force personnel at Langley Air Force Base, Virginia, where over 1100 hr and 4000 mi were logged on the Langley flight line. The Stirling-powered van operated on unleaded gasoline, JP-4 aircraft fuel, and diesel fuel at Langley Air Force Base. Two months of operation were completed with Deere and Company personnel in the Moline, Illinois area where over 175 hr and 2650 mi were logged on a Deere mail delivery route.
NASA Technical Reports Server (NTRS)
Kerr, J. R.; Haskins, J. F.
1980-01-01
Implementation of metal and resin matrix composites into supersonic vehicle usage is contingent upon accelerating the demonstration of service capacity and design technology. Because of the added material complexity and lack of extensive service data, laboratory replication of the flight service will provide the most rapid method of documenting the airworthiness of advanced composite systems. A program in progress to determine the time temperature stress capabilities of several high temperature composite materials includes thermal aging, environmental aging, fatigue, creep, fracture, and tensile tests as well as real time flight simulation exposure. The program has two parts. The first includes all the material property determinations and aging and simulation exposures up through 10,000 hours. The second continues these tests up to 50,000 cumulative hours. Results are presented of the 10,000 hour phase, which has now been completed.
Optical properties monitor: Experiment definition phase
NASA Technical Reports Server (NTRS)
Wilkes, Donald R.; Bennett, Jean M.; Hummer, Leigh L.; Chipman, Russell A.; Hadaway, James B.; Pezzaniti, Larry
1990-01-01
The stability of materials used in the space environment will continue to be a limiting technology for space missions. The Optical Properties Monitor (OPM) Experiment provides a comprehensive space research program to study the effects of the space environment (both natural and induced) on optical, thermal and space power materials. The OPM Experiment was selected for definition under the NASA/OAST In-Space Technology Experiment Program. The results of the OPM Definition Phase are presented. The OPM experiment will expose selected materials to the space environment and measure the effects with in-space optical measurements. In-space measurements include total hemispherical reflectance total integrated scatter and VUV reflectance/transmittance. The in-space measurements will be augmented with extensive pre- and post-flight sample measurements to determine other optical, mechanical, electrical, chemical or surface effects of space exposure. Environmental monitors will provide the amount and time history of the sample exposure to solar irradiation, atomic oxygen and molecular contamination.
Optical properties monitor: Experiment definition phase
NASA Technical Reports Server (NTRS)
Wilkes, Donald R.; Bennett, Jean M.; Hummer, Leigh L.; Chipman, Russell A.; Hadaway, James B.; Pezzaniti, Larry
1989-01-01
The stability of materials used in the space environment will continue to be a limiting technology for space missions. The Optical Properties Monitor (OPM) Experiment provides a comprehensive space research program to study the effects of the space environment-both natural and induced-on optical, thermal and space power materials. The OPM Experiment was selected for definition under the NASA/OAST In-Space Technology Experiment Program. The results of the OPM Definition Phase are presented. The OPM Experiment will expose selected materials to the space environment and measure the effects with in-space optical measurements. In-space measurements include total hemispherical reflectance total integrated scatter and VUV reflectance/transmittance. The in-space measurements will be augmented with extensive pre- and post-flight sample measurements to determine other optical, mechanical, electrical, chemical or surface effects of space exposure. Environmental monitors will provide the amount and time history of the sample exposure to solar irradiation, atomic oxygen and molecular contamination.
Deciding alternative left turn signal phases using expert systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, E.C.P.
1988-01-01
The Texas Transportation Institute (TTI) conducted a study to investigate the feasibility of applying artificial intelligence (AI) technology and expert systems (ES) design concepts to a traffic engineering problem. Prototype systems were developed to analyze user input, evaluate various reasoning, and suggest suitable left turn phase treatment. These systems were developed using AI programming tools on IBM PC/XT/AT-compatible microcomputers. Two slightly different systems were designed using AI languages; another was built with a knowledge engineering tool. These systems include the PD PROLOG and TURBO PROLOG AI programs, as well as the INSIGHT Production Rule Language.
NASA Technical Reports Server (NTRS)
Baer-Riedhart, Jennifer L.; Landy, Robert J.
1987-01-01
The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.
MOD-5A wind turbine generator program design report: Volume 1: Executive Summary
NASA Technical Reports Server (NTRS)
1984-01-01
The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator covering work performed between July 1980 and June 1984 is discussed. The report is divided into four volumes: Volume 1 summarizes the entire MOD-5A program, Volume 2 discusses the conceptual and preliminary design phases, Volume 3 describes the final design of the MOD-5A, and Volume 4 contains the drawings and specifications developed for the final design. Volume 1, the Executive Summary, summarizes all phases of the MOD-5A program. The performance and cost of energy generated by the MOD-5A are presented. Each subsystem - the rotor, drivetrain, nacelle, tower and foundation, power generation, and control and instrumentation subsystems - is described briefly. The early phases of the MOD-5A program, during which the design was analyzed and optimized, and new technologies and materials were developed, are discussed. Manufacturing, quality assurance, and safety plans are presented. The volume concludes with an index of volumes 2 and 3.
1982-04-16
P. J. Estrup Chemisorption-Induced Phase Transitions and Adatom Interactions on GaAs(110) P. Skeath, C. Y. Su, P. W. Chye , I. Lindau and W. E. Spicer...Transitions and Adatom Interactions on GaAs(ll0)* Perry Skeath, C. Y. Su, P. W. Chye , I Lindau, and W. E. Spicer Stanford Electronics Labs Stanford...ORDER PHASE TRANSITIONS* P. KLEBAN and CHIN -KUN HU, Department of Physics and Astronomy and Laboratory for Surface Science and Technology University of
Advanced rotary engine components utilizing fiber reinforced Mg castings
NASA Technical Reports Server (NTRS)
Goddard, D.; Whitman, W.; Pumphrey, R.; Lee, C.-M.
1986-01-01
Under a two-phase program sponsored by NASA, the technology for producing advanced rotary engine components utilizing graphite fiber-reinforced magnesium alloy casting is being developed. In Phase I, the successful casting of a simulated intermediate housing was demonstrated. In Phase II, the goal is to produce an operating rotor housing. The effort involves generation of a material property data base, optimization of parameters, and development of wear- and corrosion-resistant cast surfaces and surface coatings. Results to date are described.
Early Risk Reduction Phase 1 FLIR/Laser Designator Window. Revision
1991-12-31
Sandwich-Type FLIR Windows," Air Force AFWAL-TR-83- 4122, Nov 1983. 4-1 Hughes Danbury Optical Systems Final Report, "ATA Window Technology Program," PRBll...Risk Reduction -- Phase I, Optical Properties Measurement Techniques of Three Wide Band Window Materials," 22 August 1991. xii I i 86PR0869 30... Optical Systems, Lexington, MA, 02173, 1 Feb 1991. 5-7 McDonnell Aircraft Company Technical Memorandum TM 256.91.0056.01, "Early Risk Reduction -- Phase
Textile composite fuselage structures development
NASA Technical Reports Server (NTRS)
Jackson, Anthony C.; Barrie, Ronald E.; Chu, Robert L.
1993-01-01
Phase 2 of the NASA ACT Contract (NAS1-18888), Advanced Composite Structural Concepts and Materials Technology for Transport Aircraft Structures, focuses on textile technology, with resin transfer molding or powder coated tows. The use of textiles has the potential for improving damage tolerance, reducing cost and saving weight. This program investigates resin transfer molding (RTM), as a maturing technology for high fiber volume primary structures and powder coated tows as an emerging technology with a high potential for significant cost savings and superior structural properties. Powder coated tow technology has promise for significantly improving the processibility of high temperature resins such as polyimides.
Capability approval programme for Microwave Hybrid Integrated Circuits (MHICS)
NASA Astrophysics Data System (ADS)
1990-11-01
The general requirements for capability approval of a manufacturing line for Microwave Hybrid Integrated Circuits (MHICs) are defined. ESA approval mandate will be exercized upon conclusion of the evaluation phase and at the end of the program. Before the evaluation phase can commence, the manufacturer must define the capability approval domain by specifying the processes, materials and technology for which approval is sought.
Diagnostics Tools Identify Faults Prior to Failure
NASA Technical Reports Server (NTRS)
2013-01-01
Through the SBIR program, Rochester, New York-based Impact Technologies LLC collaborated with Ames Research Center to commercialize the Center s Hybrid Diagnostic Engine, or HyDE, software. The fault detecting program is now incorporated into a software suite that identifies potential faults early in the design phase of systems ranging from printers to vehicles and robots, saving time and money.
ERIC Educational Resources Information Center
Crowe, Jacquelyn
This study investigated computer and word processing operator skills necessary for employment in today's high technology office. The study was comprised of seven major phases: (1) identification of existing community college computer operator programs in the state of Washington; (2) attendance at an information management seminar; (3) production…
Integrated low emissions cleanup system for direct coal-fueled turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lippert, T.E.; Newby, R.A.; Alvin, M.A.
1992-12-31
The Westinghouse Electric Corporation, Science & Technology Center (W-STC) is developing an Integrated Low Emissions Cleanup (ILEC) concept for high-temperature gas cleaning to meet environmental standards, as well as to economical gas turbine life. The ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases at temperatures up to 1850{degrees}F for advanced power generation systems (PFBC, APFBC, IGCC, DCF7). The objective of this program is to demonstrate, at a bench scale, the conceptual, technical feasibility of the REC concept. The ELEC development program has a 3 phase structure: Phase 1 - laboratory-scale testing; phasemore » 2 - bench-scale equipment; design and fabrication; and phase 3 - bench-scale testing. Phase 1 laboratory testing has been completed. In Phase 1, entrained sulfur and alkali sorbent kinetics were measured and evaluated, and commercial-scale performance was projected. Related cold flow model testing has shown that gas-particle contacting within the ceramic barrier filter vessel will provide a good reactor environment. The Phase 1 test results and the commercial evaluation conducted in the Phase 1 program support the bench-scale facility testing to be performed in Phase 3. Phase 2 is nearing completion with the design and assembly of a modified, bench-scale test facility to demonstrate the technical feasibility of the ILEC features. This feasibility testing will be conducted in Phase 3.« less
The Integrated Airframe/Propulsion Control System Architecture program (IAPSA)
NASA Technical Reports Server (NTRS)
Palumbo, Daniel L.; Cohen, Gerald C.; Meissner, Charles W.
1990-01-01
The Integrated Airframe/Propulsion Control System Architecture program (IAPSA) is a two-phase program which was initiated by NASA in the early 80s. The first phase, IAPSA 1, studied different architectural approaches to the problem of integrating engine control systems with airframe control systems in an advanced tactical fighter. One of the conclusions of IAPSA 1 was that the technology to construct a suitable system was available, yet the ability to create these complex computer architectures has outpaced the ability to analyze the resulting system's performance. With this in mind, the second phase of IAPSA approached the same problem with the added constraint that the system be designed for validation. The intent of the design for validation requirement is that validation requirements should be shown to be achievable early in the design process. IAPSA 2 has demonstrated that despite diligent efforts, integrated systems can retain characteristics which are difficult to model and, therefore, difficult to validate.
Design, fabrication and acceptance testing of a zero gravity whole body shower
NASA Technical Reports Server (NTRS)
Schumacher, E. A.; Lenda, J. A.
1974-01-01
Recent research and development programs have established the ability of the zero gravity whole body shower to maintain a comfortable environment in which the crewman can safely cleanse and dry the body. The purpose of this program was to further advance the technology of whole body bathing and to demonstrate technological readiness including in-flight maintenance by component replacement for flight applications. Three task efforts of this program are discussed. Conceptual designs and system tradeoffs were accomplished in task 1. Task 2 involved the formulation of preliminary and final designs for the shower, while task 3 included the fabrication and test of the shower assembly. Particular attention is paid to the evaluation and correction of test anomalies during the final phase of the program.
NASA physics and chemistry experiments in-space program
NASA Technical Reports Server (NTRS)
Gabris, E. A.
1981-01-01
The Physics and Chemistry Experiments Program (PACE) is part of the Office of Aeronautics and Space Technology (OAST) research and technology effort in understanding the fundamental characteristics of physics and chemical phenomena. This program seeks to increase the basic knowledge in these areas by well-planned research efforts which include in-space experiments when the limitations of ground-based activities precludes or restricts the achievement of research goals. Overview study areas are concerned with molecular beam experiments for Space Shuttle, experiments on drops and bubbles in a manned earth-orbiting laboratory, the study of combustion experiments in space, combustion experiments in orbiting spacecraft, gravitation experiments in space, and fluid physics, thermodynamics, and heat-transfer experiments. Procedures for the study program have four phases. An overview study was conducted in the area of materials science.
Pollution reduction technologies being applied to small coal-fired boiler systems in Poland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markussen, J.M.; Gyorke, D.F.
1997-12-31
To help in alleviating air pollution problems in Poland, various US environmental technologies are being installed in the city of Krakow to reduce emissions from short-stack coal- and coke-fired boilers. Introduction of low-cost, effective US pollution abatement and energy efficiency technologies is being completed through the US-Polish Krakow Clean Fossil Fuels and Energy Efficiency Program. Seven US firms are currently participating in the program; five projects are well under way and two are in the design phase. The technologies being applied in Krakow include modern district heating equipment and controls, coal preparation techniques, micronized coal combustion, automatic combustion controls, andmore » high-efficiency particulate control equipment. These technologies will be discussed along with pollutant reduction results obtained to date. Applications of these technologies are providing some efficient and economical answers to Krakow`s severe air pollution problems. Certainly, these technologies could be equally effective in many industrial cities throughout the world with similar air pollution concerns.« less
Goal orientation and its relationship to academic success in a laptop-based BScN program.
Goldsworthy, Sandra J; Goodman, Bill; Muirhead, Bill
2005-01-01
This longitudinal study, conducted within a laptop-based BScN program examines the relationship of goal orientation profiles to comfort with technology and academic success. In phase 1 of this study, 101 first year nursing students completed an on line survey. The measurement tools used were Goal Orientation Assessment, Multiple Intelligences Learning Inventory and a locally developed Technology Comfort survey. Results showed that students were predominantly high in the mastery goal orientation profile. Males had a higher comfort level with technology. Age was inversely related to comfort with technology. An unexpected finding was that grade point average was inversely related to comfort with use of technology. The data did not support the commonly held belief that today's students are uniformly well-skilled and comfortable with new technologies. This study will continue over the next three years and will allow comparison of variables over time. Specific teaching interventions may be developed to accommodate varying learning and motivational styles in relation to comfort with technology.
Solutions Remediate Contaminated Groundwater
NASA Technical Reports Server (NTRS)
2010-01-01
During the Apollo Program, NASA workers used chlorinated solvents to clean rocket engine components at launch sites. These solvents, known as dense non-aqueous phase liquids, had contaminated launch facilities to the point of near-irreparability. Dr. Jacqueline Quinn and Dr. Kathleen Brooks Loftin of Kennedy Space Center partnered with researchers from the University of Central Florida's chemistry and engineering programs to develop technology capable of remediating the area without great cost or further environmental damage. They called the new invention Emulsified Zero-Valent Iron (EZVI). The groundwater remediation compound is cleaning up polluted areas all around the world and is, to date, NASA's most licensed technology.
NASA Technical Reports Server (NTRS)
Matson, Jack E.
1992-01-01
The Spacelab Mission Independent Training Program provides an overview of payload operations. Most of the training material is currently presented in workbook form with some lecture sessions to supplement selected topics. The goal of this project was to develop a prototype interactive learning system for one of the Mission Independent Training topics to demonstrate how the learning process can be improved by incorporating multi-media technology into an interactive system. This report documents the development process and some of the problems encountered during the analysis, design, and production phases of this system.
OAST space research and technology applications: Technology transfer successes
NASA Technical Reports Server (NTRS)
Reck, Gregory M.
1992-01-01
The ultimate measure of success in the Space Research and Technology Program is the incorporation of a technology into an operational mission. Charts are presented that describe technology products which OAST has helped support that (1) have been used in a space mission, (2) have been incorporated into the baseline design of a flight system in the development phase, or (3) have been picked up by a commercial or other non-NASA user. We hope that these examples will demonstrate the value of investment in technology. Pictured on the charts are illustrations of the technology product, the mission or user which has incorporated the technology, and where appropriate, results from the mission itself.
ERIC Educational Resources Information Center
Lee, Kar-Tin; Chalmers, Christina; Vinesh, Chandra; Yeh, Andy; Nason, Rod
2014-01-01
This paper reports on the initial phase of a Professional Learning Program (PLP) undertaken by 100 primary school teachers in China that aimed to facilitate the development of adaptive expertise in using technology to facilitate innovative science teaching and learning such as that envisaged by the Chinese Ministry of Education's (2010-2020)…
NASA Technical Reports Server (NTRS)
Mclean, F. Edward
1985-01-01
The history and status of supersonic cruise research is covered. The early research efforts of the National Advisory Committee for Aeronautics and efforts during the B-70 and SST phase are included. Technological progress made during the NASA Supersonic Cruise Research and Variable Cycle Engine programs are presented. While emphasis is on NASA's contributions to supersonic cruise research in the U.S., also noted are developments in England, France, and Russia. Written in nontechnical language, this book presents the most critical technology issues and research findings.
NATIONAL ENVIRONMENTAL/ENERGY WORKFORCE ASSESSMENT. COMPOSITE: ENVIRONMENTAL ENGINEERING/TECHNOLOGY
Beginning with Phase II of the National Environmental/Energy Workforce Assessment project, which addressed the capabilities of the educational community to generate an environmental workforce, definitional problems developed as to the placing of programs into media specific areas...
