The role of top management in supporting the use of information technology in Australian hospitals.
Reeve, R; Rose, G
1999-01-01
The progressive use of information systems and information technology has the potential to transform the way complex organisations are managed and the way they operate. This article reports the findings of a study undertaken to examine the importance of various factors related to the progressive use of information technology in Australian hospitals. Our analysis of data from 84 hospitals shows that hospital size has a significant positive relationship with the progressive use of information technology, as does the chief executive officer's attitude to information technology; however chief executive officer participation in information technology activities does not. The implications of these findings for the role of top management are discussed.
Application of Interface Technology in Progressive Failure Analysis of Composite Panels
NASA Technical Reports Server (NTRS)
Sleight, D. W.; Lotts, C. G.
2002-01-01
A progressive failure analysis capability using interface technology is presented. The capability has been implemented in the COMET-AR finite element analysis code developed at the NASA Langley Research Center and is demonstrated on composite panels. The composite panels are analyzed for damage initiation and propagation from initial loading to final failure using a progressive failure analysis capability that includes both geometric and material nonlinearities. Progressive failure analyses are performed on conventional models and interface technology models of the composite panels. Analytical results and the computational effort of the analyses are compared for the conventional models and interface technology models. The analytical results predicted with the interface technology models are in good correlation with the analytical results using the conventional models, while significantly reducing the computational effort.
The state of the art of thin-film photovoltaics
NASA Astrophysics Data System (ADS)
Surek, T.
1993-10-01
Thin-film photovoltaic technologies, based on materials such as amorphous or polycrystalline silicon, copper indium diselenide, cadmium telluride, and gallium arsenide, offer the potential for significantly reducing the cost of electricity generated by photovoltaics. The significant progress in the technologies, from the laboratory to the marketplace, is reviewed. The common concerns and questions raised about thin films are addressed. Based on the progress to date and the potential of these technologies, along with continuing investments by the private sector to commercialize the technologies, one can conclude that thin-film PV will provide a competitive alternative for large-scale power generation in the future.
[Application of terahertz technology in medical testing and diagnosis].
Qi, Na; Zhang, Zhuo-Yong; Xiang, Yu-Hong
2013-08-01
Terahertz science and technology is increasingly emphasized in science and industry, and has progressed significantly in recent years. There is an important aspect of attention in the application of terahertz technology to medicine. The overview of the terahertz characters, terahertz spectroscopy and terahertz imaging technology is introduced. This paper focuses on reviewing the use of and research progress in terahertz spectroscopy and terahertz imaging technology in medical testing and diagnosis. Furthermore, the problems to be solved and development directions of terahertz spectroscopy and terahertz imaging technology are discussed.
Design and fabrication of the progressive addition lenses
NASA Astrophysics Data System (ADS)
Qin, Linling; Qian, Lin; Yu, Jingchi
2011-11-01
The use of progressive addition lenses (PALs) for the correction of presbyopia has increased dramatically in recent years. These lenses are now being used as the preferred alternative to bifocal and trifocal lenses in many parts of the world. Progressive addition lenses are a kind of opthalmic lenses with freeform surface. The surface curvature of the Progressive addition lenses varies gradually from a minimum value in the upper area, to a maximum value in the lower area. Thus a PAL has a surface with three zones which have very small astigmatism: far-view zone, near-view zone, and intermediate zone. The far view zone and near view zone have relatively constant powers and connected by the intermediate zone with power varies progressively. The design and fabrication technologies of progressive addition lenses have fast progresses because of the massive development of the optical simulation software, multi-axis ultraprecision machining technologies and CNC machining technologies. The design principles of progressive addition lenses are discussed in a historic review. Several kinds of design methods are illustrated, and their advantages and disadvantages are also represented. In the current study, it is shown that the optical characteristics of the different progressive addition lenses designs are significantly different from one another. The different fabrication technologies of Progressive addition lenses are also discussed in the paper. Plastic injection molding and precision-machine turning are the common fabrication technologies for exterior PALs and Interior PALs respectively.
Progress in aeronautical research and technology applicable to civil air transports
NASA Technical Reports Server (NTRS)
Bower, R. E.
1981-01-01
Recent progress in the aeronautical research and technology program being conducted by the United States National Aeronautics and Space Administration is discussed. Emphasis is on computational capability, new testing facilities, drag reduction, turbofan and turboprop propulsion, noise, composite materials, active controls, integrated avionics, cockpit displays, flight management, and operating problems. It is shown that this technology is significantly impacting the efficiency of the new civil air transports. The excitement of emerging research promises even greater benefits to future aircraft developments.
Gas-turbine critical research and advanced technology support project
NASA Technical Reports Server (NTRS)
Clark, J. S.; Lowell, C. E.; Niedzwiecki, R. W.; Nainiger, J. J.
1979-01-01
The technical progress made during the first 15 months of a planned 40-month project to provide a critical-technology data base for utility gas-turbine systems capable of burning coal-derived fuels is summarized. Tasks were included in the following areas: (1) combustion, to study the combustion of coal-derived fuels and conversion of fuel-bound nitrogen to NOx; (2) materials, to understand and prevent hot corrosion; and (3) system studies, to integrate and guide the other technologies. Significant progress was made.
Operational Lessons Leaned During bioreactor Demonstrations for Acid Rock Drainage Treatment
The U.S. Environmental Protection Agency's Mine Waste Technology Program (MWTP) has emphasized the development of biologically-based treatment technologies for acid rock drainage (ARD). Progressively evolving technology demonstrations have resulted in significant advances in sulf...
Progress update of NASA's free-piston Stirling space power converter technology project
NASA Technical Reports Server (NTRS)
Dudenhoefer, James E.; Winter, Jerry M.; Alger, Donald
1992-01-01
A progress update is presented of the NASA LeRC Free-Piston Stirling Space Power Converter Technology Project. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power Element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least five fold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss progress toward 1050 K Stirling Space Power Converters. Fabrication is nearly completed for the 1050 K Component Test Power Converter (CTPC); results of motoring tests of the cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing, and predictive methodologies. This paper will compare progress in significant areas of component development from the start of the program with the Space Power Development Engine (SPDE) to the present work on CTPC.
Operational Lessons Learned During Bioreactor Demonstrations for Acid Rock Drainage Treatment
The U.S. Environmental Protection Agency’s Mine Waste Technology Program (MWTP) has emphasized the development of biologically-based treatment technologies for acid rock drainage (ARD). Progressively evolving technology demonstrations have resulted in significant advances in sul...
2017-02-01
19As defined in generally accepted government auditing standards, information technology controls...Financial Improvement and Audit Readiness (FIAR) Plan Status Report, while DOD continues to make progress in addressing information technology ...DOD FINANCIAL MANAGEMENT Significant Efforts Still Needed for Remediating Audit Readiness Deficiencies Report to
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pikin, A.
2017-11-21
Electron beam ion sources technology made significant progress since 1968 when this method of producing highly charged ions in a potential trap within electron beam was proposed by E. Donets. Better understanding of physical processes in EBIS, technological advances and better simulation tools determined significant progress in key EBIS parameters: electron beam current and current density, ion trap capacity, attainable charge states. Greatly increased the scope of EBIS and EBIT applications. An attempt is made to compile some of EBIS engineering problems and solutions and to demonstrate a present stage of understanding the processes and approaches to build a bettermore » EBIS.« less
Progress in advanced high temperature materials technology
NASA Technical Reports Server (NTRS)
Freche, J. C.; Ault, G. M.
1976-01-01
Significant progress has recently been made in many high temperature material categories pertinent to such applications by the industrial community. These include metal matrix composites, superalloys, directionally solidified eutectics, coatings, and ceramics. Each of these material categories is reviewed and the current state-of-the-art identified, including some assessment, when appropriate, of progress, problems, and future directions.
The incubator and the medical discovery of the premature infant.
Baker, J P
2000-01-01
The invention of the incubator in 1880 ignited a dramatic outpouring of popular and professional excitement over the prospect of reducing premature infant mortality. Yet the technology itself progressed slowly and fitfully over the next 50 years. The story is worth examining not so much from the standpoint of technological progress, but from the perspective of how responsibility for the newborn shifted from mothers to obstetricians and eventually pediatricians. It also illustrates how the history of technology involves more than invention. The invention of the incubator itself was less significant than the development of a system to support the device.
FY 2005 Annual Progress Report for the DOE Hydrogen Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
In cooperation with industry, academia, national laboratories, and other government agencies, the Department of Energy's Hydrogen Program is advancing the state of hydrogen and fuel cell technologies in support of the President's Hydrogen Fuel Initiative. The initiative seeks to develop hydrogen, fuel cell, and infrastructure technologies needed to make it practical and cost-effective for Americans to choose to use fuel cell vehicles by 2020. Significant progress was made in fiscal year 2005 toward that goal.
VLBI Technology Development at SHAO
NASA Technical Reports Server (NTRS)
Zhang, Xiuzhong; Shu, Fengchun; Xiang, Ying; Zhu, Renjie; Xu, Zhijun; Chen, Zhong; Zheng, Weimin; Luo, Jintao; Wu, Yajun
2010-01-01
VLBI technology development made significant progress at SHAO in the last few years. The development status of the Chinese DBBC, the software and FPGA-based correlators, and the new VLBI antenna, as well as VLBI applications are summarized in this paper.
ERIC Educational Resources Information Center
Manyuk, Lyubov; Kuchumova, Nataliya
2018-01-01
The US medical schools are characterized by a significant progress in the usage of information and communication technologies for professional purposes and communication skills development. This advance was influenced by a sequence of social, academic, technological and financial conditions, namely: permanent research in the branch of…
Hu, Rongrong; Wang, Chenkun; Gu, Yangshun; Racette, Lyne
2016-01-01
Abstract Detection of progression is paramount to the clinical management of glaucoma. Our goal is to compare the performance of standard automated perimetry (SAP), short-wavelength automated perimetry (SWAP), and frequency-doubling technology (FDT) perimetry in monitoring glaucoma progression. Longitudinal data of paired SAP, SWAP, and FDT from 113 eyes with primary open-angle glaucoma enrolled in the Diagnostic Innovations in Glaucoma Study or the African Descent and Glaucoma Evaluation Study were included. Data from all tests were expressed in comparable units by converting the sensitivity from decibels to unitless contrast sensitivity and by expressing sensitivity values in percent of mean normal based on an independent dataset of 207 healthy eyes with aging deterioration taken into consideration. Pointwise linear regression analysis was performed and 3 criteria (conservative, moderate, and liberal) were used to define progression and improvement. Global mean sensitivity (MS) was fitted with linear mixed models. No statistically significant difference in the proportion of progressing and improving eyes was observed across tests using the conservative criterion. Fewer eyes showed improvement on SAP compared to SWAP and FDT using the moderate criterion; and FDT detected less progressing eyes than SAP and SWAP using the liberal criterion. The agreement between these test types was poor. The linear mixed model showed a progressing trend of global MS overtime for SAP and SWAP, but not for FDT. The baseline estimate of SWAP MS was significantly lower than SAP MS by 21.59% of mean normal. FDT showed comparable estimation of baseline MS with SAP. SWAP and FDT do not appear to have significant benefits over SAP in monitoring glaucoma progression. SAP, SWAP, and FDT may, however, detect progression in different glaucoma eyes. PMID:26886602
Ceramic Technology Project semiannual progress report, April 1992--September 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.R.
1993-07-01
This project was developed to meet the ceramic technology requirements of the DOE Office of Transportation Systems` automotive technology programs. Significant progress in fabricating ceramic components for DOE, NASA, and DOE advanced heat engine programs show that operation of ceramic parts in high-temperature engines is feasible; however, addition research is needed in materials and processing, design, and data base and life prediction before industry will have a sufficient technology base for producing reliable cost-effective ceramic engine components commercially. A 5-yr project plan was developed, with focus on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments,more » and ceramic coatings for thermal barrier and wear applications in these engines.« less
Aircraft Engine Technology for Green Aviation to Reduce Fuel Burn
NASA Technical Reports Server (NTRS)
Hughes, Christopher E.; VanZante, Dale E.; Heidmann, James D.
2013-01-01
The NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project and Integrated Systems Research Program Environmentally Responsible Aviation Project in the Aeronautics Research Mission Directorate are conducting research on advanced aircraft technology to address the environmental goals of reducing fuel burn, noise and NOx emissions for aircraft in 2020 and beyond. Both Projects, in collaborative partnerships with U.S. Industry, Academia, and other Government Agencies, have made significant progress toward reaching the N+2 (2020) and N+3 (beyond 2025) installed fuel burn goals by fundamental aircraft engine technology development, subscale component experimental investigations, full scale integrated systems validation testing, and development validation of state of the art computation design and analysis codes. Specific areas of propulsion technology research are discussed and progress to date.
Progress in supersonic cruise aircraft technology
NASA Technical Reports Server (NTRS)
Driver, C.
1978-01-01
The supersonic cruise aircraft research program identified significant improvements in the technology areas of propulsion, aerodynamics, structures, takeoff and landing procedures, and advanced configuration concepts. Application of these technology areas to a commercial aircraft is discussed. An advanced SST family of aircraft which may be environmentally acceptable, have flexible range-payload capability, and be economically viable is projected.
NASA Astrophysics Data System (ADS)
Vacanas, Yiannis; Themistocleous, Kyriacos; Agapiou, Athos; Hadjimitsis, Diofantos
2016-08-01
Building Information Modelling (BIM) technology is already part of the construction industry and is considered by professionals as a very useful tool for all phases of a construction project. BIM technology, with the particularly useful 3D illustrations which it provides, can be used to illustrate and monitor the progress of works effectively through the entire lifetime of the project. Unmanned Aerial Vehicles (UAVs) have undergone significant advances in equipment capabilities and now have the capacity to acquire high resolution imagery from different angles in a cost effective and efficient manner. By using photogrammetry, characteristics such as distances, areas, volumes, elevations, object sizes, and object shape can be determined within overlapping areas. This paper explores the combined use of BIM and UAV technologies in order to achieve efficient and accurate as-built data collection and 3D illustrations of the works progress during an infrastructure construction project.
Hu, Jiangfeng; Wang, Zhao; Lian, Yuehan; Huang, Qinghua
2018-01-29
This study examines the spillover effects of foreign direct investment (FDI) on green technology progress rate (as measured by the green total factor productivity). The analysis utilizes two measures of FDI, labor-based FDI and capital-based FDI, and separately investigates four sets of industry classifications-high/low discharge regulation and high/low emission standard regulation. The results indicate that in the low discharge regulation and low emission standard regulation industry, labor-based FDI has a significant negative spillover effect, and capital-based FDI has a significant positive spillover effect. However, in the high-intensity environmental regulation industry, the negative influence of labor-based FDI is completely restrained, and capital-based FDI continues to play a significant positive green technological spillover effects. These findings have clear policy implications: the government should be gradually reducing the labor-based FDI inflow or increasing stringency of environmental regulation in order to reduce or eliminate the negative spillover effect of the labor-based FDI.
Solid Polymer Electrolyte (SPE) fuel cell technology program
NASA Technical Reports Server (NTRS)
1979-01-01
The overall objectives of the Phase IV Solid Polymer Electrolyte Fuel Cell Technology Program were to: (1) establish fuel cell life and performance at temperatures, pressures and current densities significantly higher than those previously demonstrated; (2) provide the ground work for a space energy storage system based on the solid polymer electrolyte technology (i.e., regenerative H2/O2 fuel cell); (3) design, fabricate and test evaluate a full-scale single cell unit. During this phase, significant progress was made toward the accomplishment of these objectives.
Tissue Engineering and Regenerative Medicine 2017: A Year in Review.
Park, Kyung Min; Shin, Young Min; Kim, Kyobum; Shin, Heungsoo
2018-04-26
In 2017, a new paradigm change caused by artificial intelligence and big data analysis resulted in innovation in each field of science and technology, and also significantly influenced progress in tissue engineering and regenerative medicine (TERM). TERM has continued to make technological advances based on interdisciplinary approaches and has contributed to the overall field of biomedical technology, including cancer biology, personalized medicine, development biology, and cell-based therapeutics. While researchers are aware that there is still a long way to go until TERM reaches the ultimate goal of patient treatment through clinical translation, the rapid progress in convergence studies led by technological improvements in TERM has been encouraging. In this review, we highlighted the significant advances made in TERM in 2017 (with an overlap of 5 months in 2016). We identified major progress in TERM in a manner similar to previous reviews published in the last few years. In addition, we carefully considered all four previous reviews during the selection process and chose main themes that minimize the duplication of the topics. Therefore, we have identified three areas that have been the focus of most journal publications in the TERM community in 2017: (i) advanced biomaterials and three-dimensional (3D) cell printing, (ii) exosomes as bioactive agents for regenerative medicine, and (iii) 3D culture in regenerative medicine.
Research in Hypersonic Airbreathing Propulsion at the NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Kumar, Ajay; Drummond, J. Philip; McClinton, Charles R.; Hunt, James L.
2001-01-01
The NASA Langley Research Center has been conducting research for over four decades to develop technology for an airbreathing-propelled vehicle. Several other organizations within the United States have also been involved in this endeavor. Even though significant progress has been made over this period, a hypersonic airbreathing vehicle has not yet been realized due to low technology maturity. One of the major reasons for the slow progress in technology development has been the low level and cyclic nature of funding. The paper provides a brief historical overview of research in hypersonic airbreathing technology and then discusses current efforts at NASA Langley to develop various analytical, computational, and experimental design tools and their application in the development of future hypersonic airbreathing vehicles. The main focus of this paper is on the hypersonic airbreathing propulsion technology.
NASA Technical Reports Server (NTRS)
1971-01-01
Investigations were performed at the national economic level to explore the aggregate effects of technological progress on economic growth. Inadequacies in existing marco-economic yardsticks forced the study to focus on the cost savings effects achieved through technological progress. The central questions discussed in this report cover: (1) role of technological progress in economic growth, (2) factors determining the rate of economic growth due to technological progress; (3) quantitative measurements of relationships between technological progress, its determinants, and subsequent economic growth; and (4) effects of research and development activities of the space program. For Part 2, see N72-32174.
LEC GaAs for integrated circuit applications
NASA Technical Reports Server (NTRS)
Kirkpatrick, C. G.; Chen, R. T.; Homes, D. E.; Asbeck, P. M.; Elliott, K. R.; Fairman, R. D.; Oliver, J. D.
1984-01-01
Recent developments in liquid encapsulated Czochralski techniques for the growth of semiinsulating GaAs for integrated circuit applications have resulted in significant improvements in the quality and quantity of GaAs material suitable for device processing. The emergence of high performance GaAs integrated circuit technologies has accelerated the demand for high quality, large diameter semiinsulating GaAs substrates. The new device technologies, including digital integrated circuits, monolithic microwave integrated circuits and charge coupled devices have largely adopted direct ion implantation for the formation of doped layers. Ion implantation lends itself to good uniformity and reproducibility, high yield and low cost; however, this technique also places stringent demands on the quality of the semiinsulating GaAs substrates. Although significant progress was made in developing a viable planar ion implantation technology, the variability and poor quality of GaAs substrates have hindered progress in process development.
2014 Trans-Atlantic Research and Development Interchange ...
The Trans-Atlantic Research and Development Interchange on Sustainability (TARDIS) has been bringing together a select group of scientists and engineers for in-depth discussions on sustainability on a bi-annual basis since 2004. TARDIS 2014 included twenty eight individuals from across the globe discussing issues related to progress towards sustainability. The discussion included policies, technologies, societal structure and norms, business practices and culture, and time-frames. As discussed later, the focus was on four questions: (1) what progress has been accomplished in sustainability? (2) why has there not been more progress in moving societies towards sustainability? (3) what are the road-blocks to progress towards sustainability? (4) what are the policies, technologies, and other changes that are needed to make further progress towards sustainability? One salient conclusion from TARDIS 2014 is that while sustainability has entered mainstream thinking, significant social, economic, technological, and business barriers remain to further progress towards a sustainable path as discussed throughout this report. The Trans-Atlantic Research and Development Interchange on Sustainability is a bi-annual workshop alternatively held in the United States and Austria. The purpose is to bring the best thinkers from across the globe to discuss, explore, and clarify major issues related to sustainability. A report summarizing teh finding and discussions is prepared and d
Liu, Shu; Yu, Marco; Weinreb, Robert N; Lai, Gilda; Lam, Dennis Shun-Chiu; Leung, Christopher Kai-Shun
2014-05-02
We compared the detection of visual field progression and its rate of change between standard automated perimetry (SAP) and Matrix frequency doubling technology perimetry (FDTP) in glaucoma. We followed prospectively 217 eyes (179 glaucoma and 38 normal eyes) for SAP and FDTP testing at 4-month intervals for ≥36 months. Pointwise linear regression analysis was performed. A test location was considered progressing when the rate of change of visual sensitivity was ≤-1 dB/y for nonedge and ≤-2 dB/y for edge locations. Three criteria were used to define progression in an eye: ≥3 adjacent nonedge test locations (conservative), any three locations (moderate), and any two locations (liberal) progressed. The rate of change of visual sensitivity was calculated with linear mixed models. Of the 217 eyes, 6.1% and 3.9% progressed with the conservative criteria, 14.5% and 5.6% of eyes progressed with the moderate criteria, and 20.1% and 11.7% of eyes progressed with the liberal criteria by FDTP and SAP, respectively. Taking all test locations into consideration (total, 54 × 179 locations), FDTP detected more progressing locations (176) than SAP (103, P < 0.001). The rate of change of visual field mean deviation (MD) was significantly faster for FDTP (all with P < 0.001). No eyes showed progression in the normal group using the conservative and the moderate criteria. With a faster rate of change of visual sensitivity, FDTP detected more progressing eyes than SAP at a comparable level of specificity. Frequency doubling technology perimetry can provide a useful alternative to monitor glaucoma progression.
An Engineering Mentor's Take on "FIRST" Robotics
ERIC Educational Resources Information Center
Jackson, Jim
2013-01-01
In this article, the author describes a program that he says has "made being smart cool." "FIRST" (For Inspiration and Recognition of Science and Technology) Robotics has made a significant contribution toward progress in advancing science, technology, engineering, and mathematics (STEM) courses and STEM careers with young people. "FIRST" Robotics…
People and Technology Today: Some Educational Implications
ERIC Educational Resources Information Center
Rodriguez-Sedano, Alfredo; Paris, Ana Costa; Mut, Maite Dassoy
2011-01-01
The present article approaches some of the educational implications borne by humanity with technological progress. We begin by pointing out significant data that classify what is considered relevant. Then, confronting the future is discussed by analyzing the attitudes necessary to promote the goals. Confronted with these challenges, three possible…
NASA new technology identification and evaluation
NASA Technical Reports Server (NTRS)
Lizak, R. M.
1983-01-01
Before disclosure in NASA Tech Briefs, reports of new technology are transmitted to the cognizant NASA Field Center Technology Utilization Office (TUO) where they are evaluated for novelty, technical validity and significance, and nonaerospace utility. If uncertainty exists regarding these criteria, the documentation may be forwarded to SRI International for evaluation before recommending publication. From November 1980 to November 1983, some 3,103 technologies were evaluated by SRI. Activities performed and progress made are summarized.
Nursing and the primacy of technological progress.
Barnard, A
1999-12-01
This article identifies assumptions common to interpreting technological progress in contemporary nursing practice. Technology is described in terms of its characteristics and progress is identified as an ideological assumption influencing the way we think about, practice, and explain technology in contemporary nursing. Arguments associated with linear development, the elimination of scarcity, the technological imperative, the advancement of nursing, and technology as a neutral phenomenon are examined. It is argued that understanding progress assists us to develop insight into the relationship between technology and nursing.
