Sample records for technology readiness levels

  1. Maturity Assessment of Space Plug-and-Play Architecture

    DTIC Science & Technology

    2013-03-01

    SSM SPA Service Module SRL System Readiness Level TAT Time-at-Tone TRA Technology Readiness Assessment TRL Technology Readiness Level USB Universal...maturity assessment—the Technology Readiness Level (TRL) process, the Integration Readiness Level (IRL) process, and the System Readiness Level ( SRL ...is an important hallmark of the SPA concept, and makes possible the composability and scalability of system designs that employ it. 14 4. SPA

  2. System analysis for technology transfer readiness assessment of horticultural postharvest

    NASA Astrophysics Data System (ADS)

    Hayuningtyas, M.; Djatna, T.

    2018-04-01

    Availability of postharvest technology is becoming abundant, but only a few technologies are applicable and useful to a wider community purposes. Based on this problem it requires a significant readiness level of transfer technology approach. This system is reliable to access readiness a technology with level, from 1-9 and to minimize time of transfer technology in every level, time required technology from the selection process can be minimum. Problem was solved by using Relief method to determine ranking by weighting feasible criteria on postharvest technology in each level and PERT (Program Evaluation Review Technique) to schedule. The results from ranking process of post-harvest technology in the field of horticulture is able to pass level 7. That, technology can be developed to increase into pilot scale and minimize time required for technological readiness on PERT with optimistic time of 7,9 years. Readiness level 9 shows that technology has been tested on the actual conditions also tied with estimated production price compared to competitors. This system can be used to determine readiness of technology innovation that is derived from agricultural raw materials and passes certain stages.

  3. Technology and Manufacturing Readiness of Early Market Motive and Non-Motive Hydrogen Storage Technologies for Fuel Cell Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronnebro, Ewa

    PNNL’s objective in this report is to provide DOE with a technology and manufacturing readiness assessment to identify hydrogen storage technologies’ maturity levels for early market motive and non-motive applications and to provide a path forward toward commercialization. PNNL’s Technology Readiness Assessment (TRA) is based on a combination of Technology Readiness Level (TRL) and Manufacturing Readiness Level (MRL) designations that enable evaluation of hydrogen storage technologies in varying levels of development. This approach provides a logical methodology and roadmap to enable the identification of hydrogen storage technologies, their advantages/disadvantages, gaps and R&D needs on an unbiased and transparent scale thatmore » is easily communicated to interagency partners. The TRA report documents the process used to conduct the TRA, reports the TRL and MRL for each assessed technology and provides recommendations based on the findings.« less

  4. Technology Readiness Level Guidebook

    DOT National Transportation Integrated Search

    2017-09-01

    This guidebook provides the necessary information for conducting a Technology Readiness Level (TRL) Assessment. TRL Assessments are a tool for determining the maturity of technologies and identifying next steps in the research process. This guidebook...

  5. Analysis of user readiness toward ICT usage at small medium enterprise in south tangerang

    NASA Astrophysics Data System (ADS)

    Napitupulu, D.; Syafrullah, M.; Rahim, R.; Abdullah, D.; Setiawan, MI

    2018-04-01

    Utilization of Information and Communication Technology (ICT) is still relatively low in the level of SMEs due to various limitations ranging from access to capital, till the marketing network. ICT is present to provide the ability for SMEs in improving the benefits and competitive advantage of the organization. This study aims to determine the level of readiness of SMEs in utilizing technology, especially ICT. The methodology used is a survey to see the technology readiness of 107 SMEs in South Tangerang selected by purposive sampling. The approach used is TRI (Technology Readiness Index) which is the individual perception of technology based on four criteria that is optimism, innovativeness, discomfort and insecurity. The results showed that the optimism and innovativeness variables significantly positively influence the technology readiness while the variables of discomfort and insecurity also significantly positively influence the readiness of ICT.

  6. Technology Readiness of School Teachers: An Empirical Study of Measurement and Segmentation

    ERIC Educational Resources Information Center

    Badri, Masood; Al Rashedi, Asma; Yang, Guang; Mohaidat, Jihad; Al Hammadi, Arif

    2014-01-01

    The Technology Readiness Index (TRI) developed by Parasuraman (2000) was adapted to measure the technology readiness of public school teachers in Abu Dhabi, United Arab Emirates. The study aims at better understanding the factors (mostly demographics) that affect such readiness levels. In addition, Abu Dhabi teachers are segmented into five main…

  7. Orbit transfer rocket engine integrated control and health monitoring system technology readiness assessment

    NASA Technical Reports Server (NTRS)

    Bickford, R. L.; Collamore, F. N.; Gage, M. L.; Morgan, D. B.; Thomas, E. R.

    1992-01-01

    The objectives of this task were to: (1) estimate the technology readiness of an integrated control and health monitoring (ICHM) system for the Aerojet 7500 lbF Orbit Transfer Vehicle engine preliminary design assuming space based operations; and (2) estimate the remaining cost to advance this technology to a NASA defined 'readiness level 6' by 1996 wherein the technology has been demonstrated with a system validation model in a simulated environment. The work was accomplished through the conduct of four subtasks. In subtask 1 the minimally required functions for the control and monitoring system was specified. The elements required to perform these functions were specified in Subtask 2. In Subtask 3, the technology readiness level of each element was assessed. Finally, in Subtask 4, the development cost and schedule requirements were estimated for bringing each element to 'readiness level 6'.

  8. Cost, Time, and Risk Assessment of Different Wave Energy Converter Technology Development Trajectories: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Jochem W; Laird, Daniel; Costello, Ronan

    This paper presents a comparative assessment of three fundamentally different wave energy converter technology development trajectories. The three technology development trajectories are expressed and visualised as a function of technology readiness levels and technology performance levels. The assessment shows that development trajectories that initially prioritize technology readiness over technology performance are likely to require twice the development time, consume a threefold of the development cost, and are prone to a risk of technical or commercial failure of one order of magnitude higher than those development trajectories that initially prioritize technology performance over technology readiness.

  9. The Development of Model for Measuring Railway Wheels Manufacturing Readiness Level

    NASA Astrophysics Data System (ADS)

    Inrawan Wiratmadja, Iwan; Mufid, Anas

    2016-02-01

    In an effort to grow the railway wheel industry in Indonesia and reduce the dependence on imports, Metal Industries Development Center (MIDC) makes the implementation of the railway wheel manufacturing technology in Indonesia. MIDC is an institution based on research and development having a task to research the production of railway wheels prototype and acts as a supervisor to the industry in Indonesia, for implementing the railway wheel manufacturing technology. The process of implementing manufacturing technology requires a lot of resources. Therefore it is necessary to measure the manufacturing readiness process. Measurement of railway wheels manufacturing readiness was in this study done using the manufacturing readiness level (MRL) model from the United States Department of Defense. MRL consists of 10 manufacturing readiness levels described by 90 criteria and 184 sub-criteria. To get a manufacturing readiness measurement instrument that is good and accurate, the development process involved experts through expert judgment method and validated with a content validity ratio (CVR). Measurement instrument developed in this study consist of 448 indicators. The measurement results show that MIDC's railway wheels manufacturing readiness is at the level 4. This shows that there is a gap between the current level of manufacturing readiness owned by MIDC and manufacturing readiness levels required to achieve the program objectives, which is level 5. To achieve the program objectives at level 5, a number of actions were required to be done by MIDC. Indicators that must be improved to be able to achieve level 5 are indicators related to the cost and financing, process capability and control, quality management, workers, and manufacturing management criteria.

  10. Production technology readiness assessment of surfactant in the research center for Chemistry-Indonesian Institute of Sciences

    NASA Astrophysics Data System (ADS)

    Setiawan, Arief Ameir Rahman; Sulaswatty, Anny

    2017-11-01

    The common problem faced by the institution working on research, innovation and technology development is lack of quantitative measures to determine the technology readiness of research. No common communication language between R & D Institutions and industry about the level of preparedness of a research resulting a barrier to technology diffusion interaction. This lack of connection between R & D institutes with industry may lead to "sluggishness" occurs in innovating. For such circumstance, assessing technology readiness of research is very important. One of wide spread methods for the assessment is Technology Readiness Level (TRL, also known as Technometer), which is introduced by NASA (National Aeronautics and Space Administration). TRL is a general guide that provides an overview of maturity level of a technology. This study aims to identify and demonstrate the implementation of TRL to assess a number of surfactant researches in the Research Center for Chemistry, Indonesian Institute of Sciences. According to the assessment, it has been obtained the surfactant recommended for further development towards commercialization of R & D results, i.e. Glycerol Mono Stearate (GMS), which has reached the level of TRL 7.

  11. Technological assessment of local manufacturers for wind turbine blade manufacturing in Pakistan

    NASA Astrophysics Data System (ADS)

    Mahmood, Khurram; Haroon, General

    2012-11-01

    Composite materials manufacturing industry is one of the world's hi-tech industry. Manufacturing of wind turbine blades is one of the specialized fields requiring high degree of precision and composite manufacturing techniques. This paper identifies the industries specializing in the composite manufacturing and is able to manufacture wind turbines blades in Pakistan. In the second phase, their technology readiness level is determined, based on some factors and then a readiness level are assigned to them. The assigned technology readiness level will depict the absorptive capacity of each manufacturing unit and its capability to take on such projects. The individual readiness level of manufacturing unit will then be used to establish combined technology readiness level of Pakistan particularly for wind turbine blades manufacturing. The composite manufacturing industry provides many spin offs and a diverse range of products can be manufactured using this facility. This research will be helpful to categorize the strong points and flaws of local industry for the gap analysis. It can also be used as a prerequisite study before the evaluation of technologies and specialties to improve the industry of the country for the most favorable results. This will form a basic data base which can be used for the decision making related to transfer of technology, training of local skilled workers and general up-gradation of the local manufacturing units.

  12. SCRL-Model for Human Space Flight Operations Enterprise Supply Chain

    NASA Technical Reports Server (NTRS)

    Tucker, Brian; Paxton, Joseph

    2010-01-01

    This paper will present a Supply Chain Readiness Level (SCRL) model that can be used to evaluate and configure adaptable and sustainable program and mission supply chains at an enterprise level. It will also show that using SCRL in conjunction with Technology Readiness Levels (TRLs), Manufacturing Readiness Levels (MRLs) and National Aeronautics Space Administrations (NASA s) Project Lifecycle Process will provide a more complete means of developing and evaluating a robust sustainable supply chain that encompasses the entire product, system and mission lifecycle. In addition, it will be shown that by implementing the SCRL model, NASA can additionally define supplier requirements to enable effective supply chain management (SCM). Developing and evaluating overall supply chain readiness for any product, system and mission lifecycle is critical for mission success. Readiness levels are presently being used to evaluate the maturity of technology and manufacturing capability during development and deployment phases of products and systems. For example, TRLs are used to support the assessment of the maturity of a particular technology and compare maturity of different types of technologies. MRLs are designed to assess the maturity and risk of a given technology from a manufacturing perspective. In addition, when these measurement systems are used collectively they can offer a more comprehensive view of the maturity of the system. While some aspects of the supply chain and supply chain planning are considered in these familiar metric systems, certain characteristics of an effective supply chain, when evaluated in more detail, will provide an improved insight into the readiness and risk throughout the supply chain. Therefore, a system that concentrates particularly on supply chain attributes is required to better assess enterprise supply chain readiness.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobos, Peter Holmes; Malczynski, Leonard A.; Walker, La Tonya Nicole

    People save for retirement throughout their career because it is virtually impossible to save all you’ll need in retirement the year before you retire. Similarly, without installing incremental amounts of clean fossil, renewable or transformative energy technologies throughout the coming decades, a radical and immediate change will be near impossible the year before a policy goal is set to be in place. This notion of steady installation growth over acute installations of technology to meet policy goals is the core topic of discussion for this research. This research operationalizes this notion by developing the theoretical underpinnings of regulatory and marketmore » acceptance delays by building upon the common Technology Readiness Level (TRL) framework and offers two new additions to the research community. The new and novel Regulatory Readiness Level (RRL) and Market Readiness Level (MRL) frameworks were developed. These components, collectively called the Technology, Regulatory and Market (TRM) readiness level framework allow one to build new constraints into existing Integrated Assessment Models (IAMs) to address research questions such as, ‘To meet our desired technical and policy goals, what are the factors that affect the rate we must install technology to achieve these goals in the coming decades?’« less

  14. Technology readiness assessments: A retrospective

    NASA Astrophysics Data System (ADS)

    Mankins, John C.

    2009-11-01

    The development of new system capabilities typically depends upon the prior success of advanced technology research and development efforts. These systems developments inevitably face the three major challenges of any project: performance, schedule and budget. Done well, advanced technology programs can substantially reduce the uncertainty in all three of these dimensions of project management. Done poorly, or not at all, and new system developments suffer from cost overruns, schedule delays and the steady erosion of initial performance objectives. It is often critical for senior management to be able to determine which of these two paths is more likely—and to respond accordingly. The challenge for system and technology managers is to be able to make clear, well-documented assessments of technology readiness and risks, and to do so at key points in the life cycle of the program. In the mid 1970s, the National Aeronautics and Space Administration (NASA) introduced the concept of "technology readiness levels" (TRLs) as a discipline-independent, programmatic figure of merit (FOM) to allow more effective assessment of, and communication regarding the maturity of new technologies. In 1995, the TRL scale was further strengthened by the articulation of the first definitions of each level, along with examples (J. Mankins, Technology readiness levels, A White Paper, NASA, Washington, DC, 1995. [1]). Since then, TRLs have been embraced by the U.S. Congress' General Accountability Office (GAO), adopted by the U.S. Department of Defense (DOD), and are being considered for use by numerous other organizations. Overall, the TRLs have proved to be highly effective in communicating the status of new technologies among sometimes diverse organizations. This paper will review the concept of "technology readiness assessments", and provide a retrospective on the history of "TRLs" during the past 30 years. The paper will conclude with observations concerning prospective future directions for the important discipline of technology readiness assessments.

  15. National Research Council Dialogue to Assess Progress on NASA's Transformational Spaceport and Range Technologies Capability Roadmap Development: General Background and Introduction

    NASA Technical Reports Server (NTRS)

    Skelly, Darin M.

    2005-01-01

    Viewgraphs on the National Research Council's diaglog to assess progress on NASA's transformational spaceport and range technologies capability roadmap development is presented. The topics include: 1) Agency Goals and Objectives; 2) Strategic Planning Transformation; 3) Advanced Planning Organizational Roles; 4) Public Involvement in Strategic Planning; 5) Strategic Roadmaps; 6) Strategic Roadmaps Schedule; 7) Capability Roadmaps; 8) Capability Charter; 9) Process for Team Selection; 10) Capability Roadmap Development Schedule Overview; 11) Purpose of NRC Review; 12) Technology Readiness Levels; 13) Capability Readiness Levels; 14) Crosswalk Matrix Trans Spaceport & Range; 15) Example linkage to other roadmaps; 16) Capability Readiness Levels Defined; and 17) Crosswalk Matrix Ratings Work In-progress.

  16. Technical Feasibility Assessment of Lunar Base Mission Scenarios

    NASA Astrophysics Data System (ADS)

    Magelssen, Trygve ``Spike''; Sadeh, Eligar

    2005-02-01

    Investigation of the literature pertaining to lunar base (LB) missions and the technologies required for LB development has revealed an information gap that hinders technical feasibility assessment. This information gap is the absence of technical readiness levels (TRL) (Mankins, 1995) and information pertaining to the criticality of the critical enabling technologies (CETs) that enable mission success. TRL is a means of identifying technical readiness stages of a technology. Criticality is defined as the level of influence the CET has on the mission scenario. The hypothesis of this research study is that technical feasibility is a function of technical readiness and technical readiness is a function of criticality. A newly developed research analysis method is used to identify the technical feasibility of LB mission scenarios. A Delphi is used to ascertain technical readiness levels and CET criticality-to-mission. The research analysis method is applied to the Delphi results to determine the technical feasibility of the LB mission scenarios that include: observatory, science research, lunar settlement, space exploration gateway, space resource utilization, and space tourism. The CETs identified encompasses four major system level technologies of: transportation, life support, structures, and power systems. Results of the technical feasibility assessment show the observatory and science research LB mission scenarios to be more technical ready out of all the scenarios, but all mission scenarios are in very close proximity to each other in regard to criticality and TRL and no one mission scenario stands out as being absolutely more technically ready than any of the other scenarios. What is significant and of value are the Delphi results concerning CET criticality-to-mission and the TRL values evidenced in the Tables that can be used by anyone assessing the technical feasibility of LB missions.

  17. Definition, technology readiness, and development cost of the orbit transfer vehicle engine integrated control and health monitoring system elements

    NASA Technical Reports Server (NTRS)

    Cannon, I.; Balcer, S.; Cochran, M.; Klop, J.; Peterson, S.

    1991-01-01

    An Integrated Control and Health Monitoring (ICHM) system was conceived for use on a 20 Klb thrust baseline Orbit Transfer Vehicle (OTV) engine. Considered for space used, the ICHM was defined for reusability requirements for an OTV engine service free life of 20 missions, with 100 starts and a total engine operational time of 4 hours. Functions were derived by flowing down requirements from NASA guidelines, previous OTV engine or ICHM documents, and related contracts. The elements of an ICHM were identified and listed, and these elements were described in sufficient detail to allow estimation of their technology readiness levels. These elements were assessed in terms of technology readiness level, and supporting rationale for these assessments presented. The remaining cost for development of a minimal ICHM system to technology readiness level 6 was estimated. The estimates are within an accuracy range of minus/plus 20 percent. The cost estimates cover what is needed to prepare an ICHM system for use on a focussed testbed for an expander cycle engine, excluding support to the actual test firings.

  18. Early Market TRL/MRL Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronnebro, Ewa; Stetson, Ned

    he focus of this report is TRL/MRL analysis of hydrogen storage; it documents the methodology and results of an effort to identify hydrogen storage technologies’ technical and manufacturing readiness for early market motive and non-motive applications and to provide a path forward toward commercialization. Motive applications include materials handling equipment (MHE) and ground support equipment (GSE), such as forklifts, tow tractors, and specialty vehicles such as golf carts, lawn mowers and wheel chairs. Non-motive applications are portable, stationary or auxiliary power units (APUs) and include portable laptops, backup power, remote sensor power, and auxiliary power for recreational vehicles, hotels, hospitals,more » etc. Hydrogen storage technologies assessed include metal hydrides, chemical hydrides, sorbents, gaseous storage, and liquid storage. The assessments are based on a combination of Technology Readiness Level (TRL) and Manufacturing Readiness Level (MRL) designations that enable evaluation of hydrogen storage technologies at varying levels of development. The manufacturing status could be established from eight risk elements: Technical Maturity, Design, Materials, Cost & Funding, Process Capability, Personnel, Facilities and Manufacturing Planning. This approach provides a logical methodology and roadmap to enable the identification of hydrogen storage technologies, their advantages/disadvantages, gaps and R&D needs on an unbiased and transparent scale that is easily communicated to interagency partners. This technology readiness assessment (TRA) report documents the process used to conduct the TRA/MRA (technology and manufacturing readiness assessment), reports the TRL and MRL for each assessed technology and provides recommendations based on the findings. To investigate the state of the art and needs to mature the technologies, PNNL prepared a questionnaire to assign TRL and MRL for each hydrogen storage technology. The questionnaire was sent to identified hydrogen storage technology developers and manufacturers who were asked to perform a self-assessment. We included both domestic and international organizations including U.S. national laboratories, U.S. companies, European companies and Japanese companies. PNNL collected the data and performed an analysis to deduce the level of maturity and to provide program recommendations.« less

  19. Solar sail science mission applications and advancement

    NASA Astrophysics Data System (ADS)

    Macdonald, Malcolm; McInnes, Colin

    2011-12-01

    Solar sailing has long been envisaged as an enabling or disruptive technology. The promise of open-ended missions allows consideration of radically new trajectories and the delivery of spacecraft to previously unreachable or unsustainable observation outposts. A mission catalogue is presented of an extensive range of potential solar sail applications, allowing identification of the key features of missions which are enabled, or significantly enhance, through solar sail propulsion. Through these considerations a solar sail application-pull technology development roadmap is established, using each mission as a technology stepping-stone to the next. Having identified and developed a solar sail application-pull technology development roadmap, this is incorporated into a new vision for solar sailing. The development of new technologies, especially for space applications, is high-risk. The advancement difficulty of low technology readiness level research is typically underestimated due to a lack of recognition of the advancement degree of difficulty scale. Recognising the currently low technology readiness level of traditional solar sailing concepts, along with their high advancement degree of difficulty and a lack of near-term applications a new vision for solar sailing is presented which increases the technology readiness level and reduces the advancement degree of difficulty of solar sailing. Just as the basic principles of solar sailing are not new, they have also been long proven and utilised in spacecraft as a low-risk, high-return limited-capability propulsion system. It is therefore proposed that this significant heritage be used to enable rapid, near-term solar sail future advancement through coupling currently mature solar sail, and other, technologies with current solar sail technology developments. As such the near-term technology readiness level of traditional solar sailing is increased, while simultaneously reducing the advancement degree of difficulty along the solar sail application-pull technology development roadmap.

  20. Technology Readiness, Internet Self-Efficacy and Computing Experience of Professional Accounting Students

    ERIC Educational Resources Information Center

    Lai, Ming-Ling

    2008-01-01

    Purpose: This study aims to assess the state of technology readiness of professional accounting students in Malaysia, to examine their level of internet self-efficacy, to assess their prior computing experience, and to explore if they are satisfied with the professional course that they are pursuing in improving their technology skills.…

  1. Teaching via Mobile Phone: A Case Study on Malaysian Teachers' Technology Acceptance and Readiness

    ERIC Educational Resources Information Center

    Ismail, Issham; Bokhare, Siti F.; Azizan, Siti N.; Azman, Nizuwan

    2013-01-01

    The purpose of this study is to identify the level of technology acceptance among school teachers from the components of awareness and motivation, training and courses, training design, and supports and facilities. This study also aims to investigate whether teachers' acceptance of technology could influence their readiness for the pedagogical use…

  2. Bioprinting: an assessment based on manufacturing readiness levels.

    PubMed

    Wu, Changsheng; Wang, Ben; Zhang, Chuck; Wysk, Richard A; Chen, Yi-Wen

    2017-05-01

    Over the last decade, bioprinting has emerged as a promising technology in the fields of tissue engineering and regenerative medicine. With recent advances in additive manufacturing, bioprinting is poised to provide patient-specific therapies and new approaches for tissue and organ studies, drug discoveries and even food manufacturing. Manufacturing Readiness Level (MRL) is a method that has been applied to assess manufacturing maturity and to identify risks and gaps in technology-manufacturing transitions. Technology Readiness Level (TRL) is used to evaluate the maturity of a technology. This paper reviews recent advances in bioprinting following the MRL scheme and addresses corresponding MRL levels of engineering challenges and gaps associated with the translation of bioprinting from lab-bench experiments to ultimate full-scale manufacturing of tissues and organs. According to our step-by-step TRL and MRL assessment, after years of rigorous investigation by the biotechnology community, bioprinting is on the cusp of entering the translational phase where laboratory research practices can be scaled up into manufacturing products specifically designed for individual patients.

  3. College Readiness: The Evaluation of Students Participating in the Historically Black College and University Program in Pre-Calculus and the Calculus Sequence

    ERIC Educational Resources Information Center

    Hall, Angela Renee

    2011-01-01

    This investigative research focuses on the level of readiness of Science, Technology, Engineering, and Mathematics (STEM) students entering Historically Black Colleges and Universities (HBCU) in the college Calculus sequence. Calculus is a fundamental course for STEM courses. The level of readiness of the students for Calculus can very well play a…

  4. Technology readiness levels for the new millennium program

    NASA Technical Reports Server (NTRS)

    Moynihan, P. I.; Minning, C. P.; Stocky, J. F.

    2003-01-01

    NASA's New Millennium Program (NMP) seeks to advance space exploration by providing an in-space validating mechanism to verify the maturity of promising advanced technologies that cannot be adequately validated with Earth-based testing alone. In meeting this objective, NMP uses NASA Technology Readiness Levels (TRL) as key indicators of technology advancement and assesses development progress against this generalized metric. By providing an opportunity for in-space validation, NMP can mature a suitable advanced technology from TRL 4 (component and/or breadboard validation in laboratory environment) to a TRL 7 (system prototype demonstrated in an Earth-based space environment). Spaceflight technology comprises a myriad of categories, types, and functions, and as each individual technology emerges, a consistent interpretation of its specific state of technological advancement relative to other technologies is problematic.

  5. Smart homes and home health monitoring technologies for older adults: A systematic review.

    PubMed

    Liu, Lili; Stroulia, Eleni; Nikolaidis, Ioanis; Miguel-Cruz, Antonio; Rios Rincon, Adriana

    2016-07-01

    Around the world, populations are aging and there is a growing concern about ways that older adults can maintain their health and well-being while living in their homes. The aim of this paper was to conduct a systematic literature review to determine: (1) the levels of technology readiness among older adults and, (2) evidence for smart homes and home-based health-monitoring technologies that support aging in place for older adults who have complex needs. We identified and analyzed 48 of 1863 relevant papers. Our analyses found that: (1) technology-readiness level for smart homes and home health monitoring technologies is low; (2) the highest level of evidence is 1b (i.e., one randomized controlled trial with a PEDro score ≥6); smart homes and home health monitoring technologies are used to monitor activities of daily living, cognitive decline and mental health, and heart conditions in older adults with complex needs; (3) there is no evidence that smart homes and home health monitoring technologies help address disability prediction and health-related quality of life, or fall prevention; and (4) there is conflicting evidence that smart homes and home health monitoring technologies help address chronic obstructive pulmonary disease. The level of technology readiness for smart homes and home health monitoring technologies is still low. The highest level of evidence found was in a study that supported home health technologies for use in monitoring activities of daily living, cognitive decline, mental health, and heart conditions in older adults with complex needs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. College Readiness of Urban High School Students in the United States: The Role of Technology in Preparing All Students for College

    ERIC Educational Resources Information Center

    O'Kane, Eileen Vollert

    2010-01-01

    As we enter deeper into the 21st Century, there is a more urgent need to transform our educational system in the United States to better prepare our youth for the careers and technology of the future. This study examines how improving technology education at the high school level can improve the learning and college readiness of urban youth. It…

  7. The Impact of Student Teaching Experience on Pre-Service Teachers' Readiness for Technology Integration: A Mixed Methods Study with Growth Curve Modeling

    ERIC Educational Resources Information Center

    Sun, Yan; Strobel, Johannes; Newby, Timothy J.

    2017-01-01

    Adopting a two-phase explanatory sequential mixed methods research design, the current study examined the impact of student teaching experiences on pre-service teachers' readiness for technology integration. In phase-1 of quantitative investigation, 2-level growth curve models were fitted using online repeated measures survey data collected from…

  8. Two Micron Laser Technology Advancements at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.

    2010-01-01

    An Independent Laser Review Panel set up to examine NASA s space-based lidar missions and the technology readiness of lasers appropriate for space-based lidars indicated a critical need for an integrated research and development strategy to move laser transmitter technology from low technical readiness levels to the higher levels required for space missions. Based on the review, a multiyear Laser Risk Reduction Program (LRRP) was initiated by NASA in 2002 to develop technologies that ensure the successful development of the broad range of lidar missions envisioned by NASA. This presentation will provide an overview of the development of pulsed 2-micron solid-state laser technologies at NASA Langley Research Center for enabling space-based measurement of wind and carbon dioxide.

  9. Regenerative fuel cell systems for space station

    NASA Technical Reports Server (NTRS)

    Hoberecht, M. A.; Sheibley, D. W.

    1985-01-01

    Regenerative fuel cell (RFC) systems are the leading energy storage candidates for Space Station. Key design features are the advanced state of technology readiness and high degree of system level design flexibility. Technology readiness was demonstrated through testing at the single cell, cell stack, mechanical ancillary component, subsystem, and breadboard levels. Design flexibility characteristics include independent sizing of power and energy storage portions of the system, integration of common reactants with other space station systems, and a wide range of various maintenance approaches. The design features led to selection of a RFC system as the sole electrochemical energy storage technology option for the space station advanced development program.

  10. NASA Technology Readiness Level Definitions

    NASA Technical Reports Server (NTRS)

    Mcnamara, Karen M.

    2012-01-01

    This presentation will cover the basic Technology Readiness Level (TRL) definitions used by the National Aeronautics and Space Administration (NASA) and their specific wording. We will discuss how they are used in the NASA Project Life Cycle and their effectiveness in practice. We'll also discuss the recent efforts by the International Standards Organization (ISO) to develop a broadly acceptable set of TRL definitions for the international space community and some of the issues brought to light. This information will provide input for further discussion of the use of the TRL scale in manufacturing.

  11. Propellant Readiness Level: A Methodological Approach to Propellant Characterization

    NASA Technical Reports Server (NTRS)

    Bossard, John A.; Rhys, Noah O.

    2010-01-01

    A methodological approach to defining propellant characterization is presented. The method is based on the well-established Technology Readiness Level nomenclature. This approach establishes the Propellant Readiness Level as a metric for ascertaining the readiness of a propellant or a propellant combination by evaluating the following set of propellant characteristics: thermodynamic data, toxicity, applications, combustion data, heat transfer data, material compatibility, analytical prediction modeling, injector/chamber geometry, pressurization, ignition, combustion stability, system storability, qualification testing, and flight capability. The methodology is meant to be applicable to all propellants or propellant combinations; liquid, solid, and gaseous propellants as well as monopropellants and propellant combinations are equally served. The functionality of the proposed approach is tested through the evaluation and comparison of an example set of hydrocarbon fuels.

  12. Systems Engineering Applied to the Development of a Wave Energy Farm.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Jesse D.; Bull, Diana L.; Costello, Ronan Patrick

    A motivation for undertaking this stakeholder requirements analysis and Systems Engineering exercise is to document the requirements for successful wave energy farms to facilitate better design and better design assessments. A difficulty in wave energy technology development is the absence to date of a verifiable minimum viable product against which the merits of new products might be measured. A consequence of this absence is that technology development progress, technology value, and technology funding have largely been measured, associated with, and driven by technology readiness, measured in technology readiness levels (TRLs). Originating primarily from the space and defense industries, TRLs focusmore » on procedural implementation of technology developments of large and complex engineering projects, where cost is neither mission critical nor a key design driver. The key deficiency with the TRL approach in the context of wave energy conversion is that WEC technology development has been too focused on commercial readiness and not enough on the stakeholder requirements and particularly economic viability required for market entry.« less

  13. Timing is everything :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobos, Peter Holmes; Walker, La Tonya Nicole; Malczynski, Leonard A.

    People save for retirement throughout their career because it is virtually impossible to save all youll need in retirement the year before you retire. Similarly, without installing incremental amounts of clean fossil, renewable or transformative energy technologies throughout the coming decades, a radical and immediate change will be near impossible the year before a policy goal is set to be in place. Therefore, our research question is, To meet our desired technical and policy goals, what are the factors that affect the rate we must install technology to achieve these goals in the coming decades? Existing models do not includemore » full regulatory constraints due to their often complex, and inflexible approaches to solve for optimal engineering instead of robust and multidisciplinary solutions. This project outlines the theory and then develops an applied software tool to model the laboratory-to-market transition using the traditional technology readiness level (TRL) framework, but develops subsequent and a novel regulatory readiness level (RRL) and market readiness level (MRL). This tool uses the ideally-suited system dynamics framework to incorporate feedbacks and time delays. Future energy-economic-environment models, regardless of their programming platform, may adapt this software model component framework or module to further vet the likelihood of new or innovative technology moving through the laboratory, regulatory and market space. The prototype analytical framework and tool, called the Technology, Regulatory and Market Readiness Level simulation model (TRMsim) illustrates the interaction between technology research, application, policy and market dynamics as they relate to a new or innovative technology moving from the theoretical stage to full market deployment. The initial results that illustrate the models capabilities indicate for a hypothetical technology, that increasing the key driver behind each of the TRL, RRL and MRL components individually decreases the time required for the technology to progress through each component by 63, 68 and 64%, respectively. Therefore, under the current working assumptions, to decrease the time it may take for a technology to move from the conceptual stage to full scale market adoption one might consider expending additional effort to secure regulatory approval and reducing the uncertainty of the technologys demand in the marketplace.« less

  14. Incorporating Human Readiness Levels at Sandia National Laboratories

    DOE PAGES

    See, Judi E.; Morris, Jason; Craft, Richard; ...

    2018-01-24

    Since 2010, the concept of human readiness levels has been under development as a possible supplement to the existing technology readiness level (TRL) scale. The intent is to provide a mechanism to address safety and performance risks associated with the human component in a system that parallels the TRL structure already familiar to the systems engineering community. Sandia National Laboratories in Albuquerque, New Mexico, initiated a study in 2015 to evaluate options to incorporate human readiness planning for Sandia processes and products. The study team has collected the majority of baseline assessment data and has conducted interviews to understand staffmore » perceptions of four different options for human readiness planning. Preliminary results suggest that all four options may have a vital role, depending on the type of work performed and the phase of product development. Upon completion of data collection, the utility of identified solutions will be assessed in one or more test cases.« less

  15. Incorporating Human Readiness Levels at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    See, Judi E.; Morris, Jason; Craft, Richard

    Since 2010, the concept of human readiness levels has been under development as a possible supplement to the existing technology readiness level (TRL) scale. The intent is to provide a mechanism to address safety and performance risks associated with the human component in a system that parallels the TRL structure already familiar to the systems engineering community. Sandia National Laboratories in Albuquerque, New Mexico, initiated a study in 2015 to evaluate options to incorporate human readiness planning for Sandia processes and products. The study team has collected the majority of baseline assessment data and has conducted interviews to understand staffmore » perceptions of four different options for human readiness planning. Preliminary results suggest that all four options may have a vital role, depending on the type of work performed and the phase of product development. Upon completion of data collection, the utility of identified solutions will be assessed in one or more test cases.« less

  16. Predictors of Osteopathic Medical Students' Readiness to Use Health Information Technology.

    PubMed

    Jacobs, Robin J; Iqbal, Hassan; Rana, Arif M; Rana, Zaid; Kane, Michael N

    2017-12-01

    The advent of health information technology (HIT) tools can affect the practice of modern medicine in many ways, ideally by improving quality of care and efficiency and reducing medical errors. Future physicians will play a key role in the successful implementation of HIT. However, osteopathic medical students' willingness to learn, adopt, and use technology in a health care setting is not well understood. To understand osteopathic medical students' knowledge, attitudes, and behaviors regarding HIT and to identify factors that may be related to their readiness to use HIT. Using a cross-sectional approach, quantitative surveys were collected from students attending a large osteopathic medical school. Multivariate regression modeling was used to determine whether knowledge, attitudes, behaviors, and personal characteristics were associated with students' readiness to use HIT in future clinical practice. Six hundred four students responded to at least 70% of the survey and were included in the analysis. Multivariate modeling successfully explained the 26% of variance in predicting students' readiness to use HIT (F8,506=22.6, P<.001, R2=0.263). Greater self-efficacy, openness to change (in academic/work settings), favorable attitudes toward HIT use, mobile technology use, younger age, being male, and prior exposure to technology were associated with readiness to use HIT. Understanding students' level of HIT readiness may help guide medical education intervention efforts to better prepare future osteopathic physicians for HIT engagement and use. Innovative approaches to HIT education in medical school curricula that include biomedical informatics may be necessary.

  17. Ares Project Technology Assessment: Approach and Tools

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; Tyson, Richard

    2010-01-01

    Technology assessments provide a status of the development maturity of specific technologies. Along with benefit analysis, the risks the project assumes can be quantified. Normally due to budget constraints, the competing technologies are prioritized and decisions are made which ones to fund. A detailed technology development plan is produced for the selected technologies to provide a roadmap to reach the desired maturity by the project s critical design review. Technology assessments can be conducted for both technology only tasks or for product development programs. This paper is primarily biased toward the product development programs. The paper discusses the Ares Project s approach to technology assessment. System benefit analysis, risk assessment, technology prioritization, and technology readiness assessment are addressed. A description of the technology readiness level tool being used is provided.

  18. OSMA Research and Technology Strategy Team Summary

    NASA Technical Reports Server (NTRS)

    Wetherholt, Martha

    2010-01-01

    This slide presentation reviews the work of the Office of Safety and Mission Assurance (OSMA), and the OSMA Research and Technology Strategy (ORTS) team. There is discussion of the charter of the team, Technology Readiness Levels (TRLs) and how the teams responsibilities are related to these TRLs. In order to improve the safety of all levels of the development through the TRL phases, improved communication, understanding and cooperation is required at all levels, particularly at the mid level technologies development.

  19. Technology Maturation in Preparation for the Cryogenic Propellant Storage and Transfer (CPST) Technology Demonstration Mission (TDM)

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Doherty, Michael P.; Moder, Jeffrey P.

    2014-01-01

    In support of its goal to find an innovative path for human space exploration, NASA embarked on the Cryogenic Propellant Storage and Transfer (CPST) Project, a Technology Demonstration Mission (TDM) to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large in-space cryogenic propulsion stages and propellant depots. Recognizing that key Cryogenic Fluid Management (CFM) technologies anticipated for on-orbit (flight) demonstration would benefit from additional maturation to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate (STMD) authorized funding for a one-year technology maturation phase of the CPST project. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, concept studies, and ground tests of the storage and fluid transfer of CFM technology sub-elements and components that were lower than a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. The specific technologies selected were grouped into five major categories: thick multilayer insulation, tank applied active thermal control, cryogenic fluid transfer, propellant gauging, and analytical tool development. Based on the success of the technology maturation efforts, the CPST project was approved to proceed to flight system development.

  20. Challenging Technology, and Technology Infusion into 21st Century

    NASA Technical Reports Server (NTRS)

    Chau, S. N.; Hunter, D. J.

    2001-01-01

    In preparing for the space exploration challenges of the next century, the National Aeronautics and Space Administration (NASA) Center for Integrated Space Micro-Systems (CISM) is chartered to develop advanced spacecraft systems that can be adapted for a large spectrum of future space missions. Enabling this task are revolutions in the miniaturization of electrical, mechanical, and computational functions. On the other hand, these revolutionary technologies usually have much lower readiness levels than those required by flight projects. The mission of the Advanced Micro Spacecraft (AMS) task in CISM is to bridge the readiness gap between advanced technologies and flight projects. Additional information is contained in the original extended abstract.

  1. Using Technology Readiness Level (TRL), Life Cycle Cost (LCC), and Other Metrics to Supplement Equivalent System Mass (ESM) in Advanced Life Support (ALS)

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2003-01-01

    The ALS project plan goals are reducing cost, improving performance, and achieving flight readiness. ALS selects projects to advance the mission readiness of low cost, high performance technologies. The role of metrics is to help select good projects and report progress. The Equivalent Mass (EM) of a system is the sum of the estimated mass of the hardware, of its required materials and spares, and of the pressurized volume, power supply, and cooling system needed to support the hardware in space. EM is the total payload launch mass needed to provide and support a system. EM is directly proportional to the launch cost.

  2. MSFC Technology Year in Review 2015

    NASA Technical Reports Server (NTRS)

    Reynolds, David; Tinker, Mike

    2015-01-01

    MSFC has a strong diverse portfolio of technology development projects, ranging from flight projects to very low Technology Readiness Level (TRL) laboratory projects. The 2015 Year in Review highlights the Center's technology projects and celebrates their accomplishments to raise awareness of technology development work that is integral to the success of future Agency flight programs.

  3. How to Make STEM Education Cool for Students

    ERIC Educational Resources Information Center

    Steel, David

    2012-01-01

    Of all U.S. high school students who graduated in 2011, only 45 percent were ready for college-level math and a mere 30 percent were ready for science, according to ACT, a college-entrance testing agency. These data reflect the great challenge facing the United States in preparing students for science, technology, engineering, and math (STEM)…

  4. Prioritizing Information Technology Investments: Assessing the Correlations among Technological Readiness, Information Technology Flexibility, and Information Technology Effectiveness

    ERIC Educational Resources Information Center

    Walter, John T.

    2010-01-01

    Management's dilemma, when allocating financial resources towards the improvement of technological readiness and IT flexibility within their organizations, is to control financial risk and maximize IT effectiveness. Technological readiness is people's propensity to embrace and use technology. Its drivers are optimism, innovativeness, discomfort,…

  5. NASA Development of Aerocapture Technologies

    NASA Technical Reports Server (NTRS)

    James, Bonnie; Munk, Michelle; Moon, Steve

    2003-01-01

    Aeroassist technology development is a vital part of the NASA ln-Space Propulsion Program (ISP), which is managed by the NASA Headquarters Office of Space Science, and implemented by the Marshall Space Flight Center in Huntsville, Alabama. Aeroassist is the general term given to various techniques to maneuver a space vehicle within an atmosphere, using aerodynamic forces in lieu of propulsive fuel. Within the ISP, the current aeroassist technology development focus is aerocapture. The objective of the ISP Aerocapture Technology Project (ATP) is to develop technologies that can enable and/or benefit NASA science missions by significantly reducing cost, mass, and/or travel times. To accomplish this objective, the ATP identifies and prioritizes the most promising technologies using systems analysis, technology advancement and peer review, coupled with NASA Headquarters Office of Space Science target requirements. Plans are focused on developing mid-Technology Readiness Level (TRL) technologies to TRL 6 (ready for technology demonstration in space).

  6. NASA Development of Aerocapture Technologies

    NASA Technical Reports Server (NTRS)

    James, Bonnie; Munk, Michelle; Moon, Steve

    2004-01-01

    Aeroassist technology development is a vital part of the NASA In-Space Propulsion Program (ISP), which is managed by the NASA Headquarters Office of Space Science, and implemented by the Marshall Space Flight Center in Huntsville, Alabama. Aeroassist is the general term given to various techniques to maneuver a space vehicle within an atmosphere, using aerodynamic forces in lieu of propulsive fuel. Within the ISP, the current aeroassist technology development focus is aerocapture. The objective of the ISP Aerocapture Technology Project (ATP) is to develop technologies that can enable and/or benefit NASA science missions by significantly reducing cost, mass, and/or travel times. To accomplish this objective, the ATP identifies and prioritizes the most promising technologies using systems analysis, technology advancement and peer review, coupled with NASA Headquarters Office of Space Science target requirements. Plans are focused on developing mid-Technology Readiness Level (TRL) technologies to TRL 6 (ready for technology demonstration in space).

  7. Technology Readiness of the NEXT Ion Propulsion System

    NASA Technical Reports Server (NTRS)

    Benson, Scott W.; Patterson, Michael J.

    2008-01-01

    The NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system has been in advanced technology development under the NASA In-Space Propulsion Technology project. The highest fidelity hardware planned has now been completed by the government/industry team, including: a flight prototype model (PM) thruster, an engineering model (EM) power processing unit, EM propellant management assemblies, a breadboard gimbal, and control unit simulators. Subsystem and system level technology validation testing is in progress. To achieve the objective Technology Readiness Level 6, environmental testing is being conducted to qualification levels in ground facilities simulating the space environment. Additional tests have been conducted to characterize the performance range and life capability of the NEXT thruster. This paper presents the status and results of technology validation testing accomplished to date, the validated subsystem and system capabilities, and the plans for completion of this phase of NEXT development. The next round of competed planetary science mission announcements of opportunity, and directed mission decisions, are anticipated to occur in 2008 and 2009. Progress to date, and the success of on-going technology validation, indicate that the NEXT ion propulsion system will be a primary candidate for mission consideration in these upcoming opportunities.

  8. U.S. EPA Water Technology Innovation Cluster Leaders Meeting - "Successfully Supporting Early-Stage Companies: The Role of Technology Testing" Meeting Summary Report

    EPA Science Inventory

    The goals of this workshop were to: (1) increase the cluster leaders’ level of knowledge regarding past and current water technology testing programs, facilities and requirements; (2) learn from the experiences of technology vendors in getting innovative, commercial-ready product...

  9. Evaluating the Acoustic Benefits of Over-the-Rotor Acoustic Treatments Installed on the Advanced Noise Control Fan

    NASA Technical Reports Server (NTRS)

    Gazella, Matthew R.; Takakura, Tamuto; Sutliff, Daniel L.; Bozak, Richard F.; Tester, Brian J.

    2017-01-01

    Over the last 15 years, over-the-rotor acoustic treatments have been evaluated by NASA with varying success. Recently, NASA has been developing the next generation of over-the-rotor acoustic treatments for fan noise reduction. The NASA Glenn Research Centers Advanced Noise Control Fan was used as a Low Technology Readiness Level test bed. A rapid prototyped in-duct array consisting of 50 microphones was employed, and used to correlate the in-duct analysis to the far-field acoustic levels and to validate an existing beam-former method. The goal of this testing was to improve the Technology Readiness Level of various over-the-rotor acoustic treatments by advancing the understanding of the physical mechanisms and projecting the far-field acoustic benefit.

  10. e-Health readiness assessment factors and measuring tools: A systematic review.

    PubMed

    Yusif, Salifu; Hafeez-Baig, Abdul; Soar, Jeffrey

    2017-11-01

    The evolving, adoption and high failure nature of health information technology (HIT)/IS/T systems requires effective readiness assessment to avert increasing failures while increasing system benefits. However, literature on HIT readiness assessment is myriad and fragmented. This review bares the contours of the available literature concluding in a set of manageable and usable recommendations for policymakers, researchers, individuals and organizations intending to assess readiness for any HIT implementation. Identify studies, analyze readiness factors and offer recommendations. Published articles 1995-2016 were searched using Medline/PubMed, Cinahl, Web of Science, PsychInfo, ProQuest. Studies were included if they were assessing IS/T/mHealth readiness in the context of HIT. Articles not written in English were excluded. Themes that emerged in the process of the data synthesis were thematically analysed and interpreted. Analyzed themes were found across 63 articles. In accordance with their prevalence of use, they included but not limited to "Technological readiness", 30 (46%); "Core/Need/Motivational readiness", 23 (37%); "Acceptance and use readiness", 19 (29%); "Organizational readiness", 20 (21%); "IT skills/Training/Learning readiness" (18%), "Engagement readiness", 16 (24%) and "Societal readiness" (14%). Despite their prevalence in use, "Technological readiness", "Motivational readiness" and "Engagement readiness" all had myriad and unreliable measuring tools. Core readiness had relatively reliable measuring tools, which repeatedly been used in various readiness assessment studies CONCLUSION: Thus, there is the need for reliable measuring tools for even the most commonly used readiness assessment factors/constructs: Core readiness, Engagement and buy-ins readiness, Technological readiness and IT Skills readiness as this could serve as an immediate step in conducting effective/reliable e-Health readiness assessment, which could lead to reduced HIT implementation failures. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Measuring E-Learning Readiness among EFL Teachers in Intermediate Public Schools in Saudi Arabia

    ERIC Educational Resources Information Center

    Al-Furaydi, Ahmed Ajab

    2013-01-01

    This study will determine their readiness level for the e-learning in several aspects such as attitude toward e-learning, and computer literacy also this study attempt to investigate the main the barriers that EFL teachers have to overcome while incorporating e-learning into their teaching. The theory upon which the study was technology acceptance…

  12. Application of System and Integration Readiness Levels to Department of Defense Research and Development

    DTIC Science & Technology

    2016-07-01

    etc., and all of the IRL1n rather than a technology-centric approach that included TR L1 with all its interfaces. The inter- face -centric approach...Acquisition Research Journal , 23(3), In Print. The average of the SRL vector, equation (4), describes how mature the sys- tem is. The Sauser approach...Application of System and Integration Readiness Levels to Department of Defense Research and Development. Defense Acquisition Research Journal , 23(3), In

  13. NASA Software Assurance's Roles in Research and Technology

    NASA Technical Reports Server (NTRS)

    Wetherholt, Martha

    2010-01-01

    This slide presentation reviews the interactions between the scientist and engineers doing research and technology and the software developers and others who are doing software assurance. There is a discussion of the role of the Safety and Mission Assurance (SMA) in developing software to be used for research and technology, and the importance of this role as the technology moves to the higher levels of the technology readiness levels (TRLs). There is also a call to change the way the development of software is developed.

  14. Technology Readiness Level Assessment Process as Applied to NASA Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Leete, Stephen J.; Romero, Raul A.; Dempsey, James A.; Carey, John P.; Cline, Helmut P.; Lively, Carey F.

    2015-01-01

    Technology assessments of fourteen science instruments were conducted within NASA using the NASA Technology Readiness Level (TRL) Metric. The instruments were part of three NASA Earth Science Decadal Survey missions in pre-formulation. The Earth Systematic Missions Program (ESMP) Systems Engineering Working Group (SEWG), composed of members of three NASA Centers, provided a newly modified electronic workbook to be completed, with instructions. Each instrument development team performed an internal assessment of its technology status, prepared an overview of its instrument, and completed the workbook with the results of its assessment. A team from the ESMP SEWG met with each instrument team and provided feedback. The instrument teams then reported through the Program Scientist for their respective missions to NASA's Earth Science Division (ESD) on technology readiness, taking the SEWG input into account. The instruments were found to have a range of TRL from 4 to 7. Lessons Learned are presented; however, due to the competition-sensitive nature of the assessments, the results for specific missions are not presented. The assessments were generally successful, and produced useful results for the agency. The SEWG team identified a number of potential improvements to the process. Particular focus was on ensuring traceability to guiding NASA documents, including the NASA Systems Engineering Handbook. The TRL Workbook has been substantially modified, and the revised workbook is described.

  15. NASA Hypersonics Overview

    NASA Technical Reports Server (NTRS)

    Dryer, Jay

    2017-01-01

    This briefing is an overview of NASA's hypersonic portfolio and core capabilities. The scope of work is fundamental research spanning technology readiness and system complexity levels; critical technologies enabling re-usable hypersonic systems; system-level research, design, analysis, validation; and, engage, invigorate and train the next generation of engineers. This briefing was requested by the Aeronautics Subcommittee of the NASA Advisory Council.

  16. Possibility to Use Mobile Learning to Promote World Heritage Site Preservation Awareness in Luang Prabang, Lao Pdr: a Readiness Study

    NASA Astrophysics Data System (ADS)

    Poong, Y. S.; Yamaguchi, S.; Takada, J.

    2013-07-01

    This paper elucidates the current state of mobile technology readiness among young adults in higher education institution based on surveys and interviews. Although Lao PDR is ranked as low category in the ICT Index by International Telecommunication Union (ITU), findings show that there exists high level of readiness among the young adults. Recommendations for future research are developed to guide the development of mobile learning application with the aim to promote World Heritage Site preservation awareness.

  17. Identifying Potential Implications of Technologies on Military and Security Options

    DTIC Science & Technology

    2006-06-01

    Technology Readiness Level (TRL) ratings. THE DISCUSSION Technology surprise occurs through the use of rapidly-emerging and disruptive technologies by...NATO RTB Systems Analysis and Studies Panel, Exploratory Team on the Impact of Disruptive Technologies The objectives of this task group (TG...Workshop on Emerging Disruptive Technologies and the Implications for Defence advanced the view that TTCP should examine the potential of emerging

  18. The Dynamics of Son Preference, Technology Diffusion, and Fertility Decline Underlying Distorted Sex Ratios at Birth: A Simulation Approach.

    PubMed

    Kashyap, Ridhi; Villavicencio, Francisco

    2016-10-01

    We present a micro-founded simulation model that formalizes the "ready, willing, and able" framework, originally used to explain historical fertility decline, to the practice of prenatal sex selection. The model generates sex ratio at birth (SRB) distortions from the bottom up and attempts to quantify plausible levels, trends, and interactions of son preference, technology diffusion, and fertility decline that underpin SRB trajectories at the macro level. Calibrating our model for South Korea, we show how even as the proportion with a preference for sons was declining, SRB distortions emerged due to rapid diffusion of prenatal sex determination technology combined with small but growing propensities to abort at low birth parities. Simulations reveal that relatively low levels of son preference (about 20 % to 30 % wanting one son) can result in skewed SRB levels if technology diffuses early and steadily, and if fertility falls rapidly to encourage sex-selective abortion at low parities. Model sensitivity analysis highlights how the shape of sex ratio trajectories is particularly sensitive to the timing and speed of prenatal sex-determination technology diffusion. The maximum SRB levels reached in a population are influenced by how the readiness to abort rises as a function of the fertility decline.

  19. The Importance of Technology Readiness in NASA Earth Venture Missions

    NASA Technical Reports Server (NTRS)

    Wells, James E.; Komar, George J.

    2009-01-01

    The first set of Venture-class investigations share the characteristic that the technology should be mature and all investigations must use mature technology that has been modeled or demonstrated in a relevant environment (Technology Readiness Level (TRL) >5). Technology Readiness Levels are a systematic metric/measurement system that supports assessments of the maturity of a particular technology and the consistent comparison of maturity between different types of technology. The TRL is used in NASA technology planning. A major step in the level of fidelity of the technology demonstration follows the completion of TRL 5. At TRL 6, a system or subsystem model or prototype must be demonstrated in a relevant environment (ground or space) representative model or prototype system or system, which would go well beyond ad hoc, "patch-cord," or discrete component level breadboarding. These TRL levels are chosen as target objectives for the Program. The challenge for offerors is that they must identify key aspects (uncertainty, multi subsystem complexity, etc) of the TRL estimate that should be properly explained in a submitted proposal. Risk minimization is a key component of the Earth Venture missions. Experiences of prior airborne missions will be shared. The discussion will address aspects of uncertainty and issues surrounding three areas of airborne earth science missions: (1) Aircraft or proposed flight platform -- Expressing the capability of the aircraft in terms of the supporting mission requirements. These issues include airplane performance characteristics (duration, range, altitude, among others) and multiship complexities. (2) Instruments -- Establishing that the instruments have been demonstrated in a relevant environment. Instruments with heritage in prior space missions meet this requirement, as do instruments tested on the ground. Evidence that the instruments have demonstrated the ability to collect data as advertised will be described. The complexity of the integration of multiple subsystems will also be addressed. Issues associated with tailoring the instrument to meet the specific Venture mission objectives must be thoroughly explained and justified. (3) Aircraft/Instrument Integration -- Explicitly defining what development may be required to harden the instrument and integrate the instrument. The challenges associated with this key aspect of major airborne earth science investigations will be presented.

  20. Maturing Technologies for Stirling Space Power Generation

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Nowlin, Brentley C.; Dobbs, Michael W.; Schmitz, Paul C.; Huth, James

    2016-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint of the current state of the art. The RPS Program Office, working in collaboration with the U.S. Department of Energy (DOE), manages projects to develop thermoelectric and dynamic power systems, including Stirling Radioisotope Generators (SRGs). The Stirling Cycle Technology Development (SCTD) Project, located at Glenn Research Center (GRC), is developing Stirling-based subsystems, including convertors and controllers. The SCTD Project also performs research that focuses on a wide variety of objectives, including increasing convertor temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Research activity includes maturing subsystems, assemblies, and components to prepare them for infusion into future convertor and generator designs. The status of several technology development efforts are described here. As part of the maturation process, technologies are assessed for readiness in higher-level subsystems. To assess the readiness level of the Dual Convertor Controller (DCC), a Technology Readiness Assessment (TRA) was performed and the process and results are shown. Stirling technology research is being performed by the SCTD Project for NASA's RPS Program Office, where tasks focus on maturation of Stirling-based systems and subsystems for future space science missions.

  1. NASA Project Develops Next-Generation Low-Emissions Combustor Technologies

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming; Chang, Clarence T.; Herbon, John T.; Kramer, Stephen K.

    2013-01-01

    NASA's Environmentally Responsible Aviation (ERA) Project is working with industry to develop the fuel flexible combustor technologies for a new generation of low-emissions engine targeted for the 2020 timeframe. These new combustors will reduce nitrogen oxide (NOx) emissions to half of current state-of-the-art (SOA) combustors, while simultaneously reducing noise and fuel burn. The purpose of the low NOx fuel-flexible combustor research is to advance the Technology Readiness Level (TRL) and Integration Readiness Level (IRL) of a low NOx, fuel flexible combustor to the point where it can be integrated in the next generation of aircraft. To reduce project risk and optimize research benefit NASA chose to found two Phase 1 contracts. The first Phase 1 contracts went to engine manufactures and were awarded to: General Electric Company, and Pratt & Whitney Company. The second Phase 1 contracts went to fuel injector manufactures Goodrich Corporation, Parker Hannifin Corporation, and Woodward Fuel System Technology. In 2012, two sector combustors were tested at NASA's ASCR. The results indicated 75% NOx emission reduction below the 2004 CAEP/6 regulation level.

  2. Factors Affecting Nursing Students' Readiness and Perceptions Toward the Use of Mobile Technologies for Learning.

    PubMed

    Zayim, Nese; Ozel, Deniz

    2015-10-01

    The purpose of this study was to determine the current usage of mobile devices, preferences of mobile learning environments and examine the readiness of nursing students in a public university. In order to investigate preferences and attitudes with respect to mobile technology use in nursing education, 387 students at a state university have been surveyed. It has been observed that while students preferred their current portable laptops, those in higher classes were more inclined to favor mobile phones. The common problems of battery life and high cost of communication, both in smartphones and tablet systems, suggest that hardware quality and financial constraints seem to be two main factors in determining these technologies. While more than half of students expressed readiness for mobile learning, one quarter indicated indecision. Through multivariate regression analysis, readiness to use mobile learning can be described in terms of perceived ease of use, perceived usefulness, personal innovativeness, self-management of learning, perceived device limitation, and availability. Class level, perceived ease of use, personal innovativeness, and self-management of learning explain intention to use mobile learning. Findings obtained from these results can provide guidance in the development and application of mobile learning systems.

  3. The NASA Evolutionary Xenon Thruster (NEXT): NASA's Next Step for U.S. Deep Space Propulsion

    NASA Technical Reports Server (NTRS)

    Schmidt, George R.; Patterson, Michael J.; Benson, Scott W.

    2008-01-01

    NASA s Evolutionary Xenon Thruster (NEXT) project is developing next generation ion propulsion technologies to enhance the performance and lower the costs of future NASA space science missions. This is being accomplished by producing Engineering Model (EM) and Prototype Model (PM) components, validating these via qualification-level and integrated system testing, and preparing the transition of NEXT technologies to flight system development. The project is currently completing one of the final milestones of the effort, that is operation of an integrated NEXT Ion Propulsion System (IPS) in a simulated space environment. This test will advance the NEXT system to a NASA Technology Readiness Level (TRL) of 6 (i.e., operation of a prototypical system in a representative environment), and will confirm its readiness for flight. Besides its promise for upcoming NASA science missions, NEXT may have excellent potential for future commercial and international spacecraft applications.

  4. Readiness levels for spacecraft information technologies

    NASA Technical Reports Server (NTRS)

    Mackey, R.; Some, R.; Aljabri, A.