Advanced Natural Gas Reciprocating Engine(s)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwok, Doris; Boucher, Cheryl
Energy independence and fuel savings are hallmarks of the nation’s energy strategy. The advancement of natural gas reciprocating engine power generation technology is critical to the nation’s future. A new engine platform that meets the efficiency, emissions, fuel flexibility, cost and reliability/maintainability targets will enable American manufacturers to have highly competitive products that provide substantial environmental and economic benefits in the US and in international markets. Along with Cummins and Waukesha, Caterpillar participated in a multiyear cooperative agreement with the Department of Energy to create a 50% efficiency natural gas powered reciprocating engine system with a 95% reduction in NOxmore » emissions by the year 2013. This platform developed under this agreement will be a significant contributor to the US energy strategy and will enable gas engine technology to remain a highly competitive choice, meeting customer cost of electricity targets, and regulatory environmental standard. Engine development under the Advanced Reciprocating Engine System (ARES) program was divided into phases, with the ultimate goal being approached in a series of incremental steps. This incremental approach would promote the commercialization of ARES technologies as soon as they emerged from development and would provide a technical and commercial foundation of later-developing technologies. Demonstrations of the Phase I and Phase II technology were completed in 2004 and 2008, respectively. Program tasks in Phase III included component and system development and testing from 2009-2012. Two advanced ignition technology evaluations were investigated under the ARES program: laser ignition and distributed ignition (DIGN). In collaboration with Colorado State University (CSU), a laser ignition system was developed to provide ignition at lean burn and high boost conditions. Much work has been performed in Caterpillar’s DIGN program under the ARES program. This work has consisted of both modeling and single cylinder engine experiments to quantify DIGN performance. The air handling systems of natural gas engines dissipate a percentage of available energy as a result of both flow losses and turbomachinery inefficiencies. An analytical study was initiated to increase compressor efficiency by employing a 2-stage inter-cooled compressor. Caterpillar also studied a turbo-compound system that employs a power turbine to recover energy from the exhaust gases for improved engine efficiency. Several other component and system investigations were undertaken during the final phase of the program to reach the ultimate ARES goals. An intake valve actuation system was developed and tested to improve engine efficiency, durability and load acceptance. Analytical modeling and materials testing were performed to evaluate the performance of steel pistons and compacted graphite iron cylinder head. Effort was made to improve the detonation sensing system by studying and comparing the performance of different pressure sensors. To reduce unburned hydrocarbon emissions, different camshafts were designed and built to investigate the effect of exhaust valve opening timing and value overlap. 1-D & 3-D coupled simulation was used to study intake and exhaust manifold dynamics with the goal of reducing load in-balance between cylinders. Selective catalytic reduction with on-board reductant generation to reduce NOx emissions was also engine tested. An effective mean to successfully deploy ARES technologies into the energy markets is to deploy demonstration projects in the field. In 2010, NETL and Caterpillar agreed to include a new “opportunity fuel” deliverable and two field demonstrations in the ARES program. An Organic Rankine Cycle system was designed with production intent incorporating lessons learned from the Phase II demonstration. Unfortunately, business conditions caused Caterpillar to cancel this demonstration in 2011. Nonetheless, Caterpillar partnered with a local dealer to deploy an ARES class engine using syngas from a biomass gasifier as the DE-FC26-01CH11079 primary combustion fuel in Gleason, TN. Upon the successful start-up and commissioning of the demonstration unit, ownership of the system was transferred to the dealer. In order to further our understanding of syngas combustion, a fundamental combustion study on syngas combustion at high pressure and lean condition was conducted through the collaboration with University of Southern California. A Methane program was also developed to rate engine performance for various compositions of syngas using empirical data obtained at CSU. While much work remains in terms of extending and integrating these developments into commercial products, it is evident that engine manufacturers on our own or through private consortium efforts could not have overcome the financial hurdles to drive these improvements into reciprocating engine and system capabilities, helping maintain the natural gas reciprocating engine power generation technology as a strong option for electric power markets, both in the United States and worldwide.« less
Gu, B; DeBusk, T A; Dierberg, F E; Chimney, M J; Pietro, K C; Aziz, T
2001-01-01
The 1994 Everglades Forever Act mandates the South Florida Water Management District and the Florida Department of Environmental Protection to evaluate a series of advanced treatment technologies to reduce total phosphorus (TP) in Everglades Agricultural Area runoff to a threshold target level. A submerged aquatic vegetation/limerock (SAV/LR) treatment system is one of the technologies selected for evaluation. The research program consists of two phases. Phase I examined the efficiency of SAV/LR treatment system for TP removal at the mesocosm scale. Preliminary results demonstrate that this technology is capable of reducing effluent TP to as low as 10 microg/L under constant flows. The SAV component removes the majority of the influent soluble reactive P, while the limerock component removes a portion of the particulate P. Phase II is a multi-scale project (i.e., microcosms, mesocosms, test cells and full-size wetlands). Experiments and field investigations using various environmental scenarios are designed to (1) identify key P removal processes; (2) provide management and operational criteria for basin-scale implementation; and (3) provide scientific data for a standardized comparison of performance among advanced treatment technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knowlton, Robert G.; Cochran, John Russell; Arnold, Bill Walter
2007-01-01
Sandia National Laboratories and the Institute of Nuclear Energy Research, Taiwan have collaborated in a technology transfer program related to low-level radioactive waste (LLW) disposal in Taiwan. Phase I of this program included regulatory analysis of LLW final disposal, development of LLW disposal performance assessment capabilities, and preliminary performance assessments of two potential disposal sites. Performance objectives were based on regulations in Taiwan and comparisons to those in the United States. Probabilistic performance assessment models were constructed based on limited site data using software including GoldSim, BLT-MS, FEHM, and HELP. These software codes provided the probabilistic framework, container degradation, waste-formmore » leaching, groundwater flow, radionuclide transport, and cover infiltration simulation capabilities in the performance assessment. Preliminary performance assessment analyses were conducted for a near-surface disposal system and a mined cavern disposal system at two representative sites in Taiwan. Results of example calculations indicate peak simulated concentrations to a receptor within a few hundred years of LLW disposal, primarily from highly soluble, non-sorbing radionuclides.« less
Photonic Network R&D Activities in Japan-Current Activities and Future Perspectives
NASA Astrophysics Data System (ADS)
Kitayama, Ken-Ichi; Miki, Tetsuya; Morioka, Toshio; Tsushima, Hideaki; Koga, Masafumi; Mori, Kazuyuki; Araki, Soichiro; Sato, Ken-Ichi; Onaka, Hiroshi; Namiki, Shu; Aoyama, Tomonori
2005-10-01
R&D activities on photonic networks in Japan are presented. First, milestones in current ongoing R&D programs supported by Japanese government agencies are introduced, including long-distance and wavelength division multiplexing (WDM) fiber transmission, wavelength routing, optical burst switching (OBS), and control-plane technology for IP backbone networks. Their goal was set to evolve a legacy telecommunications network to IP-over-WDM networks by introducing technologies for WDM and wavelength routing. We then discuss the perspectives of so-called PHASE II R&D programs for photonic networks over the next 5 years until 2010, by focusing on the report that has been recently issued by the Photonic Internet Forum (PIF), a consortium that has major carriers, telecom vendors, and Japanese academics as members. The PHASE II R&D programs should serve to establish a photonic platform to provide abundant bandwidth on demand, at any time on a real-time basis, through the customer's initiative to promote bandwidth-rich applications, such as grid computing, real-time digital-cinema streaming, medical and educational applications, and network storage in e-commerce.
Photonic network R and D activities in Japan
NASA Astrophysics Data System (ADS)
Kitayama, Ken-ichi; Miki, Tetsuya; Morioka, Toshio; Tsushima, Hideaki; Koga, Masafumi; Mori, Kazuyuki; Araki, Soichiro; Sato, Ken-ichi; Onaka, Hiroshi; Namiki, Shu; Aovama, Tomonori
2005-11-01
R and D activities on photonic networks in Japan are presented. First, milestones in current, ongoing R and D programs supported by Japanese government agencies are introduced, including long-distance and WDM fiber transmission, wavelength routing, optical burst switching, and control plane technology for IP backbone networks. Their goal was set to evolve a legacy telecommunications network to IP over WDM networks by introducing technologies for WDM and wavelength routing. We then discuss the perspectives of so-called PHASE II R and D programs for photonic networks over the next five years until 2010, by focusing on the report which has been recently issued by the Photonic Internet Forum (PIF), a consortium that has major carriers, telecom vendors, and Japanese academics as members. The PHASE II R and D programs should serve to establish a photonic platform to provide abundant bandwidth on demand, at any time on a real-time basis through the customer's initiative, to promote bandwidth-rich applications, such as grid computing, real-time digital-cinema streaming, medical and educational applications, and network storage in e-commerce.
The New Millennium Program: Validating Advanced Technologies for Future Space Missions
NASA Technical Reports Server (NTRS)
Minning, Charles P.; Luers, Philip
1999-01-01
This presentation reviews the activities of the New Millennium Program (NMP) in validating advanced technologies for space missions. The focus of these breakthrough technologies are to enable new capabilities to fulfill the science needs, while reducing costs of future missions. There is a broad spectrum of NMP partners, including government agencies, universities and private industry. The DS-1 was launched on October 24, 1998. Amongst the technologies validated by the NMP on DS-1 are: a Low Power Electronics Experiment, the Power Activation and Switching Module, Multi-Functional Structures. The first two of these technologies are operational and the data analysis is still ongoing. The third program is also operational, and its performance parameters have been verified. The second program, DS-2, was launched January 3 1999. It is expected to impact near Mars southern polar region on 3 December 1999. The technologies used on this mission awaiting validation are an advanced microcontroller, a power microelectronics unit, an evolved water experiment and soil thermal conductivity experiment, Lithium-Thionyl Chloride batteries, the flexible cable interconnect, aeroshell/entry system, and a compact telecom system. EO-1 on schedule for launch in December 1999 carries several technologies to be validated. Amongst these are: a Carbon-Carbon Radiator, an X-band Phased Array Antenna, a pulsed plasma thruster, a wideband advanced recorder processor, an atmospheric corrector, lightweight flexible solar arrays, Advanced Land Imager and the Hyperion instrument
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandwisch, D W
1995-11-01
This report describes work performed by Solar Cells, Inc. (SCI), under a 3-year subcontract to advance SCI`s PV manufacturing technologies, reduce module production costs, increase module performance, and provide the groundwork for SCI to expand its commercial production capacities. SCI will meet these objectives in three phases by designing, debugging, and operating a 20-MW/year, automated, continuous PV manufacturing line that produces 60-cm {times} 120-cm thin-film CdTe PV modules. This report describes tasks completed under Phase 1 of the US Department of Energy`s PV Manufacturing Technology program.
System-Level Integrated Circuit (SLIC) development for phased array antenna applications
NASA Technical Reports Server (NTRS)
Shalkhauser, K. A.; Raquet, C. A.
1991-01-01
A microwave/millimeter wave system-level integrated circuit (SLIC) being developed for use in phased array antenna applications is described. The program goal is to design, fabricate, test, and deliver an advanced integrated circuit that merges radio frequency (RF) monolithic microwave integrated circuit (MMIC) technologies with digital, photonic, and analog circuitry that provide control, support, and interface functions. As a whole, the SLIC will offer improvements in RF device performance, uniformity, and stability while enabling accurate, rapid, repeatable control of the RF signal. Furthermore, the SLIC program addresses issues relating to insertion of solid state devices into antenna systems, such as the reduction in number of bias, control, and signal lines. Program goals, approach, and status are discussed.
System-level integrated circuit (SLIC) development for phased array antenna applications
NASA Technical Reports Server (NTRS)
Shalkhauser, K. A.; Raquet, C. A.
1991-01-01
A microwave/millimeter wave system-level integrated circuit (SLIC) being developed for use in phased array antenna applications is described. The program goal is to design, fabricate, test, and deliver an advanced integrated circuit that merges radio frequency (RF) monolithic microwave integrated circuit (MMIC) technologies with digital, photonic, and analog circuitry that provide control, support, and interface functions. As a whole, the SLIC will offer improvements in RF device performance, uniformity, and stability while enabling accurate, rapid, repeatable control of the RF signal. Furthermore, the SLIC program addresses issues relating to insertion of solid state devices into antenna systems, such as the reduction in number of bias, control, and signal lines. Program goals, approach, and status are discussed.
Advanced Hydrogen Turbine Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joesph Fadok
2008-01-01
Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plantmore » efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to maximize plant output is needed in order to address the DOE turbine goal for 20-30% reduction of combined cycle cost from the baseline. A customer advisory board was instituted during Phase 1 to obtain important feedback regarding the future direction of the project. he technologies being developed for the Hydrogen Turbine will also be utilized, as appropriate, in the 2010 time frame engine and the FutureGen Plant. These new technologies and concepts also have the potential to accelerate commercialization of advanced coal-based IGCC plants in the U. S. and around the world, thereby reducing emissions, water use, solid waste production and dependence on scarce, expensive and insecure foreign energy supplies. Technology developments accomplished in Phase 1 provide a solid foundation for ensuring successful completion in Phase 2 and providing that the challenging program goals will be achieved.« less
Information Technology Division’s Technical Paper Abstracts
1994-07-05
antenna systems. 86 Title: An Electromagnetic Interference Study of Potential Transmitter Sites for the HF Active Auroral Research Program ( HAARP ...examined a number of potential sites for the location of the proposed High Frequency Active Auroral Research Program ( HAARP ) transmitter facility. The...proposed HAARP facility will consist of a large planar array of antennas excited by phased high power transmitters operating in the lower portion of the
ERIC Educational Resources Information Center
Schiefelbusch, Richard L.; Lent, James R.
During the past reporting period the curriculum development staff of Project MORE (Mediated Operational Research for Education) has made substantial progress in attaining its program objectives. Design and development phases have proceeded on schedule. Four programs are currently in the field-testing stage, and four others are under development.…
Technical and Economic Assessment of Span-Loaded Cargo Aircraft Concepts
NASA Technical Reports Server (NTRS)
1976-01-01
The benefits are assessed of span distributed loading concepts as applied to future commercial air cargo operations. A two phased program is used to perform this assessment. The first phase consists of selected parametric studies to define significant configuration, performance, and economic trends. The second phase consists of more detailed engineering design, analysis, and economic evaluations to define the technical and economic feasibility of a selected spanloader design. A conventional all-cargo aircraft of comparable technology and size is used as a comparator system. The technical feasibility is demonstrated of the spanloader concept with no new major technology efforts required to implement the system. However, certain high pay-off technologies such as winglets, airfoil design, and advanced structural materials and manufacturing techniques need refinement and definition prior to application. In addition, further structural design analysis could establish the techniques and criteria necessary to fully capitalize upon the high degree of structural commonality and simplicity inherent in the spanloader concept.
Pulse Propagation with Self-Phase Modulation in Nonlinear Chiral Fiber and Its Applications
NASA Astrophysics Data System (ADS)
Gelmecha, Demissie; Li, Jun-Qing; Teklu, Merhawit
2016-09-01
Not Available Supported by the National Natural Science Foundation of China under Grant No 60977032, and the Program for Innovation Research of Science of Harbin Institute of Technology (PIRS-HIT) under Grant No T201407.
CV pilot deployment concept phase 1, outreach plan — ICF Wyoming.
DOT National Transportation Integrated Search
2016-06-24
The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...
NASA Technical Reports Server (NTRS)
1989-01-01
Overhead photograph of the AFTI F-16 painted in a non-standard gray finish, taken during a research flight in 1989. The two sensor pods are visible on the fuselage just forward of the wings and one of the two chin canards can be seen as a light-colored triangle ahead of one of the pods. A Sidewinder air-to-air missile is mounted on each wing tip. During the 1980s and 1990s, NASA and the U.S. Air Force participated in a joint program to integrate and demonstrate new avionics technologies to improve close air support capabilities in next-generation aircraft. The testbed aircraft, seen here in flight over the desert at NASA's Dryden Flight Research Center, Edwards, California, was called the Advanced Fighter Technology Integration (AFTI) F-16. The tests demonstrated technologies to improve navigation and the pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. The aircraft--an F-16A Fighting Falcon (Serial #75-0750)--underwent numerous modifications. A relatively low-cost testbed, it evaluated the feasability of advanced, intergrated-sensor, avionics, and flight control technologies. During the first phase of the AFTI/F-16 program, which began in 1983, the aircraft demonstrated voice-actuated commands, helmet-mounted sights, flat turns, and selective fuselage pointing using forward-mounted canards and a triplex digital flight control computer system. The second phase of research, which began in the summer of 1991, demonstrated advanced technologies and capabilities to find and destroy ground targets day or night, and in adverse weather while using maneuverability and speed at low altitude. This phase was known as the close air support and battlefield air interdiction (CAS/BAI) phase. Finally, the aircraft was used to assess the Automatic Ground Collision Avoidance System (Auto - GCAS), a joint project with the Swedish Government. For these tests, the pilot flew the aircraft directly toward the ground, simulating a total loss of control. The GCAS was designed to take command in such emergencies and bring the aircraft back to level flight. The AFTI F-16 program ended at Dryden on November 4, 1997 after 15 years and over 700 research flights. The USAF continued to fly the aircraft until retiring it to the Air Force Museum on January 9, 2001.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raymond, David W.; Gaither, Katherine N.; Polsky, Yarom
Sandia National Laboratories (Sandia) has a long history in developing compact, mobile, very high-speed drilling systems and this technology could be applied to increasing the rate at which boreholes are drilled during a mine accident response. The present study reviews current technical approaches, primarily based on technology developed under other programs, analyzes mine rescue specific requirements to develop a conceptual mine rescue drilling approach, and finally, proposes development of a phased mine rescue drilling system (MRDS) that accomplishes (1) development of rapid drilling MRDS equipment; (2) structuring improved web communication through the Mine Safety & Health Administration (MSHA) web site;more » (3) development of an improved protocol for employment of existing drilling technology in emergencies; (4) deployment of advanced technologies to complement mine rescue drilling operations during emergency events; and (5) preliminary discussion of potential future technology development of specialized MRDS equipment. This phased approach allows for rapid fielding of a basic system for improved rescue drilling, with the ability to improve the system over time at a reasonable cost.« less
2010-10-01
diameter, length, and spacing. Fabrication Technology: Synthesis of self-organized AAO ( Anodic aluminum oxide ) templates with controlled diameter...nanowires arrayed in anodized aluminum oxide ( AAO ) templates and the diameter is precisely controlled by using atomic layer deposition (ALD) process...Jin, “Highly Self-assembled Nanotubular Aluminum Oxide by Hard Anodization ”, J. Mater. Res. (in press, December 2010). 3. J.Y. Kim, K. Noh, C. Choi
Phase 1 of the automated array assembly task of the low cost silicon solar array project
NASA Technical Reports Server (NTRS)
Coleman, M. G.; Pryor, R. A.; Grenon, L. A.; Lesk, I. A.
1977-01-01
The state of technology readiness for the automated production of solar cells and modules is reviewed. Individual process steps and process sequences for making solar cells and modules were evaluated both technically and economically. High efficiency with a suggested cell goal of 15% was stressed. It is concluded that the technology exists to manufacture solar cells which will meet program goals.