NASA Technical Reports Server (NTRS)
Naiman, Cynthia Gutierrez
2010-01-01
Advancing and exploring the science of Multidisciplinary Analysis & Optimization (MDAO) capabilities are high-level goals in the Fundamental Aeronautics Program s Subsonic Fixed Wing (SFW) project. The OpenMDAO team has made significant progress toward completing the Alpha OpenMDAO deliverable due in September 2010. Included in the presentation are: details of progress on developing the OpenMDAO framework, example usage of OpenMDAO, technology transfer plans, near term plans, progress toward establishing partnerships with external parties, and discussion of additional potential collaborations.
Three-dimensional imaging technology offers promise in medicine.
Karako, Kenji; Wu, Qiong; Gao, Jianjun
2014-04-01
Medical imaging plays an increasingly important role in the diagnosis and treatment of disease. Currently, medical equipment mainly has two-dimensional (2D) imaging systems. Although this conventional imaging largely satisfies clinical requirements, it cannot depict pathologic changes in 3 dimensions. The development of three-dimensional (3D) imaging technology has encouraged advances in medical imaging. Three-dimensional imaging technology offers doctors much more information on a pathology than 2D imaging, thus significantly improving diagnostic capability and the quality of treatment. Moreover, the combination of 3D imaging with augmented reality significantly improves surgical navigation process. The advantages of 3D imaging technology have made it an important component of technological progress in the field of medical imaging.
Mode-locked thin-disk lasers and their potential application for high-power terahertz generation
NASA Astrophysics Data System (ADS)
Saraceno, Clara J.
2018-04-01
The progress achieved in the last few decades in the performance of ultrafast laser systems with high average power has been tremendous, and continues to provide momentum to new exciting applications, both in scientific research and technology. Among the various technological advances that have shaped this progress, mode-locked thin-disk oscillators have attracted significant attention as a unique technology capable of providing ultrashort pulses with high energy (tens to hundreds of microjoules) and at very high repetition rates (in the megahertz regime) from a single table-top oscillator. This technology opens the door to compact high repetition rate ultrafast sources spanning the entire electromagnetic spectrum from the XUV to the terahertz regime, opening various new application fields. In this article, we focus on their unexplored potential as compact driving sources for high average power terahertz generation.
FY2013 Lightweight Materials R&D Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2014-02-01
As part of the U.S. Department of Energy’s (DOE’s) Vehicle Technologies Program (VTO), the Lightweight Materials (LM) activity focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce light and heavy duty vehicle weight without compromising other attributes such as safety, performance, recyclability, and cost.
Catching up: The rise of the Chinese wind turbine industry
NASA Astrophysics Data System (ADS)
Lefevre-Marton, Nicolas
This thesis argues that Chinese firms can catch up with the technological frontier in the scope of new climate friendly energy technologies and provides a detailed study of the case of wind power. Chapter 2 assesses the nature and extent of wind turbine technology catch-up. Firstly, it uses various wind turbine technology indicators to detail the convergence of trends of leading Chinese firms with firms at the technological frontier. Secondly, the chapter assesses the evolution of technological capabilities among leading Chinese turbine manufacturers. It shows that Chinese firms were progressively introducing turbine technologies similar to those produced by frontier firms and had rapidly improved their capabilities, allowing them to increasingly rely on independent technology development efforts. Chapter 3 describes how the Chinese wind power technology development system, characterized by the presence of a powerful and proactive government, provided the necessary conditions for Chinese wind turbine manufacturers to make rapid technological progress. In particular, it highlights the policies introduced by the government to create a large and rapidly growing wind power market in China and the steps taken by the government to ensure that Chinese firms entered and progressively dominated the domestic turbine manufacturing market. The competition which ensued among domestic turbine manufacturers was arguably the main driver of technology development efforts. The most significant challenge to the continued progress of the industry was whether the Chinese system could transition from a model of technology development based on technology transfer to one based on its own innovation efforts. Chapter 4 shows that due to limited government support over the years in both Europe and the United States, the wind power technology frontier has evolved relatively slowly, making it easier for Chinese firms to catch up. Firstly, using patenting rates as indicators of knowledge development, the chapter shows a strong correlation between changes in government wind power support policies and patenting activity. Secondly, using both technology penetration rates and patenting trends, the chapter shows that the evolution of the wind power frontier was slow compared to most other technology sectors globally.
Cancer Systems Biology Consortium | Informatics Technology for Cancer Research (ITCR)
Cancer is a complex disease system involving multiple molecular, genetic, and cellular events. From its early initiation through progression and metastasis, cancer can adapt and evolve as a result of both internal and external signals. These properties make cancer difficult to predict, prevent, and treat. There has been significant progress in characterizing the genetics of cancer, as well as the downstream effects on the molecular and cellular pathways that are critical for the initiation and progression of cancer.
Learning Methods for Efficient Adoption of Contemporary Technologies in Architectural Design
ERIC Educational Resources Information Center
Mahdavinejad, Mohammadjavad; Dehghani, Sohaib; Shahsavari, Fatemeh
2013-01-01
The interaction between technology and history is one of the most significant issues in achieving an efficient and progressive architecture in any era. This is a concept which stems from lesson of traditional architecture of Iran. Architecture as a part of art, has permanently been transforming just like a living organism. In fact, it has been…
Progress Towards Environmentally Friendlier Automobiles
NASA Astrophysics Data System (ADS)
Culver, Robert
2002-03-01
The United States Council for Automotive Research (USCAR), the umbrella organization of DaimlerChrysler, Ford, and General Motors, has been conducting pre-competitive research in the areas of improving fuel efficiency and reducing tailpipe emissions. One of the major collaborations is with the U.S. Government in the Partnership for a New Generation of Vehicles (PNGV). The USCAR/PNGV technology portfolio includes lightweight materials, improved conventional internal combustion engine systems, electric traction and hybridization, and fuel cells. Significant progress has been made in developing these technologies and marketing them through today’s vehicles. New product announcements of hybrids demonstrate the commitment of the industry to bring the new technologies to market. Yet, breakthroughs and innovations will be required before many of the technologies can fully realize their promise. In addition, government policies and programs will be required to promote market acceptance and ensure an infrastructure to provide new fuels.
NASA Technical Reports Server (NTRS)
Repucci, George
1996-01-01
This is the fourth report of a series of semi-annual reports that describe the technology areas being advanced under this contract and the progress achieved to date. The most significant technical event this period was the successful completion of the Lewis spacecraft in 2 years (contract award date was June 1994). In August of 1996 we held a program-wide Technology Workshop which covered all aspects of the Lewis payload. A copy of the Workshop proceedings is attached.
Translations on Eastern Europe, Political, Sociological, and Military Affairs, Number 1404-A
1977-06-22
Personality Development in Light of Technological Progress (Harry Nick; EINHEIT, Apr 77) 128 Significance of National Culture in Socialism...industrialization in such a way as to create "labor intensive" technologies in the Hungarian regions, preferably those which require low levels of training... technology , as well as the large number of well-paid personnel create excellent con- ditions for the implementation of the plans of the ideological
MIT gets good marks for fighting gender discrimination
NASA Astrophysics Data System (ADS)
Gwynne, Peter
2011-05-01
The Massachusetts Institute of Technology (MIT) has made "significant progress" in increasing the number of female faculty members, with their numbers in science and engineering almost doubling over the last decade.
The promise of advanced technology for future air transports
NASA Technical Reports Server (NTRS)
Bower, R. E.
1978-01-01
Progress in all weather 4-D navigation and wake vortex attenuation research is discussed and the concept of time based metering of aircraft is recommended for increased emphasis. The far term advances in aircraft efficiency were shown to be skin friction reduction and advanced configuration types. The promise of very large aircraft, possibly all wing aircraft is discussed, as is an advanced concept for an aerial relay transportation system. Very significant technological developments were identified that can improve supersonic transport performance and reduce noise. The hypersonic transport was proposed as the ultimate step in air transportation in the atmosphere. Progress in the key technology areas of propulsion and structures was reviewed. Finally, the impact of alternate fuels on future air transports was considered and shown not to be a growth constraint.
Emerging technologies in Si active photonics
NASA Astrophysics Data System (ADS)
Wang, Xiaoxin; Liu, Jifeng
2018-06-01
Silicon photonics for synergistic electronic–photonic integration has achieved remarkable progress in the past two decades. Active photonic devices, including lasers, modulators, and photodetectors, are the key challenges for Si photonics to meet the requirement of high bandwidth and low power consumption in photonic datalinks. Here we review recent efforts and progress in high-performance active photonic devices on Si, focusing on emerging technologies beyond conventional foundry-ready Si photonics devices. For emerging laser sources, we will discuss recent progress towards efficient monolithic Ge lasers, mid-infrared GeSn lasers, and high-performance InAs quantum dot lasers on Si for data center applications in the near future. We will then review novel modulator materials and devices beyond the free carrier plasma dispersion effect in Si, including GeSi and graphene electro-absorption modulators and plasmonic-organic electro-optical modulators, to achieve ultralow power and high speed modulation. Finally, we discuss emerging photodetectors beyond epitaxial Ge p–i–n photodiodes, including GeSn mid-infrared photodetectors, all-Si plasmonic Schottky infrared photodetectors, and Si quanta image sensors for non-avalanche, low noise single photon detection and photon counting. These emerging technologies, though still under development, could make a significant impact on the future of large-scale electronicSilicon photonics for synergistic electronic-photonic integration has achieved remarkable progress in the past two decades. Active photonic devices, including lasers, modulators, and photodetectors, are the key challenges for Si photonics to meet the requirement of high bandwidth and low power consumption in photonic datalinks. Here we review recent efforts and progress in high-performance active photonic devices on Si, focusing on emerging technologies beyond conventional foundry-ready Si photonics devices. For emerging laser sources, we will discuss recent progress towards efficient monolithic Ge lasers, mid-infrared GeSn lasers, and high-performance InAs quantum dot lasers on Si for data center applications in the near future. We will then review novel modulator materials and devices beyond the free carrier plasma dispersion effect in Si, including GeSi and graphene electro-absorption modulators and plasmonic-organic electro–optical modulators, to achieve ultralow power and high speed modulation. Finally, we discuss emerging photodetectors beyond epitaxial Ge p–i–n photodiodes, including GeSn mid-infrared photodetectors, all-Si plasmonic Schottky infrared photodetectors, and Si quanta image sensors for non-avalanche, low noise single photon detection and photon counting. These emerging technologies, though still under development, could make a significant impact on the future of large-scale electronic–photonic integration with performance inaccessible from conventional Si photonics technologies-photonic integration with performance inaccessible from conventional Si photonics technologies.
Fuel efficiency through new airframe technology
NASA Technical Reports Server (NTRS)
Leonard, R. W.
1982-01-01
In its Aircraft Energy Efficiency Program, NASA has expended approximately 200 million dollars toward development and application of advanced airframe technologies to United States's commercial transports. United States manufacturers have already been given a significant boost toward early application of advanced composite materials to control surface and empennage structures and toward selected applications of active controls and advanced aerodynamic concepts. In addition, significant progress in definition and development of innovative, but realistic systems for laminar flow control over the wings of future transports has already been made.
NASA Astrophysics Data System (ADS)
Djojodihardjo, Harijono
and economic progress, while facing global competitiveness locally as opportunities and challenges. Of particular importance is the utilization and development of earth observation capabilities for environmental natural resources imperatives to this end is quite significant. On one hand there may appear challenges to achieve unique and high quality requirements on many of the elements of social and economic progress, i.e. natural resources, human resources, market opportunities and geographical advantage; on the other hand one may face constraints in the financial system, cultural inertia and paradigm, and the need to carry forward large momentum that may pull back technological and economic progress that may be characterized by a "roller coaster" dynamics. Satellite Technology for Earth Observation, its Utilization and Development is carried out with Indonesian Development Interest in mind. Space System Services and Players are identified. Mission objectives associated with Urban and Rural Areas as well as Satellite-Based Multimedia Technology Applications For Promoting Rural Development will be identified. System design analysis and synthesis will be elaborated and some alternatives will be presented following a unified system outlook. Ground Segment and Space Segment Architecture will be elaborated by carrying out Architecture Optimization.
In vitro manipulation of mammalian gametes and embryos: what are we learning from animal settings
USDA-ARS?s Scientific Manuscript database
Since the birth of the first baby conceived by in vitro fertilization (Louise Brown) in 1978, significant progress has been achieved in the application of assisted reproductive technology (ART) in clinical settings. A significant accumulation of knowledge obtained through various research endeavors ...
Czech, Brian
2008-12-01
The conflict between economic growth and biodiversity conservation is understood in portions of academia and sometimes acknowledged in political circles. Nevertheless, there is not a unified response. In political and policy circles, the environmental Kuznets curve (EKC) is posited to solve the conflict between economic growth and environmental protection. In academia, however, the EKC has been deemed fallacious in macroeconomic scenarios and largely irrelevant to biodiversity. A more compelling response to the conflict is that it may be resolved with technological progress. Herein I review the conflict between economic growth and biodiversity conservation in the absence of technological progress, explore the prospects for technological progress to reconcile that conflict, and provide linguistic suggestions for describing the relationships among economic growth, technological progress, and biodiversity conservation. The conflict between economic growth and biodiversity conservation is based on the first two laws of thermodynamics and principles of ecology such as trophic levels and competitive exclusion. In this biophysical context, the human economy grows at the competitive exclusion of nonhuman species in the aggregate. Reconciling the conflict via technological progress has not occurred and is infeasible because of the tight linkage between technological progress and economic growth at current levels of technology. Surplus production in existing economic sectors is required for conducting the research and development necessary for bringing new technologies to market. Technological regimes also reflect macroeconomic goals, and if the goal is economic growth, reconciliatory technologies are less likely to be developed. As the economy grows, the loss of biodiversity may be partly mitigated with end-use innovation that increases technical efficiency, but this type of technological progress requires policies that are unlikely if the conflict between economic growth and biodiversity conservation (and other aspects of environmental protection) is not acknowledged.
ERIC Educational Resources Information Center
Gorski, Paul C.
2009-01-01
In the United States, where technological progress is portrayed as humanistic progress, computer technologies often are hailed as the great equalizers. Even within progressive education movements, such as multicultural education, the conversation about instructional technology tends to center more on this or that wonderful Web site or piece of…
American export control, technology spillover and innovation of Chinese pharmaceutical Industry.
Hui, Jiang
2017-05-01
This paper was aimed to analyze whether the U.S. strict export control to China affects the technological innovation of Chinese pharmaceutical industry. This paper selected the data of technological innovation and the expenditure of high and new technology adoption in China's pharmaceutical industry from 1995 to 2014, created panel regression model to study the impact of export controls on technology spillovers and the impact of technology spillovers on innovation capacity. The results show that US export control has a significant impact on technology spillovers, but foreign technology spillovers have no significant impact on the innovation of Chinese pharmaceutical industry. Although the US export control prevented foreign technology spillovers to China, but indirectly stimulated the domestic technology spillovers to pharmaceutical manufacturing industry in China. Statistical analysis show that the correlation coefficient between innovation capacity and expenditure for high technology adoption is not significant, but the expenditure of purchasing domestic technical is essential to pharmaceutical innovation. This study shows that US export control indirectly, not directly, affected the technological innovation of China's pharmaceutical industry, affected the allocation of innovative resources, but failed to prevent the technological progress and competitiveness improvement of Chinese pharmaceutical industry.
IFE Chamber Technology - Status and Future Challenges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meier, W.R.; Raffray, A.R.; Abdel-Khalik, S.I.
2003-07-15
Significant progress has been made on addressing critical issues for inertial fusion energy (IFE) chambers for heavy-ion, laser and Z-pinch drivers. A variety of chamber concepts are being investigated including drywall (currently favored for laser IFE), wetted-wall (applicable to both laser and ion drivers), and thick-liquid-wall (favored by heavy ion and z-pinch drivers). Recent progress and remaining challenges in developing IFE chambers are reviewed.
High beta and second stability region transport and stability analysis: Technical progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, M.H.; Phillips, M.W.
1995-03-01
This report summarizes MHD equilibrium and stability studies carried out at Northrop Grumman`s Advanced Technology and Development Center during the 12 month period starting March 1, 1994. Progress is reported in both ideal and resistive MHD modeling of TFTR plasmas. The development of codes to calculate the significant effects of highly anisotropic pressure distributions is discussed along with results from this model.
Ultra Lightweight Ballutes for Return to Earth from the Moon
NASA Technical Reports Server (NTRS)
Masciarelli, James P.; Lin, John K. H.; Ware, Joanne S.; Rohrschneider, Reuben R.; Braun, Robert D.; Bartels, Robert E.; Moses, Robert W.; Hall, Jeffery L.
2006-01-01
Ultra lightweight ballutes offer revolutionary mass and cost benefits along with flexibility in flight system design compared to traditional entry system technologies. Under funding provided by NASA s Exploration Systems Research & Technology program, our team was able to make progress in developing this technology through systems analysis and design, evaluation of materials and construction methods, and development of critical analysis tools. Results show that once this technology is mature, significant launch mass savings, operational simplicity, and mission robustness will be available to help carry out NASA s Vision for Space Exploration.
Johnson Space Center Research and Technology 1993 Annual Report
NASA Technical Reports Server (NTRS)
1993-01-01
Johnson Space Center research and technology accomplishments during fiscal year 1993 are described and principle researchers and technologists are identified as contacts for further information. Each of the four sections gives a summary of overall progress in a major discipline, followed by detailed, illustrated descriptions of significant tasks. The four disciplines are Life Sciences, Human Support Technology, Solar Systems Sciences, and Space Systems Technology. The report is intended for technical and management audiences throughout the NASA and worldwide aerospace community. An index lists project titles, funding codes, and principal investigators.
A review into the use of ceramics in microbial fuel cells.
Winfield, Jonathan; Gajda, Iwona; Greenman, John; Ieropoulos, Ioannis
2016-09-01
Microbial fuel cells (MFCs) offer great promise as a technology that can produce electricity whilst at the same time treat wastewater. Although significant progress has been made in recent years, the requirement for cheaper materials has prevented the technology from wider, out-of-the-lab, implementation. Recently, researchers have started using ceramics with encouraging results, suggesting that this inexpensive material might be the solution for propelling MFC technology towards real world applications. Studies have demonstrated that ceramics can provide stability, improve power and treatment efficiencies, create a better environment for the electro-active bacteria and contribute towards resource recovery. This review discusses progress to date using ceramics as (i) the structural material, (ii) the medium for ion exchange and (iii) the electrode for MFCs. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Chen, Yu; Chen, Mengjun; Li, Yungui; Wang, Bin; Chen, Shu; Xu, Zhonghui
2018-05-08
Technology innovation has accelerated progress in Information and Communications Technology (ICT), especially in the mobile phones sector. Concurrently, local, national, and international governments are enforcing stricter regulations to protect natural resources and human health. The paper attempts to address the question: Have technological innovations and regulation development had a positive impact on ecosystems and public health? We identified 36 waste mobile phones (WMPs) manufactured between 2002 and 2013, assessed their metals concentration, leachability, and potential impact on environment and human health using digestion, Toxicity Characteristic Leaching Procedure (TCLP), and USEtox model, respectively. The results highlight that regulations did not have significant impact on total metal content, except some heavy metals, while technology innovation recorded stronger impact. WMPs should be classified as hazardous due to excessive lead content. Copper posed the most significant ecotoxicity risk, and chromium showed the most significant risk for both cancerous and non-cancerous diseases. Additionally, we demonstrated that WMPs toxicity increased with technology innovation.
Development of TTI's asphalt compaction monitoring system.
DOT National Transportation Integrated Search
2012-07-01
In recent years, the Texas Department of Transportation has made significant progress with the : development and implementation of new technologies to measure the uniformity of new hot mix asphalt : layer construction. Early studies focused on the de...
Research and technology, fiscal year 1986, Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
1986-01-01
The Marshall Space Flight Center is continuing its vigorous efforts in space-related research and technology. Extensive activities in advanced studies have led to the approval of the Orbital Maneuvering Vehicle as a new start. Significant progress was made in definition studies of liquid rocket engine systems for future space transportation needs and the conceptualization of advanced laucnch vehicles. The space systems definition studies have brought the Advanced X-ray Astrophysics Facility and Gravity Probe-B to a high degree of maturity. Both are ready for project implementation. Also discussed include significant advances in low gravity sciences, solar terrestrial physics, high energy astrophysics, atmospheric sciences, propulsion systems, and on the critical element of the Space Shuttle Main Engine in particular. The goals of improving the productivity of high-cost repetitive operations on reusable transportation systems, and extending the useful life of such systems are examined. The research and technology highlighted provides a foundation for progress on the Hubble Space Telescope, the Space Station, all elements of the Space Transportation System, and the many other projects assigned to this Center.
WFIRST-AFTA Presentation to the NRC Mid-Decadal Panel
NASA Technical Reports Server (NTRS)
Gehrels, Neil; Grady, Kevin; Ruffa, John; Melton, Mark; Content, Dave; Zhao, Feng
2015-01-01
Over the past two years, increased funding has enabled significant progress in technology matura1on as well as addi1onal fidelity in the design reference mission. WFIRST with the 2.4--m telescope and coronagraph provides an exci1ng science program, superior to that recommended by NWNH and also advances exoplanet imaging technology (the highest ranked medium--class NWNH recommenda1on). Great opportunity for astronomy and astrophysics discoveries. Broad community support for WFIRST. Key development areas are anchored in a decade of investments in JPL's HCIT and GSFC's DCL. Great progress made in pre--formula1on, ready for KDP--A and launch in mid--2020s.
Recent Progress in Genome Editing Approaches for Inherited Cardiovascular Diseases.
Kaur, Balpreet; Perea-Gil, Isaac; Karakikes, Ioannis
2018-06-02
This review describes the recent progress in nuclease-based therapeutic applications for inherited heart diseases in vitro, highlights the development of the most recent genome editing technologies and discusses the associated challenges for clinical translation. Inherited cardiovascular disorders are passed from generation to generation. Over the past decade, considerable progress has been made in understanding the genetic basis of inherited heart diseases. The timely emergence of genome editing technologies using engineered programmable nucleases has revolutionized the basic research of inherited cardiovascular diseases and holds great promise for the development of targeted therapies. The genome editing toolbox is rapidly expanding, and new tools have been recently added that significantly expand the capabilities of engineered nucleases. Newer classes of versatile engineered nucleases, such as the "base editors," have been recently developed, offering the potential for efficient and precise therapeutic manipulation of the human genome.
Crosscutting Technology Development at the Center for Advanced Separation Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christopher E. Hull
2006-09-30
This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.
CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christopher E. Hull
2006-05-15
This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.
Microfabricated Chemical Sensors for Safety and Emission Control Applications
NASA Technical Reports Server (NTRS)
Hunter, G. W.; Neudeck, P. G.; Chen, L.-Y.; Knight, D.; Liu, C. C.; Wu, Q. H.
1998-01-01
Chemical sensor technology is being developed for leak detection, emission monitoring, and fire safety applications. The development of these sensors is based on progress in two types of technology: 1) Micromachining and microfabrication (MicroElectroMechanical Systems (MEMS)-based) technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Using these technologies, sensors to measure hydrogen, hydrocarbons, nitrogen oxides, carbon monoxide, oxygen, and carbon dioxide are being developed. A description is given of each sensor type and its present stage of development. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.