    2003-01-01

    Presented in this paper is a modified interpretation of the traditional TRLs aimed solely at information technology. The intent of this new set of definitions is twofold: First, to enable a definitive measurement of progress among developing information technologies for spacecraft; and second, to clarify particular challenges and requirements that must be met as these technologies are validated in increasingly realistic environments.

  5. DU Processing Efficiency and Reclamation: Plasma Arc Melting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imhoff, Seth D.; Aikin, Jr., Robert M.; Swenson, Hunter

    The work described here corresponds to one piece of a larger effort to increase material usage efficiency during DU processing operations. In order to achieve this goal, multiple technologies and approaches are being tested. These technologies occupy a spectrum of technology readiness levels (TRLs). Plasma arc melting (PAM) is one of the technologies being investigated. PAM utilizes a high temperature plasma to melt materials. Depending on process conditions, there are potential opportunities for recycling and material reclamation. When last routinely operational, the LANL research PAM showed extremely promising results for recycling and reclamation of DU and DU alloys. The currentmore » TRL is lower due to machine idleness for nearly two decades, which has proved difficult to restart. This report describes the existing results, promising techniques, and the process of bringing this technology back to readiness at LANL.« less

  6. Rapid Maturation of Edge Sensor Technology and Potential Application in Large Space Telescopes with Segmented Primary Mirrors

    NASA Technical Reports Server (NTRS)

    Montgomery, Edward E., IV; Smith, W. Scott (Technical Monitor)

    2002-01-01

    This paper explores the history and results of the last two year's efforts to transition inductive edge sensor technology from Technology Readiness Level 2 to Technology Readiness Level 6. Both technical and programmatic challenges were overcome in the design, fabrication, test, and installation of over a thousand sensors making up the Segment Alignment Maintenance System (SAMs) for the 91 segment, 9.2-meter. Hobby Eberly Telescope (HET). The integration of these sensors with the control system will be discussed along with serendipitous leverage they provided for both initialization alignment and operational maintenance. The experience gained important insights into the fundamental motion mechanics of large segmented mirrors, the relative importance of the variance sources of misalignment errors, the efficient conduct of a program to mature the technology to the higher levels. Unanticipated factors required the team to develop new implementation strategies for the edge sensor information which enabled major segmented mirror controller design simplifications. The resulting increase in the science efficiency of HET will be shown. Finally, the on-going effort to complete the maturation of inductive edge sensor by delivering space qualified versions for future IR (infrared radiation) space telescopes.

  7. Assessing farmers' community readiness towards the enhancement of natural enemy population in rice fields in Malacca

    NASA Astrophysics Data System (ADS)

    Fairuz, K.; Idris, A. G.; Syahrizan, S.; Hatijah, K.

    2018-04-01

    Malacca has committed to be a green technology state by the year 2020. Agriculture is one of the main industries that have been highlighted to achieve this goal especially rice farming activities. Some limitations for this issue have restricted the accomplishment of the plan including pesticide usage among rice farmers. The use of chemicals in rice field need to be reduced significantly in order to support the goal. One of the indicators to the successfulness of pesticide reduction is the increasing numbers of natural enemies' species abundance and population in the rice field. Natural enemies were important to regulate pest populations in rice field naturally. Farmers' readiness to participate in this issue is very important to ensure the successfulness. The level of readiness of farmers' community will determine whether they are ready or not to execute the plan. Unfortunately, such information in rice farmers' community was not properly measured. Thus this study was aimed to assess the readiness level of rice farmers' community to change in order to enhance natural enemies in their rice field. This study was adapting the CR model as its theoretical framework. Three rice farming area in Malacca were involved in this study namely, Jasin, Melaka Tengah and Alor Gajah. Questionnaires were used as major instrument and were randomly distributed to 224 farmers. Data collected were tested for their reliability, significance and level of readiness. Knowledge of issue, knowledge of effort and resources dimensions were found influencing the readiness dimension significantly, whilst the attitude and leadership dimensions were not. Generally, the level of readiness for farmers' community in Malacca was found in the sixth or initial stage, where some of them initially have started to practice a few related activities to enhance the natural enemies' population in their rice field. Continuous support and assistant from the leaders and local authorities are crucially needed in order to sustain and improve the farmers' community level of readiness.

  8. New Developments in the Technology Readiness Assessment Process in US DOE-EM - 13247

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krahn, Steven; Sutter, Herbert; Johnson, Hoyt

    2013-07-01

    A Technology Readiness Assessment (TRA) is a systematic, metric-based process and accompanying report that evaluates the maturity of the technologies used in systems; it is designed to measure technology maturity using the Technology Readiness Level (TRL) scale pioneered by the National Aeronautics and Space Administration (NASA) in the 1980's. More recently, DoD has adopted and provided systematic guidance for performing TRAs and determining TRLs. In 2007 the GAO recommended that the DOE adopt the NASA/DoD methodology for evaluating technology maturity. Earlier, in 2006-2007, DOE-EM had conducted pilot TRAs on a number of projects at Hanford and Savannah River. In Marchmore » 2008, DOE-EM issued a process guide, which established TRAs as an integral part of DOE-EM's Project Management Critical Decision Process. Since the development of its detailed TRA guidance in 2008, DOE-EM has continued to accumulate experience in the conduct of TRAs and the process for evaluating technology maturity. DOE has developed guidance on TRAs applicable department-wide. DOE-EM's experience with the TRA process, the evaluations that led to recently developed proposed revisions to the DOE-EM TRA/TMP Guide; the content of the proposed changes that incorporate the above lessons learned and insights are described. (authors)« less

  9. Determinants of readiness to adopt mHealth in a rural community of Bangladesh.

    PubMed

    Khatun, Fatema; Heywood, Anita E; Ray, Pradeep K; Hanifi, S M A; Bhuiya, Abbas; Liaw, Siaw-Teng

    2015-10-01

    Evidence in favor of mHealth for healthcare delivery in settings where trained health workforce is limited or unavailable is accumulating. With rapid growth in access to mobile phones and an acute shortage of health workforce in Bangladesh, mHealth initiatives are increasing with more than 20 current initiatives in place. "Readiness" is a crucial prerequisite to the successful implementation of telehealth programs. However, systematic assessment of the community readiness for mHealth-based services in the country is lacking. We report on a recent study describing the influence of community readiness for mHealth of a rural Bangladesh community. A conceptual framework for mHealth readiness was developed, which included three categories: technological, motivational and resource readiness. This guided the questionnaire development for the survey conducted in the Chakaria sub-district of Bangladesh from November 2012 to April 2013. Multivariate logistic regression was used to examine ownership of mobile phones, use of the technology, and knowledge regarding awareness of mHealth services as predictors of the community readiness to adopt mHealth. A total of 4915 randomly selected household members aged 18 years and over completed the survey. The data explained the sub-categories of the readiness dimensions. In terms of access, 45% of respondents owned a mobile phone with ownership higher among males, younger participants and those in the highest socioeconomic quintiles. Results related to technological readiness showed that among mobile phone owners, 50% were aware of SMS but only sending and receiving SMS. Only 37% generally read the received SMS. Only 5% of respondents used the internet capabilities on their phone and 25% used voice messages. The majority (73%) of the participants were interested in joining mHealth programs in the future. Multivariate analysis showed that ownership of a mobile phone (aOR 1.3, 95% CI 1.1-1.5), younger age (aOR 2.6, 95% CI 2.1-3.3), males (aOR 1.8, 95% CI 1.6-2.1), educated respondents (11 years or more education) (aOR 11.1, 95% CI 6.2-19.2) and those belonging to the highest socio-economic group (aOR 3.7, 95% CI 2.9-4.7) were significantly independently associated with knowledge regarding awareness of current mHealth services. We developed a conceptual framework to assess community readiness for mHealth. We described three high level dimensions of readiness and have partially tested the conceptual framework in a rural sub-district in Bangladesh. We found that the community has some technological readiness but inequity was observed for human resource readiness and technological capabilities. The study population is motivated to use mHealth. Our conceptual framework is a promising tool to assist policy-makers in planning and implementing mHealth programs. Copyright © 2015. Published by Elsevier Ireland Ltd.

  10. Determination of technical readiness for an atmospheric carbon imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Mobilia, Joseph; Kumer, John B.; Palmer, Alice; Sawyer, Kevin; Mao, Yalan; Katz, Noah; Mix, Jack; Nast, Ted; Clark, Charles S.; Vanbezooijen, Roel; Magoncelli, Antonio; Baraze, Ronald A.; Chenette, David L.

    2013-09-01

    The geoCARB sensor uses a 4-channel push broom slit-scan infrared imaging grating spectrometer to measure the absorption spectra of sunlight reflected from the ground in narrow wavelength regions. The instrument is designed for flight at geostationary orbit to provide mapping of greenhouse gases over continental scales, several times per day, with a spatial resolution of a few kilometers. The sensor provides multiple daily maps of column-averaged mixing ratios of CO2, CH4, and CO over the regions of interest, which enables flux determination at unprecedented time, space, and accuracy scales. The geoCARB sensor development is based on our experience in successful implementation of advanced space deployed optical instruments for remote sensing. A few recent examples include the Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) on the geostationary Solar Dynamics Observatory (SDO), the Space Based Infrared System (SBIRS GEO-1) and the Interface Region Imaging Spectrograph (IRIS), along with sensors under development, the Near Infared camera (NIRCam) for James Webb (JWST), and the Global Lightning Mapper (GLM) and Solar UltraViolet Imager (SUVI) for the GOES-R series. The Tropospheric Infrared Mapping Spectrometer (TIMS), developed in part through the NASA Instrument Incubator Program (IIP), provides an important part of the strong technological foundation for geoCARB. The paper discusses subsystem heritage and technology readiness levels for these subsystems. The system level flight technology readiness and methods used to determine this level are presented along with plans to enhance the level.

  11. The Influence of Demographic Factor on Personal Innovativeness towards Technology Acceptance

    ERIC Educational Resources Information Center

    Noh, Noraini Mohamed; Hamzah, Mahizer; Abdullah, Norazilawati

    2016-01-01

    Library and Media Teacher (LMT) readiness of accepting and using technology innovation earlier than their colleagues could expedite the technology innovation process into the school education system. The aim of this paper is to report on a study that explored the impact of experience in using computer and the level of ICT knowledge towards…

  12. Assessing students' readiness towards e-learning

    NASA Astrophysics Data System (ADS)

    Rahim, Nasrudin Md; Yusoff, Siti Hawa Mohd; Latif, Shahida Abd

    2014-07-01

    The usage of e-Learning methodology has become a new attraction for potential students as shown by some higher learning institutions in Malaysia. As such, Universiti Selangor (Unisel) should be ready to embark on e-Learning teaching and learning in the near future. The purpose of the study is to gauge the readiness of Unisel's students in e-Learning environment. A sample of 110 students was chosen to participate in this study which was conducted in January 2013. This sample consisted of students from various levels of study that are foundation, diploma and degree program. Using a structured questionnaire, respondents were assessed on their basic Internet skills, access to technology required for e-Learning and their attitude towards characteristics of successful e-Learning student based on study habits, abilities, motivation and time management behaviour. The result showed that respondents did have access to technology that are required for e-Learning environment, and respondents were knowledgeable regarding the basic Internet skills. The finding also showed that respondents' attitude did meet all characteristics of successful e-Learning student. Further analysis showed that there is no significant relationshipeither among gender, level of study or faculty with those characteristics. As a conclusion, the study shows that current Unisel's students are ready to participate in e-Learning environment if the institution decided to embark on e-Learning methodology.

  13. DOD Financial Management: Improvements Needed in the Navys Audit Readiness Efforts for Fund Balance with Treasury

    DTIC Science & Technology

    2016-08-01

    prioritization of key information technology limits management’s ability to focus audit readiness efforts on the systems with the highest risk...corrective actions for the higher-risk systems first. For an audit readiness plan for key information technology systems, the Navy provided a schedule...prioritization of key information technology systems used in the FBWT process limits management’s ability to focus audit readiness efforts on the most

  14. Object/Shape Recognition Technology: An Assessment of the Feasibility of Implementation at Defense Logistics Agency Disposition Services

    DTIC Science & Technology

    2015-02-25

    provide efficiency and effectively manufacture or inventory items. The industries that benefit from Cognex technology are automotive, food and beverage ...recognition tedmology, Tedmology Readiness Level, PAGES Cost Benefit Analysis, Tedmology Commercialization, Technology Transition 139 16. PRICE CODE 17...Technology Development & Transition Strategy Guidebook xvii UD Ultimate Disposal U.S. United States USAF United States Air Force xviii THIS

  15. Making Technology Ready: Integrated Systems Health Management

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Oliver, Patrick J.

    2007-01-01

    This paper identifies work needed by developers to make integrated system health management (ISHM) technology ready and by programs to make mission infrastructure ready for this technology. This paper examines perceptions of ISHM technologies and experience in legacy programs. Study methods included literature review and interviews with representatives of stakeholder groups. Recommendations address 1) development of ISHM technology, 2) development of ISHM engineering processes and methods, and 3) program organization and infrastructure for ISHM technology evolution, infusion and migration.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheeler, D.; Ulsh, M.

    In 2008, the National Renewable Energy Laboratory (NREL), under contract to the US Department of Energy (DOE), conducted a manufacturing readiness assessment (MRA) of fuel cell systems and fuel cell stacks for back-up power and material handling applications (MHE). To facilitate the MRA, manufacturing readiness levels (MRL) were defined that were based on the Technology Readiness Levels previously established by the US Department of Energy (DOE). NREL assessed the extensive existing hierarchy of MRLs developed by Department of Defense (DoD) and other Federal entities, and developed a MRL scale adapted to the needs of the Fuel Cell Technologies Program (FCTP)more » and to the status of the fuel cell industry. The MRL ranking of a fuel cell manufacturing facility increases as the manufacturing capability transitions from laboratory prototype development through Low Rate Initial Production to Full Rate Production. DOE can use MRLs to address the economic and institutional risks associated with a ramp-up in polymer electrolyte membrane (PEM) fuel cell production. In 2010, NREL updated this assessment, including additional manufacturers, an assessment of market developments since the original report, and a comparison of MRLs between 2008 and 2010.« less

  17. A Systems Approach to Expanding the Technology Readiness Level within Defense Acquisition

    DTIC Science & Technology

    2008-01-01

    Administration’s (NASA) post-Apollo era as ontology for contracting support (Sadin, Povinelli & Rosen, 1989). In the last nine years, other...1008-1023. Sadin, S. R., Povinelli , F. P., & Rosen, R. (1989). The NASA technology push towards future space mis- sion systems. Acta Astronautica

  18. A Comprehensive Approach of E-learning Design for Effective Learning Transfer

    ERIC Educational Resources Information Center

    Lim, Doo Hun

    2012-01-01

    Literature indicates that there is limited research on the national and organizational level decision processes to develop and deliver e-learning programs. In this paper, existing e-learning literature is analyzed in terms of national level factors (national culture, readiness for new technology, and infrastructure), organizational level factors…

  19. Readiness for living technology: a comparative study of the uptake of robot technology in the Danish health-care sector.

    PubMed

    Peronard, Jean-Paul

    2013-01-01

    This article is a comparative analysis between workers in health care with high and low degree of readiness for living technology such as robotics. To explore the differences among workers' readiness, statistical analysis was conducted in a data set obtained from 200 respondents. The results showed important differences between high- and low-readiness types on issues such as staff security, documentation, autonomy, and future challenges.

  20. Relationship of Mobile Learning Readiness to Teacher Proficiency in Classroom Technology Integration

    ERIC Educational Resources Information Center

    Christensen, Rhonda; Knezek, Gerald

    2016-01-01

    Mobile learning readiness as a new aspect of technology integration for classroom teachers is confirmed through the findings of this study to be significantly aligned with well-established measures based on older information technologies. The Mobile Learning Readiness Survey (MLRS) generally exhibits the desirable properties of step-wise increases…

  1. Army Independent Risk Assessment Guidebook

    DTIC Science & Technology

    2014-04-01

    17 5.4.2 Step 2: Gather relevant technology and alternative information............... 17 5.4.3 Step 3: Secure SME support for readiness...level assessment. ................... 17 5.4.4 Step 4: SMEs assess TRL, IRL, and MRL for each technology. .............. 17 5.4.5 Step 5: Identify...technical risks, risk ratings, and mitigations. .................. 20 5.4.6 Step 6: SMEs identify key technologies

  2. Technology readiness levels for advanced nuclear fuels and materials development

    DOE PAGES

    Carmack, W. J.; Braase, L. A.; Wigeland, R. A.; ...

    2016-12-23

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. It was pioneered by the National Aeronautics and Space Administration (NASA) in the 1980s to develop and deploy new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications as well as the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is a critical technology needed for improving the performance and safety of currentmore » and advanced reactors, and ultimately closing the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management, communication and tracking tool. Furthermore, this article provides examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).« less

  3. Technology readiness levels for advanced nuclear fuels and materials development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmack, W. J.; Braase, L. A.; Wigeland, R. A.

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. It was pioneered by the National Aeronautics and Space Administration (NASA) in the 1980s to develop and deploy new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications as well as the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is a critical technology needed for improving the performance and safety of currentmore » and advanced reactors, and ultimately closing the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management, communication and tracking tool. Furthermore, this article provides examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).« less

  4. Definition and Development of Habitation Readiness Levels (HRLs) for Planetary Surface Habitats

    NASA Technical Reports Server (NTRS)

    Connolly, Janis H.; Toups, Larry

    2007-01-01

    One could argue that NASA has never developed a true habitat for a planetary surface, with only the Lunar Module from the 1960's-era Apollo Program providing for a sparse 2 person, 3 day capability. An integral part of NASA's current National Vision for Space Exploration is missions back to the moon and eventually to Mars. One of the largest leaps i11 lunar surface exploration beyond the Apollo lunar missions will be the conduct of these extended duration human missions. These missions could range from 30 to 90 days in length initially and may eventually range up to 500 days in length. To enable these extended duration human missions, probably the single-most important lunar surface element is the Surface Habitat. The requirements that must be met by the Surface Habitat will go far beyond the safety, performance and operational requirements of the Lunar Module, and NASA needs to develop a basis for making intelligent, technically correct habitat design decisions. This paper will discuss the possibilities of the definition and development of a Habitation Readiness Level (HRL) scale that might be mapped to current Technology Readiness Levels (TRLs) for technology development. HRLs could help measure how well a particular technology thrust is advanced by a proposed planetary habitat concept. The readiness level would have to be measured differently than TRLs, and may include such milestones as habitat design performance under simulated mission operations and constraints (including relevant field testing), functional allocation demonstrations, crew interface evaluation and post-occupancy evaluation. With many concepts for planetary habitats proposed over the past 20 years, there are many strategic technical challenges facing designers of planetary habitats that will support NASA's exploration of the moon and Mars. The systematic assessment of a variety of planetary habitat options will be an important approach and will influence the associated requirements for human design, volumetrics, functionality, systems hardware and operations.

  5. Technology Readiness of Early Career Nurse Trainees: Utilization of the Technology Readiness Index (TRI).

    PubMed

    Odlum, Michelle

    2016-01-01

    Health Information Technology (HIT) adoption by clinicians, including nurses, will lead to reduction in healthcare costs and clinical errors and improve health outcomes. Understanding the importance of technology adoption, the current study utilized the Technology Readiness Index to explore technology perceptions of nursing students. Our analysis identifies factors that may influence perceptions of technology, including decreased optimism for students with clinical experience and increased discomfort of US born students. Our study provides insight to inform training programs to further meet the increasing demands of skilled nursing staff.

  6. Nuclear Systems Kilopower Overview

    NASA Technical Reports Server (NTRS)

    Palac, Don; Gibson, Marc; Mason, Lee; Houts, Michael; McClure, Patrick; Robinson, Ross

    2016-01-01

    The Nuclear Systems Kilopower Project was initiated by NASAs Space Technology Mission Directorate Game Changing Development Program in fiscal year 2015 to demonstrate subsystem-level technology readiness of small space fission power in a relevant environment (Technology Readiness Level 5) for space science and human exploration power needs. The Nuclear Systems Kilopower Project consists of two elements. The primary element is the Kilopower Prototype Test, also called the Kilopower Reactor Using Stirling Technology(KRUSTY) Test. This element consists of the development and testing of a fission ground technology demonstrator of a 1 kWe fission power system. A 1 kWe system matches requirements for some robotic precursor exploration systems and future potential deep space science missions, and also allows a nuclear ground technology demonstration in existing nuclear test facilities at low cost. The second element, the Mars Kilopower Scalability Study, consists of the analysis and design of a scaled-up version of the 1 kWe reference concept to 10 kWe for Mars surface power projected requirements, and validation of the applicability of the KRUSTY experiment to key technology challenges for a 10 kWe system. If successful, these two elements will lead to initiation of planning for a technology demonstration of a 10 kWe fission power capability for Mars surface outpost power.

  7. In-Space Propulsion Program Overview and Status

    NASA Technical Reports Server (NTRS)

    Wercinski, Paul F.; Johnson, Les; Baggett, Randy M.

    2003-01-01

    NASA's In-Space Propulsion (ISP) Program is designed to develop advanced propulsion technologies that can enable or greatly enhance near and mid-term NASA science missions by significantly reducing cost, mass, and/or travel times. These technologies include: Solar Electric Propulsion, Aerocapture, Solar Sails, Momentum Exchange Tethers, Plasma Sails and other technologies such as Advanced Chemical Propulsion. The ISP Program intends to develop cost-effective propulsion technologies that will provide a broad spectrum of mission possibilities, enabling NASA to send vehicles on longer, more useful voyages and in many cases to destinations that were previously unreachable using conventional means. The ISP approach to identifying and prioritizing these most promising technologies is to use mission and system analysis and subsequent peer review. The ISP program seeks to develop technologies under consideration to Technology Readiness Level (TRL) -6 for incorporation into mission planning within 3-5 years of initiation. The NASA TRL 6 represents a level where a technology is ready for system level demonstration in a relevant environment, usually a space environment. In addition, maximum use of open competition is encouraged to seek optimum solutions under ISP. Several NASA Research Announcements (NRA's) have been released asking industry, academia and other organizations to propose propulsion technologies designed to improve our ability to conduct scientific study of the outer planets and beyond. The ISP Program is managed by NASA Headquarters Office of Space Science and implemented by the Marshall Space Flight Center in Huntsville, Alabama.

  8. Decision Gate Process for Assessment of a NASA Technology Development Portfolio

    NASA Technical Reports Server (NTRS)

    Kohli, Rajiv; Fishman, Julianna L.; Hyatt, Mark J.

    2012-01-01

    The NASA Dust Management Project (DMP) was established to provide technologies (to Technology Readiness Level (TRL) 6) required to address adverse effects of lunar dust to humans and to exploration systems and equipment, to reduce life cycle cost and risk, and to increase the probability of sustainable and successful lunar missions. The technology portfolio of DMP consisted of different categories of technologies whose final product was either a technology solution in itself, or one that contributes toward a dust mitigation strategy for a particular application. A Decision Gate Process (DGP) was developed to assess and validate the achievement and priority of the dust mitigation technologies as the technologies progress through the development cycle. The DGP was part of continuous technology assessment and was a critical element of DMP risk management. At the core of the process were technology-specific criteria developed to measure the success of each DMP technology in attaining the technology readiness levels assigned to each decision gate. The DGP accounts for both categories of technologies and qualifies the technology progression from technology development tasks to application areas. The process provided opportunities to validate performance, as well as to identify non-performance in time to adjust resources and direction. This paper describes the overall philosophy of the DGP and the methodology for implementation for DMP, and describes the method for defining the technology evaluation criteria. The process is illustrated by example of an application to a specific DMP technology.

  9. Materials Discovery across Technological Readiness Levels | Materials

    Science.gov Websites

    and experimental realization of new stable inorganic materials using Inverse Design approach, A , E. Tea, S. Lany, J. Phys. Chem. Lett. 5, 1117 (2014). Non-equilibrium origin of high electrical

  10. Learning Computer Hardware by Doing: Are Tablets Better than Desktops?

    ERIC Educational Resources Information Center

    Raven, John; Qalawee, Mohamed; Atroshi, Hanar

    2016-01-01

    In this world of rapidly evolving technologies, educational institutions often struggle to keep up with change. Change often requires a state of readiness at both the micro and macro levels. This paper looks at a tertiary institution that undertook a significant technology change initiative by introducing tablet based components for teaching a…

  11. How Special Are Teachers of Specialized Schools? Assessing Self-Confidence Levels in the Technology Domain

    ERIC Educational Resources Information Center

    Çatma, Zehra; Corlu, Mehmet Sencer

    2016-01-01

    This study investigates whether specialized high school mathematics teachers, chosen to educate selected students, are mentally ready to integrate Fatih project technologies into their teaching. Forty mathematics teachers from randomly selected specialized and general high schools in Ankara responded to a survey comprising 31 items grouped under…

  12. Development and Ground Testing of a Compactly Stowed Scalable Inflatably Deployed Solar Sail

    NASA Technical Reports Server (NTRS)

    Lichodziejewski, David; Derbes, Billy; Reinert, Rich; Belvin, Keith; Slade, Kara; Mann, Troy

    2004-01-01

    This paper discusses the solar sail design and outlines the interim accomplishments to advance the technology readiness level (TRL) of the subsystem from 3 toward a technology readiness level of 6 in 2005. Under Phase II of the program many component test articles have been fabricated and tested successfully. Most notably an unprecedented section of the conically deployed rigidizable sail support beam, the heart of the inflatable rigidizable structure, has been deployed and tested in the NASA Goddard thermal vacuum chamber with good results. The development testing validated the beam packaging and deployment. The inflatable conically deployed, Sub Tg rigidizable beam technology is now in the TRL 5-6 range. The fabricated masses and structural test results of our beam components have met predictions and no changes to the mass estimates or design assumptions have been identified adding great credibility to the design. Several quadrants of the Mylar sail have also been fabricated and successfully deployed validating our design, manufacturing, and deployment techniques.

  13. Baby boomers' adoption of consumer health technologies: survey on readiness and barriers.

    PubMed

    LeRouge, Cynthia; Van Slyke, Craig; Seale, Deborah; Wright, Kevin

    2014-09-08

    As they age, baby boomers (born 1946-1964) will have increasing medical needs and are likely to place large demand on health care resources. Consumer health technologies may help stem rising health care needs and costs by improving provider-to-patient communication, health monitoring, and information access and enabling self-care. Research has not explored the degree to which baby boomers are ready for, or are currently embracing, specific consumer health technologies This study explores how baby boomers' readiness to use various technologies for health purposes compares to other segments of the adult population. The goals of the study are to (1) examine what technologies baby boomers are ready to use for health purposes, (2) investigate barriers to baby boomers' use of technology for health purposes, and (3) understand whether readiness for and barriers to baby boomers' use of consumer health technologies differ from those of other younger and older consumers. Data were collected via a survey offered to a random sample of 3000 subscribers to a large pharmacy benefit management company. Respondents had the option to complete the survey online or by completing a paper-based version of the survey. Data from 469 respondents (response rate 15.63%) were analyzed, including 258 baby boomers (aged 46-64 years), 72 younger (aged 18-45 years), and 139 older (age >64 years) participants. Baby boomers were found to be similar to the younger age group, but significantly more likely than the older age group to be ready to use 5 technologies for health purposes (health information websites, email, automated call centers, medical video conferencing, and texting). Baby boomers were less ready than the younger age group to adopt podcasts, kiosks, smartphones, blogs, and wikis for health care purposes. However, baby boomers were more likely than older adults to use smartphones and podcasts for health care purposes. Specific adoption barriers vary according to the technology. Baby boomers have commonalities with and distinctions from both younger and older adults in their readiness to adopt specific consumer health technologies and the barriers they experience to adoption. Baby boomers' nuances regarding readiness to adopt and the barriers associated with the various forms of consumer health technology should be taken into account by those interested in promoting consumer health technologies use among baby boomers when developing applications, choosing technologies, preparing users for use, and in promotional tactics.

  14. Use of the Nanofitin Alternative Scaffold as a GFP-Ready Fusion Tag

    PubMed Central

    Huet, Simon; Gorre, Harmony; Perrocheau, Anaëlle; Picot, Justine; Cinier, Mathieu

    2015-01-01

    With the continuous diversification of recombinant DNA technologies, the possibilities for new tailor-made protein engineering have extended on an on-going basis. Among these strategies, the use of the green fluorescent protein (GFP) as a fusion domain has been widely adopted for cellular imaging and protein localization. Following the lead of the direct head-to-tail fusion of GFP, we proposed to provide additional features to recombinant proteins by genetic fusion of artificially derived binders. Thus, we reported a GFP-ready fusion tag consisting of a small and robust fusion-friendly anti-GFP Nanofitin binding domain as a proof-of-concept. While limiting steric effects on the carrier, the GFP-ready tag allows the capture of GFP or its blue (BFP), cyan (CFP) and yellow (YFP) alternatives. Here, we described the generation of the GFP-ready tag from the selection of a Nanofitin variant binding to the GFP and its spectral variants with a nanomolar affinity, while displaying a remarkable folding stability, as demonstrated by its full resistance upon thermal sterilization process or the full chemical synthesis of Nanofitins. To illustrate the potential of the Nanofitin-based tag as a fusion partner, we compared the expression level in Escherichia coli and activity profile of recombinant human tumor necrosis factor alpha (TNFα) constructs, fused to a SUMO or GFP-ready tag. Very similar expression levels were found with the two fusion technologies. Both domains of the GFP-ready tagged TNFα were proved fully active in ELISA and interferometry binding assays, allowing the simultaneous capture by an anti-TNFα antibody and binding to the GFP, and its spectral mutants. The GFP-ready tag was also shown inert in a L929 cell based assay, demonstrating the potent TNFα mediated apoptosis induction by the GFP-ready tagged TNFα. Eventually, we proposed the GFP-ready tag as a versatile capture and labeling system in addition to expected applications of anti-GFP Nanofitins (as illustrated with previously described state-of-the-art anti-GFP binders applied to living cells and in vitro applications). Through a single fusion domain, the GFP-ready tagged proteins benefit from subsequent customization within a wide range of fluorescence spectra upon indirect binding of a chosen GFP variant. PMID:26539718

  15. Use of the Nanofitin Alternative Scaffold as a GFP-Ready Fusion Tag.

    PubMed

    Huet, Simon; Gorre, Harmony; Perrocheau, Anaëlle; Picot, Justine; Cinier, Mathieu

    2015-01-01

    With the continuous diversification of recombinant DNA technologies, the possibilities for new tailor-made protein engineering have extended on an on-going basis. Among these strategies, the use of the green fluorescent protein (GFP) as a fusion domain has been widely adopted for cellular imaging and protein localization. Following the lead of the direct head-to-tail fusion of GFP, we proposed to provide additional features to recombinant proteins by genetic fusion of artificially derived binders. Thus, we reported a GFP-ready fusion tag consisting of a small and robust fusion-friendly anti-GFP Nanofitin binding domain as a proof-of-concept. While limiting steric effects on the carrier, the GFP-ready tag allows the capture of GFP or its blue (BFP), cyan (CFP) and yellow (YFP) alternatives. Here, we described the generation of the GFP-ready tag from the selection of a Nanofitin variant binding to the GFP and its spectral variants with a nanomolar affinity, while displaying a remarkable folding stability, as demonstrated by its full resistance upon thermal sterilization process or the full chemical synthesis of Nanofitins. To illustrate the potential of the Nanofitin-based tag as a fusion partner, we compared the expression level in Escherichia coli and activity profile of recombinant human tumor necrosis factor alpha (TNFα) constructs, fused to a SUMO or GFP-ready tag. Very similar expression levels were found with the two fusion technologies. Both domains of the GFP-ready tagged TNFα were proved fully active in ELISA and interferometry binding assays, allowing the simultaneous capture by an anti-TNFα antibody and binding to the GFP, and its spectral mutants. The GFP-ready tag was also shown inert in a L929 cell based assay, demonstrating the potent TNFα mediated apoptosis induction by the GFP-ready tagged TNFα. Eventually, we proposed the GFP-ready tag as a versatile capture and labeling system in addition to expected applications of anti-GFP Nanofitins (as illustrated with previously described state-of-the-art anti-GFP binders applied to living cells and in vitro applications). Through a single fusion domain, the GFP-ready tagged proteins benefit from subsequent customization within a wide range of fluorescence spectra upon indirect binding of a chosen GFP variant.

  16. Technology readiness levels and technology status for selected long term/high payoff technologies on the RLV program

    NASA Technical Reports Server (NTRS)

    Rosmait, Russell L.

    1996-01-01

    The development of a new space transportation system in a climate of constant budget cuts and staff reductions can be and is a difficult task. It is no secret that NASA's current launching system consumes a very large portion of NASA funding and requires a large army of people to operate & maintain the system. The new Reusable Launch Vehicle (RLV) project and it's programs are faced with a monumental task of making the cost of access to space dramatically lower and more efficient than NASA's current system. With pressures from congressional budget cutters and also increased competition and loss of market share from international agencies RLV's first priority is to develop a 'low-cost, reliable transportation to earth orbit.' One of the RLV's major focus in achieving low-cost, reliable transportation to earth orbit is to rely on the maturing of advanced technologies. The technologies for the RLV are numerous and varied. Trying to assess their current status, within the RLV development program is paramount. There are several ways to assess these technologies. One way is through the use of Technology Readiness Levels (TRL's). This project focused on establishing current (summer 95) 'worst case' TRL's for six selected technologies that are under consideration for use within the RLV program. The six technologies evaluated were Concurrent Engineering, Embedded Sensor Technology, Rapid Prototyping, Friction Stir Welding, Thermal Spray Coatings, and VPPA Welding.

  17. Cyber Security at the District Level: Are You Ready to Prevent Unlawful, Unauthorized or Simply Misguided Use of Your Technology?

    ERIC Educational Resources Information Center

    Lafee, Scott

    2005-01-01

    In an era of digital technologies, school districts find themselves on a cutting edge, one that slices both ways. Technological tools like the Internet, e-mail, networked computers and such have revolutionized the way children are taught and schools are run, but they also have created new management challenges and ethical issues that many school…

  18. FY04 Advanced Life Support Architecture and Technology Studies: Mid-Year Presentation

    NASA Technical Reports Server (NTRS)

    Lange, Kevin; Anderson, Molly; Duffield, Bruce; Hanford, Tony; Jeng, Frank

    2004-01-01

    Long-Term Objective: Identify optimal advanced life support system designs that meet existing and projected requirements for future human spaceflight missions. a) Include failure-tolerance, reliability, and safe-haven requirements. b) Compare designs based on multiple criteria including equivalent system mass (ESM), technology readiness level (TRL), simplicity, commonality, etc. c) Develop and evaluate new, more optimal, architecture concepts and technology applications.

  19. Fission Surface Power Systems (FSPS) Project Final Report for the Exploration Technology Development Program (ETDP): Fission Surface Power, Transition Face to Face

    NASA Technical Reports Server (NTRS)

    Palac, Donald T.

    2011-01-01

    The Fission Surface Power Systems Project became part of the ETDP on October 1, 2008. Its goal was to demonstrate fission power system technology readiness in an operationally relevant environment, while providing data on fission system characteristics pertinent to the use of a fission power system on planetary surfaces. During fiscal years 08 to 10, the FSPS project activities were dominated by hardware demonstrations of component technologies, to verify their readiness for inclusion in the fission surface power system. These Pathfinders demonstrated multi-kWe Stirling power conversion operating with heat delivered via liquid metal NaK, composite Ti/H2O heat pipe radiator panel operations at 400 K input water temperature, no-moving-part electromagnetic liquid metal pump operation with NaK at flight-like temperatures, and subscale performance of an electric resistance reactor simulator capable of reproducing characteristics of a nuclear reactor for the purpose of system-level testing, and a longer list of component technologies included in the attached report. Based on the successful conclusion of Pathfinder testing, work began in 2010 on design and development of the Technology Demonstration Unit (TDU), a full-scale 1/4 power system-level non-nuclear assembly of a reactor simulator, power conversion, heat rejection, instrumentation and controls, and power management and distribution. The TDU will be developed and fabricated during fiscal years 11 and 12, culminating in initial testing with water cooling replacing the heat rejection system in 2012, and complete testing of the full TDU by the end of 2014. Due to its importance for Mars exploration, potential applicability to missions preceding Mars missions, and readiness for an early system-level demonstration, the Enabling Technology Development and Demonstration program is currently planning to continue the project as the Fission Power Systems project, including emphasis on the TDU completion and testing.

  20. Bigelow Expandable Activity Module (BEAM) Monitoring System

    NASA Technical Reports Server (NTRS)

    Wells, Nathan

    2017-01-01

    What is Bigelow Expandable Activity Module (BEAM)? The Bigelow Expandable Activity Module (BEAM) is an expandable habitat technology demonstration on ISS; increase human-rated inflatable structure Technology Readiness Level (TRL) to level 9. NASA managed ISS payload project in partnership with Bigelow Aerospace. Launched to ISS on Space X 8 (April 8th, 2016). Fully expanded on May 28th, 2016. Jeff Williams/Exp. 48 Commander first entered BEAM on June 5th, 2016.

  1. Cryogenic Propellant Storage and Transfer (CPST) Technology Maturation: Establishing a Foundation for a Technology Demonstration Mission (TDM)

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Meyer, Michael L.; Motil, Susan M.; Ginty, Carol A.

    2014-01-01

    As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including asteroids, Lagrange points, the Moon and Mars. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages (CPS) and propellant depots. The TDM CPST project will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration which is relevant to enable long term human space exploration missions beyond low Earth orbit (LEO). Recognizing that key cryogenic fluid management technologies anticipated for on-orbit (flight) demonstration needed to be matured to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate authorized funding for a one-year (FY12) ground based technology maturation program. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, studies, and ground tests of the storage and fluid transfer Cryogenic Fluid Management (CFM) technology sub-elements and components that were not already at a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. This paper will present the testing, studies, and modeling that occurred in FY12 to mature cryogenic fluid management technologies for propellant storage, transfer, and supply, to examine extensibility to full scale, long duration missions, and to develop and validate analytical models. Finally, the paper will briefly describe an upcoming test to demonstrate Liquid Oxygen (LO2) Zero Boil-Off (ZBO).

  2. Cryogenic Propellant Storage and Transfer (CPST) Technology Maturation: Establishing a Foundation for a Technology Demonstration Mission (TDM)

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Meyer, Michael L.; Motil, Susan M.; Ginty, Carol A.

    2013-01-01

    As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including asteroids, Lagrange points, the Moon and Mars. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages (CPS) and propellant depots. The TDM CPST project will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration which is relevant to enable long term human space exploration missions beyond low Earth orbit (LEO). Recognizing that key cryogenic fluid management technologies anticipated for on-orbit (flight) demonstration needed to be matured to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate authorized funding for a one-year (FY12) ground based technology maturation program. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, studies, and ground tests of the storage and fluid transfer Cryogenic Fluid Management (CFM) technology sub-elements and components that were not already at a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. This paper will present the testing, studies, and modeling that occurred in FY12 to mature cryogenic fluid management technologies for propellant storage, transfer, and supply, to examine extensibility to full scale, long duration missions, and to develop and validate analytical models. Finally, the paper will briefly describe an upcoming test to demonstrate Liquid Oxygen (LO2) Zero Boil- Off (ZBO).

  3. Analysis of e-learning implementation readiness based on integrated elr model

    NASA Astrophysics Data System (ADS)

    Adiyarta, K.; Napitupulu, D.; Rahim, R.; Abdullah, D.; Setiawan, MI

    2018-04-01

    E-learning nowadays has become a requirement for institutions to support their learning activities. To adopt e-learning, an institution requires a large strategy and resources for optimal application. Unfortunately, not all institutions that have used e-learning got the desired results or expectations. This study aims to identify the extent of the level of readiness of e-learning implementation in institution X. The degree of institutional readiness will determine the success of future e-learning utilization. In addition, institutional readiness measurement are needed to evaluate the effectiveness of strategies in e-learning development. The research method used is survey with questionnaire designed based on integration of 8 best practice ELR (e-learning readiness) model. The results showed that from 13 factors of integrated ELR model being measured, there are 3 readiness factors included in the category of not ready and needs a lot of work. They are human resource (2.57), technology skill (2.38) and content factors (2.41). In general, e-learning implementation in institutions is in the category of not ready but needs some of work (3.27). Therefore, the institution should consider which factors or areas of ELR factors are considered still not ready and needs improvement in the future.

  4. Auditing the TK and TPACK Confidence of Pre-Service Teachers: Are They Ready for the Profession?

    ERIC Educational Resources Information Center

    Jamieson-Proctor, Romina; Finger, Glenn; Albion, Peter

    2010-01-01

    Teacher education graduates need appropriate levels of confidence and capabilities in relation to technological knowledge (TK) as a basis for having technological pedagogical content knowledge (TPACK) to meet the challenges of learning and teaching in the 21st century. However, it should not be assumed that tomorrow's teachers enter the profession…

  5. Improving the Effectiveness of Program Managers

    DTIC Science & Technology

    2006-05-03

    Improving the Effectiveness of Program Managers Systems and Software Technology Conference Salt Lake City, Utah May 3, 2006 Presented by GAO’s...Companies’ best practices Motorola Caterpillar Toyota FedEx NCR Teradata Boeing Hughes Space and Communications Disciplined software and management...and total ownership costs Collection of metrics data to improve software reliability Technology readiness levels and design maturity Statistical

  6. In-Space Propulsion (ISP) Solar Sail Propulsion Technology Development

    NASA Technical Reports Server (NTRS)

    Montgomery, Edward E., IV

    2004-01-01

    An overview of the rationale and content for Solar Sail Propulsion (SSP), the on-going project to advance solar technology from technology readiness level 3 to 6 will be provided. A descriptive summary of the major and minor component efforts underway will include identification of the technology providers and a listing of anticipated products Recent important results from major system ground demonstrators will be provided. Finally, a current status of all activities will provided along with the most recent roadmap for the SSP technology development program.

  7. Coalition readiness management system preliminary interoperability experiment (CReaMS PIE)

    NASA Astrophysics Data System (ADS)

    Clark, Peter; Ryan, Peter; Zalcman, Lucien; Robbie, Andrew

    2003-09-01

    The United States Navy (USN) has initiated the Coalition Readiness Management System (CReaMS) Initiative to enhance coalition warfighting readiness through advancing development of a team interoperability training and combined mission rehearsal capability. It integrates evolving cognitive team learning principles and processes with advanced technology innovations to produce an effective and efficient team learning environment. The JOint Air Navy Networking Environment (JOANNE) forms the Australian component of CReaMS. The ultimate goal is to link Australian Defence simulation systems with the USN Battle Force Tactical Training (BFTT) system to demonstrate and achieve coalition level warfare training in a synthetic battlespace. This paper discusses the initial Preliminary Interoperability Experiment (PIE) involving USN and Australian Defence establishments.

  8. DOD Financial Management: Significant Efforts Still Needed for Remediating Audit Readiness Deficiencies

    DTIC Science & Technology

    2017-02-01

    19As defined in generally accepted government auditing standards, information technology controls...Financial Improvement and Audit Readiness (FIAR) Plan Status Report, while DOD continues to make progress in addressing information technology ...DOD FINANCIAL MANAGEMENT Significant Efforts Still Needed for Remediating Audit Readiness Deficiencies Report to

  9. Advanced Life Support Water Recycling Technologies Case Studies: Vapor Phase Catalytic Ammonia Removal and Direct Osmotic Concentration

    NASA Technical Reports Server (NTRS)

    Flynn, Michael

    2004-01-01

    Design for microgravity has traditionally not been well integrated early on into the development of advanced life support (ALS) technologies. NASA currently has a many ALS technologies that are currently being developed to high technology readiness levels but have not been formally evaluated for microgravity compatibility. Two examples of such technologies are the Vapor Phase Catalytic Ammonia Removal Technology and the Direct Osmotic Concentration Technology. This presentation will cover the design of theses two systems and will identify potential microgravity issues.

  10. Baby Boomers’ Adoption of Consumer Health Technologies: Survey on Readiness and Barriers

    PubMed Central

    2014-01-01

    Background As they age, baby boomers (born 1946-1964) will have increasing medical needs and are likely to place large demand on health care resources. Consumer health technologies may help stem rising health care needs and costs by improving provider-to-patient communication, health monitoring, and information access and enabling self-care. Research has not explored the degree to which baby boomers are ready for, or are currently embracing, specific consumer health technologies This study explores how baby boomers’ readiness to use various technologies for health purposes compares to other segments of the adult population. Objective The goals of the study are to (1) examine what technologies baby boomers are ready to use for health purposes, (2) investigate barriers to baby boomers’ use of technology for health purposes, and (3) understand whether readiness for and barriers to baby boomers’ use of consumer health technologies differ from those of other younger and older consumers. Methods Data were collected via a survey offered to a random sample of 3000 subscribers to a large pharmacy benefit management company. Respondents had the option to complete the survey online or by completing a paper-based version of the survey. Results Data from 469 respondents (response rate 15.63%) were analyzed, including 258 baby boomers (aged 46-64 years), 72 younger (aged 18-45 years), and 139 older (age >64 years) participants. Baby boomers were found to be similar to the younger age group, but significantly more likely than the older age group to be ready to use 5 technologies for health purposes (health information websites, email, automated call centers, medical video conferencing, and texting). Baby boomers were less ready than the younger age group to adopt podcasts, kiosks, smartphones, blogs, and wikis for health care purposes. However, baby boomers were more likely than older adults to use smartphones and podcasts for health care purposes. Specific adoption barriers vary according to the technology. Conclusions Baby boomers have commonalities with and distinctions from both younger and older adults in their readiness to adopt specific consumer health technologies and the barriers they experience to adoption. Baby boomers’ nuances regarding readiness to adopt and the barriers associated with the various forms of consumer health technology should be taken into account by those interested in promoting consumer health technologies use among baby boomers when developing applications, choosing technologies, preparing users for use, and in promotional tactics. PMID:25199475

  11. Assessment of Superstructure Ice Protection as Applied to Offshore Oil Operations Safety: Ice Protection Technologies, Safety Enhancements, and Development Needs

    DTIC Science & Technology

    2009-04-01

    companies and Web site own- ers to use their tables and figures. This report was prepared under the general supervision of Janet Hardy, Chief...through reports about the technologies, sales and engineering literature, Web sites, and patents. Information in some circumstances was available from...the technologies are proprietary, some information sources were limited to Web sites and open literature. 5. TRL: Technology Readiness Level (TRL

  12. Future Ready Learning: Reimagining the Role of Technology in Education. 2016 National Education Technology Plan

    ERIC Educational Resources Information Center

    Thomas, Susan

    2016-01-01

    The National Education Technology Plan is the flagship educational technology policy document for the United States. The 2016 Plan, "Future Ready Learning: Reimagining the Role of Technology in Education," articulates a vision of equity, active use, and collaborative leadership to make everywhere, all-the-time learning possible. While…

  13. HYDRA: Macroscopic 3D Approach of Light Weight Ablator

    NASA Astrophysics Data System (ADS)

    Pinaud, G.; Barcena, J.; Bouilly, J.-M.; Leroy, V.; Fischer, Wpp.; Massuti, T.

    2014-06-01

    The HYDRA project is an European funded program that aims at developing novel solution in term of TPS associated to a demonstration of Technology Readiness Level (TRL) 4. We describe modelling activities (radiation/ablation) compared to plasma test.

  14. Airframe Technology Development for Next Generation Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Glass, David E.

    2004-01-01

    The Airframe subproject within NASA's Next Generation Launch Technology (NGLT) program has the responsibility to develop airframe technology for both rocket and airbreathing vehicles for access to space. The Airframe sub-project pushes the state-of-the-art in airframe technology for low-cost, reliable, and safe space transportation. Both low and medium technology readiness level (TRL) activities are being pursued. The key technical areas being addressed include design and integration, hot and integrated structures, cryogenic tanks, and thermal protection systems. Each of the technologies in these areas are discussed in this paper.

  15. E-health readiness assessment framework in iran.

    PubMed

    Rezai-Rad, M; Vaezi, R; Nattagh, F

    2012-01-01

    Concept of e-readiness is used in many areas such as e-business, e-commerce, e-government, and e-banking. In terms of healthcare, e-readiness is a rather new concept, and is propounded under the title of E-healthcare. E-health readiness refers to the readiness of communities and healthcare institutions for the expected changes brought by programs related to Information and Communications Technology (lCT). The present research is conducted aiming at designing E-health Readiness Assessment Framework (EHRAF) in Iran. The e-health readiness assessment framework was designed based on reviewing literature on e-readiness assessment models and opinions of ICT and health experts. In the next step, Delphi method was used to develop and test the designed framework. Three questionnaires developed to test and modify the model while determining weights of the indices; afterward they were either sent to experts through email or delivered to them in face. The designed framework approved with 4 dimensions, 11 constituents and 58 indices. Technical readiness had the highest importance coefficient (0.256099), and the other dimensions were of the next levels of coefficient importance: core readiness (0.25520), social communication readiness (0.244658), and engagement readiness (0.244039). The framework presents the movement route and investment priorities in e-health in Iran. The proposed framework is a good instrument for measuring the e-readiness in health centers in Iran, and for identifying strengths and weaknesses of these centers to access ICT and its implementation for more effectiveness and for analyzing digital divide between them, as well.

  16. E-Health Readiness Assessment Framework in Iran

    PubMed Central

    Rezai-Rad, M; Vaezi, R; Nattagh, F

    2012-01-01

    Background: Concept of e-readiness is used in many areas such as e-business, e-commerce, e-government, and e-banking. In terms of healthcare, e-readiness is a rather new concept, and is propounded under the title of E-healthcare. E-health readiness refers to the readiness of communities and healthcare institutions for the expected changes brought by programs related to Information and Communications Technology (lCT). The present research is conducted aiming at designing E-health Readiness Assessment Framework (EHRAF) in Iran. Methods: The e-health readiness assessment framework was designed based on reviewing literature on e-readiness assessment models and opinions of ICT and health experts. In the next step, Delphi method was used to develop and test the designed framework. Three questionnaires developed to test and modify the model while determining weights of the indices; afterward they were either sent to experts through email or delivered to them in face. Results: The designed framework approved with 4 dimensions, 11 constituents and 58 indices. Technical readiness had the highest importance coefficient (0.256099), and the other dimensions were of the next levels of coefficient importance: core readiness (0.25520), social communication readiness (0.244658), and engagement readiness (0.244039). Conclusion: The framework presents the movement route and investment priorities in e-health in Iran. The proposed framework is a good instrument for measuring the e-readiness in health centers in Iran, and for identifying strengths and weaknesses of these centers to access ICT and its implementation for more effectiveness and for analyzing digital divide between them, as well. PMID:23304661

  17. Technology Development Plan for the Baseline Detector System of the X-Ray Microcalorimeter Spectrometer (XMS) of the International X-Ray Observatory (IXO)

    NASA Technical Reports Server (NTRS)

    Kilbourne, C. A.; Boriese, W. B.

    2010-01-01

    The primary purpose of this document is to present the technology development plan for the XMS detector system. It covers the current status (including assessment of the Technology Readiness Level, TRL, and a justification of the level assigned), the roadmap to progress to a level between TRL 5 and TRL 6 by the middle of 2012, and an assessment of the associated cost. A secondary purpose of this document is to address the Action Items raised at the XMS Phase-A Study Mid-Term Review that pertain to the detector system (AI #4, #8, and #9).

  18. Adoption of Mobile Technology for Teaching Preparation in Improving Teaching Quality of Teachers

    ERIC Educational Resources Information Center

    Nawi, Aliff; Hamzah, Mohd Isa; Ren, Chua Chy; Tamuri, Ab Halim

    2015-01-01

    This study aims to identify the readiness of teachers to use mobile phones for the purpose of teaching preparation. The study also reviewed the level of teachers' satisfaction when using the mobile technology applications developed for the purpose of teaching and learning in the classroom. This study used the mix method to collect data. A total of…

  19. Investigation of Pre-Service Teachers' Levels of Readiness to Technology Integration in Education

    ERIC Educational Resources Information Center

    Cuhadar, Cem

    2018-01-01

    This study aims to expose the training and experience that pre-service teachers acquire in the course of their study at schools of education in regard to the use of information and communication technology (ICT). The study adopts the survey model and its sampling is comprised of 832 pre-service teachers who attend four different faculty of…

  20. Lab-On-a-Chip Application Development (LOCAD): Bridging Technology Readiness for Exploration

    NASA Technical Reports Server (NTRS)

    Spearing, Scott F.; Jenkins, Andy

    2004-01-01

    At Marshall Space Flight Center we have established a capability to investigate the use of microfluidics for space flight. The Lab-On-a-Chip Application Development (LOCAD) team has created a program for advancing Technology Readiness Levels (TRL) of 1 and 2 to TRL 6 and 7, quickly and economically for Lab-On-a-Chip (LOC) applications. Scientists and engineers can utilize LOCAD'S process to efficiently learn about microfluidics and determine if microfluidics is applicable to their needs. Once the applicability has been determined, LOCAD can then perform tests to develop the new fluidic protocols which are different from macro-scale chemical reaction protocols. With this information new micro-fluidic devices can be created and tested. Currently, LOCAD is focused on using microfluidics for both Environmental Monitoring & Control, and Medical Systems. Eventually, handheld portable units utilizing LOC technology will perform rapid tests to determine water quality, and microbial contamination levels. Since LOC technology is drastically reduced in physical size, it thereby reduces power, weight, volume, and sample requirements, a big advantage considering the resource constraints associated with spaceflight. Another one of LOCAD's current activities is the development of a microfluidic system to aid in the search for life on Mars.

  1. Design Of Measurements For Evaluating Readiness Of Technoware Components To Meet The Required Standard Of Products

    NASA Astrophysics Data System (ADS)

    Fauzi, Ilham; Muharram Hasby, Fariz; Irianto, Dradjad

    2018-03-01

    Although government is able to make mandatory standards that must be obeyed by the industry, the respective industries themselves often have difficulties to fulfil the requirements described in those standards. This is especially true in many small and medium sized enterprises that lack the required capital to invest in standard-compliant equipment and machineries. This study aims to develop a set of measurement tools for evaluating the level of readiness of production technology with respect to the requirements of a product standard based on the quality function deployment (QFD) method. By combining the QFD methodology, UNESCAP Technometric model [9] and Analytic Hierarchy Process (AHP), this model is used to measure a firm’s capability to fulfill government standard in the toy making industry. Expert opinions from both the governmental officers responsible for setting and implementing standards and the industry practitioners responsible for managing manufacturing processes are collected and processed to find out the technological capabilities that should be improved by the firm to fulfill the existing standard. This study showed that the proposed model can be used successfully to measure the gap between the requirements of the standard and the readiness of technoware technological component in a particular firm.

  2. Factors Affecting the Technology Readiness of Health Professionals

    ERIC Educational Resources Information Center

    Myers, Stephanie E.

    2010-01-01

    Federal government policies are promoting diffusion of technologies into the healthcare system. If health professionals reject the new technologies planned for the healthcare system, it could result in costly failures, delays, and workforce problems. There is a lack of knowledge about factors that affect technology readiness (TR), defined as the…

  3. Solar Sail Propulsion Technology Readiness Level Database

    NASA Technical Reports Server (NTRS)

    Adams, Charles L.

    2004-01-01

    The NASA In-Space Propulsion Technology (ISPT) Projects Office has been sponsoring 2 solar sail system design and development hardware demonstration activities over the past 20 months. Able Engineering Company (AEC) of Goleta, CA is leading one team and L Garde, Inc. of Tustin, CA is leading the other team. Component, subsystem and system fabrication and testing has been completed successfully. The goal of these activities is to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by 2006. These activities will culminate in the deployment and testing of 20-meter solar sail system ground demonstration hardware in the 30 meter diameter thermal-vacuum chamber at NASA Glenn Plum Brook in 2005. This paper will describe the features of a computer database system that documents the results of the solar sail development activities to-date. Illustrations of the hardware components and systems, test results, analytical models, relevant space environment definition and current TRL assessment, as stored and manipulated within the database are presented. This database could serve as a central repository for all data related to the advancement of solar sail technology sponsored by the ISPT, providing an up-to-date assessment of the TRL of this technology. Current plans are to eventually make the database available to the Solar Sail community through the Space Transportation Information Network (STIN).

  4. Comparative Analysis of Teacher Trainee Students' eLearning Technology (ELT) Readiness towards Promoting Global Curriculum Best Practice

    ERIC Educational Resources Information Center

    Ogwu, Edna N.

    2016-01-01

    This study compares teacher trainee students (TTSs), electronic learning technology (ELT) readiness, competence as well as their constraints to ELT readiness using 373 University education students' from Botswana and Nigeria that are randomly selected. Data was descriptively analysed based on the research objectives and hypotheses using mean…

  5. Utilizing GIS to evaluate base schedules in paratransit operations

    DOT National Transportation Integrated Search

    1999-02-02

    With ready access to street file names and inexpensive GIS software, paratransit systems can take advantage of GIS technology to evaluate base schedules on a regular basis in order to maintain system efficiency at consistently high levels. This proje...

  6. Technology requirements and readiness for very large vehicles

    NASA Technical Reports Server (NTRS)

    Conner, D. W.

    1979-01-01

    Common concerns of very large vehicles in the areas of economics, transportation system interfaces and operational problems were reviewed regarding their influence on vehicle configurations and technology. Fifty-four technology requirements were identified which are judged to be unique, or particularly critical, to very large vehicles. The requirements were about equally divided among the four general areas of aero/hydrodynamics, propulsion and acoustics, structures, and vehicle systems and operations. The state of technology readiness was judged to be poor to fair for slightly more than one half of the requirements. In the classic disciplinary areas, the state of technology readiness appears to be more advanced than for vehicle systems and operations.

  7. An Assessment of Aerocapture and Applications to Future Missions to Uranus and Neptune

    NASA Astrophysics Data System (ADS)

    Beauchamp, P. M.; Spilker, T. R.

    2017-12-01

    Our investigation examined the current state of readiness of aerocapture at several destinations of interest, including Uranus and Neptune, to identify what technologies are needed, and to determine if a technology demonstration mission is required, prior to the first use of aerocapture for a science mission. The study team concluded that the current state of readiness is destination dependent, with aerocaptured missions feasible at Venus, Mars, and Titan with current technologies. The use of aerocapture for orbit insertion at the ice giant planets Uranus and Neptune requires at least additional study to assess the expected performance of new guidance, navigation, and control algorithms, and possible development of new hardware, such as a mid-L/D entry vehicle shape or new thermal protection system materials. A variety of near-term activities could contribute to risk reduction for missions proposing use of aerocapture, but a system-level technology demonstration mission is not deemed necessary before the use of aerocapture for a NASA science mission.