Rigid Polyurethane Foam (RPF) Technology for Countermine (SEA) Program - Phase 1
1997-01-01
Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour...05 MAY 1997 2. REPORT TYPE 3. DATES COVERED 00-00-1997 to 00-00-1997 4. TITLE AND SUBTITLE Rigid Polyurethane Foam (RPF) Technology for...unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18
1992-08-01
recommend that representatives of the WES Concrete Technology Division be onsite during the placement and postplacement phases to offer technical...written before field placement. PREFACE The work described in this report is part of an ongoing research effort accomplished in the Concrete Technology ... Division (CTD), Structures Laboratory (SL), U.S. Army Engineer Waterways Experiment Station (WES), under Interagency Agreement from the Department of
NASA Technical Reports Server (NTRS)
Miles, Jeffrey Hilton; Hultgren, Lennart S.
2015-01-01
The study of noise from a two-shaft contra-rotating open rotor (CROR) is challenging since the shafts are not phase locked in most cases. Consequently, phase averaging of the acoustic data keyed to a single shaft rotation speed is not meaningful. An unaligned spectrum procedure that was developed to estimate a signal coherence threshold and reveal concealed spectral lines in turbofan engine combustion noise is applied to fan and CROR acoustic data in this paper (also available as NASA/TM-2015-218865). The NASA Advanced Air Vehicles Program, Advanced Air Transport Technology Project, Aircraft Noise Reduction Subproject supported the current work. The fan and open rotor data were obtained under previous efforts supported by the NASA Quiet Aircraft Technology (QAT) Project and the NASA Environmentally Responsible Aviation (ERA) Project of the Integrated Systems Research Program in collaboration with GE Aviation, respectively. The overarching goal of the Advanced Air Transport (AATT) Project is to explore and develop technologies and concepts to revolutionize the energy efficiency and environmental compatibility of fixed wing transport aircrafts. These technological solutions are critical in reducing the impact of aviation on the environment even as this industry and the corresponding global transportation system continue to grow.
The NASA/industry Design Analysis Methods for Vibrations (DAMVIBS) Program: A government overview
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G.
1992-01-01
LaRC, under the Design Analysis Methods for Vibrations (DAMVIBS) Program, set out in 1984 to establish the technology base needed by the rotorcraft industry for developing an advanced finite-element-based dynamics design analysis capability for vibrations. Considerable work was performed by the industry participants in the program since that time. Because the DAMVIBS Program is being phased out, a government/industry assessment of the program was made to identify those accomplishments and contributions which may be ascribed to the program. The purpose is to provide an overview of the program and its accomplishments and contributions from the perspective of the government sponsoring organization.
AMPA experimental communications systems
NASA Technical Reports Server (NTRS)
Beckerman, D.; Fass, S.; Keon, T.; Sielman, P.
1982-01-01
The program was conducted to demonstrate the satellite communication advantages of Adaptive Phased Array Technology. A laboratory based experiment was designed and implemented to demonstrate a low earth orbit satellite communications system. Using a 32 element, L-band phased array augmented with 4 sets of weights (2 for reception and 2 for transmission) a high speed digital processing system and operating against multiple user terminals and interferers, the AMPA system demonstrated: communications with austere user terminals, frequency reuse, communications in the face of interference, and geolocation. The program and experiment objectives are described, the system hardware and software/firmware are defined, and the test performed and the resultant test data are presented.
Manufacturing process applications team (MATeam)
NASA Technical Reports Server (NTRS)
Bangs, E. R.; Meyer, J. D.
1978-01-01
Activities of the manufacturing applications team (MATeam) in effecting widespread transfer of NASA technology to aid in the solution of manufacturing problems in the industrial sector are described. During the program's first year of operation, 450 companies, industry associations, and government agencies were contacted, 150 manufacturing problems were documented, and 20 potential technology transfers were identified. Although none of the technology transfers has been commercialized and put in use, several are in the applications engineering phase, and others are in the early stages of implementation. The technology transfer process is described and guidelines used for the preparation of problems statements are included.
Vacuum Deployment and Testing of a 4-Quadrant Scalable Inflatable Solar Sail System
NASA Technical Reports Server (NTRS)
Lichodziejewski, David; Derbes, Billy; Galena, Daisy; Friese, Dave
2005-01-01
Solar sails reflect photons streaming from the sun and transfer momentum to the sail. The thrust, though small, is continuous and acts for the life of the mission without the need for propellant. Recent advances in materials and ultra-low mass gossamer structures have enabled a host of useful missions utilizing solar sail propulsion. The team of L'Garde, Jet Propulsion Laboratories, Ball Aerospace, and Langley Research Center, under the direction of the NASA In-Space Propulsion office, has been developing a scalable solar sail configuration to address NASA s future space propulsion needs. The baseline design currently in development and testing was optimized around the 1 AU solar sentinel mission. Featuring inflatably deployed sub-T(sub g), rigidized beam components, the 10,000 sq m sail and support structure weighs only 47.5 kg, including margin, yielding an areal density of 4.8 g/sq m. Striped sail architecture, net/membrane sail design, and L'Garde's conical boom deployment technique allows scalability without high mass penalties. This same structural concept can be scaled to meet and exceed the requirements of a number of other useful NASA missions. This paper discusses the interim accomplishments of phase 3 of a 3-phase NASA program to advance the technology readiness level (TRL) of the solar sail system from 3 toward a technology readiness level of 6 in 2005. Under earlier phases of the program many test articles have been fabricated and tested successfully. Most notably an unprecedented 4-quadrant 10 m solar sail ground test article was fabricated, subjected to launch environment tests, and was successfully deployed under simulated space conditions at NASA Plum Brook s 30m vacuum facility. Phase 2 of the program has seen much development and testing of this design validating assumptions, mass estimates, and predicted mission scalability. Under Phase 3 a much larger 20 m square test article including subscale vane has been fabricated and tested. A 20 m system ambient deployment has been successfully conducted after enduring Delta-2 launch environment testing. The program will culminate in a vacuum deployment of a 20 m subscale test article at the NASA Glenn s Plum Brook 30 m vacuum test facility to bring the TRL level as close to 6 as possible in 1 g. This focused program will pave the way for a flight experiment of this highly efficient space propulsion technology.
Systems Engineering in NASA's R&TD Programs
NASA Technical Reports Server (NTRS)
Jones, Harry
2005-01-01
Systems engineering is largely the analysis and planning that support the design, development, and operation of systems. The most common application of systems engineering is in guiding systems development projects that use a phased process of requirements, specifications, design, and development. This paper investigates how systems engineering techniques should be applied in research and technology development programs for advanced space systems. These programs should include anticipatory engineering of future space flight systems and a project portfolio selection process, as well as systems engineering for multiple development projects.
NASA Technical Reports Server (NTRS)
Johnson, B. V.; Wagner, J. H.; Steuber, G. D.
1993-01-01
An experimental program was conducted to investigate heat transfer and pressure loss characteristics of rotating multipass passages, for configurations and dimensions typical of modem turbine blades. This experimental program is one part of the NASA Hot Section Technology (HOST) Initiative, which has as its overall objective the development and verification of improved analysis methods that will form the basis for a design system that will produce turbine components with improved durability. The objective of this program was the generation of a data base of heat transfer and pressure loss data required to develop heat transfer correlations and to assess computational fluid dynamic techniques for rotating coolant passages. The experimental work was broken down into two phases. Phase 1 consists of experiments conducted in a smooth wall large scale heat transfer model. A detailed discussion of these results was presented in volume 1 of a NASA Report. In Phase 2 the large scale model was modified to investigate the effects of skewed and normal passage turbulators. The results of Phase 2 along with comparison to Phase 1 is the subject of this Volume 2 NASA Report.
Schemes for Oestrus Synchronization Protocols and Controlled Breeding Programs in Cattle
NASA Astrophysics Data System (ADS)
Sabo, Y. G.; Sandabe, U. K.; Maina, V. A.; Balla, H. G.
Today prostaglandin and progesterone has been found widely used in several schemes of oestrus synchronization and controlled breeding program. Several controlled breeding program, have been developed for synchronizing groups of all open or lactating cows within a breeding group with or without ovarian palpation. Such programs are reviewed in this article which involves extending the luteal phase by treatment with exogenous progesterone such as: progesterone treatment regimes using syncro-mate-B, progesterone releasing intravaginal device, melengesterol acetate-select and melegestrol acetate plus prostaglandin. Also reviewed in the program is the termination of the luteal phase by treatment with prostaglandin or its analogues. These includes, controlled breeding without ovarian palpation such as, the 7-days program; 11-days program, target breeding, ovsynch program, Heat synch, Cosynch and pre synch-ovsynch program. In our opinion full potential of progesterone and prostaglandin for the detection of oestrus and timed artificial insemination should be utilized. This reduces the much labour input employed in previous years. The practitioner of the livestock herd health must-develop strategies for the delivery of this technology to livestock farmers, its use and limitations.
NASA Technical Reports Server (NTRS)
Singh, Bhim S.
2003-01-01
NASA is preparing to undertake science-driven exploration missions. The NASA Exploration Team's vision is a cascade of stepping stones. The stepping-stone will build the technical capabilities needed for each step with multi-use technologies and capabilities. An Agency-wide technology investment and development program is necessary to implement the vision. The NASA Exploration Team has identified a number of areas where significant advances are needed to overcome all engineering and medical barriers to the expansion of human space exploration beyond low-Earth orbit. Closed-loop life support systems and advanced propulsion and power technologies are among the areas requiring significant advances from the current state-of-the-art. Studies conducted by the National Academy of Science's National Research Council and Workshops organized by NASA have shown that multiphase flow and phase change play a crucial role in many of these advanced technology concepts. Lack of understanding of multiphase flow, phase change, and interfacial phenomena in the microgravity environment has been a major hurdle. An understanding of multiphase flow and phase change in microgravity is, therefore, critical to advancing many technologies needed. Recognizing this, the Office of Biological and Physical Research (OBPR) has initiated a strategic research thrust to augment the ongoing fundamental research in fluid physics and transport phenomena discipline with research especially aimed at understanding key multiphase flow related issues in propulsion, power, thermal control, and closed-loop advanced life support systems. A plan for integrated theoretical and experimental research that has the highest probability of providing data, predictive tools, and models needed by the systems developers to incorporate highly promising multiphase-based technologies is currently in preparation. This plan is being developed with inputs from scientific community, NASA mission planners and industry personnel. The fundamental research in multiphase flow and phase change in microgravity is aimed at developing better mechanistic understanding of pool boiling and ascertaining the effects of gravity on heat transfer and the critical heat flux. Space flight experiments conducted in space have shown that nucleate pool boiling can be sustained under certain conditions in the microgravity environment. New space flight experiments are being developed to provide more quantitative information on pool boiling in microgravity. Ground-based investigations are also being conducted to develop mechanistic models for flow and pool boiling. An overview of the research plan and roadmap for the strategic research in multiphase flow and phase change as well as research findings from the ongoing program will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ledebuhr, A.G.; Ng, L.C.; Kordas, J.F.
2002-06-30
This paper summarizes Lawrence Livermore National Laboratory's (LLNL) approach to a proposed Technology Demonstration program for the development of a new class of miniature kill vehicles (MKVs), that they have termed Genius Sand (GS). These miniaturized kinetic kill vehicles offer new capabilities for boost phase intercept (BPI) missions, as well as midcourse intercepts and the defeat of advanced countermeasures. The specific GS MKV properties will depend on the choice of mission application and system architecture, as well as the level of coordinated or autonomous operations in these missions. In general the GS MKVs will mass from between 1 to 5more » kilograms and have several hundred meters per second of {Delta}v and be capable of several g's of acceleration. Based on the results of their previous study effort, they believe that it is feasible to develop and integrate the required technologies into a fully functional GS MKV prototype within the scope of a three-year development effort. They will discuss some of the system architecture trades and applicable technologies that can be applied in an operational MKV system, as a guide to focus any technology demonstration program. They will present the results of a preliminary 6DOF analysis to determine the minimum capabilities of an MKV system. They also will discuss a preliminary design configuration of a 2 kg GS MKV that has between 300-500 m/s of {Delta}v and has at least 2-g's of acceleration capability. They believe a successful GS MKV development effort will require not only a comprehensive component miniaturization program, but a rapid hardware prototyping process, and the ability to utilize high fidelity ground testing methodologies.« less
Space station needs, attributes and architectural options study. Volume 1: Executive study
NASA Technical Reports Server (NTRS)
1983-01-01
Mission identification and validation, the benefits of a manned presence in space; attributes and architectures; time-phased mission and system requirements imposed on the space station; orbit selection; space station architectural options; technology selection; and program planning are addressed.
ExpoCast: Exposure Science for Prioritization and Toxicity Testing (S)
The US EPA is completing the Phase I pilot for a chemical prioritization research program, called ToxCast. Here EPA is developing methods for using computational chemistry, high-throughput screening, and toxicogenomic technologies to predict potential toxicity and prioritize limi...
ExpoCast: Exposure Science for Prioritization and Toxicity Testing
The US EPA is completing the Phase I pilot for a chemical prioritization research program, called ToxCastTM. Here EPA is developing methods for using computational chemistry, high-throughput screening, and toxicogenomic technologies to predict potential toxicity and prioritize l...
Transformation toughened ceramics for the heavy duty diesel engine technology program
NASA Technical Reports Server (NTRS)
Musikant, S.; Feingold, E.; Rauch, H.; Samanta, S.
1984-01-01
The objective of this program is to develop an advanced high temperature oxide structural ceramic for application to the heavy duty diesel engine. The approach is to employ transformation toughening by additions of ZrO.5HfO.5O2 solid solution to the oxide ceramics, mullite (2Al2O3S2SiO2) and alumina (Al2O3). The study is planned for three phases, each 12 months in duration. This report covers Phase 1. During this period, processing techniques were developed to incorporate the ZrO.5HfO.5O2 solid solution in the matrices while retaining the necessary metastable tetragonal phase. Modulus of rupture and of elasticity, coefficient of thermal expansion, fracture toughness by indent technique and thermal diffusivity of representative specimens were measured. In Phase 2, the process will be improved to provide higher mechanical strength and to define the techniques for scale up to component size. In Phase 3, full scale component prototypes will be fabri-]cated.
Transformation toughened ceramics for the heavy duty diesel engine technology program, phase 2
NASA Technical Reports Server (NTRS)
Musikant, S.; Samanta, S. C.; Architetto, P.; Feingold, E.
1985-01-01
The objective of this program is to develop an insulating structural ceramic for application in a heavy duty adiabatic diesel engine. The approach is to employ transformation toughening (TT) by additions of zirconia-hafnia solid solution (ZHSS). The feasibility of using ZHSS as a toughening agent in mullite and alumina has been demonstrated in Phase 1 of this work. Based on Phase 1 results, a decision was made to concentrate the Phase 2 effort on process optimization of the TT mullite. A strong factor in that decision was the low thermal conductivity and high thermal shock resistance of the mullite. Results of the Phase 2 effort indicate that optimum toughening of mullite by additions of ZHSS is difficult to achieve due to apparent sensitivity to morphology. The 48 ksi room temperature modulus-of-rupture (MOR) achieved in selected specimens is approximately 50% of the original strength target. The MOR deteriorated to 34 ksi at 800 C.
1986-03-27
This photograph shows a modified General Dynamics AFTI/F-111A Aardvark with supercritical mission adaptive wings (MAW) installed. The AFTI/F111A is seen banking towards Rodgers Dry Lake and Edwards Air Force Base. With the phasing out of the TACT program came a renewed effort by the Air Force Flight Dynamics Laboratory to extend supercritical wing technology to a higher level of performance. In the early 1980s the supercritical wing on the F-111A aircraft was replaced with a wing built by Boeing Aircraft Company System called a “mission adaptive wing” (MAW), and a joint NASA and Air Force program called Advanced Fighter Technology Integration (AFTI) was born.
Weather Avoidance Using Route Optimization as a Decision Aid: An AWIN Topical Study. Phase 1
NASA Technical Reports Server (NTRS)
1998-01-01
The aviation community is faced with reducing the fatal aircraft accident rate by 80 percent within 10 years. This must be achieved even with ever increasing, traffic and a changing National Airspace System. This is not just an altruistic goal, but a real necessity, if our growing level of commerce is to continue. Honeywell Technology Center's topical study, "Weather Avoidance Using Route Optimization as a Decision Aid", addresses these pressing needs. The goal of this program is to use route optimization and user interface technologies to develop a prototype decision aid for dispatchers and pilots. This decision aid will suggest possible diversions through single or multiple weather hazards and present weather information with a human-centered design. At the conclusion of the program, we will have a laptop prototype decision aid that will be used to demonstrate concepts to industry for integration into commercialized products for dispatchers and/or pilots. With weather a factor in 30% of aircraft accidents, our program will prevent accidents by strategically avoiding weather hazards in flight. By supplying more relevant weather information in a human-centered format along with the tools to generate flight plans around weather, aircraft exposure to weather hazards can be reduced. Our program directly addresses the NASA's five year investment areas of Strategic Weather Information and Weather Operations (simulation/hazard characterization and crew/dispatch/ATChazard monitoring, display, and decision support) (NASA Aeronautics Safety Investment Strategy: Weather Investment Recommendations, April 15, 1997). This program is comprised of two phases, Phase I concluded December 31, 1998. This first phase defined weather data requirements, lateral routing algorithms, an conceptual displays for a user-centered design. Phase II runs from January 1999 through September 1999. The second phase integrates vertical routing into the lateral optimizer and combines the user interface into a prototype software testbed. Phase II concludes with a dispatcher and pilot evaluation of the route optimizer decision aid. This document describes work completed in Phase I in contract with NASA Langley August 1998 - December 1998. This report includes: (1) Discuss how weather hazards were identified in partnership with experts, and how weather hazards were prioritized; (2) Static representations of display layouts for integrated planning function (3) Cost function for the 2D route optimizer; (4) Discussion of the method for obtaining, access to raw data of, and the results of the flight deck user information requirements definition; (5) Itemized display format requirements identified for representing weather hazards in a route planning aid.
Fly-by-light flight control system technology development plan
NASA Technical Reports Server (NTRS)
Chakravarty, A.; Berwick, J. W.; Griffith, D. M.; Marston, S. E.; Norton, R. L.
1990-01-01
The results of a four-month, phased effort to develop a Fly-by-Light Technology Development Plan are documented. The technical shortfalls for each phase were identified and a development plan to bridge the technical gap was developed. The production configuration was defined for a 757-type airplane, but it is suggested that the demonstration flight be conducted on the NASA Transport Systems Research Vehicle. The modifications required and verification and validation issues are delineated in this report. A detailed schedule for the phased introduction of fly-by-light system components has been generated. It is concluded that a fiber-optics program would contribute significantly toward developing the required state of readiness that will make a fly-by-light control system not only cost effective but reliable without mitigating the weight and high-energy radio frequency related benefits.