Revolution…Now The Future Arrives for Five Clean Energy Technologies – 2015 Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
In 2013, the U.S. Department of Energy (DOE) released the Revolution Now report, highlighting four transformational technologies: land-based wind power, silicon photovoltaic (PV) solar modules, light-emitting diodes (LEDs), and electric vehicles (EVs). That study and its 2014 update showed how dramatic reductions in cost are driving a surge in consumer, industrial, and commercial adoption for these clean energy technologies—as well as yearly progress. In addition to presenting the continued progress made over the last year in these areas, this year’s update goes further. Two separate sections now cover large, central, utility-scale PV plants and smaller, rooftop, distributed PV systems tomore » highlight how both have achieved significant deployment nationwide, and have done so through different innovations, such as easier access to capital for utility-scale PV and reductions of non-hardware costs and third-party ownership for distributed PV. Along with these core technologies« less
Current progress in 3D printing for cardiovascular tissue engineering.
Mosadegh, Bobak; Xiong, Guanglei; Dunham, Simon; Min, James K
2015-03-16
3D printing is a technology that allows the fabrication of structures with arbitrary geometries and heterogeneous material properties. The application of this technology to biological structures that match the complexity of native tissue is of great interest to researchers. This mini-review highlights the current progress of 3D printing for fabricating artificial tissues of the cardiovascular system, specifically the myocardium, heart valves, and coronary arteries. In addition, how 3D printed sensors and actuators can play a role in tissue engineering is discussed. To date, all the work with building 3D cardiac tissues have been proof-of-principle demonstrations, and in most cases, yielded products less effective than other traditional tissue engineering strategies. However, this technology is in its infancy and therefore there is much promise that through collaboration between biologists, engineers and material scientists, 3D bioprinting can make a significant impact on the field of cardiovascular tissue engineering.
Polymer microarray technology for stem cell engineering
Coyle, Robert; Jia, Jia; Mei, Ying
2015-01-01
Stem cells hold remarkable promise for applications in tissue engineering and disease modeling. During the past decade, significant progress has been made in developing soluble factors (e.g., small molecules and growth factors) to direct stem cells into a desired phenotype. However, the current lack of suitable synthetic materials to regulate stem cell activity has limited the realization of the enormous potential of stem cells. This can be attributed to a large number of materials properties (e.g., chemical structures and physical properties of materials) that can affect stem cell fate. This makes it challenging to design biomaterials to direct stem cell behavior. To address this, polymer microarray technology has been developed to rapidly identify materials for a variety of stem cell applications. In this article, we summarize recent developments in polymer array technology and their applications in stem cell engineering. Statement of significance Stem cells hold remarkable promise for applications in tissue engineering and disease modeling. In the last decade, significant progress has been made in developing chemically defined media to direct stem cells into a desired phenotype. However, the current lack of the suitable synthetic materials to regulate stem cell activities has been limiting the realization of the potential of stem cells. This can be attributed to the number of variables in material properties (e.g., chemical structures and physical properties) that can affect stem cells. Polymer microarray technology has shown to be a powerful tool to rapidly identify materials for a variety of stem cell applications. Here we summarize recent developments in polymer array technology and their applications in stem cell engineering. PMID:26497624
Technologies for delivery of proton and ion beams for radiotherapy
NASA Astrophysics Data System (ADS)
Owen, Hywel; Holder, David; Alonso, Jose; Mackay, Ranald
2014-05-01
Recent developments for the delivery of proton and ion beam therapy have been significant, and a number of technological solutions now exist for the creation and utilisation of these particles for the treatment of cancer. In this paper we review the historical development of particle accelerators used for external beam radiotherapy and discuss the more recent progress towards more capable and cost-effective sources of particles.
The medical care system of Hungary.
Raffel, N K; Raffel, M W
1988-01-01
Medical care in Hungary has made significant progress since World War II in spite of other social priorities which have limited financial support of the health system. A shortage of hard currency in a high technological era is now having a particularly severe adverse impact on further development. Decentralized administration and local finance have, however, provided some room for progress. Preventive efforts are hampered by a deeply entrenched life style which is not conducive to improving the population's health status.
ERIC Educational Resources Information Center
Carnabuci, Gianluca
2010-01-01
We show that the progress of technological knowledge is an inherently ecological process, wherein the growth rate of each technology domain depends on dynamics occurring in "other" technology domains. We identify two sources of ecological interdependence among technology domains. First, there are symbiotic interdependencies, implying…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hess, W.P.; Bushaw, B.A.; McCarthy, M.I.
1996-10-01
The Department of Energy is undertaking the enormous task of remediating defense wastes and environmental insults which have occurred over 50 years of nuclear weapons production. It is abundantly clear that significant technology advances are needed to characterize, process, and store highly radioactive waste and to remediate contaminated zones. In addition to the processing and waste form issues, analytical technologies needed for the characterization of solids, and for monitoring storage tanks and contaminated sites do not exist or are currently expensive labor-intensive tasks. This report describes progress in developing sensitive, rapid, and widely applicable laser-based mass spectrometry techniques for analysismore » of mixed chemical wastes and contaminated soils.« less
Recent Progress on the Stretched Lens Array (SLA)
NASA Technical Reports Server (NTRS)
O'Neill, Markl; McDanal, A. J.; Piszczor, Michael; George, Patrick; Eskenazi, Michael; Botke, Matthew; Edwards, David; Hoppe, David; Brandhorst, Henry
2005-01-01
At the last Space Photovoltaic Research and Technology Conference, SPRAT XVII, held during the fateful week of 9/11/01, our team presented a paper on the early developments related to the new Stretched Lens Array (SLA), including its evolution from the successful SCARLET array on the NASA/JPL Deep Space 1 spacecraft. Within the past two years, the SLA team has made significant progress in the SLA technology, including the successful fabrication and testing of a complete four-panel prototype solar array wing (Fig. 1). The prototype wing verified the mechanical and structural design of the rigid-panel SLA approach, including multiple successful demonstrations of automatic wing deployment. One panel in the prototype wing included four fully functional photovoltaic receivers, employing triple-junction solar cells.
FY2014 Energy Storage R&D Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
The Energy Storage research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Energy Storage subprogram in 2014. You can download individual sections at themore » following website, http://energy.gov/eere/vehicles/downloads/vehicle-technologies-office-2014-energy-storage-rd-annual-report.« less
Research And Development Contributions to Aviation Progress (RADCAP): Executive summary
NASA Technical Reports Server (NTRS)
1972-01-01
Positive contributions of military aeronautical research and development programs to civil aviation are reviewed and some possible future contributions of those military programs are assessed. A summary is presented of detailed results concerned with: (1) review of the progress that has been made in aviation since 1925 and the significant technological advances that have been made; (2) an examination of current and planned military aeronautical research and technology programs and an assessment of their relevancy to the aeronautical R and D needs of civil aviation; (3) the relationship of the development base generated by military programs to the needs of civil airliner design, development, and production; (4) information on aeronautical R and D funding; and (5) the findings and observations of the RADCAP study.
Economic Perspectives of Technological Progress: New Dimensions for Forecasting Technology
ERIC Educational Resources Information Center
Twiss, Brian
1976-01-01
Discusses the causal relationship between the allocation of financial resources and technological growth. Argues that economic constraints are becoming an important determinant of technological progress that must be incorporated into technology forecasting techniques. (Available from IPC (America) Inc., 205 East 42 Street, New York, NY 10017;…
Preliminary technology utilization assessment of the robotic fruit harvester
NASA Technical Reports Server (NTRS)
Wilhelm, J.
1982-01-01
The results of an analysis whose purpose was to examine the history and progress of mechanical fruit harvesting, to determine the significance of a robotic fruit tree harvester and to assess the available market for such a product are summarized. Background information that can be used in determining the benefit of a proof of principle demonstration is provided. Such a demonstration could be a major step toward the transfer of this NASA technology.
Public Attitudes to Technological Progress.
ERIC Educational Resources Information Center
Marshall, Eliot
1979-01-01
Discusses the probable changes in public attitudes toward science and technology as a result of the engineering accidents of 1979. Results of national polls conducted to identify public confidence in technological progress are included. (HM)
Executive reflects on progress in the oil and gas industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popov, S.
1997-08-01
This paper reflects on the UK oil and gas industry`s international globalization and progress from the perspective of a UK industry executive. Sir Ian Wood, managing director of John Wood Group plc, outlined past and future industry developments during a 1997 Offshore Technology Conference speech. He concludes that the UK supply and service industry is now fully involved in the international arena, and hopes to play a significant role in the exciting oil and gas developments in the Gulf of Mexico and frontiers worldwide.
Wang, Shuhong; Song, Malin
2017-10-01
As a newly appeared trade mode in recent years, reverse outsourcing has made a great impact on traditional trade modes. This paper researched the influences of reverse outsourcing on green technological progress from the perspective of a global supply chain by using micro-data of enterprises. It worked out the rate of green technological progress from two innovative concepts: potential production technology and practical production technology. The empirical analysis results indicated that reverse outsourcing stimulates, and enterprise size and ownership type potentially affects, green technological progress. State-owned or foreign enterprises with high income levels would pay more attention to environmental protection, energy saving, and emission reduction, while small and micro enterprises with low incomes would choose to ignore environmental protection. Copyright © 2017 Elsevier B.V. All rights reserved.
Medeiros, Felipe A.; Alencar, Luciana M.; Zangwill, Linda M.; Bowd, Christopher; Vizzeri, Gianmarco; Sample, Pamela A.; Weinreb, Robert N.
2010-01-01
Purpose To evaluate the ability of scanning laser polarimetry with variable corneal compensation to detect progressive retinal nerve fiber layer (RNFL) loss in glaucoma patients and patients suspected of having the disease. Methods This was an observational cohort study that included 335 eyes of 195 patients. Images were obtained annually with the GDx VCC scanning laser polarimeter, along with optic disc stereophotographs and standard automated perimetry (SAP) visual fields. The median follow-up time was 3.94 years. Progression was determined using commercial software for SAP and by masked assessment of optic disc stereophotographs performed by expert graders. Random coefficient models were used to evaluate the relationship between RNFL thickness measurements over time and progression as determined by SAP and/or stereophotographs. Results From the 335 eyes, 34 (10%) showed progression over time by stereophotographs and/or SAP. Average GDx VCC measurements decreased significantly over time for both progressors as well as non-progressors. However, the rate of decline was significantly higher in the progressing group (−0.70 μm/year) compared to the non-progressing group (−0.14 μm/year; P = 0.001). Black race and male sex were significantly associated with higher rates of RNFL loss during follow-up. Conclusions The GDx VCC scanning laser polarimeter was able to identify longitudinal RNFL loss in eyes that showed progression in optic disc stereophotographs and/or visual fields. These findings suggest that this technology could be useful to detect and monitor progressive disease in patients with established diagnosis of glaucoma or suspected of having the disease. PMID:19029038
Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion
NASA Astrophysics Data System (ADS)
1980-06-01
The feasibility of the nickel zinc battery for electric vehicle propulsion is discussed. The program is divided into seven distinct but highly interactive tasks collectively aimed at the development and commercialization of nickel zinc technology. These basic technical tasks are separator development, electrode development, product design and analysis, cell/module battery testing, process development, pilot manufacturing, and thermal manufacturing, and thermal management. Significant progress has been made in the understanding of separator failure mechanisms, and a generic category of materials has been specified for the 300+ deep discharge applications. Shape change has been reduced significantly. Progress in the area of thermal management was significant, with the development of a model that accurately represents heat generation and rejection rates during battery operation.
Status of molten carbonate fuel cell technology development
NASA Astrophysics Data System (ADS)
Parsons, E. L., Jr.; Williams, M. C.; George, T. J.
The MCFC technology has been identified by the DOE as a promising product for commercialization. Development of the MCFC technology supports the National Energy Strategy. Review of the status of the MCFC technology indicates that the MCFC technology developers are making rapid and significant progress. Manufacturing facility development and extensive testing is occurring. Improvements in performance (power density), lower costs, improved packaging, and scale up to full height are planned. MCFC developers need to continue to be responsive to end-users in potential markets. It will be market demands for the correct product definition which will ultimately determine the character of MCFC power plants. There is a need for continued MCFC product improvement and multiple product development tests.
Evaluation Strategy. Paper Preservation Systems.
ERIC Educational Resources Information Center
FMC Corp., Gastonia, NC. Lithium Div.
After a decade of slow but steady progress, the pace of development of technologies to deacidify and strengthen deteriorating books and documents has quickened significantly. These developments accentuate the need for the conservation community to scientifically evaluate the technical merits of potential processes. This draft evaluation strategy…
Botulinum neurotoxin: where are we with detection technologies?
Singh, Ajay K; Stanker, Larry H; Sharma, Shashi K
2013-02-01
Because of its high toxicity, botulinum neurotoxin (BoNT) poses a significant risk to humans and it represents a possible biological warfare agent. Nevertheless, BoNT serotypes A and B are considered an effective treatment for a variety of neurological disorders. The growing applicability of BoNT as a drug, and its potential use as a biological threat agent, highlight the urgent need to develop sensitive detection assays and therapeutic counter measures. In the last decade, significant progress has been made in BoNT detection technologies but none have fully replaced the mouse lethality assay, the current "gold standard". Recently, new advances in robotics and the availability of new reagents have allowed development of methods for rapid toxin analysis. These technologies while promising need further refinement.
Crystal growth and materials research in photovoltaics: progress and challenges
NASA Astrophysics Data System (ADS)
Surek, Thomas
2005-02-01
Photovoltaics (PV) is solar electric power—a semiconductor-based technology that converts sunlight to electricity. Three decades of research has led to the discovery of new materials and devices and new processing techniques for low-cost manufacturing. This has resulted in improved sunlight-to-electricity conversion efficiencies, improved outdoor reliability, and lower module and system costs. The manufacture and sale of PV has grown into a $5 billion industry worldwide, with more than 740 megawatts of PV modules shipped in 2003. This paper reviews the significant progress that has occurred in PV materials and devices research over the past 30 years, focusing on the advances in crystal growth and materials research, and examines the challenges to reaching the ultimate potential of current-generation (crystalline silicon), next-generation (thin films and concentrators), and future-generation PV technologies. The latter includes innovative materials and device concepts that hold the promise of significantly higher conversion efficiencies and/or much lower costs.
NASA Astrophysics Data System (ADS)
Kandi, Kamala M.
This study examines the effect of a technology-based instructional tool 'Geniverse' on the content knowledge gains, Science Self-Efficacy, Technology Self-Efficacy, and Career Goal Aspirations among 283 high school learners. The study was conducted in four urban high schools, two of which have achieved Adequate Yearly Progress (AYP) and two have not. Students in both types of schools were taught genetics either through Geniverse, a virtual learning environment or Dragon genetics, a paper-pencil activity embedded in traditional instructional method. Results indicated that students in all schools increased their knowledge of genetics using either type of instructional approach. Students who were taught using Geniverse demonstrated an advantage for genetics knowledge although the effect was small. These increases were more pronounced in the schools that had been meeting the AYP goal. The other significant effect for Geniverse was that students in the technology-enhanced classrooms increased in science Self-Efficacy while students in the non-technology enhanced classrooms decreased. In addition, students from Non-AYP schools showed an improvement in Science and Technology Self-Efficacy; however the effects were small. The implications of these results for the future use of technology-enriched classrooms were discussed. Keywords: Technology-based instruction, Self-Efficacy, career goals and Adequate Yearly Progress (AYP).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Air Products and Chemicals
2008-09-30
An Air Products-led team successfully developed ITM Syngas technology from the concept stage to a stage where a small-scale engineering prototype was about to be built. This technology produces syngas, a gas containing carbon monoxide and hydrogen, by reacting feed gas, primarily methane and steam, with oxygen that is supplied through an ion transport membrane. An ion transport membrane operates at high temperature and oxygen ions are transported through the dense membrane's crystal lattice when an oxygen partial pressure driving force is applied. This development effort solved many significant technical challenges and successfully scaled-up key aspects of the technology tomore » prototype scale. Throughout the project life, the technology showed significant economic benefits over conventional technologies. While there are still on-going technical challenges to overcome, the progress made under the DOE-funded development project proved that the technology was viable and continued development post the DOE agreement would be warranted.« less
Wu, Hsing-Hao
2008-12-01
In the face of the information age, Internet and telecommunication technologies have been widely applied in various settings. These innovational technologies have been used in the areas of e-commerce, long distance learning programs, entertainment, e-government, and so on. In recent years, the evolution of Internet technology is also pervading the health care industry. This dramatic trend may significantly alter traditional medical practice as well as the means of delivery of health care. The idea of telemedicine is to use modern information technology as a means or platform to deliver health care service in remote areas and to manage medical information in digitalized forms. The progress of developing telemedicine, however, is rather slow. The main reason for this slow progress is not technological but rather legal. Health care providers are reluctant to promote this innovation in medical service mainly due to uncertain legal consequences and ethical concerns. Although there are many legal challenges surrounding telemedicine, this note will examine major legal issues including licensure, malpractice liability, and privacy protection. Furthermore, I will discuss the potential of applying telemedicine programs in Taiwan's National Health Insurance Program (hereinafter referred to as NHI).
Hackers against technology: Critique and recuperation in technological cycles.
Maxigas
2017-12-01
I offer an interpretation of hackers' technological choices through a theoretical framework of critique and recuperation in technological cycles, building on prior research that brings the pragmatic sociology of Boltanski and Chiapello to bear on matters in Science and Technology Studies. I argue that contextualizing technology choices in the development of capitalism through innovation illuminates their political significance. I start with the counterintuitive observation that some browser extensions popular with hackers, like RequestPolicy, make it considerably harder for them to look at websites. This observation showcases the Luddite aspects of hackerdom, in that they are willing to 'break' popular websites that would otherwise cheat on the user. In line with an undercurrent of hacker studies, in this case study I find hackers fighting technological progress they see as social decline.
Economic impact of stimulated technological activity: Bibliography
NASA Technical Reports Server (NTRS)
1971-01-01
This bibliography is divided into three parts and covers: (1) overall economic impact of technological progress and its measurement; (2) technological progress and commercialization of communications satellites; and (3) knowledge additions and earth links from space crew systems.
Contemporary Technologies...3...An Updated Plan for NIACC's Future.
ERIC Educational Resources Information Center
Hecht, Alfred R.; And Others
An update is provided on North Iowa Area Community College's (NIACC's) progress toward achieving its goals with respect to the use of contemporary technologies, along with plans for further progress. Part I examines the characteristics of contemporary technology and provides information on NIACC's Contemporary Technology Strategic Planning…
Computer Technology Standards of Learning for Virginia's Public Schools
ERIC Educational Resources Information Center
Virginia Department of Education, 2005
2005-01-01
The Computer/Technology Standards of Learning identify and define the progressive development of essential knowledge and skills necessary for students to access, evaluate, use, and create information using technology. They provide a framework for technology literacy and demonstrate a progression from physical manipulation skills for the use of…
NASA Technical Reports Server (NTRS)
1971-01-01
The economic impact of technological progress in communications satellites is considered, as well as how these impacts affect the firms involved. Influences, if any, on the three major inputs of a nation's economic output (capital, labor, and technology) is discussed.
Brief review of emerging photovoltaic absorbers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zakutayev, Andriy
Photovoltaic solar cells have recently made significant commercial progress and are on track toward meeting more than 1% of global energy demand. However, further research is needed on photovoltaic technologies that face no scalability constraints in generating more than 10% of the world's electricity. This 2017 article briefly reviews emerging photovoltaic absorber materials, focusing on research progress over the past 2-3 years. Particular emphasis is given to emerging solar cell absorbers -- for example, SnS, Sb 2Se 3, Cu 2SnS 3, and CuSbSe 2 -- related to established solar cell technologies such as CdTe, Cu(In,Ga)Se 2, and CH 3NH 3PbImore » 3. Lastly, the general publication and performance trends are discussed, and the promising future research directions are pointed out.« less
Brief review of emerging photovoltaic absorbers
Zakutayev, Andriy
2017-02-08
Photovoltaic solar cells have recently made significant commercial progress and are on track toward meeting more than 1% of global energy demand. However, further research is needed on photovoltaic technologies that face no scalability constraints in generating more than 10% of the world's electricity. This 2017 article briefly reviews emerging photovoltaic absorber materials, focusing on research progress over the past 2-3 years. Particular emphasis is given to emerging solar cell absorbers -- for example, SnS, Sb 2Se 3, Cu 2SnS 3, and CuSbSe 2 -- related to established solar cell technologies such as CdTe, Cu(In,Ga)Se 2, and CH 3NH 3PbImore » 3. Lastly, the general publication and performance trends are discussed, and the promising future research directions are pointed out.« less
Development of upper limb prostheses: current progress and areas for growth.
González-Fernández, Marlís
2014-06-01
Upper extremity prosthetic technology has significantly changed in recent years. The devices available and those under development are more and more able to approximate the function of the lost limb; however, other challenges remain. This article provides a brief perspective on the most advanced upper limb prostheses available and the challenges present for continued development of the technology. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Human Factors Directions for Civil Aviation
NASA Technical Reports Server (NTRS)
Hart, Sandra G.
2002-01-01
Despite considerable progress in understanding human capabilities and limitations, incorporating human factors into aircraft design, operation, and certification, and the emergence of new technologies designed to reduce workload and enhance human performance in the system, most aviation accidents still involve human errors. Such errors occur as a direct or indirect result of untimely, inappropriate, or erroneous actions (or inactions) by apparently well-trained and experienced pilots, controllers, and maintainers. The field of human factors has solved many of the more tractable problems related to simple ergonomics, cockpit layout, symbology, and so on. We have learned much about the relationships between people and machines, but know less about how to form successful partnerships between humans and the information technologies that are beginning to play a central role in aviation. Significant changes envisioned in the structure of the airspace, pilots and controllers' roles and responsibilities, and air/ground technologies will require a similarly significant investment in human factors during the next few decades to ensure the effective integration of pilots, controllers, dispatchers, and maintainers into the new system. Many of the topics that will be addressed are not new because progress in crucial areas, such as eliminating human error, has been slow. A multidisciplinary approach that capitalizes upon human studies and new classes of information, computational models, intelligent analytical tools, and close collaborations with organizations that build, operate, and regulate aviation technology will ensure that the field of human factors meets the challenge.
Microchannel Plate Imaging Detectors for the Ultraviolet
NASA Technical Reports Server (NTRS)
Siegmund, O. H. W.; Gummin, M. A.; Stock, J.; Marsh, D.
1992-01-01
There has been significant progress over the last few years in the development of technologies for microchannel plate imaging detectors in the Ultraviolet (UV). Areas where significant developments have occurred include enhancements of quantum detection efficiency through improved photocathodes, advances in microchannel plate performance characteristics, and development of high performance image readout techniques. The current developments in these areas are summarized, with their applications in astrophysical instrumentation.
ACEE composite structures technology
NASA Technical Reports Server (NTRS)
Klotzsche, M. (Compiler)
1984-01-01
The NASA Aircraft Energy Efficiency (ACEE) Composite Primary Aircraft Structures Program has made significant progress in the development of technology for advanced composites in commercial aircraft. Commercial airframe manufacturers have demonstrated technology readiness and cost effectiveness of advanced composites for secondary and medium primary components and have initiated a concerted program to develop the data base required for efficient application to safety-of-flight wing and fuselage structures. Oral presentations were compiled into five papers. Topics addressed include: damage tolerance and failsafe testing of composite vertical stabilizer; optimization of composite multi-row bolted joints; large wing joint demonstation components; and joints and cutouts in fuselage structure.
NASA Astrophysics Data System (ADS)
Du, Xianbin
2018-01-01
Ultimate goal of tissue engineering is to replace pathological or necrotic body tissue or organ by artificial tissue or organ and tissue engineering is a very promising research field. 3D bio-printing is a kind of emerging technologies and a branch of tissue engineering. It has made significant progress in the past decade. 3D bio-printing can realize tissue and organ construction in vitro and has wide application in basic research and pharmacy. This paper is to make an analysis and review on 3D bio-printing from the perspectives of bioink, printing technology and technology application.