  8. Orbit transfer rocket engine technology program: Automated preflight methods concept definition

    NASA Technical Reports Server (NTRS)

    Erickson, C. M.; Hertzberg, D. W.

    1991-01-01

    The possibility of automating preflight engine checkouts on orbit transfer engines is discussed. The minimum requirements in terms of information and processing necessary to assess the engine'e integrity and readiness to perform its mission were first defined. A variety of ways for remotely obtaining that information were generated. The sophistication of these approaches varied from a simple preliminary power up, where the engine is fired up for the first time, to the most advanced approach where the sensor and operational history data system alone indicates engine integrity. The critical issues and benefits of these methods were identified, outlined, and prioritized. The technology readiness of each of these automated preflight methods were then rated on a NASA Office of Exploration scale used for comparing technology options for future mission choices. Finally, estimates were made of the remaining cost to advance the technology for each method to a level where the system validation models have been demonstrated in a simulated environment.

  9. Exploring Instructors' Technology Readiness, Attitudes and Behavioral Intentions towards E-Learning Technologies in Egypt and United Arab Emirates

    ERIC Educational Resources Information Center

    El Alfy, Shahira; Gómez, Jorge Marx; Ivanov, Danail

    2017-01-01

    This paper explores the association between technology readiness, (a meta-construct consisting of optimism, innovativeness, discomfort, and insecurity), attitude, and behavioral intention towards e-learning technologies adoption within an education institution context. The empirical study data is collected at two private universities located in…

  10. A Conceptual Measurement Model for eHealth Readiness: a Team Based Perspective

    PubMed Central

    Phillips, James; Poon, Simon K.; Yu, Dan; Lam, Mary; Hines, Monique; Brunner, Melissa; Power, Emma; Keep, Melanie; Shaw, Tim; Togher, Leanne

    2017-01-01

    Despite the shift towards collaborative healthcare and the increase in the use of eHealth technologies, there does not currently exist a model for the measurement of eHealth readiness in interdisciplinary healthcare teams. This research aims to address this gap in the literature through the development of a three phase methodology incorporating qualitative and quantitative methods. We propose a conceptual measurement model consisting of operationalized themes affecting readiness across four factors: (i) Organizational Capabilities, (ii) Team Capabilities, (iii) Patient Capabilities, and (iv) Technology Capabilities. The creation of this model will allow for the measurement of the readiness of interdisciplinary healthcare teams to use eHealth technologies to improve patient outcomes. PMID:29854207

  11. A Proposed Conceptual Model of Military Medical Readiness

    DTIC Science & Technology

    2007-05-01

    critical role in complex military operations in which Medical Readiness 22 technological and information demands necessitate a multi-operator environment...Analysis 33 Coding 34 Data Collection 35 Medical Readiness 6 Boundaries 36 Researcher’s Role and Approach 37 Literature Review 37 The Military Health...Within the external environment, strategic shifts, technological advancements, and changing demographics affect how the Military Health System delivers

  12. The state of knowledge on technologies and their use for fall detection: A scoping review.

    PubMed

    Lapierre, N; Neubauer, N; Miguel-Cruz, A; Rios Rincon, A; Liu, L; Rousseau, J

    2018-03-01

    Globally, populations are aging with increasing life spans. The normal aging process and the resulting disabilities increase fall risks. Falls are an important cause of injury, loss of independence and institutionalization. Technologies have been developed to detect falls and reduce their consequences but their use and impact on quality of life remain debatable. Reviews on fall detection technologies exist but are not extensive. A comprehensive literature review on the state of knowledge of fall detection technologies can inform research, practice, and user adoption. To examine the extent and the diversity of current technologies for fall detection in older adults. A scoping review design was used to search peer-reviewed literature on technologies to detect falls, published in English, French or Spanish since 2006. Data from the studies were analyzed descriptively. The literature search identified 3202 studies of which 118 were included for analysis. Ten types of technologies were identified ranging from wearable (e.g., inertial sensors) to ambient sensors (e.g., vision sensors). Their Technology Readiness Level was low (mean 4.54 SD 1.25; 95% CI [4.31, 4.77] out of a maximum of 9). Outcomes were typically evaluated on technological basis and in controlled environments. Few were evaluated in home settings or care units with older adults. Acceptability, implementation cost and barriers were seldom addressed. Further research should focus on increasing Technology Readiness Levels of fall detection technologies by testing them in real-life settings with older adults. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The Availability and Use of 21st Century Technology Tools in South Carolina Secondary Public School Library Media Centers

    ERIC Educational Resources Information Center

    DuRant, Kathleen D.

    2010-01-01

    The purpose of this study was to assess the readiness of South Carolina secondary school library media specialists to prepare students to meet the "AASL Standards for the 21st Century Learner" (American Association of School Librarians, 2009b) by investigating the availability of 21st century technology tools, the confidence level of…

  14. Assessment of the high temperature fission chamber technology for the French fast reactor program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jammes, C.; Filliatre, P.; Geslot, B.

    2011-07-01

    High temperature fission chambers are key instruments for the control and protection of the sodium-cooled fast reactor. First, the developments of those neutron detectors, which are carried out either in France or abroad are reviewed. Second, the French realizations are assessed with the use of the technology readiness levels in order to identify tracks of improvement. (authors)

  15. Small-Scale Waste-to-Energy Technology for Contingency Bases

    DTIC Science & Technology

    2012-05-24

    Expedient, No Waste Sorting Technology Readiness Level High Fuel Demand Water Required Steam Infrastructure Required Air Emissions Gasification ...Full gasification system • Costs $26K • GM Industrial Engine (GM 4 Cylinder, 3.00 L) • MeccAlte Generator Head • Imbert type downdraft reactor...Solid waste volume reduction − Response to waste streams  biomass , refuse-derived fuel, shredded waste − Operation and maintenance requirements

  16. Industrialization study, phase 2. [assessment of advanced photovoltaic technologies for commerical development

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The potentials and requirements of advanced photovoltaic technologies still in their early developmental stages were evaluated and compared to the present day single crystal silicon wafer technology and to each other. The major areas of consideration include polycrystalline and amorphous silicon, single crystal and polycrystalline gallium arsenide, and single crystal and polycrystalline cadmium sulfide. A rank ordering of the advanced technologies is provided. The various ranking schemes were based upon present-day efficiency levels, their stability and long-term reliability prospects, material availability, capital investments both at the laboratory and production level, and associated variable costs. An estimate of the timing of the possible readiness of these advanced technologies for technology development programs and industrialization is presented along with a set of recommended government actions concerning the various advanced technologies.

  17. Are You Ready for Knowledge Sharing? An Empirical Study of Virtual Communities

    ERIC Educational Resources Information Center

    Hung, Shiu-Wan; Cheng, Min-Jhih

    2013-01-01

    This study aimed to explore the relationship between knowledge sharing intentions and the perceptions of individual technology users who are members of virtual communities. We characterized learners' perceptions of new technological products or services by including both an individual's psychological state of readiness to accept technology and…

  18. E-learning readiness from perspectives of medical students: A survey in Nigeria.

    PubMed

    Obi, I E; Charles-Okoli, A N; Agunwa, C C; Omotowo, B I; Ndu, A C; Agwu-Umahi, O R

    2018-03-01

    Learning in the medical school of the study university is still by the traditional face-to-face approach with minimal e-communication. This paper assesses student's perspectives of E-learning readiness, its predictors and presents a model for assessing them. A descriptive cross-sectional study of medical students. By proportional quota sampling 284 students responded to a semi-structured self-administered questionnaire adapted from literature. Ethical issues were given full consideration. Analysis was with SPSS version 20, using descriptive statistics, ANOVA, Spearman's correlation, and multiple regression. Statistical significance was considered at P < 0.05. Medical students are ready for E-learning (Mlr = 3.8 > Melr = 3.4), beyond reliance on the face-to-face approach (69.7%), expecting effective (51.1%), and quality improvement in their learning (73.1%). Having basic information and communications technology skills (68.9%) (Mict = 3.7 > Melr = 3.4), access to laptops (76.1%), ability to use web browsers confidently (91.8%) (Mwb = 4.3 > Melr = 3.4), with only few able to use asynchronous tools (45.5%), they consider content design important to attract users (75.6%), and agree they need training on E-learning content (71.4%). They however do not believe the university has enough information technology infrastructure (62.4%) (Mi = 2.7 < Melr = 3.4) nor sufficient professionals to train them (M = 2.9). Predictors are attitude, content readiness, technological readiness, and culture readiness. The model however only explains 37.1% of readiness in the population. Medical students in this environment are ready to advance to E-learning. Predicted by their attitude, content, technological and cultural readiness. Further study with qualitative methodology will help in preparing for this evolution in learning.

  19. Department of Energy Technology Readiness Assessments - Process Guide and Training Plan

    DTIC Science & Technology

    2008-09-12

    Hanford Waste Treatment and Immobilization Plant ( WTP ) Analytical Laboratory, Low Activity Waste (LAW) Facility and Balance of Facilities (3 TRAs... WTP High-Level Waste (HLW) Facility – WTP Pre-Treatment (PT) Facility – Hanford River Protection Project Low Activity Waste Treatment Alternatives

  20. RD860 and RD860L Engines with Deep Thrust Throttling and a High Technology Readiness Level (TRL)

    NASA Astrophysics Data System (ADS)

    Prokopchuk, O. O.; Shul'ga, V. A.; Dibrivnyi, O. V.; Kukhta, A. S.

    2018-04-01

    To solve the problems of delivering payloads to Mars surface and returning them to the orbit, liquid rocket engines, operating on storable propellants with deep throttling possibility, are needed, besides having high energy-mass characteristics.

  1. Office of Biological and Physical Research: Overview Transitioning to the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Crouch, Roger

    2004-01-01

    Viewgraphs on NASA's transition to its vision for space exploration is presented. The topics include: 1) Strategic Directives Guiding the Human Support Technology Program; 2) Progressive Capabilities; 3) A Journey to Inspire, Innovate, and Discover; 4) Risk Mitigation Status Technology Readiness Level (TRL) and Countermeasures Readiness Level (CRL); 5) Biological And Physical Research Enterprise Aligning With The Vision For U.S. Space Exploration; 6) Critical Path Roadmap Reference Missions; 7) Rating Risks; 8) Current Critical Path Roadmap (Draft) Rating Risks: Human Health; 9) Current Critical Path Roadmap (Draft) Rating Risks: System Performance/Efficiency; 10) Biological And Physical Research Enterprise Efforts to Align With Vision For U.S. Space Exploration; 11) Aligning with the Vision: Exploration Research Areas of Emphasis; 12) Code U Efforts To Align With The Vision For U.S. Space Exploration; 13) Types of Critical Path Roadmap Risks; and 14) ISS Human Support Systems Research, Development, and Demonstration. A summary discussing the vision for U.S. space exploration is also provided.

  2. Readiness Assessment Towards Smart Manufacturing System for Tuna Processing Industry in Indonesia

    NASA Astrophysics Data System (ADS)

    Anggrahini, D.; Kurniati, N.; Karningsih, P. D.; Parenreng, S. M.; Syahroni, N.

    2018-04-01

    Marine product processing is one of the top priority clusters in the national development. Tuna, as a kind of deep ocean fishes, has the highest number of production that significantly increased throughout the years. Indonesia government encourages tuna processing industry, which are mostly dominated by small to medium enterprises, to grow continuously. Nowadays, manufacturers are facing substantial challenges in adopting modern system and technology that will lead a significant improvement through the internet of things (IoT). A smart factory transform integrated manufacturing process, in a high speed processing to respond customer needs. It has some positive impacts, such as increasing productivity, reducing set up time, shortening marketing and other support activities, hence the process is being more flexible and efficient. To implement smart manufacturing system, factories should know the readiness at any level of them, technology capability and strategy appropriateness. This exploratory study aims to identify the criterias, and develop an assessment tools to measure the level towards smart factory.

  3. M-Readiness Assessment Model Development and Validation: Investigation of Readiness Index and Factors Affecting Readiness

    ERIC Educational Resources Information Center

    Bakhsh, Muhammad; Mahmood, Amjad; Sangi, Nazir Ahmed

    2018-01-01

    It is important for distance learning institutions to be well prepared before designing and implementing any new technology based learning system to justify the investment and minimize failure risk. It can be achieved by systematically assessing the readiness of all stakeholders. This paper first proposes an m-readiness assessment process and…

  4. Integrating technology readiness into the expectation-confirmation model: an empirical study of mobile services.

    PubMed

    Chen, Shih-Chih; Liu, Ming-Ling; Lin, Chieh-Peng

    2013-08-01

    The aim of this study was to integrate technology readiness into the expectation-confirmation model (ECM) for explaining individuals' continuance of mobile data service usage. After reviewing the ECM and technology readiness, an integrated model was demonstrated via empirical data. Compared with the original ECM, the findings of this study show that the integrated model may offer an ameliorated way to clarify what factors and how they influence the continuous intention toward mobile services. Finally, the major findings are summarized, and future research directions are suggested.

  5. Heatshield for Extreme Entry Environment Technology (HEEET) for Missions to Saturn and Beyond

    NASA Technical Reports Server (NTRS)

    Ellerby, D.; Blosser, M.; Chinnapongse, R.; Fowler, M.; Gasch, M.; Hamm, K.; Kazemba, C.; Ma, J.; Milos, F.; Nishioka, O.; hide

    2015-01-01

    This poster provides an overview of the requirements, design, development and testing of the 3D Woven TPS being developed under NASAs Heatshield for Extreme Entry Environment Technology (HEEET) project. Under this current program, NASA is working to develop a Thermal Protection System (TPS) capable of surviving entry into Saturn. A primary goal of the project is to build and test an Engineering Test Unit (ETU) to establish a Technical Readiness Level (TRL) of 6 for this technology by 2017.

  6. Heatshield for Extreme Entry Environment Technology (HEEET) - Enabling Missions Beyond Heritage Carbon Phenolic

    NASA Technical Reports Server (NTRS)

    Ellerby, D.; Beerman, A.; Blosser, M.; Boghozian, T.; Chavez-Garcia, J.; Chinnapongse, R.; Fowler, M.; Gage, P.; Gasch, M.; Gonzales, G.; hide

    2015-01-01

    This poster provides an overview of the requirements, design, development and testing of the 3D Woven TPS being developed under NASA's Heatshield for Extreme Entry Environment Technology (HEEET) project. Under this current program, NASA is working to develop a Thermal Protection System (TPS) capable of surviving entry into Venus or Saturn. A primary goal of the project is to build and test an Engineering Test Unit (ETU) to establish a Technical Readiness Level (TRL) of 6 for this technology by 2017.

  7. Heatshield for Extreme Entry Environment Technology (HEEET) Enabling Missions Beyond Heritage Carbon Phenolic

    NASA Technical Reports Server (NTRS)

    Ellerby, D.; Beerman, A.; Blosser, M.; Boghozian, T.; Chavez-Garcia, J.; Chinnapongse, R.; Fowler, M.; Gage, P.; Gasch, M.; Gonzaes, G.; hide

    2015-01-01

    This poster provides an overview of the requirements, design, development and testing of the 3D Woven TPS being developed under NASAs Heatshield for Extreme Entry Environment Technology (HEEET) project. Under this current program, NASA is working to develop a Thermal Protection System (TPS) capable of surviving entry into Venus or Saturn. A primary goal of the project is to build and test an Engineering Test Unit (ETU) to establish a Technical Readiness Level (TRL) of 6 for this technology by 2017.

  8. Heatshield for Extreme Entry Environment Technology (HEEET) Development and Maturation Status for NF Missions

    NASA Technical Reports Server (NTRS)

    Ellerby, D.; Blosser, M.; Boghozian, T.; Chavez-Garcia, J.; Chinnapongse, R.; Fowler, M.; Gage, P.; Gasch, M.; Gonzales, G.; Hamm, K.; hide

    2016-01-01

    This poster provides an overview of the requirements, design, development and testing of the 3D Woven TPS being developed under NASA's Heatshield for Extreme Entry Environment Technology (HEEET) project. Under this current program, NASA is working to develop a Thermal Protection System (TPS) capable of surviving entry into Saturn. A primary goal of the project is to build and test an Engineering Test Unit (ETU) to establish a Technical Readiness Level (TRL) of 6 for this technology by 2017.

  9. Heatshield for Extreme Entry Environment Technology (HEEET) Development and Maturation Status

    NASA Technical Reports Server (NTRS)

    Ellerby, D.; Boghozian, T.; Driver, D.; Chavez-Garcia, J.; Fowler, M.; Gage, P.; Gasch, M.; Gonzales, G.; Kazemba, C.; Kellermann, C.; hide

    2018-01-01

    This poster provides an overview of the requirements, design, development and testing of the 3D (Three Dimensional) Woven TPS (Thermal Protection System) being developed under NASA's Heatshield for Extreme Entry Environment Technology (HEEET) project. Under this current program, NASA is working to develop a TPS capable of surviving entry into Saturn. A primary goal of the project is to build and test an Engineering Test Unit (ETU) to establish a Technical Readiness Level (TRL) of 6 for this technology by 2017.

  10. State of the art and taxonomy of prognostics approaches, trends of prognostics applications and open issues towards maturity at different technology readiness levels

    NASA Astrophysics Data System (ADS)

    Javed, Kamran; Gouriveau, Rafael; Zerhouni, Noureddine

    2017-09-01

    Integrating prognostics to a real application requires a certain maturity level and for this reason there is a lack of success stories about development of a complete Prognostics and Health Management system. In fact, the maturity of prognostics is closely linked to data and domain specific entities like modeling. Basically, prognostics task aims at predicting the degradation of engineering assets. However, practically it is not possible to precisely predict the impending failure, which requires a thorough understanding to encounter different sources of uncertainty that affect prognostics. Therefore, different aspects crucial to the prognostics framework, i.e., from monitoring data to remaining useful life of equipment need to be addressed. To this aim, the paper contributes to state of the art and taxonomy of prognostics approaches and their application perspectives. In addition, factors for prognostics approach selection are identified, and new case studies from component-system level are discussed. Moreover, open challenges toward maturity of the prognostics under uncertainty are highlighted and scheme for an efficient prognostics approach is presented. Finally, the existing challenges for verification and validation of prognostics at different technology readiness levels are discussed with respect to open challenges.

  11. Technology Area Roadmap for In Space Propulsion Technologies

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Meyer, Mike; Coote, David; Goebel, Dan; Palaszewski, Bryan; White, Sonny

    2010-01-01

    This slide presentation reviews the technology area (TA) roadmap to develop propulsion technologies that will be used to enable further exploration of the solar system, and beyond. It is hoped that development of the technologies within this TA will result in technical solutions that will improve thrust levels, specific impulse, power, specific mass, volume, system mass, system complexity, operational complexity, commonality with other spacecraft systems, manufacturability and durability. Some of the propulsion technologies that are reviewed include: chemical and non-chemical propulsion, and advanced propulsion (i.e., those with a Technology Readiness level of less than 3). Examples of these advanced technologies include: Beamed Energy, Electric Sail, Fusion, High Energy Density Materials, Antimatter, Advanced Fission and Breakthrough propulsion technologies. Timeframes for development of some of these propulsion technologies are reviewed, and top technical challenges are reviewed. This roadmap describes a portfolio of in-space propulsion technologies that can meet future space science and exploration needs.

  12. Reducing Risk in DoD Software-Intensive Systems Development

    DTIC Science & Technology

    2016-03-01

    intensive systems development risk. This research addresses the use of the Technical Readiness Assessment (TRA) using the nine-level software Technology...The software TRLs are ineffective in reducing technical risk for the software component development. • Without the software TRLs, there is no...effective method to perform software TRA or reduce the technical development risk. The software component will behave as a new, untried technology in nearly

  13. Army Science Board FY2000 Summer Study. Technical and Tactical Opportunities for Revolutionary Advances in Rapidly Deployable Joint Ground Forces in the 2015-2025 Era. Volume III: Information Dominance Panel Report

    DTIC Science & Technology

    2001-04-01

    Information Dominance , Sustainment and Support, and Training. The study concludes: 1) the FCS concept is sound, but senior level attention is required to ensure technologies are ready for 2006 FCS EMD; and 2) Key technologies will significantly improve force projection and combat power. The Information Dominance Panel was tasked to: 1) Assess required sensors at National and Theater level; 2) Assess the technological opportunity to provide necessary bandwidth for data, voice and video requirements; 3) Ascertain the requirements to deny the threat

  14. The NASA technology push towards future space mission systems

    NASA Technical Reports Server (NTRS)

    Sadin, Stanley R.; Povinelli, Frederick P.; Rosen, Robert

    1988-01-01

    As a result of the new Space Policy, the NASA technology program has been called upon to a provide a solid base of national capabilities and talent to serve NASA's civil space program, commercial, and other space sector interests. This paper describes the new technology program structure and its characteristics, traces its origin and evolution, and projects the likely near- and far-term strategic steps. It addresses the alternative 'push-pull' approaches to technology development, the readiness levels to which the technology needs to be developed for effective technology transfer, and the focused technology programs currently being implemented to satisfy the needs of future space systems.

  15. Influence of Transformational Leadership Style on Decision-Making Style and Technology Readiness: A Correlation Study

    ERIC Educational Resources Information Center

    Mueller, Crystal A.

    2009-01-01

    The research addressed the problem of technology initiatives failing to meet organizational objectives. The purpose of the quantitative correlation study was to determine the relationship between transformational leadership styles, decision-making styles, and technology readiness. The findings of the study answered research questions in three…

  16. Assessing the relationship between technology readiness and continuance intention in an E-appointment system: relationship quality as a mediator.

    PubMed

    Chen, Shih-Chih; Jong, Din; Lai, Min-Tsai

    2014-09-01

    Numerous types of self-service technologies have prevailed due to innovations in network and information technology. To hospitals, patient intentions to continue to use the e-appointment system are crucial. Previous investigations discussed only the relationships between the technology readiness of users and their continuance intentions, and ignored the most important mediator, relationship quality. This study explored the relationships among technology readiness, relationship quality, and continuance intention. The research results demonstrated that both optimism and innovativeness significantly and positively influenced continuance intention through the mediating effect of relationship quality. However, discomfort and insecurity hid not significantly influence relationship quality or continuance intention. Finally, theoretical contributions, managerial implications and future research directions were discussed.

  17. Development of a transportation real-time technology readiness framework.

    DOT National Transportation Integrated Search

    2017-03-01

    The purpose of this study was to develop a proof-of-concept carrier technology readiness framework. While substantial investment has been made into the Iowa Department of Transportation (DOT) Traffic Operations Center, scant attention has been paid t...

  18. From Research to Flight: Thinking About Implementation While Performing Fundamental Research

    NASA Technical Reports Server (NTRS)

    Johnson, Les

    2010-01-01

    This slide presentation calls for a strategy to implement new technologies. Such a strategy would allow advanced space transportation technologies to mature for exploration beyond Earth orbit. It discusses the difference between technology push versus technology pull. It also reviews the three basic technology readiness levels (TRL). The presentation traces examples of technology development to flight application: the Space Shuttle Main Engine Advanced Health Management System, the Friction Stir Welding technology the (auto-adjustable pin tool). A couple of technologies currently not in flight, but are being reviewed for potential use are: cryogenic fluid management (CFM), and solar sail propulsion. There is also an attempt to explain why new technologies are so difficult to field.

  19. Core Design Characteristics of the Fluoride Salt-Cooled High Temperature Demonstration Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Nicholas R; Qualls, A L; Betzler, Benjamin R

    2016-01-01

    Fluoride salt-cooled high temperature reactors (FHRs) are a promising reactor technology option with significant knowledge gaps to implementation. One potential approach to address those technology gaps is via a small-scale demonstration reactor with the goal of increasing the technology readiness level (TRL) of the overall system for the longer term. The objective of this paper is to outline a notional concept for such a system, and to address how the proposed concept would advance the TRL of FHR concepts. Development of the proposed FHR Demonstration Reactor (DR) will enable commercial FHR deployment through disruptive and rapid technology development and demonstration.more » The FHR DR will close remaining gaps to commercial viability. Lower risk technologies are included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated within an acceptable budget and schedule. Important capabilities that will be demonstrated by building and operating the FHR DR include core design methodologies; fabrication and operation of high temperature reactors; salt procurement, handling, maintenance, and ultimate disposal; salt chemistry control to maximize vessel life; tritium management; heat exchanger performance; pump performance; and reactivity control. The FHR DR is considered part of a broader set of FHR technology development and demonstration efforts, some of which are already underway. Nonreactor test efforts (e.g., heated salt loops or loops using simulant fluids) can demonstrate many technologies necessary for commercial deployment of FHRs. The FHR DR, however, fulfills a crucial role in FHR technology development by advancing the technical maturity and readiness level of the system as a whole.« less

  20. Brayton Power Conversion System Study to Advance Technology Readiness for Nuclear Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Allen, Bog; Delventhal, Rex; Frye, Patrick

    2004-01-01

    Recently, there has been significant interest within the aerospace community to develop space based nuclear power conversion technologies especially for exploring the outer planets of our solar system where the solar energy density is very low. To investigate these technologies NASA awarded several contracts under Project Prometheus, the Nuclear Systems Program. The studies described in this paper were performed under one of those contracts, which was to investigate the use of a nuclear power conversion system based on the closed Brayton cycle (CBC).The investigation performed included BPCS (Brayton Power Conversion System) trade studies to minimize system weight and radiator area and advance the state of the art of BPCS technology. The primary requirements for studies were a power level of 100 kWe (to the PPU), a low overall power system mass and a lifetime of 15 years (10 years full power). For the radiation environment, the system was to be capable of operation in the generic space environment and withstand the extreme environments surrounding Jupiter. The studies defined a BPCS design traceable to NEP (Nuclear Electric Propulsion) requirements and suitable for future missions with a sound technology plan for technology readiness level (TRL) advancement identified. The studies assumed a turbine inlet temperature approx. 100 C above the current the state of the art capabilities with materials issues and related development tasks identified. Analyses and evaluations of six different HRS (heat rejection system) designs and three primary power management and distribution (PMAD) configurations will be discussed in the paper.

  1. Systems Maturity Assessment of the Lithium Ion Battery for Extravehicular Mobility Unit Project

    NASA Technical Reports Server (NTRS)

    Russell, Samuel P.

    2011-01-01

    The Long Life (Lithium Ion) Battery (LLB/LIB) is designed to replace the current Extravehicular Mobility Unit (EMU) Silver/Zinc (Ag/Zn) Increased Capacity Battery (ICB), which is used to provide power to the Primary Life Support Subsystem (PLSS) during Extravehicular Activities (EVAs). The LLB (a battery based on commercial lithium ion cell technology) is designed to have the same electrical and mechanical interfaces as the current ICB. The EMU LIB Charger is designed to charge, discharge, and condition the LLB either in a charger-strapped configuration or in an EMU-mounted configuration. This paper will retroactively apply the principles of Systems Maturity Assessment to the LLB project through use of the Integration Readiness Level and Earned Readiness Management. The viability of this methodology will be considered for application to new and existing technology development projects.

  2. Technical College Graduate Perceptions of College and Career Readiness

    ERIC Educational Resources Information Center

    Hanson, Dale M.

    2013-01-01

    The United States workplace requires increased levels of postsecondary education to support workforce development for an economy driven by technology, automation and global competition. By 2018, 63 % of new jobs created will require postsecondary education (Carnevale, Smith, & Strohl, 2010). Currently, one in four graduates earns a bachelor's…

  3. Benefits of a Space-Based Group System Architecture

    DTIC Science & Technology

    2015-06-01

    Relay Satellite TRL Technology Readiness Level TT&C Telemetry, Tracking, and Control UFO UHF Follow-On xv ACKNOWLEDGMENTS I would like to...replacement with more advanced systems. An example of this addition was adding UHF Follow-On ( UFO ) satellite F11, as a gap filler between the UFO

  4. TIMMS Advanced 2015 Assessment Frameworks

    ERIC Educational Resources Information Center

    Mullis, Ina V. S., Ed.; Martin, Michael O., Ed.

    2014-01-01

    It is critical for countries to ensure that capable secondary school students receive further preparation in advanced mathematics and science, so that they are ready to enter challenging university-level studies that prepare them for careers in science, technology, engineering, and mathematics (STEM) fields. This group of students will become the…

  5. A Systems Approach to Expanding the Technology Readiness Level within Defense Acquisition

    DTIC Science & Technology

    2009-03-20

    Aeronautics and Space Administration’s (NASA) post-Apollo era as ontology for contracting support (Sadin, Povinelli & Rosen, 1989). In the last nine years...2002). On uncertainty, ambiguity, and complexity in project management. Management Science, 48(8), 1008-1023. Sadin, S. R., Povinelli , F. P

  6. Solar Thermal Power Systems parabolic dish project

    NASA Technical Reports Server (NTRS)

    Truscello, V. C.

    1981-01-01

    The status of the Solar Thermal Power Systems Project for FY 1980 is summarized. Included is: a discussion of the project's goals, program structure, and progress in parabolic dish technology. Analyses and test results of concentrators, receivers, and power converters are discussed. Progress toward the objectives of technology feasibility, technology readiness, system feasibility, and system readiness are covered.

  7. Reflective Practice and Readiness for Self-Directed Learning in Anesthesiology Residents Training in the United States

    ERIC Educational Resources Information Center

    Miller Juve, Amy Katrina

    2012-01-01

    The science and technology of medicine is evolving and changing at a fast pace. With these rapid advances, it is paramount that physicians maintain a level of medical knowledge that is current and relevant to their practice in order to address the challenges of patient care and safety. One way physicians can maintain a level of medical knowledge…

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    SAMS TL; GUILLOT S

    Scoping laboratory scale tests were performed at the Chemical Engineering Department of the Georgia Institute of Technology (Georgia Tech), and the Hanford 222-S Laboratory, involving double-shell tank (DST) and single-shell tank (SST) Hanford waste simulants. These tests established the viability of the Lithium Hydrotalcite precipitation process as a solution to remove aluminum and recycle sodium hydroxide from the Hanford tank waste, and set the basis of a validation test campaign to demonstrate a Technology Readiness Level of 3.

  9. Preparing Global-Ready Teachers

    ERIC Educational Resources Information Center

    Larson, Lotta; Brown, Jennifer S.

    2017-01-01

    To produce global-ready students who can thrive and compete in an interconnected world, we must prepare global-ready teachers. This article shares how one teacher preparation program focuses on literacy, technology, and globalization, while offering relevant K-12 applications.

  10. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Human Exploration and Operations Mission Directorate Projects at Glenn Research Center for 2015

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    This report is intended to help NASA program and project managers incorporate Glenn Research Center Small Business Innovation Research/Small Business Technology Transfer (SBIR)/(STTR) technologies into NASA Human Exploration and Operations Mission Directorate (HEOMD) programs and projects. Other Government and commercial project managers can also find this useful. Introduction Incorporating Small Business Innovation Research (SBIR)-developed technology into NASA projects is important, especially given the Agency's limited resources for technology development. The SBIR program's original intention was for technologies that had completed Phase II to be ready for integration into NASA programs, however, in many cases there is a gap between Technology Readiness Levels (TRLs) 5 and 6 that needs to be closed. After SBIR Phase II projects are completed, the technology is evaluated against various parameters and a TRL rating is assigned. Most programs tend to adopt more mature technologies-at least TRL 6 to reduce the risk to the mission rather than adopt TRLs between 3 and 5 because those technologies are perceived as too risky. The gap between TRLs 5 and 6 is often called the "Valley of Death" (Figure 1), and historically it has been difficult to close because of a lack of funding support from programs. Several papers have already suggested remedies on how to close the gap (Refs. 1 to 4).

  11. Task 4 supporting technology. Part 2: Detailed test plan for thermal seals. Thermal seals evaluation, improvement and test. CAN8-1, Reusable Launch Vehicle (RLV), advanced technology demonstrator: X-33. Leading edge and seals thermal protection system technology demonstration

    NASA Technical Reports Server (NTRS)

    Hogenson, P. A.; Lu, Tina

    1995-01-01

    The objective is to develop the advanced thermal seals to a technology readiness level (TRL) of 6 to support the rapid turnaround time and low maintenance requirements of the X-33 and the future reusable launch vehicle (RLV). This program is divided into three subtasks: (1) orbiter thermal seals operation history review; (2) material, process, and design improvement; and (3) fabrication and evaluation of the advanced thermal seals.

  12. Flight Development for Cryogenic Fluid Management in Support of Exploration Missions

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2006-01-01

    This paper describes the results of the "Experimentation for the Maturation of Deep Space Cryogenic Refueling Technology" study. The purposes of this study were to identify cryogenic fluids management technologies requiring low gravity flight experiments to bring to technology readiness level (TRL) 5-6; to study many possible flight experiment options; and to develop near-term low-cost flight experiment concepts to mature core technologies of refueling. A total of twenty-five white papers were prepared in the course of this study. Each white paper is briefly summarized and relevant references cited. A total of 90 references are cited.

  13. Testing of technology readiness index model based on exploratory factor analysis approach

    NASA Astrophysics Data System (ADS)

    Ariani, AF; Napitupulu, D.; Jati, RK; Kadar, JA; Syafrullah, M.

    2018-04-01

    SMEs readiness in using ICT will determine the adoption of ICT in the future. This study aims to evaluate the model of technology readiness in order to apply the technology on SMEs. The model is tested to find if TRI model is relevant to measure ICT adoption, especially for SMEs in Indonesia. The research method used in this paper is survey to a group of SMEs in South Tangerang. The survey measures the readiness to adopt ICT based on four variables which is Optimism, Innovativeness, Discomfort, and Insecurity. Each variable contains several indicators to make sure the variable is measured thoroughly. The data collected through survey is analysed using factor analysis methodwith the help of SPSS software. The result of this study shows that TRI model gives more descendants on some indicators and variables. This result can be caused by SMEs owners’ knowledge is not homogeneous about either the technology that they are used, knowledge or the type of their business.

  14. Universal test system for system embedded optical interconnect

    NASA Astrophysics Data System (ADS)

    Pitwon, R.; Wang, K.; Immonen, M.; Schröder, H.; Neitz, M.

    2018-02-01

    We introduce a universal test and measurement system allowing comparative characterisation of optical transceivers, board-to-board optical connectors and both embedded and passive optical circuit boards. The system comprises a test enclosure with interlocking and interchangeable test cards, allowing different technologies spanning different Technology Readiness Levels to be both characterised alone and in combination with other technologies. They form part of the open test design standards portfolio developed on the FP7 PhoxTroT and H2020 COSMICC projects and allow testing on a common test platform.

  15. An analysis of Indonesia’s information security index: a case study in a public university

    NASA Astrophysics Data System (ADS)

    Yustanti, W.; Qoiriah, A.; Bisma, R.; Prihanto, A.

    2018-01-01

    Ministry of Communication and Informatics of the Republic of Indonesia has issued the regulation number 4-2016 about Information Security Management System (ISMS) for all kind organizations. Public university as a government institution must apply this standard to assure its level of information security has complied ISO 27001:2013. This research is a preliminary study to evaluate the readiness of university IT services (case study in a public university) meets the requirement of ISO 27001:2013 using the Indonesia’s Information Security Index (IISI). There are six parameters used to measure the level of information security, these are the ICT role, governance, risk management, framework, asset management and technology. Each parameter consists of serial questions which must be answered and convert to a numeric value. The result shows the level of readiness and maturity to apply ISO 27001 standard.

  16. Advancing Partnerships Towards an Integrated Approach to Oil Spill Response

    NASA Astrophysics Data System (ADS)

    Green, D. S.; Stough, T.; Gallegos, S. C.; Leifer, I.; Murray, J. J.; Streett, D.

    2015-12-01

    Oil spills can cause enormous ecological and economic devastation, necessitating application of the best science and technology available, and remote sensing is playing a growing critical role in the detection and monitoring of oil spills, as well as facilitating validation of remote sensing oil spill products. The FOSTERRS (Federal Oil Science Team for Emergency Response Remote Sensing) interagency working group seeks to ensure that during an oil spill, remote sensing assets (satellite/aircraft/instruments) and analysis techniques are quickly, effectively, appropriately, and seamlessly available to oil spills responders. Yet significant challenges remain for addressing oils spanning a vast range of chemical properties that may be spilled from the Tropics to the Arctic, with algorithms and scientific understanding needing advances to keep up with technology. Thus, FOSTERRS promotes enabling scientific discovery to ensure robust utilization of available technology as well as identifying technologies moving up the TRL (Technology Readiness Level). A recent FOSTERRS facilitated support activity involved deployment of the AVIRIS NG (Airborne Visual Infrared Imaging Spectrometer- Next Generation) during the Santa Barbara Oil Spill to validate the potential of airborne hyperspectral imaging to real-time map beach tar coverage including surface validation data. Many developing airborne technologies have potential to transition to space-based platforms providing global readiness.

  17. Pupils' Readiness for Self-Regulated Learning in the Forethought Phase of Exploratory Production

    ERIC Educational Resources Information Center

    Metsärinne, Mika; Kallio, Manne; Virta, Kalle

    2015-01-01

    This article discusses pupils' readiness for self-regulation in Exploratory Production in Technology Education. In the forethought phase of Exploratory Production, pupils envision and regulate their technological production activities. Next, in the performance phase, the envisioned goals are tried and implemented through ideating, planning and…

  18. Get Set! E-Ready, ... E-Learn! The E-Readiness of Warehouse Workers

    ERIC Educational Resources Information Center

    Moolman, Hermanus B.; Blignaut, Seugnet

    2008-01-01

    Modern organizations use technology to expand across traditional business zones and boundaries to survive the global commercial village. While IT systems allow organizations to maintain a competitive edge, South African unskilled labour performing warehouse operations are frequently retrained to keep abreast with Information Technology.…

  19. Determining registered nurses' readiness for evidence-based practice.

    PubMed

    Thiel, Linda; Ghosh, Yashowanto

    2008-01-01

    As health care systems worldwide move toward instituting evidence-based practice (EBP), its implementation can be challenging. Conducting a baseline assessment to determine nurses' readiness for EBP presents opportunities to plan strategies before implementation. Although a growing body of research literature is focused on implementing EBP, little attention has been paid to assessing nurses' readiness for EBP. The purpose of this study was to assess registered nurses' readiness for EBP in a moderate-sized acute care hospital in the Midwestern United States before implementation of a hospital-wide nursing EBP initiative. A descriptive cross-sectional survey design was used; 121 registered nurses completed the survey. The participants (n= 121) completed the 64-item Nurses' Readiness for Evidence-Based Practice Survey that allowed measurement of information needs, knowledge and skills, culture, and attitudes. Data were analyzed using descriptive statistics and a post hoc analysis. The majority (72.5%) of respondents indicated that when they needed information, they consulted colleagues and peers rather than using journals and books; 24% of nurses surveyed used the health database, Cumulative Index to Nursing & Allied Health Literature (CINAHL). The respondents perceived their EBP knowledge level as moderate. Cultural EBP scores were moderate, with unit scores being higher than organizational scores. The nurses' attitudes toward EBP were positive. The post hoc analysis showed many significant correlations. Nurses have access to technological resources and perceive that they have the ability to engage in basic information gathering but not in higher level evidence gathering. The elements important to EBP such as a workplace culture and positive attitudes are present and can be built upon. A "site-specific" baseline assessment provides direction in planning EBP initiatives. The Nurses' Readiness for EBP Survey is a streamlined tool with established reliability and validity.

  20. Technology Performance Level Assessment Methodology.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Jesse D.; Bull, Diana L; Malins, Robert Joseph

    The technology performance level (TPL) assessments can be applied at all technology development stages and associated technology readiness levels (TRLs). Even, and particularly, at low TRLs the TPL assessment is very effective as it, holistically, considers a wide range of WEC attributes that determine the techno-economic performance potential of the WEC farm when fully developed for commercial operation. The TPL assessment also highlights potential showstoppers at the earliest possible stage of the WEC technology development. Hence, the TPL assessment identifies the technology independent “performance requirements.” In order to achieve a successful solution, the entirety of the performance requirements within themore » TPL must be considered because, in the end, all the stakeholder needs must be achieved. The basis for performing a TPL assessment comes from the information provided in a dedicated format, the Technical Submission Form (TSF). The TSF requests information from the WEC developer that is required to answer the questions posed in the TPL assessment document.« less

  1. Delphi`s DETOXSM process: Preparing to treat high organic content hazardous and mixed wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, D.T.; Rogers, T.W.; Goldblatt, S.D.

    1998-12-31

    The US Department of Energy (DOE) Federal Energy Technology Center is sponsoring a full-scale technology demonstration of Delphi Research, Inc.`s patented DETOX{sup SM} catalytic wet chemical oxidation waste treatment process at the Savannah River Site (SRS) in South Carolina. The process is being developed primarily to treat hazardous and mixed wastes within the DOE complex as an alternative to incineration, but it has significant potential to treat wastes in the commercial sector. The results of the demonstration will be intensively studied and used to validate the technology. A critical objective in preparing for the demonstration was the successful completion ofmore » a programmatic Operational Readiness Review. Readiness Reviews are required by DOE for all new process startups. The Readiness Review provided the vehicle to ensure that Delphi was ready to start up and operate the DETOX{sup SM} process in the safest manner possible by implementing industry accepted management practices for safe operation. This paper provides an overview of the DETOX{sup SM} demonstration at SRS, and describes the crucial areas of the Readiness Review that marked the first steps in Delphi`s transition from a technology developer to an operating waste treatment services provider.« less

  2. Transrapid (the first high-speed Maglev train system certified ready for application): Development status and prospects for deployment

    NASA Technical Reports Server (NTRS)

    Luerken, Reinhard F.

    1994-01-01

    The Transrapid maglev technology is at the threshold of commercial deployment and technologically all prerequisites for the successful operation of the system in public service are given. In post unification Germany the domestic maglev technology is envisioned to be applied in the Berlin-Hamburg project. At present, a public-private funding concept is being prepared and the lengthy planning process is about to be initiated. In the USA the AMG has presented a program to Americanize the technology and to make it available for commercial use in the U.S. in the very near future. The paramount features of this program are to generate economic development, provide a basis for transportation technology development, create opportunities for U.S. industry, improve the U.S. transportation infrastructure, and improve the environment and traveler safety. Maglev is ready for the U.S.; is the U.S. ready for maglev?

  3. Fission Surface Power Technology Development Update

    NASA Technical Reports Server (NTRS)

    Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott

    2011-01-01

    Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and places beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited or environmental conditions are challenging (e.g., extreme cold, dust storms). NASA and the Department of Energy are maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for a fission surface power system. The Fission Surface Power Systems project has focused on subscale component and subsystem demonstrations to address the feasibility of a low-risk, low-cost approach to space nuclear power for surface missions. Laboratory demonstrations of the liquid metal pump, reactor control drum drive, power conversion, heat rejection, and power management and distribution technologies have validated that the fundamental characteristics and performance of these components and subsystems are consistent with a Fission Surface Power preliminary reference concept. In addition, subscale versions of a non-nuclear reactor simulator, using electric resistance heating in place of the reactor fuel, have been built and operated with liquid metal sodium-potassium and helium/xenon gas heat transfer loops, demonstrating the viability of establishing system-level performance and characteristics of fission surface power technologies without requiring a nuclear reactor. While some component and subsystem testing will continue through 2011 and beyond, the results to date provide sufficient confidence to proceed with system level technology readiness demonstration. To demonstrate the system level readiness of fission surface power in an operationally relevant environment (the primary goal of the Fission Surface Power Systems project), a full scale, 1/4 power Technology Demonstration Unit (TDU) is under development. The TDU will consist of a non-nuclear reactor simulator, a sodium-potassium heat transfer loop, a power conversion unit with electrical controls, and a heat rejection system with a multi-panel radiator assembly. Testing is planned at the Glenn Research Center Vacuum Facility 6 starting in 2012, with vacuum and liquid-nitrogen cold walls to provide simulation of operationally relevant environments. A nominal two-year test campaign is planned including a Phase 1 reactor simulator and power conversion test followed by a Phase 2 integrated system test with radiator panel heat rejection. The testing is expected to demonstrate the readiness and availability of fission surface power as a viable power system option for NASA's exploration needs. In addition to surface power, technology development work within this project is also directly applicable to in-space fission power and propulsion systems.

  4. A Second Enlightenment

    NASA Astrophysics Data System (ADS)

    Haybron, Ron

    2001-10-01

    Many European intellectuals in the eighteenth century believed science and technology could produce an age of well-being for everyone. Their times came to be called the Age of Enlightenment. But levels of understanding and technique then available were inadequate to the task. Now we may be ready to try again, but to succeed we need a science/technology-literate citizenry. That is, we must do more to educate non specialists, both within and outside the academy. Here we discuss using the story of the development of scientific thought as one approach.

  5. The Development of Solar Sail Propulsion for NASA Science Missions to the Inner Solar System

    NASA Technical Reports Server (NTRS)

    Montgomery, Edward E, IV; Johnson, Charles Les

    2004-01-01

    This paper examines recent assessments of the technology challenges facing solar sails, identifies the systems and technologies needing development, and the approach employed by NASA's In-space Propulsion Program in NASA to achieve near term products that move this important technology from low technology readiness level (TRL) toward the goal of application to science missions in near earth space and beyond. The status of on-going efforts to design, build, and test ground demonstrators of alternate approaches to structures (inflatable versus rigid), membrane materials, optical shape sensing, and attitude control will be presented along with planned future investments.

  6. Benefits of Using a Mars Forward Strategy for Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Mulqueen, Jack; Griffin, Brand; Smitherman, David; Maples, Dauphne

    2009-01-01

    This paper identifies potential risk reduction, cost savings and programmatic procurement benefits of a Mars Forward Lunar Surface System architecture that provides commonality or evolutionary development paths for lunar surface system elements applicable to Mars surface systems. The objective of this paper is to identify the potential benefits for incorporating a Mars Forward development strategy into the planned Project Constellation Lunar Surface System Architecture. The benefits include cost savings, technology readiness, and design validation of systems that would be applicable to lunar and Mars surface systems. The paper presents a survey of previous lunar and Mars surface systems design concepts and provides an assessment of previous conclusions concerning those systems in light of the current Project Constellation Exploration Architectures. The operational requirements for current Project Constellation lunar and Mars surface system elements are compared and evaluated to identify the potential risk reduction strategies that build on lunar surface systems to reduce the technical and programmatic risks for Mars exploration. Risk reduction for rapidly evolving technologies is achieved through systematic evolution of technologies and components based on Moore's Law superimposed on the typical NASA systems engineering project development "V-cycle" described in NASA NPR 7120.5. Risk reduction for established or slowly evolving technologies is achieved through a process called the Mars-Ready Platform strategy in which incremental improvements lead from the initial lunar surface system components to Mars-Ready technologies. The potential programmatic benefits of the Mars Forward strategy are provided in terms of the transition from the lunar exploration campaign to the Mars exploration campaign. By utilizing a sequential combined procurement strategy for lunar and Mars exploration surface systems, the overall budget wedges for exploration systems are reduced and the costly technological development gap between the lunar and Mars programs can be eliminated. This provides a sustained level of technological competitiveness as well as maintaining a stable engineering and manufacturing capability throughout the entire duration of Project Constellation.

  7. Teacher Educators' Readiness, Preparation, and Perceptions of Preparing Preservice Teachers in a Fully Online Environment: An Exploratory Study

    ERIC Educational Resources Information Center

    Downing, Jillian J.; Dyment, Janet E.

    2013-01-01

    With a view to attracting more students and offering flexible learning opportunities, online teaching and learning is becoming increasingly widespread across the higher education sector. It is now found across a wide range of disciplines (e.g., business, health, psychology, accounting, information technology) and program levels (e.g., from…

  8. Relative Levels of eLearning Readiness, Applications and Trainee Requirements in Botswana's Private Sector

    ERIC Educational Resources Information Center

    Nleya, Paul T.

    2009-01-01

    The rapid growth and modernization of economies in developing countries like Botswana creates new and unmet demands for certain kinds of educated and skilled labour. The expansion of secondary and tertiary school systems has also created a problem of unemployed school leavers. The growth of Information and Communication Technologies (ICTs),…

  9. Emotional Intelligence as a Determinant of Readiness for Online Learning

    ERIC Educational Resources Information Center

    Buzdar, Muhammad Ayub; Ali, Akhtar; Tariq, Riaz Ul Haq

    2016-01-01

    Students' performance in online learning environments is associated with their readiness to adopt a digital learning approach. Traditional concept of readiness for online learning is connected with students' competencies of using technology for learning purposes. We in this research, however, investigated psychometric aspects of students'…

  10. KSC Tech Transfer News, Volume 4, No. 2

    NASA Technical Reports Server (NTRS)

    Dunn, Carol (Editor)

    2011-01-01

    There is a strong focus on technology in our human exploration strategy and a focus on a wide range of technology readiness levels (TRLs) across all NASA missions - from low-TRL development of innovative technological concepts that help reposition NASA on the cutting edge, to infusion of technology to solve critical mission needs. Throughout the TRL spectrum, there is a major emphasis on partnerships with academia, industry, and other Government agencies and among NASA Centers. This edition features are: (1) Aluminum Foam Heat Exchanger for Cold Helium Production, (2) Launching a Small Business with NASA Shuttle Software, (4) Aviation Technologies and the Personal Cabin Pressurization Monitor, (5) Granular Mechanics and Regolith Laboratory, (6) The Leahy-Smith America Invents Act

  11. E-Learning Readiness in Medicine: Turkish Family Medicine (FM) Physicians Case

    ERIC Educational Resources Information Center

    Parlakkiliç, Alaattin

    2015-01-01

    This research investigates e-learning readiness level of family medicine physicians (FM) in Turkey. The study measures the level of e-learning readiness of Turkish FM physicians by an online e-learning readiness survey. According to results five areas are ready at Turkish FM physicians but need a few improvements:…

  12. Kilopower: Small and Affordable Fission Power Systems for Space

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Palac, Don; Gibson, Marc

    2017-01-01

    The Nuclear Systems Kilopower Project was initiated by NASA's Space Technology Mission Directorate Game Changing Development Program in fiscal year 2015 to demonstrate subsystem-level technology readiness of small space fission power in a relevant environment (Technology Readiness Level 5) for space science and human exploration power needs. The Nuclear Systems Kilopower Project centerpiece is the Kilopower Reactor Using Stirling Technology (KRUSTY) test, which consists of the development and testing of a fission ground technology demonstrator of a 1 kWe-class fission power system. The technologies to be developed and validated by KRUSTY are extensible to space fission power systems from 1 to 10 kWe, which can enable higher power future potential deep space science missions, as well as modular surface fission power systems for exploration. The Kilopower Project is cofounded by NASA and the Department of Energy National Nuclear Security Administration (NNSA).KRUSTY include the reactor core, heat pipes to transfer the heat from the core to the power conversion system, and the power conversion system. Los Alamos National Laboratory leads the design of the reactor, and the Y-12 National Security Complex is fabricating it. NASA Glenn Research Center (GRC) has designed, built, and demonstrated the balance of plant heat transfer and power conversion portions of the KRUSTY experiment. NASA MSFC developed an electrical reactor simulator for non-nuclear testing, and the design of the reflector and shielding for nuclear testing. In 2016, an electrically heated non-fissionable Depleted Uranium (DU) core was tested at GRC in a configuration identical to the planned nuclear test. Once the reactor core has been fabricated and shipped to the Device Assembly Facility at the NNSAs Nevada National Security Site, the KRUSTY nuclear experiment will be assembled and tested. Completion of the KRUSTY experiment will validate the readiness of 1 to 10 kWe space fission technology for NASAs future requirements for sunlight-independent space power. An early opportunity for demonstration of In-Situ Resource Utilization (ISRU) capability on the surface of Mars is currently being considered for 2026 launch. Since a space fission system is the leading option for power generation for the first Mars human outpost, a smaller version of a planetary surface fission power system could be built to power the ISRU demonstration and ensure its end-to-end validity. Planning is underway to start the hardware development of this subscale flight demonstrator in 2018.

  13. What Are the Costs of Trauma Center Readiness? Defining and Standardizing Readiness Costs for Trauma Centers Statewide.

    PubMed

    Ashley, Dennis W; Mullins, Robert F; Dente, Christopher J; Garlow, Laura; Medeiros, Regina S; Atkins, Elizabeth V; Solomon, Gina; Abston, Dena; Ferdinand, Colville H

    2017-09-01

    Trauma center readiness costs are incurred to maintain essential infrastructure and capacity to provide emergent services on a 24/7 basis. These costs are not captured by traditional hospital cost accounting, and no national consensus exists on appropriate definitions for each cost. Therefore, in 2010, stakeholders from all Level I and II trauma centers developed a survey tool standardizing and defining trauma center readiness costs. The survey tool underwent minor revisions to provide further clarity, and the survey was repeated in 2013. The purpose of this study was to provide a follow-up analysis of readiness costs for Georgia's Level I and Level II trauma centers. Using the American College of Surgeons Resources for Optimal Care of the Injured Patient guidelines, four readiness cost categories were identified: Administrative, Clinical Medical Staff, Operating Room, and Education/Outreach. Through conference calls, webinars and face-to-face meetings with financial officers, trauma medical directors, and program managers from all trauma centers, standardized definitions for reporting readiness costs within each category were developed. This resulted in a survey tool for centers to report their individual readiness costs for one year. The total readiness cost for all Level I trauma centers was $34,105,318 (avg $6,821,064) and all Level II trauma centers was $20,998,019 (avg $2,333,113). Methodology to standardize and define readiness costs for all trauma centers within the state was developed. Average costs for Level I and Level II trauma centers were identified. This model may be used to help other states define and standardize their trauma readiness costs.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bekar, Kursat B.; Miller, Thomas Martin; Patton, Bruce W.

    This report is the final deliverable of a 3 year project whose purpose was to investigate the possibility of using simulations of X-ray spectra generated inside a scanning electron microscope (SEM) as a means to perform quantitative analysis of the sample imaged in the SEM via an inverse analysis methodology. Using the nine point Technology Readiness Levels (TRL) typically used by the US Department of Defense (DOD) and the National Aeronautics and Space Administration (NASA), this concept is now at a TRL of 3. In other words, this work has proven the feasibility of this concept and is ready tomore » be further investigated to address some of the issues highlighted by this initial proof of concept.« less

  15. Farmer readiness for adopting stevia cultivation (a case study at District of Pasir Jambu, Regency of Bandung)

    NASA Astrophysics Data System (ADS)

    Supyandi, D.; Sukayat, Y.; Hapsari, H.

    2018-03-01

    Recognized as a complementary for conventional sugars made from cane, coconut, corn, and palm, as well as a substitute for synthetic sweetener, recently stevia has accepted significant attention in order to fulfill increasing demand for sweeteners in Indonesia. Stevia has several advantages, among other is having 200-300 times sweetness level compared to cane sugar with low-calorie level. In Indonesia, stevia was introduced from Japan, Korea and China, and has been cultivated in several areas, among other is in West Java, particularly at District of Cikajang (Garut), District of Pangalengan (Bandung) and District of Ciwidey/Pasir Jambu (Bandung). Introducing new commodity and/or technology has usually faced constraints and sometimes rejection. However, considering the potentials and increasing demand for it, stevia cultivation widespread need to be stimulated. This paper describes several conditions of farmer community at District of Pasir Jambu in terms of their readiness to adopt stevia cultivation in their land. Community readiness model was used to guide the structure of thinking in data collection process at farmer level in order to compose possible best intervention based on farmer aspiration and condition. In addition, several references from previous research reports, journal articles as well as government reports were used to sharpen analysis of data and information collected from the field.

  16. NASA's Carbon Monitoring System (CMS) Applications and Application Readiness Levels (ARLs)-An assessment of how all CMS ARLs provide societal benefit.

    NASA Astrophysics Data System (ADS)

    Escobar, V. M.; Sepulveda Carlo, E.; Delgado Arias, S.

    2016-12-01

    During the past six years, the NASA Carbon Monitoring System (CMS) Applications effort has been engaging with stakeholders in an effort to make the 52 CMS project user friendly and policy relevant. Congressionally directed, the CMS initiative is a NASA endeavor providing carbon data products that help characterize and understand carbon sources and sinks at local and international scales. All data are freely available, and scaled for local, state, regional, national and international-level resource management. To facilitate user feedback during development, as well as understanding for the type of use and application the CMS data products can provide, the Applications project utilizes the NASA Applied Sciences Program nine step Application Readiness Level (ARL) indices. These are used to track and manage the progression and distribution of funded projects. ARLs are an adaptation of NASA's technology readiness levels (TRLs) used for managing technology and risk and reflects the three main tiers of a project: research, development and deployment. The ARLs are scaled from 1 to 9, research and development (ARL1) to operational and/or decision making ready products (ARL9). The ARLS can be broken up into three phases: Phase 1, discovery and feasibility (ARL 1-3); Phase 2, development testing and validation (ARL 4-6); and Phase 3, integration into Partner's systems (ARL 7-9). The ARLs are designed to inform both scientist and end user of the product maturity and application capability. The CMS initiative has products that range across all ARLs, providing societal benefit at multiple scales. Lower ARLs contribute to formal documents such as the IPCC while others at higher levels provide decision support quantifying the value of carbon data for greenhouse gas (GHG) reduction planning. Most CMS products have an ARL 5, (validation of a product in a relevant environment), meaning the CMS carbon science is actively in a state of science-user engagement. For the user community, ARLs are a litmus test for knowing the type of user feedback and advocacy that can be implemented into the product design. For the scientist, ARLS help communicate (1) the maturity of their science to users who would like to use it for decision making and (2) the intended use of the product.

  17. Technology Acceptance of E-Learning within a Blended Vocational Course in West Africa

    ERIC Educational Resources Information Center

    Mehta, Ashwin

    2014-01-01

    Replacing lecture-based learning content with online information can augment learner-content interaction and facilitate greater mastery over a subject. The success of online delivery will depend on the readiness of learners to use and accept technology as well as the readiness of the organizational infrastructure to support a learner-centric…

  18. Exploring Readiness, Motivation, and Capacity for Implementing an iPad Campus Initiative: A Rural Community College Case Study

    ERIC Educational Resources Information Center

    Smith, Douglas A.; Coleman, Dawn

    2018-01-01

    This intrinsic case study explored organizational readiness to implement a campus-wide technology initiative. Specifically, this research examined a rural community college's implementation of an "iPad campus" initiative in which all students, faculty, and staff were required to adopt iPad technology. We apply a heuristic for…

  19. Employers' Perspectives on New Information Technology Technicians' Employability in North Florida

    ERIC Educational Resources Information Center

    Hollister, Jonathan M.; Spears, Laura I.; Mardis, Marcia A.; Lee, Jisue; McClure, Charles R.; Liebman, Elizabeth

    2017-01-01

    Purpose: In response to recent calls for research relating to employers' perceptions of the workplace readiness of new graduates in a variety of fields, the purpose of this paper is to report North Florida employers' perceptions of information technology (IT) program graduates' workplace readiness. These findings are relevant to stakeholders in…

  20. Early Childhood Teachers' Beliefs about Readiness for Teaching Science, Technology, Engineering, and Mathematics

    ERIC Educational Resources Information Center

    Park, Mi-Hwa; Dimitrov, Dimiter M.; Patterson, Lynn G.; Park, Do-Yong

    2017-01-01

    The purpose of this study was to examine beliefs of early childhood teachers about their readiness for teaching science, technology, engineering, and mathematics, with a focus on testing for heterogeneity of such beliefs and differential effects of teacher-related factors. The results from latent class analysis of survey data revealed two latent…

  1. "ATLAS" Advanced Technology Life-cycle Analysis System

    NASA Technical Reports Server (NTRS)

    Lollar, Louis F.; Mankins, John C.; ONeil, Daniel A.