Ka-band MMIC subarray technology program (Ka-Mist)
NASA Technical Reports Server (NTRS)
Pottenger, Warren
1995-01-01
The broad objective of this program was to demonstrate a proof of concept insertion of Monolithic Microwave Integrated Circuit (MMIC) device technology into an innovative (tile architecture) active phased array antenna application supporting advanced EHF communication systems. Ka-band MMIC arrays have long been considered as having high potential for increasing the capability of space, aircraft, and land mobile communication systems in terms of scan performance, data rate, link margin, and flexibility while offering a significant reduction in size, weight, and power consumption. Insertion of MMIC technology into antenna systems, particularly at millimeter wave frequencies using low power and low noise amplifiers in close proximity to the radiating elements, offers a significant improvement in the array transmit efficiency, receive system noise figure, and overall array reliability. Application of active array technology also leads to the use of advanced beamforming techniques that can improve beam agility, diversity, and adaptivity to complex signal environments.
1991-01-01
NAVY ABSTRACTS OF SBIR PHASE I AWARDS mmhancemegs to be added. Advanced processor architeturs which u- new technology hardware and software for...Adaptive Compensation System for Performance Improvenent of piezoelectric Hydropbones Abstract: Hydopbone output level is, in gena, insly proportional to die...growth rate is proportional to the mode frequency and under optimal conditions, the cavity mode TMI 10 exponcntiates in only 10 oscillation periods. In
1988-04-01
TECHNOLOGY TO PROTECT LAMINATED FIBERGLASS REIN- FORCES STRUCTURES FROM CHEMICAL AGENTS AND DECONTAMINANTS . FLAME0 RETARDENCY, ADHESION, ABRASION RESISTANCE...OFFICE: BRDC- PVD ALTHOUGH THERE ARE NO INTRINSIC CONFLICTS FOR THE SAME MATERIAL SYSTEMS TO ACHIEVE BOTH THE RADAR ABSORPTION AND THERMAL SUPPRESSION...VEHICLE TOPIC# 135 OFFICE: BRDC- PVD THE OBJECTIVE OF THE PHASE I RESEARCH AND DEVELOPMENT PROPOSED HEREIN IS TO DETERMINE WHICH MAJOR COMPONENTS OF THE
Electromagnetic mixed waste processing system for asbestos decontamination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasevich, R.S.; Vaux, W.; Ulerich, N.
The overall objective of this three-phase program is to develop an integrated process for treating asbestos-containing material that is contaminated with radioactive and hazardous constituents. The integrated process will attempt to minimize processing and disposal costs. The objectives of Phase 1 were to establish the technical feasibility of asbestos decomposition, inorganic radionuclide nd heavy metal removal, and organic volatilization. Phase 1 resulted in the successful bench-scale demonstration of the elements required to develop a mixed waste treatment process for asbestos-containing material (ACM) contaminated with radioactive metals, heavy metals, and organics. Using the Phase 1 data, a conceptual process was developed.more » The Phase 2 program, currently in progress, is developing an integrated system design for ACM waste processing. The Phase 3 program will target demonstration of the mixed waste processing system at a DOE facility. The electromagnetic mixed waste processing system employs patented technologies to convert DOE asbestos to a non-hazardous, radionuclide-free, stable waste. The dry, contaminated asbestos is initially heated with radiofrequency energy to remove organic volatiles. Second,the radionuclides are removed by solvent extraction coupled with ion exchange solution treatment. Third, the ABCOV method converts the asbestos to an amorphous silica suspension at low temperature (100{degrees}C). Finally the amorphous silica is solidified for disposal.« less
Multi-kw dc power distribution system study program
NASA Technical Reports Server (NTRS)
Berkery, E. A.; Krausz, A.
1974-01-01
The first phase of the Multi-kw dc Power Distribution Technology Program is reported and involves the test and evaluation of a technology breadboard in a specifically designed test facility according to design concepts developed in a previous study on space vehicle electrical power processing, distribution, and control. The static and dynamic performance, fault isolation, reliability, electromagnetic interference characterisitics, and operability factors of high distribution systems were studied in order to gain a technology base for the use of high voltage dc systems in future aerospace vehicles. Detailed technical descriptions are presented and include data for the following: (1) dynamic interactions due to operation of solid state and electromechanical switchgear; (2) multiplexed and computer controlled supervision and checkout methods; (3) pulse width modulator design; and (4) cable design factors.
Evolution of the phase 2 preparation and observation tools at ESO
NASA Astrophysics Data System (ADS)
Dorigo, D.; Amarand, B.; Bierwirth, T.; Jung, Y.; Santos, P.; Sogni, F.; Vera, I.
2012-09-01
Throughout the course of many years of observations at the VLT, the phase 2 software applications supporting the specification, execution and reporting of observations have been continuously improved and refined. Specifically the introduction of astronomical surveys propelled the creation of new tools to express more sophisticated, longer-term observing strategies often consisting of several hundreds of observations. During the execution phase, such survey programs compete with other service and visitor mode observations and a number of constraints have to be considered. In order to maximize telescope utilization and execute all programs in a fair way, new algorithms have been developed to prioritize observable OBs taking into account both current and future constraints (e.g. OB time constraints, technical telescope time) and suggest the next OB to be executed. As a side effect, a higher degree of observation automation enables operators to run telescopes mostly autonomously with little supervision by a support astronomer. We describe the new tools that have been deployed and the iterative and incremental software development process applied to develop them. We present our key software technologies used so far and discuss potential future evolution both in terms of features as well as software technologies.
The Design of a Primary Flight Trainer using Concurrent Engineering Concepts
NASA Technical Reports Server (NTRS)
Ladesic, James G.; Eastlake, Charles N.; Kietzmann, Nicholas H.
1993-01-01
Concurrent Engineering (CE) concepts seek to coordinate the expertise of various disciplines from initial design configuration selection through product disposal so that cost efficient design solutions may be achieve. Integrating this methodology into an undergraduate design course sequence may provide a needed enhancement to engineering education. The Advanced Design Program (ADP) project at Embry-Riddle Aeronautical University (EMU) is focused on developing recommendations for the general aviation Primary Flight Trainer (PFT) of the twenty first century using methods of CE. This project, over the next two years, will continue synthesizing the collective knowledge of teams composed of engineering students along with students from other degree programs, their faculty, and key industry representatives. During the past year (Phase I). conventional trainer configurations that comply with current regulations and existing technologies have been evaluated. Phase I efforts have resulted in two baseline concepts, a high-wing, conventional design named Triton and a low-wing, mid-engine configuration called Viper. In the second and third years (Phases II and III). applications of advanced propulsion, advanced materials, and unconventional airplane configurations along with military and commercial technologies which are anticipated to be within the economic range of general aviation by the year 2000, will be considered.
Technology Proliferation: Acquisition Strategies and Opportunities for an Uncertain Future
2018-04-20
The large programs of record characteristic of federal acquisition consist of rigorous research, development, testing, and evaluation (RDT&E...and evaluation (IOT&E) activities drive the program toward the decision to enter full rate production (FRP). Finally, in the sustainment phase, the...the new feature by a full release at a later date, or halt the development altogether. As stated by the Director of Operational Test and Evaluation
Near-term hybrid vehicle program, phase 1. Appendix C: Preliminary design data package
NASA Technical Reports Server (NTRS)
1979-01-01
The design methodology, the design decision rationale, the vehicle preliminary design summary, and the advanced technology developments are presented. The detailed vehicle design, the vehicle ride and handling and front structural crashworthiness analysis, the microcomputer control of the propulsion system, the design study of the battery switching circuit, the field chopper, and the battery charger, and the recent program refinements and computer results are presented.
2014-05-01
utilizing buoyancy differences in vapor and liquid phases to pump the heat transfer fluid between the evaporator and condenser. In this particular...Virtual Instrumentation Engineering Workbench LHP Loop Heat Pipe LVDT Linear Voltage Displacement Transducer MACE Micro -technologies for Air...Bland 1992). This type of duty cycle lends itself to thermal energy storage, which when coupled with an effective heat transfer mechanism can
Digital Interface Board to Control Phase and Amplitude of Four Channels
NASA Technical Reports Server (NTRS)
Smith, Amy E.; Cook, Brian M.; Khan, Abdur R.; Lux, James P.
2011-01-01
An increasing number of parts are designed with digital control interfaces, including phase shifters and variable attenuators. When designing an antenna array in which each antenna has independent amplitude and phase control, the number of digital control lines that must be set simultaneously can grow very large. Use of a parallel interface would require separate line drivers, more parts, and thus additional failure points. A convenient form of control where single-phase shifters or attenuators could be set or the whole set could be programmed with an update rate of 100 Hz is needed to solve this problem. A digital interface board with a field-programmable gate array (FPGA) can simultaneously control an essentially arbitrary number of digital control lines with a serial command interface requiring only three wires. A small set of short, high-level commands provides a simple programming interface for an external controller. Parity bits are used to validate the control commands. Output timing is controlled within the FPGA to allow for rapid update rates of the phase shifters and attenuators. This technology has been used to set and monitor eight 5-bit control signals via a serial UART (universal asynchronous receiver/transmitter) interface. The digital interface board controls the phase and amplitude of the signals for each element in the array. A host computer running Agilent VEE sends commands via serial UART connection to a Xilinx VirtexII FPGA. The commands are decoded, and either outputs are set or telemetry data is sent back to the host computer describing the status and the current phase and amplitude settings. This technology is an integral part of a closed-loop system in which the angle of arrival of an X-band uplink signal is detected and the appropriate phase shifts are applied to the Ka-band downlink signal to electronically steer the array back in the direction of the uplink signal. It will also be used in the non-beam-steering case to compensate for phase shift variations through power amplifiers. The digital interface board can be used to set four 5-bit phase shifters and four 5-bit attenuators and monitor their current settings. Additionally, it is useful outside of the closed-loop system for beamsteering alone. When the VEE program is started, it prompts the user to initialize variables (to zero) or skip initialization. After that, the program enters into a continuous loop waiting for the telemetry period to elapse or a button to be pushed. A telemetry request is sent when the telemetry period is elapsed (every five seconds). Pushing one of the set or reset buttons will send the appropriate command. When a command is sent, the interface status is returned, and the user will be notified by a pop-up window if any error has occurred. The program runs until the End Program button is depressed.
NASA Astrophysics Data System (ADS)
Milgram, David L.; Kahn, Philip; Conner, Gary D.; Lawton, Daryl T.
1988-12-01
The goal of this effort is to develop and demonstrate prototype processing capabilities for a knowledge-based system to automatically extract and analyze features from Synthetic Aperture Radar (SAR) imagery. This effort constitutes Phase 2 funding through the Defense Small Business Innovative Research (SBIR) Program. Previous work examined the feasibility of and technology issues involved in the development of an automated linear feature extraction system. This final report documents this examination and the technologies involved in automating this image understanding task. In particular, it reports on a major software delivery containing an image processing algorithmic base, a perceptual structures manipulation package, a preliminary hypothesis management framework and an enhanced user interface.
The Structural Ceramics Database: Technical Foundations
Munro, R. G.; Hwang, F. Y.; Hubbard, C. R.
1989-01-01
The development of a computerized database on advanced structural ceramics can play a critical role in fostering the widespread use of ceramics in industry and in advanced technologies. A computerized database may be the most effective means of accelerating technology development by enabling new materials to be incorporated into designs far more rapidly than would have been possible with traditional information transfer processes. Faster, more efficient access to critical data is the basis for creating this technological advantage. Further, a computerized database provides the means for a more consistent treatment of data, greater quality control and product reliability, and improved continuity of research and development programs. A preliminary system has been completed as phase one of an ongoing program to establish the Structural Ceramics Database system. The system is designed to be used on personal computers. Developed in a modular design, the preliminary system is focused on the thermal properties of monolithic ceramics. The initial modules consist of materials specification, thermal expansion, thermal conductivity, thermal diffusivity, specific heat, thermal shock resistance, and a bibliography of data references. Query and output programs also have been developed for use with these modules. The latter program elements, along with the database modules, will be subjected to several stages of testing and refinement in the second phase of this effort. The goal of the refinement process will be the establishment of this system as a user-friendly prototype. Three primary considerations provide the guidelines to the system’s development: (1) The user’s needs; (2) The nature of materials properties; and (3) The requirements of the programming language. The present report discusses the manner and rationale by which each of these considerations leads to specific features in the design of the system. PMID:28053397
Solid polymer electrolyte (SPE) fuel cell technology program, phase 1/1A. [design and fabrication
NASA Technical Reports Server (NTRS)
1975-01-01
A solid polymer electrolyte fuel cell was studied for the purpose of improving the characteristics of the technology. Several facets were evaluated, namely: (1) reduced fuel cell costs; (2) reduced fuel cell weight; (3) improved fuel cell efficiency; and (4) increased systems compatibility. Demonstrated advances were incorporated into a full scale hardware design. A single cell unit was fabricated. A substantial degree of success was demonstrated.
The National Shipbuilding Research Program. Environmental Studies and Testing (Phase IV)
2000-11-15
Subtask responded to the action taken by the State of Virginia to incorporate limitations of 50 parts per trillion TBT ( tributyltin ) in shipyard...Funds actually expended totaled $6,750. Subtask #22 - Document Technologies Available to Clean Brackish Waters to 50 parts per trillion TBT Levels. This...Subtask concluded that there were NO technologies extant to achieve a reduction in shipyard effluent TBT to below 50 ppt. This has become an
Near-Term Electric Vehicle Program. Phase II: Mid-Term Summary Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1978-08-01
The Near Term Electric Vehicle (NTEV) Program is a constituent elements of the overall national Electric and Hybrid Vehicle Program that is being implemented by the Department of Energy in accordance with the requirements of the Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976. Phase II of the NTEV Program is focused on the detailed design and development, of complete electric integrated test vehicles that incorporate current and near-term technology, and meet specified DOE objectives. The activities described in this Mid-Term Summary Report are being carried out by two contractor teams. The prime contractors for these contractormore » teams are the General Electric Company and the Garrett Corporation. This report is divided into two discrete parts. Part 1 describes the progress of the General Electric team and Part 2 describes the progress of the Garrett team.« less
Space Shuttle main engine product improvement
NASA Technical Reports Server (NTRS)
Lucci, A. D.; Klatt, F. P.
1985-01-01
The current design of the Space Shuttle Main Engine has passed 11 certification cycles, amassed approximately a quarter million seconds of engine test time in 1200 tests and successfully launched the Space Shuttle 17 times of 51 engine launches through May 1985. Building on this extensive background, two development programs are underway at Rocketdyne to improve the flow of hot gas through the powerhead and evaluate the changes to increase the performance margins in the engine. These two programs, called Phase II+ and Technology Test Bed Precursor program are described. Phase II+ develops a two-tube hot-gas manifold that improves the component environment. The Precursor program will evaluate a larger throat main combustion chamber, conduct combustion stability testing of a baffleless main injector, fabricate an experimental weld-free heat exchanger tube, fabricate and test a high pressure oxidizer turbopump with an improved inlet, and develop and test methods for reducing temperature transients at start and shutdown.
NASA Astrophysics Data System (ADS)
Kalejs, J. P.
1994-01-01
Mobil Solar Energy Corporation currently practices a unique crystal growth technology for producing crystalline silicon sheet, which is then cut with lasers into wafers. The wafers are processed into solar cells and incorporated into modules for photovoltaic applications. The silicon sheet is produced using a method known as Edge-defined Film-fed growth (EFG), in the form of hollow eight-sided polygons (octagons) with 10 cm faces. These are grown to lengths of 5 meters and thickness of 300 microns, with continuous melt replenishment, in compact furnaces designed to operate at a high sheet area production area of 135 sq cm/min. The present Photovoltaic Manufacturing Technology (PVMaT) three-year program seeks to advance the manufacturing line capabilities of the Mobil Solar crystal growth and cutting technologies. If successful, these advancements will provide significant reductions in already low silicon raw material usage, improve process productivity, laser cutting throughput and yield, and so lower both individual wafer cost and the cost of module production. This report summarizes the significant technical improvements in EFG technology achieved in Phase 1 of this program. Technical results are reported for each of the three main program areas: (1) thin octagon growth (crystal growth) -- to reduce the thickness of the octagon to an interim goal of 250 microns during Phase 1, with an ultimate goal of achieving 200 micron thicknesses; (2) laser cutting -- to improve the laser cutting process, so as to produce wafers with decreased laser cutting damage at increased wafer throughput rates; and (3) process control and product specification -- to implement advanced strategies in crystal growth process control and productivity designed to increase wafer yields.
DOT National Transportation Integrated Search
2003-11-14
Transit Tracker uses global positioning system (GPS) technology to track how far a bus is along its scheduled route. This document presents the evaluation strategies and objectives, the data collection methodologies, and the results of the evaluation...
DOT National Transportation Integrated Search
2016-09-02
The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...
SO2 SCRUBBING TECHNOLOGIES: A REVIEW
Electricity generating units may use sulfur dioxide (SO2) scrubbers to meet the requirements of Phase II of the Acid Rain S02 Reduction Program. Additionally, the use of scrubbers can result in reduction of mercury emissions. It is timely, therefore, to review the commercially av...
A Manhattan Project in Educational Technology, Part II.
ERIC Educational Resources Information Center
Roberts, Wesley K.
The initial four phases of the Training Extension Course (TEC), a project to remedy deficiencies in training programs for armed forces recruits, employed systematic instructional development and extensive audiovisual resources. The project required subcontracting for lesson production and modifications in personnel and budgeting. Posttest evidence…
Hybrid propulsion technology program: Phase 1, volume 2
NASA Technical Reports Server (NTRS)
Schuler, A. L.; Wiley, D. R.
1989-01-01
The program objectives of developing hybrid propulsion technology (HPT) to enable its application for manned and unmanned high thrust, high performance space launch vehicles are examined. The studies indicate that the hybrid propulsion (HP) is very attractive, especially when applied to large boosters for programs such as the Advanced Launch System (ALS) and the second generation Space Shuttle. Some of the advantages of HP are identified. Space launch vehicles using HP are less costly than those flying today because their propellant and insulation costs are much less and there are fewer operational restraints due to reduced safety requirements. Boosters using HP have safety features that are highly desirable, particularly for manned flights. HP systems will have a clean exhaust and high performance. Boosters using HP readily integrate with launch vehicles and their launch operations, because they are very compact for the amount of energy contained. Hybrid propulsion will increase the probability of mission success. In order to properly develop the technologies of HP, preliminary HP concepts are evaluated. System analyses and trade studies were performed to identify technologies applicable to HP.