NASA Astrophysics Data System (ADS)
Johns, Lionel S.
1994-10-01
The paper presents the Clinton Administration's commitment to American industrial competitiveness through a strategic focus on research and development and to dual-use technologies in particular. Working in partnership with industry, the dual-use approach is essential for giving our armed forces the world's best, most technically advanced military equipment at affordable cost. The President has set a goal of shifting from a dominant role for military technologies in our Federal R&D investments to a roughly equal balance between military on the one hand and civilian and dual-use on the other. We have already made significant progress toward this goal.
Factors Affecting Learning in Technology in the Early Years at School
ERIC Educational Resources Information Center
Mawson, Brent
2007-01-01
The nature of progression in technology is still a matter of debate in technology education. While there is a growing research-based literature exploring the elements of technological literacy that might be appropriate measures of progression, little has been written about the factors that may influence both group and individual development of…
Recent Developments in U.S. Engine Noise Reduction Research
NASA Technical Reports Server (NTRS)
Bridges, James; Envia, Edmane; Huff, Dennis
2001-01-01
Aircraft engine noise research in the United States has made considerable progress over the past 10 years for both subsonic and supersonic flight applications. The Advanced Subsonic Technology (AST) Noise Reduction Program started in 1994 and will be completed in 2001 without major changes to program plans and funding levels. As a result, significant progress has been made toward the goal of reducing engine source noise by 6 EPNdB (Effective Perceived Noise level in decibels). This paper will summarize some of the significant accomplishments from the subsonic engine noise research performed over the past 10 years. The review is by no means comprehensive and only represents a sample of major accomplishments.
Characterization of microbial 'hot spots' in soils": Where are we, and where are we going?
NASA Astrophysics Data System (ADS)
Baveye, Philippe C.
2015-04-01
Fifty years ago, microbiologists realized that significant progress in our understanding of microbial processes in soils required being able to measure various physical, chemical, and microbial parameters at the scale of microorganisms, i.e., at micrometric or even submicrometric scales, and to identify areas of particularly high microbial activity. Back then, this was only a dream, severely hampered by the crudeness of our measuring instruments. In the intervening years, however, amazing technological progress has transformed that old dream into reality. We are now able to quantify the physical and (bio)chemical environment of soil microorganisms at spatial scales that are commensurate with bacterial cells. In this invited presentation, I will provide an overview of the significant progress achieved in this field over the last few years, and mention a number of further technological advances that are likely to profoundly influence the nature of the research over the next decade. Technology must however remain a means to an end, and therefore it is important to firmly keep in mind that the goal of the research on understanding better how soil processes work at the microscale is to be ultimately in a position to predict the behavior of soils at scales that matter to society at large, for example in terms of food security or global climate change. In that context, part of the research has to focus on how we can upscale information about soil microbial hotspots to macroscopic scales and beyond. I will discuss where we stand on this crucial question, which remains largely open at the moment.
FY 2012 Lightweight Materials Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, David C.
2013-04-15
The FY 2012 Annual Progress Report for Lightweight Materials provides a detailed description of the activities and technical accomplishments which focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce light and heavy duty vehicle weight without compromising other attributes such as safety, performance, recyclability, and cost.
Lipstick and Labcoats: Undergraduate Women's Gender Negotiation in STEM Fields
ERIC Educational Resources Information Center
Goldman, Emily Grey
2012-01-01
Although women have made significant progress in the work force and in education, gender gaps still exist in many industries and occupations, including science, technology, engineering, and math (STEM) fields. This research aimed to understand how undergraduate women negotiate gender within STEM fields, looking specifically at these women's…
Responses of Chinese Higher Education to the Information Society
ERIC Educational Resources Information Center
Cai, Yuzhuo; Guo, Wenge
2006-01-01
Compared to the advanced industrial countries, the use of information technology in Chinese higher education came relatively late. Nevertheless, recent Chinese practices have achieved significant progress in the country's efforts to bridge the digital divide. This article focuses special attention on the responses of Chinese higher education to…
Detection of mycotoxins using imaging surface plasmon resonance (iSPR)
USDA-ARS?s Scientific Manuscript database
Significant progress has been made in the development of biosensors that can be used to detect mycotoxins. One technology that has been extensively tested is surface plasmon resonance (SPR). In 2003 a multi-toxin method was reported that detected aflatoxin B1 (AFB1), zearalenone (ZEA), fumonisin B1 ...
The Solar Power Satellite (SPS): Progress so far
NASA Technical Reports Server (NTRS)
Glaser, Peter E.
1989-01-01
Major developments in key Solar Power Satellite (SPS)-related technologies are outlined and the significance of these developments are evaluated considering the SPS, both as an alternate energy option for use on Earth and as a potential stimulus for space infrastructure developments and expansion of the use of extraterrestrial resources.
Lipstick and Labcoats: Undergraduate Women's Gender Negotiation in STEM Fields
ERIC Educational Resources Information Center
Goldman, Emily Grey
2010-01-01
While women have made significant progress in the work force and in education, gender gaps still exist in many industries and occupations, including science, technology, engineering, and math (STEM) fields. This research aims to understand how undergraduate women negotiate gender within STEM fields, looking specifically at these women's…
Using technology to assess and intervene with illicit drug-using persons at risk for HIV.
Horvath, Keith J; Lammert, Sara; LeGrand, Sara; Muessig, Kathryn E; Bauermeister, José A
2017-09-01
This review describes recent literature on novel ways technology is used for assessment of illicit drug use and HIV risk behaviours, suggestions for optimizing intervention acceptability, and recently completed and ongoing technology-based interventions for drug-using persons at risk for HIV and others with high rates of drug use and HIV risk behaviour. Among studies (n = 5) comparing technology-based to traditional assessment methods, those using Ecological Momentary Assessment (EMA) had high rates of reported drug use and high concordance with traditional assessment methods. The two recent studies assessing the acceptability of mHealth approaches overall demonstrate high interest in these approaches. Current or in-progress technology-based interventions (n = 8) are delivered using mobile apps (n = 5), text messaging (n = 2) and computers (n = 1). Most intervention studies are in progress or do not report intervention outcomes; the results from one efficacy trial showed significantly higher HIV testing rates among persons in need of drug treatment. Studies are needed to continually assess technology adoption and intervention preferences among drug-using populations to ensure that interventions are appropriately matched to users. Large-scale technology-based intervention trials to assess the efficacy of these approaches, as well as the impact of individual intervention components, on drug use and other high-risk behaviours are recommended.
Biosensor technology: technology push versus market pull.
Luong, John H T; Male, Keith B; Glennon, Jeremy D
2008-01-01
Biosensor technology is based on a specific biological recognition element in combination with a transducer for signal processing. Since its inception, biosensors have been expected to play a significant analytical role in medicine, agriculture, food safety, homeland security, environmental and industrial monitoring. However, the commercialization of biosensor technology has significantly lagged behind the research output as reflected by a plethora of publications and patenting activities. The rationale behind the slow and limited technology transfer could be attributed to cost considerations and some key technical barriers. Analytical chemistry has changed considerably, driven by automation, miniaturization, and system integration with high throughput for multiple tasks. Such requirements pose a great challenge in biosensor technology which is often designed to detect one single or a few target analytes. Successful biosensors must be versatile to support interchangeable biorecognition elements, and in addition miniaturization must be feasible to allow automation for parallel sensing with ease of operation at a competitive cost. A significant upfront investment in research and development is a prerequisite in the commercialization of biosensors. The progress in such endeavors is incremental with limited success, thus, the market entry for a new venture is very difficult unless a niche product can be developed with a considerable market volume.
Factors affecting the retirement of commercial transport jet aircraft
NASA Technical Reports Server (NTRS)
Spencer, F. A.
1979-01-01
The historical background of the technology and economics of aircraft replacement and retirement in the prejet era is reviewed in order to determine whether useful insights can be obtained applicable to the jet era. Significant differences between the two periods are noted. New factors are identified and examined. Topics discussed include concern over current policies regarding deregulation, regulatory reform, and retroactive noise regulations; financing and compliance legislation; aging; economic environment and inflation; technological progress; fuel efficiency and cost; and a financial perspective of replacement decisions.
Lidar Past, Present, and Future in NASA's Earth and Space Science Programs
NASA Technical Reports Server (NTRS)
Einaudi, Franco; Schwemmer, Geary K.; Gentry, Bruce M.; Abshire, James B.
2004-01-01
Lidar is firmly entrenched in the family of remote sensing technologies that NASA is developing and using. Still a relatively new technology, lidar should continue to experience significant advances and progress. Lidar is used in each one of the major research themes, including planetary exploration, in the Earth Sciences Directorate at Goddard Space Flight Center. NASA has and will continue to generate new lidar applications from ground, air and space for both Earth science and planetary exploration.
Endovascular Neurosurgery: Personal Experience and Future Perspectives.
Raymond, Jean
2016-09-01
From Luessenhop's early clinical experience until the present day, experimental methods have been introduced to make progress in endovascular neurosurgery. A personal historical narrative, spanning the 1980s to 2010s, with a review of past opportunities, current problems, and future perspectives. Although the technology has significantly improved, our clinical culture remains a barrier to methodologically sound and safe innovative care and progress. We must learn how to safely practice endovascular neurosurgery in the presence of uncertainty and verify patient outcomes in real time. Copyright © 2016 Elsevier Inc. All rights reserved.
Progress and pitfalls in Shigella vaccine research
Barry, Eileen M.; Pasetti, Marcela F.; Sztein, Marcelo B.; Fasano, Alessio; Kotloff, Karen L.; Levine, Myron M.
2013-01-01
Renewed awareness of the significant morbidity and mortality that Shigella causes among young children in developing countries combined with technological innovations in vaccinology has led to the development of novel vaccine strategies in the past five years. Along with advancement of classical vaccines in clinical trials and new sophisticated measurements of immunological responses, much new data has been produced lending promise to the potential for production of safe and effective Shigella vaccines. Herein we review the recent progress in Shigella vaccine development within the framework of persistent obstacles. PMID:23419287
Biophysical Technologies for Management of Wound Bioburden
Korzendorfer, Holly; Hettrick, Heather
2014-01-01
Significance: Chronic wounds commonly have high levels of bioburden and antibiotic-resistant pathogens. This review article focuses on findings from current literature related to four biophysical technologies (ultrasound, electrical stimulation, phototherapy, and negative pressure wound therapy) believed to be beneficial for managing wound bioburden and support healing. Recent Advances and Critical Issues: Recent advances for each modality are provided as a basic synopsis of the technology followed by brief overviews of the most recent literature addressing its effectiveness for managing wound bioburden, and critical issues for each modality are provided as conclusions. Future Directions: This review highlights the need for further clinically relevant studies examining bacterial levels in addition to healing progression for each technology. PMID:25493207
Scientific and Technological Progress and Job Qualification.
ERIC Educational Resources Information Center
Ivanov, N. P.
Clarifying the influences determining how and to what extent highly qualified personnel are employed, this study discusses those sorts of economic and technological advances affecting employment potentials. Two main trends in scientific and technological progress--computerized industries and the high science-content of production--have so…
FY2013 Progress Report for Fuel & Lubricant Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2014-02-01
Annual progress report for Fuel & Lubricant Technologies. The Fuel & Lubricant Technologies Program supports fuels and lubricants research and development (R&D) to provide vehicle manufacturers and users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement.
FY2014 Fuel & Lubricant Technologies Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stork, Kevin
2016-02-01
Annual progress report for Fuel & Lubricant Technologies. The Fuel & Lubricant Technologies Program supports fuels and lubricants research and development (R&D) to provide vehicle manufacturers and users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement.
Microsurgery robots: addressing the needs of high-precision surgical interventions.
Mattos, Leonardo S; Caldwell, Darwin G; Peretti, Giorgio; Mora, Francesco; Guastini, Luca; Cingolani, Roberto
2016-01-01
Robotics has a significant potential to enhance the overall capacity and efficiency of healthcare systems. Robots can help surgeons perform better quality operations, leading to reductions in the hospitalisation time of patients and in the impact of surgery on their postoperative quality of life. In particular, robotics can have a significant impact on microsurgery, which presents stringent requirements for superhuman precision and control of the surgical tools. Microsurgery is, in fact, expected to gain importance in a growing range of surgical specialties as novel technologies progressively enable the detection, diagnosis and treatment of diseases at earlier stages. Within such scenarios, robotic microsurgery emerges as one of the key components of future surgical interventions, and will be a vital technology for addressing major surgical challenges. Nonetheless, several issues have yet to be overcome in terms of mechatronics, perception and surgeon-robot interfaces before microsurgical robots can achieve their full potential in operating rooms. Research in this direction is progressing quickly and microsurgery robot prototypes are gradually demonstrating significant clinical benefits in challenging applications such as reconstructive plastic surgery, ophthalmology, otology and laryngology. These are reassuring results offering confidence in a brighter future for high-precision surgical interventions.
NASA Astrophysics Data System (ADS)
Hornborg, Alf
2017-02-01
For several centuries, the dominant worldview in industrial societies has held that various problems -such as those recently identified as relating to sustainability- can be solved through technological progress. Technological progress has been conceived as the fruits of engineering science, new knowledge, and innovation. While knowledge of the principles of physics is certainly a necessary condition for technological development, it is not a sufficient condition. Technology is not only a product of engineering, but, ultimately, also of asymmetric transfers of biophysical resources. In other words, the feasibility of technological progress is contingent on world market prices. The history of technology has been written from the perspective of advancing ingenuity, rather than that of unequal global exchange. The implicit world view underlying dominant historiography and economic science ignores the deepening global inequalities which are prerequisite to what some sectors of world society can celebrate as technological progress, including visions of replacing fossil fuels with biofuels and other renewable energy sources. This observation should prompt us to conceptualize technological progress as an inherently unequal capacity to locally save time and space at the expense of human time and natural space lost elsewhere. It implies that the physical agency of technology ultimately rests on prices, i.e. subjective human conceptions about the value of market commodities, and thus finally on the magical artifact we know as money. The purpose of this article is to show how current deliberations on biofuels illustrate the insufficiencies of mainstream understandings of the phenomenon of technology, and to indicate why an adequate understanding of technology must be interdisciplinary, combining insights on both Nature and Society.
Clinical application of microencapsulated islets: actual prospectives on progress and challenges.
Calafiore, Riccardo; Basta, Giuseppe
2014-04-01
After 25 years of intense pre-clinical work on microencapsulated intraperitoneal islet grafts into non-immunosuppressed diabetic recipients, the application of this procedure to patients with type 1 diabetes mellitus has been a significant step forward. This result, achieved in a few centers worldwide, underlies the safety of biopolymers used for microencapsulation. Without this advance, no permission for human application of microcapsules would have ever been obtained after years of purification technologies applied to the raw alginates. To improve safety of the encapsulated islet graft system, renewed efforts on the capsules' bioengineering, as well as on insulin-producing cells within the capsular membranes, are in progress. It is hoped that advances in these two critical aspects of the cell encapsulation technology will result in wider human application of this system. Copyright © 2013 Elsevier B.V. All rights reserved.
FY2016 Advanced Batteries R&D Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Advanced Batteries research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Battery subprogram in 2016. This section covers the Vehicle Technologies Office overview;more » the Battery subprogram R&D overview; Advanced Battery Development project summaries; and Battery Testing, Analysis, and Design project summaries. It also includes the cover and table of contents.« less
Carbon nanotube based transparent conductive films: progress, challenges, and perspectives
Zhou, Ying; Azumi, Reiko
2016-01-01
Abstract Developments in the manufacturing technology of low-cost, high-quality carbon nanotubes (CNTs) are leading to increased industrial applications for this remarkable material. One of the most promising applications, CNT based transparent conductive films (TCFs), are an alternative technology in future electronics to replace traditional TCFs, which use indium tin oxide. Despite significant price competition among various TCFs, CNT-based TCFs have good potential for use in emerging flexible, stretchable and wearable optoelectronics. In this review, we summarize the recent progress in the fabrication, properties, stability and applications of CNT-based TCFs. The challenges of current CNT-based TCFs for industrial use, in comparison with other TCFs, are considered. We also discuss the potential of CNT-based TCFs, and give some possible strategies to reduce the production cost and improve their conductivity and transparency. PMID:27877899
Review: Semen sexing - current state of the art with emphasis on bovine species.
Vishwanath, R; Moreno, J F
2018-06-01
It is approaching three decades since the first public evidence of sex-sorting of semen. The technology has progressed considerably since then with a number of institutions and researchers collaborating to eventually bring this to application. The technical challenges have been quite substantial and in the early years the application was limited to only heifer inseminations. Comparable fertility of sex-sorted semen with conventional semen has been an aspirational benchmark for the industry for many years. Significant investment in research in the primary biology of sex-sorted sperm and associated sorting equipment ensured steady progress over the years and current methods particularly the new SexedULTRA-4M™ seems to have now mostly bridged this fertility gap. The dairy and beef industry have adopted this technology quite rapidly. Other animal industries are progressively testing it for application in their specific niches and environments. The current state of the art in the fundamentals of sex-sorting, the biology of the process as well as new developments in machinery are described in this review.
The development of high-content screening (HCS) technology and its importance to drug discovery.
Fraietta, Ivan; Gasparri, Fabio
2016-01-01
High-content screening (HCS) was introduced about twenty years ago as a promising analytical approach to facilitate some critical aspects of drug discovery. Its application has spread progressively within the pharmaceutical industry and academia to the point that it today represents a fundamental tool in supporting drug discovery and development. Here, the authors review some of significant progress in the HCS field in terms of biological models and assay readouts. They highlight the importance of high-content screening in drug discovery, as testified by its numerous applications in a variety of therapeutic areas: oncology, infective diseases, cardiovascular and neurodegenerative diseases. They also dissect the role of HCS technology in different phases of the drug discovery pipeline: target identification, primary compound screening, secondary assays, mechanism of action studies and in vitro toxicology. Recent advances in cellular assay technologies, such as the introduction of three-dimensional (3D) cultures, induced pluripotent stem cells (iPSCs) and genome editing technologies (e.g., CRISPR/Cas9), have tremendously expanded the potential of high-content assays to contribute to the drug discovery process. Increasingly predictive cellular models and readouts, together with the development of more sophisticated and affordable HCS readers, will further consolidate the role of HCS technology in drug discovery.
Pitchford, Nicola J.; Kamchedzera, Elizabeth; Hubber, Paula J.; Chigeda, Antonie L.
2018-01-01
Interactive apps delivered on touch-screen tablets can be effective at supporting the acquisition of basic skills in mainstream primary school children. This technology may also be beneficial for children with Special Educational Needs and Disabilities (SEND) as it can promote high levels of engagement with the learning task and an inclusive learning environment. However, few studies have measured extent of learning for SEND pupils when using interactive apps, so it has yet to be determined if this technology is effective at raising attainment for these pupils. We report the first observational study of a group of 33 pupils with SEND from two primary schools in Malawi that are implementing a new digital technology intervention which uses touch-screen tablets to deliver interactive apps designed to teach basic mathematical skills. The apps contain topics that align to the national curriculum. To assess learning gains, rate of progress (minutes per topic) for each pupil was determined by calculating the average time taken to complete a topic. Progress rate was then correlated with teacher ratings of extent of disability and independent ratings of pupil engagement with the apps. Results showed SEND pupils could interact with the apps and all pupils passed at least one topic. Average progress rate for SEND pupils was twice as long as mainstream peers. Stepwise regression revealed extent of disability significantly predicted progress rate. Further exploratory correlations revealed pupils with moderate to severe difficulties with hearing and/or language made slower progress through the apps than those with greater functionality in these two domains because the use of verbal instructions within the apps limited their capacity to learn. This original quantitative analysis demonstrates that interactive apps can raise learning standards in pupils with SEND but may have limited utility for pupils with severe difficulties. Software modifications are needed to address specific areas of difficulty preventing pupils from progressing. PMID:29559940
Pitchford, Nicola J; Kamchedzera, Elizabeth; Hubber, Paula J; Chigeda, Antonie L
2018-01-01
Interactive apps delivered on touch-screen tablets can be effective at supporting the acquisition of basic skills in mainstream primary school children. This technology may also be beneficial for children with Special Educational Needs and Disabilities (SEND) as it can promote high levels of engagement with the learning task and an inclusive learning environment. However, few studies have measured extent of learning for SEND pupils when using interactive apps, so it has yet to be determined if this technology is effective at raising attainment for these pupils. We report the first observational study of a group of 33 pupils with SEND from two primary schools in Malawi that are implementing a new digital technology intervention which uses touch-screen tablets to deliver interactive apps designed to teach basic mathematical skills. The apps contain topics that align to the national curriculum. To assess learning gains, rate of progress (minutes per topic) for each pupil was determined by calculating the average time taken to complete a topic. Progress rate was then correlated with teacher ratings of extent of disability and independent ratings of pupil engagement with the apps. Results showed SEND pupils could interact with the apps and all pupils passed at least one topic. Average progress rate for SEND pupils was twice as long as mainstream peers. Stepwise regression revealed extent of disability significantly predicted progress rate. Further exploratory correlations revealed pupils with moderate to severe difficulties with hearing and/or language made slower progress through the apps than those with greater functionality in these two domains because the use of verbal instructions within the apps limited their capacity to learn. This original quantitative analysis demonstrates that interactive apps can raise learning standards in pupils with SEND but may have limited utility for pupils with severe difficulties. Software modifications are needed to address specific areas of difficulty preventing pupils from progressing.
Biomimetic robots using EAP as artificial muscles - progress and challenges
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph
2004-01-01
Biology offers a great model for emulation in areas ranging from tools, computational algorithms, materials science, mechanisms and information technology. In recent years, the field of biomimetics, namely mimicking biology, has blossomed with significant advances enabling the reverse engineering of many animals' functions and implementation of some of these capabilities.
Sustaining Research Innovations in Educational Technology through Communities of Practice
ERIC Educational Resources Information Center
Hung, David; Lee, Shu-Shing; Lim, Kenneth Y. T.
2012-01-01
The diffusion of innovation is critical to societal progression. In the field of education, such diffusion takes on added significance because of the many stakeholders and accountabilities involved. This article presents the argument that efforts at diffusion which are designed from a top-down perspective are not sustainable over the long term…
Exploring Relationships among TPACK Constructs and ICT Achievement among Trainee Teachers
ERIC Educational Resources Information Center
Khine, Myint Swe; Ali, Nagla; Afari, Ernest
2017-01-01
Teaching in the classroom today can no longer sustain the interest of students and be effective if the process involves traditional approach--teachers as sole provider of content information. In recent years technology has played a significant role in transforming education to more progressive and interactive activities. However the use of…
The NASA Electric Propulsion Program
NASA Technical Reports Server (NTRS)
Byers, David C.; Wasel, Robert A.
1987-01-01
The NASA OAST Propulsion, Power and Energy Division supports electric propulsion for a broad class of missions. Concepts with potential to significantly benefit or enable space exploration and exploitation are identified and advanced toward applications in the near to far term. Recent program progress in mission/system analyses and in electrothermal, ion, and electromagnetic technologies are summarized.
Wearable sensors: modalities, challenges, and prospects.
Heikenfeld, J; Jajack, A; Rogers, J; Gutruf, P; Tian, L; Pan, T; Li, R; Khine, M; Kim, J; Wang, J; Kim, J
2018-01-16
Wearable sensors have recently seen a large increase in both research and commercialization. However, success in wearable sensors has been a mix of both progress and setbacks. Most of commercial progress has been in smart adaptation of existing mechanical, electrical and optical methods of measuring the body. This adaptation has involved innovations in how to miniaturize sensing technologies, how to make them conformal and flexible, and in the development of companion software that increases the value of the measured data. However, chemical sensing modalities have experienced greater challenges in commercial adoption, especially for non-invasive chemical sensors. There have also been significant challenges in making significant fundamental improvements to existing mechanical, electrical, and optical sensing modalities, especially in improving their specificity of detection. Many of these challenges can be understood by appreciating the body's surface (skin) as more of an information barrier than as an information source. With a deeper understanding of the fundamental challenges faced for wearable sensors and of the state-of-the-art for wearable sensor technology, the roadmap becomes clearer for creating the next generation of innovations and breakthroughs.