    2004-01-01

    Making good decisions concerning research and development portfolios-and concerning the best systems concepts to pursue - as early as possible in the life cycle of advanced technologies is a key goal of R&D management This goal depends upon the effective integration of information from a wide variety of sources as well as focused, high-level analyses intended to inform such decisions Life-cycle Analysis System (ATLAS) methodology and tool kit. ATLAS encompasses a wide range of methods and tools. A key foundation for ATLAS is the NASA-created Technology Readiness. The toolkit is largely spreadsheet based (as of August 2003). This product is being funded by the Human and Robotics The presentation provides a summary of the Advanced Technology Level (TRL) systems Technology Program Office, Office of Exploration Systems, NASA Headquarters, Washington D.C. and is being integrated by Dan O Neil of the Advanced Projects Office, NASA/MSFC, Huntsville, AL

  2. Pedagogical Conditions of Ensuring Students' Readiness for Scientific Researches--Example of Technical University

    ERIC Educational Resources Information Center

    Slessarev, Yuri Vassilyevich; Moisseyev, Vassily Borisovich; Vostroknutov, Evgeniy Vladimirovich

    2015-01-01

    This article describes pedagogical conditions of ensuring students readiness for scientific researches on the basis of scientific literature and experience of Penza State Technological University students. Introduction of suggested conditions favors the process of training of highly skilled expert who is ready for generation of new ideas in fields…

  3. SHARED TECHNOLOGY TRANSFER PROGRAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GRIFFIN, JOHN M. HAUT, RICHARD C.

    2008-03-07

    The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderockmore » unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.« less

  4. Research and Technology Activities Supporting Closed-Brayton-Cycle Power Conversion System Development

    NASA Technical Reports Server (NTRS)

    Barrett, Michael J.

    2004-01-01

    The elements of Brayton technology development emphasize power conversion system risk mitigation. Risk mitigation is achieved by demonstrating system integration feasibility, subsystem/component life capability (particularly in the context of material creep) and overall spacecraft mass reduction. Closed-Brayton-cycle (CBC) power conversion technology is viewed as relatively mature. At the 2-kWe power level, a CBC conversion system Technology Readiness Level (TRL) of six (6) was achieved during the Solar Dynamic Ground Test Demonstration (SD-GTD) in 1998. A TRL 5 was demonstrated for 10 kWe-class CBC components during the development of the Brayton Rotating Unit (BRU) from 1968 to 1976. Components currently in terrestrial (open cycle) Brayton machines represent TRL 4 for similar uses in 100 kWe-class CBC space systems. Because of the baseline component and subsystem technology maturity, much of the Brayton technology task is focused on issues related to systems integration. A brief description of ongoing technology activities is given.

  5. Agility in adversity: Vaccines on Demand.

    PubMed

    De Groot, Anne S; Moise, Leonard; Olive, David; Einck, Leo; Martin, William

    2016-09-01

    Is the US ready for a biological attack using Ebola virus or Anthrax? Will vaccine developers be able to produce a Zika virus vaccine, before the epidemic spreads around the world? A recent report by The Blue Ribbon Study Panel on Biodefense argues that the US is not ready for these challenges, however, technologies and capabilities that could address these deficiencies are within reach. Vaccine technologies have advanced and readiness has improved in recent years, due to advances in sequencing technology and computational power making the 'vaccines on demand' concept a reality. Building a robust strategy to design effective biodefense vaccines from genome sequences harvested by real-time biosurveillance will benefit from technologies that are being brought to bear on the cancer cure 'moonshot'. When combined with flexible vaccine production platforms, vaccines on demand will relegate expensive and, in some cases, insufficiently effective vaccine stockpiles to the dust heap of history.

  6. Technology review of flight crucial flight control systems (application of optical technology)

    NASA Technical Reports Server (NTRS)

    Rediess, H. A.; Buckley, E. C.

    1984-01-01

    The survey covers the various optical elements that are considered in a fly-by-light flight control system including optical sensors and transducers, optical data links, so-called optical actuators, and optical/electro-optical processing. It also addresses airframe installation, maintenance, and repair issues. Rather than an in-depth treatment of optical technology, the survey concentrates on technology readiness and the potential advantages/disadvantages of applying the technology. The information was assembled from open literature, personal interviews, and responses to a questionnaire distributed specifically for this survey. Not all of the information obtained was consistent, particularly with respect to technology readiness. The synthesis of information into the perception of the state-of-technology is presented.

  7. Architecture and Impact of an Open, Online, Remixable, and Multimedia-Rich Algebra 1 Course

    ERIC Educational Resources Information Center

    Bissell, Ahrash N.

    2012-01-01

    Less than half of the students in the United States graduate from high school and are ready to take college-level math courses. Many years and varieties of remedial math programs have failed to dramatically improve outcomes, especially at scale. The question we face is whether technology in general, and open educational resources in particular,…

  8. Electrometallurgical treatment demonstration at ANL-West

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goff, K. M.; Benedict, R. W.; Johnson, S. G.

    2000-03-20

    Electrometallurgical treatment (EMT) was developed by Argonne National Laboratory (ANL) to ready sodium-bonded spent nuclear fuel for geological disposal. A demonstration of this technology was successfully completed in August 1999. EMT was used to condition irradiated EBR-II driver and blanket fuel at ANL-West. The results of this demonstration, including the production of radioactive high-level waste forms, are presented.

  9. Personal-Level Factors and Google Docs Use in Monmouth County Middle Schools

    ERIC Educational Resources Information Center

    Tetreault, Steven G.

    2014-01-01

    Technology has become an essential part of the world, both in people's personal and professional lives. Digital assessments such as those being implemented in New Jersey as part of the Partnership for Assessment of Readiness for College and Careers (PARCC) will soon be instituted on a large scale; these require students to be able to utilize…

  10. National Research Council Dialogue to Assess Progesss on NASA's Human Exploration Systems and Mobility Capability Roadmap Development: General Background and Introduction

    NASA Technical Reports Server (NTRS)

    Inman, Thomas

    2005-01-01

    General Background and Introduction of Capability Roadmaps: Agency Objective. Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule. Capability Roadmaps and Schedule. Technology and Capability Readiness Levels. Relationships Between Roadmaps. Purpose of NRC Review. Capability Roadmap Development (Team Progress to Date).

  11. Selecting Effective Indicators. College Readiness Indicator Systems (CRIS) Resource Series

    ERIC Educational Resources Information Center

    University of Chicago Consortium on Chicago School Research, 2014

    2014-01-01

    The use of data to inform decisionmaking and practice at the school and district levels is now a common feature of reform efforts. Advances in districts' technological capacities have produced data systems that allow a flow of data to and from schools, often to the point of creating an overwhelming flood of information. To make the flow of…

  12. Solar Storm GIC Forecasting: Solar Shield Extension Development of the End-User Forecasting System Requirements

    NASA Technical Reports Server (NTRS)

    Pulkkinen, A.; Mahmood, S.; Ngwira, C.; Balch, C.; Lordan, R.; Fugate, D.; Jacobs, W.; Honkonen, I.

    2015-01-01

    A NASA Goddard Space Flight Center Heliophysics Science Division-led team that includes NOAA Space Weather Prediction Center, the Catholic University of America, Electric Power Research Institute (EPRI), and Electric Research and Management, Inc., recently partnered with the Department of Homeland Security (DHS) Science and Technology Directorate (S&T) to better understand the impact of Geomagnetically Induced Currents (GIC) on the electric power industry. This effort builds on a previous NASA-sponsored Applied Sciences Program for predicting GIC, known as Solar Shield. The focus of the new DHS S&T funded effort is to revise and extend the existing Solar Shield system to enhance its forecasting capability and provide tailored, timely, actionable information for electric utility decision makers. To enhance the forecasting capabilities of the new Solar Shield, a key undertaking is to extend the prediction system coverage across Contiguous United States (CONUS), as the previous version was only applicable to high latitudes. The team also leverages the latest enhancements in space weather modeling capacity residing at Community Coordinated Modeling Center to increase the Technological Readiness Level, or Applications Readiness Level of the system http://www.nasa.gov/sites/default/files/files/ExpandedARLDefinitions4813.pdf.

  13. Sensor Measurement Strategies for Monitoring Offshore Wind and Wave Energy Devices

    NASA Astrophysics Data System (ADS)

    O'Donnell, Deirdre; Srbinovsky, Bruno; Murphy, Jimmy; Popovici, Emanuel; Pakrashi, Vikram

    2015-07-01

    While the potential of offshore wind and wave energy devices is well established and accepted, operations and maintenance issues are still not very well researched or understood. In this regard, scaled model testing has gained popularity over time for such devices at various technological readiness levels. The dynamic response of these devices are typically measured by different instruments during such scaled tests but agreed sensor choice, measurement and placement guidelines are still not in place. This paper compared the dynamic responses of some of these sensors from a scaled ocean wave testing to highlight the importance of sensor measurement strategies. The possibility of using multiple, cheaper sensors of seemingly inferior performance as opposed to the deployment of a small number of expensive and accurate sensors are also explored. An energy aware adaptive sampling theory is applied to highlight the possibility of more efficient computing when large volumes of data are available from the tested structures. Efficient sensor measurement strategies are expected to have a positive impact on the development of an device at different technological readiness levels while it is expected to be helpful in reducing operation and maintenance costs if such an approach is considered for the devices when they are in operation.

  14. The Interplay of School Readiness and Teacher Readiness for Educational Technology Integration: A Structural Equation Model

    ERIC Educational Resources Information Center

    Petko, Dominik; Prasse, Doreen; Cantieni, Andrea

    2018-01-01

    Decades of research have shown that technological change in schools depends on multiple interrelated factors. Structural equation models explaining the interplay of factors often suffer from high complexity and low coherence. To reduce complexity, a more robust structural equation model was built with data from a survey of 349 Swiss primary school…

  15. Ready or Not? Assessing Change Readiness for Implementation of the Geospatial Technology Competency Model[c

    ERIC Educational Resources Information Center

    Annulis, Heather M.; Gaudet, Cyndi H.

    2007-01-01

    A shortage of a qualified and skilled workforce exists to meet the demands of the geospatial industry (NASA, 2002). Solving today's workforce issues requires new and innovative methods and techniques for this high growth, high technology industry. One tool to support workforce development is a competency model which can be used to build a…

  16. Earned Value Management Considering Technical Readiness Level and Its Application to New Space Launcher Program

    NASA Astrophysics Data System (ADS)

    Choi, Young-In; Ahn, Jaemyung

    2018-04-01

    Earned value management (EVM) is a methodology for monitoring and controlling the performance of a project based on a comparison between planned and actual cost/schedule. This study proposes a concept of hybrid earned value management (H-EVM) that integrates the traditional EVM metrics with information on the technology readiness level. The proposed concept can reflect the progress of a project in a sensitive way and provides short-term perspective complementary to the traditional EVM metrics. A two-dimensional visualization on the cost/schedule status of a project reflecting both of the traditional EVM (long-term perspective) and the proposed H-EVM (short-term perspective) indices is introduced. A case study on the management of a new space launch vehicle development program is conducted to demonstrate the effectiveness of the proposed H-EVM concept, associated metrics, and the visualization technique.

  17. Social service robots to support independent living : Experiences from a field trial.

    PubMed

    Pripfl, J; Körtner, T; Batko-Klein, D; Hebesberger, D; Weninger, M; Gisinger, C

    2016-06-01

    Assistive robots could be a future means to support independent living for seniors. This article provides insights into the latest developments in social service robots (SSR) based on the recently finished HOBBIT project. The idea of the HOBBIT project was to develop a low-cost SSR which is able to reduce the risk of falling, to detect falls and handle emergencies in private homes. The main objective of the project was to raise the technology to a level that allows the robot to be fully autonomously deployed in the private homes of older users and to evaluate technology market readiness, utility, usability and affordability under real-world conditions. During the initial phase of the project, a first prototype (PT1) was developed. The results of laboratory tests with PT1 were used for the development of a second prototype (PT2), which was finally tested in seven households of senior adults (mean age 79 years) for 3 weeks each, i.e. in total more than 5 months. The results showed that PT2 is intuitive to handle and that the functions offered meet the needs of older users; however, the robot was considered more as a toy than a supportive device for independent living. Furthermore, despite an emergency function of the robot, perceived security did not increase. Reasons for this might be a lack of technological robustness and slow performance of the prototype and also the good health conditions of the users; however, users believed that a market-ready version of the robot would be vital for supporting people who are more fragile and more socially isolated. Thus, SSRs have the potential to support independent living of older people although the technology has to be considerably improved to reach market readiness.

  18. Mild Biomass Liquefaction Process for Economic Production of Stabilized Refinery-Ready Bio-oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gangwal, Santosh; Meng, Jiajia; McCabe, Kevin

    Southern Research (SR) in cooperation with U.S. Department of Energy (DOE), Bioenergy Technology Office (BETO), investigated a biomass liquefaction process for economic production of stabilized refinery-ready bio-oil. The project was awarded by DOE under a Funding Opportunity Announcement (DE-FOA-0000686) for Bio-oil Stabilization and Commoditization that intended to evaluate the feasibility of using bio-oil as a potential feedstock in an existing petroleum refinery. SR investigated Topic Area 1 of the FOA at Technology Readiness Level 2-3 to develop thermochemical liquefaction technologies for producing a bio-oil feedstock from high-impact biomass that can be utilized within a petroleum refinery. Bio-oil obtained from fastmore » pyrolysis of biomass is a green intermediate that can be further upgraded into a biofuel for blending in a petroleum refinery using a hydro-deoxygenation (HDO) route. Co-processing pyrolysis bio-oil in a petroleum refinery is an attractive approach to leverage the refinery’s existing capital. However, the petroleum industry is reluctant to accept pyrolysis bio-oil because of a lack of a standard definition for an acceptable bio-oil feedstock in existing refinery processes. Also per BETO’s multiyear program plan, fast pyrolysis-based bio-fuel is presently not cost competitive with petroleum-based transportation fuels. SR aims to develop and demonstrate a cost-effective low-severity thermal liquefaction and hydrodeoxygenation (HDO) process to convert woody biomass to stabilized bio-oils that can be directly blended with hydrotreater input streams in a petroleum refinery for production of gasoline and/or diesel range hydrocarbons. The specific project objectives are to demonstrate the processes at laboratory scale, characterize the bio-oil product and develop a plan in partnership with a refinery company to move the technology towards commercialization.« less

  19. Stellar Interferometer Technology Experiment (SITE)

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Miller, David; Laskin, Robert; Shao, Michael

    1995-01-01

    The MIT Space Engineering Research Center and the Jet Propulsion Laboratory stand ready to advance science sensor technology for discrete-aperture astronomical instruments such as space-based optical interferometers. The objective of the Stellar Interferometer Technology Experiment (SITE) is to demonstrate system-level functionality of a space-based stellar interferometer through the use of enabling and enhancing Controlled-Structures Technologies (CST). SITE mounts to the Mission Peculiar Experiment Support System inside the Shuttle payload bay. Starlight, entering through two apertures, is steered to a combining plate where it is interferred. Interference requires 27 nanometer pathlength (phasing) and 0.29 archsecond wavefront-tilt (pointing) control. The resulting 15 milli-archsecond angular resolution exceeds that of current earth-orbiting telescopes while maintaining low cost by exploiting active optics and structural control technologies. With these technologies, unforeseen and time-varying disturbances can be rejected while relaxing reliance on ground alignment and calibration. SITE will reduce the risk and cost of advanced optical space systems by validating critical technologies in their operational environment. Moreover, these technologies are directly applicable to commercially driven applications such as precision matching, optical scanning, and vibration and noise control systems for the aerospace, medical, and automotive sectors. The SITE team consists of experienced university, government, and industry researchers, scientists, and engineers with extensive expertise in optical interferometry, nano-precision opto-mechanical control and spaceflight experimentation. The experience exists and the technology is mature. SITE will validate these technologies on a functioning interferometer science sensor in order to confirm definitely their readiness to be baselined for future science missions.

  20. A web based health technology assessment in tele-echocardiography: the experience within an Italian project.

    PubMed

    Giansanti, Daniele; Morelli, Sandra; Maccioni, Giovanni; Guerriero, Lorenzo; Bedini, Remo; Pepe, Gennaro; Colombo, Cesare; Borghi, Gabriella; Macellari, Velio

    2009-01-01

    Due to major advances in the information technology, telemedicine applications are ready for a widespread use. Nonetheless, to allow their diffusion in National Health Care Systems (NHCSs) specific methodologies of health technology assessment (HTA) should be used to assess the standardization, the overall quality, the interoperability, the addressing to legal, economic and cost benefit aspects. One of the limits to the diffusion of the digital tele-echocardiography (T-E) applications in the NHCS lacking of a specific methodology for the HTA. In the present study, a solution offering a structured HTA of T-E products was designed. The methodology assured also the definition of standardized quality levels for the application. The first level represents the minimum level of acceptance; the other levels are accessory levels useful for a more accurate assessment of the product. The methodology showed to be useful to rationalize the process of standardization and has received a high degree of acceptance by the subjects involved in the study.

  1. A Process for Technology Prioritization in a Competitive Environment

    NASA Technical Reports Server (NTRS)

    Stephens, Karen; Herman, Melody; Griffin, Brand

    2006-01-01

    This slide presentation reviews NASA's process for prioritizing technology requirements where there is a competitive environment. The In-Space Propulsion Technology (ISPT) project is used to exemplify the process. The ISPT project focuses on the mid level Technology Readiness Level (TRL) for development. These are TRL's 4 through 6, (i.e. Technology Development and Technology Demonstration. The objective of the planning activity is to identify the current most likely date each technology is needed and create ISPT technology development schedules based on these dates. There is a minimum of 4 years between flight and pacing mission. The ISPT Project needed to identify the "pacing mission" for each technology in order to provide funding for each area. Graphic representations show the development of the process. A matrix shows which missions are currently receiving pull from the both the Solar System Exploration and the Sun-Solar System Connection Roadmaps. The timeframes of the pacing missions technologies are shown for various types of propulsion. A pacing mission that was in the near future serves to increase the priority for funding. Adaptations were made when budget reductions precluded the total implementation of the plan.

  2. Critical Low-Noise Technologies Being Developed for Engine Noise Reduction Systems Subproject

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Civinskas, Kestutis C.

    2004-01-01

    NASA's previous Advanced Subsonic Technology (AST) Noise Reduction Program delivered the initial technologies for meeting a 10-year goal of a 10-dB reduction in total aircraft system noise. Technology Readiness Levels achieved for the engine-noise-reduction technologies ranged from 4 (rig scale) to 6 (engine demonstration). The current Quiet Aircraft Technology (QAT) project is building on those AST accomplishments to achieve the additional noise reduction needed to meet the Aerospace Technology Enterprise's 10-year goal, again validated through a combination of laboratory rig and engine demonstration tests. In order to meet the Aerospace Technology Enterprise goal for future aircraft of a 50- reduction in the perceived noise level, reductions of 4 dB are needed in both fan and jet noise. The primary objectives of the Engine Noise Reduction Systems (ENRS) subproject are, therefore, to develop technologies to reduce both fan and jet noise by 4 dB, to demonstrate these technologies in engine tests, and to develop and experimentally validate Computational Aero Acoustics (CAA) computer codes that will improve our ability to predict engine noise.

  3. Hybrid Propulsion Demonstration Program 250K Hybrid Motor

    NASA Technical Reports Server (NTRS)

    Story, George; Zoladz, Tom; Arves, Joe; Kearney, Darren; Abel, Terry; Park, O.

    2003-01-01

    The Hybrid Propulsion Demonstration Program (HPDP) program was formed to mature hybrid propulsion technology to a readiness level sufficient to enable commercialization for various space launch applications. The goal of the HPDP was to develop and test a 250,000 pound vacuum thrust hybrid booster in order to demonstrate hybrid propulsion technology and enable manufacturing of large hybrid boosters for current and future space launch vehicles. The HPDP has successfully conducted four tests of the 250,000 pound thrust hybrid rocket motor at NASA's Stennis Space Center. This paper documents the test series.

  4. Scientific Merit Review of Directed Research Tasks Within the NASA Human Research Program

    NASA Technical Reports Server (NTRS)

    Charles, John B.

    2010-01-01

    The Human Research Program is instrumental in developing and delivering research findings, health countermeasures, and human systems technologies for spacecraft. :HRP is subdivided into 6 research entities, or Elements. Each Element is charged with providing the Program with knowledge and capabilities to conduct research to address the human health and performance risks as well as advance the readiness levels of technology and countermeasures. Project: An Element may be further subdivided into Projects, which are defined as an integrated set of tasks undertaken to deliver a product or set of products

  5. Advanced Concepts. Chapter 21

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Mulqueen, Jack

    2013-01-01

    Before there is a funded space mission, there must be a present need for the mission. Space science and exploration are expensive, and without a well-defined and justifiable need, no one is going to commit significant funding for any space endeavor. However, as discussed in Chapter 1, applications of space technology and many and broad, hence there are many ways to determine and establish a mission need. Robotic science missions are justified by their science return. To be selected for flight, questions like these must be addressed: What is the science question that needs answering, and will the proposed mission be the most cost-effective way to answer it? Why does answering the question require an expensive space flight, instead of some ground-based alternative? If the question can only be answered by flying in space, then why is this approach better than other potential approaches? How much will it cost? And is the technology required to answer the question in hand and ready to use? If not, then how much will it cost and how long will it take to mature the technology to a usable level? There are also many ways to justify human exploration missions, including science return, technology advancement, as well as intangible reasons, such as national pride. Nonetheless, many of the questions that need answering, are similar to those for robotic science missions: Where are the people going, why, and will the proposed mission be the most cost-effective way to get there? What is the safest method to achieve the goal? How much will it cost? And is the technology required to get there and keep the crew alive in hand and ready to use? If not, then how much will it cost and how long will it take to mature the technology to a usable level? Another reason for some groups sending spacecraft into space is for profit. Telecommunications, geospatial imaging, and tourism are examples of proven, market-driven space missions and applications. For this specific set of users, the outstanding questions include: What is the product or service? Who will buy it? How can it be profitable? What is the most cost-effective solution to fielding the product or service? And, of course, is the technology in-hand or is there advanced development required? In order to answer these questions, the responsibility falls to a specially-skilled set of engineers and scientists who understand how to assess the readiness of new technologies.

  6. Status of shuttle fuel cell technology program.

    NASA Technical Reports Server (NTRS)

    Rice, W. E.; Bell, D., III

    1972-01-01

    The hydrogen-oxygen fuel cell has been proved as an efficient and reliable electrical power supply for NASA manned-space-flight vehicles. It has thus ensured a role in the Space Shuttle Program as the primary electrical power supply for the Orbiter vehicle. The advanced fuel cell technology programs conducted under the management of the NASA Manned Spacecraft Center over the past two years have resulted in a high level of technical readiness in fuel cell power generation to support shuttle mission requirements. These programs have taken advantage of technological developments that have occurred since the designs were completed for the Gemini and Apollo fuel cells.

  7. State of the NASA Aeropropulsion Discipline Input from the Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Reddy, D. R.; Schmidt, George

    2017-01-01

    PROBLEM: Current power turbines are designed for single operating speed, and performance degrades rapidly as power turbine speed decreases. OBJECTIVES: Demonstrate 50 improvement in efficient operational capability using a Variable Speed Power Turbine concept. (Refer to figure lower left, where the goal is to raise efficiency from the current technology line to the green line which represents the AVSPOT VSPT goal.APPROACH: Conduct RD required to advance the technology readiness level of VSPT technology to TRL 4Partner with DoD and leverage DOD AVSPOT contract to share government cost (5050) of contracted efforts to GE and PW for VSPT TRL 45 demonstration.

  8. Enabling Communication and Navigation Technologies for Future Near Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Israel, David J.; Heckler, Gregory; Menrad, Robert; Hudiburg, John; Boroson, Don; Robinson, Bryan; Cornwell, Donald

    2016-01-01

    In 2015, the Earth Regimes Network Evolution Study (ERNESt) proposed an architectural concept and technologies that evolve to enable space science and exploration missions out to the 2040 timeframe. The architectural concept evolves the current instantiations of the Near Earth Network and Space Network with new technologies to provide a global communication and navigation network that provides communication and navigation services to a wide range of space users in the near Earth domain. The technologies included High Rate Optical Communications, Optical Multiple Access (OMA), Delay Tolerant Networking (DTN), User Initiated Services (UIS), and advanced Position, Navigation, and Timing technology. This paper describes the key technologies and their current technology readiness levels. Examples of science missions that could be enabled by the technologies and the projected operational benefits of the architecture concept to missions are also described.

  9. Bringing Together Mentoring, Technology, and Whole-School Reform: A First Look at the iMentor College Ready Program. Report

    ERIC Educational Resources Information Center

    Merrill, Lisa; Siman, Nina; Wulach, Suzanne; Kang, David

    2015-01-01

    iMentor's College Ready Program is a unique approach that combines elements of school-based mentoring, whole school reform, and technology in an effort to help students develop the full suite of knowledge, behaviors, and skills they need to complete high school and enroll and thrive in college. iMentor partners with high schools that serve…

  10. Motivation and Technological Readiness in the Use of High-Fidelity Simulation: A Descriptive Comparative Study of Nurse Educators

    ERIC Educational Resources Information Center

    Duvall, Judy Jo

    2012-01-01

    There are many driving forces to increase the use of high-fidelity simulation (HFS) in nursing education, as well as many factors that may influence the implementation of this teaching strategy. These include the motivation of nurse educators to use HFS, the technological readiness of nurse educators to use HFS and the changing demographics of the…

  11. Mission Simulation Facility: Simulation Support for Autonomy Development

    NASA Technical Reports Server (NTRS)

    Pisanich, Greg; Plice, Laura; Neukom, Christian; Flueckiger, Lorenzo; Wagner, Michael

    2003-01-01

    The Mission Simulation Facility (MSF) supports research in autonomy technology for planetary exploration vehicles. Using HLA (High Level Architecture) across distributed computers, the MSF connects users autonomy algorithms with provided or third-party simulations of robotic vehicles and planetary surface environments, including onboard components and scientific instruments. Simulation fidelity is variable to meet changing needs as autonomy technology advances in Technical Readiness Level (TRL). A virtual robot operating in a virtual environment offers numerous advantages over actual hardware, including availability, simplicity, and risk mitigation. The MSF is in use by researchers at NASA Ames Research Center (ARC) and has demonstrated basic functionality. Continuing work will support the needs of a broader user base.

  12. Methodology to Calculate the ACE and HPQ Metrics Used in the Wave Energy Prize

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Driscoll, Frederick R; Weber, Jochem W; Jenne, Dale S

    The U.S. Department of Energy's Wave Energy Prize Competition encouraged the development of innovative deep-water wave energy conversion technologies that at least doubled device performance above the 2014 state of the art. Because levelized cost of energy (LCOE) metrics are challenging to apply equitably to new technologies where significant uncertainty exists in design and operation, the prize technical team developed a reduced metric as proxy for LCOE, which provides an equitable comparison of low technology readiness level wave energy converter (WEC) concepts. The metric is called 'ACE' which is short for the ratio of the average climate capture width tomore » the characteristic capital expenditure. The methodology and application of the ACE metric used to evaluate the performance of the technologies that competed in the Wave Energy Prize are explained in this report.« less

  13. Development of the PRE-HIT instrument: patient readiness to engage in health information technology.

    PubMed

    Koopman, Richelle J; Petroski, Gregory F; Canfield, Shannon M; Stuppy, Julie A; Mehr, David R

    2014-01-28

    Technology-based aids for lifestyle change are becoming more prevalent for chronic conditions. Important "digital divides" remain, as well as concerns about privacy, data security, and lack of motivation. Researchers need a way to characterize participants' readiness to use health technologies. To address this need, we created an instrument to measure patient readiness to engage with health technologies among adult patients with chronic conditions. Initial focus groups to determine domains, followed by item development and refinement, and exploratory factor analysis to determine final items and factor structure. The development sample included 200 patients with chronic conditions from 6 family medicine clinics. From 98 potential items, 53 best candidate items were examined using exploratory factor analysis. Pearson's Correlation for Test/Retest reliability at 3 months. The final instrument had 28 items that sorted into 8 factors with associated Cronbach's alpha: 1) Health Information Need (0.84), 2) Computer/Internet Experience (0.87), 3) Computer Anxiety (0.82), 4) Preferred Mode of Interaction (0.73), 5) Relationship with Doctor (0.65), 6) Cell Phone Expertise (0.75), 7) Internet Privacy (0.71), and 8) No News is Good News (0.57). Test-retest reliability for the 8 subscales ranged from (0.60 to 0.85). The Patient Readiness to Engage in Health Internet Technology (PRE-HIT) instrument has good psychometric properties and will be an aid to researchers investigating technology-based health interventions. Future work will examine predictive validity.

  14. Development of the PRE-HIT instrument: patient readiness to engage in health information technology

    PubMed Central

    2014-01-01

    Background Technology-based aids for lifestyle change are becoming more prevalent for chronic conditions. Important “digital divides” remain, as well as concerns about privacy, data security, and lack of motivation. Researchers need a way to characterize participants’ readiness to use health technologies. To address this need, we created an instrument to measure patient readiness to engage with health technologies among adult patients with chronic conditions. Methods Initial focus groups to determine domains, followed by item development and refinement, and exploratory factor analysis to determine final items and factor structure. The development sample included 200 patients with chronic conditions from 6 family medicine clinics. From 98 potential items, 53 best candidate items were examined using exploratory factor analysis. Pearson’s Correlation for Test/Retest reliability at 3 months. Results The final instrument had 28 items that sorted into 8 factors with associated Cronbach’s alpha: 1) Health Information Need (0.84), 2) Computer/Internet Experience (0.87), 3) Computer Anxiety (0.82), 4) Preferred Mode of Interaction (0.73), 5) Relationship with Doctor (0.65), 6) Cell Phone Expertise (0.75), 7) Internet Privacy (0.71), and 8) No News is Good News (0.57). Test-retest reliability for the 8 subscales ranged from (0.60 to 0.85). Conclusion The Patient Readiness to Engage in Health Internet Technology (PRE-HIT) instrument has good psychometric properties and will be an aid to researchers investigating technology-based health interventions. Future work will examine predictive validity. PMID:24472182

  15. Urban Combat Advanced Training Technology (Technologie Avancee d’Entrainement au Combat Urbain)

    DTIC Science & Technology

    2010-04-01

    JRTC Joint Readiness Training Center JRTC-MOUT-IS Joint Readiness Training Center Military Operations in Urbanised Terrain Instrumentation System...did not support or identify joint or multi-national requirements for conducting effective military operations in an urbanised environment. Very few...Requirements Document (ORD) for the Joint Readiness Training Center (JRTC) Military Operations on Urbanised Terrain (MOUT) Instrumentation System

  16. An Analysis of Organizational Readiness at Anniston Army Depot for Information Technology Change

    DTIC Science & Technology

    2008-12-01

    13 1. History of Readiness for Change Literature ...................................13 2. Research...the way IT change affects them individually and collectively are the focus of this thesis project. The history of the SDS and the LMP provided in...recommendations based on the survey instrument. 13 II. LITERATURE REVIEW A. INTRODUCTION 1. History of Readiness for Change Literature An

  17. NASA's Launch Propulsion Systems Technology Roadmap

    NASA Technical Reports Server (NTRS)

    McConnaughey, Paul K.; Femminineo, Mark G.; Koelfgen, Syri J.; Lepsch, Roger A; Ryan, Richard M.; Taylor, Steven A.

    2012-01-01

    Safe, reliable, and affordable access to low-Earth (LEO) orbit is necessary for all of the United States (US) space endeavors. In 2010, NASA s Office of the Chief Technologist commissioned 14 teams to develop technology roadmaps that could be used to guide the Agency s and US technology investment decisions for the next few decades. The Launch Propulsion Systems Technology Area (LPSTA) team was tasked to address the propulsion technology challenges for access to LEO. The developed LPSTA roadmap addresses technologies that enhance existing solid or liquid propulsion technologies and their related ancillary systems or significantly advance the technology readiness level (TRL) of less mature systems like airbreathing, unconventional, and other launch technologies. In developing this roadmap, the LPSTA team consulted previous NASA, military, and industry studies as well as subject matter experts to develop their assessment of this field, which has fundamental technological and strategic impacts for US space capabilities.

  18. High-Temperature Gas-Cooled Test Reactor Point Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterbentz, James William; Bayless, Paul David; Nelson, Lee Orville

    2016-04-01

    A point design has been developed for a 200 MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched UCO fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technological readiness level, licensing approach and costs.

  19. California Diploma Project Technical Report III: Validity Study--Validity Study of the Health Sciences and Medical Technology Standards

    ERIC Educational Resources Information Center

    McGaughy, Charis; Bryck, Rick; de Gonzalez, Alicia

    2012-01-01

    This study is a validity study of the recently revised version of the Health Science Standards. The purpose of this study is to understand how the Health Science Standards relate to college and career readiness, as represented by survey ratings submitted by entry-level college instructors of health science courses and industry representatives. For…

  20. REPORT OF ON-SITE INSPECTION WORKSHOP-16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweeney, J J

    2009-07-07

    The central issue addressed by this workshop was the task of making the on-site inspection (OSI) part of the Comprehensive Nuclear-Test-Ban Treaty verification system operationally ready at entry into force of the Treaty. It is recognized, and this was emphasized by the 2008 OSI Integrated Field Exercise (IFE), that it is not possible to develop every part of the OSI regime simultaneously. Therefore, it is necessary to prioritize the approach to OSI readiness. The reviews of the IFE have pointed to many elements of OSI readiness that still need development. The objective of this workshop was to provide priorities formore » the path forward for Working Group B to consider. Several critical areas have been identified that are related to the development of OSI readiness: (1) Technology development: Priorities are radionuclide and noble gas sampling and analysis, visual observation, multispectral/infrared imaging methods, active seismic methods and the recognition of the importance of signatures. (2) Organizational development: Priorities are health and safety, the Operations Support Centre, the Equipment Storage and Maintenance Facility, information technology data flow and communications. (3) Resources: The expertise to develop key parts of the OSI regime is not available within the current OSI Division staff. To develop these aspects of the regime will require more staff or supplements to the staff with cost-free experts or other means. Aspects of the system that could benefit from more staff include radionuclide and noble gas detection methods, data flow and communications, visual observation, multispectral/infrared methods and health and safety. As the path forward, participants of this workshop recognized a need to optimize the development of OSI priorities. The outcome of this workshop is to suggest for consideration an operational approach to OSI readiness that utilizes results of an evaluation of the relative effectiveness of OSI elements versus their relative maturity. By integrating such an assessment with considerations of integrated operational capabilities and the anticipated level of inspection team self-sufficiency and measurable milestone criteria, a set of priorities for OSI development can be developed. Once these priorities have been established, the Policy Making Organs can decide upon the milestones, strategic plan and action plan to serve as guidance for implementation by the Provisional Technical Secretariat. The suggested operational approach is as follows: (1) Assess the relative effectiveness (importance) of OSI elements versus their relative maturity; (2) Determine the anticipated level of self-sufficiency; (3) Define measurable milestone criteria; and (4) Result: Milestones for OSI readiness.« less

  1. Photon Sail History, Engineering, and Mission Analysis. Appendix

    NASA Technical Reports Server (NTRS)

    Matloff, Gregory L.; Taylor, Travis; Powell, Conley

    2004-01-01

    This Appendix summarizes the results of a Teledyne Brown Engineering, Inc. report to the In-Space propulsion research group of the NASA Marshall Space Flight Center (MSFC) that was authored by Taylor et al. in 2003. The subject of this report is the technological maturity, readiness, and capability of the photon solar sail to support space-exploration missions. Technological maturity for solar photon sail concepts is extremely high high for rectangular (or square) solar sail configurations due to the historical development of the rectangular design by the NASA Jet Propulsion Laboratory (JPL). L'Garde Inc., ILC Dover Inc., DLR, and many other corporations and agencies. However, future missions and mission analysis may prove that the rectangular sail design is not the best architecture for achieving mission goals. Due to the historical focus on rectangular solar sail spacecraft designs, the maturity of other architectures such as hoop-supported disks, multiple small disk arrays, parachute sails, heliogyro sails, perforated sails, multiple vane sails (such as the Planetary Society's Cosmos 1), inflated pillow sails, etc., have not reached a high level of technological readiness. (Some sail architectures are shown in Fig. A.1.) The possibilities of different sail architectures and some possible mission concepts are discussed in this Appendix.

  2. Aeronautical-Satellite-Assisted Process Being Developed for Information Exchange Through Network Technologies (Aero-SAPIENT)

    NASA Technical Reports Server (NTRS)

    Zernic, Michael J.

    2001-01-01

    Communications technologies are being developed to address safety issues during aviation travel. Some of these technologies enable the aircraft to be in constant bidirectional communications with necessary systems, people, and other aircraft that are not currently in place today. Networking technologies, wireless datalinks, and advanced avionics techniques are areas of particular importance that the NASA Glenn Research Center has contributed. Glenn, in conjunction with the NASA Ames Research Center, NASA Dryden Flight Research Center, and NASA Langley Research Center, is investigating methods and applications that would utilize these communications technologies. In mid-June 2000, the flight readiness of the network and communications technologies were demonstrated via a simulated aircraft. A van simulating an aircraft was equipped with advanced phased-array antennas (Advanced Communications/Air Traffic Management (AC/ATM) Advanced Air Transportation Technologies (AATT) project) that used commercial Ku-band satellite communications to connect Glenn, Dryden, and Ames in a combined system ground test. This test simulated air-ground bidirectional transport of real-time digital audio, text, and video data via a hybrid network configuration that demonstrated the flight readiness of the network and communications technologies. Specifically, a Controller Pilot Data Link Communications application was used with other applications to demonstrate a multiprotocol capability via Internet-protocol encapsulated ATN (Aeronautical Telecommunications Network) data packets. The significance of this combined ground test is its contribution to the Aero Information Technology Base Program Level I milestone (Software Technology investment area) of a real-time data link for the National Airspace System. The objective of this milestone was to address multiprotocol technology applicable for real-time data links between aircraft, a satellite, and the ground as well as the ability to distribute flight data with multilevel priorities among several sites.

  3. Evolution paths for advanced automation

    NASA Technical Reports Server (NTRS)

    Healey, Kathleen J.

    1990-01-01

    As Space Station Freedom (SSF) evolves, increased automation and autonomy will be required to meet Space Station Freedom Program (SSFP) objectives. As a precursor to the use of advanced automation within the SSFP, especially if it is to be used on SSF (e.g., to automate the operation of the flight systems), the underlying technologies will need to be elevated to a high level of readiness to ensure safe and effective operations. Ground facilities supporting the development of these flight systems -- from research and development laboratories through formal hardware and software development environments -- will be responsible for achieving these levels of technology readiness. These facilities will need to evolve support the general evolution of the SSFP. This evolution will include support for increasing the use of advanced automation. The SSF Advanced Development Program has funded a study to define evolution paths for advanced automaton within the SSFP's ground-based facilities which will enable, promote, and accelerate the appropriate use of advanced automation on-board SSF. The current capability of the test beds and facilities, such as the Software Support Environment, with regard to advanced automation, has been assessed and their desired evolutionary capabilities have been defined. Plans and guidelines for achieving this necessary capability have been constructed. The approach taken has combined indepth interviews of test beds personnel at all SSF Work Package centers with awareness of relevant state-of-the-art technology and technology insertion methodologies. Key recommendations from the study include advocating a NASA-wide task force for advanced automation, and the creation of software prototype transition environments to facilitate the incorporation of advanced automation in the SSFP.

  4. Bringing Together Mentoring, Technology, and Whole-School Reform: A First Look at the iMentor College Ready Program. Technical Appendices

    ERIC Educational Resources Information Center

    Merrill, Lisa; Siman, Nina; Wulach, Suzanne; Kang, David

    2015-01-01

    iMentor's College Ready Program is a unique approach that combines elements of school-based mentoring, whole school reform, and technology in an effort to help students develop the full suite of knowledge, behaviors, and skills they need to complete high school and enroll and thrive in college. iMentor partners with high schools that serve…

  5. Bringing Together Mentoring, Technology, and Whole-School Reform: A First Look at the iMentor College Ready Program. Executive Summary

    ERIC Educational Resources Information Center

    Merrill, Lisa; Siman, Nina; Wulach, Suzanne; Kang, David

    2015-01-01

    iMentor's College Ready Program is a unique approach that combines elements of school-based mentoring, whole school reform, and technology in an effort to help students develop the full suite of knowledge, behaviors, and skills they need to complete high school and enroll and thrive in college. iMentor partners with high schools that serve…

  6. EPA ENVIRONMENTAL TECHNOLOGY EXPERIENCE

    EPA Science Inventory

    THE USEPA's Environmental Technology Verification for Metal Finishing Pollution Prevention Technologies (ETV-MF) Program verifies the performance of innovative, commercial-ready technologies designed to improve industry performance and achieve cost-effective pollution prevention ...

  7. Demonstrating Enabling Technologies for the High-Resolution Imaging Spectrometer of the Next NASA X-ray Astronomy Mission

    NASA Astrophysics Data System (ADS)

    Kilbourne, Caroline; Adams, J. S.; Bandler, S.; Chervenak, J.; Chiao, M.; Doriese, R.; Eckart, M.; Finkbeiner, F.; Fowler, J. W.; Hilton, G.; Irwin, K.; Kelley, R. L.; Moseley, S. J.; Porter, F. S.; Reintsema, C.; Sadleir, J.; Smith, S. J.; Swetz, D.; Ullom, J.

    2014-01-01

    NASA/GSFC and NIST-Boulder are collaborating on a program to advance superconducting transition-edge sensor (TES) microcalorimeter technology toward Technology Readiness Level (TRL) 6. The technology development for a TES imaging X-ray microcalorimeter spectrometer (TES microcalorimeter arrays and time-division multiplexed SQUID readout) is now at TRL 4, as evaluated by both NASA and the European Space Agency (ESA) during mission formulation for the International X-ray Observatory (IXO). We will present the status of the development program. The primary goal of the current project is to advance the core X-ray Microcalorimeter Spectrometer (XMS) detector-system technologies to a demonstration of TRL 5 in 2014. Additional objectives are to develop and demonstrate two important related technologies to at least TRL 4: position-sensitive TES devices and code-division multiplexing (CDM). These technologies have the potential to expand significantly the range of possible instrument optimizations; together they allow an expanded focal plane and higher per-pixel count rates without greatly increasing mission resources. The project also includes development of a design concept and critical technologies needed for the thermal, electrical, and mechanical integration of the detector and readout components into the focal-plane assembly. A verified design concept for the packaging of the focal-plane components will be needed for the detector system eventually to advance to TRL 6. Thus, the current project is a targeted development and demonstration program designed to make significant progress in advancing the XMS detector system toward TRL 6, establishing its readiness for a range of possible mission implementations.

  8. Readiness for Meaningful Use of Health Information Technology and Patient Centered Medical Home Recognition Survey Results

    PubMed Central

    Shin, Peter; Sharac, Jessica

    2013-01-01

    Objective Determine the factors that impact HIT use and MU readiness for community health centers (CHCs). Background The HITECH Act allocates funds to Medicaid and Medicare providers to encourage the adoption of electronic health records (EHR), in an effort to improve health care quality and patient outcomes, and to reduce health care costs. Methods We surveyed CHCs on their Readiness for Meaningful Use (MU) of Health Information Technology (HIT) and Patient Centered Medical Home (PCMH) Recognition, then we combined responses with 2009 Uniform Data System data to determine which factors impact use of HIT and MU readiness. Results Nearly 70% of CHCs had full or partial EHR adoption at the time of survey. Results are presented for centers with EHR adoption, by the length of time that their EHR systems have been in operation. PMID:24834365

  9. Readiness factors for information system strategic planning among universities in developing countries: a systematic review

    NASA Astrophysics Data System (ADS)

    Irfan, M.; Putra, S. J.; Alam, C. N.; Subiyakto, A.; Wahana, A.

    2018-03-01

    The implementation of information system strategic planning (ISSP) in higher education institutions is to improve work efficiency, management effectiveness in order to improve organizational competitive advantage. However, the question of whether all universities are ready to implement ISSP as a way to achieve organizational goals has not been answered. This study aims to investigate the readiness phenomena through literature study. The method used is by using the Systematic Literature Review (SLR) instrument to identify readiness factors on the implementation of ISSP, especially among the institutions of higher education in developing countries. This study has identified 10 readiness measurement. There are three categories of measurement, namely people, processes and technologies that represent 11 factors of ISSP readiness measurement in universities.

  10. Building Community Bonds, Bridges, and Linkages to Promote the Career Readiness of High School Students in the United States

    ERIC Educational Resources Information Center

    Hernandez-Gantes, Victor M.; Keighobadi, Sasha; Fletcher, Edward C., Jr.

    2018-01-01

    The career readiness of high school students has been a longstanding issue that has received renewed attention in recent years. To document an approach to promoting career readiness in the United States, we conducted an exploratory case study of a distinguished information technology career academy. Using the premises of capital building as a…

  11. Final Report of the Impacts of the National Math + Science Initiative's (NMSI's) College Readiness Program on High School Students' Outcomes

    ERIC Educational Resources Information Center

    Sherman, Dan; Li, Yibing; Darwin, Marlene; Taylor, Suzanne; Song, Mengli

    2017-01-01

    The National Math + Science Initiative's (NMSI's) College Readiness Program (CRP) is an established program whose goal is to promote science, technology, engineering, and mathematics education in high schools to improve students' readiness for college. It provides teacher, student, and school supports to promote high school students' success in…

  12. A Qualitative Readiness-Requirements Assessment Model for Enterprise Big-Data Infrastructure Investment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olama, Mohammed M; McNair, Wade; Sukumar, Sreenivas R

    2014-01-01

    In the last three decades, there has been an exponential growth in the area of information technology providing the information processing needs of data-driven businesses in government, science, and private industry in the form of capturing, staging, integrating, conveying, analyzing, and transferring data that will help knowledge workers and decision makers make sound business decisions. Data integration across enterprise warehouses is one of the most challenging steps in the big data analytics strategy. Several levels of data integration have been identified across enterprise warehouses: data accessibility, common data platform, and consolidated data model. Each level of integration has its ownmore » set of complexities that requires a certain amount of time, budget, and resources to implement. Such levels of integration are designed to address the technical challenges inherent in consolidating the disparate data sources. In this paper, we present a methodology based on industry best practices to measure the readiness of an organization and its data sets against the different levels of data integration. We introduce a new Integration Level Model (ILM) tool, which is used for quantifying an organization and data system s readiness to share data at a certain level of data integration. It is based largely on the established and accepted framework provided in the Data Management Association (DAMA-DMBOK). It comprises several key data management functions and supporting activities, together with several environmental elements that describe and apply to each function. The proposed model scores the maturity of a system s data governance processes and provides a pragmatic methodology for evaluating integration risks. The higher the computed scores, the better managed the source data system and the greater the likelihood that the data system can be brought in at a higher level of integration.« less

  13. A qualitative readiness-requirements assessment model for enterprise big-data infrastructure investment

    NASA Astrophysics Data System (ADS)

    Olama, Mohammed M.; McNair, Allen W.; Sukumar, Sreenivas R.; Nutaro, James J.

    2014-05-01

    In the last three decades, there has been an exponential growth in the area of information technology providing the information processing needs of data-driven businesses in government, science, and private industry in the form of capturing, staging, integrating, conveying, analyzing, and transferring data that will help knowledge workers and decision makers make sound business decisions. Data integration across enterprise warehouses is one of the most challenging steps in the big data analytics strategy. Several levels of data integration have been identified across enterprise warehouses: data accessibility, common data platform, and consolidated data model. Each level of integration has its own set of complexities that requires a certain amount of time, budget, and resources to implement. Such levels of integration are designed to address the technical challenges inherent in consolidating the disparate data sources. In this paper, we present a methodology based on industry best practices to measure the readiness of an organization and its data sets against the different levels of data integration. We introduce a new Integration Level Model (ILM) tool, which is used for quantifying an organization and data system's readiness to share data at a certain level of data integration. It is based largely on the established and accepted framework provided in the Data Management Association (DAMADMBOK). It comprises several key data management functions and supporting activities, together with several environmental elements that describe and apply to each function. The proposed model scores the maturity of a system's data governance processes and provides a pragmatic methodology for evaluating integration risks. The higher the computed scores, the better managed the source data system and the greater the likelihood that the data system can be brought in at a higher level of integration.

  14. Precision Departure Release Capability (PDRC) Technology Description

    NASA Technical Reports Server (NTRS)

    Engelland, Shawn A.; Capps, Richard; Day, Kevin; Robinson, Corissia; Null, Jody R.

    2013-01-01

    After takeoff, aircraft must merge into en route (Center) airspace traffic flows which may be subject to constraints that create localized demand-capacity imbalances. When demand exceeds capacity, Traffic Management Coordinators (TMCs) often use tactical departure scheduling to manage the flow of departures into the constrained Center traffic flow. Tactical departure scheduling usually involves use of a Call for Release (CFR) procedure wherein the Tower must call the Center TMC to coordinate a release time prior to allowing the flight to depart. In present-day operations release times are computed by the Center Traffic Management Advisor (TMA) decision support tool based upon manual estimates of aircraft ready time verbally communicated from the Tower to the Center. The TMA-computed release is verbally communicated from the Center back to the Tower where it is relayed to the Local controller as a release window that is typically three minutes wide. The Local controller will manage the departure to meet the coordinated release time window. Manual ready time prediction and verbal release time coordination are labor intensive and prone to inaccuracy. Also, use of release time windows adds uncertainty to the tactical departure process. Analysis of more than one million flights from January 2011 indicates that a significant number of tactically scheduled aircraft missed their en route slot due to ready time prediction uncertainty. Uncertainty in ready time estimates may result in missed opportunities to merge into constrained en route flows and lead to lost throughput. Next Generation Air Transportation System (NextGen) plans call for development of Tower automation systems capable of computing surface trajectory-based ready time estimates. NASA has developed the Precision Departure Release Capability (PDRC) concept that uses this technology to improve tactical departure scheduling by automatically communicating surface trajectory-based ready time predictions to the Center scheduling tool. The PDRC concept also incorporates earlier NASA and FAA research into automation-assisted CFR coordination. The PDRC concept helps reduce uncertainty by automatically communicating coordinated release times with seconds-level precision enabling TMCs to work with target times rather than windows. NASA has developed a PDRC prototype system that integrates the Center's TMA system with a research prototype Tower decision support tool. A two-phase field evaluation was conducted at NASA's North Texas Research Station (NTX) in Dallas-Fort Worth. The field evaluation validated the PDRC concept and demonstrated reduced release time uncertainty while being used for tactical departure scheduling of more than 230 operational flights over 29 weeks of operations. This paper presents the Technology Description. Companion papers include the Final Report and a Concept of Operations.

  15. Advanced mirror technology development (AMTD): year five status

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip

    2017-09-01

    The Advanced Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort initiated in Fiscal Year (FY) 2012, to mature the Technology Readiness Level (TRL) of critical technologies required to enable 4-m-orlarger monolithic or segmented ultraviolet, optical, and infrared (UVOIR) space telescope primary-mirror assemblies for general astrophysics, ultra-high-contrast observations of exoplanets, and National Interest missions. Key accomplishments of 2016/17 include the completion of the Harris Corp 150 Hz 1.5-meter Ultra-Low Expansion (ULE) mirror substrate using stacked core method to demonstrate lateral stability of the stacked core technology, as well as the characterization and validation by test of the mechanical and thermal performance of the 1.2-meter Zerodur mirror using the STOP model prediction and verification of CTE homogeneity.

  16. The Need for Technology Maturity of Any Advanced Capability to Achieve Better Life Cycle Cost (LCC)

    NASA Technical Reports Server (NTRS)

    Robinson, John W.; Levack, Daniel J. H.; Rhodes, Russel E.; Chen, Timothy T.

    2009-01-01

    Programs such as space transportation systems are developed and deployed only rarely, and they have long development schedules and large development and life cycle costs (LCC). They have not historically had their LCC predicted well and have only had an effort to control the DDT&E phase of the programs. One of the factors driving the predictability, and thus control, of the LCC of a program is the maturity of the technologies incorporated in the program. If the technologies incorporated are less mature (as measured by their Technology Readiness Level - TRL), then the LCC not only increases but the degree of increase is difficult to predict. Consequently, new programs avoid incorporating technologies unless they are quite mature, generally TRL greater than or equal to 7 (system prototype demonstrated in a space environment) to allow better predictability of the DDT&E phase costs unless there is no alternative. On the other hand, technology development programs rarely develop technologies beyond TRL 6 (system/subsystem model or prototype demonstrated in a relevant environment). Currently the lack of development funds beyond TRL 6 and the major funding required for full scale development leave little or no funding available to prototype TRL 6 concepts so that hardware would be in the ready mode for safe, reliable and cost effective incorporation. The net effect is that each new program either incorporates little new technology or has longer development schedules and costs, and higher LCC, than planned. This paper presents methods to ensure that advanced technologies are incorporated into future programs while providing a greater accuracy of predicting their LCC. One method is having a dedicated organization to develop X-series vehicles or separate prototypes carried on other vehicles. The question of whether such an organization should be independent of NASA and/or have an independent funding source is discussed. Other methods are also discussed. How to make the choice of which technologies to pursue to the prototype level is also discussed since, to achieve better LCC, first the selection of the appropriate technologies.

  17. Enabling Technologies for Characterizing Exoplanet Systems with Exo-C

    NASA Astrophysics Data System (ADS)

    Cahoy, Kerri Lynn; Belikov, Ruslan; Stapelfeldt, Karl R.; Chakrabarti, Supriya; Trauger, John T.; Serabyn, Eugene; McElwain, Michael W.; Pong, Christopher M.; Brugarolas, Paul

    2015-01-01

    The Exoplanet Science and Technology Definition Team's Internal Coronagraph mission design, called 'Exo-C', utilizes several technologies that have advanced over the past decade with support from the Exoplanet Exploration Program. Following the flow of photons through the telescope, the science measurement is enabled by (i) a precision pointing system to keep the target exoplanet system precisely positioned on the detector during the integration time, (ii) high-performance coronagraphs to block the parent star's light so that the planet's reflected light can be detected, (iii) a wavefront control system to compensate for any wavefront errors such as those due to thermal or mechanical deformations in the optical path, especially errors with high spatial frequencies that could cause contrast-reducing speckles, and (iv) an integral field spectrograph (IFS) that provides moderate resolution spectra of the target exoplanets, permitting their characterization and comparison with models and other data sets. Technologies such as the wavefront control system and coronagraphs will also benefit from other funded efforts in progress, such as the Wide Field Infrared Survey Telescope Astrophysics Focused Telescope Assets (WFIRST-AFTA) program. Similarly, the Exo-C IFS will benefit from the Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) demonstration. We present specific examples for each of these technologies showing that the state of the art has advanced to levels that will meet the overall scientific, cost, and schedule requirements of the Exo-C mission. These capabilities have matured with testbed and/or ground-telescope demonstrations and have reached a technological readiness level (TRL) that supports their inclusion in the baseline design for potential flight at the end of this decade. While additional work remains to build and test flight-like components (that concurrently meet science as well as size, weight, power, and environmental requirements) and to integrate these subsystems together for a hardware-in-the-loop end-to-end demonstration, the overall readiness of the suite of enabling technologies makes a compelling case for Exo-C among the exoplanet direct imaging mission candidates.

  18. Technology gap assessment for a future large-aperture ultraviolet-optical-infrared space telescope

    NASA Astrophysics Data System (ADS)

    Bolcar, Matthew R.; Balasubramanian, Kunjithapatham; Crooke, Julie; Feinberg, Lee; Quijada, Manuel; Rauscher, Bernard J.; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl M.; Thronson, Harley

    2016-10-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) team identified five key technology areas to enable candidate architectures for a future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, "Enduring Quests, Daring Visions." The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technology areas are internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescope systems, detectors, and mirror coatings. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current technology readiness level (TRL), thus identifying the current technology gap. We also report on current, planned, or recommended efforts to develop each technology to TRL 5.

  19. Multi-Objective Optimization of System Capability Satisficing in Defense Acquisition

    DTIC Science & Technology

    2012-04-30

    sponsored by the USD(AT&L). Second, we issue an annual internal call for proposals to seek NPS faculty research supporting the interests of our...program sponsors. Finally, we serve as a “broker” to market specific research topics identified by our sponsors to NPS graduate students. This three...expanding the technology readiness level within defense acquisition. International Journal of Defense Acquisition Management, 1, 39–58. Tan, W

  20. UAV Swarm Attack: Protection System Alternatives for Destroyers

    DTIC Science & Technology

    2012-12-01

    Tactical Rocket-Propelled Grenade Airbag Protection System TRL - Technology Readiness Level UAV - Unmanned Aerial Vehicle USN - United States...com- posed of 62 DDGs is $2.014 billion dollars for the 12 year life cycle. J. REACTIVE ARMOR The Tactical Rocket-Propelled Grenade (RPG) Airbag ...Protection System (TRAPS) system involves ‘close-in’ protection using airbags located around a vehicle to minimize the damage from RPGs. This system was

  1. Development of advanced Czochralski growth process to produce low cost 150 kg silicon ingots from a single crucible for technology readiness

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The design and development of an advanced Czochralski crystal grower are described. Several exhaust gas analysis system equipment specifications studied are discussed. Process control requirements were defined and design work began on the melt temperature, melt level, and continuous diameter control. Sensor development included assembly and testing of a bench prototype of a diameter scanner system.