Framework for a National Testing and Evaluation Program ...
Abstract:The National STEPP Program seeks to improve water quality by accelerating the effective implementation and adoption of innovative stormwater management technologies. Itwill attempt to accomplish this by establishing practices through highly reliable, and cost-effective Stormwater control measures (SCM) testing, evaluation, and verification services. The program will aim to remove barriers to innovation, minimize duplicative performance evaluation needs, increase confidence that regulatory requirements are met by creating consistency among testing and evaluation protocols, and establishing equity between public domain and proprietary SCM evaluation approaches.The Environmental Technology Verification Program, established by the U.S. Environmental Protection Agency (EPA) 18 years ago, was the only national program of its kindin the stormwater sector, but is now defunct, leaving a national leadership void. The STEPP initiative was triggered in part by regulatory demands in the government and private sectors to fill this vacuum. A concerted focus and study of this matter led to the release of a Water Environment Federation (WEF) white paper entitled “Investigation into the Feasibility of a National Testing and Evaluation Program for Stormwater Products and Practices” in February 2014. During this second phase of the STEPP initiative, and with EPA support, five analogous technology evaluation programs related to both stormwater and non-stormwater were an
Lancioni, Giulio E; Singh, Nirbhay N; O'Reilly, Mark F; Sigafoos, Jeff; Ricciuti, Riccardo A; Trignani, Roberto; Oliva, Doretta; Signorino, Mario; D'Amico, Fiora; Sasanelli, Giovanni
2015-01-01
These two studies extended technology-aided programs to promote leisure and communication opportunities to a man with cervical spinal cord injury and a post-coma man with multiple disabilities. The studies involved the use of ABAB designs, in which A and B represented baseline and intervention phases, respectively. The programs focused on enabling the participants to activate songs, videos, requests, text messages, and telephone calls. These options were presented on a computer screen and activated through a small pressure microswitch by the man with spinal cord injury and a special touch screen by the post-coma man. To help the latter participant, who had no verbal skills, with requests and telephone calls, series of words and phrases were made available that he could activate in those situations. Data showed that both participants were successful in managing the programs arranged for them. The man with spinal cord injury activated mean frequencies of above five options per 10-min session. The post-coma man activated mean frequencies of about 12 options per 20-min session. Technology-aided programs for promoting leisure and communication opportunities might be successfully tailored to persons with spinal cord injury and persons with post-coma multiple disabilities. Implications for Rehabilitation Technology-aided programs may be critical to enable persons with pervasive motor impairment to engage in leisure activities and communication events independently. Persons with spinal cord injury, post-coma extended brain damage, and forms of neurodegenerative disease, such as amyotrophic lateral sclerosis, may benefit from those programs. The programs could be adapted to the participants' characteristics, both in terms of technology and contents, so as to improve their overall impact on the participants' functioning and general mood.
NASA Astrophysics Data System (ADS)
Zhao, Shi-Bo; Liu, Ming-Zhe; Yang, Lan-Ying
2015-04-01
In this paper we investigate the dynamics of an asymmetric exclusion process on a one-dimensional lattice with long-range hopping and random update via Monte Carlo simulations theoretically. Particles in the model will firstly try to hop over successive unoccupied sites with a probability q, which is different from previous exclusion process models. The probability q may represent the random access of particles. Numerical simulations for stationary particle currents, density profiles, and phase diagrams are obtained. There are three possible stationary phases: the low density (LD) phase, high density (HD) phase, and maximal current (MC) in the system, respectively. Interestingly, bulk density in the LD phase tends to zero, while the MC phase is governed by α, β, and q. The HD phase is nearly the same as the normal TASEP, determined by exit rate β. Theoretical analysis is in good agreement with simulation results. The proposed model may provide a better understanding of random interaction dynamics in complex systems. Project supported by the National Natural Science Foundation of China (Grant Nos. 41274109 and 11104022), the Fund for Sichuan Youth Science and Technology Innovation Research Team (Grant No. 2011JTD0013), and the Creative Team Program of Chengdu University of Technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alan Black; Arnis Judzis
2004-10-01
The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for a next level of deep drilling performance; Phase 2--Develop advanced smart bit-fluid prototypes and test at large scale; and Phase 3--Field trial smart bit-fluid concepts, modify as necessary and commercialize products. As of report date, TerraTek has concluded all major preparations for themore » high pressure drilling campaign. Baker Hughes encountered difficulties in providing additional pumping capacity before TerraTek's scheduled relocation to another facility, thus the program was delayed further to accommodate the full testing program.« less
NASA Technical Reports Server (NTRS)
Howlett, R. A.
1975-01-01
A continuation of the NASA/P and WA study to evaluate various types of propulsion systems for advanced commercial supersonic transports has resulted in the identification of two very promising engine concepts. They are the Variable Stream Control Engine which provides independent temperature and velocity control for two coannular exhaust streams, and a derivative of this engine, a Variable Cycle Engine that employs a rear flow-inverter valve to vary the bypass ratio of the cycle. Both concepts are based on advanced engine technology and have the potential for significant improvements in jet noise, exhaust emissions and economic characteristics relative to current technology supersonic engines. Extensive research and technology programs are required in several critical areas that are unique to these supersonic Variable Cycle Engines to realize these potential improvements. Parametric cycle and integration studies of conventional and Variable Cycle Engines are reviewed, features of the two most promising engine concepts are described, and critical technology requirements and required programs are summarized.
ACTS Ka-Band Earth Stations: Technology, Performance, and Lessons Learned
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Struharik, Steven J.; Diamond, John J.; Stewart, David
2000-01-01
The Advanced Communications Technology Satellite (ACTS) Project invested heavily in prototype Ka-band satellite ground terminals to conduct an experiments program with ACTS. The ACTS experiments program proposed to validate Ka-band satellite and ground-station technology, demonstrate future telecommunication services, demonstrate commercial viability and market acceptability of these new services, evaluate system networking and processing technology, and characterize Ka-band propagation effects, including development of techniques to mitigate signal fading. This paper will present a summary of the fixed ground terminals developed by the NASA Glenn Research Center and its industry partners, emphasizing the technology and performance of the terminals and the lessons learned throughout their 6-year operation, including the inclined orbit phase-of-operations. The fixed ground stations used for experiments by government, academic, and commercial entities used reflector-based offset-fed antenna systems with antennas ranging in size from 0.35 to 3.4 in. in diameter. Gateway earth stations included two systems referred to as the NASA Ground Station (NGS) and the Link Evaluation Terminal (LET).
Magnetic liquefier for hydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1992-12-31
This document summarizes work done at the Astronautics Technology Center of the Astronautics Corporation of America (ACA) in Phase 1 of a four phase program leading to the development of a magnetic liquefier for hydrogen. The project involves the design, fabrication, installation, and operation of a hydrogen liquefier providing significantly reduced capital and operating costs, compared to present liquefiers. To achieve this goal, magnetic refrigeration, a recently developed, highly efficient refrigeration technology, will be used for the liquefaction process. Phase 1 project tasks included liquefier conceptual design and analysis, preliminary design of promising configurations, design selection, and detailed design ofmore » the selected design. Fabrication drawings and vendor specifications for the selected design were completed during detailed design. The design of a subscale, demonstration magnetic hydrogen liquefier represents a significant advance in liquefaction technology. The cost reductions that can be realized in hydrogen liquefaction in both the subscale and, more importantly, in the full-scale device are expected to have considerable impact on the use of liquid hydrogen in transportation, chemical, and electronic industries. The benefits to the nation from this technological advance will continue to have importance well into the 21st century.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, D.; Sutherland, K.; Chasar, D.
The U.S. Department of Energy (DOE) Building America program, in collaboration with Florida Power and Light (FPL), conducted a phased residential energy-efficiency retrofit program. This research sought to establish impacts on annual energy and peak energy reductions from the technologies applied at two levels of retrofit - shallow and deep, with savings levels approaching the Building America program goals of reducing whole-house energy use by 40%. Under the Phased Deep Retrofit (PDR) project, we have installed phased, energy-efficiency retrofits in a sample of 56 existing, all-electric homes. End-use savings and economic evaluation results from the phased measure packages and singlemore » measures are summarized in this report. Project results will be of interest to utility program designers, weatherization evaluators, and the housing remodel industry. Shallow retrofits were conducted in all homes from March to June 2013. The measures for this phase were chosen based on ease of installation, targeting lighting (CFLs and LED lamps), domestic hot water (wraps and showerheads), refrigeration (cleaning of coils), pool pump (reduction of operating hours), and the home entertainment center (smart plugs). Deep retrofits were conducted on a subset of ten PDR homes from May 2013 through March 2014. Measures included new air source heat pumps, duct repair, ceiling insulation, heat pump water heaters, variable speed pool pumps and learning thermostats. Major appliances such as refrigerators and dishwashers were replaced where they were old and inefficient.« less
NASA Astrophysics Data System (ADS)
Martin, Gene; Criscione, Joseph C.; Cauffman, Sandra A.; Davis, Martin A.
2004-11-01
The Hyperspectral Environmental Suite (HES) instrument is currently under development by the NASA GOES-R Project team within the framework of the GOES Program to fulfill the future needs and requirements of the National Environmental Satellite, Data, and Information Service (NESDIS) Office. As part of the GOES-R instrument complement, HES will provide measurements of the traditional temperature and water vapor vertical profiles with higher accuracy and vertical resolution than obtained through current sounder technologies. HES will provide measurements of the properties of the shelf and coastal waters and back up imaging (at in-situ resolution) for the GOES-R Advanced Baseline Imager (ABI). The HES team is forging the future of remote environmental monitoring with the development of an operational instrument with high temporal, spatial and spectral-resolution and broad hemispheric coverage. The HES development vision includes threshold and goal requirements that encompass potential system solutions. The HES team has defined tasks for the instrument(s) that include a threshold functional complement of Disk Sounding (DS), Severe Weather/Mesoscale Sounding (SW/M), and Shelf and Coastal Waters imaging (CW) and a goal functional complement of Open Ocean (OO) imaging, and back up imaging (at in-situ resolution) for the GOES-R Advanced Baseline Imager (ABI). To achieve the best-value procurement, the GOES-R Project has base-lined a two-phase procurement approach to the HES design and development; a Formulation/study phase and an instrument Implementation phase. During Formulation, currently slated for the FY04-05 timeframe, the developing team(s) will perform Systems Requirements Analysis and evaluation, System Trade and Requirements Baseline Studies, Risk Assessment and Mitigation Strategy and complete a Preliminary Conceptual Design of the HES instrument. The results of the formulation phase will be leveraged to achieve an effective and efficient system solution during the Implementation Phase scheduled to begin FY05 for a resultant FY12 launch. The magnitude of complexity of the HES development requires an appreciation of the technologies required to achieve the functional objectives. To this end, the GOES-R project team is making available all NASA developed technologies to potential HES vendors, including, the NASA New Millennium Program"s (NMP) Earth Observing-3, Geostationary Imaging Fourier Transform Spectrometer (GIFTS) instrument developed technologies, as applicable. It is anticipated that the instrument(s) meeting the HES requirements will be either a dispersive spectrometer or an interferometric spectrometer or perhaps a combination. No instrument configuration is preferred or favored by the Government. This paper outlines the HES development plan; including an overview of current requirements, existing partnerships and the GOES-R project methodologies to achieve the advanced functional objectives of the GOES Program partnership.
Phase 1 research program overview
NASA Technical Reports Server (NTRS)
Uri, J. J.; Lebedev, O. N.
2001-01-01
The Phase 1 research program was unprecedented in its scope and ambitious in its objectives. The National Aeronautics and Space Administration committed to conducting a multidisciplinary long-duration research program on a platform whose capabilities were not well known, not to mention belonging to another country. For the United States, it provided the first opportunity to conduct research in a long-duration space flight environment since the Skylab program in the 1970's. Multiple technical as well as cultural challenges were successfully overcome through the dedicated efforts of a relatively small cadre of individuals. The program developed processes to successfully plan, train for and execute research in a long-duration environment, with significant differences identified from short-duration space flight science operations. Between August 1994 and June 1998, thousands of kilograms of research hardware was prepared and launched to Mir, and thousands of kilograms of hardware and data products were returned to Earth. More than 150 Principal Investigators from eight countries were involved in the program in seven major research disciplines: Advanced Technology; Earth Sciences; Fundamental Biology; Human Life Sciences; International Space Station Risk Mitigation; Microgravity; and Space Sciences. Approximately 75 long-duration investigations were completed on Mir, with additional investigations performed on the Shuttle flights that docked with Mir. The flight phase included the participation of seven US astronauts and 20 Russian cosmonauts. The successful completion of the Phase 1 research program not only resulted in high quality science return but also in numerous lessons learned to make the ISS experience more productive. The cooperation developed during the program was instrumental in its success. c2001 AIAA. Published by Elsevier Science Ltd.
Phase 1 research program overview.
Uri, J J; Lebedev, O N
2001-01-01
The Phase 1 research program was unprecedented in its scope and ambitious in its objectives. The National Aeronautics and Space Administration committed to conducting a multidisciplinary long-duration research program on a platform whose capabilities were not well known, not to mention belonging to another country. For the United States, it provided the first opportunity to conduct research in a long-duration space flight environment since the Skylab program in the 1970's. Multiple technical as well as cultural challenges were successfully overcome through the dedicated efforts of a relatively small cadre of individuals. The program developed processes to successfully plan, train for and execute research in a long-duration environment, with significant differences identified from short-duration space flight science operations. Between August 1994 and June 1998, thousands of kilograms of research hardware was prepared and launched to Mir, and thousands of kilograms of hardware and data products were returned to Earth. More than 150 Principal Investigators from eight countries were involved in the program in seven major research disciplines: Advanced Technology; Earth Sciences; Fundamental Biology; Human Life Sciences; International Space Station Risk Mitigation; Microgravity; and Space Sciences. Approximately 75 long-duration investigations were completed on Mir, with additional investigations performed on the Shuttle flights that docked with Mir. The flight phase included the participation of seven US astronauts and 20 Russian cosmonauts. The successful completion of the Phase 1 research program not only resulted in high quality science return but also in numerous lessons learned to make the ISS experience more productive. The cooperation developed during the program was instrumental in its success. c2001 AIAA. Published by Elsevier Science Ltd.
The New Millenium Program: Serving Earth and Space Sciences
NASA Technical Reports Server (NTRS)
Li, Fuk K.
2000-01-01
NASA has exciting plans for space science and Earth observations during the next decade. A broad range of advanced spacecraft and measurement technologies will be needed to support these plans within the existing budget and schedule constraints. Many of these technology needs are common to both NASA's Office of Earth Science (OES) and Office of Space Sciences (OSS). Even though some breakthrough technologies have been identified to address these needs, project managers have traditionally been reluctant to incorporate them into flight programs because their inherent development risk. To accelerate the infusion of new technologies into its OES and OSS missions, NASA established the New Millennium Program (NMP). This program analyzes the capability needs of these enterprises, identifies candidate technologies to address these needs, incorporates advanced technology suites into validation flights, validates them in the relevant space environment, and then proactively infuses the validated technologies into future missions to enhance their capabilities while reducing their life cycle cost. The NMP employs a cross-enterprise Science Working Group, the NASA Enterprise science and technology roadmaps to define the capabilities needed by future Earth and Space science missions. Additional input from the science community is gathered through open workshops and peer-reviewed NASA Research Announcement (NRAs) for advanced measurement concepts. Technology development inputs from the technology organizations within NASA, other government agencies, federally funded research and development centers (FFRDC's), U.S. industry, and academia are sought to identify breakthrough technologies that might address these needs. This approach significantly extends NASA's technology infrastructure. To complement other flight test programs that develop or validate of individual components, the NMP places its highest priority on system-level validations of technology suites in the relevant space environment. This approach is not needed for all technologies, but it is usually essential to validate advanced system architectures or new measurement concepts. The NMP has recently revised its processes for defining candidate validation flights, and selecting technologies for these flights. The NMP now employs integrated project formulation teams, 'Which include scientists, technologists, and mission planners, to incorporate technology suites into candidate validation flights. These teams develop competing concepts, which can be rigorously evaluated prior to selection for flight. The technology providers for each concept are selected through an open, competitive, process during the project formulation phase. If their concept is selected for flight, they are incorporated into the Project Implementation Team, which develops, integrates, tests, launches, and operates the technology validation flight. Throughout the project implementation phase, the Implementation Team will document and disseminate their validation results to facilitate the infusion of their validated technologies into future OSS and OES science missions. The NMP has successfully launched its first two Deep Space flights for the OSS, and is currently implementing its first two Earth Orbiting flights for the OES. The next OSS and OES flights are currently being defined. Even though these flights are focused on specific Space Science and Earth Science themes, they are designed to validate a range of technologies that could benefit both enterprises, including advanced propulsion, communications, autonomous operations and navigation, multifunctional structures, microelectronics, and advanced instruments. Specific examples of these technologies will be provided in our presentation. The processes developed by the NMP also provide benefits across the Space and Earth Science enterprises. In particular, the extensive, nation-wide technology infrastructure developed by the NMP enhances the access to breakthrough technologies for both enterprises.
Health technology assessment in Iran: challenges and views
Olyaeemanesh, Alireza; Doaee, Shila; Mobinizadeh, Mohammadreza; Nedjati, Mina; Aboee, Parisa; Emami-Razavi, Seyed Hassan
2014-01-01
Background: Various decisions have been made on technology application at all levels of the health system in different countries around the world. Health technology assessment is considered as one of the best scientific tools at the service of policy- makers. This study attempts to investigate the current challenges of Iran’s health technology assessment and provide appropriate strategies to establish and institutionalize this program. Methods: This study was carried out in two independent phases. In the first, electronic databases such as Medline (via Pub Med) and Scientific Information Database (SID) were searched to provide a list of challenges of Iran’s health technology assessment. The views and opinions of the experts and practitioners on HTA challenges were studied through a questionnaire in the second phase which was then analyzed by SPSS Software version 16. This has been an observational and analytical study with a thematic analysis. Results: In the first phase, seven papers were retrieved; from which, twenty- two HTA challenges in Iran were extracted by the researchers; and they were used as the base for designing a structured questionnaire of the second phase. The views of the experts on the challenges of health technology assessment were categorized as follows: organizational culture, stewardship, stakeholders, health system management, infrastructures and external pressures which were mentioned in more than 60% of the cases and were also common in the views. Conclusion: The identification and prioritization of HTA challenges which were approved by those experts involved in the strategic planning of the Department of Health Technology Assessment will be a step forward in the promotion of an evidence- based policy- making and in the production of comprehensive scientific evidence. PMID:25695015
The NASA/industry Design Analysis Methods for Vibrations (DAMVIBS) program: A government overview
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G.