Progress of OLED devices with high efficiency at high luminance
NASA Astrophysics Data System (ADS)
Nguyen, Carmen; Ingram, Grayson; Lu, Zhenghong
2014-03-01
Organic light emitting diodes (OLEDs) have progressed significantly over the last two decades. For years, OLEDs have been promoted as the next generation technology for flat panel displays and solid-state lighting due to their potential for high energy efficiency and dynamic range of colors. Although high efficiency can readily be obtained at low brightness levels, a significant decline at high brightness is commonly observed. In this report, we will review various strategies for achieving highly efficient phosphorescent OLED devices at high luminance. Specifically, we will provide details regarding the performance and general working principles behind each strategy. We will conclude by looking at how some of these strategies can be combined to produce high efficiency white OLEDs at high brightness.
Dynamic Resectorization and Coordination Technology: An Evaluation of Air Traffic Control Complexity
NASA Technical Reports Server (NTRS)
Brinton, Christopher R.
1996-01-01
The work described in this report is done under contract with the National Aeronautics and Space Administration (NASA) to support the Advanced Air Transportation Technology (AATR) program. The goal of this program is to contribute to and accelerate progress in Advanced Air Transportation Technologies. Wyndemere Incorporated is supporting this goal by studying the complexity of the Air Traffic Specialist's role in maintaining the safety of the Air Transportation system. It is envisioned that the implementation of Free Flight may significantly increase the complexity and difficulty of maintaining this safety. Wyndemere Incorporated is researching potential methods to reduce this complexity. This is the final report for the contract.
Chemical Gas Sensors for Aeronautic and Space Applications 2
NASA Technical Reports Server (NTRS)
Hunter, Gary W.; Chen, Liong-Yu; Neudeck, Phil G.; Knight, Dale; Liu, C. C.; Wu, Q. H.; Zhou, H. J.; Makel, Darby; Liu, M.; Rauch, W. A.
1998-01-01
Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of interest include launch vehicle safety monitoring, emission monitoring, and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: 1) Micromachining and microfabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this area of sensor development a field of significant interest.
Chemical Gas Sensors for Aeronautics and Space Applications III
NASA Technical Reports Server (NTRS)
Hunter, G. W.; Neudeck, P. G.; Chen, L. Y.; Liu, C. C.; Wu, Q. H.; Sawayda, M. S.; Jin, Z.; Hammond, J.; Makel, D.; Liu, M.;
1999-01-01
Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of interest include launch vehicle safety monitoring, emission monitoring, and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: 1) Micromachining and microfabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this area of sensor development a field of significant interest.
Chemical Gas Sensors for Aeronautic and Space Applications 2
NASA Technical Reports Server (NTRS)
Hunter, G. W.; Chen, L. Y.; Neudeck, P. G.; Knight, D.; Liu, C. C.; Wu, Q. H.; Zhou, H. J.; Makel, D.; Liu, M.; Rauch, W. A.
1998-01-01
Aeronautic and Space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of most interest include launch vehicle safety monitoring emission monitoring and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensor is based on progress two types of technology: 1) Micro-machining and micro-fabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this micro-fabricated gas sensor technology make this area of sensor development a field of significant interest.
ERIC Educational Resources Information Center
Bolt, Daniel M.; Ysseldyke, Jim; Patterson, Michael J.
2010-01-01
A three-level variance decomposition analysis was used to examine the sources of variability in implementation of a technology-enhanced progress monitoring system within each year of a 2-year study using a randomized-controlled design. We show that results of technology-enhanced progress monitoring are not necessarily a measure of student…
Solar Photovoltaics Technology: The Revolution Begins . . .
NASA Astrophysics Data System (ADS)
Kazmerski, Lawrence
2009-11-01
The prospects of current and coming solar-photovoltaic (PV) technologies are envisioned, arguing this solar-electricity source is at a tipping point in the complex worldwide energy outlook. The emphasis of this presentation is on R&D advances (cell, materials, and module options), with indications of the limitations and strengths of crystalline (Si and GaAs) and thin-film (a-Si:H, Si, Cu(In,Ga)(Se,S)2, CdTe). The contributions and technological pathways for now and near-term technologies (silicon, III-Vs, and thin films) and status and forecasts for next- generation PV (organics, nanotechnologies, non-conventional junction approaches) are evaluated. Recent advances in concentrators with efficiencies headed toward 50%, new directions for thin films (20% and beyond), and materials/device technology issues are discussed in terms of technology progress. Insights into technical and other investments needed to tip photovoltaics to its next level of contribution as a significant clean-energy partner in the world energy portfolio. The need for R&D accelerating the now and imminent (evolutionary) technologies balanced with work in mid-term (disruptive) approaches is highlighted. Moreover, technology progress and ownership for next generation solar PV mandates a balanced investment in research on longer-term (the revolution needs revolutionary approaches to sustain itself) technologies (quantum dots, multi-multijunctions, intermediate-band concepts, nanotubes, bio-inspired, thermophotonics, solar hydrogen. . . ) having high-risk, but extremely high performance and cost returns for our next generations of energy consumers. Issues relating to manufacturing are explored-especially with the requirements for the next-generation technologies. This presentation provides insights into how this technology has developed-and where the R&D investments should be made and we can expect to be by this mid-21st century.
Open Architecture SDR for Space
NASA Technical Reports Server (NTRS)
Smith, Carl; Long, Chris; Liebetreu, John; Reinhart, Richard C.
2005-01-01
This paper describes an open-architecture SDR (software defined radio) infrastructure that is suitable for space-based operations (Space-SDR). SDR technologies will endow space and planetary exploration systems with dramatically increased capability, reduced power consumption, and significantly less mass than conventional systems, at costs reduced by vigorous competition, hardware commonality, dense integration, reduced obsolescence, interoperability, and software re-use. Significant progress has been recorded on developments like the Joint Tactical Radio System (JSTRS) Software Communication Architecture (SCA), which is oriented toward reconfigurable radios for defense forces operating in multiple theaters of engagement. The JTRS-SCA presents a consistent software interface for waveform development, and facilitates interoperability, waveform portability, software re-use, and technology evolution.
Telemedicine in Anesthesiology and Reanimatology
Tafro, Lejla; Masic, Izet
2010-01-01
Review SUMMARY In recent years impressive progress is happening in information and telecommunication technologies. The application of computers in medicine allows permanent data storage, data transfer from one place to another, retrieving and data processing, data availability at all times, monitoring of patients over time, etc. This can significantly improve the medical profession. Medicine is one of the most intensive users of all types of information and telecommunication technology. Quickly and reliably store and transfer data (text, images, sounds, etc.) provides significant assistance and improvement in almost all medical procedures. In addition, data in locations far from medical centers can be of invaluable benefit, especially in emergency cases in which the decisive role has anesthesiologists. PMID:24222933
Progressive and Regressive Aspects of Information Technology in Society: A Third Sector Perspective
ERIC Educational Resources Information Center
Miller, Kandace R.
2009-01-01
This dissertation explores the impact of information technology on progressive and regressive values in society from the perspective of one international foundation and four of its technology-related programs. Through a critical interpretive approach employing an instrumental multiple-case method, a framework to help explain the influence of…
Progress Report on the State of Texas Master Plan for Educational Technology, 2000-2003.
ERIC Educational Resources Information Center
Texas Education Agency, Austin.
This progress report documents accomplishments and activities for September 2000 through August 2002 related to the State of Texas Master Plan for Educational Technology 2000-2003. The first section presents background, goals, and recommendations as adopted by the Education Technology Coordinating Council (ETCC) in December 1999. The second…
ERIC Educational Resources Information Center
Karp, William
The 74th Illinois General Assembly created the Illinois Commission on Automation and Technological Progress to study and analyze the economic and social effects of automation and other technological changes on industry, commerce, agriculture, education, manpower, and society in Illinois. Commission members visited industrial plants and business…
Recent advances in AM OLED technologies for application to aerospace and military systems
NASA Astrophysics Data System (ADS)
Sarma, Kalluri R.; Roush, Jerry; Chanley, Charles
2012-06-01
While initial AM OLED products have been introduced in the market about a decade ago, truly successful commercialization of OLEDs has started only a couple of years ago, by Samsung Mobile Display (SMD), with small high performance displays for smart phone applications. This success by Samsung has catalyzed significant interest in AM OLED technology advancement and commercialization by other display manufacturers. Currently, significant manufacturing capacity for AM OLED displays is being established by the industry to serve the growing demand for these displays. The current development in the AM OLED industry are now focused on the development and commercialization of medium size (~10") AM OLED panels for Tablet PC applications and large size (~55") panels for TV applications. This significant progress in commercialization of AM OLED technology is enabled by major advances in various enabling technologies that include TFT backplanes, OLED materials and device structures and manufacturing know-how. In this paper we will discuss these recent advances, particularly as they relate to supporting high performance applications such as aerospace and military systems, and then discuss the results of the OLED testing for aerospace applications.
Molecular neuroanatomy: a generation of progress.
Pollock, Jonathan D; Wu, Da-Yu; Satterlee, John S
2014-02-01
The neuroscience research landscape has changed dramatically over the past decade. Specifically, an impressive array of new tools and technologies have been generated, including but not limited to: brain gene expression atlases, genetically encoded proteins to monitor and manipulate neuronal activity, and new methods for imaging and mapping circuits. However, despite these technological advances, several significant challenges must be overcome to enable a better understanding of brain function and to develop cell type-targeted therapeutics to treat brain disorders. This review provides an overview of some of the tools and technologies currently being used to advance the field of molecular neuroanatomy, and also discusses emerging technologies that may enable neuroscientists to address these crucial scientific challenges over the coming decade. Published by Elsevier Ltd.
Large Composite Structures Processing Technologies for Reusable Launch Vehicles
NASA Technical Reports Server (NTRS)
Clinton, R. G., Jr.; Vickers, J. H.; McMahon, W. M.; Hulcher, A. B.; Johnston, N. J.; Cano, R. J.; Belvin, H. L.; McIver, K.; Franklin, W.; Sidwell, D.
2001-01-01
Significant efforts have been devoted to establishing the technology foundation to enable the progression to large scale composite structures fabrication. We are not capable today of fabricating many of the composite structures envisioned for the second generation reusable launch vehicle (RLV). Conventional 'aerospace' manufacturing and processing methodologies (fiber placement, autoclave, tooling) will require substantial investment and lead time to scale-up. Out-of-autoclave process techniques will require aggressive efforts to mature the selected technologies and to scale up. Focused composite processing technology development and demonstration programs utilizing the building block approach are required to enable envisioned second generation RLV large composite structures applications. Government/industry partnerships have demonstrated success in this area and represent best combination of skills and capabilities to achieve this goal.
Augmented-reality integrated robotics in neurosurgery: are we there yet?
Madhavan, Karthik; Kolcun, John Paul G; Chieng, Lee Onn; Wang, Michael Y
2017-05-01
Surgical robots have captured the interest-if not the widespread acceptance-of spinal neurosurgeons. But successful innovation, scientific or commercial, requires the majority to adopt a new practice. "Faster, better, cheaper" products should in theory conquer the market, but often fail. The psychology of change is complex, and the "follow the leader" mentality, common in the field today, lends little trust to the process of disseminating new technology. Beyond product quality, timing has proven to be a key factor in the inception, design, and execution of new technologies. Although the first robotic surgery was performed in 1985, scant progress was seen until the era of minimally invasive surgery. This movement increased neurosurgeons' dependence on navigation and fluoroscopy, intensifying the drive for enhanced precision. Outside the field of medicine, various technology companies have made great progress in popularizing co-robots ("cobots"), augmented reality, and processor chips. This has helped to ease practicing surgeons into familiarity with and acceptance of these technologies. The adoption among neurosurgeons in training is a "follow the leader" phenomenon, wherein new surgeons tend to adopt the technology used during residency. In neurosurgery today, robots are limited to computers functioning between the surgeon and patient. Their functions are confined to establishing a trajectory for navigation, with task execution solely in the surgeon's hands. In this review, the authors discuss significant untapped technologies waiting to be used for more meaningful applications. They explore the history and current manifestations of various modern technologies, and project what innovations may lie ahead.
Advancing automation and robotics technology for the Space Station Freedom and for the U.S. economy
NASA Technical Reports Server (NTRS)
Lum, Henry, Jr.
1992-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on Space Station Freedom. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the fifteenth in a series of progress updates and covers the period between 27 Feb. - 17 Sep. 1992. The progress made by Levels 1, 2, and 3 of the Space Station Freedom in developing and applying advanced automation and robotics technology is described. Emphasis was placed upon the Space Station Freedom program responses to specific recommendations made in ATAC Progress Report 14. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for Space Station Freedom.
[Progress in stem cells and regenerative medicine].
Wang, Libin; Zhu, He; Hao, Jie; Zhou, Qi
2015-06-01
Stem cells have the ability to differentiate into all types of cells in the body and therefore have great application potential in regenerative medicine, in vitro disease modelling and drug screening. In recent years, stem cell technology has made great progress, and induced pluripotent stem cell technology revolutionizes the whole stem cell field. At the same time, stem cell research in our country has also achieved great progress and becomes an indispensable power in the worldwide stem cell research field. This review mainly focuses on the research progress in stem cells and regenerative medicine in our country since the advent of induced pluripotent stem cell technology, including induced pluripotent stem cells, transdifferentiation, haploid stem cells, and new gene editing tools.
Supply Chain Sustainability Analysis of Whole Algae Hydrothermal Liquefaction and Upgrading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pegallapati, Ambica Koushik; Dunn, Jennifer B.; Frank, Edward D.
2015-04-01
The Department of Energy's Bioenergy Technology Office (BETO) collaborates with a wide range of institutions towards the development and deployment of biofuels and bioproducts. To facilitate this effort, BETO and its partner national laboratories develop detailed techno-economic assessments (TEA) of biofuel production technologies as part of the development of design cases and state of technology (SOT) analyses. A design case is a TEA that outlines a target case for a particular biofuel pathway. It enables preliminary identification of data gaps and research and development needs and provides goals and targets against which technology progress is assessed. On the other hand,more » an SOT analysis assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases and includes technical, economic, and environmental criteria as available. (SOT) analyses. A design case is a TEA that outlines a target case for a particular biofuel pathway. It enables preliminary identification of data gaps and research and development needs and provides goals and targets against which technology progress is assessed. On the other hand, an SOT analysis assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases and includes technical, economic, and environmental criteria as available. (SOT) analyses. A design case is a TEA that outlines a target case for a particular biofuel pathway. It enables preliminary identification of data gaps and research and development needs and provides goals and targets against which technology progress is assessed. On the other hand, an SOT analysis assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases and includes technical, economic, and environmental criteria as available.« less
Shock waves in binary oxides memristors
NASA Astrophysics Data System (ADS)
Tesler, Federico; Tang, Shao; Dobrosavljević, Vladimir; Rozenberg, Marcelo
2017-09-01
Progress of silicon based technology is nearing its physical limit, as minimum feature size of components is reaching a mere 5 nm. The resistive switching behavior of transition metal oxides and the associated memristor device is emerging as a competitive technology for next generation electronics. Significant progress has already been made in the past decade and devices are beginning to hit the market; however, it has been mainly the result of empirical trial and error. Hence, gaining theoretical insight is of essence. In the present work we report a new connection between the resistive switching and shock wave formation, a classic topic of non-linear dynamics. We argue that the profile of oxygen ions that migrate during the commutation in insulating binary oxides may form a shock wave, which propagates through a poorly conductive region of the device. We validate the scenario by means of model simulations.
Nanoscale perspective: Materials designs and understandings in lithium metal anodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Dingchang; Liu, Yayuan; Pei, Allen
Li metal chemistry is a promising alternative with a much higher energy density than that of state-of-the-art Li-ion counterparts. However, significant challenges including safety issues and poor cyclability have severely impeded Li metal technology from becoming viable. In recent years, nanotechnologies have become increasingly important in materials design and fabrication for Li metal anodes, contributing to major progress in the field. In this review, we first introduce the main achievements in Li metal battery systems fulfilled by nanotechnologies, particularly regarding Li metal anode design and protection, ultrastrong separator engineering, safety monitoring, and smart functions. Next, we introduce recent studies onmore » nanoscale Li nucleation/deposition. Lastly, we discuss possible future research directions. We hope this review delivers an overall picture of the role of nanoscale approaches in the recent progress of Li metal battery technology and inspires more research in the future.« less
Nanoscale perspective: Materials designs and understandings in lithium metal anodes
Lin, Dingchang; Liu, Yayuan; Pei, Allen; ...
2017-05-19
Li metal chemistry is a promising alternative with a much higher energy density than that of state-of-the-art Li-ion counterparts. However, significant challenges including safety issues and poor cyclability have severely impeded Li metal technology from becoming viable. In recent years, nanotechnologies have become increasingly important in materials design and fabrication for Li metal anodes, contributing to major progress in the field. In this review, we first introduce the main achievements in Li metal battery systems fulfilled by nanotechnologies, particularly regarding Li metal anode design and protection, ultrastrong separator engineering, safety monitoring, and smart functions. Next, we introduce recent studies onmore » nanoscale Li nucleation/deposition. Lastly, we discuss possible future research directions. We hope this review delivers an overall picture of the role of nanoscale approaches in the recent progress of Li metal battery technology and inspires more research in the future.« less
Space reactor power 1986 - A year of choices and transition
NASA Technical Reports Server (NTRS)
Wiley, R. L.; Verga, R. L.; Schnyer, A. D.; Sholtis, J. A., Jr.; Wahlquist, E. J.
1986-01-01
Both the SP-100 and Multimegawatt programs have made significant progress over the last year and that progress is the focus of this paper. In the SP-100 program the thermoelectric energy conversion concept powered by a compact, high-temperature, lithium-cooled, uranium-nitride-fueled fast spectrum reactor was selected for engineering development and ground demonstration testing at an electrical power level of 300 kilowatts. In the Multimegawatt program, activities moved from the planning phase into one of technology development and assessment with attendant preliminary definition and evaluation of power concepts against requirements of the Strategic Defense Initiative.
Learning and memory in zebrafish larvae
Roberts, Adam C.; Bill, Brent R.; Glanzman, David L.
2013-01-01
Larval zebrafish possess several experimental advantages for investigating the molecular and neural bases of learning and memory. Despite this, neuroscientists have only recently begun to use these animals to study memory. However, in a relatively short period of time a number of forms of learning have been described in zebrafish larvae, and significant progress has been made toward their understanding. Here we provide a comprehensive review of this progress; we also describe several promising new experimental technologies currently being used in larval zebrafish that are likely to contribute major insights into the processes that underlie learning and memory. PMID:23935566
Fukuda, Kenjiro; Someya, Takao
2017-07-01
Printed electronics enable the fabrication of large-scale, low-cost electronic devices and systems, and thus offer significant possibilities in terms of developing new electronics/optics applications in various fields. Almost all electronic applications require information processing using logic circuits. Hence, realizing the high-speed operation of logic circuits is also important for printed devices. This report summarizes recent progress in the development of printed thin-film transistors (TFTs) and integrated circuits in terms of materials, printing technologies, and applications. The first part of this report gives an overview of the development of functional inks such as semiconductors, electrodes, and dielectrics. The second part discusses high-resolution printing technologies and strategies to enable high-resolution patterning. The main focus of this report is on obtaining printed electrodes with high-resolution patterning and the electrical performance of printed TFTs using such printed electrodes. In the final part, some applications of printed electronics are introduced to exemplify their potential. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Modular standards for emerging avionics technologies
NASA Astrophysics Data System (ADS)
Radcliffe, B.; Boaz, J.
The present investigation is concerned with modular standards for the integration of new avionics technologies into production aircraft, taking into account also major retrofit programs. It is pointed out that avionics systems are about to undergo drastic changes in the partitioning of functions and judicious sharing of resources. These changes have the potential to significantly improve reliability and maintainability, and to reduce costs. Attention is given to a definition of the modular avionics concept, the existing module program, the development approach, development progress on the modular avionics standard, and the future of avionics installation standards.
Remotely piloted aircraft in the civil environment
NASA Technical Reports Server (NTRS)
Gregory, T. J.; Nelms, W. P.; Karmarkar, J. S.
1977-01-01
Remotely piloted aircraft (RPA's) are of increasing interest to the military and others, as evidenced by a number of technology and development programs that are currently funded or planned. These programs have led to a number of test aircraft with significant capabilities, and future remotely piloted aircraft are forecast to become even more capable as the technology in a number of important subsystem areas is progressing at a rapid rate. As the size, weight and cost of RPA's is reduced, the prospect of using them for civilian applications becomes more likely.
ERIC Educational Resources Information Center
Wentling, Rose Mary; Thomas, Steven P.
2007-01-01
The purpose of this study was to develop an understanding of the workplace environment characteristics that hinder and assist the career progression of women in information technology (IT). The study examined the satisfaction with the career progression of the women in IT as well as why the women in IT like and dislike their careers. The major…
Progress in video immersion using Panospheric imaging
NASA Astrophysics Data System (ADS)
Bogner, Stephen L.; Southwell, David T.; Penzes, Steven G.; Brosinsky, Chris A.; Anderson, Ron; Hanna, Doug M.
1998-09-01
Having demonstrated significant technical and marketplace advantages over other modalities for video immersion, PanosphericTM Imaging (PI) continues to evolve rapidly. This paper reports on progress achieved since AeroSense 97. The first practical field deployment of the technology occurred in June-August 1997 during the NASA-CMU 'Atacama Desert Trek' activity, where the Nomad mobile robot was teleoperated via immersive PanosphericTM imagery from a distance of several thousand kilometers. Research using teleoperated vehicles at DRES has also verified the exceptional utility of the PI technology for achieving high levels of situational awareness, operator confidence, and mission effectiveness. Important performance enhancements have been achieved with the completion of the 4th Generation PI DSP-based array processor system. The system is now able to provide dynamic full video-rate generation of spatial and computational transformations, resulting in a programmable and fully interactive immersive video telepresence. A new multi- CCD camera architecture has been created to exploit the bandwidth of this processor, yielding a well-matched PI system with greatly improved resolution. While the initial commercial application for this technology is expected to be video tele- conferencing, it also appears to have excellent potential for application in the 'Immersive Cockpit' concept. Additional progress is reported in the areas of Long Wave Infrared PI Imaging, Stereo PI concepts, PI based Video-Servoing concepts, PI based Video Navigation concepts, and Foveation concepts (to merge localized high-resolution views with immersive views).
Concepts and technology development towards a platform for macroscopic quantum experiments in space
NASA Astrophysics Data System (ADS)
Kaltenbaek, Rainer
Tremendous progress has been achieved in space technology over the last decade. This technological heritage promises enabling applications of quantum technology in space already now or in the near future. Heritage in laser and optical technologies from LISA Pathfinder comprises core technologies required for quantum optical experiments. Low-noise micro-thruster technology from GAIA allows achieving an impressive quality of microgravity, and passive radiative cooling approaches as in the James Webb Space Telescope may be adapted for achieving cryogenic temperatures. Developments like these have rendered space an increasingly attractive platform for quantum-enhanced sensing and for fundamental tests of physics using quantum technology. In particular, there already have been significant efforts towards ralizing atom interferometry and atomic clocks in space as well as efforts to harness space as an environment for fundamental tests of physics using quantum optomechanics and high-mass matter-wave interferometry. Here, we will present recent efforts in spacecraft design and technology development towards this latter goal in the context of the mission proposal MAQRO.