  2. Measuring readiness for and satisfaction with a hand hygiene e-learning course among healthcare workers in a paediatric oncology centre in Guatemala City

    PubMed Central

    Gonzalez, Miriam L.; Melgar, Mario; Homsi, Maysam; Shuler, Ana; Antillon-Klussmann, Federico; Matheu, Laura; Ramirez, Marylin; Grant, Michael M.; Lowther, Deborah L.; Relyea, George; Caniza, Miguela A.

    2017-01-01

    E-learning has been widely used in the infection control field and has been recommended for use in hand hygiene (HH) programs by the World Health Organization. Such strategies are effective and efficient for infection control, but factors such as learner readiness for this method should be determined to assure feasibility and suitability in low- to middle-income countries. We developed a tailored, e-learning, Spanish-language HH course based on the WHO guidelines for HH in healthcare settings for the pediatric cancer center in Guatemala City. We aimed to identify e-readiness factors that influenced HH course completion and evaluate HCWs’ satisfaction. Pearson’s chi-square test of independence was used to retrospectively compare e-readiness factors and course-completion status (completed, non-completed, and never-started). We surveyed 194 HCWs for e-readiness; 116 HCWs self-enrolled in the HH course, and 55 responded to the satisfaction survey. Most e-readiness factors were statistically significant between course-completion groups. Moreover, students were significantly more likely to complete the course if they had a computer with an Internet connection (P=0.001) and self-reported comfort with using a computer several times a week (p=0.001) and communicating through online technologies (p=0.001). Previous online course experience was not a significant factor (p=0.819). E-readiness score averages varied among HCWs, and mean scores for all e-readiness factors were significantly higher among medical doctors than among nurses. Nearly all respondents to the satisfaction survey agreed that e-learning was as effective as the traditional teaching method. Evaluating HCWs’ e-readiness is essential while integrating technologies into educational programs in low- to middle-income countries. PMID:29147140

  3. Measuring readiness for and satisfaction with a hand hygiene e-learning course among healthcare workers in a paediatric oncology centre in Guatemala City.

    PubMed

    Gonzalez, Miriam L; Melgar, Mario; Homsi, Maysam; Shuler, Ana; Antillon-Klussmann, Federico; Matheu, Laura; Ramirez, Marylin; Grant, Michael M; Lowther, Deborah L; Relyea, George; Caniza, Miguela A

    2016-01-01

    E-learning has been widely used in the infection control field and has been recommended for use in hand hygiene (HH) programs by the World Health Organization. Such strategies are effective and efficient for infection control, but factors such as learner readiness for this method should be determined to assure feasibility and suitability in low- to middle-income countries. We developed a tailored, e-learning, Spanish-language HH course based on the WHO guidelines for HH in healthcare settings for the pediatric cancer center in Guatemala City. We aimed to identify e-readiness factors that influenced HH course completion and evaluate HCWs' satisfaction. Pearson's chi-square test of independence was used to retrospectively compare e-readiness factors and course-completion status (completed, non-completed, and never-started). We surveyed 194 HCWs for e-readiness; 116 HCWs self-enrolled in the HH course, and 55 responded to the satisfaction survey. Most e-readiness factors were statistically significant between course-completion groups. Moreover, students were significantly more likely to complete the course if they had a computer with an Internet connection (P=0.001) and self-reported comfort with using a computer several times a week (p=0.001) and communicating through online technologies (p=0.001). Previous online course experience was not a significant factor (p=0.819). E-readiness score averages varied among HCWs, and mean scores for all e-readiness factors were significantly higher among medical doctors than among nurses. Nearly all respondents to the satisfaction survey agreed that e-learning was as effective as the traditional teaching method. Evaluating HCWs' e-readiness is essential while integrating technologies into educational programs in low- to middle-income countries.

  4. Starshades for Exoplanet Imaging and Characterization

    NASA Astrophysics Data System (ADS)

    Kasdin, N. J.; Vanderbei, R. J.; Shaklan, S.; Lisman, D.; Thomson, M.; Cady, E.; Macintosh, B.; Sirbu, D.; Lo, A.

    2014-01-01

    An external occulter is a satellite employing a large screen, or starshade, that flies in formation with a spaceborne telescope to provide the starlight suppression needed for detecting and characterizing exoplanets. Among the advantages of using an occulter are the broadband allowed for characterization and the removal of light before entering the observatory, greatly relaxing the requirements on the telescope and instrument. In this presentation I will explain how star shades achieve high contrast through precise design and control of their shape and how we develop an error budget to establish requirements on the manufacturing and control. Raising the technology readiness level of starshades requires a sequence of activities to verify approaches to manufacturing, deployment, test, and analysis. The SAT-TDEM program has been instrumental in raising the readiness level of the most critical technology. In particular, I will show the results of our first TDEM in 2010-2012 that verified a full scale petal could be built and measured to the needed accuracy for 10 orders of magnitude of contrast. Our second TDEM in 2012-2014 verified that a starshade could be deployed and the petals could be placed to the required position to better than 1 mm. Finally, laboratory experiments have verified the optical modeling used to predict starshade performance to better than 1e-10.

  5. Programmable Ultra-Lightweight System Adaptable Radio Satellite Base Station

    NASA Technical Reports Server (NTRS)

    Varnavas, Kosta; Sims, Herb

    2015-01-01

    With the explosion of the CubeSat, small sat, and nanosat markets, the need for a robust, highly capable, yet affordable satellite base station, capable of telemetry capture and relay, is significant. The Programmable Ultra-Lightweight System Adaptable Radio (PULSAR) is NASA Marshall Space Flight Center's (MSFC's) software-defined digital radio, developed with previous Technology Investment Programs and Technology Transfer Office resources. The current PULSAR will have achieved a Technology Readiness Level-6 by the end of FY 2014. The extensibility of the PULSAR will allow it to be adapted to perform the tasks of a mobile base station capable of commanding, receiving, and processing satellite, rover, or planetary probe data streams with an appropriate antenna.

  6. Using Technology to Enhance Discharge Teaching and Improve Coping for Patients After Stroke.

    PubMed

    Schneider, Melissa A; Howard, Katrina A

    2017-06-01

    A diagnosis of stroke is a life-changing event. Effective discharge teaching after a stroke is crucial for recovery, but the overload of information can be overwhelming for patients and caregivers. The purpose of this study was to examine differences in discharge readiness and postdischarge coping in patients admitted for stroke after the use of individualized postdischarge information/education provided via a technology package (including patient online portal access, e-mail/secure messaging) compared with current standard discharge teaching methods (verbal/written instructions). This study used a descriptive comparative design to evaluate the difference between the nonintervention group A and the intervention group B. Patients in group B received additional discharge information via secured e-mail messaging at postdischarge days 2, 6, and 10. Two validated tools, Readiness for Hospital Discharge Form and Post-Discharge Coping Difficulty Scale, were used. One hundred patients were recruited for the study, but the final number of complete data sets collected was 86-42 in group A and 44 in group B. There was no statistically significant difference between the groups in discharge readiness. There was a significant difference in coping scores between the 2 groups, with the technology group exhibiting higher coping. New technology affords new options to improve discharge readiness and contribute to positive patient coping after stroke. The researchers hope that this study will contribute to the growing body of evidence showing success using aspects of technology to enhance discharge teaching and follow-up after discharge.

  7. An update on X-ray reflection gratings developed for future missions

    NASA Astrophysics Data System (ADS)

    Miles, Drew

    2018-01-01

    X-ray reflection gratings are a key technology being studied for future X-ray spectroscopy missions, including the Lynx X-ray mission under consideration for the 2020 Decadal Survey. We present an update on the status of X-ray reflection gratings being developed at Penn State University, including current fabrication techniques and mass-replication processes and the latest diffraction efficiency results and resolving power measurements. Individual off-plane X-ray reflection gratings have exceeded the current Lynx requirements for both effective area and resolving power. Finally, we discuss internal projects that will advance the technology readiness level of these gratings.

  8. Human Research Program Exploration Medical Capability

    NASA Technical Reports Server (NTRS)

    Barsten, Kristina

    2010-01-01

    NASA s Human Research Program (HRP) conducts and coordinates research projects that provide human health and performance countermeasures, knowledge, technologies, and tools to enable safe, reliable, and productive human space exploration. The Program is divided into 6 major elements, which a) Provide the Program s knowledge and capabilities to conduct research, addressing the human health and performance risks. b) Advance the readiness levels of technology and countermeasures to the point of transfer to the customer programs and organizations. The National Space Biomedical Research Institute (NSBRI) is a partner with the HRP in developing a successful research program. 3

  9. Overview of Heatshield for Extreme Entry Environment Technology (HEEET)

    NASA Technical Reports Server (NTRS)

    Driver, David M.; Ellerby, Donald T.; Gasch, Matthew J.; Mahzari, Milad; Milos, Frank S.; Nishioka, Owen S.; Stackpoole, Margaret M.; Venkatapathy, Ethiraj; Young, Zion W.; Gage, Peter J.; hide

    2018-01-01

    The Heatshield for Extreme Entry Environment Technology (HEEET) projects objective is to mature a 3-D Woven Thermal Protection System (TPS) to Technical Readiness Level (TRL) 6 to support future NASA missions to destinations such as Venus and Saturn. The scope of the project, status of which will be discussed, encompasses development of manufacturing and integration processes, fabrication of a prototype 1m diameter engineering test unit (ETU) that will undergo a series of structural tests, characterizing material aerothermal performance including development of a material response model, and structural testing and analysis to develop tools to support design and establish system capability.

  10. Aerocapture Technology Development Needs for Outer Planet Exploration

    NASA Technical Reports Server (NTRS)

    Wercinski, Paul; Munk, Michelle; Powell, Richard; Hall, Jeff; Graves, Claude; Partridge, Harry (Technical Monitor)

    2002-01-01

    The purpose of this white paper is to identify aerocapture technology and system level development needs to enable NASA future mission planning to support Outer Planet Exploration. Aerocapture is a flight maneuver that takes place at very high speeds within a planet's atmosphere that provides a change in velocity using aerodynamic forces (in contrast to propulsive thrust) for orbit insertion. Aerocapture is very much a system level technology where individual disciplines such as system analysis and integrated vehicle design, aerodynamics, aerothermal environments, thermal protection systems (TPS), guidance, navigation and control (GN&C) instrumentation need to be integrated and optimized to meet mission specific requirements. This paper identifies on-going activities, their relevance and potential benefit to outer planet aerocapture that include New Millennium ST7 Aerocapture concept definition study, Mars Exploration Program aeroassist project level support, and FY01 Aeroassist In-Space Guideline tasks. The challenges of performing aerocapture for outer planet missions such as Titan Explorer or Neptune Orbiter require investments to advance the technology readiness of the aerocapture technology disciplines for the unique application of outer planet aerocapture. This white paper will identify critical technology gaps (with emphasis on aeroshell concepts) and strategies for advancement.

  11. Readiness to change as a moderator of outcome in transdiagnostic treatment

    PubMed Central

    BOSWELL, JAMES F.; SAUER, SHANNON E.; GALLAGHER, MATTHEW W.; DELGADO, NICOLE; BARLOW, DAVID H.

    2012-01-01

    Initial symptom severity is a client characteristic associated with psychotherapy outcome, although this relationship is not well-understood. Readiness to change is a factor that may influence this relationship. This study tested readiness as a moderator of the relationship between initial severity and symptom change. Data were derived from an RCT examining the efficacy of a transdiagnostic CBT treatment. Readiness was assessed with the URICA, and symptom and functioning outcomes were assessed. Multiple regression models indicated that severity was associated with less overall change, yet readiness moderated this relationship. At higher levels of readiness, the effect of initial severity on outcome was essentially reversed; for clients with higher initial readiness, higher levels of severity were associated with greater change. PMID:22607634

  12. The Perceptions of Change and Change Readiness in Junior and Senior Engineering & Technology Students

    NASA Astrophysics Data System (ADS)

    Moler, Perry J.

    The purpose of this study was to understand what perceptions junior and senior engineering & technology students have about change, change readiness, and selected attributes, skills, and abilities. The selected attributes, skills, and abilities for this study were lifelong learning, leadership, and self-efficacy. The business environment of today is dynamic, with any number of internal and external events requiring an organization to adapt through the process of organizational development. Organizational developments affect businesses as a whole, but these developments are more evident in fields related to engineering and technology. Which require employees working through such developments be flexible and adaptable to a new professional environment. This study was an Explanatory Sequential Mixed Methods design, with Stage One being an online survey that collected individuals' perceptions of change, change readiness, and associated attributes, skills, and abilities. Stage Two was a face-to-face interview with a random sample of individuals who agreed to be interviewed in Stage One. This process was done to understand why students' perceptions are what they are. By using a mixed-method study, a more complete understanding of the current perceptions of students was developed, thus allowing external stakeholders' such as Human Resource managers more insight into the individuals they seek to recruit. The results from Stage One, one sample T-test with a predicted mean of 3.000 for this study indicated that engineering & technology students have a positive perceptions of Change Mean = 3.7024; Change Readiness Mean = 3.9313; Lifelong Learning Mean = 4.571; Leadership = 4.036; and Self-Efficacy Mean = 4.321. A One-way ANOVA was also conducted to understand the differences between traditional and non-traditional student regarding change and change readiness. The results of the ANOVA test indicated there were no significant differences between these two groups. The results from Stage Two showed that students perceived change as both positive and negative. This perception stems from their life experiences rather than from educational or professional experiences. The same can be said for the concepts of change readiness, lifelong learning, leadership, and self-efficacy. This indicates that engineering & technology programs should implement these concepts into their curriculum to better prepare engineering & technology students to enter into professional careers.

  13. Evaluation of the Advanced Subsonic Technology Program Noise Reduction Benefits

    NASA Technical Reports Server (NTRS)

    Golub, Robert A.; Rawls, John W., Jr.; Russell, James W.

    2005-01-01

    This report presents a detailed evaluation of the aircraft noise reduction technology concepts developed during the course of the NASA/FAA Advanced Subsonic Technology (AST) Noise Reduction Program. In 1992, NASA and the FAA initiated a cosponsored, multi-year program with the U.S. aircraft industry focused on achieving significant advances in aircraft noise reduction. The program achieved success through a systematic development and validation of noise reduction technology. Using the NASA Aircraft Noise Prediction Program, the noise reduction benefit of the technologies that reached a NASA technology readiness level of 5 or 6 were applied to each of four classes of aircraft which included a large four engine aircraft, a large twin engine aircraft, a small twin engine aircraft and a business jet. Total aircraft noise reductions resulting from the implementation of the appropriate technologies for each class of aircraft are presented and compared to the AST program goals.

  14. Overview of Stirling Technology Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Schifer, Nicholas A.; Williams, Zachary D.; Metscher, Jonathan F.

    2016-01-01

    Stirling Radioisotope Power Systems (RPSs) are under development to provide power on future space science missions where robotic spacecraft will orbit, fly by, land, or rove using less than a quarter of the plutonium the currently available RPS uses to produce about the same power. NASA Glenn Research Center's newly formulated Stirling Cycle Technology Development Project (SCTDP) continues development of Stirling-based systems and subsystems, which include a flight-like generator and related housing assembly, controller, and convertors. The project also develops less mature technologies under Stirling Technology Research, with a focus on demonstration in representative environments to increase the technology readiness level (TRL). Matured technologies are evaluated for selection in future generator designs. Stirling Technology Research tasks focus on a wide variety of objectives, including increasing temperature capability to enable new environments, reducing generator mass and/or size, improving reliability and system fault tolerance, and developing alternative designs. The task objectives and status are summarized.

  15. Overview of Stirling Technology Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Schifer, Nicholas A.; Williams, Zachary D.; Metscher, Jonathan F.

    2015-01-01

    Stirling Radioisotope Power Systems (RPS) are under development to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove using less than a quarter of the plutonium the currently available RPS uses to produce about the same power. Glenn Research Center's (GRC's) newly formulated Stirling Cycle Technology Development Project (SCTDP) continues development of Stirling-based systems and subsystems, which include a flight-like generator and related housing assembly, controller, and convertors. The project also develops less mature technologies under Stirling Technology Research, with a focus on demonstration in representative environments to increase the technology readiness level (TRL). Matured technologies are evaluated for selection in future generator designs. Stirling Technology Research tasks focus on a wide variety of objectives, including increasing temperature capability to enable new environments, reducing generator mass and/or size, improving reliability or system fault tolerance, and developing alternative designs. The task objectives and status are summarized.

  16. Readiness of communities to engage with childhood obesity prevention initiatives in disadvantaged areas of Victoria, Australia.

    PubMed

    Cyril, Sheila; Polonsky, Michael; Green, Julie; Agho, Kingsley; Renzaho, Andre

    2017-07-01

    Objective Disadvantaged communities bear a disproportionate burden of childhood obesity and show low participation in childhood obesity prevention initiatives. This study aims to examine the level of readiness of disadvantaged communities to engage with childhood obesity prevention initiatives. Methods Using the community readiness model, 95 semi-structured interviews were conducted among communities in four disadvantaged areas of Victoria, Australia. Community readiness analysis and paired t-tests were performed to assess the readiness levels of disadvantaged communities to engage with childhood obesity prevention initiatives. Results The results showed that disadvantaged communities demonstrated low levels of readiness (readiness score=4/9, 44%) to engage with the existing childhood obesity prevention initiatives, lacked knowledge of childhood obesity and its prevention, and reported facing challenges in initiating and sustaining participation in obesity prevention initiatives. Conclusion This study highlights the need to improve community readiness by addressing low obesity-related literacy levels among disadvantaged communities and by facilitating the capacity-building of bicultural workers to deliver obesity prevention messages to these communities. Integrating these needs into existing Australian health policy and practice is of paramount importance for reducing obesity-related disparities currently prevailing in Australia. What is known about the topic? Childhood obesity prevalence is plateauing in developed countries including Australia; however, obesity-related inequalities continue to exist in Australia especially among communities living in disadvantaged areas, which experience poor engagement in childhood obesity prevention initiatives. Studies in the USA have found that assessing disadvantaged communities' readiness to participate in health programs is a critical initial step in reducing the disproportionate obesity burden among these communities. However, no studies in Australia have assessed disadvantaged communities' readiness to engage in obesity prevention initiatives. What does this paper add? This paper addresses the current gap in the knowledge of disadvantaged communities' level of readiness to engage in childhood obesity prevention initiatives in Australia. The study also identified the key factors responsible for low readiness of disadvantaged communities to participate in current childhood obesity prevention services. By using the Community Readiness model this study shows the readiness levels specific to the various dimensions of the model; Understanding dimension-specific readiness allows us to identify strategies that are tailored to each dimension, as guided by the model. What are the implications for practitioners? With the increasing burden of childhood obesity on disadvantaged communities, policymakers and health practitioners are facing a crisis in obesity prevention and management. Almost every year, new interventions are being planned and implemented. However if the target communities are not ready to participate in the available interventions these efforts are futile. This study exposes the key factors responsible for low readiness to participate in current obesity prevention services by disadvantaged communities. Addressing these key factors and improving readiness before designing new interventions will improve the participation of disadvantaged communities in those interventions. The study findings ultimately have the potential of reducing obesity-related disparities in Australia.

  17. Vehicle-to-vehicle communications : readiness of V2V technology for application.

    DOT National Transportation Integrated Search

    2014-08-01

    The purpose of this research report is to assess the readiness for application of vehicle-to-vehicle (V2V) : communications, a system designed to transmit basic safety information between vehicles to facilitate warnings to : drivers concerning impend...

  18. Use of Residual Solids from Pulp and Paper Mills for Enhancing Strength and Durability of Ready-Mixed Concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarun R. Naik; Yoon-moon Chun; Rudolph N. Kraus

    2003-09-18

    This research was conducted to establish mixture proportioning and production technologies for ready-mixed concrete containing pulp and paper mill residual solids and to study technical, economical, and performance benefits of using the residual solids in the concrete. Fibrous residuals generated from pulp and paper mills were used, and concrete mixture proportions and productions technologies were first optimized under controlled laboratory conditions. Based on the mixture proportions established in the laboratory, prototype field concrete mixtures were manufactured at a ready-mixed concrete plant. Afterward, a field construction demonstration was held to demonstrate the production and placement of structural-grade cold-weather-resistant concrete containing residualmore » solids.« less

  19. Methodology for assessing laser-based equipment

    NASA Astrophysics Data System (ADS)

    Pelegrina-Bonilla, Gabriel; Hermsdorf, Jörg; Thombansen, Ulrich; Abels, Peter; Kaierle, Stefan; Neumann, Jörg

    2017-10-01

    Methodologies for the assessment of technology's maturity are widely used in industry and research. Probably the best known are technology readiness levels (TRLs), initially pioneered by the National Aeronautics and Space Administration (NASA). At the beginning, only descriptively defined TRLs existed, but over time, automated assessment techniques in the form of questionnaires emerged in order to determine TRLs. Originally TRLs targeted equipment for space applications, but the demands on industrial relevant equipment are partly different in terms of, for example, overall costs, product quantities, or the presence of competitors. Therefore, we present a commonly valid assessment methodology with the aim of assessing laser-based equipment for industrial use, in general. The assessment is carried out with the help of a questionnaire, which allows for a user-friendly and easy accessible way to monitor the progress from the lab-proven state to the application-ready product throughout the complete development period. The assessment result is presented in a multidimensional metric in order to reveal the current specific strengths and weaknesses of the equipment development process, which can be used to direct the remaining development process of the equipment in the right direction.

  20. HIT: time to end behavioral health discrimination.

    PubMed

    Rosenberg, Linda

    2012-10-01

    While the Health Information Technology for Economic and Clinical Health Act, enacted as part of the American Recovery and Reinvestment Act of 2009, provided $20.6 billion for incentive payments to support the adoption and meaningful use of health information technology (HIT), behavioral health organizations were not eligible to receive facility payments. The consequences of excluding behavioral health from HIT incentive payments are found in the results of the "HIT Adoption and Meaningful Use Readiness in Community Behavioral Health" survey. The survey found that only 2% of community behavioral health organizations are able to meet federal meaningful use (MU) requirements-compare this to the 27% of Federally Qualified Health Centers and 20% of hospitals that already meet some level of MU requirements. Behavioral health organizations, serving more than eight million adults, children, and families with mental illnesses and addiction disorders, are ready and eager to adopt HIT to meet the goals of better healthcare, better health, and lower costs. But reaching these goals may prove impossible unless behavioral health achieves "parity" within healthcare and receives resources for the adoption of HIT.

  1. Service quality and perceived value of technology-based service encounters: evaluation of clinical staff satisfaction in Taiwan.

    PubMed

    Hung, Chung-Jye; Chang, Hsin Hsin; Eng, Cheng Joo; Wong, Kit Hong

    Previous research has evaluated technology-based service encounters (TBSEs) in the delivery of health care by assessing patient satisfaction. This study examined service quality and perceived value of TBSEs used in health organisations from the perspective of clinical staff, with staff technology readiness as a moderator. A quantitative survey was conducted in Taiwan, across private and public healthcare organisations. Results showed that TBSEs had a direct effect on service quality and perceived value, which in turn had a direct effect on staff satisfaction in using TBSEs. However, service quality had no effect on perceived value when moderated by technology readiness. Theoretical and managerial implications of these findings are discussed.

  2. m-Health Policy Readiness and Enabling Factors: Comparisons of Sub-Saharan Africa and Organization for Economic Cooperation and Development Countries.

    PubMed

    Lee, Seohyun; Begley, Charles E; Morgan, Robert; Chan, Wenyaw; Kim, Sun-Young

    2018-02-12

    As an innovative solution to poor access to care in low- and middle-income countries (LMICs), m-health has gained wide attention in the past decade. Despite enthusiasm from the global health community, LMICs have not demonstrated high uptake of m-health promoting policies or public investment. To benchmark the current status, this study compared m-health policy readiness scores between sub-Saharan Africa and high-income Organization for Economic Cooperation and Development (OECD) countries using an independent two-sample t test. In addition, the enabling factors associated with m-health policy readiness were investigated using an ordinal logistic regression model. The study was based on the m-health policy readiness scores of 112 countries obtained from the World Health Organization Third Global Survey on e-Health. The mean m-health policy readiness score for sub-Saharan Africa was statistically significantly lower than that for OECD countries (p = 0.02). The enabling factors significantly associated with m-health policy readiness included information and communication technology development index (odds ratio [OR] 1.57; 95% confidence interval [CI] 1.12-2.2), e-health education for health professionals (OR 4.43; 95% CI 1.60-12.27), and the location in sub-Saharan Africa (OR 3.47; 95% CI 1.06-11.34). The findings of our study suggest dual policy goals for m-health in sub-Saharan Africa. First, enhance technological and educational support for m-health. Second, pursue global collaboration for building m-health capacity led by sub-Saharan African countries with hands-on experience and knowledge. Globally, countries should take a systematic and collaborative approach in pursuing m-health policy with the focus on technological and educational support.

  3. Readiness Review of BWXT for Fabrication of AGR 5/6/7 Compacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Douglas William; Sharp, Michelle Tracy

    In support of preparations for fabricating compacts for the Advanced Gas Reactor (AGR) fuel qualification irradiation experiments (AGR-5/6/7), Idaho National Laboratory (INL) conducted a readiness review of the BWX Technology (BWXT) procedures, processes, and equipment associated with compact fabrication activities at the BWXT Nuclear Operations Group (BWXT-NOG) facility outside Lynchburg, VirginiaVA. The readiness review used quality assurance requirements taken from the American Society of Mechanical Engineers (ASME) Nuclear Quality Assurance Standard (NQA-1-2008/1a-2009) as a basis to assess readiness to start compact fabrication.

  4. Fission Surface Power Technology Development Status

    NASA Technical Reports Server (NTRS)

    Palac, Donald T.; Mason, Lee S.; Harlow, Scott

    2009-01-01

    With the potential future deployment of a lunar outpost there is expected to be a clear need for a high-power, lunar surface power source to support lunar surface operations independent of the day-night cycle, and Fission Surface Power (FSP) is a very effective solution for power levels above a couple 10 s of kWe. FSP is similarly enabling for the poorly illuminated surface of Mars. The power levels/requirements for a lunar outpost option are currently being studied, but it is known that cost is clearly a predominant concern to decision makers. This paper describes the plans of NASA and the DOE to execute an affordable fission surface power system technology development project to demonstrate sufficient technology readiness of an affordable FSP system so viable and cost-effective FSP system options will be available when high power lunar surface system choices are expected to be made in the early 2010s.

  5. Low lift-to-drag aero-assisted orbit transfer vehicles

    NASA Technical Reports Server (NTRS)

    Andrews, D. G.; Savage, R. T.

    1984-01-01

    The results of systems analysis conducted on low life drag ratio (L/D) aero-assisted orbit transfer vehicle (AOTV's) are presented. The objectives for this class of vehicle and formulate technology development plans and funding levels to bring the required technologies to readiness levels, as well as develop a credible decision data base encompassing the entire range of low L/D concepts for use in future NASA Aeroassist Orbit Transfer Vehicles studies. Each candidate low L/D concept, the aerobrake, the lifting brake, and the aeromaneuvering concept could be made to work with technologies achievable by the early 1990's. All concepts require flexible structure with flexible thermal protection system (TPS) to be successfully integrated into the shuttle orbiter for launch, all required improvements in guidance and control to fly the dispersed atmospheres at high altitude, and all concepts had potential to evolve from ground-based to space-based operations.

  6. An Investigation to Advance the Technology Readiness Level of the Centaur Derived On-orbit Propellant Storage and Transfer System

    NASA Astrophysics Data System (ADS)

    Silvernail, Nathan L.

    This research was carried out in collaboration with the United Launch Alliance (ULA), to advance an innovative Centaur-based on-orbit propellant storage and transfer system that takes advantage of rotational settling to simplify Fluid Management (FM), specifically enabling settled fluid transfer between two tanks and settled pressure control. This research consists of two specific objectives: (1) technique and process validation and (2) computational model development. In order to raise the Technology Readiness Level (TRL) of this technology, the corresponding FM techniques and processes must be validated in a series of experimental tests, including: laboratory/ground testing, microgravity flight testing, suborbital flight testing, and orbital testing. Researchers from Embry-Riddle Aeronautical University (ERAU) have joined with the Massachusetts Institute of Technology (MIT) Synchronized Position Hold Engage and Reorient Experimental Satellites (SPHERES) team to develop a prototype FM system for operations aboard the International Space Station (ISS). Testing of the integrated system in a representative environment will raise the FM system to TRL 6. The tests will demonstrate the FM system and provide unique data pertaining to the vehicle's rotational dynamics while undergoing fluid transfer operations. These data sets provide insight into the behavior and physical tendencies of the on-orbit refueling system. Furthermore, they provide a baseline for comparison against the data produced by various computational models; thus verifying the accuracy of the models output and validating the modeling approach. Once these preliminary models have been validated, the parameters defined by them will provide the basis of development for accurate simulations of full scale, on-orbit systems. The completion of this project and the models being developed will accelerate the commercialization of on-orbit propellant storage and transfer technologies as well as all in-space technologies that utilize or will utilize similar FM techniques and processes.

  7. [Medical support of the Armed Forces of the Russian Federation: the results of the activities and the main tasks for 2015].

    PubMed

    Fisun, A Ia

    2015-01-01

    Presented the directions of activity of the medical service in the past year, including improving the legal framework, the optimization of medical management software, improving combat and mobilization readiness of units of the army, the optimization of therapeutic and preventive activities, implementation of innovative technologies, increasing mobility of units and subunits, their level of equipping with modern samples of property, training of qualified personnel, intensify research and etc. Analyzed and formulated directions of development of military medicine in 2015, including improvement of combat and mobilization readiness of the management body, military and medical organizations and departments, improving the legal framework of the military health care, holding among the troops interventions for the prevention morbidity of personnel by pneumonia and meningitis, work with commanders at all levels to ensure the preservation and strengthening of health of servicemen, improving of the system of early and active detection of diseases in the military, providing a guaranteed level of care to all contingent Ministry of Defense, improving the quality and accessibility of sanatorium treatment, maintaining constant readiness of medical special forces to carry out tasks for the purpose, improvement of professional training of personnel of the medical service, providing qualitative preparation of government medical service to participate in the training of troops, implementation of unexpected problems, equipping of army medical service with modern medical equipment finishing of the construction and renovation of military medical organizations facilities, improvement of social protection of personnel and many others.

  8. Review of the harvesting and extraction program within the National Alliance for Advanced Biofuels and Bioproducts

    DOE PAGES

    Marrone, Babetta L.; Lacey, Ronald E.; Anderson, Daniel B.; ...

    2017-08-07

    Energy-efficient and scalable harvesting and lipid extraction processes must be developed in order for the algal biofuels and bioproducts industry to thrive. The major challenge for harvesting is the handling of large volumes of cultivation water to concentrate low amounts of biomass. For lipid extraction, the major energy and cost drivers are associated with disrupting the algae cell wall and drying the biomass before solvent extraction of the lipids. Here we review the research and development conducted by the Harvesting and Extraction Team during the 3-year National Alliance for Advanced Biofuels and Bioproducts (NAABB) algal consortium project. The harvesting andmore » extraction team investigated five harvesting and three wet extraction technologies at lab bench scale for effectiveness, and conducted a techoeconomic study to evaluate their costs and energy efficiency compared to available baseline technologies. Based on this study, three harvesting technologies were selected for further study at larger scale. We evaluated the selected harvesting technologies: electrocoagulation, membrane filtration, and ultrasonic harvesting, in a field study at minimum scale of 100 L/h. None of the extraction technologies were determined to be ready for scale-up; therefore, an emerging extraction technology (wet solvent extraction) was selected from industry to provide scale-up data and capabilities to produce lipid and lipid-extracted materials for the NAABB program. One specialized extraction/adsorption technology was developed that showed promise for recovering high value co-products from lipid extracts. Overall, the NAABB Harvesting and Extraction Team improved the readiness level of several innovative, energy efficient technologies to integrate with algae production processes and captured valuable lessons learned about scale-up challenges.« less

  9. Review of the harvesting and extraction program within the National Alliance for Advanced Biofuels and Bioproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marrone, Babetta L.; Lacey, Ronald E.; Anderson, Daniel B.

    Energy-efficient and scalable harvesting and lipid extraction processes must be developed in order for the algal biofuels and bioproducts industry to thrive. The major challenge for harvesting is the handling of large volumes of cultivation water to concentrate low amounts of biomass. For lipid extraction, the major energy and cost drivers are associated with disrupting the algae cell wall and drying the biomass before solvent extraction of the lipids. Here we review the research and development conducted by the Harvesting and Extraction Team during the 3-year National Alliance for Advanced Biofuels and Bioproducts (NAABB) algal consortium project. The harvesting andmore » extraction team investigated five harvesting and three wet extraction technologies at lab bench scale for effectiveness, and conducted a techoeconomic study to evaluate their costs and energy efficiency compared to available baseline technologies. Based on this study, three harvesting technologies were selected for further study at larger scale. We evaluated the selected harvesting technologies: electrocoagulation, membrane filtration, and ultrasonic harvesting, in a field study at minimum scale of 100 L/h. None of the extraction technologies were determined to be ready for scale-up; therefore, an emerging extraction technology (wet solvent extraction) was selected from industry to provide scale-up data and capabilities to produce lipid and lipid-extracted materials for the NAABB program. One specialized extraction/adsorption technology was developed that showed promise for recovering high value co-products from lipid extracts. Overall, the NAABB Harvesting and Extraction Team improved the readiness level of several innovative, energy efficient technologies to integrate with algae production processes and captured valuable lessons learned about scale-up challenges.« less

  10. Fuel cells are a commercially viable alternative for the production of "clean" energy.

    PubMed

    Niakolas, Dimitris K; Daletou, Maria; Neophytides, Stylianos G; Vayenas, Constantinos G

    2016-01-01

    Fuel cells present a highly efficient and environmentally friendly alternative technology for decentralized energy production. The scope of the present study is to provide an overview of the technological and commercialization readiness level of fuel cells. Specifically, there is a brief description of their general advantages and weaknesses in correlation with various technological actions and political strategies, which are adopted towards their proper positioning in the global market. Some of the most important key performance indicators are also discussed, alongside with a few examples of broad commercialization. It is concluded that the increasing number of companies which utilize and invest on this technology, in combination with the supply chain improvements and the concomitant technological maturity and recognition, reinforce the fuel cell industry so as to become well-aligned for global success.

  11. Advanced Mirror Technology Development (AMTD): Year Five Status

    NASA Technical Reports Server (NTRS)

    Stahl, H Philip

    2017-01-01

    The Advanced Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort initiated in Fiscal Year (FY) 2012, to mature the Technology Readiness Level (TRL) of critical technologies required to enable 4-m-or-larger monolithic or segmented ultraviolet, optical, and infrared (UVOIR) space telescope primary-mirror assemblies for general astrophysics, ultra-high-contrast observations of exoplanets, and National Interest missions. Key accomplishments of 2016/17 include the completion of the Harris Corp approximately 150 Hz 1.5-meter Ultra-Low Expansion (ULE Registered trademark) mirror substrate using stacked core method to demonstrate lateral stability of the stacked core technology, as well as the characterization and validation by test of the mechanical and thermal performance of the 1.2-meter Zerodur (Registered trademark) mirror using the STOP model prediction and verification of CTE homogeneity.

  12. Advanced Mirror Technology Development (AMTD) Project: Overview and Year 4 Accomplishments

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2016-01-01

    The Advanced Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort initiated in Fiscal Year (FY) 2012, to mature toward the next Technology Readiness Level (TRL) critical technologies required to enable 4-m-or-larger monolithic or segmented ultraviolet, optical, and infrared (UVOIR) space telescope primary-mirror assemblies for general astrophysics and ultra-high-contrast observations of exoplanets. Key hardware accomplishments of 2015/16 are the successful low-temperature fusion of a 1.5-meter diameter ULE mirror that is a 1/3rd scale model of a 4-meter mirror and the initiation of polishing of a 1.2-meter Extreme-Lightweight Zerodur mirror. Critical to AMTD's success is an integrated team of scientists, systems engineers, and technologists; and a science-driven systems engineering approach.

  13. Advanced Mirror Technology Development (AMTD) project: overview and year four accomplishments

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip

    2016-07-01

    The Advanced Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort initiated in Fiscal Year (FY) 2012, to mature toward the next Technology Readiness Level (TRL) critical technologies required to enable 4-m-or-larger monolithic or segmented ultraviolet, optical, and infrared (UVOIR) space telescope primary-mirror assemblies for general astrophysics and ultra-high-contrast observations of exoplanets. Key hardware accomplishments of 2015/16 are the successful low-temperature fusion of a 1.5-meter diameter ULE mirror that is a 1/3rd scale model of a 4-meter mirror and the initiation of polishing of a 1.2-meter Extreme-Lightweight Zerodur mirror. Critical to AMTD's success is an integrated team of scientists, systems engineers, and technologists; and a science-driven systems engineering approach.

  14. Oxide_Oxide Ceramic Matrix Composite (CMC) Exhaust Mixer Development in the NASA Environmentally Responsible Aviation (ERA) Project

    NASA Technical Reports Server (NTRS)

    Kiser, J. Douglas; Bansal, Narottam P.; Szelagowski, James; Sokhey, Jagdish; Heffernan, Tab; Clegg, Joseph; Pierluissi, Anthony; Riedell, Jim; Wyen, Travis; Atmur, Steven; hide

    2015-01-01

    LibertyWorks®, a subsidiary of Rolls-Royce Corporation, first studied CMC (ceramic matrix composite) exhaust mixers for potential weight benefits in 2008. Oxide CMC potentially offered weight reduction, higher temperature capability, and the ability to fabricate complex-shapes for increased mixing and noise suppression. In 2010, NASA was pursuing the reduction of NOx emissions, fuel burn, and noise from turbine engines in Phase I of the Environmentally Responsible Aviation (ERA) Project (within the Integrated Systems Research Program). ERA subtasks, including those focused on CMC components, were being formulated with the goal of maturing technology from Proof of Concept Validation (Technology Readiness Level 3 (TRL 3)) to System/Subsystem or Prototype Demonstration in a Relevant Environment (TRL 6). LibertyWorks®, a subsidiary of Rolls-Royce Corporation, first studied CMC (ceramic matrix composite) exhaust mixers for potential weight benefits in 2008. Oxide CMC potentially offered weight reduction, higher temperature capability, and the ability to fabricate complex-shapes for increased mixing and noise suppression. In 2010, NASA was pursuing the reduction of NOx emissions, fuel burn, and noise from turbine engines in Phase I of the Environmentally Responsible Aviation (ERA) Project (within the Integrated Systems Research Program). ERA subtasks, including those focused on CMC components, were being formulated with the goal of maturing technology from Proof of Concept Validation (Technology Readiness Level 3 (TRL 3)) to System/Subsystem or Prototype Demonstration in a Relevant Environment (TRL 6). Oxide CMC component at both room and elevated temperatures. A TRL˜5 (Component Validation in a Relevant Environment) was attained and the CMC mixer was cleared for ground testing on a Rolls-Royce AE3007 engine for performance evaluation to achieve TRL 6.

  15. Compact Ceramic Microchannel Heat Exchangers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewinsohn, Charles

    The objective of the proposed work was to demonstrate the feasibility of a step change in power plant efficiency at a commercially viable cost, by obtaining performance data for prototype, compact, ceramic microchannel heat exchangers. By performing the tasks described in the initial proposal, all of the milestones were met. The work performed will advance the technology from Technology Readiness Level 3 (TRL 3) to Technology Readiness Level 4 (TRL 4) and validate the potential of using these heat exchangers for enabling high efficiency solid oxide fuel cell (SOFC) or high-temperature turbine-based power plants. The attached report will describe howmore » this objective was met. In collaboration with The Colorado School of Mines (CSM), specifications were developed for a high temperature heat exchanger for three commercial microturbines. Microturbines were selected because they are a more mature commercial technology than SOFC, they are a low-volume and high-value target for market entry of high-temperature heat exchangers, and they are essentially scaled-down versions of turbines used in utility-scale power plants. Using these specifications, microchannel dimensions were selected to meet the performance requirements. Ceramic plates were fabricated with microchannels of these dimensions. The plates were tested at room temperature and elevated temperature. Plates were joined together to make modular, heat exchanger stacks that were tested at a variety of temperatures and flow rates. Although gas flow rates equivalent to those in microturbines could not be achieved in the laboratory environment, the results showed expected efficiencies, robust operation under significant temperature gradients at high temperature, and the ability to cycle the stacks. Details of the methods and results are presented in this final report.« less

  16. Understanding how children’s engagement and teachers’ interactions combine to predict school readiness

    PubMed Central

    Williford, Amanda P.; Maier, Michelle F.; Downer, Jason T.; Pianta, Robert C.; Howes, Carolee

    2015-01-01

    This study examined the quality of preschool classroom experiences through the combination of teachers’ interactions at the classroom level and children’s individual patterns of engagement in predicting children’s gains in school readiness. A sample of 605 children and 309 teachers participated. The quality of children’s engagement and teacher interactions was directly observed in the classroom setting, and direct assessments of children’s school readiness skills were obtained in the fall and again in the spring. The quality of teacher interactions was associated with gains across all school readiness skills. The effect of children’s individual classroom engagement on their gains in school readiness skills (specifically phonological awareness and expressive vocabulary) was moderated by classroom level teacher interactions. The results suggest that if teachers provide highly responsive interactions at the classroom level, children may develop more equitable school readiness skills regardless of their individual engagement patterns. PMID:26722137

  17. Preliminary Technology Maturation Plan for Immobilization of High-Level Waste in Glass Ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vienna, John D.; Crum, Jarrod V.; Sevigny, Gary J.

    2012-09-30

    A technology maturation plan (TMP) was developed for immobilization of high-level waste (HLW) raffinate in a glass ceramics waste form using a cold-crucible induction melter (CCIM). The TMP was prepared by the following process: 1) define the reference process and boundaries of the technology being matured, 2) evaluate the technology elements and identify the critical technology elements (CTE), 3) identify the technology readiness level (TRL) of each of the CTE’s using the DOE G 413.3-4, 4) describe the development and demonstration activities required to advance the TRLs to 4 and 6 in order, and 5) prepare a preliminary plan tomore » conduct the development and demonstration. Results of the technology readiness assessment identified five CTE’s and found relatively low TRL’s for each of them: • Mixing, sampling, and analysis of waste slurry and melter feed: TRL-1 • Feeding, melting, and pouring: TRL-1 • Glass ceramic formulation: TRL-1 • Canister cooling and crystallization: TRL-1 • Canister decontamination: TRL-4 Although the TRL’s are low for most of these CTE’s (TRL-1), the effort required to advance them to higher values. The activities required to advance the TRL’s are listed below: • Complete this TMP • Perform a preliminary engineering study • Characterize, estimate, and simulate waste to be treated • Laboratory scale glass ceramic testing • Melter and off-gas testing with simulants • Test the mixing, sampling, and analyses • Canister testing • Decontamination system testing • Issue a requirements document • Issue a risk management document • Complete preliminary design • Integrated pilot testing • Issue a waste compliance plan A preliminary schedule and budget were developed to complete these activities as summarized in the following table (assuming 2012 dollars). TRL Budget Year MSA FMP GCF CCC CD Overall $M 2012 1 1 1 1 4 1 0.3 2013 2 2 1 1 4 1 1.3 2014 2 3 1 1 4 1 1.8 2015 2 3 2 2 4 2 2.6 2016 2 3 2 2 4 2 4.9 2017 2 3 3 2 4 2 9.8 2018 3 3 3 3 4 3 7.9 2019 3 3 3 3 4 3 5.1 2020 3 3 3 3 4 3 14.6 2021 3 3 3 3 4 3 7.3 2022 3 3 3 3 4 3 8.8 2023 4 4 4 4 4 4 9.1 2024 5 5 5 5 5 5 6.9 2025 6 6 6 6 6 6 6.9 CCC = canister cooling and crystallization; FMP = feeding, melting, and pouring; GCF = glass ceramic formulation; MSA = mixing, sampling, and analyses. This TMP is intended to guide the development of the glass ceramics waste form and process to the point where it is ready for industrialization.« less

  18. New Capabilities for Hostile Environments on Z Grand Challenge LDRD - Final Status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuneo, Michael E.; Griffin, P. J.; Balch, D. K.

    2016-10-01

    The purpose of this project was to develop new physical simulation capabilities in order to support the science-based qualification of nonnuclear weapon components in hostile radiation environments. The project contributes directly to the goals of maintaining a safe, secure, and effective US nuclear stockpile, maintaining strategic deterrence at lower nuclear force levels, extending the life of the nuclear deterrent capability, and to be ready for technological surprise.

  19. Study on utilization of advanced composites in commercial aircraft wing structures, volume 2

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Ostrom, R. B.

    1978-01-01

    A plan is defined for a composite wing development effort which will assist commercial transport manufacturers in reaching a level of technology readiness where the utilization of composite wing structure is a cost competitive option for a new aircraft production plan. The recommended development effort consists of two programs: a joint government/industry material development program and a wing structure development program. Both programs are described in detail.

  20. Technology Readiness Assessment of a Large DOE Waste Processing Facility

    DTIC Science & Technology

    2007-09-12

    Waste Generation at Hanford – Waste Treatment and Immobilization Plant ( WTP ) Project • Motivation to Conduct TRA • TRA Approach • Actions to ensure...Hanford’s WTP will be the world’s largest radioactive waste treatment plant to treat Hanford’s underground tank waste Waste Treatment Plant ( WTP ) Major...Mass Maximize Activity WTP Flow Sheet – Key Process Flows Hanford Tank Waste 10 How is the Vitrified Waste Dispositioned? High Level Waste Canisters

  1. Distributed Networked Force Value Proposition Implications for Distributed Networked System Concept Development

    DTIC Science & Technology

    2008-08-18

    Operations Concept Rules of engagement Reconnaissance, surveillance, and target acquisition Subject matter experts Technology readiness level Tactics...might call for the notification of an additional ASW platform, a pouncer, to reacquire, follow, and/or kill the transiter depending on the rules of...Naval Research Laboratory (E. Franchi , F. Erskine) 2 Naval Sea Systems Command (PEO-C4I and Space - D. Bauman, PEO-IWS - Technical Director, PEO-IWS5

  2. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterbentz, James William; Bayless, Paul David; Nelson, Lee Orville

    2016-01-01

    A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.

  3. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterbentz, James William; Bayless, Paul David; Nelson, Lee Orville

    2016-03-01

    A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.

  4. Immersive virtual reality platform for medical training: a "killer-application".

    PubMed

    2000-01-01

    The Medical Readiness Trainer (MRT) integrates fully immersive Virtual Reality (VR), highly advanced medical simulation technologies, and medical data to enable unprecedented medical education and training. The flexibility offered by the MRT environment serves as a practical teaching tool today and in the near future the will serve as an ideal vehicle for facilitating the transition to the next level of medical practice, i.e., telepresence and next generation Internet-based collaborative learning.

  5. Analysis of Unmanned Undersea Vehicle (UUV) Architectures and an Assessment of UUV Integration into Undersea Applications

    DTIC Science & Technology

    2010-09-01

    Synthetic Long Baseline SSS Side Scan Sonar TCS Time Critical Strike TRL Technology Readiness Level U.S. United States UHF Ultra High...Frequency UN United Nation USBL Ultra Short Baseline UUV Unmanned Undersea Vehicle UUVMP Unmanned Undersea Vehicle Master Plan V Volts...Wilmington, “NURC/SEGM Capabilities: Deepwater AUV,” University of North Carolina Wilmington Web site [Online], Available: http://www.uncw.edu/nurc/auv

  6. Levels of Motivation and Readiness for Treatment Aligned With Criminal Justice Referral and Coercion Among Substance Users in England.

    PubMed

    Jones, Andrew; Hayhurst, Karen Petra; Millar, Tim

    2017-11-01

    Motivation and readiness for substance misuse treatment predict treatment retention and successful treatment outcomes but may be lower among substance users coerced into treatment. We tested for differences associated with legal involvement and with client perceptions of coercion among individuals entering drug misuse treatment in England. Data collection involved 342 treatment agencies. Measures of motivation and readiness for treatment were taken from the Circumstances, Motivation, and Readiness (CMR) scale. Referral source was ordered to represent level of legal involvement and conditions. Perceived coercion was defined by a CMR item. Linear regression models, adjusting for client complexity, tested for differences in motivation and readiness by these measures. Levels of motivation and readiness did not differ according to level of legal conditions (coefficient = -0.38, 95% CI [-1.65, 0.88]). Motivation was inversely associated with perceived coercion (coefficient = -0.28, 95% CI [-0.05, -0.50], p = .014). At the point of treatment entry, criminal justice referral and aligned conditions have no impact on levels of motivation to achieve positive treatment outcomes. Concerns around lower levels of motivation are better focused on those who perceive themselves as coerced rather than on those whose referral carries a level of legal condition.

  7. System Study: Technology Assessment and Prioritizing

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The objective of this NASA funded project is to assess and prioritize advanced technologies required to achieve the goals for an "Intelligent Propulsion System" through collaboration among GEAE, NASA, and Georgia Tech. Key GEAE deliverables are parametric response surface equations (RSE's) relating technology features to system benefits (sfc, weight, fuel burn, design range, acoustics, emission, etc...) and listings of Technology Impact Matrix (TIM) with benefits, debits, and approximate readiness status. TIM has been completed for GEAE and NASA proposed technologies. The combined GEAE and NASA TIM input requirement is shown in Table.1. In the course of building the RSE's and TIM, significant parametric technology modeling and RSE accuracy improvements were accomplished. GEAE has also done preliminary ranking of the technologies using Georgia Tech/GEAE USA developed technology evaluation tools. System level impact was performed by combining beneficial technologies with minimum conflict among various system figures of merits to assess their overall benefits to the system. The shortfalls and issues with modeling the proposed technologies are identified, and recommendations for future work are also proposed.

  8. Advanced dendritic web growth development and development of single-crystal silicon dendritic ribbon and high-efficiency solar cell program

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hopkins, R. H.

    1986-01-01

    Efforts to demonstrate that the dendritic web technology is ready for commercial use by the end of 1986 continues. A commercial readiness goal involves improvements to crystal growth furnace throughput to demonstrate an area growth rate of greater than 15 sq cm/min while simultaneously growing 10 meters or more of ribbon under conditions of continuous melt replenishment. Continuous means that the silicon melt is being replenished at the same rate that it is being consumed by ribbon growth so that the melt level remains constant. Efforts continue on computer thermal modeling required to define high speed, low stress, continuous growth configurations; the study of convective effects in the molten silicon and growth furnace cover gas; on furnace component modifications; on web quality assessments; and on experimental growth activities.

  9. Status of NASA In-Space Propulsion Technologies and Their Infusion Potential

    NASA Technical Reports Server (NTRS)

    Anderson, David; Pencil, Eric; Vento, Dan; Peterson, Todd; Dankanich, John; Hahne, David; Munk, Michelle

    2011-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies have broad applicability to future competed Discovery and New Frontiers mission solicitations, and are potentially enabling for future NASA flagship and sample return missions currently being considered. This paper provides status of the technology development of several in-space propulsion technologies that are ready for infusion into future missions. The technologies that are ready for flight infusion are: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies that will be ready for flight infusion in FY12/13 are 1) Advanced Xenon Flow Control System, and 2) ultra-lightweight propellant tank technology advancements and their infusion potential will be also discussed. The paper will also describe the ISPT project s future focus on propulsion for sample return missions: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) needed for sample return missions from many different destinations; and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle-focused, and present a different set of technology infusion challenges. Systems/Mission Analysis focused on developing tools and assessing the application of propulsion technologies to a wide variety of mission concepts.

  10. NASA Redox system development project status

    NASA Technical Reports Server (NTRS)

    Nice, A. W.

    1981-01-01

    NASA-Redox energy storage systems developed for solar power applications and utility load leveling applications are discussed. The major objective of the project is to establish the technology readiness of Redox energy storage for transfer to industry for product development and commercialization by industry. The approach is to competitively contract to design, build, and test Redox systems progressively from preprototype to prototype multi-kW and megawatt systems and conduct supporting technology advancement tasks. The Redox electrode and membrane are fully adequate for multi-kW solar related applications and the viability of the Redox system technology as demonstrated for multi-kW solar related applications. The status of the NASA Redox Storage System Project is described along with the goals and objectives of the project elements.

  11. Additive Construction with Mobile Emplacement (ACME)

    NASA Technical Reports Server (NTRS)

    Vickers, John

    2015-01-01

    The Additive Construction with Mobile Emplacement (ACME) project is developing technology to build structures on planetary surfaces using in-situ resources. The project focuses on the construction of both 2D (landing pads, roads, and structure foundations) and 3D (habitats, garages, radiation shelters, and other structures) infrastructure needs for planetary surface missions. The ACME project seeks to raise the Technology Readiness Level (TRL) of two components needed for planetary surface habitation and exploration: 3D additive construction (e.g., contour crafting), and excavation and handling technologies (to effectively and continuously produce in-situ feedstock). Additionally, the ACME project supports the research and development of new materials for planetary surface construction, with the goal of reducing the amount of material to be launched from Earth.

  12. Challenges of Implementing New Technologies for Sustainable Energy. Opening address at the Sixth Grove Fuel Cell Symposium, London, 13-16 September 1999

    NASA Astrophysics Data System (ADS)

    Jørgen Koch, Hans

    To meet the commitments made in Kyoto, energy-related CO 2 emissions would have to fall to almost 30% below the level projected for a "Business-As-Usual" scenario. Meeting this goal will require a large-scale shift toward climate-friendly technologies such as fuel cells, which have a large long-term potential for both stationary generation and transportation. The deployment of a technology is the last major stage in the process of technological shift. Climate-friendly technologies are not being deployed at a sufficient rate or in sufficient amount to allow IEA countries to meet their targets. Hence, if technology is to play an important roll in reducing emissions within the Kyoto time frame (2008-2012) and beyond, immediate and sustained action to accelerate technology deployment will be required. Obstacles in the way of the deployment of technologies that are ready or near-ready for normal use have come to be referred to as market barriers. The simplest yet most significant form of market barrier to a new technology is the out-of-pocket cost to the user relative to the cost of technologies currently in use. Some market barriers also involve market failure, where the market fails to take account of all the costs and benefits involved, such as omitting external environmental costs, and therefore retard the deployment of more environmentally sustainable technologies. Other barriers include poor information dissemination, excessive and costly regulations, slow capital turnover rates, and inadequate financing. Efforts by governments to alleviate market barriers play an important role to complement private-sector activities, and there are many policies and measures each government could take. In addition, international technology collaboration can help promote the best use of available R&D resources and can contribute to more effective deployment of the result of research and development by sharing costs, pooling information and avoiding duplication of efforts.

  13. Guidance on the Technology Performance Level (TPL) Assessment Methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Jochem; Roberts, Jesse D.; Babarit, Aurelien

    This document presents the revised Technology Performance Level (TPL) assessment methodology. There are three parts to this revised methodology 1) the Stakeholder Needs and Assessment Guidance (this document), 2) the Technical Submission form, 3) the TPL scoring spreadsheet. The TPL assessment is designed to give a technology neutral or agnostic assessment of any wave energy converter technology. The focus of the TPL is on the performance of the technology in meeting the customer’s needs. The original TPL is described in [1, 2] and those references also detail the critical differences in the nature of the TPL when compared to themore » more widely used technology readiness level (TRL). (Wave energy TRL is described in [3]). The revised TPL is particularly intended to be useful to investors and also to assist technology developers to conduct comprehensive assessments in a way that is meaningful and attractive to investors. The revised TPL assessment methodology has been derived through a structured Systems Engineering approach. This was a formal process which involved analyzing customer and stakeholder needs through the discipline of Systems Engineering. The results of the process confirmed the high level of completeness of the original methodology presented in [1] (as used in the Wave Energy Prize judging) and now add a significantly increased level of detail in the assessment and an improved more investment focused structure. The revised TPL also incorporates the feedback of the Wave Energy Prize judges.« less

  14. Darwin in the Context of Cosmic Vision 2015-2025

    NASA Astrophysics Data System (ADS)

    Liseau, R.

    2010-10-01

    The present status of the Darwin mission will be briefly reviewed, with particular focus on various developments since 2007. Of special interest is the readiness level (TRL) of critical mission technologies. While Darwin has essentially been put in limbo in Europe, continued research by the TPF-I team in the USA has demonstrated the high level of maturity which has recently been achieved for the critical technologies. This should encourage us to prepare for the next Cosmic Visions call by ESA. This call is expected to be issued in 2010/2011, reasonably well-timed with the upcoming US Decadal Survey. We argue that the SIM Lite mission would be an important milestone on the road toward Darwin-TPF and that ESA should join NASA in this endeavor.

  15. An Investigation of Selected Readiness Variables As Predictors of Reading Achievement at Second Grade Level.

    ERIC Educational Resources Information Center

    Seals, Caryl Neman

    This study was designed to determine the relationship of selected readiness variables to achievement in reading at the second grade level. The readiness variables were environment, mathematics, letters and sounds, aural comprehension, visual perception, auditory perception, vocabulary and concepts, word meaning, listening, matching, alphabet,…

  16. Self-Directed Learning Readiness among Undergraduate Students at Saudi Electronic University in Saudi Arabia

    ERIC Educational Resources Information Center

    Alfaifi, Mousa S.

    2016-01-01

    This study aimed to determine the level of self-directed learning readiness (SDLR) among undergraduate students at Saudi Electronic University in Saudi Arabia. Also, investigated were potential relationships between the level of self-directed learning readiness and selected demographic variables such as gender and specific college within the…

  17. A miniature fuel reformer system for portable power sources

    NASA Astrophysics Data System (ADS)

    Dolanc, Gregor; Belavič, Darko; Hrovat, Marko; Hočevar, Stanko; Pohar, Andrej; Petrovčič, Janko; Musizza, Bojan

    2014-12-01

    A miniature methanol reformer system has been designed and built to technology readiness level exceeding a laboratory prototype. It is intended to feed fuel cells with electric power up to 100 W and contains a complete setup of the technological elements: catalytic reforming and PROX reactors, a combustor, evaporators, actuation and sensing elements, and a control unit. The system is engineered not only for performance and quality of the reformate, but also for its lightweight and compact design, seamless integration of elements, low internal electric consumption, and safety. In the paper, the design of the system is presented by focussing on its miniaturisation, integration, and process control.