1993-01-01
NASA-Langley, under the Design Analysis Methods for Vibrations (DAMVIBS) Program, set out in 1984 to establish the technology base needed by the rotorcraft industry for developing an advanced finite-element-based dynamics design analysis capability for vibrations. Considerable work has been done by the industry participants in the program since that time. Because the DAMVIBS Program is being phased out, a government/industry assessment of the program has been made to identify those accomplishments and contributions which may be ascribed to the program. The purpose of this paper is to provide an overview of the program and its accomplishments and contributions from the perspective of the government sponsoring organization.
The NASA CSTI high capacity power project
NASA Technical Reports Server (NTRS)
Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.
1992-01-01
The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the Civilian Space Technology Initiative (CSTI) High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project will develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.
The NASA CSTI high capacity power project
NASA Astrophysics Data System (ADS)
Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.
1992-08-01
The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the Civilian Space Technology Initiative (CSTI) High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project will develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.
Self-Assembly and Crystallization of Hairy (f-Star) and DNA-Grafted Nanocubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knorowski, Christopher; Travesset, Alex
Nanoparticle superlattices are key to realizing many of the materials that will solve current technological challenges. Particularly important for their optical, mechanical or catalytic properties are superlattices of anisotropic (nonspherical) nanoparticles. The key challenge is how to program anisotropic nanoparticles to self-assemble into the relevant structures. In this Article, using numerical simulations, we show that “hairy” (f-star) or DNA grafted on nanocubes provides a general framework to direct the self-assembly into phases with crystalline, liquid crystalline, rotator, or noncrystalline phases with both long-range positional and orientational order. We discuss the relevance of these phases for engineering nanomaterials or micromaterials displayingmore » precise orientational order, realization of dry superlattices as well as for the field of programmed self-assembly of anisotropic nanoparticles in general.« less
Horizon: A Proposal for Large Aperture, Active Optics in Geosynchronous Orbit
NASA Technical Reports Server (NTRS)
Chesters, Dennis; Jenstrom, Del
2000-01-01
In 1999, NASA's New Millennium Program called for proposals to validate new technology in high-earth orbit for the Earth Observing-3 (NMP EO3) mission to fly in 2003. In response, we proposed to test a large aperture, active optics telescope in geosynchronous orbit. This would flight-qualify new technologies for both Earth and Space science: 1) a future instrument with LANDSAT image resolution and radiometric quality watching continuously from geosynchronous station, and 2) the Next Generation Space Telescope (NGST) for deep space imaging. Six enabling technologies were to be flight-qualified: 1) a 3-meter, lightweight segmented primary mirror, 2) mirror actuators and mechanisms, 3) a deformable mirror, 4) coarse phasing techniques, 5) phase retrieval for wavefront control during stellar viewing, and 6) phase diversity for wavefront control during Earth viewing. Three enhancing technologies were to be flight- validated: 1) mirror deployment and latching mechanisms, 2) an advanced microcontroller, and 3) GPS at GEO. In particular, two wavefront sensing algorithms, phase retrieval by JPL and phase diversity by ERIM International, were to sense optical system alignment and focus errors, and to correct them using high-precision mirror mechanisms. Active corrections based on Earth scenes are challenging because phase diversity images must be collected from extended, dynamically changing scenes. In addition, an Earth-facing telescope in GEO orbit is subject to a powerful diurnal thermal and radiometric cycle not experienced by deep-space astronomy. The Horizon proposal was a bare-bones design for a lightweight large-aperture, active optical system that is a practical blend of science requirements, emerging technologies, budget constraints, launch vehicle considerations, orbital mechanics, optical hardware, phase-determination algorithms, communication strategy, computational burdens, and first-rate cooperation among earth and space scientists, engineers and managers. This manuscript presents excerpts from the Horizon proposal's sections that describe the Earth science requirements, the structural -thermal-optical design, the wavefront sensing and control, and the on-orbit validation.
Common Ada Missile Packages. Phase 2. (CAMP-2). Volume 2. 11th Missile Demonstration
1988-11-01
report describes the work performed, Ihe results obtained, and the conclusions reached during the Common Ada Missile Packages Phase-2 (CAMP-2) contract ... contract was performed between Sep- tember 1985. and March 1988. The MDAC-STL CAMP program manager was: Dr. Daniel G. McNicholl Technology Branch...j DEC Code Management System X X Software Development Files x x Development Status Database x ! X i Smart Cade Counter X j
2011-02-01
Contracting • Engineering and Technology • Logistics • Acquisition Management • Program Management For more information , visit http://clc.dau.mil ...for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data...sources, gathering and maintaining the data needed, and completing and reviewing the collection of information . Send comments regarding this burden
1990-04-01
MISSION REQUIREMENTS. THE MATRIX MATERIALS PROPOSED FOR THIS PHASE I INVESTIGATION ARE POLYETHER ETHER KETON (PEEK) AND POLYBUTELENE TERAPHTHALATE (PBT...NOISE AND RADIATION HARD, PARTICULARLY RADIATION HARD AGAINST NEUTRON IRRADIATION. A PROPOSAL IS MADE FOR THE DEVELOPMENT OF AN INNOVATIVE TECHNOLOGY...AND RADIATION -HARD APPLICATIONS. THE SOI WAFER WILL ELIMINATE LATCH-UP EFFECTS, REDUCE NEUTRON -CAPTURE VOLUME AND PROVIDE ELECTRICAL ISOLATION FOR
Orbit Transfer Rocket Engine Technology Program
1993-10-15
3 TASK D - ADVANCED ENGINE STUDY .............................................. 5 Phase I (D.1, D.2 and D. 3 ...34 High Velocity Ratio Diffusing Crossovers (1.2) .............................. 41 Soft Wear Ring Seals (B. 3 and B.5...67 Combustor Coolant Channel Selection (C.2) .................................. 77 Combustor Caloriniiter Experiments (C. 3 , C.A
DOT National Transportation Integrated Search
2016-08-11
The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...
Connected Vehicle Pilot Deployment Program Phase 1 : Human Use Approval Summary : New York City
DOT National Transportation Integrated Search
2016-08-04
The New York City (NYC) Connected Vehicle (CV) Pilot Deployment will be the largest deployment of connected vehicle technology to date. The purpose of the human use approval activity is to apply the Institutional Review Board (IRB) process to the NYC...
ACOUSTIC INSULATION, *TURBOJET EXHAUST NOZZLES, *JET ENGINE NOISE, REDUCTION, JET TRANSPORT AIRCRAFT, THRUST AUGMENTATION , SUPERSONIC NOZZLES, DUCT...INLETS, CONVERGENT DIVERGENT NOZZLES, SUBSONIC FLOW, SUPERSONIC FLOW, SUPPRESSORS, TURBOJET INLETS, BAFFLES, JET PUMPS, THRUST , DRAG, TEMPERATURE
Galaxy Classroom Project Evaluation, Language Arts, Grades 3-5. Final Report.
ERIC Educational Resources Information Center
Guth, Gloria J. A.; Block, Clifford
The GALAXY Language Arts Demonstration Program is a package of integrated curricular and instructional approaches that features the organization of instruction around themes presented through television broadcasts, children's literature, classroom activities, and the use of interactive technology. During the GALAXY Project demonstration phase for…
Proton Irradiation of the 16GB Intel Optane SSD
NASA Technical Reports Server (NTRS)
Wyrwas, E. J.
2017-01-01
The purpose of this test is to assess the single event effects (SEE) and radiation susceptibility of the Intel Optane Memory device (SSD) containing the 3D Xpoint phase change memory (PCM) technology. This test is supported by the NASA Electronics Parts and Packaging Program (NEPP).
Light weight, high power, high voltage dc/dc converter technologies
NASA Technical Reports Server (NTRS)
Kraus, Robert; Myers, Ira; Baumann, Eric
1990-01-01
Power-conditioning weight reductions by orders of magnitude will be required to enable the megawatt-power-level space systems envisioned by the Strategic Defense Initiative, the Air Force, and NASA. An interagency program has been initiated to develop an 0.1-kg/kW dc/dc converter technology base for these future space applications. Three contractors are in the first phase of a competitive program to develop a megawatt dc/dc converter. Researchers at NASA Lewis Research Center are investigating innovative converter topology control. Three different converter subsystems based on square wave, resonant, and super-resonant topologies are being designed. The components required for the converter designs cover a wide array of technologies. Two different switches, one semiconductor and the other gas, are under development. Issues related to thermal management and material reliability for inductors, transformers, and capacitors are being investigated in order to maximize power density. A brief description of each of the concepts proposed to meet the goals of this program is presented.
NASA Astrophysics Data System (ADS)
Ezin, Jean-Pierre
2010-02-01
Physics, which is widely touted as the most fundamental of the sciences, underpins the progress in all other branches of science and has a wide range of applications in economic development, including in health, energy research, food security, communication technology and climate change. The African Union (AU) Commission articulates the continental vision of its Member States and its programs are designed to directly contribute to its social and economic development and integration efforts. In the area of science and technology the Department has developed Africa's Science and Technology Consolidated Plan of Action as a strategic policy document through the AU system of conference of ministers responsible for science to guide the continent on common priority programs. The programs in this plan of action that have been transformed into bankable projects under the Book of ``lighthouse projects Phase 1'', adequately respond to Africa's challenges and development needs using science. They can be summarized into three main themes: a pan-African university (PAU) initiative (to combine higher education and scientific research as a network of differentiated PAU in each of the five African regions), African research grants (to strengthen the research capacity of the African institutions and upgrading infrastructures, consolidating their accumulated asset of scientific knowledge), popularization of science and technology and promotion of public participation (to build public understanding and raising awareness on science and technology as a driving agent for social and economic progress for Africa and its integration process) and a science and technology institutional capacity building program). This talk will review these programs as well as the vision of the African Development Bank role in it. )
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomsen, K.O.; Richardson, C.B.; Valder, K.M.
1996-12-31
Millions of acres of US government property are contaminated with unexploded ordnance (UXO) as a result of weapons system testing and troop training activities conducted over the past century at Department of Defense (DoD) sites. Recent DoD downsizing has resulted in the closing of many military bases, many of which are contaminated with UXO. One unexpected result of DoD`s downsizing is the attention focused on the unique problems associated with UXO remediation at these closed military bases. The U.S. Army Environmental Center (U SAEC) is the lead DoD agency for UXO clearance technology demonstrations, evaluation, and technology transfer. USAEC directedmore » the Naval Explosive Ordnance Disposal Technology Division (NAVEODTECHDIV) to serve as the technical lead for the advanced technology demonstration (ATD) program. In 1994, USAEC and NAVEODTECHDIV created controlled test facilities at the U.S. Army Jefferson Proving Ground in Madison, Indiana, to demonstrate and evaluate commercial UXO clearance systems and technologies. Phase I controlled site demonstrations were conducted during the summer of 1994. These demonstrations were followed by the Phase II controlled site demonstrations at JPG. This paper presents the results of the Phase II controlled site demonstrations. The overall performance of the demonstrators is presented along with the operational characteristics and limitations of the various systems and technologies evaluated. Individual demonstrator performance statistics are evaluated by sensor type and sensor transport method.« less
The 30/20 GHz flight experiment system, phase 2. Volume 4: Experiment system development plan
NASA Technical Reports Server (NTRS)
Bronstein, L.; Kawamoto, Y.; Riberich, J. J.; Scope, J. R.; Forman, B. J.; Bergman, S. G.; Reisenfeld, S.
1981-01-01
The development plan for the 30/20 GHz flight experiment system is presented. A master program schedule with detailed development plans for each subsystem is planned with careful attention given to how technology items to ensure a minimal risk. The work breakdown structure shows the organization of the program management with detailed task definitions. The ROM costs based on the development plan are also given.
NASA Astrophysics Data System (ADS)
McCain, Harry G.; Andary, James F.; Hewitt, Dennis R.; Haley, Dennis C.
The Flight Telerobotic Servicer (FTS) Project at the Goddard Space Flight Center is developing an advanced telerobotic system to assist in and reduce crew extravehicular activity (EVA) for Space Station Freedom (SSF). The FTS will provide a telerobotic capability to the Freedom Station in the early assembly phases of the program and will be employed for assembly, maintenance, and inspection applications throughout the lifetime of the space station. Appropriately configured elements of the FTS will also be employed for robotic manipulation in remote satellite servicing applications and possibly the Lunar/Mars Program. In mid-1989, the FTS entered the flight system design and implementation phase (Phase C/D) of development with the signing of the FTS prime contract with Martin Marietta Astronautics Group in Denver, Colorado. The basic FTS design is now established and can be reported on in some detail. This paper will describe the FTS flight system design and the rationale for the specific design approaches and component selections. The current state of space technology and the general nature of the FTS task dictate that the FTS be designed with sophisticated teleoperation capabilities for its initial primary operating mode. However, there are technologies, such as advanced computer vision and autonomous planning techniques currently in research and advanced development phases which would greatly enhance the FTS capabilities to perform autonomously in less structured work environments. Therefore, a specific requirement on the initial FTS design is that it has the capability to evolve as new technology becomes available. This paper will describe the FTS design approach for evolution to more autonomous capabilities. Some specific task applications of the FTS and partial automation approaches of these tasks will also be discussed in this paper.
McCain, H G; Andary, J F; Hewitt, D R; Haley, D C
1991-01-01
The Flight Telerobotic Servicer (FTS) Project at the Goddard Space Flight Center is developing an advanced telerobotic system to assist in and reduce crew extravehicular activity (EVA) for Space Station) Freedom (SSF). The FTS will provide a telerobotic capability to the Freedom Station in the early assembly phases of the program and will be employed for assembly, maintenance, and inspection applications throughout the lifetime of the space station. Appropriately configured elements of the FTS will also be employed for robotic manipulation in remote satellite servicing applications and possibly the Lunar/Mars Program. In mid-1989, the FTS entered the flight system design and implementation phase (Phase C/D) of development with the signing of the FTS prime contract with Martin Marietta Astronautics Group in Denver, Colorado. The basic FTS design is now established and can be reported on in some detail. This paper will describe the FTS flight system design and the rationale for the specific design approaches and component selections. The current state of space technology and the nature of the FTS task dictate that the FTS be designed with sophisticated teleoperation capabilities for its initial primary operating mode. However, there are technologies, such as advanced computer vision and autonomous planning techniques currently in research and advanced development phases which would greatly enhance the FTS capabilities to perform autonomously in less structured work environments. Therefore, a specific requirement on the initial FTS design is that it has the capability to evolve as new technology becomes available. This paper will describe the FTS design approach for evolution to more autonomous capabilities. Some specific task applications of the FTS and partial automation approaches of these tasks will also be discussed in this paper.
NASA Technical Reports Server (NTRS)
McCain, H. G.; Andary, J. F.; Hewitt, D. R.; Haley, D. C.
1991-01-01
The Flight Telerobotic Servicer (FTS) Project at the Goddard Space Flight Center is developing an advanced telerobotic system to assist in and reduce crew extravehicular activity (EVA) for Space Station) Freedom (SSF). The FTS will provide a telerobotic capability to the Freedom Station in the early assembly phases of the program and will be employed for assembly, maintenance, and inspection applications throughout the lifetime of the space station. Appropriately configured elements of the FTS will also be employed for robotic manipulation in remote satellite servicing applications and possibly the Lunar/Mars Program. In mid-1989, the FTS entered the flight system design and implementation phase (Phase C/D) of development with the signing of the FTS prime contract with Martin Marietta Astronautics Group in Denver, Colorado. The basic FTS design is now established and can be reported on in some detail. This paper will describe the FTS flight system design and the rationale for the specific design approaches and component selections. The current state of space technology and the nature of the FTS task dictate that the FTS be designed with sophisticated teleoperation capabilities for its initial primary operating mode. However, there are technologies, such as advanced computer vision and autonomous planning techniques currently in research and advanced development phases which would greatly enhance the FTS capabilities to perform autonomously in less structured work environments. Therefore, a specific requirement on the initial FTS design is that it has the capability to evolve as new technology becomes available. This paper will describe the FTS design approach for evolution to more autonomous capabilities. Some specific task applications of the FTS and partial automation approaches of these tasks will also be discussed in this paper.
Second Generation RLV Space Vehicle Concept
NASA Astrophysics Data System (ADS)
Bailey, M. D.; Daniel, C. C.
2002-01-01
NASA has a long history of conducting development programs and projects in a consistant fashion. Systems Engineering within those programs and projects has also followed a given method outlined by such documents as the NASA Systems Engineering Handbook. The relatively new NASA Space Launch Initiative (SLI) is taking a new approach to developing a space vehicle, with innovative management methods as well as new Systems Engineering processes. With the program less than a year into its life cycle, the efficacy of these new processes has yet to be proven or disproven. At 776M for phase I, SLI represents a major portion of the NASA focus; however, the new processes being incorporated are not reflected in the training provided by NASA to its engineers. The NASA Academy of Program and Project Leadership (APPL) offers core classes in program and project management and systems engineering to NASA employees with the purpose of creating a "knowledge community where ideas, skills, and experiences are exchanged to increase each other's capacity for strong leadership". The SLI program is, in one sense, a combination of a conceptual design program and a technology program. The program as a whole doesn't map into the generic systems engineering project cycle as currently, and for some time, taught. For example, the NASA APPL Systems Engineering training course teaches that the "first step in developing an architecture is to define the external boundaries of the system", which will require definition of the interfaces with other systems and the next step will be to "define all the components that make up the next lower level of the system hierarchy" where fundamental requirements are allocated to each component. Whereas, the SLI technology risk reduction approach develops architecture subsystem technologies prior to developing architectures. The higher level architecture requirements are not allowed to fully develop and undergo decomposition and allocation down to the subsystems before the subsystems must develop allocated requirements based on the highest level of requirements. In the vernacular of the project cycles prior to the mid 1990's, the architecture definition portion of the program appears to be at a generic Phase A stage, while the subsystems are operating at Phase B. Even the management structure of the SLI program is innovative in its approach to Systems Engineering and is not reflected in the APPL training modules. The SLI program has established a Systems Engineering office as an office separate from the architecture development or the subsystem technology development, while that office does have representatives within these other offices. The distributed resources of the Systems Engineering Office are co=located with the respect Project Offices. This template is intended to provide systems engineering as an integrated function at the Program Level. . Undoubtedly, the program management of SLI and the NIAT agree that "program/project managers and the systems engineering team must work closely together towards the single objective of delivering quality products that meet the customer needs". This paper will explore the differences between the methods being taught by NASA, which represent decades of ideas, and those currently in practice in SLI. Time will tell if the innovation employed by SLI will prove to be the model of the future. For now, it is suggested that the training of the present exercise the flexibility of recognizing the new processes employed by a major new NASA program.