Solar Thermal Power Systems parabolic dish project
NASA Technical Reports Server (NTRS)
Truscello, V. C.
1981-01-01
The status of the Solar Thermal Power Systems Project for FY 1980 is summarized. Included is: a discussion of the project's goals, program structure, and progress in parabolic dish technology. Analyses and test results of concentrators, receivers, and power converters are discussed. Progress toward the objectives of technology feasibility, technology readiness, system feasibility, and system readiness are covered.
Scientific and Technological Progress, Political Beliefs and Environmental Sustainability
ERIC Educational Resources Information Center
Makrakis, Vassilios
2012-01-01
With the development of science and technology, a basically optimistic ideology of progress has emerged. This deterministic attitude has been challenged in recent decades as a result of harmful side-effects generated by the way technology and science have been approached and used. The study presented here is a part of a larger international and…
FY2017 Electrification Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
During fiscal year 2017 (FY 2017), the U.S. Department of Energy (DOE) Vehicle Technologies Office (VTO) funded early stage research & development (R&D) projects that address Batteries and Electrification of the U.S. transportation sector. The VTO Electrification Sub-Program is composed of Electric Drive Technologies, and Grid Integration activities. The Electric Drive Technologies group conducts R&D projects that advance Electric Motors and Power Electronics technologies. The Grid and Charging Infrastructure group conducts R&D projects that advance Grid Modernization and Electric Vehicle Charging technologies. This document presents a brief overview of the Electrification Sub-Program and progress reports for its R&D projects. Eachmore » of the progress reports provide a project overview and highlights of the technical results that were accomplished in FY 2017.« less
Overview of superconductivity in Japan Strategy road map and R&D status
NASA Astrophysics Data System (ADS)
Tsukamoto, O.
2008-09-01
Superconducting technology benefits society in broad fields; environment/energy, life science, manufacturing industry and information and communication. Superconducting equipments and devices used in various fields are divided into two categories, electric and electronic applications. Technologies in those applications are progressing remarkably owing to firm and consistent supports by various national projects. The final target of the NEDO R&D project of fundamental technology for superconductivity applications to develop 500 m long coated conductors (CCs) of the critical current 300 A/cm (at 77 K, 0 T) will be fulfilled by the end of JFY 2007 and manufacturing process to produce extremely low-cost CCs is to be developed to make the applications realistic. Preliminary works to develop power apparatuses using CCs have started in the frame of the R&D project for the fundamental technology and have produced significant results. Performance of BSCCO/Ag-sheathed wires has been improved greatly and various applications using those wires are being developed. R&D projects for SMES, power cable, flywheel energy storage and rotating machines are going to introduce those equipments to the real world. Technologies of SQUID and SFQ, basic devices of the electronic applications, are progressing dramatically also owing to various national projects. In this back ground the technology strategy map in the field of superconducting technology was formulated to prioritize investments in R&D by clearly defining the objectives and inspire autonomous R&D actives in various fields of industries. R&D activities in the superconducting technologies are to be scheduled following this strategy map.
ERIC Educational Resources Information Center
Goh, Shu Li
2016-01-01
The rapid progress of technology has revolutionized learning and in the field of computer assisted language learning, the use of digital games has expanded significantly. One type of game that has been attracting interest is massively multiplayer online role-playing games (henceforth MMORPGs). Recent research has drawn attention to the potential…
Teaching and Learning for Sustainable Development: ESD Research in Technology Education
ERIC Educational Resources Information Center
Pavlova, Margarita
2013-01-01
When education for sustainable development (ESD) emerged as part of the educational agenda in the international arena, it was associated with significant shifts in the educational debate about the purpose and nature of education and with the need to respond to crises caused by the modern idea of progress. Scientists from different fields warn…
Microbiome Data Science: Understanding Our Microbial Planet.
Kyrpides, Nikos C; Eloe-Fadrosh, Emiley A; Ivanova, Natalia N
2016-06-01
Microbiology is experiencing a revolution brought on by recent developments in sequencing technology. The unprecedented volume of microbiome data being generated poses significant challenges that are currently hindering progress in the field. Here, we outline the major bottlenecks and propose a vision to advance microbiome research as a data-driven science. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Hashim, Khairuddin; Kutbi, Ibrahim
2017-01-01
Significant changes are driving the wheels of progress. In the context of higher education, developments in technology and globalization have made a profound impact. There is need for universities to take stock of developments to plan with realistic goals so as not to be left behind in a highly competitive globalized environment. With rapid…
EDIN-USVI Clean Energy Quarterly: Volume 1, Issue 3, September 2011 (Newsletter)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2011-09-01
This quarterly newsletter provides timely news and information about the plans and progress of the Energy Development in Island Nations-U.S. Virgin Islands pilot project, including significant events and milestones, work undertaken by each of the five working groups, and project-related renewable energy and energy efficiency educational outreach and technology deployment efforts.
The State of ICT Education in China: A Literature Review
ERIC Educational Resources Information Center
Zhao, Jianhua; Xu, Fuyin
2010-01-01
Information and Communication Technology (ICT) in education has made significant progress in China in the last two decades and this paper provides an overall presentation of its prevalence and usage. In this paper, a literature review has been conducted based on the research in the field of ICT in education. Eleven major issues have been…
Hu, Jiangfeng; Wang, Zhao; Lian, Yuehan; Huang, Qinghua
2018-01-01
This study examines the spillover effects of foreign direct investment (FDI) on green technology progress rate (as measured by the green total factor productivity). The analysis utilizes two measures of FDI, labor-based FDI and capital-based FDI, and separately investigates four sets of industry classifications—high/low discharge regulation and high/low emission standard regulation. The results indicate that in the low discharge regulation and low emission standard regulation industry, labor-based FDI has a significant negative spillover effect, and capital-based FDI has a significant positive spillover effect. However, in the high-intensity environmental regulation industry, the negative influence of labor-based FDI is completely restrained, and capital-based FDI continues to play a significant positive green technological spillover effects. These findings have clear policy implications: the government should be gradually reducing the labor-based FDI inflow or increasing stringency of environmental regulation in order to reduce or eliminate the negative spillover effect of the labor-based FDI. PMID:29382112
Space Weather Forecasting: An Enigma
NASA Astrophysics Data System (ADS)
Sojka, J. J.
2012-12-01
The space age began in earnest on October 4, 1957 with the launch of Sputnik 1 and was fuelled for over a decade by very strong national societal concerns. Prior to this single event the adverse effects of space weather had been registered on telegraph lines as well as interference on early WWII radar systems, while for countless eons the beauty of space weather as mid-latitude auroral displays were much appreciated. These prior space weather impacts were in themselves only a low-level science puzzle pursued by a few dedicated researchers. The technology boost and innovation that the post Sputnik era generated has almost single handedly defined our present day societal technology infrastructure. During the decade following Neil's walk on the moon on July 21, 1969 an international thrust to understand the science of space, and its weather, was in progress. However, the search for scientific understand was parsed into independent "stove pipe" categories: The ionosphere-aeronomy, the magnetosphere, the heliosphere-sun. The present day scientific infrastructure of funding agencies, learned societies, and international organizations are still hampered by these 1960's logical divisions which today are outdated in the pursuit of understanding space weather. As this era of intensive and well funded scientific research progressed so did societies innovative uses for space technologies and space "spin-offs". Well over a decade ago leaders in technology, science, and the military realized that there was indeed an adverse side to space weather that with each passing year became more severe. In 1994 several U.S. agencies established the National Space Weather Program (NSWP) to focus scientific attention on the system wide issue of the adverse effects of space weather on society and its technologies. Indeed for the past two decades a significant fraction of the scientific community has actively engaged in understanding space weather and hence crossing the "stove-pipe" disciplines. The perceived progress in space weather understanding differs significantly depending upon which community (scientific, technology, forecaster, society) is addressing the question. Even more divergent are these thoughts when the question is how valuable is the scientific capability of forecasting space weather. This talk will discuss present day as well as future potential for forecasting space weather for a few selected examples. The author will attempt to straddle the divergent community opinions.
Biomedical Applications of Enzymes From Marine Actinobacteria.
Kamala, K; Sivaperumal, P
Marine microbial enzyme technologies have progressed significantly in the last few decades for different applications. Among the various microorganisms, marine actinobacterial enzymes have significant active properties, which could allow them to be biocatalysts with tremendous bioactive metabolites. Moreover, marine actinobacteria have been considered as biofactories, since their enzymes fulfill biomedical and industrial needs. In this chapter, the marine actinobacteria and their enzymes' uses in biological activities and biomedical applications are described. © 2017 Elsevier Inc. All rights reserved.
Adult Neurogenesis in the Mammalian Brain: Significant Answers and Significant Questions
Ming, Guo-li; Song, Hongjun
2011-01-01
Summary Adult neurogenesis, a process of generating functional neurons from adult neural precursors, occurs throughout life in restricted brain regions in mammals. The past decade has witnessed tremendous progress in addressing questions related to almost every aspect of adult neurogenesis in the mammalian brain. Here we review major advances in our understanding of adult mammalian neurogenesis in the dentate gyrus of the hippocampus and from the subventricular zone of the lateral ventricle, the rostral migratory stream to the olfactory bulb. We highlight emerging principles that have significant implications for stem cell biology, developmental neurobiology, neural plasticity, and disease mechanisms. We also discuss remaining questions related to adult neural stem cells and their niches, underlying regulatory mechanisms and potential functions of newborn neurons in the adult brain. Building upon the recent progress and aided by new technologies, the adult neurogenesis field is poised to leap forward in the next decade. PMID:21609825
The Burn Wound Microenvironment
Rose, Lloyd F.; Chan, Rodney K.
2016-01-01
Significance: While the survival rate of the severely burned patient has improved significantly, relatively little progress has been made in treatment or prevention of burn-induced long-term sequelae, such as contraction and fibrosis. Recent Advances: Our knowledge of the molecular pathways involved in burn wounds has increased dramatically, and technological advances now allow large-scale genomic studies, providing a global view of wound healing processes. Critical Issues: Translating findings from a large number of in vitro and preclinical animal studies into clinical practice represents a gap in our understanding, and the failures of a number of clinical trials suggest that targeting single pathways or cytokines may not be the best approach. Significant opportunities for improvement exist. Future Directions: Study of the underlying molecular influences of burn wound healing progression will undoubtedly continue as an active research focus. Increasing our knowledge of these processes will identify additional therapeutic targets, supporting informed clinical studies that translate into clinical relevance and practice. PMID:26989577
NASA Technical Reports Server (NTRS)
Envia, Edmane; Thomas, Russell
2007-01-01
As part of the Fundamental Aeronautics Program Annual Review, a summary of the progress made in 2007 in acoustics research under the Subsonic Fixed Wing project is given. The presentation describes highlights from in-house and external activities including partnerships and NRA-funded research with industry and academia. Brief progress reports from all acoustics Phase 1 NRAs are also included as are outlines of the planned activities for 2008 and all Phase 2 NRAs. N+1 and N+2 technology paths outlined for Subsonic Fixed Wing noise targets. NRA Round 1 progressing with focus on prediction method advancement. NRA Round 2 initiating work focused on N+2 technology, prediction methods, and validation. Excellent partnerships in progress supporting N+1 technology targets and providing key data sets.
Enabling technologies built on a sonochemical platform: challenges and opportunities.
Cintas, Pedro; Tagliapietra, Silvia; Caporaso, Marina; Tabasso, Silvia; Cravotto, Giancarlo
2015-07-01
Scientific and technological progress now occurs at the interface between two or more scientific and technical disciplines while chemistry is intertwined with almost all scientific domains. Complementary and synergistic effects have been found in the overlay between sonochemistry and other enabling technologies such as mechanochemistry, microwave chemistry and flow-chemistry. Although their nature and effects are intrinsically different, these techniques share the ability to significantly activate most chemical processes and peculiar phenomena. These studies offer a comprehensive overview of sonochemistry, provide a better understanding of correlated phenomena (mechanochemical effects, hot spots, etc.), and pave the way for emerging applications which unite hybrid reactors. Copyright © 2014 Elsevier B.V. All rights reserved.
Appropriate Technology for an Aging Society. Critical Debates in an Aging Society Report 1.
ERIC Educational Resources Information Center
American Society on Aging, San Francisco, CA.
Despite a real sense of need, the development and application of technology for the elderly has progressed very slowly. This report explores reasons for this slow progress; examines how the process can be moved along; looks at what must be known about aging and the future to assure appropriate technological application; considers how to translate…
NBIC-Convergence of Machinery and Basic Technologies as the Ecological Factor of Wellbeing
NASA Astrophysics Data System (ADS)
Zhironkin, S. A.; Kolotov, K. A.; Genin, A. E.; Agafonov, F. V.; Kovalevsky, S. A.
2017-01-01
The development of science and technology in the XXI century is on the way of the extensive use of natural resources. As a result, the scientific and technical progress does not initiate the reduction of environmental damage but encourages its cumulative growth. So the environmental problems have become a serious threat to social wellbeing of all mankind. The development of the core technologies doesn’t allow creating the situation in which the new knowledge would generate positive changes in the environment. Therefore, among the issues that define the future of advanced environmental technologies, and potentially significant for the understanding of the humanities, there is the phenomenon of technological convergence and, in particular, the predicted convergence of the nano-, bio-, information and cognitive technologies (NBIC). The consequence of NBIC-convergence may be the transformation of the humanity into a single global mind, which can be linked into a solid set of technologies, establishing united standards for social wellbeing and environmental technologies.
[Scientific significance and prospective application of digitized virtual human].
Zhong, Shi-zhen
2003-03-01
As a cutting-edge research project, digitization of human anatomical information combines conventional medicine with information technology, computer technology, and virtual reality technology. Recent years have seen the establishment of, or the ongoing effort to establish various virtual human models in many countries, on the basis of continuous sections of human body that are digitized by means of computational medicine incorporating information technology to quantitatively simulate human physiological and pathological conditions, and to provide wide prospective applications in the fields of medicine and other disciplines. This article addresses 4 issues concerning the progress in virtual human model researches as the following: (1) Worldwide survey of sectioning and modeling of visible human. American visible human database was completed in 1994, which contains both a male and a female datasets, and has found wide application internationally. South Korea also finished the data collection for a male visible Korean human dataset in 2000. (2) Application of the dataset of Visible Human Project (VHP). This dataset has yielded plentiful fruits in medical education and clinical research, and further plans are proposed and practiced to construct a Physical Human and Physiological Human . (3) Scientific significance and prospect of virtual human studies. Digitized human dataset may eventually contribute to the development of many new high-tech industries. (4) Progress of virtual Chinese human project. The 174th session of Xiangshang Science Conferences held in 2001 marked the initiation of digitized virtual human project in China, and some key techniques have been explored. By now the data-collection process for 4 Chinese virtual human datasets have been successfully completed.
Recent insights into cutaneous immunization: How to vaccinate via the skin.
Engelke, Laura; Winter, Gerhard; Hook, Sarah; Engert, Julia
2015-09-08
Technologies and strategies for cutaneous vaccination have been evolving significantly during the past decades. Today, there is evidence for increased efficacy of cutaneously delivered vaccines allowing for dose reduction and providing a minimally invasive alternative to traditional vaccination. Considerable progress has been made within the field of well-established cutaneous vaccination strategies: Jet and powder injection technologies, microneedles, microporation technologies, electroporation, sonoporation, and also transdermal and transfollicular vaccine delivery. Due to recent advances, the use of cutaneous vaccination can be expanded from prophylactic vaccination for infectious diseases into therapeutic vaccination for both infectious and non-infectious chronic conditions. This review will provide an insight into immunological processes occurring in the skin and introduce the key innovations of cutaneous vaccination technologies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wang, X-Y; He, J; Yang, K; Liang, S
2016-01-01
Schistosomiasis, as the important parasitic disease, has caused serious threats to human health globally. The People's Republic of China has acquired significant achievements based on large-scale interventions and innovational technology. The spatial technology was introduced in 1980s and widely used in the study and control of schistosomiasis in The People's Republic of China. This chapter reviews the progress and application of spatial technology in schistosomiasis control by analysing the spatiotemporal pattern of and the impact of ecological changes on schistosomiasis transmission, which have provided the information to design and select the control strategy, and assisted the establishment of the monitoring and early warning system in The People's Republic of China, especially in the marshland and mountainous regions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Masic, Izet; Begic, Edin
2015-04-01
Information Technologies, taking slow steps, have found its application in the teaching process of Faculty of Medicine, University of Sarajevo. Online availability of the teaching content is mainly intended for users of the Bologna process. The aim was to present the level of use of information technologies at the Faculty of Medicine, University of Sarajevo, comparing two systems, old system and the Bologna process, and to present new ways of improving the teaching process, using information technology. The study included the period from 2012 to 2014, and included 365 students from the old system and the Bologna Process. Study had prospective character. Students of the old system are older than students of the Bologna process. In both systems higher number of female students is significantly present. All students have their own computers, usually using the Office software package and web browsers. Visits of social networks were the most common reason for which they used computers. On question if they know to work with databases, 14.6% of students of the old system responded positively and 26.2% of students of the Bologna process answered the same. Students feel that working with databases is necessary to work in primary health care. On the question of the degree of computerization at the university, there were significant differences between the two systems (p <0.05). When asked about the possibility of using computers at school, there were no significant differences between the two systems. There has been progress of that opportunity from year to year. Students of Bologna process were more interested in the introduction of information technology, than students of old system. 68.7% of students of the Bologna process of generation 2013-2014, and 71.3% of generation 2014-2015, believed that the subject of Medical Informatics, the same or similar name, should be included in the new reform teaching process of the Faculty of Medicine, University of Sarajevo. Information technologies can help the development of the teaching process, and represent attractive and accessible tool in the process of modernization and progress.
Progress towards autonomous, intelligent systems
NASA Technical Reports Server (NTRS)
Lum, Henry; Heer, Ewald
1987-01-01
An aggressive program has been initiated to develop, integrate, and implement autonomous systems technologies starting with today's expert systems and evolving to autonomous, intelligent systems by the end of the 1990s. This program includes core technology developments and demonstration projects for technology evaluation and validation. This paper discusses key operational frameworks in the content of systems autonomy applications and then identifies major technological challenges, primarily in artificial intelligence areas. Program content and progress made towards critical technologies and demonstrations that have been initiated to achieve the required future capabilities in the year 2000 era are discussed.
1996 Laboratory directed research and development annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyers, C.E.; Harvey, C.L.; Lopez-Andreas, L.M.
This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1996. In addition to a programmatic and financial overview, the report includes progress reports from 259 individual R&D projects in seventeen categories. The general areas of research include: engineered processes and materials; computational and information sciences; microelectronics and photonics; engineering sciences; pulsed power; advanced manufacturing technologies; biomedical engineering; energy and environmental science and technology; advanced information technologies; counterproliferation; advanced transportation; national security technology; electronics technologies; idea exploration and exploitation; production; and science at the interfaces - engineering with atoms.
Advancing automation and robotics technology for the Space Station Freedom and for the U.S. Economy
NASA Technical Reports Server (NTRS)
1991-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on Space Station Freedom. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the thirteenth in a series of progress updates and covers the period between 14 Feb. - 15 Aug. 1991. The progress made by Levels 1, 2, and 3 of the Space Station Freedom in developing and applying advanced automation and robotics technology is described. Emphasis was placed upon the Space Station Freedom Program responses to specific recommendations made in ATAC Progress Report 12, and issues of A&R implementation into Ground Mission Operations and A&R enhancement of science productivity. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for Space Station Freedom.
Advancing automation and robotics technology for the Space Station Freedom and for the U.S. economy
NASA Technical Reports Server (NTRS)
1993-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on Space Station Freedom. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the sixteenth in a series of progress updates and covers the period between 15 Sep. 1992 - 16 Mar. 1993. The report describes the progress made by Levels 1, 2, and 3 of the Space Station Freedom in developing and applying advanced automation and robotics technology. Emphasis was placed upon the Space Station Freedom Program responses to specific recommendations made in ATAC Progress Report 15; and includes a status review of Space Station Freedom Launch Processing facilities at Kennedy Space Center. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for Space Station Freedom.
Advancing automation and robotics technology for the space station and for the US economy
NASA Technical Reports Server (NTRS)
Nunamaker, Robert
1988-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Space Station. This material was documented in the initial report (NASA Technical Memo 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the sixth in a series of progress updates and covers the period between October 1, 1987 and March 1, 1988. NASA has accepted the basic recommendations of ATAC for its Space Station efforts. ATAC and NASA agree that the thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station program and serve as a highly visible stimulator affecting the U.S. long-term economy. The progress report identifies the work of NASA and the Space Station study contractors, research in progress, and issues connected with the advancement of automation and robotics technology on the Space Station.
Advancing automation and robotics technology for the space station and for the US economy
NASA Technical Reports Server (NTRS)
1986-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Space Station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the Law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the second in a series of progress updates and covers the period between October 4, 1985, and March 31, l986. NASA has accepted the basic recommendations of ATAC for its Space Station efforts. ATAC and NASA agree that thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station Program and serve as a highly visible stimulator effecting the U.S. long-term economy. The progress report identifies the work of NASA and the Space Station study contractors, research in progress, and issues connected with the advancement of automation and robotics technology on the Space Station.
Research progress of free space coherent optical communication
NASA Astrophysics Data System (ADS)
Tan, Zhenkun; Ke, Xizheng
2018-02-01
This paper mainly introduces the research progress of free space coherent optical communication in Xi'an University of Technology. In recent years, the research on the outer modulation technology of the laser, free-space-to-fiber coupling technique, the design of transmitting and receiving optical antenna, adaptive optical technology with or without wave-front sensor, automatic polarization control technology, frequency stabilization technology, heterodyne detection technology and high speed signal processing technology. Based on the above related research, the digital signal modulation, transmission, detection and data recovery are realized by the heterodyne detection technology in the free space optical communication system, and finally the function of smooth viewing high-definition video is realized.
Environmental assessment for the Processing and Environmental Technology Laboratory (PETL)
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-09-01
The U.S. Department of Energy (DOE) has prepared an environmental assessment (EA) on the proposed Processing and Environmental Technology Laboratory (PETC) at Sandia National Laboratories/New Mexico (SNL/NM). This facility is needed to integrate, consolidate, and enhance the materials science and materials process research and development (R&D) currently in progress at SNL/NM. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an environmental impact statement is not required, andmore » DOE is issuing this Finding of No Significant Impact (FONSI).« less
Flight Dynamics and GN&C for Spacecraft Servicing Missions
NASA Technical Reports Server (NTRS)
Naasz, Bo; Zimpfer, Doug; Barrington, Ray; Mulder, Tom
2010-01-01
Future human exploration missions and commercial opportunities will be enabled through In-space assembly and satellite servicing. Several recent efforts have developed technologies and capabilities to support these exciting future missions, including advances in flight dynamics and Guidance, Navigation and Control. The Space Shuttle has demonstrated significant capabilities for crewed servicing of the Hubble Space Telescope (HST) and assembly of the International Space Station (ISS). Following the Columbia disaster NASA made significant progress in developing a robotic mission to service the HST. The DARPA Orbital Express mission demonstrated automated rendezvous and capture, In-space propellant transfer, and commodity replacement. This paper will provide a summary of the recent technology developments and lessons learned, and provide a focus for potential future missions.
Biomarkers to guide clinical therapeutics in rheumatology?