  18. FY 2003 Acquisition and Technology Division Annual Report

    DTIC Science & Technology

    2004-08-01

    readiness. The Army will be better able to preserve readiness, save money, and avoid bad decisions by knowing which alternative cleaning products meet its...USAEC and ATC are leading an initiative to comprehensively test several cleaning products and gather data the Army and other DoD services can use to

  19. Identifying Proactive Collaboration Strategies for Teacher Readiness for Marginalized Students

    ERIC Educational Resources Information Center

    Akin, Imani; Neumann, Crystal

    2013-01-01

    This research discusses the value of collaborating to develop strategies that enhance teacher readiness for the marginalized student and the use of qualitative data that can lead to student academic and social success. Education domains include the learning environment, technology, and building parent and community connections. This research…

  20. Consumers and Makers: Exploring Opposing Paradigms of Millennial College Readiness

    ERIC Educational Resources Information Center

    Jackson, Matthew

    2017-01-01

    The political and technological circumstances of the past two decades have culminated in opposing epistemic paradigms of college readiness, where millennial students' conceptual understanding of "learning" is both narrowed to meet the demands of school systems bound to accountability and amplified by a rapidly evolving digital world. The…

  1. Introduction: Prediction of F-16XL Flight Flow Physics

    NASA Technical Reports Server (NTRS)

    Lamar, John E.

    2009-01-01

    This special section is the result of fruitful endeavors by an international group of researchers in industry, government laboratories and university-led efforts to improve the technology readiness level of their CFD solvers through comparisons with flight data collected on the F-16XL-1 aircraft at a variety of test conditions. These 1996 flight data were documented and detailed the flight-flow physics of this aircraft through surface tufts and pressures, boundary-layer rakes and skin-friction measurements. The flight project was called the Cranked Wing Aerodynamics Project (CAWAP), due to its leading-edge sweep crank (70 degrees inboard, 50 degrees outboard), and served as a basis for the International comparisons to be made, called CAWAPI. This highly focused effort was one of two vortical flow studies facilitated by the NATO Research and Technology Organization through its Applied Vehicle Panel with a title of Understanding and Modeling Vortical Flows to Improve the Technology Readiness Level for Military Aircraft. It was given a task group number of AVT-113 and had an official start date of Spring 2003. The companion part of this task group dealt with fundamentals of vortical flow from both an experimental and numerical perspective on an analytically describable 65 degree delta-wing model for which much surface pressure data had already been measured at NASA Langley Research Center at a variety of Mach and Reynolds numbers and is called the Vortex Flow Experiment - 2 (VFE-2). These two parts or facets helped one another in understanding the predictions and data that had been or were being collected.

  2. Propulsion Integrated Vehicle Health Management Technology Experiment (PITEX) Conducted

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Chicatelli, Amy K.; Fulton, Christopher E.

    2004-01-01

    The Propulsion Integrated Vehicle Health Management (IVHM) Technology Experiment (PITEX) is a continuing NASA effort being conducted cooperatively by the NASA Glenn Research Center, the NASA Ames Research Center, and the NASA Kennedy Space Center. It was a key element of a Space Launch Initiative risk-reduction task performed by the Northrop Grumman Corporation in El Segundo, California. PITEX's main objectives are the continued maturation of diagnostic technologies that are relevant to second generation reusable launch vehicle (RLV) subsystems and the assessment of the real-time performance of the PITEX diagnostic solution. The PITEX effort has considerable legacy in the NASA IVHM Technology Experiment for X-vehicles (NITEX) that was selected to fly on the X-34 subscale RLV that was being developed by Orbital Sciences Corporation. NITEX, funded through the Future-X Program Office, was to advance the technology-readiness level of selected IVHM technologies within a flight environment and to begin the transition of these technologies from experimental status into RLV baseline designs. The experiment was to perform realtime fault detection and isolation and suggest potential recovery actions for the X-34 main propulsion system (MPS) during all mission phases by using a combination of system-level analysis and detailed diagnostic algorithms.

  3. The Naval Aviation Enterprise Type/Model/Series Team and Its Effect on AH-1W Readiness

    DTIC Science & Technology

    2012-03-23

    ABSTRACT Unclass c . THIS PAGE Unclass 19b. TELEPONE NUMBER (Include area code) (703) 784-3330 (Admin Office) United States Marine Corps...has lower readiness for that section. The unit’s core level ( C -Level) corresponds to the lowest readiness rating of the four categories.16 Squadrons...are required to deploy at a C -1 level and non-deploying units are required to maintain a C -2 level. Since DRRS is only a reporting tool, it does not

  4. Concept of economic readiness levels assessment

    NASA Astrophysics Data System (ADS)

    Yuniaristanto, Sutopo, W.; Widiyanto, A.; Putri, A. S.

    2017-11-01

    This research aims to build a concept of Economic Readiness Level (ERL) assessment for incubation center. ERL concept is arranged by considering both market and business aspects. Every aspect is divided into four phases and each of them consists of some indicators. Analytic Hierarchy Process (AHP) is used to develop the ERL in calculating the weight of every single aspect and indicator. Interval scale between 0 and 4 is also applied in indicator assessment. In order to calculate ERL, score in every indicator and the weight of both the aspect and indicator are considered. ERL value is able to show in detail the innovative product readiness level from economic sight, market and business aspect. There are four levels in Economic Readiness Level scheme which are investigation, feasibility, planning and introduction.

  5. Mixed Picture of Readiness for Adoption of Evidence-Based Prevention Programs in Communities: Exploratory Surveys of State Program Delivery Systems

    PubMed Central

    Schainker, Lisa M.; Redmond, Cleve; Ralston, Ekaterina; Yeh, Hsiu-Chen; Perkins, Daniel F.

    2015-01-01

    An emerging literature highlights the potential for broader dissemination of evidence-based prevention programs in communities through existing state systems, such as the land grant university Extension outreach system and departments of public education and health (DOE– DPH). This exploratory study entailed surveying representatives of the national Extension system and DOE– DPH, to evaluate dissemination readiness factors, as part of a larger project on an evidence-based program delivery model called PROSPER. In addition to assessing systems’ readiness factors, differences among US regions and comparative levels of readiness between state systems were evaluated. The Extension web-based survey sample N was 958 and the DOE–DPH telephone survey N was 338, with response rates of 23 and 79 %, respectively. Extension survey results suggested only a moderate level of overall readiness nationally, with relatively higher perceived need for collaborative efforts and relatively lower perceived resource availability. There were significant regional differences on all factors, generally favoring the Northeast. Results from DOE–DPH surveys showed significantly higher levels for all readiness factors, compared with Extension systems. Overall, the findings present a mixed picture. Although there were clear challenges related to measuring readiness in complex systems, addressing currently limited dissemination resources, and devising strategies for optimizing readiness, all systems showed some readiness-related strengths. PMID:25791916

  6. Organizational readiness for implementing change: a psychometric assessment of a new measure.

    PubMed

    Shea, Christopher M; Jacobs, Sara R; Esserman, Denise A; Bruce, Kerry; Weiner, Bryan J

    2014-01-10

    Organizational readiness for change in healthcare settings is an important factor in successful implementation of new policies, programs, and practices. However, research on the topic is hindered by the absence of a brief, reliable, and valid measure. Until such a measure is developed, we cannot advance scientific knowledge about readiness or provide evidence-based guidance to organizational leaders about how to increase readiness. This article presents results of a psychometric assessment of a new measure called Organizational Readiness for Implementing Change (ORIC), which we developed based on Weiner's theory of organizational readiness for change. We conducted four studies to assess the psychometric properties of ORIC. In study one, we assessed the content adequacy of the new measure using quantitative methods. In study two, we examined the measure's factor structure and reliability in a laboratory simulation. In study three, we assessed the reliability and validity of an organization-level measure of readiness based on aggregated individual-level data from study two. In study four, we conducted a small field study utilizing the same analytic methods as in study three. Content adequacy assessment indicated that the items developed to measure change commitment and change efficacy reflected the theoretical content of these two facets of organizational readiness and distinguished the facets from hypothesized determinants of readiness. Exploratory and confirmatory factor analysis in the lab and field studies revealed two correlated factors, as expected, with good model fit and high item loadings. Reliability analysis in the lab and field studies showed high inter-item consistency for the resulting individual-level scales for change commitment and change efficacy. Inter-rater reliability and inter-rater agreement statistics supported the aggregation of individual level readiness perceptions to the organizational level of analysis. This article provides evidence in support of the ORIC measure. We believe this measure will enable testing of theories about determinants and consequences of organizational readiness and, ultimately, assist healthcare leaders to reduce the number of health organization change efforts that do not achieve desired benefits. Although ORIC shows promise, further assessment is needed to test for convergent, discriminant, and predictive validity.

  7. Organizational readiness for implementing change: a psychometric assessment of a new measure

    PubMed Central

    2014-01-01

    Background Organizational readiness for change in healthcare settings is an important factor in successful implementation of new policies, programs, and practices. However, research on the topic is hindered by the absence of a brief, reliable, and valid measure. Until such a measure is developed, we cannot advance scientific knowledge about readiness or provide evidence-based guidance to organizational leaders about how to increase readiness. This article presents results of a psychometric assessment of a new measure called Organizational Readiness for Implementing Change (ORIC), which we developed based on Weiner’s theory of organizational readiness for change. Methods We conducted four studies to assess the psychometric properties of ORIC. In study one, we assessed the content adequacy of the new measure using quantitative methods. In study two, we examined the measure’s factor structure and reliability in a laboratory simulation. In study three, we assessed the reliability and validity of an organization-level measure of readiness based on aggregated individual-level data from study two. In study four, we conducted a small field study utilizing the same analytic methods as in study three. Results Content adequacy assessment indicated that the items developed to measure change commitment and change efficacy reflected the theoretical content of these two facets of organizational readiness and distinguished the facets from hypothesized determinants of readiness. Exploratory and confirmatory factor analysis in the lab and field studies revealed two correlated factors, as expected, with good model fit and high item loadings. Reliability analysis in the lab and field studies showed high inter-item consistency for the resulting individual-level scales for change commitment and change efficacy. Inter-rater reliability and inter-rater agreement statistics supported the aggregation of individual level readiness perceptions to the organizational level of analysis. Conclusions This article provides evidence in support of the ORIC measure. We believe this measure will enable testing of theories about determinants and consequences of organizational readiness and, ultimately, assist healthcare leaders to reduce the number of health organization change efforts that do not achieve desired benefits. Although ORIC shows promise, further assessment is needed to test for convergent, discriminant, and predictive validity. PMID:24410955

  8. Technology Estimating 2: A Process to Determine the Cost and Schedule of Space Technology Research and Development

    NASA Technical Reports Server (NTRS)

    Cole, Stuart K.; Wallace, Jon; Schaffer, Mark; May, M. Scott; Greenberg, Marc W.

    2014-01-01

    As a leader in space technology research and development, NASA is continuing in the development of the Technology Estimating process, initiated in 2012, for estimating the cost and schedule of low maturity technology research and development, where the Technology Readiness Level is less than TRL 6. NASA' s Technology Roadmap areas consist of 14 technology areas. The focus of this continuing Technology Estimating effort included four Technology Areas (TA): TA3 Space Power and Energy Storage, TA4 Robotics, TA8 Instruments, and TA12 Materials, to confine the research to the most abundant data pool. This research report continues the development of technology estimating efforts completed during 2013-2014, and addresses the refinement of parameters selected and recommended for use in the estimating process, where the parameters developed are applicable to Cost Estimating Relationships (CERs) used in the parametric cost estimating analysis. This research addresses the architecture for administration of the Technology Cost and Scheduling Estimating tool, the parameters suggested for computer software adjunct to any technology area, and the identification of gaps in the Technology Estimating process.

  9. Readiness of Teachers and Pupils for Use of Mobile Devices as Support for Effective Pedagogy in Nigeria: Could Location Be a Major Determinant?

    ERIC Educational Resources Information Center

    Sharehu, Aminu Ladan; Emmanuel, Achor Edoja

    2015-01-01

    How prepared are teachers and pupils in Basic 6 (that is, 6th grade) to use Information and Communication Technology (ICT) such as mobile devices to aid teaching and learning in urban and rural schools at that level is a matter of concern and therefore formed the focus of this paper. The study is a survey of some urban and rural Primary schools in…

  10. A Future With The United States Air Force Advanced Maintenance And Munitions Operations School: Securing Strategic Agility Through 2036

    DTIC Science & Technology

    2016-06-01

    SCIENCES Advisor: Dr. Paul J. Springer Maxwell Air Force Alabama August 2015 / June 2016 DISTRIBUTION A. Approved for public release...experienced rapid changes in the way the Service performs its roles to best complement our nation’s warfighting capability. Fueled by technology, innovation ...requires foresight and a level of organization and training that is ready to operate in environments which are heavily contested, degraded, and

  11. ENVIRONMENTAL TECHNOLOGY VERIFICATION PROGRAM QUARTERLY REPORT - OCTOBER 2003

    EPA Science Inventory

    The U.S. EPA Environmental Technology Verification (ETV) Program provides credible performance data for commercial-ready environmental technologies to speed their implementation for the benefit of vendors, purchasers, permitters, and the public. The ETV Quarterly Reports provide...

  12. ENVIRONMENTAL TECHNOLOGY VERIFICATION PROGRAM

    EPA Science Inventory

    This presentation will be given at the EPA Science Forum 2005 in Washington, DC. The Environmental Technology Verification Program (ETV) was initiated in 1995 to speed implementation of new and innovative commercial-ready environemntal technologies by providing objective, 3rd pa...

  13. An analysis of the relationship between staff qualification and export readiness of pharmaceutical companies: the case of iran.

    PubMed

    Mohammadzadeh, Mehdi

    2012-01-01

    Export and the readiness to export constitute the first step of international marketing, which are affected by both internal and external factors of firms. One of the most important internal factors is the presence of skilled personnel. The purpose of this study was to define the relationship between staff qualification and encouragment with the readiness level of Iranian pharmacuetical firms for engagement in export marketing. The research was based on a single case study on a basket of seven leading domestic firms. For the bias reduction, questionnaires as well as interviews with managers were used. The performance of the studied factor was lower than the desired level for export readiness and there was much scope for improvement in staff qualifications to achieve such readiness. The results of this research enable small and medium-sized pharmaceutical companies to evaluate their staff qualification levels needed for export readiness and to detect their shortcomings in order to improve them.

  14. An Analysis of the Relationship Between Staff Qualification and Export Readiness of Pharmaceutical Companies: The Case of Iran

    PubMed Central

    Mohammadzadeh, Mehdi

    2012-01-01

    Export and the readiness to export constitute the first step of international marketing, which are affected by both internal and external factors of firms. One of the most important internal factors is the presence of skilled personnel. The purpose of this study was to define the relationship between staff qualification and encouragment with the readiness level of Iranian pharmacuetical firms for engagement in export marketing. The research was based on a single case study on a basket of seven leading domestic firms. For the bias reduction, questionnaires as well as interviews with managers were used. The performance of the studied factor was lower than the desired level for export readiness and there was much scope for improvement in staff qualifications to achieve such readiness. The results of this research enable small and medium-sized pharmaceutical companies to evaluate their staff qualification levels needed for export readiness and to detect their shortcomings in order to improve them. PMID:24250528

  15. Titanium Aluminide Casting Technology Development

    NASA Astrophysics Data System (ADS)

    Bünck, Matthias; Stoyanov, Todor; Schievenbusch, Jan; Michels, Heiner; Gußfeld, Alexander

    2017-12-01

    Titanium aluminide alloys have been successfully introduced into civil aircraft engine technology in recent years, and a significant order volume increase is expected in the near future. Due to its beneficial buy-to-fly ratio, investment casting bears the highest potential for cost reduction of all competing production technologies for TiAl-LPTB. However, highest mechanical properties can be achieved by TiAl forging. In view of this, Access e.V. has developed technologies for the production of TiAl investment cast parts and TiAl die cast billets for forging purposes. While these parts meet the highest requirements, establishing series production and further optimizing resource and economic efficiency are present challenges. In order to meet these goals, Access has recently been certified according to aircraft standards, aiming at qualifying parts for production on technology readiness level 6. The present work gives an overview of the phases of development and certification.

  16. Progress in the Development of Direct Osmotic Concentration Wastewater Recovery Process for Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Cath, Tzahi Y.; Adams, Dean V.; Childress, Amy; Gormly, Sherwin; Flynn, Michael

    2005-01-01

    Direct osmotic concentration (DOC) has been identified as a high potential technology for recycling of wastewater to drinking water in advanced life support (ALS) systems. As a result the DOC process has been selected for a NASA Rapid Technology Development Team (RTDT) effort. The existing prototype system has been developed to a Technology Readiness Level (TRL) 3. The current project focuses on advancing the development of this technology from TRL 3 to TRL 6 (appropriate for human rated testing). A new prototype of a DOC system is been designed and fabricated that addresses the deficiencies encountered during the testing of the original system and allowing the new prototype to achieve TRL 6. Background information is provided about the technologies investigated and their capabilities, results from preliminary tests, and the milestones plan and activities for the RTDT program intended to develop a second generation prototype of the DOC system.

  17. The Role of Educational Systems in Improving College Readiness Skills in College Freshmen

    ERIC Educational Resources Information Center

    Gallo, Charles B.

    2017-01-01

    This qualitative study investigated second semester undergraduate college students' perceptions of their levels of college readiness instilled and developed in them as graduates of a New York City High School. This study sought to determine the level of alignment of the criteria and definitions of college readiness between the New York City…

  18. Analysis of Students' Online Learning Readiness Based on Their Emotional Intelligence Level

    ERIC Educational Resources Information Center

    Engin, Melih

    2017-01-01

    The objective of the present study is to determine whether there is a significant relationship between the students' readiness in online learning and their emotional intelligence levels. Correlational research method was used in the study. Online Learning Readiness Scale which was developed by Hung et al. (2010) has been used and Trait Emotional…

  19. Wyoming Early Childhood Readiness Standards.

    ERIC Educational Resources Information Center

    Wyoming State Dept. of Education, Cheyenne.

    Because children entering kindergarten come with a variety of preschool and home experiences, and accordingly, with varying levels of school readiness, the Wyoming Early Childhood Readiness Standards have been developed to provide a more consistent definition of school readiness. The goal for the Standards is to provide early childhood educators…

  20. Child, family, and community characteristics associated with school readiness in Jordan

    PubMed Central

    Al-Hassan, Suha M.; Lansford, Jennifer E.

    2010-01-01

    The present study investigated demographic differences in school readiness within Jordan, a particularly interesting context because of wide-spread national reform currently sweeping the education system in Jordan. Teacher reports and researcher direct assessments of the school readiness of a national sample of 4,681 Jordanian first grade children were used to describe the levels of school readiness of children with respect to seven demographic characteristics. Higher levels of school readiness were associated with male gender, higher family income, higher paternal education, higher maternal education, smaller family size, fewer siblings, and urban residence. Taken together, the findings highlight the importance of Jordanian education reform, one aim of which is to improve the school readiness of all children by implementing public kindergartens, especially in poor, rural areas. PMID:21132066

  1. A Synopsis of Ion Propulsion Development Projects in the United States: SERT 1 to Deep Space I

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Rawlin, Vincent K.; Patterson, Michael J.

    1999-01-01

    The historical background and characteristics of the experimental flights of ion propulsion systems and the major ground-based technology demonstrations were reviewed. The results of the first successful ion engine flight in 1964, SERT I which demonstrated ion beam neutralization, are discussed along with the extended operation of SERT II starting in 1970. These results together with the technology employed on the early cesium engine flights. the Applications Technology Satellite (ATS) series, and the ground-test demonstrations, have provided the evolutionary path for the development of xenon ion thruster component technologies, control systems, and power circuit implementations. In the 1997-1999 period, the communication satellite flights using ion engine systems and the Deep Space I flight confirmed that these auxiliary and primary propulsion systems have advanced to a high-level of flight-readiness.

  2. Ion Propulsion Development Projects in US: Space Electric Rocket Test I to Deep Space 1

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Rawlin, Vincent K.; Patterson, Michael J.

    2001-01-01

    The historical background and characteristics of the experimental flights of ion propulsion systems and the major ground-based technology demonstrations are reviewed. The results of the first successful ion engine flight in 1964, Space Electric Rocket Test (SERT) I, which demonstrated ion beam neutralization, are discussed along with the extended operation of SERT II starting in 1970. These results together with the technologies employed on the early cesium engine flights, the applications technology satellite series, and the ground-test demonstrations, have provided the evolutionary path for the development of xenon ion thruster component technologies, control systems, and power circuit implementations. In the 1997-1999 period, the communication satellite flights using ion engine systems and the Deep Space 1 flight confirmed that these auxiliary and primary propulsion systems have advanced to a high level of flight readiness.

  3. NASA In-Space Propulsion Technologies and Their Infusion Potential

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Pencil,Eric J.; Peterson, Todd; Vento, Daniel; Munk, Michelle M.; Glaab, Louis J.; Dankanich, John W.

    2012-01-01

    The In-Space Propulsion Technology (ISPT) program has been developing in-space propulsion technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (Electric and Chemical), Entry Vehicle Technologies (Aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies that will be ready for flight infusion in the near future will be Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future focuses for ISPT are sample return missions and other spacecraft bus technologies like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions; and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle-focused, and present a different set of technology infusion challenges. While the Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.

  4. An Assessment of the Technical Readiness of the Vapor Phase Catalytic Ammonia Removal Process (VPCAR) Technology

    NASA Technical Reports Server (NTRS)

    Flynn, Michael

    2000-01-01

    This poster provides an assessment of the technical readiness of the Vapor Phase Catalytic Ammonia Removal Process (VPCAR). The VPCAR technology is a fully regenerative water recycling technology designed specifically for applications such as a near term Mars exploration mission. The VPCAR technology is a highly integrated distillation/catalytic oxidation based water processor. It is designed to accept a combined wastewater stream (urine, condensate, and hygiene) and produces potable water in a single process step which requires -no regularly scheduled re-supply or maintenance for a 3 year mission. The technology is designed to be modular and to fit into a volume comparable to a single International Space Station Rack (when sized for a crew of 6). This poster provides a description of the VPCAR technology and a summary of the current performance of the technology. Also provided are the results of two separate NASA sponsored system trade studies which investigated the potential payback of further development of the VPCAR technology.

  5. The readiness of addiction treatment agencies for health care reform

    PubMed Central

    2012-01-01

    The Patient Protection and Affordable Care Act (PPACA) aims to provide affordable health insurance and expanded health care coverage for some 32 million Americans. The PPACA makes provisions for using technology, evidence-based treatments, and integrated, patient-centered care to modernize the delivery of health care services. These changes are designed to ensure effectiveness, efficiency, and cost-savings within the health care system. To gauge the addiction treatment field’s readiness for health reform, the authors developed a Health Reform Readiness Index (HRRI) survey for addiction treatment agencies. Addiction treatment administrators and providers from around the United States completed the survey located on the http://www.niatx.net website. Respondents self-assessed their agencies based on 13 conditions pertinent to health reform readiness, and received a confidential score and instant feedback. On a scale of “Needs to Begin,” “Early Stages,” “On the Way,” and “Advanced,” the mean scores for respondents (n = 276) ranked in the Early Stages of health reform preparation for 11 of 13 conditions. Of greater concern was that organizations with budgets of < $5 million (n = 193) were less likely than those with budgets > $5 million to have information technology (patient records, patient health technology, and administrative information technology), evidence-based treatments, quality management systems, a continuum of care, or a board of directors informed about PPACA. The findings of the HRRI indicate that the addiction field, and in particular smaller organizations, have much to do to prepare for a future environment that has greater expectations for information technology use, a credentialed workforce, accountability for patient care, and an integrated continuum of care. PMID:22551101

  6. Validation of the Lollipop Test: A Diagnostic Screening Test of School Readiness.

    ERIC Educational Resources Information Center

    Chew, Alex L.; Morris, John D.

    1984-01-01

    The validity of the Lollipop Test: A Diagnostic Screening Test of School Readiness was examined using the Metropolitan Readiness Test (MRT), Level I, Form Q, as the criterion. Appreciable concurrent validity was found across test batteries. Implications for school readiness screening are discussed. (Author/BS)

  7. Measuring level of friendliness of smart city: a perceptual study

    NASA Astrophysics Data System (ADS)

    Sani Roychansyah, Muhammad; Felasari, Sushardjanti

    2018-03-01

    Currently the concept of smart city comes not only at the level of discussion, but some cities have stepped in the stage of implementation. Many of promised benefits will be met for the needs of urban residents if the city applies this concept. Conversely, many professionals and scholars are still in doubt about readiness of a city in the application of this concept. Dimension of friendliness of the real city certainly will have some limitations in a smart city that relies more on interactions with information and communication technology (ICT). This new paradigm becomes background of this paper in viewing the friendliness dimension of a smart city based on city residents’ perceptions. This paper uses case of 2 cities that have different level of readiness in the application of smart city. They are Yogyakarta City and Magelang City, both are located in Central Java. The method applied in this paper is quantitative method based on perceptual answer of respondents structured in a Likert Scale. Importance Performance Analysis (IPA) is then used to look at the attributes of smart city’s dimension which will show the relationship of the level of city friendliness and the level of city readiness in an application of smart city. The result briefly shows that the level of city sensitivity in the application of smart city is very influential in viewing the friendliness of the city. The city that is better equipped to meet the needs of its population according to the dimensions of the smart city based on its existing characteristics has higher friendliness. Time period of applying a smart city concept as the City of Yogyakarta has done longer before Magelang City, is not a guarantee that the city then has a better level of friendliness. The urban citizens have appropriate affective aspect to articulate between what they need and what the city has provided.

  8. Emerging Propulsion Technologies

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.

    2006-01-01

    The Emerging Propulsion Technologies (EPT) investment area is the newest area within the In-Space Propulsion Technology (ISPT) Project and strives to bridge technologies in the lower Technology Readiness Level (TRL) range (2 to 3) to the mid TRL range (4 to 6). A prioritization process, the Integrated In-Space Transportation Planning (IISTP), was developed and applied in FY01 to establish initial program priorities. The EPT investment area emerged for technologies that scored well in the IISTP but had a low technical maturity level. One particular technology, the Momentum-eXchange Electrodynamic-Reboost (MXER) tether, scored extraordinarily high and had broad applicability in the IISTP. However, its technical maturity was too low for ranking alongside technologies like the ion engine or aerocapture. Thus MXER tethers assumed top priority at EPT startup in FY03 with an aggressive schedule and adequate budget. It was originally envisioned that future technologies would enter the ISP portfolio through EPT, and EPT developed an EPT/ISP Entrance Process for future candidate ISP technologies. EPT has funded the following secondary, candidate ISP technologies at a low level: ultra-lightweight solar sails, general space/near-earth tether development, electrodynamic tether development, advanced electric propulsion, and in-space mechanism development. However, the scope of the ISPT program has focused over time to more closely match SMD needs and technology advancement successes. As a result, the funding for MXER and other EPT technologies is not currently available. Consequently, the MXER tether tasks and other EPT tasks were expected to phased out by November 2006. Presentation slides are presented which provide activity overviews for the aerocapture technology and emerging propulsion technology projects.

  9. Current state of micro-robots/devices as substitutes for screening colonoscopy: assessment based on technology readiness levels.

    PubMed

    Tapia-Siles, Silvia C; Coleman, Stuart; Cuschieri, Alfred

    2016-02-01

    Previous reports have described several candidates, which have the potential to replace colonoscopy, but to date, there is still no device capable of fully replacing flexible colonoscopy in the management of colonic disorders and for mass adult population screening for asymptomatic colorectal cancer. NASA developed the TRL methodology to describe and define the stages of development before use and marketing of any device. The definitions of the TRLS used in the present review are those formulated by "The US Department of Defense Technology Readiness Assessment Guidance" but adapted to micro-robots for colonoscopy. All the devices included are reported in scientific literature. They were identified by a systematic search in Web of Science, PubMed and IEEE Xplore amongst other sources. Devices that clearly lack the potential for full replacement of flexible colonoscopy were excluded. The technological salient features of all the devices included for assessment are described briefly, with particular focus on device propulsion. The devices are classified according to the TRL criteria based on the reported information. An analysis is next undertaken of the characteristics and salient features of the devices included in the review: wireless/tethered devices, data storage-transmission and navigation, additional functionality, residual technology challenges and clinical and socio-economical needs. Few devices currently possess the required functionality and performance to replace the conventional colonoscopy. The requirements, including functionalities which favour the development of a micro-robot platform to replace colonoscopy, are highlighted.

  10. Community readiness for adopting mHealth in rural Bangladesh: A qualitative exploration.

    PubMed

    Khatun, Fatema; Heywood, Anita E; Ray, Pradeep K; Bhuiya, Abbas; Liaw, Siaw-Teng

    2016-09-01

    There are increasing numbers of mHealth initiatives in middle and low income countries aimed at improving health outcomes. Bangladesh is no exception with more than 20 mobile health (mHealth) initiatives in place. A recent study in Bangladesh examined community readiness for mHealth using a framework based on quantitative data. Given the importance of a framework and the complementary role of qualitative exploration, this paper presents data from a qualitative study which complements findings from the quantitative study. The study was conducted in the Chakaria sub-district of Bangladesh. In total, 37 in-depth interviews were conducted between December 2012 and March 2013. Participants included the general public, students, community leaders, school teachers, and formal and informal healthcare providers. Thematic analysis was used to develop a logical and relevant framework to examine community readiness. As in the quantitative exploration, this study approached the investigation with four types of readiness in mind: core readiness, technological readiness, human resource readiness and motivational readiness. Community members, community leaders and healthcare providers expressed their interest in the use of mHealth in rural Bangladesh. Awareness of mHealth and its advantages was low among uneducated people. Participants who have used mHealth were attracted to the speed of access to qualified healthcare providers, time savings and low cost. Some participants did not see the value of using mobile phones for healthcare compared to a face-to-face consultation. Illiteracy, lack of English language proficiency, lack of trust and technological incapability were identified as barriers to mHealth use. However, a sense of ownership, evidence of utility, a positive attitude to the use of mHealth, and intentions towards future use of mHealth were driving forces in the adoption of mHealth services. This study re-affirmed the mHealth readiness conceptual framework with different dimensions of readiness and identified potential barriers and possible solutions for mHealth. Moving forward, emphasis should be placed on training users, providing low-cost services and improving trust of users. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. State of the art in silicon immersed gratings for space

    NASA Astrophysics Data System (ADS)

    van Amerongen, Aaldert; Krol, Hélène; Grèzes-Besset, Catherine; Coppens, Tonny; Bhatti, Ianjit; Lobb, Dan; Hardenbol, Bram; Hoogeveen, Ruud

    2017-11-01

    We present the status of our immersed diffraction grating technology, as developed at SRON and of their multilayer optical coatings as developed at CILAS. Immersion means that diffraction takes place inside the medium, in our case silicon. The high refractive index of the silicon medium boosts the resolution and the dispersion. Ultimate control over the groove geometry yields high efficiency and polarization control. Together, these aspects lead to a huge reduction in spectrometer volume. This has opened new avenues for the design of spectrometers operating in the short-wave-infrared wavelength band. Immersed grating technology for space application was initially developed by SRON and TNO for the short-wave-infrared channel of TROPOMI, built under the responsibility of SSTL. This space spectrometer will be launched on ESA's Sentinel 5 Precursor mission in 2015 to monitor pollution and climate gases in the Earth atmosphere. The TROPOMI immersed grating flight model has technology readiness level 8. In this program CILAS has qualified and implemented two optical coatings: first, an anti-reflection coating on the entrance and exit facet of the immersed grating prism, which reaches a very low value of reflectivity for a wide angular range of incidence of the transmitted light; second, a metal-dielectric absorbing coating for the passive facet of the prism to eliminate stray light inside the silicon prism. Dual Ion Beam Sputtering technology with in-situ visible and infrared optical monitoring guarantees the production of coatings which are nearly insensitive to temperature and atmospheric conditions. Spectral measurements taken at extreme temperature and humidity conditions show the reliability of these multi-dielectric and metal-dielectric functions for space environment. As part of our continuous improvement program we are presently developing new grating technology for future missions, hereby expanding the spectral range, the blaze angles and grating size, while optimizing performance parameters like stray light and wavefront error. The program aims to reach a technology readiness level of 5 for the newly developed technologies by the end of 2012. An outlook will be presented.

  12. ETV - ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) - RISK MANAGEMENT

    EPA Science Inventory

    In October 1995, the Environmental Technology Verification (ETV) Program was established by EPA. The goal of ETV is to provide credible performance data for commercial-ready environmental technologies to speed their implementation for the benefit of vendors, purchasers, permitter...

  13. Virtual Collaboration Readiness Measurement a Case Study in the Automobile Industry

    NASA Astrophysics Data System (ADS)

    Ziarati, Koorush; Khayami, Raouf; Parvinnia, Elham; Afroozi Milani, Ghazal

    In end of the last century information and communication technology caused a veritable evolution in the world of business and commerce. Globalization has changed all the commerce equations and business plans. Old companies have to change their strategies if they want to survive after this technological revolution. A new form of collaboration between the distributed and networked organizations has emerged as the "Virtual Organization" paradigm. A company can not join a virtual organization before obtaining a virtual maturity. This maturity shows the readiness of the company to begin a virtual collaboration. In this paper, based on the coherent and formal definition of virtual organizations, the criteria for measuring the readiness of companies are proposed. Our criteria are confirmed, modified or combined by using the factor analysis method on a sufficient number of virtual companies in the automobile manufacturing industry.

  14. A Study of E-Readiness Assessment: The Case of Three Universities in Nigeria

    ERIC Educational Resources Information Center

    Eweni, Samuel O.

    2012-01-01

    This study investigated the readiness of three higher educational institutions in Nigeria in their attempt to introduce and maintain technology-driven services to students, faculty, and support staff. The prerequisites for participation in the digital, networked economy include the affordable ICT, reliable electric supply, reliable and up-to-date…

  15. E-Readiness of Open and Distance Learning (ODL) Facilitators: Implications for Effective Mediation

    ERIC Educational Resources Information Center

    Nyoni, Jabulani

    2014-01-01

    This article is a narrative report of the findings from the analysis of multicultural facilitators' discourses on their e-readiness in the use of information and communication technologies (ICTs) affordances in open and distance learning (ODL) mediation experiences. First, the findings revealed by qualitative deconstructive discourse analysis…

  16. Impact of a 4-H Youth Development Program on At-Risk Urban Teenagers

    ERIC Educational Resources Information Center

    Cutz, German; Campbell, Benjamin; Filchak, Karen K.; Valiquette, Edith; Welch, Mary Ellen

    2015-01-01

    Dynamic programs that integrate science literacy and workforce readiness are essential to today's youth. The program reported here combined science literacy (gardening and technology) with workforce readiness to assess the impact of program type, prior program participation, and behavior/punctuality on knowledge gain. Findings show that past…

  17. Assessing E-Readiness of the Copperbelt University, Zambia: Case Study

    ERIC Educational Resources Information Center

    Chipembele, Matuka; Bwalya, Kelvin Joseph

    2016-01-01

    Purpose: The purpose of this paper is to assess e-readiness (preparedness) of the Copperbelt University (CBU) with a view to ascertain the likelihood of the university benefiting from various opportunities unlocked by the adoption and use of ICT [information and communications technology] in advancing its core mandate of teaching, learning and…

  18. HIPAA Readiness Collaborative in Hawaii.

    PubMed

    Chun, Marva; Forbes, Susan; Gose, Steven; Kumabe, Brenda; Loo, Jeffrey; Nichols, Lorraine; Rosa, Luis; Sherrill, Laura; Turner, Jim

    2002-01-01

    The vision of Hawaii's HIPAA Readiness Collaborative (HRC) effort is to realize the positive potential of HIPAA through a collaborative process that engages the entire healthcare delivery system. Goals include reducing the cost of healthcare through streamlining, reducing the cost of HIPAA implementation for HRC participants, and improving the interoperability between facilities through use of standard technologies.

  19. Ecological Factors Predict Transition Readiness/Self-Management in Youth With Chronic Conditions.

    PubMed

    Javalkar, Karina; Johnson, Meredith; Kshirsagar, Abhijit V; Ocegueda, Sofia; Detwiler, Randal K; Ferris, Maria

    2016-01-01

    Health care transition readiness or self-management among adolescents and young adults (AYA) with chronic conditions may be influenced by factors related to their surrounding environment. Study participants were AYA diagnosed with a chronic condition and evaluated at pediatric- and adult-focused subspecialty clinics at the University of North Carolina Hospital Systems. All participants were administered a provider-administered self-management/transition-readiness tool, the UNC TRxANSITION Scale. Geographic area and associated characteristics (ecological factors) were identified for each participant's ZIP code using the published U.S. Census data. The Level 1 model of the hierarchical linear regression used individual-level predictors of transition readiness/self-management. The Level 2 model incorporated the ecological factors. We enrolled 511 AYA with different chronic conditions aged 12-31 years with the following characteristics: mean age of 20± 4 years, 45% white, 42% black, and 54% female. Participants represented 214 ZIP codes in or around North Carolina, USA. The Level 1 model showed that age, gender, and race were significant predictors of transition readiness/self-management. On adding the ecological factors in the Level 2 model, race was no longer significant. Participants from a geographic area with a greater percentage of females (β = .114, p = .005) and a higher median income (β = .126, p = .002) had greater overall transition readiness. Ecological factors also predicted subdomains of transition readiness/self-management. In this cohort of adolescents and young adults with different chronic conditions, ecological disparities such as sex composition, median income, and language predict self-management/transition readiness. It is important to take ecological risk factors into consideration when preparing patients for health self-management or transition. Copyright © 2016 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  20. Can genomics deliver climate-change ready crops?

    PubMed

    Varshney, Rajeev K; Singh, Vikas K; Kumar, Arvind; Powell, Wayne; Sorrells, Mark E

    2018-04-20

    Development of climate resilient crops with accelerating genetic gains in crops will require integration of different disciplines/technologies, to see the impact in the farmer's field. In this review, we summarize how we are utilizing our germplasm collections to identify superior alleles/haplotypes through NGS based sequencing approaches and how genomics-enabled technologies together with precise phenotyping are being used in crop breeding. Pre-breeding and genomics-assisted breeding approaches are contributing to the more efficient development of climate-resilient crops. It is anticipated that the integration of several disciplines/technologies will result in the delivery of climate change ready crops in less time. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Objectively measuring pain using facial expression: is the technology finally ready?

    PubMed

    Dawes, Thomas Richard; Eden-Green, Ben; Rosten, Claire; Giles, Julian; Governo, Ricardo; Marcelline, Francesca; Nduka, Charles

    2018-03-01

    Currently, clinicians observe pain-related behaviors and use patient self-report measures in order to determine pain severity. This paper reviews the evidence when facial expression is used as a measure of pain. We review the literature reporting the relevance of facial expression as a diagnostic measure, which facial movements are indicative of pain, and whether such movements can be reliably used to measure pain. We conclude that although the technology for objective pain measurement is not yet ready for use in clinical settings, the potential benefits to patients in improved pain management, combined with the advances being made in sensor technology and artificial intelligence, provide opportunities for research and innovation.

  2. Advanced Acid Gas Separation Technology for Clean Power and Syngas Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amy, Fabrice; Hufton, Jeffrey; Bhadra, Shubhra

    2015-06-30

    Air Products has developed an acid gas removal technology based on adsorption (Sour PSA) that favorably compares with incumbent AGR technologies. During this DOE-sponsored study, Air Products has been able to increase the Sour PSA technology readiness level by successfully operating a two-bed test system on coal-derived sour syngas at the NCCC, validating the lifetime and performance of the adsorbent material. Both proprietary simulation and data obtained during the testing at NCCC were used to further refine the estimate of the performance of the Sour PSA technology when expanded to a commercial scale. In-house experiments on sweet syngas combined withmore » simulation work allowed Air Products to develop new PSA cycles that allowed for further reduction in capital expenditure. Finally our techno economic analysis of the use the Sour PSA technology for both IGCC and coal-to-methanol applications suggests significant improvement of the unit cost of electricity and methanol compared to incumbent AGR technologies.« less

  3. An assessment of technology alternatives for telecommunications and information management for the space exploration initiative

    NASA Technical Reports Server (NTRS)

    Ponchak, Denise S.; Zuzek, John E.

    1991-01-01

    On the 20th anniversary of the Apollo 11 lunar landing, President Bush set forth ambitious goals for expanding human presence in the solar system. The Space Exploration Initiative (SEI) addresses these goals beginning with Space Station Freedom, followed by a permanent return to the Moon, and a manned mission to Mars. A well designed, adaptive Telecommunications, Navigation, and Information Management (TNIM) infrastructure is vital to the success of these missions. Utilizing initial projections of user requirements, a team under the direction of NASA's Office of Space Operations developed overall architectures and point designs to implement the TNIM functions for the Lunar and Mars mission scenarios. Based on these designs, an assessment of technology alternatives for the telecommunications and information management functions was performed. This technology assessment identifies technology developments necessary to meet the telecommunications and information management system requirements for SEI. Technology requirements, technology needs and alternatives, the present level of technology readiness in each area, and a schedule for development are presented.

  4. Y2K compliance readiness and contingency planning.

    PubMed

    Stahl, S; Cohan, D

    1999-09-01

    As the millennium approaches, discussion of "Y2K compliance" will shift to discussion of "Y2K readiness." While "compliance" focuses on the technological functioning of one's own computers, "readiness" focuses on the operational planning required in a world of interdependence, in which the functionality of one's own computers is only part of the story. "Readiness" includes the ability to cope with potential Y2K failures of vendors, suppliers, staff, banks, utility companies, and others. Administrators must apply their traditional skills of analysis, inquiry and diligence to the manifold imaginable challenges which Y2K will thrust upon their facilities. The SPICE template can be used as a systematic tool to guide planning for this historic event.

  5. Necessary School Readiness Skills for Kindergarten Success According to Jordanian Teachers

    ERIC Educational Resources Information Center

    Abu Taleb, Tagreed Fathi

    2013-01-01

    The purpose of this study was to examine the necessity levels of children's school readiness skills held by Jordanian kindergarten teachers. The sample consisted of 347 teachers drawn from the public and private kindergarten education sectors. The school readiness data collection instrument included seven readiness domains with a total of 39…

  6. Empowering School Teachers for Emerging Technologies: An Action Plan

    ERIC Educational Resources Information Center

    Misra, Pradeep Kumar

    2010-01-01

    "Possessing openness to emerging technologies is critical for teachers in the technology-rich 21st Century as technology continues to accelerate at a rapid rate. Readiness for new technologies is a challenge associated with change. Teachers who resist change may impede and/or limit their students' learning and skills. Teachers, therefore,…

  7. A Professional Learning Program Designed to Increase K-12 Teachers' Instructional Technology Use

    ERIC Educational Resources Information Center

    Spencer, Lisa A.

    2014-01-01

    Despite the ready availability of many instructional-technology resources, many teachers in the researched Maryland school district are uncomfortable using technology to deliver content. This concurrent mixed methods case study examined the impact of Sharing Technology with Educators Program (STEP) on 269 K-12 teachers' technology use. The study…

  8. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT; RECHARGEABLE ALKALINE HOUSEHOLD BATTERY SYSTEM; RAYOVAC CORPORATION, RENEWAL

    EPA Science Inventory

    The EPA's ETV Program, in partnership with recognized testing organizations, objectively and systematically documents the performance of commercial ready technologies. Together, with the full participation of the technology developer, develop plans, conduct tests, collect and ana...

  9. VERIFICATION TESTING OF WET-WEATHER FLOW TECHNOLOGIES

    EPA Science Inventory

    As part of the USEPA's ETV Program, the Wet-Weather Flow (WWF) Technologies Pilot Program verifies the performance of commercial-ready technologies by generating quality-assured data using test protocols developed with broad-based stakeholder input. The availability of a credible...

  10. TECHcitement: Advances in Technological Education, 2007

    ERIC Educational Resources Information Center

    Patton, Madeline

    2007-01-01

    This publication presents the following nine articles: (1) ATE [Advanced Technological Education] Readies Technicians for International Competition; (2) Technicians in Demand Worldwide; (3) Accreditation Board for Engineering and Technology Endorses International Protocols for Technicians; (4) Entrepreneurial Educator Creates InnovaBio to Meet…

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    The Analysis of Search Results for the Clarification and Identification of Technology Emergence (AR-CITE) computer code examines a scientometric model that tracks the emergence of an identified technology from initial discovery (via original scientific and conference literature), through critical discoveries (via original scientific, conference literature and patents), transitioning through Technology Readiness Levels (TRLs) and ultimately on to commercial currency of citations, collaboration indicators, and on-line news patterns are identified. The combinations of four distinct and separate searchable on-line networked sources (i.e. scholarly publications and citation, world patents, news archives, and on-line mapping networks) are assembled to become one collective networkmore » (a dataset for analysis of relations). This established network becomes the basis from which to quickly analyze the temporal flow of activity (searchable events) for the subject domain to be clarified and identified.« less

  12. Topography-based analysis of Hurricane Katrina inundation of New Orleans: Chapter 3G in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Gesch, Dean

    2007-01-01

    The ready availability of high-resolution, high-accuracy elevation data proved valuable for development of topographybased products to determine rough estimates of the inundation of New Orleans, La., from Hurricane Katrina. Because of its high level of spatial detail and vertical accuracy of elevation measurements, light detection and ranging (lidar) remote sensing is an excellent mapping technology for use in low-relief hurricane-prone coastal areas.

  13. Technology Readiness Assessment of Department of Energy Waste Processing Facilities

    DTIC Science & Technology

    2007-09-11

    Must Be Reliable, Robust, Flexible, and Durable 6 EM Is Piloting the TRA/AD2 Process Hanford Waste Treatment Plant ( WTP ) – The Initial Pilot Project...Evaluation WTP can only treat ~ ½ of the LAW in the time it will take to treat all the HLW. • There is a need for tank space that will get more urgent with...Facility before the WTP Pretreatment and High-Level Waste (HLW) Vitrification Facilities are available (Requires tank farm pretreatment capability) TRAs

  14. Workshop I: Systems/Standards/Arrays

    NASA Technical Reports Server (NTRS)

    Piszczor, Mike; Reed, Brad

    2007-01-01

    Workshop Format: 1) 1:00 - 3:00 to cover various topics as appropriate; 2) At last SPRAT, conducted Workshop topic on solar cell and array qualification standards. Brad Reed will present update on status of that effort; 3) Second workshop topic: The Future of PV Research within NASA. 4) Any time remaining, specific topics from participants. 5) Reminder for IAPG Members! RECWG today 3:00-5:00 in Federal Room, 2nd Floor OAI. a chart is presented showing: Evaluation of Solar Array Technology Readiness Levels.

  15. Understanding and Modeling Vortical Flows to Improve the Technology Readiness Level for Military Aircraft (Comprehension et Modelisation des Flux de Vortex Pour Ameliorer le Niveau de Maturite Technologique au Profit des Avions Militaires)

    DTIC Science & Technology

    2009-10-01

    636.7 115,418 0 2500 5000 7500 10000 12500 iterations -5 -4 -3 -2 -1 0 lo g( dρ /d t) SA EARSM EARSM + CC Hellsten EARSM Hellsten EARSM + CC DRSM...VORTEX BREAKDOWN RTO-TR-AVT-113 29 - 13 θU URo axial= (1) As a vortex passes through a normal shock, the tangential velocity is

  16. Preliminary performance of a vertical-attitude takeoff and landing, supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system

    NASA Technical Reports Server (NTRS)

    Robins, A. W.; Beissner, F. L., Jr.; Domack, C. S.; Swanson, E. E.

    1985-01-01

    A performance study was made of a vertical attitude takeoff and landing (VATOL), supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system. Those characteristics considered were aerodynamics, weight, balance, and performance. Preliminary results indicate that high levels of supersonic aerodynamic performance can be achieved. Further, with the assumption of an advanced (1985 technology readiness) low bypass ratio turbofan engine and advanced structures, excellent mission performance capability is indicated.

  17. Energy Conversion Efficiency Potential for Forward-Deployed Generation Using Direct Carbon Fuel Cells

    DTIC Science & Technology

    2012-05-01

    fuel cells vs. DCFCs. PEMFC PAFC MCFC SOFC DCFC Electrolyte Polymer Phosphoric acid Molten car- bonate salt Ceramic Fused KNO3 Operating...air O2/air CO2/O2/air O2/air Humidified air Efficiency (Higher Heating Value [HHV]) 30–35% 40–50% 50–60% 45–55% 80% PEMFC : Proton Exchange... PEMFC proton-exchange membrane fuel cell SOFC solid oxide fuel cell SRI Statistical Research, Inc. TR technical report TRL technology readiness level

  18. Design Considerations for an Integrated Solar Sail Diagnostics System

    NASA Technical Reports Server (NTRS)

    Jenkins, Christopher H. M.; Gough, Aaron R.; Pappa, Richard S.; Carroll, Joe; Blandino, Joseph R.; Miles, Jonathan J.; Rakoczy, John

    2004-01-01

    Efforts are continuing under NASA support to improve the readiness level of solar sail technology. Solar sails have one of the best chances to be the next gossamer spacecraft flown in space. In the gossamer spacecraft community thus far, solar sails have always been considered a "low precision" application compared with, say, radar or optical devices. However, as this paper shows, even low precision gossamer applications put extraordinary demands on structural measurement systems if they are to be traceable to use in space.

  19. 2035 Air Dominance Requirements for State-On-State Conflict

    DTIC Science & Technology

    2011-02-16

    story.jsp?id=news/ awst /2011/01/10/AW_01_10_ 2011_p58-280833.xml&channel=misc (accessed 3 Jan 2011). Bilbro, James. “Technology Readiness Levels.” JB...channel = awst &id =news/aw121508p2.xml&headline=null&prev=10. (accessed 3 January 2011). Global Security.org. “Miniature Air-Launched Decoy (MALD...Battle.” Center for Strategic and Budgetary Assessment, http://www.csba online.com/4Publications/PubLibrary/ R .20100518.Slides_AirSea_Batt/ R .20100518

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    The technology necessary to build net zero energy buildings (NZEBs) is ready and available today, however, building to net zero energy performance levels can be challenging. Energy efficiency measures, onsite energy generation resources, load matching and grid interaction, climatic factors, and local policies vary from location to location and require unique methods of constructing NZEBs. It is recommended that Components start looking into how to construct and operate NZEBs now as there is a learning curve to net zero construction and FY 2020 is just around the corner.

  1. Test Plans. Lightweight Durable TPS: Tasks 1,2,4,5, and 6

    NASA Technical Reports Server (NTRS)

    Greenberg, H. S.; Tu, Tina

    1994-01-01

    The objective of this task is to develop the fluted core flexible blankets, also referred to as the Tailorable Advanced Blanket Insulation (TABI), to a technology readiness level (TRL) of 6. This task is one of the six tasks under TA 3, Lightweight Durable TPS study, of the Single Stage to Orbit (SSTO) program. The purpose of this task is to develop a durable and low maintenance flexible TPS blanket material to be implemented on the SSTO vehicle.

  2. Environmental, Economic, and Scalability Considerations and Trends of Selected Fuel Economy-Enhancing Biomass-Derived Blendstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, Jennifer B.; Biddy, Mary; Jones, Susanne

    Twenty-four biomass-derived compounds and mixtures, identified based on their physical properties, which could be blended into fuels to improve spark ignition engine fuel economy, were assessed for their economic, technology readiness, and environmental viability. These bio-blendstocks were modeled to be produced biochemically, thermochemically, or through hybrid processes. To carry out the assessment, 17 metrics were developed for which each bio-blendstock was determined to be favorable, neutral, or unfavorable. Cellulosic ethanol was included as a reference case. Overall economic and, to some extent, environmental viability is driven by projected yields for each of these processes. The metrics used in this analysismore » methodology highlight the near-term potential to achieve these targeted yield estimates when considering data quality and current technical readiness for these conversion strategies. Key knowledge gaps included the degree of purity needed for use as a bio-blendstock. Less stringent purification requirements for fuels could cut processing costs and environmental impacts. Additionally, more information is needed on the blending behavior of many of these bio-blendstocks with gasoline to support the technology readiness evaluation. Altogether, the technology to produce many of these blendstocks from biomass is emerging, and as it matures, these assessments must be revisited. Importantly, considering economic, environmental, and technology readiness factors, in addition to physical properties of blendstocks that could be used to boost engine efficiency and fuel economy, in the early stages of project research and development can help spotlight those most likely to be viable in the near term.« less

  3. Environmental, Economic, and Scalability Considerations and Trends of Selected Fuel Economy-Enhancing Biomass-Derived Blendstocks

    DOE PAGES

    Dunn, Jennifer B.; Biddy, Mary; Jones, Susanne; ...

    2017-10-30

    Twenty-four biomass-derived compounds and mixtures, identified based on their physical properties, which could be blended into fuels to improve spark ignition engine fuel economy, were assessed for their economic, technology readiness, and environmental viability. These bio-blendstocks were modeled to be produced biochemically, thermochemically, or through hybrid processes. To carry out the assessment, 17 metrics were developed for which each bio-blendstock was determined to be favorable, neutral, or unfavorable. Cellulosic ethanol was included as a reference case. Overall economic and, to some extent, environmental viability is driven by projected yields for each of these processes. The metrics used in this analysismore » methodology highlight the near-term potential to achieve these targeted yield estimates when considering data quality and current technical readiness for these conversion strategies. Key knowledge gaps included the degree of purity needed for use as a bio-blendstock. Less stringent purification requirements for fuels could cut processing costs and environmental impacts. Additionally, more information is needed on the blending behavior of many of these bio-blendstocks with gasoline to support the technology readiness evaluation. Altogether, the technology to produce many of these blendstocks from biomass is emerging, and as it matures, these assessments must be revisited. Importantly, considering economic, environmental, and technology readiness factors, in addition to physical properties of blendstocks that could be used to boost engine efficiency and fuel economy, in the early stages of project research and development can help spotlight those most likely to be viable in the near term.« less

  4. Composites for Exploration Upper Stage

    NASA Technical Reports Server (NTRS)

    Fikes, J. C.; Jackson, J. R.; Richardson, S. W.; Thomas, A. D.; Mann, T. O.; Miller, S. G.

    2016-01-01

    The Composites for Exploration Upper Stage (CEUS) was a 3-year, level III project within the Technology Demonstration Missions program of the NASA Space Technology Mission Directorate. Studies have shown that composites provide important programmatic enhancements, including reduced weight to increase capability and accelerated expansion of exploration and science mission objectives. The CEUS project was focused on technologies that best advanced innovation, infusion, and broad applications for the inclusion of composites on future large human-rated launch vehicles and spacecraft. The benefits included near- and far-term opportunities for infusion (NASA, industry/commercial, Department of Defense), demonstrated critical technologies and technically implementable evolvable innovations, and sustained Agency experience. The initial scope of the project was to advance technologies for large composite structures applicable to the Space Launch System (SLS) Exploration Upper Stage (EUS) by focusing on the affordability and technical performance of the EUS forward and aft skirts. The project was tasked to develop and demonstrate critical composite technologies with a focus on full-scale materials, design, manufacturing, and test using NASA in-house capabilities. This would have demonstrated a major advancement in confidence and matured the large-scale composite technology to a Technology Readiness Level 6. This project would, therefore, have bridged the gap for providing composite application to SLS upgrades, enabling future exploration missions.

  5. Technology Transition a Model for Infusion and Commercialization

    NASA Technical Reports Server (NTRS)

    McMillan, Vernotto C.

    2006-01-01

    The National Aeronautics and Space Administration has as part of its charter the mission of transferring technologies developed for the space program into the private sector for the purpose of affording back to the American people the economical and improved quality of life benefits associated with the technologies developed. In recent years considerable effort has been made to use this program for not only transitioning technologies out of the NASA Mission Directorate Programs, but also to transfer technologies into the Mission Directorate Programs and leverage the impact of government and private sector innovation. The objective of this paper is to outline an approach and the creation of a model that brings together industry, government, and commercialization strategies. When these elements are integrated, the probability of successful technology development, technology infusion into the Mission Programs, and commercialization into the private sector is increased. This model primarily addresses technology readiness levels between TRL 3 and TRL 6. This is typically a gap area known as the valley of death. This gap area is too low for commercial entities to invest heavily and not developed enough for major programs to actively pursue. This model has shown promise for increasing the probably of TRL advancement to an acceptable level for NASA programs and/or commercial entities to afford large investments toward either commercialization or infusion.

  6. Formation Flying for Satellites and Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Merrill, Garrick

    2015-01-01

    The shrinking size of satellites and unmanned aerial vehicles (UAVs) is enabling lower cost missions. As sensors and electronics continue to downsize, the next step is multiple vehicles providing different perspectives or variations for more precise measurements. While flying a single satellite or UAV autonomously is a challenge, flying multiple vehicles in a precise formation is even more challenging. The goal of this project is to develop a scalable mesh network between vehicles (satellites or UAVs) to share real-time position data and maintain formations autonomously. Newly available low-cost, commercial off-the-shelf credit card size computers will be used as the basis for this network. Mesh networking techniques will be used to provide redundant links and a flexible network. The Small Projects Rapid Integration and Test Environment Lab will be used to simulate formation flying of satellites. UAVs built by the Aero-M team will be used to demonstrate the formation flying in the West Test Area. The ability to test in flight on NASA-owned UAVs allows this technology to achieve a high Technology Readiness Level (TRL) (TRL-4 for satellites and TRL-7 for UAVs). The low cost of small UAVs and the availability of a large test range (West Test Area) dramatically reduces the expense of testing. The end goal is for this technology to be ready to use on any multiple satellite or UAV mission.

  7. Thermal management for high power space platform systems

    NASA Technical Reports Server (NTRS)

    Gualdoni, R. A.

    1980-01-01

    With future spacecraft power requirements expected to be in the order of 100 to 250 kilowatts and orbital lifetimes in the order of five to ten years, new approaches and concepts will be required that can efficiently and cost effectively provide the required heat rejection and temperature control capabilities. A plan was established to develop the commensurate technologies necessary for the thermal management of a high power space platform representative of future requirements and to achieve technology readiness by 1987. The approach taken in developing the program was to view the thermal requirements of the spacecraft as a spacecraft system rather than each as an isolated thermal problem. The program plan proposes 45 technology tasks required to achieve technology readiness. Of this total, 24 tasks were subsequently identified as being pacing technology tasks and were recommended for initiation in FY 1980 and FY 1981.