Second Generation RLV Space Vehicle Concept
NASA Technical Reports Server (NTRS)
Bailey, Michelle; Daniel, Charles; Throckmorton, David A. (Technical Monitor)
2002-01-01
NASA has a long history of conducting development programs and projects in a consistent fashion. Systems Engineering within those programs and projects has also followed a given method outlined by such documents as the NASA Systems Engineering Handbook. The relatively new NASA Space Launch Initiative (SLI) is taking a new approach to developing a space vehicle, with innovative management methods as well as new Systems Engineering processes. With the program less than a year into its life cycle, the efficacy of these new processes has yet to be proven or disproven. At $776M for phase 1, SLI represents a major portion of the NASA focus; however, the new processes being incorporated are not reflected in the training provided by NASA to its engineers. The NASA Academy of Program and Project Leadership (APPL) offers core classes in program and project management and systems engineering to NASA employees with the purpose of creating a "knowledge community where ideas, skills, and experiences are exchanged to increase each other's capacity for strong leadership". The SLI program is, in one sense, a combination of a conceptual design program and a technology program. The program as a whole doesn't map into the generic systems engineering project cycle as currently, and for some time, taught. For example, the NASA APPL Systems Engineering training course teaches that the "first step in developing an architecture is to define the external boundaries of the system", which will require definition of the interfaces with other systems and the next step will be to "define all the components that make up the next lower level of the system hierarchy" where fundamental requirements are allocated to each component. Whereas, the SLI technology risk reduction approach develops architecture subsystem technologies prior to developing architectures. The higher level architecture requirements are not allowed to fully develop and undergo decomposition and allocation down to the subsystems before the subsystems must develop allocated requirements based on the highest level of requirements. In the vernacular of the project cycles prior to the mid 1990's, the architecture definition portion of the program appears to be at a generic Phase A stage, while the subsystems are operating at Phase B. Even the management structure of the SLI program is innovative in its approach to Systems Engineering and is not reflected in the APPL training modules. The SLI program has established a Systems Engineering office as an office separate from the architecture development or the subsystem technology development, while that office does have representatives within these other offices. The distributed resources of the Systems Engineering Office are co-located with the respective Project Offices. This template is intended to provide systems engineering as an integrated function at the Program Level. the program management of SLI and the MAT agree that "program/project managers and the systems engineering team must work closely together towards the single objective of delivering quality products that meet the customer needs". This paper will explore the differences between the methods being taught by NASA, which represent decades of ideas, and those currently in practice in SLI. Time will tell if the innovation employed by SLI will prove to be the model of the future. For now, it is suggested that the training of the present exercise the flexibility of recognizing the new processes employed by a major new NASA program.
Advanced launch system. Advanced development oxidizer turbopump program
NASA Technical Reports Server (NTRS)
1993-01-01
On May 19, 1989, Pratt & Whitney was awarded contract NAS8-37595 by the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville Alabama for an Advanced Development Program (ADP) to design, develop and demonstrate a highly reliable low cost, liquid oxygen turbopump for the Advanced Launch System (ALS). The ALS had an overall goal of reducing the cost of placing payloads in orbit by an order of magnitude. This goal would require a substantial reduction in life cycle costs, with emphasis on recurring costs, compared to current launch vehicles. Engine studies supporting these efforts were made for the Space Transportation Main Engine (STME). The emphasis on low cost required design simplification of components and subsystems such that the ground maintenance and test operations was minimized. The results of the Oxygen Turbopump ADP technology effort would provide data to be used in the STME. Initially the STME baseline was a gas generator cycle engine with a vacuum thrust level of 580,000 lbf. This was later increased to 650,000 lbf and the oxygen turbopump design approach was changed to reflect the new thrust level. It was intended that this ADP program be conducted in two phases. Phase 1, a basic phase, would encompass the preliminary design effort, and Phase II, an optional contract phase to cover design, fabrication and test evaluation of an oxygen turbopump at a component test facility at the NASA John C. Stennis Space Center in Mississippi. The basic phase included preliminary design and analysis, evaluation of low cost concepts, and evaluation of fabrication techniques. The option phase included design of the pump and support hardware, analysis of the final configuration to ensure design integrity, fabrication of hardware to demonstrate low cost, DVS Testing of hardware to verify the design, assembly of the turbopump and full scale turbopump testing. In December 1990, the intent of this ADP to support the design and development was changed. The design effort for the oxygen turbopump became part of the STME Phase B contract. The status of the pump design funded through this ADP was presented at the Preliminary Design Review (PDR) at the MSFC on October 24, 1990. Advancements in the design of the pump were subsequently continued under the Phase B Contract. The emphasis of this ADP became the demonstration of individual technologies that would have the greatest potential for reducing the recurring cost and increasing reliability. In October of 1992, overall program funding was reduced and work on this ADP was terminated.
Advanced launch system. Advanced development oxidizer turbopump program
NASA Astrophysics Data System (ADS)
1993-10-01
On May 19, 1989, Pratt & Whitney was awarded contract NAS8-37595 by the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville Alabama for an Advanced Development Program (ADP) to design, develop and demonstrate a highly reliable low cost, liquid oxygen turbopump for the Advanced Launch System (ALS). The ALS had an overall goal of reducing the cost of placing payloads in orbit by an order of magnitude. This goal would require a substantial reduction in life cycle costs, with emphasis on recurring costs, compared to current launch vehicles. Engine studies supporting these efforts were made for the Space Transportation Main Engine (STME). The emphasis on low cost required design simplification of components and subsystems such that the ground maintenance and test operations was minimized. The results of the Oxygen Turbopump ADP technology effort would provide data to be used in the STME. Initially the STME baseline was a gas generator cycle engine with a vacuum thrust level of 580,000 lbf. This was later increased to 650,000 lbf and the oxygen turbopump design approach was changed to reflect the new thrust level. It was intended that this ADP program be conducted in two phases. Phase 1, a basic phase, would encompass the preliminary design effort, and Phase II, an optional contract phase to cover design, fabrication and test evaluation of an oxygen turbopump at a component test facility at the NASA John C. Stennis Space Center in Mississippi. The basic phase included preliminary design and analysis, evaluation of low cost concepts, and evaluation of fabrication techniques. The option phase included design of the pump and support hardware, analysis of the final configuration to ensure design integrity, fabrication of hardware to demonstrate low cost, DVS Testing of hardware to verify the design, assembly of the turbopump and full scale turbopump testing. In December 1990, the intent of this ADP to support the design and development was changed. The design effort for the oxygen turbopump became part of the STME Phase B contract. The status of the pump design funded through this ADP was presented at the Preliminary Design Review (PDR) at the MSFC on October 24, 1990. Advancements in the design of the pump were subsequently continued under the Phase B Contract. The emphasis of this ADP became the demonstration of individual technologies that would have the greatest potential for reducing the recurring cost and increasing reliability. In October of 1992, overall program funding was reduced and work on this ADP was terminated.
Approach to developing reliable space reactor power systems
NASA Technical Reports Server (NTRS)
Mondt, Jack F.; Shinbrot, Charles H.
1991-01-01
During Phase II, the Engineering Development Phase, the SP-100 Project has defined and is pursuing a new approach to developing reliable power systems. The approach to developing such a system during the early technology phase is described along with some preliminary examples to help explain the approach. Developing reliable components to meet space reactor power system requirements is based on a top-down systems approach which includes a point design based on a detailed technical specification of a 100-kW power system. The SP-100 system requirements implicitly recognize the challenge of achieving a high system reliability for a ten-year lifetime, while at the same time using technologies that require very significant development efforts. A low-cost method for assessing reliability, based on an understanding of fundamental failure mechanisms and design margins for specific failure mechanisms, is being developed as part of the SP-100 Program.
Satellite Systems Design/Simulation Environment: A Systems Approach to Pre-Phase A Design
NASA Technical Reports Server (NTRS)
Ferebee, Melvin J., Jr.; Troutman, Patrick A.; Monell, Donald W.
1997-01-01
A toolset for the rapid development of small satellite systems has been created. The objective of this tool is to support the definition of spacecraft mission concepts to satisfy a given set of mission and instrument requirements. The objective of this report is to provide an introduction to understanding and using the SMALLSAT Model. SMALLSAT is a computer-aided Phase A design and technology evaluation tool for small satellites. SMALLSAT enables satellite designers, mission planners, and technology program managers to observe the likely consequences of their decisions in terms of satellite configuration, non-recurring and recurring cost, and mission life cycle costs and availability statistics. It was developed by Princeton Synergetic, Inc. and User Systems, Inc. as a revision of the previous TECHSAT Phase A design tool, which modeled medium-sized Earth observation satellites. Both TECHSAT and SMALLSAT were developed for NASA.
Development of an innovative sandwich common bulkhead for cryogenic upper stage propellant tank
NASA Astrophysics Data System (ADS)
Szelinski, B.; Lange, H.; Röttger, C.; Sacher, H.; Weiland, S.; Zell, D.
2012-12-01
In the frame of the Future Launcher Preparatory Program (FLPP) investigating advancing technologies for the Next Generation of Launchers (NGL) a number of novel key technologies are presently under development for significantly improving vehicle performance in terms of payload capacity and mission versatility. As a respective ESA guided technology development program, Cryogenic Upper Stage Technologies (CUST) has been launched within FLPP that hosts among others the development of a common bulkhead to separate liquid hydrogen from the liquid oxygen compartment. In this context, MT Aerospace proposed an advanced sandwich design concept which is currently in the development phase reaching for TRL4 under MT Aerospace responsibility. Key components of this sandwich common bulkhead are a specific core material, situated in-between two thin aluminum face sheets, and an innovative thermal decoupling element at the equatorial region. The combination of these elements provides excellent thermal insulation capabilities and mechanical performance at a minimum weight, since mechanical and thermal functions are merged in the same component. This improvement is expressed by substantial performance figures of the proposed concept that include high resistance against reverse pressure, an optimized heat leak and minimized mass, involving the sandwich dome structure and the adjacent interface rings. The development of single sub-technologies, all contributing to maturate the sandwich common bulkhead towards the desired technology readiness level (TRL), is described in the context of the given design constraints as well as technical, functional and programmatic requirements, issued from the stage level. This includes the thermal and mechanical characterization of core materials, manufacturing issues as well as non-destructive testing and the thermal and structural analyses and dimensioning of the complete common bulkhead system. Dedicated TRL assessments in the Ariane 5 Mid-life Evolution (A5-ME) program track the progress of these technology developments and analyze their applicability in time for A5-ME. In order to approximate A5-ME concerned preconditions, activities are initiated aiming at harmonization of the available specifications. Hence, a look-out towards a further technology step approaching TRL6 in a subsequent phase is given, briefly addressing topics of full scale manufacture and appropriate thermo-mechanical testing of an entire sandwich common bulkhead.
1975-03-01
Loss Relationships 199 109 37-Tube, 4.5 Area Ratio Nozzle, Premergcd Jet Turbulence Noise 200 110 37-Tube Nozzle Premerged Jet Noise Peak...were obtained with the tunnel oil and at 165 knots. The tunnel air flows through a large , rectangular bell-mouth inlet, a (low straightening grid... ratio conditions on a fourteen-track annlog tape recorder for subsecjuent analysis after test com- pletion. Basic analysis of the recorded acoustic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Fei; Lin, Zhenhong
This paper explored factors that affect market-driven compliance with both Corporate Average Fuel Economy (CAFE) and greenhouse gas (GHG) standards (together called the National Program) in the United States for phase I 2012–2016 and phase II 2017–2025. We considered a consumer-choice-based simulation approach, using the MA3T model, to estimate the market acceptance of fuel efficiency (FE) technologies and alternative fuel technologies as reflected by new sales of light-duty vehicle (LDV). Because both full and extremely low FE valuations are common in the literature, we use a moderate assumption of a 10-year perceived vehicle lifetime at a 7% annual discount ratemore » in the baseline and include both extreme views (5 years and 15 years) in the sensitivity analysis. The study focuses on market-driven compliance and therefore excludes manufacturers’ cross-subsidization. The model results suggest that the LDV industry is able to comply with both standards even without cross-subsidization and with projected high technology cost, mainly thanks to the multiple credit programs and technology advancements. The compliance robustness, while encouraging, however is based on moderate market assumptions, such as Annual Energy Outlook 2016 Reference oil price projection and moderate FE consumer valuation. Finally, sensitivity analysis results reveal two significant risk factors for compliance: low oil prices and consumers’ FE undervaluation.« less
Advanced Polymer Technology for Containing and Immobilizing Strontium-90 in the Subsurface - 8361
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. Baker; G. Heath; C. Scott
2008-02-01
Many Department of Energy (DOE) sites, including Idaho and Hanford, have heavy metals and/or radionuclides (e.g. strontium-90) present that are strongly adsorbed in the vadose zone, but which nevertheless are propagating toward the water table. A key challenge for immobilization of these contaminants is bringing the chosen amendment or remediation technology into contact with the contaminated porous medium, while ensuring that contaminated water and colloids do not escape. This is particularly challenging when the subsurface geology is complex and highly heterogeneous, as is the case at many DOE sites. The Idaho National Laboratory (INL) in collaboration with the University ofmore » Texas at Austin (UT) has conducted research sponsored through the DOE Office of Environmental Management (EM) Advanced Remediation Technologies Phase I program that successfully demonstrated application of a novel, pH-triggered advanced polymer for creating a physical barrier that prevents heavy metals and radionuclides in vadose zone soil and soil-pore water from migrating to the groundwater. The focus of this paper is on the column and sandbox experiments conducted by researchers at the Idaho National Laboratory in support of the Phase I program objectives. Proof of these concepts provides a technology basis for confining or isolating a volume of contaminated groundwater, to be implemented in future investigations at the Vadose Zone Research Park (VZRP) at INL.« less
Xie, Fei; Lin, Zhenhong
2017-06-09
This paper explored factors that affect market-driven compliance with both Corporate Average Fuel Economy (CAFE) and greenhouse gas (GHG) standards (together called the National Program) in the United States for phase I 2012–2016 and phase II 2017–2025. We considered a consumer-choice-based simulation approach, using the MA3T model, to estimate the market acceptance of fuel efficiency (FE) technologies and alternative fuel technologies as reflected by new sales of light-duty vehicle (LDV). Because both full and extremely low FE valuations are common in the literature, we use a moderate assumption of a 10-year perceived vehicle lifetime at a 7% annual discount ratemore » in the baseline and include both extreme views (5 years and 15 years) in the sensitivity analysis. The study focuses on market-driven compliance and therefore excludes manufacturers’ cross-subsidization. The model results suggest that the LDV industry is able to comply with both standards even without cross-subsidization and with projected high technology cost, mainly thanks to the multiple credit programs and technology advancements. The compliance robustness, while encouraging, however is based on moderate market assumptions, such as Annual Energy Outlook 2016 Reference oil price projection and moderate FE consumer valuation. Finally, sensitivity analysis results reveal two significant risk factors for compliance: low oil prices and consumers’ FE undervaluation.« less
Development of a Low Cost 10kW Tubular SOFC Power System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bessette, Norman; Litka, Anthony; Rawson, Jolyon
The DOE program funded from 2003 through early 2013 has brought the Acumentrics SOFC program from an early stage R&D program to an entry level commercial product offering. The development work started as one of the main core teams under the DOE Solid State Energy Conversion Alliance (SECA) program administered by the National Energy Technology Laboratory (NETL) of the DOE. During the first phase of the program, lasting approximately 3-4 years, a 5kW machine was designed, manufactured and tested against the specification developed by NETL. This unit was also shipped to NETL for independent verification testing which validated all ofmore » the results achieved while in the laboratory at Acumentrics. The Acumentrics unit passed all criteria established from operational stability, efficiency, and cost projections. Passing of the SECA Phase I test allowed the program to move into Phase II of the program. During this phase, the overall objective was to further refine the unit meeting a higher level of performance stability as well as further cost reductions. During the first year of this new phase, the NETL SECA program was refocused towards larger size units and operation on coal gasification due to the severe rise in natural gas prices and refocus on the US supply of indigenous coal. At this point, the program was shifted to the U.S. DOE’s Energy Efficiency and Renewable Energy (EERE) division located in Golden, Colorado. With this shift, the focus remained on smaller power units operational on gaseous fuels for a variety of applications including micro combined heat and power (mCHP). To achieve this goal, further enhancements in power, life expectancy and reductions in cost were necessary. The past 5 years have achieved these goals with machines that can now achieve over 40% electrical efficiency and field units that have now operated for close to a year and a half with minimal maintenance. The following report details not only the first phase while under the SECA program and the key achievements but also the results while under EERE’s leadership and the transition to an early commercial product offering.« less
NASA Technical Reports Server (NTRS)
Horsham, Gary A. P.
1999-01-01
Governmental departments and agencies with responsibilities for implementing the Small Business Innovative Research program under the auspices of the Small Business Administration, are now required to be more accountable for phase 3 performance. At NASA Glenn Research Center, internal, one-on-one interviews were conducted with seven contracting officer technical representatives who have managed one or more SBIR contracts through completion of phase 2. A questionnaire consisting of nineteen questions was formulated and used for the above purpose. This self-assessment produced several comments, conclusions, and recommendations for consideration and potential application.
NASA Technical Reports Server (NTRS)
Fear, J. S.
1983-01-01
An assessment is made of the results of Phase 1 screening testing of current and advanced combustion system concepts using several broadened-properties fuels. The severity of each of several fuels-properties effects on combustor performance or liner life is discussed, as well as design techniques with the potential to offset these adverse effects. The selection of concepts to be pursued in Phase 2 refinement testing is described. This selection takes into account the relative costs and complexities of the concepts, the current outlook on pollutant emissions control, and practical operational problems.
The next century astrophysics program
NASA Technical Reports Server (NTRS)
Swanson, Paul N.