Robinson, William H; Mao, Rong
2016-03-01
The use of biomarkers in rheumatology can help identify disease risk, improve diagnosis and prognosis, target therapy, assess response to treatment, and further our understanding of the underlying pathogenesis of disease. Here, we discuss the recent advances in biomarkers for rheumatic disorders, existing impediments to progress in this field, and the potential of biomarkers to enable precision medicine and thereby transform rheumatology. Although significant challenges remain, progress continues to be made in biomarker discovery and development for rheumatic diseases. The use of next-generation technologies, including large-scale sequencing, proteomic technologies, metabolomic technologies, mass cytometry, and other single-cell analysis and multianalyte analysis technologies, has yielded a slew of new candidate biomarkers. Nevertheless, these biomarkers still require rigorous validation and have yet to make their way into clinical practice and therapeutic development. This review focuses on advances in the biomarker field in the last 12 months as well as the challenges that remain. Better biomarkers, ideally mechanistic ones, are needed to guide clinical decision making in rheumatology. Although the use of next-generation techniques for biomarker discovery is making headway, it is imperative that the roadblocks in our search for new biomarkers are overcome to enable identification of biomarkers with greater diagnostic and predictive utility. Identification of biomarkers with robust diagnostic and predictive utility would enable precision medicine in rheumatology.
Zhang, Cathy; Yan, Zhengming; Arango, Maria E; Painter, Cory L; Anderes, Kenna
2009-01-01
Tumors grafted s.c. or under the mammary fat pad (MFP) rarely develop efficient metastasis. By applying bioluminescence imaging (BLI) technology, the MDA-MB-435-HAL-Luc subrenal capsule (SRC) model was compared with the MFP model for disease progression, metastatic potential, and response to therapy. The luciferase-expressing MDA-MB-435-HAL-Luc cell line was used in both MFP and SRC models. BLI technology allowed longitudinal assessment of disease progression and the therapeutic response to PD-0332991, Avastin, and docetaxel. Immunohistochemical analysis of Ki67 and CD31 staining in the primary tumors was compared in these models. Caliper measurement was used in the MFP model to validate the BLI quantification of primary tumors. The primary tumors in MDA-MB-435-HAL-Luc MFP and SRC models displayed comparable growth rates and vascularity. However, tumor-bearing mice in the SRC model developed lung metastases much earlier (4 weeks) than in the MFP model (>7 weeks), and the metastatic progression contributed significantly to the survival time. In the MFP model, BLI and caliper measurements were comparable for quantifying palpable tumors, but BLI offered an advantage for detecting the primary tumors that fell below a palpable threshold and for visualizing metastases. In the SRC model, BLI allowed longitudinal assessment of the antitumor and antimetastatic effects of PD-0332991, Avastin, and docetaxel, and the results correlated with the survival benefits of these agents. The MDA-MB-435-HAL-Luc SRC model and the MFP model displayed differences in disease progression. BLI is an innovative approach for developing animal models and creates opportunities for improving preclinical evaluations of anticancer agents.
Active assistance technology for health-related behavior change: an interdisciplinary review.
Kennedy, Catriona M; Powell, John; Payne, Thomas H; Ainsworth, John; Boyd, Alan; Buchan, Iain
2012-06-14
Information technology can help individuals to change their health behaviors. This is due to its potential for dynamic and unbiased information processing enabling users to monitor their own progress and be informed about risks and opportunities specific to evolving contexts and motivations. However, in many behavior change interventions, information technology is underused by treating it as a passive medium focused on efficient transmission of information and a positive user experience. To conduct an interdisciplinary literature review to determine the extent to which the active technological capabilities of dynamic and adaptive information processing are being applied in behavior change interventions and to identify their role in these interventions. We defined key categories of active technology such as semantic information processing, pattern recognition, and adaptation. We conducted the literature search using keywords derived from the categories and included studies that indicated a significant role for an active technology in health-related behavior change. In the data extraction, we looked specifically for the following technology roles: (1) dynamic adaptive tailoring of messages depending on context, (2) interactive education, (3) support for client self-monitoring of behavior change progress, and (4) novel ways in which interventions are grounded in behavior change theories using active technology. The search returned 228 potentially relevant articles, of which 41 satisfied the inclusion criteria. We found that significant research was focused on dialog systems, embodied conversational agents, and activity recognition. The most covered health topic was physical activity. The majority of the studies were early-stage research. Only 6 were randomized controlled trials, of which 4 were positive for behavior change and 5 were positive for acceptability. Empathy and relational behavior were significant research themes in dialog systems for behavior change, with many pilot studies showing a preference for those features. We found few studies that focused on interactive education (3 studies) and self-monitoring (2 studies). Some recent research is emerging in dynamic tailoring (15 studies) and theoretically grounded ontologies for automated semantic processing (4 studies). The potential capabilities and risks of active assistance technologies are not being fully explored in most current behavior change research. Designers of health behavior interventions need to consider the relevant informatics methods and algorithms more fully. There is also a need to analyze the possibilities that can result from interaction between different technology components. This requires deep interdisciplinary collaboration, for example, between health psychology, computer science, health informatics, cognitive science, and educational methodology.
Active Assistance Technology for Health-Related Behavior Change: An Interdisciplinary Review
Kennedy, Catriona M; Powell, John; Payne, Thomas H; Ainsworth, John; Boyd, Alan
2012-01-01
Background Information technology can help individuals to change their health behaviors. This is due to its potential for dynamic and unbiased information processing enabling users to monitor their own progress and be informed about risks and opportunities specific to evolving contexts and motivations. However, in many behavior change interventions, information technology is underused by treating it as a passive medium focused on efficient transmission of information and a positive user experience. Objective To conduct an interdisciplinary literature review to determine the extent to which the active technological capabilities of dynamic and adaptive information processing are being applied in behavior change interventions and to identify their role in these interventions. Methods We defined key categories of active technology such as semantic information processing, pattern recognition, and adaptation. We conducted the literature search using keywords derived from the categories and included studies that indicated a significant role for an active technology in health-related behavior change. In the data extraction, we looked specifically for the following technology roles: (1) dynamic adaptive tailoring of messages depending on context, (2) interactive education, (3) support for client self-monitoring of behavior change progress, and (4) novel ways in which interventions are grounded in behavior change theories using active technology. Results The search returned 228 potentially relevant articles, of which 41 satisfied the inclusion criteria. We found that significant research was focused on dialog systems, embodied conversational agents, and activity recognition. The most covered health topic was physical activity. The majority of the studies were early-stage research. Only 6 were randomized controlled trials, of which 4 were positive for behavior change and 5 were positive for acceptability. Empathy and relational behavior were significant research themes in dialog systems for behavior change, with many pilot studies showing a preference for those features. We found few studies that focused on interactive education (3 studies) and self-monitoring (2 studies). Some recent research is emerging in dynamic tailoring (15 studies) and theoretically grounded ontologies for automated semantic processing (4 studies). Conclusions The potential capabilities and risks of active assistance technologies are not being fully explored in most current behavior change research. Designers of health behavior interventions need to consider the relevant informatics methods and algorithms more fully. There is also a need to analyze the possibilities that can result from interaction between different technology components. This requires deep interdisciplinary collaboration, for example, between health psychology, computer science, health informatics, cognitive science, and educational methodology. PMID:22698679
Towards testing quantum physics in deep space
NASA Astrophysics Data System (ADS)
Kaltenbaek, Rainer
2016-07-01
MAQRO is a proposal for a medium-sized space mission to use the unique environment of deep space in combination with novel developments in space technology and quantum technology to test the foundations of physics. The goal is to perform matter-wave interferometry with dielectric particles of up to 10^{11} atomic mass units and testing for deviations from the predictions of quantum theory. Novel techniques from quantum optomechanics with optically trapped particles are to be used for preparing the test particles for these experiments. The core elements of the instrument are placed outside the spacecraft and insulated from the hot spacecraft via multiple thermal shields allowing to achieve cryogenic temperatures via passive cooling and ultra-high vacuum levels by venting to deep space. In combination with low force-noise microthrusters and inertial sensors, this allows realizing an environment well suited for long coherence times of macroscopic quantum superpositions and long integration times. Since the original proposal in 2010, significant progress has been made in terms of technology development and in refining the instrument design. Based on these new developments, we submitted/will submit updated versions of the MAQRO proposal in 2015 and 2016 in response to Cosmic-Vision calls of ESA for a medium-sized mission. A central goal has been to address and overcome potentially critical issues regarding the readiness of core technologies and to provide realistic concepts for further technology development. We present the progress on the road towards realizing this ground-breaking mission harnessing deep space in novel ways for testing the foundations of physics, a technology pathfinder for macroscopic quantum technology and quantum optomechanics in space.
Litchfield, John H
2014-01-01
In this review, I cover my professional experiences in food science and technology and related areas of applied and industrial microbiology over the span of my career. It emphasizes opportunities and technological problems that I encountered together with my progress in follow-up development of products and processes.
15 CFR 255.5 - Progress reports.
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE FELLOWSHIPS AND RESEARCH ASSOCIATES FELLOWSHIPS IN LABORATORY STANDARDIZATION AND TESTING FOR QUALIFIED CITIZENS OF OTHER AMERICAN REPUBLICS § 255.5 Progress... & Technology may determine. [13 FR 8374, Dec. 28, 1948, as amended at 55 FR 38316, Sept. 18, 1990] ...
15 CFR 255.5 - Progress reports.
Code of Federal Regulations, 2011 CFR
2011-01-01
... STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE FELLOWSHIPS AND RESEARCH ASSOCIATES FELLOWSHIPS IN LABORATORY STANDARDIZATION AND TESTING FOR QUALIFIED CITIZENS OF OTHER AMERICAN REPUBLICS § 255.5 Progress... & Technology may determine. [13 FR 8374, Dec. 28, 1948, as amended at 55 FR 38316, Sept. 18, 1990] ...
15 CFR 255.5 - Progress reports.
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE FELLOWSHIPS AND RESEARCH ASSOCIATES FELLOWSHIPS IN LABORATORY STANDARDIZATION AND TESTING FOR QUALIFIED CITIZENS OF OTHER AMERICAN REPUBLICS § 255.5 Progress... & Technology may determine. [13 FR 8374, Dec. 28, 1948, as amended at 55 FR 38316, Sept. 18, 1990] ...
15 CFR 255.5 - Progress reports.
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE FELLOWSHIPS AND RESEARCH ASSOCIATES FELLOWSHIPS IN LABORATORY STANDARDIZATION AND TESTING FOR QUALIFIED CITIZENS OF OTHER AMERICAN REPUBLICS § 255.5 Progress... & Technology may determine. [13 FR 8374, Dec. 28, 1948, as amended at 55 FR 38316, Sept. 18, 1990] ...
15 CFR 255.5 - Progress reports.
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE FELLOWSHIPS AND RESEARCH ASSOCIATES FELLOWSHIPS IN LABORATORY STANDARDIZATION AND TESTING FOR QUALIFIED CITIZENS OF OTHER AMERICAN REPUBLICS § 255.5 Progress... & Technology may determine. [13 FR 8374, Dec. 28, 1948, as amended at 55 FR 38316, Sept. 18, 1990] ...
The application of natural language processing to augmentative and alternative communication.
Higginbotham, D Jeffery; Lesher, Gregory W; Moulton, Bryan J; Roark, Brian
2011-01-01
Significant progress has been made in the application of natural language processing (NLP) to augmentative and alternative communication (AAC), particularly in the areas of interface design and word prediction. This article will survey the current state-of-the-science of NLP in AAC and discuss its future applications for the development of next generation of AAC technology.
ERIC Educational Resources Information Center
Ohio Board of Regents, Columbus.
Based on a study of the need for, and alternatives to, significant expansion of space for state college and university libraries, this report discusses the resultant recommendations, which address both the long term and the immediate space needs of the state's academic libraries. Following a description of the role of academic libraries and a…
Piezoelectric Energy Harvesting: A Green and Clean Alternative for Sustained Power Production
ERIC Educational Resources Information Center
Cook-Chennault, Kimberly Ann; Thambi, Nithya; Bitetto, Mary Anne; Hameyie, E. B.
2008-01-01
Providing efficient and clean power is a challenge for devices that range from the micro to macro in scale. Although there has been significant progress in the development of micro-, meso-, and macro-scale power supplies and technologies, realization of many devices is limited by the inability of power supplies to scale with the diminishing sizes…
Atmosphere Resource Recovery and Environmental Monitoring Trace Contaminant Control Through FY 2012
NASA Technical Reports Server (NTRS)
Perry, J. L.; Pruitt, M. W.; Wheeler, R. M.; Monje, O.
2013-01-01
Trace contaminant control has been a concern of spacecraft designers and operators from early in the progression of manned spaceflight. Significant technological advancement has occurred since the first designs were implemented in the 1960s, culminating in the trace contaminant control system currently in use aboard the International Space Station as part of the atmosphere revitalization system.
Female STEM majors wanted: The impact of certain factors on choice of a college major
NASA Astrophysics Data System (ADS)
Conrad, Walter Michael
Although females have made significant strides in educational achievements and substantial inroads into academic majors, such as business and medicine, they have made considerably less progress in the science, technology, engineering, and math (STEM) fields. This translates into a smaller number of female graduates prepared to work in the science career fields and results in American industry looking to other countries for its educated workforce. A mixed-methods research design was used to explore and understand the lived experiences and perceptions of faculty members and working STEM professionals in Northern and Central Virginia. Results indicated that although females are attaining STEM degrees and entering STEM fields in record numbers, obstacles such as a challenging STEM curriculum, bias, feelings of insecurity, lack of female role models, and inadequate preparation for the STEM workforce could impede the progress females have made. This research makes recommendations to the academic community and industry which may be used as retention and recruitment strategies for females considering a career in STEM. The ultimate goal is to significantly increase the number of highly skilled female graduates entering STEM fields, leading the U.S. to regain its previous position atop the world in technological innovation and leadership.
Aeropropulsion 1987. Session 5: Subsonic Propulsion Technology
NASA Technical Reports Server (NTRS)
1987-01-01
NASA is conducting aeropropulsion research over a broad range of Mach numbers. In addition to the high-speed propulsion research described, major progress was recorded in research aimed at the subsonic flight regimes of interest to many commercial and military users. Recent progress and future directions in such areas as small engine technology, rotorcraft transmissions, icing, Hot Section Technology (HOST) and the Advanced Turboprop Program (ATP) are covered.
Aeropropulsion '87. Session 5: Subsonic propulsion technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-11-01
NASA is conducting aeropropulsion research over a broad range of Mach numbers. In addition to the high-speed propulsion research described, major progress was recorded in research aimed at the subsonic flight regimes of interest to many commercial and military users. Recent progress and future directions in such areas as small engine technology, rotorcraft transmissions, icing, Hot Section Technology (HOST) and the Advanced Turboprop Program (ATP) are covered.
Analysis of the BEV Technology Progress of America, Europe, Japan and Korea Based on Patent Map
NASA Astrophysics Data System (ADS)
Yurong, Huang; Yuanyuan, Hou; Jingyan, Zhou; Ru, Liu
2018-02-01
The paper analyzed the Battery Electric Vehicle patent application trend, major country distribution, main technology layout and patentee of America, Europe, Japan and Korea based on patent information from 2006 to 2016 by using patent map method, and visualized the Battery Electric Vehicle technology progress conditions of the four countries and regions in the last decade.
Kaakinen, Pirjo; Kyngäs, Helvi; Kääriäinen, Maria
2018-03-01
The number of overweight and obese children and adolescents has increased worldwide. Obese children and adolescents need counseling interventions, including technology-based methods, to help them manage their weight by changing their lifestyles. To describe technology-based counseling interventions in supporting obese or overweight children and adolescents to change their weight/lifestyle. Descriptive systematic literature review. A literature search was conducted using Cinahl, Medline, PsycINFO, and Medic databases in September 2010 and updated in January 2015. Predefined inclusion criteria were used for the search. After a quality assessment, 28 studies were included in the data extraction. No statistically significant difference in BMI was detected between the intervention and control groups. However, in some studies, it was found that BMI decreases and there were statistically significant differences in fruit and vegetable consumption. In two studies, differences in physical activity were detected between the intervention and control groups, but in eight studies, the difference was not significant. Goal setting and feedback on progress support physical activity and changes in diet. This study identifies available technology interventions for obese or overweight children and adolescents. It seems that using technology-based counseling intervention may encourage obese and overweight children and adolescents to pursue a healthier lifestyle.
Successful Web Learning Environments: New Design Guidelines.
ERIC Educational Resources Information Center
Martinez, Margaret
The Web offers the perfect technology and environment for precision learning because learners can be uniquely identified, relevant content can be specifically personalized, and subsequent response and progress can be monitored, supported, and assessed. Technologically, researchers are making rapid progress realizing the personalized learning dream…
Emerging technologies in point-of-care molecular diagnostics for resource-limited settings.
Peeling, Rosanna W; McNerney, Ruth
2014-06-01
Emerging molecular technologies to diagnose infectious diseases at the point at which care is delivered have the potential to save many lives in developing countries where access to laboratories is poor. Molecular tests are needed to improve the specificity of syndromic management, monitor progress towards disease elimination and screen for asymptomatic infections with the goal of interrupting disease transmission and preventing long-term sequelae. In simplifying laboratory-based molecular assays for use at point-of-care, there are inevitable compromises between cost, ease of use and test performance. Despite significant technological advances, many challenges remain for the development of molecular diagnostics for resource-limited settings. There needs to be more advocacy for these technologies to be applied to infectious diseases, increased efforts to lower the barriers to market entry through streamlined and harmonized regulatory approaches, faster policy development for adoption of new technologies and novel financing mechanisms to enable countries to scale up implementation.
FMC/TFM experimental comparisons
NASA Astrophysics Data System (ADS)
Spencer, Roger; Sunderman, Ruth; Todorov, Evgueni
2018-04-01
Ultrasonic full matrix capture/total focusing method (FMC/TFM) technology has progressed significantly over the past few years and has seen increased use in industry. The technology has the potential to provide better detection and measurement capabilities for weld flaws, as well as, many other applications including additive manufacturing. This project looked at the effectiveness of FMC/TFM for detection and sizing of both planar and volumetric flaw types. FMC/TFM experimental data was collected and processed using multiple combinations of probe types and wave propagation modes. The data was then compared to typical ultrasonic phased-array results, as well as FMC/TFM inspection simulations.
Engineering education in Bangladesh - an indicator of economic development
NASA Astrophysics Data System (ADS)
Chowdhury, Harun; Alam, Firoz
2012-05-01
Developing nations including Bangladesh are significantly lagging behind the millennium development target due to the lack of science, technology and engineering education. Bangladesh as a least developing country has only 44 engineers per million people. Its technological education and gross domestic product growth are not collinear. Although limited progress was made in humanities, basic sciences, agriculture and medical sciences, a vast gap is left in technical and engineering education. This paper describes the present condition of engineering education in the country and explores ways to improve engineering education in order to meet the national as well as global skills demand.
Progress in Energy Storage Technologies: Models and Methods for Policy Analysis
NASA Astrophysics Data System (ADS)
Matteson, Schuyler W.
Climate change and other sustainability challenges have led to the development of new technologies that increase energy efficiency and reduce the utilization of finite resources. To promote the adoption of technologies with social benefits, governments often enact policies that provide financial incentives at the point of purchase. In their current form, these subsidies have the potential to increase the diffusion of emerging technologies; however, accounting for technological progress can improve program success while decreasing net public investment. This research develops novel methods using experience curves for the development of more efficient subsidy policies. By providing case studies in the field of automotive energy storage technologies, this dissertation also applies the methods to show the impacts of incorporating technological progress into energy policies. Specific findings include learning-dependent tapering subsidies for electric vehicles based on the lithium-ion battery experience curve, the effects of residual learning rates in lead-acid batteries on emerging technology cost competitiveness, and a cascading diffusion assessment of plug-in hybrid electric vehicle subsidy programs. Notably, the results show that considering learning rates in policy development can save billions of dollars in public funds, while also lending insight into the decision of whether or not to subsidize a given technology.
Technological change, depletion and environmental policy in the offshore oil and gas industry
NASA Astrophysics Data System (ADS)
Managi, Shunsuke
Technological change is central to maintaining standards of living in modern economies with finite resources and increasingly stringent environmental goals. Successful environmental policies can contribute to efficiency by encouraging, rather than inhibiting, technological innovation. However, little research to date has focused on the design and implementation of environmental regulations that encourage technological progress, or in insuring productivity improvements in the face of depletion of natural resources and increasing stringency of environmental regulations. This study models and measures productivity change, with an application to offshore oil and gas production in the Gulf of Mexico using Data Envelopment Analysis. This is an important application because energy resources are central to sustaining our economy. The net effects of technological progress and depletion on productivity of offshore oil and gas production are measured using a unique field-level set of data of production from all wells in the Gulf of Mexico over the time period from 1946--1998. Results are consistent with the hypothesis that technological progress has mitigated depletion effects over the study period, but the pattern differs from the conventional wisdom for nonrenewable resource industries. The Porter Hypothesis was recast, and revised version was tested. The Porter Hypothesis states that well designed environmental regulations can potentially contribute to productive efficiency in the long run by encouraging innovation. The Porter Hypothesis was recast to include market and nonmarket outputs. Our results support the recast version of Porter hypothesis, which examine productivity of joint production of market and environmental outputs. But we find no evidence for the standard formulation of the Porter hypothesis, that increased stringency of environmental regulation lead to increased productivity of market outputs and therefore increased industry profits. The model is used to forecast market and environmental outputs under alternative policy scenarios. Reliable baseline forecast and response to different policy actions of production and pollution are critical to the formation of sound energy and environmental policy. Forecast of production and pollution until year 2050 are generated from the model. Detailed policy scenarios provide quantitative assessments of potential benefits that indicate the significance of potential benefits of technological change and well-designed environmental policy.
78 FR 43862 - Proposed Information Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-22
... proposed renewal of the Grantee Progress Report (GPR). All AmeriCorps grantees are required to complete the... provides information for CNCS staff to monitor grantee progress and to respond to requests from Congress... technological collection techniques or other forms of information technology (e.g., permitting electronic...
ERIC Educational Resources Information Center
Felix, Elliot
2011-01-01
Much progress has been made in creating informal learning spaces that incorporate technology and flexibly support a variety of activities. This progress has been principally in designing the right combination of furniture, technology, and space. However, colleges and universities do not design services within learning spaces with nearly the same…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berg, M.T.; Reed, B.E.; Gabr, M.
1993-07-01
West Virginia University (WVU) and the US DOE Morgantown Energy Technology Center (METC) entered into a Cooperative Agreement on August 29, 1992 entitled ``Decontamination Systems Information and Research Programs.`` Stipulated within the Agreement is the requirement that WVU submit to METC a series of Technical Progress Report for Year 1 of the Agreement. This report reflects the progress and/or efforts performed on the following nine technical projects encompassed by the Year 1 Agreement for the period of April 1 through June 30, 1993: Systematic assessment of the state of hazardous waste clean-up technologies; site remediation technologies -- drain-enhanced soil flushingmore » (DESF) for organic contaminants removal; site remediation technologies -- in situ bioremediation of organic contaminants; excavation systems for hazardous waste sites; chemical destruction of polychlorinated biphenyls; development of organic sensors -- monolayer and multilayer self-assembled films for chemical sensors; Winfield lock and dam remediation; Assessments of Technologies for hazardous waste site remediation -- non-treatment technologies and pilot scale test facility implementation; and remediation of hazardous sites with stream reforming.« less
Noise Reduction Technologies for Turbofan Engines
NASA Technical Reports Server (NTRS)
Huff, Dennis L.