  8. Emerging Technologies Integrating Technology into Study Abroad

    ERIC Educational Resources Information Center

    Godwin-Jones, Robert

    2016-01-01

    "Ready access to travel and to technology-enhanced social networking (e.g., Facebook or Skype) has changed the nature of study abroad to the point where today's experiences are fundamentally different from those of earlier eras" (Kinginger, 2013a, p. 345). In addition to more travel options and greater technology availability, study…

  9. High Data Rate Instrument Study

    NASA Technical Reports Server (NTRS)

    Schober, Wayne; Lansing, Faiza; Wilson, Keith; Webb, Evan

    1999-01-01

    The High Data Rate Instrument Study was a joint effort between the Jet Propulsion Laboratory (JPL) and the Goddard Space Flight Center (GSFC). The objectives were to assess the characteristics of future high data rate Earth observing science instruments and then to assess the feasibility of developing data processing systems and communications systems required to meet those data rates. Instruments and technology were assessed for technology readiness dates of 2000, 2003, and 2006. The highest data rate instruments are hyperspectral and synthetic aperture radar instruments which are capable of generating 3.2 Gigabits per second (Gbps) and 1.3 Gbps, respectively, with a technology readiness date of 2003. These instruments would require storage of 16.2 Terebits (Tb) of information (RF communications case of two orbits of data) or 40.5 Tb of information (optical communications case of five orbits of data) with a technology readiness date of 2003. Onboard storage capability in 2003 is estimated at 4 Tb; therefore, all the data created cannot be stored without processing or compression. Of the 4 Tb of stored data, RF communications can only send about one third of the data to the ground, while optical communications is estimated at 6.4 Tb across all three technology readiness dates of 2000, 2003, and 2006 which were used in the study. The study includes analysis of the onboard processing and communications technologies at these three dates and potential systems to meet the high data rate requirements. In the 2003 case, 7.8% of the data can be stored and downlinked by RF communications while 10% of the data can be stored and downlinked with optical communications. The study conclusion is that only 1 to 10% of the data generated by high data rate instruments will be sent to the ground from now through 2006 unless revolutionary changes in spacecraft design and operations such as intelligent data extraction are developed.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob

    This study provides a comprehensive lifecycle analysis (LCA), or cradle-to-grave (C2G) analysis, of the cost and greenhouse gas (GHG) emissions of a variety of vehicle-fuel pathways, as well as the levelized cost of driving (LCD) and cost of avoided GHG emissions. This study also estimates the technology readiness levels (TRLs) of key fuel and vehicle technologies along the pathways. The C2G analysis spans a full portfolio of midsize light-duty vehicles (LDVs), including conventional internal combustion engine vehicles (ICEVs), flexible fuel vehicles (FFVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), battery electric vehicles (BEVs), and fuel cell electric vehiclesmore » (FCEVs). In evaluating the vehicle-fuel combinations, this study considers both low-volume and high-volume “CURRENT TECHNOLOGY” cases (nominally 2015) and a high-volume “FUTURE TECHNOLOGY” lower-carbon case (nominally 2025–2030). For the CURRENT TECHNOLOGY case, low-volume vehicle and fuel production pathways are examined to determine costs in the near term.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob

    This study provides a comprehensive life-cycle analysis (LCA), or cradle-to-grave (C2G) analysis, of the cost and greenhouse gas (GHG) emissions of a variety of vehicle-fuel pathways, as well as the levelized cost of driving (LCD) and cost of avoided GHG emissions. This study also estimates the technology readiness levels (TRLs) of key fuel and vehicle technologies along the pathways. The C2G analysis spans a full portfolio of midsize light-duty vehicles (LDVs), including conventional internal combustion engine vehicles (ICEVs), flexible fuel vehicles (FFVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), battery electric vehicles (BEVs), and fuel cell electric vehiclesmore » (FCEVs). In evaluating the vehicle-fuel combinations, this study considers both low-volume and high-volume “CURRENT TECHNOLOGY” cases (nominally 2015) and a high-volume “FUTURE TECHNOLOGY” lower-carbon case (nominally 2025–2030). For the CURRENT TECHNOLOGY case, low-volume vehicle and fuel production pathways are examined to determine costs in the near term.« less

  12. Deformed Shape Analysis of Coupled Glazing Systems

    DTIC Science & Technology

    2013-09-01

    Tyndall Air Force Base, Florida, USA ABSTRACT Glazing in storefront and curtain wall configurations is increasingly used in areas subjected to... AIR FORCE CIVIL ENGINEER CENTER READINESS DIRECTORATE  Requirements & Acquisition Division  United States Air Force  Tyndall Air Force...Antonio, Texas; %Omaha, Nebraska #Jacobs Technology, Fort Walton Beach, Florida Air Force Civil Engineer Center Readiness Directorate Requirements

  13. TRL-6 for JWST wavefront sensing and control

    NASA Astrophysics Data System (ADS)

    Feinberg, Lee D.; Dean, Bruce H.; Aronstein, David L.; Bowers, Charles W.; Hayden, William; Lyon, Richard G.; Shiri, Ron; Smith, J. Scott; Acton, D. Scott; Carey, Larkin; Contos, Adam; Sabatke, Erin; Schwenker, John; Shields, Duncan; Towell, Tim; Shi, Fang; Meza, Luis

    2007-09-01

    NASA's Technology Readiness Level (TRL)-6 is documented for the James Webb Space Telescope (JWST) Wavefront Sensing and Control (WFSC) subsystem. The WFSC subsystem is needed to align the Optical Telescope Element (OTE) after all deployments have occurred, and achieves that requirement through a robust commissioning sequence consisting of unique commissioning algorithms, all of which are part of the WFSC algorithm suite. This paper identifies the technology need, algorithm heritage, describes the finished TRL-6 design platform, and summarizes the TRL-6 test results and compliance. Additionally, the performance requirements needed to satisfy JWST science goals as well as the criterion that relate to the TRL-6 Testbed Telescope (TBT) performance requirements are discussed.

  14. TRL-6 for JWST Wavefront Sensing and Control

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Dean, Bruce; Smith, Scott; Aronstein, David; Shiri, Ron; Lyon, Rick; Hayden, Bill; Bowers, Chuck; Acton, D. Scott; Shields, Duncan; hide

    2007-01-01

    NASA's Technology Readiness Level (TRL)-6 is documented for the James Webb Space Telescope (JWST) Wavefront Sensing and Control (WFSC) subsystem. The WFSC subsystem is needed to align the Optical Telescope Element (OTE) after all deployments have occurred, and achieves that requirement through a robust commissioning sequence consisting of unique commissioning algorithms, all of which are part of the WFSC algorithm suite. This paper identifies the technology need, algorithm heritage, describes the finished TRL-6 design platform, and summarizes the TRL-6 test results and compliance. Additionally, the performance requirements needed to satisfy JWST science goals as well as the criterion that relate to the TRL-6 Testbed Telescope (TBT) performance requirements are discussed

  15. General service and child immunization-specific readiness assessment of healthcare facilities in two selected divisions in Bangladesh.

    PubMed

    Shawon, Md Shajedur Rahman; Adhikary, Gourab; Ali, Md Wazed; Shamsuzzaman, Md; Ahmed, Shahabuddin; Alam, Nurul; Shackelford, Katya A; Woldeab, Alexander; Lim, Stephen S; Levine, Aubrey; Gakidou, Emmanuela; Uddin, Md Jasim

    2018-01-25

    Service readiness of health facilities is an integral part of providing comprehensive quality healthcare to the community. Comprehensive assessment of general and service-specific (i.e. child immunization) readiness will help to identify the bottlenecks in healthcare service delivery and gaps in equitable service provision. Assessing healthcare facilities readiness also helps in optimal policymaking and resource allocation. A health facility survey was conducted between March 2015 and December 2015 in two purposively selected divisions in Bangladesh; i.e. Rajshahi division (high performing) and Sylhet division (low performing). A total of 123 health facilities were randomly selected from different levels of service, both public and private, with variation in sizes and patient loads from the list of facilities. Data on various aspects of healthcare facility were collected by interviewing key personnel. General service and child immunization specific service readiness were assessed using the Service Availability and Readiness Assessment (SARA) manual developed by World Health Organization (WHO). The analyses were stratified by division and level of healthcare facilities. The general service readiness index for pharmacies, community clinics, primary care facilities and higher care facilities were 40.6%, 60.5%, 59.8% and 69.5%, respectively in Rajshahi division and 44.3%, 57.8%, 57.5% and 73.4%, respectively in Sylhet division. Facilities at all levels had the highest scores for basic equipment (ranged between 51.7% and 93.7%) and the lowest scores for diagnostic capacity (ranged between 0.0% and 53.7%). Though facilities with vaccine storage capacity had very high levels of service readiness for child immunization, facilities without vaccine storage capacity lacked availability of many tracer items. Regarding readiness for newly introduced pneumococcal conjugate vaccine (PCV) and inactivated polio vaccine (IPV), most of the surveyed facilities reported lack of sufficient funding and resources (antigen) for training programs. Our study suggested that health facilities suffered from lack of readiness in various aspects, most notably in diagnostic capacity. Conversely, with very few challenges, nearly all the health facilities designated to provide immunization services were ready to deliver routine childhood immunization services as well as newly introduced PCV and IPV.

  16. Evaluating Community Readiness to Implement Environmental and Policy-Based Alcohol Abuse Prevention Strategies in Wisconsin

    PubMed Central

    Paltzer, Jason; Black, Penny; Moberg, D. Paul

    2013-01-01

    Background Matching evidence-based alcohol prevention strategies with a community’s readiness to support those strategies is the basis for the Tri-Ethnic Community Readiness Model (CRM). The purpose of this evaluation was to assess the association of a community’s readiness to address alcohol abuse in their community with the implementation of environmental and policy-based strategies. Methods Twenty-one substance abuse prevention coalitions in Wisconsin participated in a pre-post intervention group-only evaluation using the CRM. As part of a Substance Abuse and Mental Health Services Administration (SAMHSA) grant, all grantees were obligated by the Wisconsin Department of Health Services to implement environmental and policy-based strategies focused on one of three priority areas: young adult binge drinking, underage drinking, and alcohol-related motor-vehicle injuries and fatalities. Results At baseline, all communities (n=21) scored at or below a Stage 4 (on a scale of 1–9) readiness level (“preparedness”). The mean change in community readiness over the three-year period (2009–2011) was significant, but was less than one complete CRM stage (0.77, p=<0.001; 95% CI: 0.49, 1.05). Conclusion These findings suggest that implementation of environmental and policy-based strategies may improve a community’s progression in perceived readiness to address alcohol abuse regardless of the community’s baseline level of readiness to address alcohol abuse. Recommendation An assessment specific for measuring community readiness for policy-related strategies should be developed. The assessment would include community-level factors (e.g. community climate) for implementing policy-related prevention strategies, and not assume a linear readiness model. PMID:25346555

  17. Airframe Research and Technology for Hypersonic Airbreathing Vehicles

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Merski, N. Ronald; Glass, Christopher E.

    2002-01-01

    The Hypersonics Investment Area (HIA) within NASA's Advanced Space Transportation Program (ASTP) has the responsibility to develop hypersonic airbreathing vehicles for access to space. The Airframe Research and Technology (AR and T) Project, as one of six projects in the HIA, will push the state-of-the-art in airframe and vehicle systems for low-cost, reliable, and safe space transportation. The individual technologies within the project are focused on advanced, breakthrough technologies in airframe and vehicle systems and cross-cutting activities that are the basis for improvements in these disciplines. Both low and medium technology readiness level (TRL) activities are being pursued. The key technical areas that will be addressed by the project include analysis and design tools, integrated vehicle health management (IVHM), composite (polymer, metal, and ceramic matrix) materials development, thermal/structural wall concepts, thermal protection systems, seals, leading edges, aerothermodynamics, and airframe/propulsion flowpath technology. Each of the technical areas or sub-projects within the Airframe R and T Project is described in this paper.

  18. Decision Gate Process for Assessment of a Technology Development Portfolio

    NASA Technical Reports Server (NTRS)

    Kohli, Rajiv; Fishman, Julianna; Hyatt, Mark

    2012-01-01

    The NASA Dust Management Project (DMP) was established to provide technologies (to TRL 6 development level) required to address adverse effects of lunar dust to humans and to exploration systems and equipment, which will reduce life cycle cost and risk, and will increase the probability of sustainable and successful lunar missions. The technology portfolio of DMP consisted of different categories of technologies whose final product is either a technology solution in itself, or one that contributes toward a dust mitigation strategy for a particular application. A Decision Gate Process (DGP) was developed to assess and validate the achievement and priority of the dust mitigation technologies as the technologies progress through the development cycle. The DGP was part of continuous technology assessment and was a critical element of DMP risk management. At the core of the process were technology-specific criteria developed to measure the success of each DMP technology in attaining the technology readiness levels assigned to each decision gate. The DGP accounts for both categories of technologies and qualifies the technology progression from technology development tasks to application areas. The process provided opportunities to validate performance, as well as to identify non-performance in time to adjust resources and direction. This paper describes the overall philosophy of the DGP and the methodology for implementation for DMP, and describes the method for defining the technology evaluation criteria. The process is illustrated by example of an application to a specific DMP technology.

  19. JWST Lightweight Mirror TRL-6 Results

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2007-01-01

    Mirror technology for a Primary Mirror Segment Assembly (PMSA) is a system of components: reflective coating; polished optical surface; mirror substrate; actuators, mechanisms and flexures; and reaction structure. The functional purpose of a PMSA is to survive launch, deploy and align itself to form a 25 square meter collecting area 6.5 meter diameter primary mirror with a 131 nm rms wavefront error at temperatures less than 50K and provide stable optical performance for the anticipated thermal environment. At the inception of JWST in 1996, such a capability was at a Technology Readiness Level (TRL) of 3. A highly successful technology development program was initiated including the Sub-scale Beryllium Mirror Demonstrator (SBMD) and Advanced Mirror System Demonstrator (AMSD) projects. These projects along with flight program activities have matured mirror technology for JWST to TRL-6. A directly traceable prototype (and in some cases the flight hardware itself) has been built, tested and operated in a relevant environment.

  20. Scientometric methods for identifying emerging technologies

    DOEpatents

    Abercrombie, Robert K; Schlicher, Bob G; Sheldon, Frederick T

    2015-11-03

    Provided is a method of generating a scientometric model that tracks the emergence of an identified technology from initial discovery (via original scientific and conference literature), through critical discoveries (via original scientific, conference literature and patents), transitioning through Technology Readiness Levels (TRLs) and ultimately on to commercial application. During the period of innovation and technology transfer, the impact of scholarly works, patents and on-line web news sources are identified. As trends develop, currency of citations, collaboration indicators, and on-line news patterns are identified. The combinations of four distinct and separate searchable on-line networked sources (i.e., scholarly publications and citation, worldwide patents, news archives, and on-line mapping networks) are assembled to become one collective network (a dataset for analysis of relations). This established network becomes the basis from which to quickly analyze the temporal flow of activity (searchable events) for the example subject domain.

  1. Clean Energy Technologies Ready for Climate Change Challenge

    Science.gov Websites

    environmental problems is well founded, the director of the National Renewable Energy Laboratory said today renewable energy and energy efficiency technologies in solving environmental problems is clear, Truly said

  2. NASA TEERM Principal Center Non-Chrome Projects

    NASA Technical Reports Server (NTRS)

    Rothgeb, Matthew

    2008-01-01

    Technology Evaluation for Environmental Risk Mitigation (TEERM) Principal Center Mission is to identify and validate environmental technologies through joint activities that enhance mission readiness and reduce risk while minimizing duplication and associated costs.

  3. Multiplex-Ready Technology for mid-throughput genotyping of molecular markers.

    PubMed

    Bonneau, Julien; Hayden, Matthew

    2014-01-01

    Screening molecular markers across large populations in breeding programs is generally time consuming and expensive. The Multiplex-Ready Technology (MRT) (Hayden et al., BMC genomics 9:80, 2008) was created to optimize polymorphism screening and genotyping using standardized PCR reaction conditions. The flexibility of this method maximizes the number of markers (up to 24 markers SSR or SNP, ideally small PCR product <500 bp and highly polymorphic) by using fluorescent dye (VIC, FAM, NED, and PET) and a semiautomated DNA fragment analyzer (ABI3730) capillary electrophoresis for large numbers of DNA samples (96 or 384 samples).

  4. Technology readiness assessment of advanced space engine integrated controls and health monitoring

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1991-01-01

    An evaluation is given for an integrated control and health monitoring system (ICHM) system that is designed to be used with hydrogen-oxygen rocket engines. The minimum required ICHM functions, system elements, technology readiness, and system cost are assessed for a system which permits the operation of H-O engines that are space-based, reusable, and descent throttleable. Based on the evaluation of the H-O ICHM, it is estimated that the minimum system requirements for demonstration on an engine system testbed will require an investment of 30 to 45 million dollars over six years.

  5. Design of the ARES Mars Airplane and Mission Architecture

    NASA Technical Reports Server (NTRS)

    Braun, Robert D.; Wright, Henry S.; Croom, Mark A.; Levine, Joel S.; Spencer, David A.

    2006-01-01

    Significant technology advances have enabled planetary aircraft to be considered as viable science platforms. Such systems fill a unique planetary science measurement gap, that of regional-scale, near-surface observation, while providing a fresh perspective for potential discovery. Recent efforts have produced mature mission and flight system concepts, ready for flight project implementation. This paper summarizes the development of a Mars airplane mission architecture that balances science, implementation risk and cost. Airplane mission performance, flight system design and technology maturation are described. The design, analysis and testing completed demonstrates the readiness of this science platform for use in a Mars flight project.

  6. Framework for Testing the Effectiveness of Bat and Eagle Impact-Reduction Strategies at Wind Energy Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinclair, Karin; DeGeorge, Elise

    2016-04-13

    The objectives of this framework are to facilitate the study design and execution to test the effectiveness of bat and eagle impact-reduction strategies at wind energy sites. Through scientific field research, the wind industry and its partners can help determine if certain strategies are ready for operational deployment or require further development. This framework should be considered a living document to be improved upon as fatality-reduction technologies advance from the initial concepts to proven readiness (through project- and technology-specific testing) and as scientific field methods improve.

  7. Development of a COTS Mass Storage Unit for the Space Readiness Coherent Lidar Experiment

    NASA Technical Reports Server (NTRS)

    Liggin, Karl; Clark, Porter

    1999-01-01

    The technology to develop a Mass Storage Unit (MSU) using commercial-off-the-shelf (COTS) hard drives is an on-going challenge to meet the Space Readiness Coherent Lidar Experiment (SPARCLE) program requirements. A conceptual view of SPARCLE's laser collecting atmospheric data from the shuttle is shown in Figure 1. The determination to develop this technology required several in depth studies before an actual COTS hard drive was selected to continue this effort. Continuing the development of the MSU can, and will, serve future NASA programs that require larger data storage and more on-board processing.

  8. The Large UV/Optical/Infrared Surveyor (LUVOIR): Decadal Mission concept technology development overview

    NASA Astrophysics Data System (ADS)

    Bolcar, Matthew R.

    2017-09-01

    The Large Ultraviolet / Optical / Infrared (LUVOIR) Surveyor is one of four large mission concept studies being developed by NASA for consideration in the 2020 Astrophysics Decadal Survey. LUVOIR will support a broad range of science objectives, including the direct imaging and spectral characterization of habitable exoplanets around sun-like stars, the study of galaxy formation and evolution, the epoch of reionization, star and planet formation, and the remote sensing of Solar System bodies. The LUVOIR Science and Technology Definition Team (STDT) has tasked a Technology Working Group (TWG), with more than 60 members from NASA centers, academia, industry, and international partners, with identifying technologies that enable or enhance the LUVOIR science mission. The TWG has identified such technologies in the areas of Coronagraphy, Ultra-Stable Opto-mechanical Systems, Detectors, Coatings, Starshades, and Instrument Components, and has completed a detailed assessment of the state-of-the-art. We present here a summary of this technology assessment effort, as well as the current progress in defining a technology development plan to mature these technologies to the required technology readiness level (TRL).

  9. Universal Sensor and Actuator Requirements. Chapter 5

    NASA Technical Reports Server (NTRS)

    Rosenfeld, Taylor; Webster, John; Garg, Sanjay

    2009-01-01

    The previous chapters have focused on the requirements for sensors and actuators for "More Intelligent Gas Turbine Engines" from the perspective of performance and operating environment. Even if a technology is available, which meets these performance requirements, there are still various hurdles to be overcome for the technology to transition into a real engine. Such requirements relate to TRL (Technology Readiness Level), durability, reliability, volume, weight, cost, etc. This chapter provides an overview of such universal requirements which any sensor or actuator technology will have to meet before it can be implemented on a product. The objective here is to help educate the researchers or technology developers on the extensive process that the technology has to go through beyond just meeting performance requirements. The hope is that such knowledge will help the technology developers as well as decision makers to prevent wasteful investment in developing solutions to performance requirements, which have no potential to meet the "universal" requirements. These "universal" requirements can be divided into 2 broad areas: 1) Technology value proposition; and 2) Technology maturation. These requirements are briefly discussed in the following.

  10. Development of Inflatable Entry Systems Technologies

    NASA Technical Reports Server (NTRS)

    Player, Charles J.; Cheatwood, F. McNeil; Corliss, James

    2005-01-01

    Achieving the objectives of NASA s Vision for Space Exploration will require the development of new technologies, which will in turn require higher fidelity modeling and analysis techniques, and innovative testing capabilities. Development of entry systems technologies can be especially difficult due to the lack of facilities and resources available to test these new technologies in mission relevant environments. This paper discusses the technology development process to bring inflatable aeroshell technology from Technology Readiness Level 2 (TRL-2) to TRL-7. This paper focuses mainly on two projects: Inflatable Reentry Vehicle Experiment (IRVE), and Inflatable Aeroshell and Thermal Protection System Development (IATD). The objectives of IRVE are to conduct an inflatable aeroshell flight test that demonstrates exoatmospheric deployment and inflation, reentry survivability and stability, and predictable drag performance. IATD will continue the development of the technology by conducting exploration specific trade studies and feeding forward those results into three more flight tests. Through an examination of these projects, and other potential projects, this paper discusses some of the risks, issues, and unexpected benefits associated with the development of inflatable entry systems technology.

  11. The Large UV/Optical/Infrared Surveyor (LUVOIR): Decadal Mission Concept Technology Development Overview

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.

    2017-01-01

    The Large Ultraviolet / Optical / Infrared (LUVOIR) Surveyor is one of four large mission concept studies being developed by NASA for consideration in the 2020 Astrophysics Decadal Survey. LUVOIR will support a broad range of science objectives, including the direct imaging and spectral characterization of habitable exoplanets around sun-like stars, the study of galaxy formation and evolution, the epoch of reionization, star and planet formation, and the remote sensing of Solar System bodies. The LUVOIR Science and Technology Definition Team (STDT) has tasked a Technology Working Group (TWG), with more than 60 members from NASA centers, academia, industry, and international partners, with identifying technologies that enable or enhance the LUVOIR science mission. The TWG has identified such technologies in the areas of Coronagraphy, Ultra-Stable Opto-mechanical Systems, Detectors, Coatings, Starshades, and Instrument Components, and has completed a detailed assessment of the state-of-the-art. We present here a summary of this technology assessment effort, as well as the current progress in defining a technology development plan to mature these technologies to the required technology readiness level (TRL).

  12. Learners' Access to Tools and Experience with Technology at the University of the South Pacific: Readiness for E-Learning

    ERIC Educational Resources Information Center

    Raturi, Shikha; Hogan, Robert; Thaman, Konai Helu

    2011-01-01

    Technology in higher education has become exceedingly popular and useful; however, a digital divide generally applies to the use of technology in education in many developing countries. The Pacific Island countries differ in their technological capacities and infrastructure, with the Fijian capital Suva being most technologically and…

  13. Technology Acquisition Reform

    DTIC Science & Technology

    2004-03-01

    technologies until they are ready to be handed over to an established program. This office would also provide a home for disruptive technologies emerging...the development and acquisition of disruptive technologies .3 Disruptive technologies threaten programs of record but are essential to future Naval...and rarely emerge in response to customer demand. Disruptive technologies have features that a few fringe (and generally new) customers value

  14. A theory of organizational readiness for change

    PubMed Central

    Weiner, Bryan J

    2009-01-01

    Background Change management experts have emphasized the importance of establishing organizational readiness for change and recommended various strategies for creating it. Although the advice seems reasonable, the scientific basis for it is limited. Unlike individual readiness for change, organizational readiness for change has not been subject to extensive theoretical development or empirical study. In this article, I conceptually define organizational readiness for change and develop a theory of its determinants and outcomes. I focus on the organizational level of analysis because many promising approaches to improving healthcare delivery entail collective behavior change in the form of systems redesign--that is, multiple, simultaneous changes in staffing, work flow, decision making, communication, and reward systems. Discussion Organizational readiness for change is a multi-level, multi-faceted construct. As an organization-level construct, readiness for change refers to organizational members' shared resolve to implement a change (change commitment) and shared belief in their collective capability to do so (change efficacy). Organizational readiness for change varies as a function of how much organizational members value the change and how favorably they appraise three key determinants of implementation capability: task demands, resource availability, and situational factors. When organizational readiness for change is high, organizational members are more likely to initiate change, exert greater effort, exhibit greater persistence, and display more cooperative behavior. The result is more effective implementation. Summary The theory described in this article treats organizational readiness as a shared psychological state in which organizational members feel committed to implementing an organizational change and confident in their collective abilities to do so. This way of thinking about organizational readiness is best suited for examining organizational changes where collective behavior change is necessary in order to effectively implement the change and, in some instances, for the change to produce anticipated benefits. Testing the theory would require further measurement development and careful sampling decisions. The theory offers a means of reconciling the structural and psychological views of organizational readiness found in the literature. Further, the theory suggests the possibility that the strategies that change management experts recommend are equifinal. That is, there is no 'one best way' to increase organizational readiness for change. PMID:19840381

  15. Review of NASA In-Space Propulsion Technology Program Inflatable Decelerator Investments

    NASA Technical Reports Server (NTRS)

    Richardson, E. H.; Mnk, M. M.; James, B. F.; Moon, S. A.

    2005-01-01

    The NASA In-Space Propulsion Technology (ISPT) Program is managed by the NASA Headquarters Science Mission Directorate and is implemented by the Marshall Space Flight Center in Huntsville, Alabama. The ISPT objective is to fund development of promising in-space propulsion technologies that can decrease flight times, decrease cost, or increase delivered payload mass for future science missions. Before ISPT will invest in a technology, the Technology Readiness Level (TRL) of the concept must be estimated to be at TRL 3. A TRL 3 signifies that the technical community agrees that the feasibility of the concept has been proven through experiment or analysis. One of the highest priority technology investments for ISPT is Aerocapture. The aerocapture maneuver uses a planetary atmosphere to reduce or alter the speed of a vehicle allowing for quick, propellantless (or using very little propellant) orbit capture. The atmosphere is used as a brake, transferring the energy associated with the vehicle's high speed into thermal energy. The ISPT Aerocapture Technology Area (ATA) is currently investing in the development of advanced lightweight ablative thermal protection systems, high temperature composite structures, and heat-flux sensors for rigid aeroshells. The heritage of rigid aeroshells extends back to the Apollo era and this technology will most likely be used by the first generation aerocapture vehicle. As a second generation aerocapture technology, ISPT is investing in three inflatable aerodynamic decelerator concepts for planetary aerocapture. They are: trailing ballute (balloon-parachute), attached afterbody ballute, and an inflatable aeroshell. ISPT also leverages the NASA Small Business Innovative Research Program for additional inflatable decelerator technology development. In mid-2004 ISPT requested an independent review of the three inflatable decelerator technologies funded directly by ISPT to validate the TRL and to identify technology maturation concerns. An independent panel with expertise in advanced thin film materials, aerothermodynamics, trajectory design, and inflatable structures was convened to assess the ISPT investments. The panel considered all major technical subsystems including materials, aerothermodynamics, structural dynamics, packaging, and inflation systems. The panel assessed the overall technology readiness of inflatable decelerators to be a 3 and identified fluid- structure interaction, aeroheating, and structural adhesives to be of highest technical concern.

  16. Review of NASA In-Space Propulsion Technology Program Inflatable Decelerator Investments

    NASA Technical Reports Server (NTRS)

    Richardson, Erin H.; Munk, Michelle M.; James, Bonnie F.; Moon, Steve A.

    2005-01-01

    The NASA In-Space Propulsion Technology (ISPT) Program is managed by the NASA Headquarters Science Mission Directorate and is implemented by the Marshall Space Flight Center in Huntsville, Alabama. The ISPT objective is to fund development of promising in- space propulsion technologies that can decrease flight times, decrease cost, or increase delivered payload mass for future science missions. Before ISPT will invest in a technology, the Technology Readiness Level (TRL) of the concept must be estimated to be at TRL 3. A TRL 3 signifies that the technical community agrees that the feasibility of the concept has been proven through experiment or analysis. One of the highest priority technology investments for ISPT is Aerocapture. The aerocapture maneuver uses a planetary atmosphere to reduce or alter the speed of a vehicle allowing for quick, propellantless (or using very little propellant) orbit capture. The atmosphere is used as a brake, transferring the energy associated with the vehicle s high speed into thermal energy. The ISPT Aerocapture Technology Area (ATA) is currently investing in the development of advanced lightweight ablative thermal protection systems, high temperature composite structures, and heat-flux sensors for rigid aeroshells. The heritage of rigid aeroshells extends back to the Apollo era and this technology will most likely be used by the first generation aerocapture vehicle. As a second generation aerocapture technology, ISPT is investing in three inflatable aerodynamic decelerator concepts for planetary aerocapture. They are: trailing ballute (balloon-parachute), attached afterbody ballute, and an inflatable aeroshell. ISPT also leverages the NASA Small Business Innovative Research Program for additional inflatable decelerator technology development. In mid-2004 ISPT requested an independent review of the three inflatable decelerator technologies funded directly by ISPT to validate the TRL and to identify technology maturation concerns. An independent panel with expertise in advanced thin film materials, aerothermodynamics, trajectory design, and inflatable structures was convened to assess the ISPT investments. The panel considered all major technical subsystems including materials, aerothermodynamics, structural dynamics, packaging, and inflation systems. The panel assessed the overall technology readiness of inflatable decelerators to be a 3 and identified fluid-structure interaction, aeroheating, and structural adhesives to be of highest technical concern.

  17. Precision Departure Release Capability (PDRC) Concept of Operations

    NASA Technical Reports Server (NTRS)

    Engelland, Shawn; Capps, Richard A.; Day, Kevin Brian

    2013-01-01

    After takeoff, aircraft must merge into en route (Center) airspace traffic flows which may be subject to constraints that create localized demandcapacity imbalances. When demand exceeds capacity Traffic Management Coordinators (TMCs) often use tactical departure scheduling to manage the flow of departures into the constrained Center traffic flow. Tactical departure scheduling usually involves use of a Call for Release (CFR) procedure wherein the Tower must call the Center TMC to coordinate a release time prior to allowing the flight to depart. In present-day operations release times are computed by the Center Traffic Management Advisor (TMA) decision support tool based upon manual estimates of aircraft ready time verbally communicated from the Tower to the Center. The TMA-computed release is verbally communicated from the Center back to the Tower where it is relayed to the Local controller as a release window that is typically three minutes wide. The Local controller will manage the departure to meet the coordinated release time window. Manual ready time prediction and verbal release time coordination are labor intensive and prone to inaccuracy. Also, use of release time windows adds uncertainty to the tactical departure process. Analysis of more than one million flights from January 2011 indicates that a significant number of tactically scheduled aircraft missed their en route slot due to ready time prediction uncertainty. Uncertainty in ready time estimates may result in missed opportunities to merge into constrained en route flows and lead to lost throughput. Next Generation Air Transportation System (NextGen) plans call for development of Tower automation systems capable of computing surface trajectory-based ready time estimates. NASA has developed the Precision Departure Release Capability (PDRC) concept that uses this technology to improve tactical departure scheduling by automatically communicating surface trajectory-based ready time predictions to the Center scheduling tool. The PDRC concept also incorporates earlier NASA and FAA research into automation-assisted CFR coordination. The PDRC concept helps reduce uncertainty by automatically communicating coordinated release times with seconds-level precision enabling TMCs to work with target times rather than windows. NASA has developed a PDRC prototype system that integrates the Center's TMA system with a research prototype Tower decision support tool. A two-phase field evaluation was conducted at NASA's North Texas Research Station (NTX) in DallasFort Worth. The field evaluation validated the PDRC concept and demonstrated reduced release time uncertainty while being used for tactical departure scheduling of more than 230 operational flights over 29 weeks of operations. This paper presents the Concept of Operations. Companion papers include the Final Report and a Technology Description. ? SUBJECT:

  18. Heritage and Advanced Technology Systems Engineering Lessons Learned from NASA Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Barley, Bryan; Newhouse, Marilyn; Clardy, Dennon

    2010-01-01

    In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology systems or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced and heritage systems within the spacecraft and mission environment identifies unanticipated technical issues. Resolving these issues often results in cost overruns and schedule impacts. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that optimistic hardware/software inheritance and technology readiness assumptions caused cost and schedule growth for four of the five missions studied. The cost and schedule growth was not found to result from technical hurdles requiring significant technology development. The projects institutional inheritance and technology readiness processes appear to adequately assess technology viability and prevent technical issues from impacting the final mission success. However, the processes do not appear to identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: an inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of development experience with the heritage system; or an inadequate scoping of the system-wide impacts necessary to implement an advanced technology for space flight applications. The paper summarizes the study's lessons learned in more detail and offers suggestions for improving the project's ability to identify and manage the technology and heritage risks inherent in the design solution.

  19. Strategies to Build Readiness in Community Mobilization Efforts for Implementation in a Multi-Year Teen Pregnancy Prevention Initiative.

    PubMed

    Bhuiya, Nazmim; House, L Duane; Desmarais, Jeffrey; Fletcher, Erica; Conlin, Maeve; Perez-McAdoo, Sarah; Waggett, Jessica; Tendulkar, Shalini A

    2017-03-01

    This paper describes an assessment of community readiness to implement a community-wide teen pregnancy prevention initiative, Youth First, and presents strategies used to enhance this readiness as informed by the assessment. Twenty-five community stakeholder interviews were conducted to assess four domains of readiness: (1) attitudes, perception, and knowledge of teen pregnancy; (2) perceived level of readiness; (3) resources, existing and current efforts; and (4) leadership. Interview transcripts were coded and analyzed to identify key themes. Stakeholders acknowledged teen pregnancy as an issue but lacked contextual information. They also perceived the community as ready to address the issue and recognized some organizations already championing efforts. However, many key players were not involved, and ongoing data collection to assess teen pregnancy and prevention efforts was limited. Though many stakeholders were ready to engage in teen pregnancy prevention efforts, they required additional information and training to appropriately address the issue. In response to the assessment findings, several strategies were applied to address readiness and build Youth First partners' capacity to implement the community-wide initiative. Thus, to successfully implement community-wide prevention efforts, it is valuable to assess the level of community readiness to address health issues. Copyright © 2016 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  20. Are They Ready to Teach with Technology? An Investigation of Technology Instruction in Music Teacher Education Programs

    ERIC Educational Resources Information Center

    Haning, Marshall

    2016-01-01

    The purpose of this research was to investigate the type, quantity, and effects of technology instruction currently being provided to undergraduate music education majors. Undergraduate participants (n = 46) at 10 degree-granting institutions completed an online survey on the technology instruction received during their undergraduate degree…

  1. In-Space Propulsion Technology Products Ready for Infusion on NASA's Future Science Missions

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Pencil, Eric; Peterson, Todd; Dankanich, John; Munk, Michele M.

    2012-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered. They have a broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine, providing higher performance for lower cost, was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models; and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, SMD Flagship, or technology demonstration missions.

  2. U.S. Army Medical Department

    MedlinePlus

    ... Games, they came ready to play. Read more Image-2 Excerpt-2 Training, technological synergy key to future battlefield care scenarios To obtain a more complete, more mature fusion of technology and Soldier, Army Medicine focuses on ...

  3. Readiness of hospitals to provide Kangaroo Mother Care (KMC) and documentation of KMC service delivery: Analysis of Malawi 2014 Emergency Obstetric and Newborn Care (EmONC) survey data.

    PubMed

    Chavula, Kondwani; Likomwa, Dyson; Valsangkar, Bina; Luhanga, Richard; Chimtembo, Lydia; Dube, Queen; Gobezie, Wasihun Andualem; Guenther, Tanya

    2017-12-01

    Malawi introduced Kangaroo Mother Care (KMC) in 1999 as part of its efforts to address newborn morbidity and mortality and has continued to expand KMC services across the country. Yet, data on availability of KMC services and routine service provision are limited. Data from the 2014 Emergency Obstetric Newborn Care (EmONC) survey, which was a census of all 87 hospitals in Malawi, were analyzed. The WHO service availability and readiness domains were used to generate indicators for KMC service readiness and an additional domain for documentation of KMC services was included. Levels of KMC service delivery were quantified using data extracted from a 12-month register review and a KMC initiation rate was calculated for each facility by dividing the reported number of babies initiated on KMC by the number of live births at facility. We defined three levels of KMC readiness and two levels of KMC operational status. 79% of hospitals (69/87) reported providing inpatient KMC services. More than half of the hospitals (62%; 54/87) met the most basic definition of readiness (staff, space for KMC and functional weighing scale) and 35% (30/87) met an expanded definition of readiness (guidelines, staff, space, scale and register in use). Only 15 % (13/87) of hospitals had all KMC tracer items. Less than half of the hospitals (43%; 37/87) met criteria for KMC operational status at minimum levels (≥1/100 live births), and just 16% (14/87) met criteria for KMC operational status at routine levels (≥5/100 live births). Our study found large differences between reported levels of KMC services and documented levels of KMC readiness and service provision among hospitals in Malawi. It is recommended that facility assessments of services such as KMC include record reviews to better estimate service availability and delivery. Further efforts to strengthen the capacity of Malawian hospitals to deliver KMC are needed.

  4. Menu of College Readiness Indicators and Supports. College Readiness Indicator Systems (CRIS) Resource Series

    ERIC Educational Resources Information Center

    John W. Gardner Center for Youth and Their Communities, 2014

    2014-01-01

    School communities across the country are working hard to comply with state and federal policies requiring that all students be prepared for success in college. Technological advances and new reporting requirements make data on students and schools more accessible than ever--but more and better data alone are not enough to meet the challenges…

  5. Focus on Mentee-Mentor Relationships: The 10th Grade Implementation of iMentor's College Ready Program. Report

    ERIC Educational Resources Information Center

    Merrill, Lisa; Kang, David; Siman, Nina; Soltani, Jasmine

    2016-01-01

    The iMentor College Ready Program combines school-based mentoring with technology and aspects of whole school reform. The program strives to create strong relationships between low-income youth and college-educated mentors--relationships that it hopes to leverage to help students develop the mindsets, skills, and knowledge necessary to enroll and…

  6. Focus on Mentee-Mentor Relationships: The 10th Grade Implementation of iMentor's College Ready Program. Executive Summary

    ERIC Educational Resources Information Center

    Merrill, Lisa; Kang, David; Siman, Nina; Soltani, Jasmine

    2016-01-01

    The iMentor College Ready Program is a model that combines school-based mentoring with technology and aspects of whole school reform. The program aims to create strong relationships between low-income youth and college-educated mentors--and to leverage these relationships to help students develop the mindsets, skills, and knowledge necessary to…

  7. Antismoking Threat and Efficacy Appeals: Effects on Smoking Cessation Intentions for Smokers with Low and High Readiness to Quit

    PubMed Central

    Wong, Norman C. H.; Cappella, Joseph N.

    2009-01-01

    This study examined the effects of sequencing different types of antismoking threat and efficacy appeals on smoking cessation intentions for smokers with low and high levels of readiness to quit. An experiment was done to test predictions based on Witte's (1992) Extended Parallel Process Model and research by Cho and Salmon (2006). A national probability sample of 555 adult smokers was recruited to take part in this study. Results found a positive two-way interaction effect between message threat and perceived level of message efficacy on intentions to seek help for quitting. A three-way interaction effect was found between message threat, perceived level of message efficacy, and readiness to quit on quitting intentions. Both threat and efficacy were important for smokers with low readiness to quit, whereas efficacy was most important among smokers with high readiness to quit. Implications of the results for antismoking campaigns are discussed along with limitations and future directions. PMID:20046966

  8. Enabling Communication and Navigation Technologies for Future Near Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Israel, David J.; Heckler, Greg; Menrad, Robert J.; Hudiburg, John J.; Boroson, Don M.; Robinson, Bryan S.; Cornwell, Donald M.

    2016-01-01

    In 2015, the Earth Regimes Network Evolution Study (ERNESt) Team proposed a fundamentally new architectural concept, with enabling technologies, that defines an evolutionary pathway out to the 2040 timeframe in which an increasing user community comprised of more diverse space science and exploration missions can be supported. The architectural concept evolves the current instantiations of the Near Earth Network and Space Network through implementation of select technologies resulting in a global communication and navigation network that provides communication and navigation services to a wide range of space users in the Near Earth regime, defined as an Earth-centered sphere with radius of 2M Km. The enabling technologies include: High Rate Optical Communications, Optical Multiple Access (OMA), Delay Tolerant Networking (DTN), User Initiated Services (UIS), and advanced Position, Navigation, and Timing technology (PNT). This paper describes this new architecture, the key technologies that enable it and their current technology readiness levels. Examples of science missions that could be enabled by the technologies and the projected operational benefits of the architecture concept to missions are also described.

  9. ENVIRONMENTAL TECHNOLOGY VERIFICATION: A VEHICLE FOR INDEPENDENT, CREDIBLE PERFORMANCE RESULTS ON COMMERCIALLY READY TECHNOLOGIES

    EPA Science Inventory

    The paper discusses the U. S. Environmental Protection Agency's Environmental Technology Verification (ETV) Program: its history, operations, past successes, and future plans. Begun in 1995 in response to President Clinton's "Bridge to a Sustainable Future" as a means to work wit...

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abercrombie, Robert K; Udoeyop, Akaninyene W; Schlicher, Bob G

    This work examines a scientometric model that tracks the emergence of an identified technology from initial discovery (via original scientific and conference literature), through critical discoveries (via original scientific, conference literature and patents), transitioning through Technology Readiness Levels (TRLs) and ultimately on to commercial application. During the period of innovation and technology transfer, the impact of scholarly works, patents and on-line web news sources are identified. As trends develop, currency of citations, collaboration indicators, and on-line news patterns are identified. The combinations of four distinct and separate searchable on-line networked sources (i.e., scholarly publications and citation, patents, news archives, andmore » online mapping networks) are assembled to become one collective network (a dataset for analysis of relations). This established network becomes the basis from which to quickly analyze the temporal flow of activity (searchable events) for the example subject domain we investigated.« less

  11. The impact of training interventions on organizational readiness to support innovations in juvenile justice offices.

    PubMed

    Taxman, Faye S; Henderson, Craig; Young, Doug; Farrell, Jill

    2014-03-01

    Clinical trials on technology transfer models are rare, even with the interest in advancing the uptake of evidence-based practices in social service agencies. This article presents the results from a trial examining different transfer strategies to assist juvenile justice caseworkers in using screening, assessment, and case planning practices to address mental health and substance use needs. Study findings examine factors that promote organizational readiness. A clinical trial was conducted examining the impact of three post-training strategies: an external coach to build the social network of the justice office (build social climate), an external coach to educate staff (build skills and knowledge), and a control condition consisting of traditional management directives (directives to staff of agency priorities). All groups were exposed to a 1 day refresher course in motivational interviewing. The social network and skill building groups also attended an intensive 3-day training followed by three on-site booster sessions over a 12 month period of time. Twelve juvenile justice offices (with their 231 juvenile justice staff) were assigned to one of three conditions. The study examined the impact of different transfer conditions on organizational readiness to implement the innovation of screening, assessment, and referral strategies. External coaching targeting the social climate of the justice office to support innovations improved organizational readiness to change, regardless of office size. Coaching that targeted either the social climate or staff knowledge and skills both improved organizational readiness for change compared to management directives, but social climate coaching resulted in greater improvements in receptivity to change. No individual level features of case workers (e.g., age, gender, years of experience) significantly predicted organizational readiness to change. Unexpectedly, the skill and knowledge building approach did not perform any better than management directives only (no post training) efforts. Organizational readiness has been found to be an important factor supporting agencies' adoption of evidence-based practices. Techniques devoted to attending to the social climate are critical to increasing organizational readiness. External coach facilitators can accomplish this through modest means (three post training booster sessions) that build internal expertise and resiliency in support of the change. This is a low cost method of preparing a low resourced environment such as juvenile justice agencies to use evidence-based practices.

  12. The Impact of Training Interventions on Organizational Readiness to Support Innovations in Juvenile Justice Offices

    PubMed Central

    Taxman, Faye S.; Henderson, Craig; Young, Doug; Farrell, Jill

    2012-01-01

    OBJECTIVE Clinical trials on technology transfer models are rare, even with the interest in advancing the uptake of evidence-based practices in social service agencies. This article presents the results from a trial examining different transfer strategies to assist juvenile justice caseworkers in using screening, assessment, and case planning practices to address mental health and substance use needs. Study findings examine factors that promote organizational readiness. METHODS A clinical trial was conducted examining the mpact of three post-training strategies: an external coach to build the social network of the justice office (build social climate), an external coach to educate staff (build skills and knowledge), and a control condition consisting of traditional management directives (directives to staff of agency priorities). All groups were exposed to a one day refresher course in motivational interviewing. The social network and skill building groups also attended an intensive three-day training followed by three on-site booster sessions over a 12 month period of time. Twelve juvenile justice offices (with their 231 juvenile justice staff) were assigned to one of three conditions. The study examined the impact of different transfer conditions on organizational readiness to implement the innovation of screening, assessment, and referral strategies. RESULTS External coaching targeting the social climate of the justice office to support innovations improved organizational readiness to change, regardless of office size. Coaching that targeted either the social climate or staff knowledge and skills both improved organizational readiness for change compared to management directives, but social climate coaching resulted in greater improvements in receptivity to change. No individual level features of case workers (e.g., age, gender, years of experience) significantly predicted organizational readiness to change. Unexpectedly, the skill and knowledge building approach did not perform any better than management directives only (no post training) efforts. CONCLUSIONS Organizational readiness has been found to be an important factor supporting agencies’ adoption of evidence-based practices. Techniques devoted to attending to the social climate are critical to increasing organizational readiness. External coach facilitators can accomplish this through modest means (three post training booster sessions) that build internal expertise and resiliency in support of the change. This is a low cost method of preparing a low resourced environment such as juvenile justice agencies to use evidence-based practices. PMID:23143081

  13. Background for Community-Level Work on School Readiness: A Review of Definitions, Assessments, and Investment Strategies. Final Report to the Knight Foundation.

    ERIC Educational Resources Information Center

    Zaslow, Martha; Calkins, Julia; Halle, Tamara; Zaff, Jonathan; Margie, Nancy Geyelin

    Noting that many communities in the United States have set the ambitious goal of enhancing school readiness, this report is intended to help communities invest wisely in school readiness initiatives. Part 1 of the report summarizes recommendations from the National Education Goals Panel (NEGP) for defining and assessing school readiness. The core…

  14. Lunar Surface Systems Supportability Technology Development Roadmap

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Struk, Peter M.; Green, Jennifer L.; Chau, Savio N.; Curell, Philip C.; Dempsey, Cathy A.; Patterson, Linda P.; Robbins, William; Steele, Michael A.; DAnnunzio, Anthony; hide

    2011-01-01

    The Lunar Surface Systems Supportability Technology Development Roadmap is a guide for developing the technologies needed to enable the supportable, sustainable, and affordable exploration of the Moon and other destinations beyond Earth. Supportability is defined in terms of space maintenance, repair, and related logistics. This report considers the supportability lessons learned from NASA and the Department of Defense. Lunar Outpost supportability needs are summarized, and a supportability technology strategy is established to make the transition from high logistics dependence to logistics independence. This strategy will enable flight crews to act effectively to respond to problems and exploit opportunities in an environment of extreme resource scarcity and isolation. The supportability roadmap defines the general technology selection criteria. Technologies are organized into three categories: diagnostics, test, and verification; maintenance and repair; and scavenge and recycle. Furthermore, "embedded technologies" and "process technologies" are used to designate distinct technology types with different development cycles. The roadmap examines the current technology readiness level and lays out a four-phase incremental development schedule with selection decision gates. The supportability technology roadmap is intended to develop technologies with the widest possible capability and utility while minimizing the impact on crew time and training and remaining within the time and cost constraints of the program.

  15. Solar Electric Propulsion

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael

    2006-01-01

    The Solar Electric Propulsion (SEP) technology area is tasked to develop near and mid-term SEP technology to improve or enable science mission capture while minimizing risk and cost to the end user. The solar electric propulsion investments are primarily driven by SMD cost-capped mission needs. The technology needs are determined partially through systems analysis tasks including the recent "Re-focus Studies" and "Standard Architecture Study." These systems analysis tasks transitioned the technology development to address the near term propulsion needs suitable for cost-capped open solicited missions such as Discovery and New Frontiers Class missions. Major SEP activities include NASA's Evolutionary Xenon Thruster (NEXT), implementing a Standard Architecture for NSTAR and NEXT EP systems, and developing a long life High Voltage Hall Accelerator (HiVHAC). Lower level investments include advanced feed system development and xenon recovery testing. Future plans include completion of ongoing ISP development activities and evaluating potential use of commercial electric propulsion systems for SMD applications. Examples of enhanced mission capability and technology readiness dates shall be discussed.

  16. Recent Progress in Engine Noise Reduction Technologies

    NASA Technical Reports Server (NTRS)

    Huff, Dennis; Gliebe, Philip

    2003-01-01

    Highlights from NASA-funded research over the past ten years for aircraft engine noise reduction are presented showing overall technical plans, accomplishments, and selected applications to turbofan engines. The work was sponsored by NASA's Advanced Subsonic Technology (AST) Noise Reduction Program. Emphasis is given to only the engine noise reduction research and significant accomplishments that were investigated at Technology Readiness Levels ranging from 4 to 6. The Engine Noise Reduction sub-element was divided into four work areas: source noise prediction, model scale tests, engine validation, and active noise control. Highlights from each area include technologies for higher bypass ratio turbofans, scarf inlets, forward-swept fans, swept and leaned stators, chevron/tabbed nozzles, advanced noise prediction analyses, and active noise control for fans. Finally, an industry perspective is given from General Electric Aircraft Engines showing how these technologies are being applied to commercial products. This publication contains only presentation vu-graphs from an invited lecture given at the 41st AIAA Aerospace Sciences Meeting, January 6-9, 2003.

  17. COBALT: Development of a Platform to Flight Test Lander GN&C Technologies on Suborbital Rockets

    NASA Technical Reports Server (NTRS)

    Carson, John M., III; Seubert, Carl R.; Amzajerdian, Farzin; Bergh, Chuck; Kourchians, Ara; Restrepo, Carolina I.; Villapando, Carlos Y.; O'Neal, Travis V.; Robertson, Edward A.; Pierrottet, Diego; hide

    2017-01-01

    The NASA COBALT Project (CoOperative Blending of Autonomous Landing Technologies) is developing and integrating new precision-landing Guidance, Navigation and Control (GN&C) technologies, along with developing a terrestrial fight-test platform for Technology Readiness Level (TRL) maturation. The current technologies include a third- generation Navigation Doppler Lidar (NDL) sensor for ultra-precise velocity and line- of-site (LOS) range measurements, and the Lander Vision System (LVS) that provides passive-optical Terrain Relative Navigation (TRN) estimates of map-relative position. The COBALT platform is self contained and includes the NDL and LVS sensors, blending filter, a custom compute element, power unit, and communication system. The platform incorporates a structural frame that has been designed to integrate with the payload frame onboard the new Masten Xodiac vertical take-o, vertical landing (VTVL) terrestrial rocket vehicle. Ground integration and testing is underway, and terrestrial fight testing onboard Xodiac is planned for 2017 with two flight campaigns: one open-loop and one closed-loop.

  18. Gossamer-1: Mission concept and technology for a controlled deployment of gossamer spacecraft

    NASA Astrophysics Data System (ADS)

    Seefeldt, Patric; Spietz, Peter; Sproewitz, Tom; Grundmann, Jan Thimo; Hillebrandt, Martin; Hobbie, Catherin; Ruffer, Michael; Straubel, Marco; Tóth, Norbert; Zander, Martin

    2017-01-01

    Gossamer structures for innovative space applications, such as solar sails, require technology that allows their controlled and thereby safe deployment. Before employing such technology for a dedicated science mission, it is desirable, if not necessary, to demonstrate its reliability with a Technology Readiness Level (TRL) of six or higher. The aim of the work presented here is to provide reliable technology that enables the controlled deployment and verification of its functionality with various laboratory tests, thereby qualifying the hardware for a first demonstration in low Earth orbit (LEO). The development was made in the Gossamer-1 project of the German Aerospace Center (DLR). This paper provides an overview of the Gossamer-1 mission and hardware development. The system is designed based on the requirements of a technology demonstration mission. The design rests on a crossed boom configuration with triangular sail segments. Employing engineering models, all aspects of the deployment were tested under ambient environment. Several components were also subjected to environmental qualification testing. An innovative stowing and deployment strategy for a controlled deployment, as well as the designs of the bus system, mechanisms and electronics are described. The tests conducted provide insights into the deployment process and allow a mechanical characterization of that deployment process, in particular the measurement of the deployment forces. Deployment on system level could be successfully demonstrated to be robust and controllable. The deployment technology is on TRL four approaching level five, with a qualification model for environmental testing currently being built.

  19. Evaluation Criteria for Solid Waste Processing Research and Technology Development

    NASA Technical Reports Server (NTRS)

    Levri, Julie A.; Hogan, J. A.; Alazraki, M. P.

    2001-01-01

    A preliminary list of criteria is proposed for evaluation of solid waste processing technologies for research and technology development (R&TD) in the Advanced Life Support (ALS) Program. Completion of the proposed list by current and prospective ALS technology developers, with regard to specific missions of interest, may enable identification of appropriate technologies (or lack thereof) and guide future development efforts for the ALS Program solid waste processing area. An attempt is made to include criteria that capture information about the technology of interest as well as its system-wide impacts. Some of the criteria in the list are mission-independent, while the majority are mission-specific. In order for technology developers to respond to mission-specific criteria, critical information must be available on the quantity, composition and state of the waste stream, the wast processing requirements, as well as top-level mission scenario information (e.g. safety, resource recovery, planetary protection issues, and ESM equivalencies). The technology readiness level (TRL) determines the degree to which a technology developer is able to accurately report on the list of criteria. Thus, a criteria-specific minimum TRL for mandatory reporting has been identified for each criterion in the list. Although this list has been developed to define criteria that are needed to direct funding of solid waste processing technologies, this list processes significant overlap in criteria required for technology selection for inclusion in specific tests or missions. Additionally, this approach to technology evaluation may be adapted to other ALS subsystems.

  20. Information Technology: Making It All Fit. Track II: Managing Technologies Integration.

    ERIC Educational Resources Information Center

    CAUSE, Boulder, CO.

    Nine papers from the 1988 CAUSE conference's Track II, Managing Technologies Integration, are presented. They include: "Computing in the '90s--Will We Be Ready for the Applications Needed?" (Stephen Patrick); "Glasnost, The Era of 'Openness'" (Bernard W. Gleason); "Academic and Administrative Computing: Are They Really…

  1. Measuring the Operational Readiness of an Air Force Network Warfare Squadron

    DTIC Science & Technology

    2008-06-01

    Abstract As part of its unit activation, the 315th Network Warfare Squadron (NWS) needed to measure and report its progression of unit readiness...NWS unit readiness should be measured and reported by SORTS Category Levels (C-Level) to support wartime missions, not by IOC and FOC milestones...This paper reviews SORTS computations and provides a case study of a notional Air Force NWS to propose that any new cyber squadron should report

  2. Aerocapture Technology Development for Planetary Science - Update

    NASA Technical Reports Server (NTRS)

    Munk, Michelle M.

    2006-01-01

    Within NASA's Science Mission Directorate is a technological program dedicated to improving the cost, mass, and trip time of future scientific missions throughout the Solar System. The In-Space Propulsion Technology (ISPT) Program, established in 2001, is charged with advancing propulsion systems used in space from Technology Readiness Level (TRL) 3 to TRL6, and with planning activities leading to flight readiness. The program's content has changed considerably since inception, as the program has refocused its priorities. One of the technologies that has remained in the ISPT portfolio through these changes is Aerocapture. Aerocapture is the use of a planetary body's atmosphere to slow a vehicle from hyperbolic velocity to a low-energy orbit suitable for science. Prospective use of this technology has repeatedly shown huge mass savings for missions of interest in planetary exploration, at Titan, Neptune, Venus, and Mars. With launch vehicle costs rising, these savings could be the key to mission viability. This paper provides an update on the current state of the Aerocapture technology development effort, summarizes some recent key findings, and highlights hardware developments that are ready for application to Aerocapture vehicles and entry probes alike. Description of Investments: The Aerocapture technology area within the ISPT program has utilized the expertise around NASA to perform Phase A-level studies of future missions, to identify technology gaps that need to be filled to achieve flight readiness. A 2002 study of the Titan Explorer mission concept showed that the combination of Aerocapture and a Solar Electric Propulsion system could deliver a lander and orbiter to Titan in half the time and on a smaller, less expensive launch vehicle, compared to a mission using chemical propulsion for the interplanetary injection and orbit insertion. The study also identified no component technology breakthroughs necessary to implement Aerocapture on such a mission. Similar studies of Aerocapture applications at Neptune, Venus, and Mars were studied in 2003 through 2005. All showed significant performance improvements for the missions studied. Findings from these studies were used to guide the technology development tasks originally solicited in a 2002 NASA ROSS Research Announcement. The tasks are now in their final year and have provided numerous improvements in modeling and hardware, for use in proposals or new mission starts. Major Accomplishments: Since validation of the Aerocapture maneuver requires a space flight, ground developments have focused on modeling and environment prediction, materials, and sensors. Lockheed Martin has designed and built a 2-meter Carbon-Carbon aeroshell "hot structure." The article utilizes co-cured stiffening ribs and advanced insulation to achieve large scale, and up to a 40% reduction in areal density over the Genesis probe construction. This concept would be an efficient solution for probes that experience heat rates near 800-1000 W/cm(exp 2), such as at Venus and Earth. Applied Research Associates has extensively tested a family of efficient ablative TPS materials that provide solutions for a range of heating conditions. These materials are being applied to high-temperature structures built by ATK Space Systems, led by Langley Research Center. One-meter aeroshells will be thermally tested to validate construction and demonstrate higher bondline temperatures, which can lead to mass savings of up to 30% over traditional heatshields. Ames Research Center has developed aeroshell instrumentation that could measure environmental conditions and material performance during atmospheric entry. Instruments to measure TPS recession, heat flux, and catalycity could be combined with traditional sensors to provide a "plug-and-play" system for minimal mass and power, that would acquire flight data for model improvement and risk reduction on future missions. Improved atmospheric and aerothermodynamic models ha also been a major focus of the program. Next Steps: Aerocapture is one of five technologies in competition for a flight validation opportunity through the New Millennium Program. If selected, a fully autonomous vehicle will perform an Aerocapture at Earth in 2010, and flight data will be used to validate the guidance system and the TPS material for science mission infusion.