1992-01-01
The Astrophysics Division within the NASA Office of Space Science and Applications (OSSA) has defined a set of flagship and intermediate missions that are presently under study for possible launch during the next 20 years. These missions and tentative schedules, referred to as the Astrotech 21 Mission Set, are summarized. The missions are in three groups corresponding to the cognizant science branch within the Astrophysics Division. Phase C/D refers to the pre-launch construction and delivery of the spacecraft, and the Operations Phase refers to the period when the mission is active in space. Approximately 1.5 years before the start of Phase C/D, a non-advocate review (NAR) is held to ensure that the mission/system concept and the requisite technology are at an appropriate stage of readiness for full scale development to begin. Therefore, technology development is frozen (usually) as of the date of a successful NAR. An overview of the technology advances required for each of the three wavelength groups is provided in the following paragraphs, along with a brief description of the individual missions.
Dreher, H Michael; Cornelius, Fran; Draper, Judy; Pitkar, Harshad; Manco, Janet; Song, Il-Yeol
2006-01-01
Phase I of our Gerontological Reasoning Informatics Project (GRIP) began in the summer of 2002 when all 37 senior undergraduate nursing students in our accelerated BSN nursing program were given PDAs. These students were oriented to use a digitalized geriatric nursing assessment tool embedded into their PDA in a variety of geriatric clinical agencies. This informatics project was developed to make geriatric nursing more technology oriented and focused on seven modules of geriatric assessment: intellect (I), nutrition (N), self-concept (S), physical activity (P), interpersonal functioning (I), restful sleep (R), and elimination (E)--INSPIRE. Through phase II and now phase III, the GRIP Project has become a major collaboration between the College of Nursing & Health Professions and College of Information Science and Technology at Drexel University. The digitalized geriatric nursing health assessment tool has undergone a second round of reliability and validity testing and is now used to conduct a 20 minute comprehensive geriatric health assessment on the PDA, making our undergraduate gerontology course the most high tech clinical course in our nursing curriculum.
Advanced Communications Technology Satellite (ACTS). Phase 1: Industrial/academic experimenters
NASA Technical Reports Server (NTRS)
Maisel, James E.; Nowlin, Robert W.
1992-01-01
This report presents the work done at Arizona State University under the ACTS Experimenters Program. The main thrust of the Program was to develop experiments to test, evaluate, and prove the commercial worthiness of the ACTS satellite which is scheduled for launch in 1993. To accomplish this goal, meetings were held with various governmental, industrial, and academic units to discuss the ACTS satellite and its technology and possible experiments that would generate industrial interest and support for ASU's efforts. Several local industries generated several experiments of their own. The investigators submitted several experiments of educational, medical, commercial, and technical value and interest. The disposition of these experimental proposals is discussed in this report.
High Speed Research Program Structural Acoustics Multi-Year Summary Report
NASA Technical Reports Server (NTRS)
Beier, Theodor H.; Bhat, Waman V.; Rizzi, Stephen A.; Silcox, Richard J.; Simpson, Myles A.
2005-01-01
This report summarizes the work conducted by the Structural Acoustics Integrated Technology Development (ITD) Team under NASA's High Speed Research (HSR) Phase II program from 1993 to 1999. It is intended to serve as a reference for future researchers by documenting the results of the interior noise and sonic fatigue technology development activities conducted during this period. For interior noise, these activities included excitation modeling, structural acoustic response modeling, development of passive treatments and active controls, and prediction of interior noise. For sonic fatigue, these activities included loads prediction, materials characterization, sonic fatigue code development, development of response reduction techniques, and generation of sonic fatigue design requirements. Also included are lessons learned and recommendations for future work.
NASA Technical Reports Server (NTRS)
Treon, S. L.
1979-01-01
A survey of the U.S. aerospace industry in late 1977 suggests that there will be an increasing use of computer-aided prediction-design technology (CPD Tech) in the aircraft development process but that, overall, only a modest reduction in wind-tunnel test requirements from the current level is expected in the period through 1995. Opinions were received from key spokesmen in 23 of the 26 solicited major companies or corporate divisions involved in the design and manufacture of nonrotary wing aircraft. Development programs for nine types of aircraft related to test phases and wind-tunnel size and speed range were considered.
Dual Space Technology Transfer
NASA Astrophysics Data System (ADS)
Kowbel, W.; Loutfy, R.
2009-03-01
Over the past fifteen years, MER has had several NASA SBIR Phase II programs in the area of space technology, based upon carbon-carbon (C-C) composites. In addition, in November 2004, leading edges supplied by MER provided the enabling technology to reach a Mach 10 record for an air breathing engine on the X-43 A flight. The MER business model constitutes a spin-off of technologies initially by incubating in house, and ultimately creating spin-off stand alone companies. FMC was formed to provide for technology transfer in the area of fabrication of C-C composites. FMC has acquired ISO 9000 and AS9100 quality certifications. FMC is fabricating under AS9100 certification, flight parts for several flight programs. In addition, FMC is expanding the application of carbon-carbon composites to several critical military programs. In addition to space technology transfer to critical military programs, FMC is becoming the world leader in the commercial area of low-cost C-C composites for furnace fixtures. Market penetrations have been accomplished in North America, Europe and Asia. Low-cost, quick turn-around and excellent quality of FMC products paves the way to greatly increased sales. In addition, FMC is actively pursuing a joint venture with a new partner, near closure, to become the leading supplier of high temperature carbon based composites. In addition, several other spin-off companies such as TMC, FiC, Li-Tech and NMIC were formed by MER with a plethora of potential space applications.
Methods for heat transfer and temperature field analysis of the insulated diesel
NASA Technical Reports Server (NTRS)
Morel, T.; Blumberg, P. N.; Fort, E. F.; Keribar, R.
1984-01-01
Work done during phase 1 of a three-year program aimed at developing a comprehensive heat transfer and thermal analysis methodology oriented specifically to the design requirements of insulated diesel engines is reported. The technology developed in this program makes possible a quantitative analysis of the low heat rejection concept. The program is comprehensive in that it addresses all the heat transfer issues that are critical to the successful development of the low heat rejection diesel engine: (1) in-cylinder convective and radiative heat transfer; (2) cyclic transient heat transfer in thin solid layers at component surfaces adjacent to the combustion chamber; and (3) steady-state heat conduction in the overall engine structure. The Integral Technologies, Inc. (ITI) program is comprised of a set of integrated analytical and experimental tasks. A detailed review of the ITI program approach is provided, including the technical issues which underlie it and a summay of the methods that were developed.
NASA Technical Reports Server (NTRS)
1979-01-01
The potentials and requirements of advanced photovoltaic technologies still in their early developmental stages were evaluated and compared to the present day single crystal silicon wafer technology and to each other. The major areas of consideration include polycrystalline and amorphous silicon, single crystal and polycrystalline gallium arsenide, and single crystal and polycrystalline cadmium sulfide. A rank ordering of the advanced technologies is provided. The various ranking schemes were based upon present-day efficiency levels, their stability and long-term reliability prospects, material availability, capital investments both at the laboratory and production level, and associated variable costs. An estimate of the timing of the possible readiness of these advanced technologies for technology development programs and industrialization is presented along with a set of recommended government actions concerning the various advanced technologies.
Power management and distribution system for a More-Electric Aircraft (MADMEL) -- Program status
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maldonado, M.A.; Shah, N.M.; Cleek, K.J.
1995-12-31
A number of technology breakthroughs in recent years have rekindled the concept of a more-electric aircraft. High-power solid-state switching devices, electrohydrostatic actuators (EHAs), electromechanical actuators (EMAs), and high-power generators are just a few examples of component developments that have made dramatic improvements in properties such as weight, size, power, and cost. However, these components cannot be applied piecemeal. A complete, and somewhat revolutionary, system design approach is needed to exploit the benefits that a more-electric aircraft can provide. A five-phase Power Management and Distribution System for a More-Electric Aircraft (MADMEL) program was awarded by the Air Force to the Northrop/Grumman,more » Military Aircraft Division team in September 1991. The objective of the program is to design, develop, and demonstrate an advanced electrical power generation and distribution system for a more-electric aircraft (MEA). The MEA emphasizes the use of electrical power in place of hydraulics, pneumatic, and mechanical power to optimize the performance and life cycle cost of the aircraft. This paper presents an overview of the MADMEL program and a top-level summary of the program results, development and testing of major components to date. In Phase 1 and Phase 2 studies, the electrical load requirements were established and the electrical power system architecture was defined for both near-term (NT-year 1996) and far-term (FT-year 2003) MEA application. The detailed design and specification for the electrical power system (EPS), its interface with the Vehicle Management System, and the test set-up were developed under the recently completed Phase 3. The subsystem level hardware fabrication and testing will be performed under the on-going Phase 4 activities. The overall system level integration and testing will be performed in Phase 5.« less
Brief state-of-the-art review on optical communications for the NASA ISES workshop
NASA Technical Reports Server (NTRS)
Hendricks, Herbert D.
1990-01-01
The current state of the art of optical communications is briefly reviewed. This review covers NASA programs, DOD and other government agency programs, commercial aerospace programs, and foreign programs. Included is a brief summary of a recent NASA workshop on optical communications. The basic conclusions from all the program reviews is that optical communications is a technology ready to be accepted but needed to be demonstrated. Probably the most advanced and sophisticated optical communications system is the Laser Intersatellite Transmission Experiment (LITE) system developed for flight on the Advanced Communications Technology Satellite (ACTS). Optical communications technology is available for the applications of data communications at data rates in the under 300 MBits/sec for nearly all applications under 2 times GEO distances. Applications for low-earth orbiter (LEO) to ground will allow data rates in the multi-GBits/sec range. Higher data rates are limited by currently available laser power. Phased array lasers offer technology which should eliminate this problem. The major problem of cloud coverage can probably be eliminated by look ahead pointing, multiple ground stations, and knowledge of weather conditions to control the pointing. Most certainly, optical communications offer a new spectral region to relieve the RF bands and very high data communications rates that will be required in less than 10 years to solve the communications problems on Earth.
Orbit transfer rocket engine technology program. Phase 2: Advanced engine study
NASA Technical Reports Server (NTRS)
Erickson, C.; Martinez, A.; Hines, B.
1987-01-01
In Phase 2 of the Advanced Engine Study, the Failure Modes and Effects Analysis (FMEA) maintenance-driven engine design, preliminary maintenance plan, and concept for space operable disconnects generated in Phase 1 were further developed. Based on the results of the vehicle contractors Orbit Transfer Vehicle (OTV) Concept Definition and System Analysis Phase A studies, minor revisions to the engine design were made. Additional refinements in the engine design were identified through further engine concept studies. These included an updated engine balance incorporating experimental heat transfer data from the Enhanced Heat Load Thrust Chamber Study and a Rao optimum nozzle contour. The preliminary maintenance plan of Phase 1 was further developed through additional studies. These included a compilation of critical component lives and life limiters and a review of the Space Shuttle Main Engine (SSME) operations and maintenance manual in order to begin outlining the overall maintenance procedures for the Orbit Transfer Vehicle Engine and identifying technology requirements for streamlining space-based operations. Phase 2 efforts also provided further definition to the advanced fluid coupling devices including the selection and preliminary design of a preferred concept and a preliminary test plan for its further development.
NASA Astrophysics Data System (ADS)
Herbert, B. E.; Schielack, J. F.
2004-12-01
Teachers immersed in authentic science inquiry in professional development programs, with the goal of transferring the nature of scientific research to the classroom, face two enormous problems: (1) issues surrounding the required knowledgebase, skills set, and habits of mind of the teachers that control, to a large degree, the ability of teachers to immerse themselves in authentic scientific research in the available time, and (2) the difficulties in transferring this experience to the classroom. Most professional development programs utilize one of two design models, the first limits the authenticity of the scientific experience while placing more emphasis on pedagogical issues, and second where teachers are immersed in scientific research, often through mentoring programs with scientists, but with less explicit attention to problems of transfer to the classroom. The ITS Center for Teaching and Learning (its.tamu.edu), a five-year NSF-funded collaborative program that engages scientists, educational researchers, and educators in the use of information technology to improve science teaching and learning at all levels, has developed a model that supports teachers' learning about authentic scientific research, pedagogical training in inquiry-based learning, and educational research in their own classrooms on the impacts of using information technology to promote authentic science experiences for their students. This connection is achieved through scaffolding by information technology that supports the modeling, visualization and exploration of complex data sets to explore authentic scientific questions that can be integrated within the 7-16 curriculum. Our professional development model constitutes a Learning Research Cycle, which is characterized as a seamless continuum of inquiry activities and prolonged engagement in a learning community of educators, scientists, and mathematicians centered on the development of teachers' pedagogical content knowledge as it relates to the use of information technology in doing, learning, and teaching science. This talk will explore the design changes of the geoscience team of the ITS as it moved from Phase I (the planned program designed in-house) to Phase II (the experimental program being tested in-house) over two, two-year cohorts. We have assessed the impact of our Learning Research Cycle model on ITS participants using both a mixed model assessment of learning products, surveys, interviews, and teacher inquiry projects. Assessment results indicate that teachers involved in the second cohort improved their understanding of geoscience and inquiry-based learning, while improving their ability to establish authentic inquiry in their classrooms through the use of information technology and to assess student learning.
10 CFR 603.410 - Announcement content.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Announcement content. 603.410 Section 603.410 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Competition Phase § 603.410 Announcement content. Once the contracting officer, in consultation with the program official, considers the factors described in Subpart...
10 CFR 603.410 - Announcement content.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Announcement content. 603.410 Section 603.410 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Competition Phase § 603.410 Announcement content. Once the contracting officer, in consultation with the program official, considers the factors described in Subpart...
10 CFR 603.410 - Announcement content.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Announcement content. 603.410 Section 603.410 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Competition Phase § 603.410 Announcement content. Once the contracting officer, in consultation with the program official, considers the factors described in Subpart...
10 CFR 603.410 - Announcement content.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Announcement content. 603.410 Section 603.410 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Competition Phase § 603.410 Announcement content. Once the contracting officer, in consultation with the program official, considers the factors described in Subpart...
48 CFR 1852.219-81 - Limitation on subcontracting-SBIR Phase II program.
Code of Federal Regulations, 2010 CFR
2010-10-01
... must be approved in advance and in writing by the Contracting Officer. Since the selection of R&D contractors is substantially based on the best scientific and technological sources, it is important that the Contractor not subcontract technical or scientific work without the Contracting Officer's advance approval...
48 CFR 1852.219-81 - Limitation on subcontracting-SBIR Phase II program.
Code of Federal Regulations, 2011 CFR
2011-10-01
... must be approved in advance and in writing by the Contracting Officer. Since the selection of R&D contractors is substantially based on the best scientific and technological sources, it is important that the Contractor not subcontract technical or scientific work without the Contracting Officer's advance approval...
Academic Learning Revisited: Curriculum Innovation in an Australian University.
ERIC Educational Resources Information Center
Dovey, Ken; Green, Jenny; McQueen, Meryl
2001-01-01
Explores University of Technology, Sydney's process to transform its program in management of third sector organizations because of the profound social change caused by globalization. Analyzes the nature of the crisis, offers a rationale for the strategic action taken, and evaluates the first-phase implementation, including the politics of…
10 CFR 603.410 - Announcement content.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Announcement content. 603.410 Section 603.410 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Competition Phase § 603.410 Announcement content. Once the contracting officer, in consultation with the program official, considers the factors described in Subpart...
77 FR 46855 - Small Business Technology Transfer Program Policy Directive
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-06
... awards and commercializing their research. As a result, these benchmarks will only apply to those Phase I... Research and Development Enhancement Act of 1992 (SBRDEA), Public Law 102-564 (codified at 15 U.S.C. 638... business concerns (SBCs) and Research Institutions through Federally-funded research or research and...
Inflatable TORUS Solar Array Technology Program. Phase 2.
1994-01-01
Sample #4 represented a poor bond rather than a degradation of bond strength due to the coating. Tensiometer Head ... SlrCl=-- Acrylic Base Figure 105...34 trampoline " suspended blanket. The addition of this sprung mass lowers the natural frequency. o This test was performed in ambient conditions; the flat
NASA Technical Reports Server (NTRS)
1982-01-01
A close-up photo of the spin chute mounted on the rear fuselage of the AFTI F-16, a safety device designed to prevent the loss of aircraft in spin conditions. Under some circumstances, pilots cannot recover from spins using normal controls. It these instances, the spin chute is deployed, thus 'breaking' the spin and enabling the pilot to recover. The spin chute is held in a metal cylinder attached to the AFTI F-16 by four tubes, a structure strong enough to withstand the shock of the spin chute opening. Unlike the air probe in the last photo, spin chutes are not standard equipment on research or prototype aircraft but are commonly attached expressly for actual spin tests. During the 1980s and 1990s, NASA and the U.S. Air Force participated in a joint program to integrate and demonstrate new avionics technologies to improve close air support capabilities in next-generation aircraft. The testbed aircraft, seen here in flight over the desert at NASA's Dryden Flight Research Center, Edwards, California, was called the Advanced Fighter Technology Integration (AFTI) F-16. The tests demonstrated technologies to improve navigation and the pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. The aircraft--an F-16A Fighting Falcon (Serial #75-0750)--underwent numerous modifications. A relatively low-cost testbed, it evaluated the feasability of advanced, intergrated-sensor, avionics, and flight control technologies. During the first phase of the AFTI/F-16 program, which began in 1983, the aircraft demonstrated voice-actuated commands, helmet-mounted sights, flat turns, and selective fuselage pointing using forward-mounted canards and a triplex digital flight control computer system. The second phase of research, which began in the summer of 1991, demonstrated advanced technologies and capabilities to find and destroy ground targets day or night, and in adverse weather while using maneuverability and speed at low altitude. This phase was known as the close air support and battlefield air interdiction (CAS/BAI) phase. Finally, the aircraft was used to assess the Automatic Ground Collision Avoidance System (Auto - GCAS), a joint project with the Swedish Government. For these tests, the pilot flew the aircraft directly toward the ground, simulating a total loss of control. The GCAS was designed to take command in such emergencies and bring the aircraft back to level flight. The AFTI F-16 program ended at Dryden on November 4, 1997 after 15 years and over 700 research flights. The USAF continued to fly the aircraft until retiring it to the Air Force Museum on January 9, 2001.
Small Business Innovation Research. Abstracts of Phase I awards, 1999
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1999-12-01
This booklet presents technical abstracts of Phase I awards made in Fiscal Year (FY) 1999 under the DOE Small Business Innovation Research (SBIR) program. SBIR research explores innovative concepts in important technological and scientific areas that can lead to valuable new technology and products. The work described in the abstracts is novel, high-risk research, but the benefits will also be potentially high if the objectives are met. Brief comments on the potential applications, as described by the awardee, are given after each abstract. Individuals and organizations, including venture capital and larger industrial firms, with an interest in the research describedmore » in any of the abstracts are encouraged to contact the appropriate small business directly.« less