  3. Identifying Ghanaian Pre-Service Teachers' Readiness for Computer Use: A Technology Acceptance Model Approach

    ERIC Educational Resources Information Center

    Gyamfi, Stephen Adu

    2016-01-01

    This study extends the technology acceptance model to identify factors that influence technology acceptance among pre-service teachers in Ghana. Data from 380 usable questionnaires were tested against the research model. Utilising the extended technology acceptance model (TAM) as a research framework, the study found that: pre-service teachers'…

  4. Educational Technology. Special Hearing before a Subcommittee of the Committee on Appropriations. United States Senate, One Hundred Fourth Congress, First Session.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Senate Committee on Appropriations.

    This document presents witness testimony and supplemental materials from a Congressional hearing called to assess the effectiveness of federally funded educational technology programs, particularly Technology for Education, Star Schools, Ready to Learn Television, and Mathline. Other educational technologies were introduced at the hearing as well,…

  5. A Report on the Technological Enhancements Project Evaluation: Deepening Early Learning Experiences through Technology

    ERIC Educational Resources Information Center

    Hupert, Naomi; Cervantes, Francisco; DeGroof, Emily

    2010-01-01

    As part of the "Ready to Learn" Initiative, Education Development Center, Inc. (EDC), was charged with addressing the evaluation of Technological Enhancements for the outreach efforts of three producers: Out of the Blue's Super WHY! Technology Add-On; Sesame Workshop's The Electric Company School's Initiative Curriculum; and WordWorld's eBook…

  6. Heritage Systems Engineering Lessons from NASA Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Barley, Bryan; Newhouse, Marilyn; Clardy, Dennon

    2010-01-01

    In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology systems or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced and heritage systems within the spacecraft and mission environment identifies unanticipated technical issues. Resolving these issues often results in cost overruns and schedule impacts. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that optimistic hardware/software inheritance and technology readiness assumptions caused cost and schedule growth for all five missions studied. The cost and schedule growth was not found to be the result of technical hurdles requiring significant technology development. The projects institutional inheritance and technology readiness processes appear to adequately assess technology viability and prevent technical issues from impacting the final mission success. However, the processes do not appear to identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: an inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of development experience with the heritage system; or an inadequate scoping of the systemwide impacts necessary to implement an advanced technology for space flight applications. The paper summarizes the study s lessons learned in more detail and offers suggestions for improving the project s ability to identify and manage the technology and heritage risks inherent in the design solution.

  7. A Comparison of Flow-Through Versus Non-Flow-Through Proton Exchange Membrane Fuel Cell Systems for NASA's Exploration Missions

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark A.

    2010-01-01

    As part of the Exploration Technology Development Program (ETDP) under the auspices of the Exploration Systems Mission Directorate (ESMD), NASA is developing both primary fuel cell power systems and regenerative fuel cell (RFC) energy storage systems within the fuel cell portion of the Energy Storage Project. This effort is being led by the NASA Glenn Research Center (GRC) in partnership with the NASA Johnson Space Center (JSC), Jet Propulsion Laboratory (JPL), NASA Kennedy Space Center (KSC), and industrial partners. The development goals are to improve fuel cell and electrolysis stack electrical performance, reduce system mass, volume, and parasitic power requirements, and increase system life and reliability. A major focus of this effort has been the parallel development of both flow-through and non-flow-through proton exchange membrane (PEM) primary fuel cell power systems. The plan has been, at the appropriate time, to select a single primary fuel cell technology for eventual flight hardware development. Ideally, that appropriate time would occur after both technologies have achieved a technology readiness level (TRL) of six, which represents an engineering model fidelity PEM fuel cell system being successfully tested in a relevant environment. Budget constraints in fiscal year 2009 and beyond have prevented NASA from continuing to pursue the parallel development of both primary fuel cell options. Because very limited data exists for either system, a toplevel, qualitative assessment based on engineering judgement was performed expeditiously to provide guidance for a selection. At that time, the non-flow-through technology was selected for continued development because of potentially major advantages in terms of weight, volume, parasitic power, reliability, and life. This author believes that the advantages are significant enough, and the potential benefits great enough, to offset the higher state of technology readiness of flow-through technology. This paper summarizes the technical considerations which helped form the engineering judgement that led to the final decision.

  8. High-Capacity Communications from Martian Distances

    NASA Technical Reports Server (NTRS)

    Williams, W. Dan; Collins, Michael; Hodges, Richard; Orr, Richard S.; Sands, O. Scott; Schuchman, Leonard; Vyas, Hemali

    2007-01-01

    High capacity communications from Martian distances, required for the envisioned human exploration and desirable for data-intensive science missions, is challenging. NASA s Deep Space Network currently requires large antennas to close RF telemetry links operating at kilobit-per-second data rates. To accommodate higher rate communications, NASA is considering means to achieve greater effective aperture at its ground stations. This report, focusing on the return link from Mars to Earth, demonstrates that without excessive research and development expenditure, operational Mars-to-Earth RF communications systems can achieve data rates up to 1 Gbps by 2020 using technology that today is at technology readiness level (TRL) 4-5. Advanced technology to achieve the needed increase in spacecraft power and transmit aperture is feasible at an only moderate increase in spacecraft mass and technology risk. In addition, both power-efficient, near-capacity coding and modulation and greater aperture from the DSN array will be required. In accord with these results and conclusions, investment in the following technologies is recommended:(1) lightweight (1 kg/sq m density) spacecraft antenna systems; (2) a Ka-band receive ground array consisting of relatively small (10-15 m) antennas; (3) coding and modulation technology that reduces spacecraft power by at least 3 dB; and (4) efficient generation of kilowatt-level spacecraft RF power.

  9. Software Assurance Curriculum Project Volume 4: Community College Education

    DTIC Science & Technology

    2011-09-01

    no previous programming or computer science experience expected) • Precalculus -ready (that is, proficiency sufficient to enter college-level... precalculus course) • English Composition I-ready (that is, proficiency sufficient to enter college-level English I course) Co-Requisite Discrete

  10. Assessment of the Technical Maturity of Generation IV Concepts for Test or Demonstration Reactor Applications, Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gougar, Hans David

    2015-10-01

    The United States Department of Energy (DOE) commissioned a study the suitability of different advanced reactor concepts to support materials irradiations (i.e. a test reactor) or to demonstrate an advanced power plant/fuel cycle concept (demonstration reactor). As part of the study, an assessment of the technical maturity of the individual concepts was undertaken to see which, if any, can support near-term deployment. A Working Group composed of the authors of this document performed the maturity assessment using the Technical Readiness Levels as defined in DOE’s Technology Readiness Guide . One representative design was selected for assessment from of each ofmore » the six Generation-IV reactor types: gas-cooled fast reactor (GFR), lead-cooled fast reactor (LFR), molten salt reactor (MSR), supercritical water-cooled reactor (SCWR), sodium-cooled fast reactor (SFR), and very high temperature reactor (VHTR). Background information was obtained from previous detailed evaluations such as the Generation-IV Roadmap but other technical references were also used including consultations with concept proponents and subject matter experts. Outside of Generation IV activity in which the US is a party, non-U.S. experience or data sources were generally not factored into the evaluations as one cannot assume that this data is easily available or of sufficient quality to be used for licensing a US facility. The Working Group established the scope of the assessment (which systems and subsystems needed to be considered), adapted a specific technology readiness scale, and scored each system through discussions designed to achieve internal consistency across concepts. In general, the Working Group sought to determine which of the reactor options have sufficient maturity to serve either the test or demonstration reactor missions.« less

  11. Hydrocarbonaceous material processing methods and apparatus

    DOEpatents

    Brecher, Lee E [Laramie, WY

    2011-07-12

    Methods and apparatus are disclosed for possibly producing pipeline-ready heavy oil from substantially non-pumpable oil feeds. The methods and apparatus may be designed to produce such pipeline-ready heavy oils in the production field. Such methods and apparatus may involve thermal soaking of liquid hydrocarbonaceous inputs in thermal environments (2) to generate, though chemical reaction, an increased distillate amount as compared with conventional boiling technologies.

  12. Study of Preschool Parents and Caregivers Use of Technology and PBS KIDS Transmedia Resources: A Report to the CPB-PBS "Ready to Learn Initiative"

    ERIC Educational Resources Information Center

    Pasnik, Shelley; Llorente, Carlin

    2012-01-01

    Leaders of the CPB-PBS "Ready To Learn" Initiative understand the important role parents and caregivers play in ensuring young children's healthy development and academic learning. In order for young children, especially those living in traditionally underserved communities, to succeed at school and thrive outside of the classroom, educational…

  13. Contributions to nuclear safety and radiation technologies in Ukraine by the Science and Technology Center in Ukraine (STCU)

    NASA Astrophysics Data System (ADS)

    Taranenko, L.; Janouch, F.; Owsiacki, L.

    2001-06-01

    This paper presents Science and Technology Center in Ukraine (STCU) activities devoted to furthering nuclear and radiation safety, which is a prioritized STCU area. The STCU, an intergovernmental organization with the principle objective of non-proliferation, administers financial support from the USA, Canada, and the EU to Ukrainian projects in various scientific and technological areas; coordinates projects; and promotes the integration of Ukrainian scientists into the international scientific community, including involving western collaborators. The paper focuses on STCU's largest project to date "Program Supporting Y2K Readiness at Ukrainian NPPs" initiated in April 1999 and designed to address possible Y2K readiness problems at 14 Ukrainian nuclear reactors. Other presented projects demonstrate a wide diversity of supported directions in the fields of nuclear and radiation safety, including reactor material improvement ("Improved Zirconium-Based Elements for Nuclear Reactors"), information technologies for nuclear industries ("Ukrainian Nuclear Data Bank in Slavutich"), and radiation health science ("Diagnostics and Treatment of Radiation-Induced Injuries of Human Biopolymers").

  14. High-level managers' considerations for RFID adoption in hospitals: an empirical study in Taiwan.

    PubMed

    Lai, Hui-Min; Lin, I-Chun; Tseng, Ling-Tzu

    2014-02-01

    Prior researches have indicated that an appropriate adoption of information technology (IT) can help hospitals significantly improve services and operations. Radio Frequency Identification (RFID) is believed to be the next generation innovation technology for automatic data collection and asset/people tracking. Based on the Technology-Organization-Environment (TOE) framework, this study investigated high-level managers' considerations for RFID adoption in hospitals. This research reviewed literature related IT adoption in business and followed the results of a preliminary survey with 37 practical experts in hospitals to theorize a model for the RFID adoption in hospitals. Through a field survey of 102 hospitals and hypotheses testing, this research identified key factors influencing RFID adoption. Follow-up in-depth interviews with three high-level managers of IS department from three case hospitals respectively also presented an insight into the decision of RFID's adoption. Based on the research findings, cost, ubiquity, compatibility, security and privacy risk, top management support, hospital scale, financial readiness and government policy were concluded to be the key factors influencing RFID adoption in hospitals. For practitioners, this study provided a comprehensive overview of government policies able to promote the technology, while helping the RFID solution providers understand how to reduce the IT barriers in order to enhance hospitals' willingness to adopt RFID.

  15. The Tobacco Control Network's Policy Readiness and Stage of Change Assessment: What the Results Suggest for Moving Tobacco Control Efforts Forward at the State and Territorial Levels.

    PubMed

    Roeseler, April; Solomon, Madeleine; Beatty, Carissa; Sipler, Alison M

    2016-01-01

    The Tobacco Control Network (TCN) is comprised of the tobacco control programs in the health departments of states, territories, and the District of Columbia. During the assessment period, the TCN was managed by the Tobacco Technical Assistance Consortium at Emory University. To assess the readiness of state and territory tobacco control programs to work on evidence-based, promising policy and system change strategies aimed at preventing and reducing tobacco use and secondhand smoke exposure. The Policy Readiness and Stage of Change Assessment was a Web-based survey fielded in September 2013, which was based on the Community Readiness Model. Fifty-nine comprehensive tobacco control programs. State and territory tobacco control program managers and their internal and external partners. The TCN's 2012 Policy Platform recommendations were used as the basis to assess state/territory readiness to adopt and implement evidence-based and promising tobacco control policy/system change strategies. Sixteen tobacco control strategies were rated on: (1) implementation status, (2) readiness, (3) stage of change, and (4) the appropriate level of action for work on the strategy. The 3 strategies with the highest readiness scores were as follows: (1) 100% smoke-free air in workplaces (64%), (2) tobacco-free schools (61%), and (3) $1.50 or less cigarette tax with funds to tobacco control (53%). The 3 strategies with lowest readiness scores were: 1) coupon redemption (17%), 2) tobacco mitigation fee (14%), and 3) disclosure or sunshine laws (8%). Readiness to work on tobacco control strategies varied by region and strategy. Many states/territories are ready to work on strategies for which there is less evidence of a population-level impact for reducing tobacco use, but which contribute to denormalizing tobacco use. Working toward less impactful policies may build support, capacity, and policy success, laying an important foundation to achieve more impactful strategies.

  16. Enabling Electric Propulsion for Flight - Hybrid Electric Aircraft Research at AFRC

    NASA Technical Reports Server (NTRS)

    Clarke, Sean; Lin, Yohan; Kloesel, Kurt; Ginn, Starr

    2014-01-01

    Advances in electric machine efficiency and energy storage capability are enabling a new alternative to traditional propulsion systems for aircraft. This has already begun with several small concept and demonstration vehicles, and NASA projects this technology will be essential to meet energy and emissions goals for commercial aviation in the next 30 years. In order to raise the Technology Readiness Level of electric propulsion systems, practical integration and performance challenges will need to be identified and studied in the near-term so that larger, more advanced electric propulsion system testbeds can be designed and built. Researchers at NASA Armstrong Flight Research Center are building up a suite of test articles for the development, integration, and validation of these systems in a real world environment.

  17. A Novel Reflector/Reflectarray Antenna: An Enabling Technology for NASA's Dual-Frequency ACE Radar

    NASA Technical Reports Server (NTRS)

    Racette, Paul E.; Heymsfield, Gerald; Li, Lihua; Cooley, Michael E.; Park, Richard; Stenger, Peter

    2011-01-01

    This paper describes a novel dual-frequency shared aperture Ka/W-band antenna design that enables wide-swath Imaging via electronic scanning at Ka-band and Is specifically applicable to NASA's Aerosol, Cloud and Ecosystems (ACE) mission. The innovative antenna design minimizes size and weight via use of a shared aperture and builds upon NASA's investments in large-aperture reflectors and high technology-readiness-level (TRL) W-band radar architectures. The antenna is comprised of a primary cylindrical reflector/reflectarray surface illuminated by a fixed W-band feed and a Ka-band Active Electronically Scanned Array (AESA) line feed. The reflectarray surface provides beam focusing at W-band, but is transparent at Ka-band.

  18. The PROPEL Electrodynamic Tether Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Bilen, Sven G.; Johnson, C. Les; Wiegmann, Bruce M.; Alexander, Leslie; Gilchrist, Brian E.; Hoyt, Robert P.; Elder, Craig H.; Fuhrhop, Keith P.; Scadera, Michael

    2012-01-01

    The PROPEL ("Propulsion using Electrodynamics") mission will demonstrate the operation of an electrodynamic tether propulsion system in low Earth orbit and advance its technology readiness level for multiple applications. The PROPEL mission has two primary objectives: first, to demonstrate the capability of electrodynamic tether technology to provide robust and safe, near-propellantless propulsion for orbit-raising, de-orbit, plane change, and station keeping, as well as to perform orbital power harvesting and formation flight; and, second, to fully characterize and validate the performance of an integrated electrodynamic tether propulsion system, qualifying it for infusion into future multiple satellite platforms and missions with minimal modification. This paper provides an overview of the PROPEL system and design reference missions; mission goals and required measurements; and ongoing PROPEL mission design efforts.

  19. Advancing HIV/AIDS prevention among American Indians through capacity building and the community readiness model.

    PubMed

    Thurman, Pamela Jumper; Vernon, Irene S; Plested, Barbara

    2007-01-01

    Although HIV/AIDS prevention has presented challenges over the past 25 years, prevention does work! To be most effective, however, prevention must be specific to the culture and the nature of the community. Building the capacity of a community for prevention efforts is not an easy process. If capacity is to be sustained, it must be practical and utilize the resources that already exist in the community. Attitudes vary across communities; resources vary, political climates are constantly varied and changing. Communities are fluid-always changing, adapting, growing. They are "ready" for different things at different times. Readiness is a key issue! This article presents a model that has experienced a high level of success in building community capacity for effective prevention/intervention for HIV/AIDS and offers case studies for review. The Community Readiness Model provides both quantitative and qualitative information in a user-friendly structure that guides a community through the process of understanding the importance of the measure of readiness. The model identifies readiness- appropriate strategies, provides readiness scores for evaluation, and most important, involves community stakeholders in the process. The article will demonstrate the importance of developing strategies consistent with readiness levels for more cost-effective and successful prevention efforts.

  20. NASA's 2004 Hall Thruster Program

    NASA Technical Reports Server (NTRS)

    Jacobson, David T.; Manzella, David H.; Hofer, Richard R.; Peterson, Peter Y.

    2004-01-01

    An overview of NASA's Hall thruster research and development tasks conducted during fiscal year 2004 is presented. These tasks focus on: raising the technology readiness level of high power Hall thrusters, developing a moderate-power/ moderate specific impulse Hall thruster, demonstrating high-power/high specific impulse Hall thruster operation, and addressing the fundamental technical challenges of emerging Hall thruster concepts. Programmatic background information, technical accomplishments and out year plans for each program element performed under the sponsorship of the In-Space Transportation Program, Project Prometheus, and the Energetics Project are provided.

  1. Advanced Life Support System Value Metric

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.; Arnold, James O. (Technical Monitor)

    1999-01-01

    The NASA Advanced Life Support (ALS) Program is required to provide a performance metric to measure its progress in system development. Extensive discussions within the ALS program have reached a consensus. The Equivalent System Mass (ESM) metric has been traditionally used and provides a good summary of the weight, size, and power cost factors of space life support equipment. But ESM assumes that all the systems being traded off exactly meet a fixed performance requirement, so that the value and benefit (readiness, performance, safety, etc.) of all the different systems designs are exactly equal. This is too simplistic. Actual system design concepts are selected using many cost and benefit factors and the system specification is then set accordingly. The ALS program needs a multi-parameter metric including both the ESM and a System Value Metric (SVM). The SVM would include safety, maintainability, reliability, performance, use of cross cutting technology, and commercialization potential. Another major factor in system selection is technology readiness level (TRL), a familiar metric in ALS. The overall ALS system metric that is suggested is a benefit/cost ratio, [SVM + TRL]/ESM, with appropriate weighting and scaling. The total value is the sum of SVM and TRL. Cost is represented by ESM. The paper provides a detailed description and example application of the suggested System Value Metric.

  2. Boundary-based cellwise OPC for standard-cell layouts

    NASA Astrophysics Data System (ADS)

    Pawlowski, David M.; Deng, Liang; Wong, Martin D. F.

    2007-03-01

    Model based optical proximity correction (OPC) has become necessary at 90nm technology node. Cellwise OPC is an attractive technique to reduce the mask data size as well as the prohibitive runtime of full-chip OPC. As feature dimensions have gotten smaller, the radius of influence for edge features has extended further into neighboring cells such that it is no longer sufficient to perform cellwise OPC independent of neighboring cells, especially for the critical layers. The methodology described in this work accounts for features in neighboring cells and allows a cellwise approach to be applied to cells with a printed gate length of 45nm with the projection that it can also be applied to future technology nodes. OPC-ready cells are generated at library creation (independent of placement) using a boundary-based technique. Each cell has a tractable number of OPC-ready versions due to an intelligent characterization of standard cell layout features. Results are very promising: the average edge placement error (EPE) for all metal1 features in 100 layouts is 0.731nm which is less than 1% of metal1 width; the maximum EPE for poly features reduced to 1/3, compared to cellwise OPC without considering boundaries, creating similar levels of lithographic accuracy while obviating any of the drawbacks inherent in layout specific full-chip model-based OPC.

  3. Architecture, Voltage, and Components for a Turboelectric Distributed Propulsion Electric Grid

    NASA Technical Reports Server (NTRS)

    Armstrong, Michael J.; Blackwelder, Mark; Bollman, Andrew; Ross, Christine; Campbell, Angela; Jones, Catherine; Norman, Patrick

    2015-01-01

    The development of a wholly superconducting turboelectric distributed propulsion system presents unique opportunities for the aerospace industry. However, this transition from normally conducting systems to superconducting systems significantly increases the equipment complexity necessary to manage the electrical power systems. Due to the low technology readiness level (TRL) nature of all components and systems, current Turboelectric Distributed Propulsion (TeDP) technology developments are driven by an ambiguous set of system-level electrical integration standards for an airborne microgrid system (Figure 1). While multiple decades' worth of advancements are still required for concept realization, current system-level studies are necessary to focus the technology development, target specific technological shortcomings, and enable accurate prediction of concept feasibility and viability. An understanding of the performance sensitivity to operating voltages and an early definition of advantageous voltage regulation standards for unconventional airborne microgrids will allow for more accurate targeting of technology development. Propulsive power-rated microgrid systems necessitate the introduction of new aircraft distribution system voltage standards. All protection, distribution, control, power conversion, generation, and cryocooling equipment are affected by voltage regulation standards. Information on the desired operating voltage and voltage regulation is required to determine nominal and maximum currents for sizing distribution and fault isolation equipment, developing machine topologies and machine controls, and the physical attributes of all component shielding and insulation. Voltage impacts many components and system performance.

  4. The role of organizational structure in readiness for change: A conceptual integration.

    PubMed

    Benzer, Justin K; Charns, Martin P; Hamdan, Sami; Afable, Melissa

    2017-02-01

    The purpose of this review is to extend extant conceptualizations of readiness for change as an individual-level phenomenon. This review-of-reviews focuses on existing conceptual frameworks from the dissemination, implementation, quality improvement, and organizational transformation literatures in order to integrate theoretical rationales for how organization structure, a key dimension of the organizational context, may impact readiness for change. We propose that the organization structure dimensions of differentiation and integration impact readiness for change at the individual level of analysis by influencing four key concepts of relevance, legitimacy, perceived need for change, and resource allocation. We identify future research directions that focus on these four key concepts.

  5. 20. Readiness Crew Building interior, upper level corridor. This corridor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Readiness Crew Building interior, upper level corridor. This corridor runs from northwest to southeast. Photograph taken at the northwest end looking southeast. Lyon - Whiteman Air Force Base, Bomber Alert Facility S-6, 1300 Alert Road, Knob Noster, Johnson County, MO

  6. Status of Sample Return Propulsion Technology Development Under NASA's ISPT Program

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Glaab, Louis J.; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Peterson, Todd T.

    2012-01-01

    The In-Space Propulsion Technology (ISPT) program was tasked in 2009 to start development of propulsion technologies that would enable future sample return missions. ISPT s sample return technology development areas are diverse. Sample Return Propulsion (SRP) addresses electric propulsion for sample return and low cost Discovery-class missions, propulsion systems for Earth Return Vehicles (ERV) including transfer stages to the destination, and low technology readiness level (TRL) advanced propulsion technologies. The SRP effort continues work on HIVHAC thruster development to transition into developing a Hall-effect propulsion system for sample return (ERV and transfer stages) and low-cost missions. Previous work on the lightweight propellant-tanks continues for sample return with direct applicability to a Mars Sample Return (MSR) mission with general applicability to all future planetary spacecraft. The Earth Entry Vehicle (EEV) work focuses on building a fundamental base of multi-mission technologies for Earth Entry Vehicles (MMEEV). The main focus of the Planetary Ascent Vehicles (PAV) area is technology development for the Mars Ascent Vehicle (MAV), which builds upon and leverages the past MAV analysis and technology developments from the Mars Technology Program (MTP) and previous MSR studies

  7. Rice University: Innovation to Increase Student College Readiness

    ERIC Educational Resources Information Center

    Gigliotti, Jennifer

    2012-01-01

    "College readiness" means that a student can enter a college classroom without remediation and successfully complete entry-level college requirements (Conley, 2012). In order for students to be considered college ready, they must acquire skills, content knowledge, and behaviors before leaving high school. Research on high-school performance…

  8. Are Dual Enrollment Students College Ready? Evidence from the Wabash National Study of Liberal Arts Education

    ERIC Educational Resources Information Center

    An, Brian P.; Taylor, Jason L.

    2015-01-01

    We examine whether dual enrolled students display greater levels of college readiness than nonparticipants. Advocates assert that dual enrollment improves students' college readiness, but despite these assertions, few researchers have evaluated this relationship. Moreover, researchers that do consider whether dual enrollment improves college…

  9. READINESS AND READING FOR THE RETARDED CHILD.

    ERIC Educational Resources Information Center

    BERNSTEIN, BEBE

    THIS TEACHER'S BOOK AND MANUAL, DESIGNED TO ACCOMPANY TWO WORKBOOKS, PRESENTS A FUNCTIONAL APPROACH TO READINESS AND READING FOR YOUNG EDUCABLE RETARDED CHILDREN. THE WORKBOOKS THEMSELVES OFFER PREPARATORY ACTIVITIES FOR CHILDREN AT THE READINESS LEVEL AND SEQUENTIAL ACTIVITIES AND MATERIALS FOR THOSE AT THE BEGINNING READING STAGE. THE TEACHER'S…

  10. Why Not an Informal Reading Readiness Inventory?

    ERIC Educational Resources Information Center

    Drake, Suzanne V.

    1990-01-01

    Reading readiness is defined, and the assessment of emergent literacy is discussed. An informal Reading Readiness Inventory is proposed to provide a profile of students' specific strengths and weaknesses at the beginning levels. The assessment comprises such subtests as oral cloze, sound/symbol relationships, and instant recognition of high…

  11. Distilling the Verification Process for Prognostics Algorithms

    NASA Technical Reports Server (NTRS)

    Roychoudhury, Indranil; Saxena, Abhinav; Celaya, Jose R.; Goebel, Kai

    2013-01-01

    The goal of prognostics and health management (PHM) systems is to ensure system safety, and reduce downtime and maintenance costs. It is important that a PHM system is verified and validated before it can be successfully deployed. Prognostics algorithms are integral parts of PHM systems. This paper investigates a systematic process of verification of such prognostics algorithms. To this end, first, this paper distinguishes between technology maturation and product development. Then, the paper describes the verification process for a prognostics algorithm as it moves up to higher maturity levels. This process is shown to be an iterative process where verification activities are interleaved with validation activities at each maturation level. In this work, we adopt the concept of technology readiness levels (TRLs) to represent the different maturity levels of a prognostics algorithm. It is shown that at each TRL, the verification of a prognostics algorithm depends on verifying the different components of the algorithm according to the requirements laid out by the PHM system that adopts this prognostics algorithm. Finally, using simplified examples, the systematic process for verifying a prognostics algorithm is demonstrated as the prognostics algorithm moves up TRLs.

  12. Environmental, Economic, and Scalability Considerations and Trends of Selected Fuel Economy-Enhancing Biomass-Derived Blendstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, Jennifer B.; Biddy, Mary; Jones, Susanne

    24 biomass-derived compounds and mixtures, identified based on their physical properties, that could be blended into fuels to improve spark ignition engine fuel economy were assessed for their economic, technology readiness, and environmental viability. These bio-blendstocks were modeled to be produced biochemically, thermochemically, or through hybrid processes. To carry out the assessment, 17 metrics were developed for which each bio-blendstock was determined to be favorable, neutral, or unfavorable. Cellulosic ethanol was included as a reference case. Overall, bio-blendstock yields in biochemical processes were lower than in thermochemical processes, in which all biomass, including lignin, is converted to a product. Bio-blendstockmore » yields were a key determinant in overall viability. Key knowledge gaps included the degree of purity needed for use as a bio-blendstock as compared to a chemical. Less stringent purification requirements for fuels could cut processing costs and environmental impacts. Additionally, more information is needed on the blendability of many of these bio-blendstocks with gasoline to support the technology readiness evaluation. Overall, the technology to produce many of these blendstocks from biomass is emerging and as it matures, these assessments must be revisited. Importantly, considering economic, environmental, and technology readiness factors in addition to physical properties of blendstocks that could be used to boost fuel economy can help spotlight those most likely to be viable in the near term.« less

  13. Scotty, I Need More Power - The Fission System Gateway to Abundant Power for Exploration

    NASA Technical Reports Server (NTRS)

    Palac, Donald T.

    2011-01-01

    In planning and in crisis, electrical power has been a key consideration when humans venture into space. Since the 1950's, nuclear fission (splitting of atoms) power has been a logical alternative in both fact and fiction, due to its ability to provide abundant power with high energy density, reliability, and immunity to severe environments. Bringing space fission power to a state of readiness for exploration has depended on clearing the hurdle of technology readiness demonstration. Due to the happy coincidence of heritage from prior space fission development efforts such as the Prometheus program, foresight from NASA's Exploration Mission Systems Directorate in the mid-2000's, and relative budget stability through the late 2000's, National Aeronautics and Space Administration (NASA) and Department of Energy (DOE), with their industry partners, are poised to push through to this objective. Hardware for a 12 kWe non-nuclear Fission Power System Technology Demonstration Unit is being fabricated now on a schedule that will enable a low-cost demonstration of technology readiness in the mid-2010s, with testing beginning as early as 2012. With space fission power system technology demonstrated, exploration mission planners will have the flexibility to respond to a broad variety of missions and will be able to provide abundant power so that future explorers will, in planning or crisis, have the power they need when they most need it.

  14. Improving Community Readiness for Change through Coalition Capacity Building: Evidence from a Multi-Site Intervention

    PubMed Central

    Anderson-Carpenter, Kaston D.; Watson-Thompson, Jomella; Jones, Marvia D.; Chaney, Lisa

    2016-01-01

    Often, community coalitions are facilitators of community-level changes when addressing underage drinking. Although studies have shown that enhancing coalition capacity is related to improved internal functioning, the relationship between enhanced capacity and community readiness for change is not well established. The present study used a pretest-posttest design to examine whether enhancing coalition capacity through training and technical assistance was associated with improved community readiness and coalition-facilitated community-level changes. Seven Kansas communities engaged in an intensive capacity building intervention through implementation of the Strategic Prevention Framework. The results indicated strong correlations between increased coalition capacity, changes in community readiness stages, and the number of community changes facilitated. The results suggest that strengthening coalition capacity through training and technical assistance may improve community readiness for change and enable the implementation of community-wide program and environmental changes. PMID:28458405

  15. The Role of Mobile Technologies in Pre-Service Foreign Language Teacher Education

    ERIC Educational Resources Information Center

    Tolosa, Constanza

    2017-01-01

    Pre-service teacher education plays a pivotal role in ensuring that future teachers are prepared to integrate technology effectively to their teaching. One way of improving readiness in future teachers is integrating mobile technologies to discipline-specific teacher education courses. This article presents three case studies drawn from…

  16. Relational Data Bases--Are You Ready?

    ERIC Educational Resources Information Center

    Marshall, Dorothy M.

    1989-01-01

    Migrating from a traditional to a relational database technology requires more than traditional project management techniques. An overview of what to consider before migrating to relational database technology is presented. Leadership, staffing, vendor support, hardware, software, and application development are discussed. (MLW)

  17. Ready, Set, Integrate!

    ERIC Educational Resources Information Center

    McCombs, John

    2003-01-01

    Describes how the American Embassy School (AES) in New Delhi, India achieved school-wide technology integration. Discusses development of a new network; beginning to mentor; organizing the Technology Integration Plan (TIP) by software application; implementing the plan; assessing progress; and results, which overall, were positive. (AEF)

  18. Federal Barriers to Innovation

    ERIC Educational Resources Information Center

    Miller, Raegen; Lake, Robin

    2012-01-01

    With educational outcomes inadequate, resources tight, and students' academic needs growing more complex, America's education system is certainly ready for technological innovation. And technology itself is ripe to be exploited. Devices harnessing cheap computing power have become smart and connected. Voice recognition, artificial intelligence,…

  19. Readiness of hospitals to provide Kangaroo Mother Care (KMC) and documentation of KMC service delivery: Analysis of Malawi 2014 Emergency Obstetric and Newborn Care (EmONC) survey data

    PubMed Central

    Chavula, Kondwani; Likomwa, Dyson; Valsangkar, Bina; Luhanga, Richard; Chimtembo, Lydia; Dube, Queen; Gobezie, Wasihun Andualem; Guenther, Tanya

    2017-01-01

    Background Malawi introduced Kangaroo Mother Care (KMC) in 1999 as part of its efforts to address newborn morbidity and mortality and has continued to expand KMC services across the country. Yet, data on availability of KMC services and routine service provision are limited. Methods Data from the 2014 Emergency Obstetric Newborn Care (EmONC) survey, which was a census of all 87 hospitals in Malawi, were analyzed. The WHO service availability and readiness domains were used to generate indicators for KMC service readiness and an additional domain for documentation of KMC services was included. Levels of KMC service delivery were quantified using data extracted from a 12–month register review and a KMC initiation rate was calculated for each facility by dividing the reported number of babies initiated on KMC by the number of live births at facility. We defined three levels of KMC readiness and two levels of KMC operational status. Results 79% of hospitals (69/87) reported providing inpatient KMC services. More than half of the hospitals (62%; 54/87) met the most basic definition of readiness (staff, space for KMC and functional weighing scale) and 35% (30/87) met an expanded definition of readiness (guidelines, staff, space, scale and register in use). Only 15% (13/87) of hospitals had all KMC tracer items. Less than half of the hospitals (43%; 37/87) met criteria for KMC operational status at minimum levels (≥1/100 live births), and just 16% (14/87) met criteria for KMC operational status at routine levels (≥5/100 live births). Conclusions Our study found large differences between reported levels of KMC services and documented levels of KMC readiness and service provision among hospitals in Malawi. It is recommended that facility assessments of services such as KMC include record reviews to better estimate service availability and delivery. Further efforts to strengthen the capacity of Malawian hospitals to deliver KMC are needed. PMID:29085623

  20. Self-directed learning readiness of Asian students: students perspective on a hybrid problem based learning curriculum.

    PubMed

    Leatemia, Lukas D; Susilo, Astrid P; van Berkel, Henk

    2016-12-03

    To identify the student's readiness to perform self-directed learning and the underlying factors influencing it on the hybrid problem based learning curriculum. A combination of quantitative and qualitative studies was conducted in five medical schools in Indonesia. In the quantitative study, the Self Directed Learning Readiness Scale was distributed to all students in all batches, who had experience with the hybrid problem based curriculum. They were categorized into low- and high -level based on the score of the questionnaire. Three focus group discussions (low-, high-, and mixed level) were conducted in the qualitative study with six to twelve students chosen randomly from each group to find the factors influencing their self-directed learning readiness. Two researchers analysed the qualitative data as a measure of triangulation. The quantitative study showed only half of the students had a high-level of self-directed learning readiness, and a similar trend also occurred in each batch. The proportion of students with a high level of self-directed learning readiness was lower in the senior students compared to more junior students. The qualitative study showed that problem based learning processes, assessments, learning environment, students' life styles, students' perceptions of the topics, and mood, were factors influencing their self-directed learning. A hybrid problem based curriculum may not fully affect the students' self-directed learning. The curriculum system, teacher's experiences, student's background and cultural factors might contribute to the difficulties for the student's in conducting self-directed learning.

  1. NASA Langley Systems Analysis & Concepts Directorate Technology Assessment/Portfolio Analysis

    NASA Technical Reports Server (NTRS)

    Cavanaugh, Stephen; Chytka, Trina; Arcara, Phil; Jones, Sharon; Stanley, Doug; Wilhite, Alan W.

    2006-01-01

    Systems analysis develops and documents candidate mission and architectures, associated system concepts, enabling capabilities and investment strategies to achieve NASA s strategic objectives. The technology assessment process connects the mission and architectures to the investment strategies. In order to successfully implement a technology assessment, there is a need to collect, manipulate, analyze, document, and disseminate technology-related information. Information must be collected and organized on the wide variety of potentially applicable technologies, including: previous research results, key technical parameters and characteristics, technology readiness levels, relationships to other technologies, costs, and potential barriers and risks. This information must be manipulated to facilitate planning and documentation. An assessment is included of the programmatic and technical risks associated with each technology task as well as potential risk mitigation plans. Risks are assessed and tracked in terms of likelihood of the risk occurring and consequences of the risk if it does occur. The risk assessments take into account cost, schedule, and technical risk dimensions. Assessment data must be simplified for presentation to decision makers. The Systems Analysis and Concepts Directorate (SACD) at NASA Langley Research Center has a wealth of experience in performing Technology Assessment and Portfolio Analysis as this has been a business line since 1978.

  2. Validation of On-board Cloud Cover Assessment Using EO-1

    NASA Technical Reports Server (NTRS)

    Mandl, Dan; Miller, Jerry; Griffin, Michael; Burke, Hsiao-hua

    2003-01-01

    The purpose of this NASA Earth Science Technology Office funded effort was to flight validate an on-board cloud detection algorithm and to determine the performance that can be achieved with a Mongoose V flight computer. This validation was performed on the EO-1 satellite, which is operational, by uploading new flight code to perform the cloud detection. The algorithm was developed by MIT/Lincoln Lab and is based on the use of the Hyperion hyperspectral instrument using selected spectral bands from 0.4 to 2.5 microns. The Technology Readiness Level (TRL) of this technology at the beginning of the task was level 5 and was TRL 6 upon completion. In the final validation, an 8 second (0.75 Gbytes) Hyperion image was processed on-board and assessed for percentage cloud cover within 30 minutes. It was expected to take many hours and perhaps a day considering that the Mongoose V is only a 6-8 MIP machine in performance. To accomplish this test, the image taken had to have level 0 and level 1 processing performed on-board before the cloud algorithm was applied. For almost all of the ground test cases and all of the flight cases, the cloud assessment was within 5% of the correct value and in most cases within 1-2%.

  3. In-Space Propulsion Program Overview and Status

    NASA Technical Reports Server (NTRS)

    Carroll, Carol; Johnson, Les; Baggett, Randy

    2002-01-01

    NASA's In-Space Propulsion (ISP) Program is designed to develop advanced propulsion technologies that can enable or greatly enhance near and mid-term NASA science missions by significantly reducing cost, mass, and/or travel times. These technologies include: Electric Propulsion (Solar and Nuclear Electric) [note: The Nuclear Electric Propulsion work will be transferred to the NSI program in FY03]; Propellantless Propulsion (aerocapture, solar sails, plasma sails, and momentum exchange tethers); Advanced Chemical Propulsion. The ISP approach to identifying and prioritizing these most promising technologies is to use mission analysis and subsequent peer review. These technologies under consideration are mid-Technology Readiness Level (TRL) up to TRL-6 for incorporation into mission planning within three - five years of initiation. In addition, maximum use of open competition is encouraged to seek optimum solutions under ISP. Several NASA Research Announcements (NRAs) have been released asking industry, academia and other organizations to propose propulsion technologies designed to improve our ability to conduct scientific study of the outer planets and beyond. The ISP Program is managed by NASA HQ (Headquarters) and implemented by the Marshall Space Flight Center in Huntsville, Alabama.

  4. An investigation of the effect of nurses' technology readiness on the acceptance of mobile electronic medical record systems.

    PubMed

    Kuo, Kuang-Ming; Liu, Chung-Feng; Ma, Chen-Chung

    2013-08-12

    Adopting mobile electronic medical record (MEMR) systems is expected to be one of the superior approaches for improving nurses' bedside and point of care services. However, nurses may use the functions for far fewer tasks than the MEMR supports. This may depend on their technological personality associated to MEMR acceptance. The purpose of this study is to investigate nurses' personality traits in regard to technology readiness toward MEMR acceptance. The study used a self-administered questionnaire to collect 665 valid responses from a large hospital in Taiwan. Structural Equation modeling was utilized to analyze the collected data. Of the four personality traits of the technology readiness, the results posit that nurses are optimistic, innovative, secure but uncomfortable about technology. Furthermore, these four personality traits were all proven to have a significant impact on the perceived ease of use of MEMR while the perceived usefulness of MEMR was significantly influenced by the optimism trait only. The results also confirmed the relationships between the perceived components of ease of use, usefulness, and behavioral intention in the Technology Acceptance Model toward MEMR usage. Continuous educational programs can be provided for nurses to enhance their information technology literacy, minimizing their stress and discomfort about information technology. Further, hospital should recruit, either internally or externally, more optimistic nurses as champions of MEMR by leveraging the instrument proposed in this study. Besides, nurses' requirements must be fully understood during the development of MEMR to ensure that MEMR can meet the real needs of nurses. The friendliness of user interfaces of MEMR and the compatibility of nurses' work practices as these will also greatly enhance nurses' willingness to use MEMR. Finally, the effects of technology personality should not be ignored, indicating that hospitals should also include more employees' characteristics beyond socio-demographic profiles in their personnel databases.

  5. An investigation of the effect of nurses’ technology readiness on the acceptance of mobile electronic medical record systems

    PubMed Central

    2013-01-01

    Background Adopting mobile electronic medical record (MEMR) systems is expected to be one of the superior approaches for improving nurses’ bedside and point of care services. However, nurses may use the functions for far fewer tasks than the MEMR supports. This may depend on their technological personality associated to MEMR acceptance. The purpose of this study is to investigate nurses’ personality traits in regard to technology readiness toward MEMR acceptance. Methods The study used a self-administered questionnaire to collect 665 valid responses from a large hospital in Taiwan. Structural Equation modeling was utilized to analyze the collected data. Results Of the four personality traits of the technology readiness, the results posit that nurses are optimistic, innovative, secure but uncomfortable about technology. Furthermore, these four personality traits were all proven to have a significant impact on the perceived ease of use of MEMR while the perceived usefulness of MEMR was significantly influenced by the optimism trait only. The results also confirmed the relationships between the perceived components of ease of use, usefulness, and behavioral intention in the Technology Acceptance Model toward MEMR usage. Conclusions Continuous educational programs can be provided for nurses to enhance their information technology literacy, minimizing their stress and discomfort about information technology. Further, hospital should recruit, either internally or externally, more optimistic nurses as champions of MEMR by leveraging the instrument proposed in this study. Besides, nurses’ requirements must be fully understood during the development of MEMR to ensure that MEMR can meet the real needs of nurses. The friendliness of user interfaces of MEMR and the compatibility of nurses’ work practices as these will also greatly enhance nurses’ willingness to use MEMR. Finally, the effects of technology personality should not be ignored, indicating that hospitals should also include more employees’ characteristics beyond socio-demographic profiles in their personnel databases. PMID:23938040

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abercrombie, Robert K; Udoeyop, Akaninyene W

    This work examines a scientometric model that tracks the emergence of an identified technology from initial discovery (via original scientific and conference literature), through critical discoveries (via original scientific, conference literature and patents), transitioning through Technology Readiness Levels (TRLs) and ultimately on to commercial application. During the period of innovation and technology transfer, the impact of scholarly works, patents and on-line web news sources are identified. As trends develop, currency of citations, collaboration indicators, and on-line news patterns are identified. The combinations of four distinct and separate searchable on-line networked sources (i.e., scholarly publications and citation, worldwide patents, news archives,more » and on-line mapping networks) are assembled to become one collective network (a dataset for analysis of relations). This established network becomes the basis from which to quickly analyze the temporal flow of activity (searchable events) for the example subject domain we investigated.« less

  7. Microchannel plate detector technology potential for LUVOIR and HabEx

    NASA Astrophysics Data System (ADS)

    Siegmund, O. H. W.; Ertley, C.; Vallerga, J. V.; Schindhelm, E. R.; Harwit, A.; Fleming, B. T.; France, K. C.; Green, J. C.; McCandliss, S. R.; Harris, W. M.

    2017-08-01

    Microchannel plate (MCP) detectors have been the detector of choice for ultraviolet (UV) instruments onboard many NASA missions. These detectors have many advantages, including high spatial resolution (<20 μm), photon counting, radiation hardness, large formats (up to 20 cm), and ability for curved focal plane matching. Novel borosilicate glass MCPs with atomic layer deposition combine extremely low backgrounds, high strength, and tunable secondary electron yield. GaN and combinations of bialkali/alkali halide photocathodes show promise for broadband, higher quantum efficiency. Cross-strip anodes combined with compact ASIC readout electronics enable high spatial resolution over large formats with high dynamic range. The technology readiness levels of these technologies are each being advanced through research grants for laboratory testing and rocket flights. Combining these capabilities would be ideal for UV instruments onboard the Large UV/Optical/IR Surveyor (LUVOIR) and the Habitable Exoplanet Imaging Mission (HABEX) concepts currently under study for NASA's Astrophysics Decadal Survey.

  8. Environmentally Responsible Aviation - Real Solutions for Environmental Challenges Facing Aviation

    NASA Technical Reports Server (NTRS)

    Collier, Fayette; Thomas, Russell; Burley, Casey; Nickol, Craig; Lee, Chi-Ming; Tong, Michael

    2010-01-01

    The combined reality of persistently strong growth in air traffic and the vital economic role of the air transport system result in continued demand for the progress of technology for the reduction of aircraft noise, emissions of oxides of nitrogen, and fuel burn. NASA s Environmentally Responsible Aviation (ERA) project has set aggressive goals in these three areas including a noise goal of 42 dB cumulative below the Stage 4 certification level. The goal for the reduction of oxides of nitrogen is 75% below the current standard. The fuel burn reduction goal is 50% below that of a current state-of-the-art aircraft. Furthermore, the overall goal of ERA is to mature technologies that will meet these goals simultaneously and with a timeframe of 2020 for technical readiness. This paper outlines the key technologies and the progress achieved to date toward the goals.

  9. Linking household and health facility surveys to assess obstetric service availability, readiness and coverage: evidence from 17 low- and middle-income countries.

    PubMed

    Kanyangarara, Mufaro; Chou, Victoria B; Creanga, Andreea A; Walker, Neff

    2018-06-01

    Improving access and quality of obstetric service has the potential to avert preventable maternal, neonatal and stillborn deaths, yet little is known about the quality of care received. This study sought to assess obstetric service availability, readiness and coverage within and between 17 low- and middle-income countries. We linked health facility data from the Service Provision Assessments and Service Availability and Readiness Assessments, with corresponding household survey data obtained from the Demographic and Health Surveys and Multiple Indicator Cluster Surveys. Based on performance of obstetric signal functions, we defined four levels of facility emergency obstetric care (EmOC) functionality: comprehensive (CEmOC), basic (BEmOC), BEmOC-2, and low/substandard. Facility readiness was evaluated based on the direct observation of 23 essential items; facilities "ready to provide obstetric services" had ≥20 of 23 items available. Across countries, we used medians to characterize service availability and readiness, overall and by urban-rural location; analyses also adjusted for care-seeking patterns to estimate population-level coverage of obstetric services. Of the 111 500 health facilities surveyed, 7545 offered obstetric services and were included in the analysis. The median percentages of facilities offering EmOC and "ready to provide obstetric services" were 19% and 10%, respectively. There were considerable urban-rural differences, with absolute differences of 19% and 29% in the availability of facilities offering EmOC and "ready to provide obstetric services", respectively. Adjusting for care-seeking patterns, results from the linking approach indicated that among women delivering in a facility, a median of 40% delivered in facilities offering EmOC, and 28% delivered in facilities "ready to provide obstetric services". Relatively higher coverage of facility deliveries (≥65%) and coverage of deliveries in facilities "ready to provide obstetric services" (≥30% of facility deliveries) were only found in three countries. The low levels of availability, readiness and coverage of obstetric services documented represent substantial missed opportunities within health systems. Global and national efforts need to prioritize upgrading EmOC functionality and improving readiness to deliver obstetric service, particularly in rural areas. The approach of linking health facility and household surveys described here could facilitate the tracking of progress towards quality obstetric care.

  10. Linking household and health facility surveys to assess obstetric service availability, readiness and coverage: evidence from 17 low- and middle-income countries

    PubMed Central

    Kanyangarara, Mufaro; Chou, Victoria B; Creanga, Andreea A; Walker, Neff

    2018-01-01

    Background Improving access and quality of obstetric service has the potential to avert preventable maternal, neonatal and stillborn deaths, yet little is known about the quality of care received. This study sought to assess obstetric service availability, readiness and coverage within and between 17 low- and middle-income countries. Methods We linked health facility data from the Service Provision Assessments and Service Availability and Readiness Assessments, with corresponding household survey data obtained from the Demographic and Health Surveys and Multiple Indicator Cluster Surveys. Based on performance of obstetric signal functions, we defined four levels of facility emergency obstetric care (EmOC) functionality: comprehensive (CEmOC), basic (BEmOC), BEmOC-2, and low/substandard. Facility readiness was evaluated based on the direct observation of 23 essential items; facilities “ready to provide obstetric services” had ≥20 of 23 items available. Across countries, we used medians to characterize service availability and readiness, overall and by urban-rural location; analyses also adjusted for care-seeking patterns to estimate population-level coverage of obstetric services. Results Of the 111 500 health facilities surveyed, 7545 offered obstetric services and were included in the analysis. The median percentages of facilities offering EmOC and “ready to provide obstetric services” were 19% and 10%, respectively. There were considerable urban-rural differences, with absolute differences of 19% and 29% in the availability of facilities offering EmOC and “ready to provide obstetric services”, respectively. Adjusting for care-seeking patterns, results from the linking approach indicated that among women delivering in a facility, a median of 40% delivered in facilities offering EmOC, and 28% delivered in facilities “ready to provide obstetric services”. Relatively higher coverage of facility deliveries (≥65%) and coverage of deliveries in facilities “ready to provide obstetric services” (≥30% of facility deliveries) were only found in three countries. Conclusions The low levels of availability, readiness and coverage of obstetric services documented represent substantial missed opportunities within health systems. Global and national efforts need to prioritize upgrading EmOC functionality and improving readiness to deliver obstetric service, particularly in rural areas. The approach of linking health facility and household surveys described here could facilitate the tracking of progress towards quality obstetric care. PMID:29862026

  11. 77 FR 33573 - Final Priorities, Requirements, and Selection Criteria-Comprehensive Centers Program (CFDA Number...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... college- and career-readiness and success for students, addressing early learning, ensuring great teachers... are far below grade level or who are not on track to becoming college- or career- ready by graduation... the opportunity to graduate ready for college and a career. Further, when educators do not have...

  12. Predicting Early School Achievement with the EDI: A Longitudinal Population-Based Study

    ERIC Educational Resources Information Center

    Forget-Dubois, Nadine; Lemelin, Jean-Pascal; Boivin, Michel; Dionne, Ginette; Seguin, Jean R.; Vitaro, Frank; Tremblay, Richard E.

    2007-01-01

    School readiness tests are significant predictors of early school achievement. Measuring school readiness on a large scale would be necessary for the implementation of intervention programs at the community level. However, assessment of school readiness is costly and time consuming. This study assesses the predictive value of a school readiness…

  13. External Factors, Internal Factors and Self-Directed Learning Readiness

    ERIC Educational Resources Information Center

    Ramli, Nurjannah; Muljono, Pudji; Afendi, Farit M.

    2018-01-01

    There are many factors which affect the level of self-directed learning readiness. This study aims to investigate the relationship between external factors, internal factors and self-directed learning readiness. This study was carried out by using a census method for fourth year students of medical program of Tadulako University. Data were…

  14. E-Learning Readiness in Public Secondary Schools in Kenya

    ERIC Educational Resources Information Center

    Ouma, Gordon O.; Awuor, Fredrick M.; Kyambo, Benjamin

    2013-01-01

    As e-learning becomes useful to learning institutions worldwide, an assessment of e-learning readiness is essential for the successful implementation of e-learning as a platform for learning. Success in e-learning can be achieved by understanding the level of readiness of e-learning environments. To facilitate schools in Kenya to implement…

  15. Getting on Board: The Private Sector and Learning Readiness.

    ERIC Educational Resources Information Center

    Koprowicz, Constance; Myers, John

    Developed by the Women's NETWORK, a group representing women serving in state legislatures in the United States, this report examines how the private sector is involved in promoting learning readiness at the preschool level. The report begins with an introduction and a discussion of the importance of learning readiness as a national goal. The…

  16. Recent advance in high manufacturing readiness level and high temperature CMOS mixed-signal integrated circuits on silicon carbide

    NASA Astrophysics Data System (ADS)

    Weng, M. H.; Clark, D. T.; Wright, S. N.; Gordon, D. L.; Duncan, M. A.; Kirkham, S. J.; Idris, M. I.; Chan, H. K.; Young, R. A. R.; Ramsay, E. P.; Wright, N. G.; Horsfall, A. B.

    2017-05-01

    A high manufacturing readiness level silicon carbide (SiC) CMOS technology is presented. The unique process flow enables the monolithic integration of pMOS and nMOS transistors with passive circuit elements capable of operation at temperatures of 300 °C and beyond. Critical to this functionality is the behaviour of the gate dielectric and data for high temperature capacitance-voltage measurements are reported for SiO2/4H-SiC (n and p type) MOS structures. In addition, a summary of the long term reliability for a range of structures including contact chains to both n-type and p-type SiC, as well as simple logic circuits is presented, showing function after 2000 h at 300 °C. Circuit data is also presented for the performance of digital logic devices, a 4 to 1 analogue multiplexer and a configurable timer operating over a wide temperature range. A high temperature micro-oven system has been utilised to enable the high temperature testing and stressing of units assembled in ceramic dual in line packages, including a high temperature small form-factor SiC based bridge leg power module prototype, operated for over 1000 h at 300 °C. The data presented show that SiC CMOS is a key enabling technology in high temperature integrated circuit design. In particular it provides the ability to realise sensor interface circuits capable of operating above 300 °C, accommodate shifts in key parameters enabling deployment in applications including automotive, aerospace and deep well drilling.

  17. Is Your Mission Ready for the Information Age?

    ERIC Educational Resources Information Center

    Oblinger, Diana G.

    1999-01-01

    Urges institutions of higher education to evaluate their mission statements in light of current trends, especially the pervasive influence of information technology. Raises evaluative questions concerning information technology and distance learning, student services, the campus library, research computing, administrative computing, and public…

  18. Design and Test Plans for a Non-Nuclear Fission Power System Technology Demonstration Unit

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Palac, Donald; Gibson, Marc; Houts, Michael; Warren, John; Werner, James; Poston, David; Qualls, Arthur Lou; Radel, Ross; Harlow, Scott

    2012-01-01

    A joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) team is developing concepts and technologies for affordable nuclear Fission Power Systems (FPSs) to support future exploration missions. A key deliverable is the Technology Demonstration Unit (TDU). The TDU will assemble the major elements of a notional FPS with a non-nuclear reactor simulator (Rx Sim) and demonstrate system-level performance in thermal vacuum. The Rx Sim includes an electrical resistance heat source and a liquid metal heat transport loop that simulates the reactor thermal interface and expected dynamic response. A power conversion unit (PCU) generates electric power utilizing the liquid metal heat source and rejects waste heat to a heat rejection system (HRS). The HRS includes a pumped water heat removal loop coupled to radiator panels suspended in the thermal-vacuum facility. The basic test plan is to subject the system to realistic operating conditions and gather data to evaluate performance sensitivity, control stability, and response characteristics. Upon completion of the testing, the technology is expected to satisfy the requirements for Technology Readiness Level 6 (System Demonstration in an Operational and Relevant Environment) based on the use of high-fidelity hardware and prototypic software tested under realistic conditions and correlated with analytical predictions.

  19. Design and Test Plans for a Non-Nuclear Fission Power System Technology Demonstration Unit

    NASA Astrophysics Data System (ADS)

    Mason, L.; Palac, D.; Gibson, M.; Houts, M.; Warren, J.; Werner, J.; Poston, D.; Qualls, L.; Radel, R.; Harlow, S.

    A joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) team is developing concepts and technologies for affordable nuclear Fission Power Systems (FPSs) to support future exploration missions. A key deliverable is the Technology Demonstration Unit (TDU). The TDU will assemble the major elements of a notional FPS with a non-nuclear reactor simulator (Rx Sim) and demonstrate system-level performance in thermal vacuum. The Rx Sim includes an electrical resistance heat source and a liquid metal heat transport loop that simulates the reactor thermal interface and expected dynamic response. A power conversion unit (PCU) generates electric power utilizing the liquid metal heat source and rejects waste heat to a heat rejection system (HRS). The HRS includes a pumped water heat removal loop coupled to radiator panels suspended in the thermal-vacuum facility. The basic test plan is to subject the system to realistic operating conditions and gather data to evaluate performance sensitivity, control stability, and response characteristics. Upon completion of the testing, the technology is expected to satisfy the requirements for Technology Readiness Level 6 (System Demonstration in an Operational and Relevant Environment) based on the use of high-fidelity hardware and prototypic software tested under realistic conditions and correlated with analytical predictions.

  20. Design, Construction, and Testing of Lightweight X-ray Mirror Modules

    NASA Technical Reports Server (NTRS)

    McClelland, Ryan S.; Biskach, Michael P.; Chan, Kai-Wing; Espina, Rebecca A.; Hohl, Bruce R.; Matson, Elizabeth A.; Saha, Timo C.; Zhang, William W.

    2013-01-01

    Lightweight and high resolution optics are needed for future space-based X-ray telescopes to achieve advances in high-energy astrophysics. The Next Generation X-ray Optics (NGXO) team at NASA GSFC is nearing mission readiness for a 10 arc-second Half Power Diameter (HPD) slumped glass mirror technology while laying the groundwork for a future 1-2 arc-second technology based on polished silicon mirrors. Technology Development Modules (TDMs) have been designed, fabricated, integrated with mirrors segments, and extensively tested to demonstrate technology readiness. Tests include X-ray performance, thermal vacuum, acoustic load, and random vibration. The thermal vacuum and acoustic load environments have proven relatively benign, while the random vibration environment has proven challenging due to large input amplification at frequencies above 500 Hz. Epoxy selection, surface preparation, and larger bond area have increased bond strength while vibration isolation has decreased vibration amplification allowing for space launch requirements to be met in the near term. The next generation of TDMs, which demonstrates a lightweight structure supporting more mirror segments, is currently being fabricated. Analysis predicts superior performance characteristics due to the use of E-60 Beryllium-Oxide Metal Matrix Composite material, with only a modest cost increase. These TDMs will be larger, lighter, stiffer, and stronger than the current generation. Preliminary steps are being taken to enable mounting and testing of 1-2 arc-second mirror segments expected to be available in the future. A Vertical X-ray Test Facility (VXTF) will minimize module gravity distortion and allow for less constrained mirror mounts, such as fully kinematic mounts. Permanent kinematic mounting into a modified TDM has been demonstrated to achieve 2 arc-second level distortion free alignment.

Top