2007-01-01
Significant progress continues to be made with noise reduction for turbofan engines. NASA has conducted and sponsored research aimed at reducing noise from commercial aircraft. Since it takes many years for technologies to be developed and implemented, it is important to have aggressive technology goals that lead the target entry into service dates. Engine noise is one of the major contributors to the overall sound levels as aircraft operate near airports. Turbofan engines are commonly used on commercial transports due to their advantage for higher performance and lower noise. The noise reduction comes from combinations of changes to the engine cycle parameters and low noise design features. In this paper, an overview of major accomplishments from recent NASA research programs for engine noise will be given.
NASA Astrophysics Data System (ADS)
Bian, Jun; Fu, Huijian; Shang, Qian; Zhou, Xiangyang; Ma, Qingguo
This paper analyzes the outstanding problems in current industrial production by reviewing the three stages of the Industrial Engineering Development. Based on investigations and interviews in enterprises, we propose the new idea of applying "computer video analysis technology" to new industrial engineering management software, and add "loose-coefficient" of the working station to this software in order to arrange scientific and humanistic production. Meanwhile, we suggest utilizing Biofeedback Technology to promote further research on "the rules of workers' physiological, psychological and emotional changes in production". This new kind of combination will push forward industrial engineering theories and benefit enterprises in progressing towards flexible social production, thus it will be of great theory innovation value, social significance and application value.
NASA Astrophysics Data System (ADS)
Du, Jian; Sheng, Wanxing; Lin, Tao; Lv, Guangxian
2018-05-01
Nowadays, the smart distribution network has made tremendous progress, and the business visualization becomes even more significant and indispensable. Based on the summarization of traditional visualization technologies and demands of smart distribution network, a panoramic visualization application is proposed in this paper. The overall architecture, integrated architecture and service architecture of panoramic visualization application is firstly presented. Then, the architecture design and main functions of panoramic visualization system are elaborated in depth. In addition, the key technologies related to the application is discussed briefly. At last, two typical visualization scenarios in smart distribution network, which are risk warning and fault self-healing, proves that the panoramic visualization application is valuable for the operation and maintenance of the distribution network.
Advanced Gasoline Turbocharged Direction Injection (GTDI) Engine Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Terrance
This program was undertaken in response to US Department of Energy Solicitation DE-FOA-0000079, resulting in a cooperative agreement with Ford and MTU to demonstrate improvement of fuel efficiency in a vehicle equipped with an advanced GTDI engine. Ford Motor Company has invested significantly in GTDI engine technology as a cost effective, high volume, fuel economy solution, marketed globally as EcoBoost technology. Ford envisions additional fuel economy improvement in the medium and long term by further advancing EcoBoost technology. The approach for the project was to engineer a comprehensive suite of gasoline engine systems technologies to achieve the project objectives, andmore » to progressively demonstrate the objectives via concept analysis / computer modeling, single-cylinder and multi-cylinder engine testing on engine dynamometer, and vehicle level testing on chassis rolls.« less
NASA Technical Reports Server (NTRS)
1989-01-01
The 9th Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from April 19 to 21, 1988. The papers and workshop summaries report remarkable progress on a wide variety of approaches in space photovoltaics, for both near and far term applications. Among the former is the recently developed high efficiency GaAs/Ge cell, which formed the focus of a workshop discussion on heteroepitaxial cells. Still aimed at the long term, but with a significant payoff in a new mission capability, are InP cells, with their potentially dramatic improvement in radiation resistance. Approaches to near term, array specific powers exceeding 130 W/kg are also reported, and advanced concentrator panel technology with the potential to achieve over 250 W/sq m is beginning to take shape.
Advancing automation and robotics technology for the space station Freedom and for the US economy
NASA Technical Reports Server (NTRS)
Creedon, Jeremiah F.
1989-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Freedom space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the eighth in a series of progress updates and covers the period between October 1, 1988, and March 31, 1989. NASA has accepted the basic recommendations of ATAC for its Space Station Freedom efforts. ATAC and NASA agree that the thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station Freedom program and serve as a highly visible stimulator, affecting the U.S. long-term economy. The progress report identifies the work of NASA and the Freedom study contractors. It also describes research in progress, and it makes assessments of the advancement of automation and robotics technology on the Freedom space station.
Advancing automation and robotics technology for the Space Station Freedom and for the US economy
NASA Technical Reports Server (NTRS)
1988-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Freedom space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the seventh in a series of progress updates and covers the period between April 1, 1988 and September 30, 1988. NASA has accepted the basic recommendations of ATAC for its Space Station Freedom efforts. ATAC and NASA agree that the thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station Freedom program and serve as a highly visible stimulator, affecting the U.S. long-term economy. The progress report identifies the work of NASA and the Freedom study contractors. It also describes research in progress, and it makes assessments of the advancement of automation and robotics technology on the Freedom space station.
NASA Technical Reports Server (NTRS)
1987-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the Law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the fourth in a series of progress updates and covers the period October 1, 1986 to May 15, 1987. NASA has accepted the basic recommendations of ATAC for its space station efforts. ATAC and NASA agree that the will of Congress is to build an advanced automation and robotics technology base that will support an evolutionary space station program and serve as a highly visible stimulator affecting the long-term U.S. economy. The progress report identifies the work of NASA and the space station study contractors, research in progress, and issues connected with the advancement of automation and robotics technology on the space station.
NASA Technical Reports Server (NTRS)
1986-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committer (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the Law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the third in a series of progress updates and covers the period between April 1, 1986 and September 30, 1986. NASA has accepted the basic recommendations of ATAC for its space station efforts. ATAC and NASA agree that the will of Congress is to build an advanced automation and robotics technology base that will support an evolutionary space station program and serve as a highly visible stimulater affecting the long-term U.S. economy. The progress report identifies the work of NASA and the space station study contractors, research in progress, and issues connected with the advancement of automation and robotics technology on the space station.
Feminist Approaches to Technology: Implications for Communications Scholarship.
ERIC Educational Resources Information Center
Rakow, Lana F.
Feminist thinkers offer new interpretations of the role of technology in social life. As society has progressed, men have become culture-centered rather than nature-centered, while women have remained nature-centered. Thus, women's devaluation resides in man's desire to control both nature and women. The values of objectivity, progress,…
NASA Astrophysics Data System (ADS)
Grace, Lori
A mixed methods comparative case study of two DRG I urban high schools was used to determine the effectiveness of the Flexible Choice Science Program (FCSP) at producing equitable learning outcomes in students. FCSP recognized both 'among and within learner' differences, while allowing the teacher the semblance of a single lesson. Program sequencing, a differentiated technology platform and allowances for student control and creativity, allowed learners to progress from novice to master at their own pace. Results showed that holistic participation in FCSP by School A students led to significant positive learning effects, particularly for low ability learners. Results of this study challenge current educational grouping techniques that have resulted in inequity, by demonstrating that when students group themselves, their success increases by more than 100%. Results of this research also challenge common notion that cognition most defines student potential by demonstrating that student affect most influences learning.
Microalgal hydrogen production - A review.
Khetkorn, Wanthanee; Rastogi, Rajesh P; Incharoensakdi, Aran; Lindblad, Peter; Madamwar, Datta; Pandey, Ashok; Larroche, Christian
2017-11-01
Bio-hydrogen from microalgae including cyanobacteria has attracted commercial awareness due to its potential as an alternative, reliable and renewable energy source. Photosynthetic hydrogen production from microalgae can be interesting and promising options for clean energy. Advances in hydrogen-fuel-cell technology may attest an eco-friendly way of biofuel production, since, the use of H 2 to generate electricity releases only water as a by-product. Progress in genetic/metabolic engineering may significantly enhance the photobiological hydrogen production from microalgae. Manipulation of competing metabolic pathways by modulating the certain key enzymes such as hydrogenase and nitrogenase may enhance the evolution of H 2 from photoautotrophic cells. Moreover, biological H 2 production at low operating costs is requisite for economic viability. Several photobioreactors have been developed for large-scale biomass and hydrogen production. This review highlights the recent technological progress, enzymes involved and genetic as well as metabolic engineering approaches towards sustainable hydrogen production from microalgae. Copyright © 2017 Elsevier Ltd. All rights reserved.
Review of Land Use and Land Cover Change research progress
NASA Astrophysics Data System (ADS)
Chang, Yue; Hou, Kang; Li, Xuxiang; Zhang, Yunwei; Chen, Pei
2018-02-01
Land Use and Land Cover Change (LUCC) can reflect the pattern of human land use in a region, and plays an important role in space soil and water conservation. The study on the change of land use patterns in the world is of great significance to cope with global climate change and sustainable development. This paper reviews the main research progress of LUCC at home and abroad, and suggests that land use change has been shifted from land use planning and management to land use change impact and driving factors. The development of remote sensing technology provides the basis and data for LUCC with dynamic monitoring and quantitative analysis. However, there is no uniform standard for land use classification at present, which brings a lot of inconvenience to the collection and analysis of land cover data. Globeland30 is an important milestone contribution to the study of international LUCC system. More attention should be paid to the accuracy and results contrasting test of land use classification obtained by remote sensing technology.
Prospects and progress of high Tc superconductivity for space applications
NASA Technical Reports Server (NTRS)
Romanofsky, Robert R.; Sokoloski, Marty M.
1991-01-01
Current research in the area of high temperature superconductivity is organized around four key areas: communications and data, sensors and cryogenics, propulsion and power, and space materials technology. Recently, laser ablated YBa2Cu3O(7-x) films on LaAlO3 produced far superior RF characteristics when compared to metallic films on the same substrate. The achievement has enabled a number of unique microwave device applications, such as low insertion loss phase shifters and high-Q filters. Melt texturing and melt-quenched techniques are being used to produce bulk material with optimized magnetic properties. These yttrium-enriched materials possess enhanced flux pinning characteristics and could lead to prototype cryocooler bearings. Significant progress has also occurred in bolometer and current lead technology. Studies were conducted to evaluate the effect of high temperature superconducting materials on the performance and life of high power magnetoplasma-dynamic thrusters. Extended studies were also performed to evaluate the benefit of superconducting magnetic energy storage for LEO space station, lunar, and Mars mission applications.
Nonlinear ship waves and computational fluid dynamics
MIYATA, Hideaki; ORIHARA, Hideo; SATO, Yohei
2014-01-01
Research works undertaken in the first author’s laboratory at the University of Tokyo over the past 30 years are highlighted. Finding of the occurrence of nonlinear waves (named Free-Surface Shock Waves) in the vicinity of a ship advancing at constant speed provided the start-line for the progress of innovative technologies in the ship hull-form design. Based on these findings, a multitude of the Computational Fluid Dynamic (CFD) techniques have been developed over this period, and are highlighted in this paper. The TUMMAC code has been developed for wave problems, based on a rectangular grid system, while the WISDAM code treats both wave and viscous flow problems in the framework of a boundary-fitted grid system. These two techniques are able to cope with almost all fluid dynamical problems relating to ships, including the resistance, ship’s motion and ride-comfort issues. Consequently, the two codes have contributed significantly to the progress in the technology of ship design, and now form an integral part of the ship-designing process. PMID:25311139
National Center for Advanced Manufacturing Overview
NASA Technical Reports Server (NTRS)
Vickers, J.
2001-01-01
The National Center for Advanced Manufacturing (NCAM) is a strategy, organization, and partnership focused on long-term technology development. The NCAM initially will be a regional partnership, however the intent is national in scope. Benchmarking is needed to follow the concept to the finished project, not using trial and error. Significant progress has been made to date, and NCAM is setting the vision for the future.
Advancing automation and robotics technology for the Space Station Freedom and for the US economy
NASA Technical Reports Server (NTRS)
1990-01-01
The progress made by levels 1, 2, and 3 of the Office of Space Station in developing and applying advanced automation and robotics technology is described. Emphasis is placed upon the Space Station Freedom Program responses to specific recommendations made in the Advanced Technology Advisory Committee (ATAC) progress report 10, the flight telerobotic servicer, and the Advanced Development Program. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for the Space Station Freedom.
Recent advances in rechargeable battery materials: a chemist's perspective.
Palacín, M Rosa
2009-09-01
The constant increase in global energy demand, together with the awareness of the finite supply of fossil fuels, has brought about an imperious need to take advantage of renewable energy sources. At the same time, concern over CO(2) emissions and future rises in the cost of gasoline has boosted technological efforts to make hybrid and electric vehicles available to the general public. Energy storage is a vital issue to be addressed within this scenario, and batteries are certainly a key player. In this tutorial review, the most recent and significant scientific advances in the field of rechargeable batteries, whose performance is dependent on their underlying chemistry, are covered. In view of its utmost current significance and future prospects, special emphasis is given to progress in lithium-based technologies.
Electric and hybrid vehicles program
NASA Astrophysics Data System (ADS)
1990-04-01
This thirteenth annual report on the implementation of the Electric and Hybrid Vehicle Research, Development and Demonstration Act of 1976 (Public Law 94-413), referred to as the Act, complies with the reporting requirements established in section 14 of the Act. In addition to informing Congress of the progress and plans of the Department of Energy's Electric and Hybrid Vehicles Program, this report is intended to serve as a communication link between the Department and all of the public and private interests involved in making the program a success. During FY 1989, significant progress was made in this program. There has been continuing interest shown by both the automobile manufacturers and supply sectors of our economy in electric and hybrid vehicles. The three major domestic automobile manufacturers all are devoting some effort towards electric vehicles. Their participation includes cost-shared contracts with Department of Energy and the Electric Power Research Institute as well as independently funded activities. Research and development efforts in batteries and propulsion components continue to achieve significant progress in providing industry with technology that will result in vehicles that will be more economically competitive.
NASA Applications of Molecular Adsorber Coatings
NASA Technical Reports Server (NTRS)
Abraham, Nithin S.
2015-01-01
The Molecular Adsorber Coating (MAC) is a new, innovative technology that was developed to reduce the risk of molecular contamination on spaceflight applications. Outgassing from materials, such as plastics, adhesives, lubricants, silicones, epoxies, and potting compounds, pose a significant threat to the spacecraft and the lifetime of missions. As a coating made of highly porous inorganic materials, MAC offers impressive adsorptive capabilities that help capture and trap contaminants. Past research efforts have demonstrated the coating's promising adhesion performance, optical properties, acoustic durability, and thermal stability. These results advocate its use near or on surfaces that are targeted by outgassed materials, such as internal optics, electronics, detectors, baffles, sensitive instruments, thermal control coatings, and vacuum chamber test environments. The MAC technology has significantly progressed in development over the recent years. This presentation summarizes the many NASA spaceflight applications of MAC and how the coatings technology has been integrated as a mitigation tool for outgassed contaminants. For example, this sprayable paint technology has been beneficial for use in various vacuum chambers for contamination control and hardware bake-outs. The coating has also been used in small instrument cavities within spaceflight instrument for NASA missions.
Accelerated technology transfer: the UK quantum initiative
NASA Astrophysics Data System (ADS)
Bennett, Simon D.
2016-10-01
A new generation of quantum technology based systems, exploiting effects such as superposition and entanglement, will enable widespread, highly disruptive applications which are expected to be of great economic significance. However, the technology is only just emerging from the physics laboratory and generally remains at low TRLs. The question is: where, and when, will this impact be first manifest? The UK, with substantial Government backing, has embarked on an ambitious national program to accelerate the process of technology transfer with the objective of seizing a significant and sustainable share of the future economic benefit for the UK. Many challenges and uncertainties remain but the combined and co-ordinated efforts of Government, Industry and Academia are making great progress. The level of collaboration is unusually high and the goal of embedding a "QT Ecosystem" in the UK looks to be attainable. This paper describes the UK national programme, its key players, and their respective roles. It will illustrate some of the likely first commercial applications and provide a status update. Some of the challenges that might prevent realisation of the goal will be highlighted.
NASA Technical Reports Server (NTRS)
Sanders, Gerald B.; Larson, William E.
2012-01-01
Incorporation of In-Situ Resource Utilization (ISRU) and the production of mission critical consumables for 9 propulsion, power, and life support into mission architectures can greatly reduce the mass, cost, and risk of missions 10 leading to a sustainable and affordable approach to human exploration beyond Earth. ISRU and its products can 11 also greatly affect how other exploration systems are developed, including determining which technologies are 12 important or enabling. While the concept of lunar ISRU has existed for over 40 years, the technologies and systems 13 had not progressed much past simple laboratory proof-of-concept tests. With the release of the Vision for Space 14 Exploration in 2004 with the goal of harnessing the Moon.s resources, NASA initiated the ISRU Project in the 15 Exploration Technology Development Program (ETDP) to develop the technologies and systems needed to meet 16 this goal. In the five years of work in the ISRU Project, significant advancements and accomplishments occurred in 17 several important areas of lunar ISRU. Also, two analog field tests held in Hawaii in 2008 and 2010 demonstrated 18 all the steps in ISRU capabilities required along with the integration of ISRU products and hardware with 19 propulsion, power, and cryogenic storage systems. This paper will review the scope of the ISRU Project in the 20 ETDP, ISRU incorporation and development strategies utilized by the ISRU Project, and ISRU development and 21 test accomplishments over the five years of funded project activity.
NASA Astrophysics Data System (ADS)
Robertson, M. O.; Stevens, Donald M.; Schlader, Daniel M.; Tilley, Richard M.
1998-03-01
The ultrasonic testing (UT) method continues to broaden in its effectiveness and capabilities for nondestructive evaluation (NDE). Much of this expansion can be attributed to advancements in specific techniques of the method. The utilization of electromagnetic acoustic transducers (EMATs) in dedicated ultrasonic systems has provided McDermott Technology, Inc. (MTI), formerly Babcock & Wilcox, with significant advantages over conventional ultrasonics. In recent years, through significant R&D, MTI has been instrumental in bringing about considerable advancements in the maturing EMAT technology. Progress in electronic design, magnet configurations, and sensor concepts has greatly improved system capabilities while reducing cost and equipment size. These improvements, coupled with the inherent advantages of utilizing the non-contact EMAT technique, have combined to make this technology a viable option for many commercial system inspection applications. MTI has recently completed the development and commercialization of an EMAT-based UT scanner for boiler tube thickness measurements. MTI is currently developing an automated EMAT scanner, based on phased array technology, for complete volumetric inspection of circumferential girth welds associated with pipelines (intended primarily for offshore applications). Additional benefits of phased array technology for providing materials characterization are currently being researched.
Progress Toward National Aeronautics Goals
NASA Technical Reports Server (NTRS)
Russo, Carlo J.; Sehra, Arun K.
1999-01-01
NASA has made definitive progress towards achieving several bold U.S. goals in aeronautics related to air breathing engines. The advanced technologies developed towards these goals span applications from general aviation to large subsonic and supersonic aircraft. The proof of successful technology development is demonstrated through successful technology transfer to U.S. industry and projected fleet impact. Specific examples of progress are discussed that quantifies the achievement towards these goals. In addition, a more detailed vision for NASA aeronautics is defined and key strategic issues are explored which invite international and national debate and involvement especially in reduced environmental impact for subsonic and supersonic aircraft, dramatic new capabilities in general aviation engines, and reduced development cycle time and costs.
The Concept of Ecologically Oriented Progress and Natural Resource Preservation
NASA Astrophysics Data System (ADS)
Gasanov, M. A.; Kolotov, K. A.; Demidenko, K. A.; Podgornaya, E. A.; Kadnikova, O. V.
2017-01-01
The most important issue of scientific and technological progress is considering the environment challenges of industrial development. It means that the progress must be ecologically oriented and environmentally friendly. The most adequate concept for the approach to the issue of “man - society - nature” relations is the ontology of the noosphere - the idea of a common space for human beings and nature. It presents an ideal example of an optimistic attitude towards the coordination between accelerating the scientific and technological development and natural resource saving. However, to maintain the balance between human needs and environmental processes determined by this concept, it is essential to include the lean production training into technological development of society.
Development of High Temperature Gas Sensor Technology
NASA Technical Reports Server (NTRS)
Hunter, Gary W.; Chen, Liang-Yu; Neudeck, Philip G.; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai; Zhou, Huan-Jun
1997-01-01
The measurement of engine emissions is important for their monitoring and control. However, the ability to measure these emissions in-situ is limited. We are developing a family of high temperature gas sensors which are intended to operate in harsh environments such as those in an engine. The development of these sensors is based on progress in two types of technology: (1) The development of SiC-based semiconductor technology; and (2) Improvements in micromachining and microfabrication technology. These technologies are being used to develop point-contact sensors to measure gases which are important in emission control especially hydrogen, hydrocarbons, nitrogen oxides, and oxygen. The purpose of this paper is to discuss the development of this point-contact sensor technology. The detection of each type of gas involves its own challenges in the fields of materials science and fabrication technology. Of particular importance is sensor sensitivity, selectivity, and stability in long-term, high temperature operation. An overview is presented of each sensor type with an evaluation of its stage of development. It is concluded that this technology has significant potential for use in engine applications but further development is necessary.
Nuclear Technology Division annual progress report for period ending June 30, 1972
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1972-10-01
This document is a report of progress on technical programs of the Nuclear Technology,Division of Aerojet Nuclear Company for FY 72 ending June 30, 1972. It contains abstracts or expansions of abstracts of papers which have been published within the year. In these cases, preprints or reprints of the articles available. Results of work in progress are also reported; since this work is of a preliminary nature, the authors should be contacted before including any reference to these works in other publications.
1977-02-01
CONTENTS I. INTRODUCTION ------------------------------------------- -I A. DARPA PROGRAM PLANS AND PROGRESS ------------------- 1-6 1. High Energy...beyond. In brief, we have followed our long-range plan and have impressive progress to report. A. DARPA Program Plans and Progress 1. High Energy Lasers...stimulate growth of technological "saplings" that have proven promising; and (3) harvest those technologies that have become mature "trees." These three
Paralympic Sprint Performance Between 1992 and 2012.
Grobler, Lara; Ferreira, Suzanne; Terblanche, Elmarie
2015-11-01
The Paralympic Games have undergone many changes since their inception in 1960, one being the advances made in running-specific prostheses (RSPs) for track athletes with lower-limb amputations. To investigate the sprinting-performance changes in athletes with lower-limb amputations since 1992 to assess whether the influence of developments in RSP technology is evident. The results of the Olympic and Paralympic Games ranging between 1992 and 2012 for the 100-m and 200-m were collected, and performance trends, percentage change in performance, and competition density (CD) were calculated. The results indicate that the greatest performance increases were seen in athletes with lower-limb amputations (T42 = 26%, T44 = 14%). These performance improvements were greater than for Olympic athletes (<3%), as well as Paralympic athletes from other selected classes (<10%). The T42 and T44 classes also showed the lowest CD values. These results suggest that although there is an overall trend for improved Paralympic sprint performances, RSP technology has played a noteworthy role in the progression of performances of athletes with amputations. It is also hypothesized that the difference in the performance improvements between the T42 and T44 classes is due to the level of disability and therefore the extent to which technology is required to enable locomotion. It is evident that RSP technology has played a significant role in the progression of performances in athletes with lower-limb amputations.
Neuroprotection for the new millennium. Matchmaking pharmacology and technology
NASA Technical Reports Server (NTRS)
Andrews, R. J.
2001-01-01
A major theme of the 1990s in the pathophysiology of nervous system injury has been the multifactorial etiology of irreversible injury. Multiple causes imply multiple opportunities for therapeutic intervention--hence the abandonment of the "magic bullet" single pharmacologic agent for neuroprotection in favor of pharmacologic "cocktails". A second theme of the 1990s has been the progress in technology for neuroprotection, minimally- or non-invasive monitoring as well as treatment. Cardiac stenting has eliminated the need, in many cases, for open heart surgery; deep brain stimulation for Parkinson's disease has offered significant improvement in quality of life for many who had exhausted cocktail drug treatment for their disease. Deep brain stimulation of the subthalamic nucleus offers a novel treatment for Parkinson's disease where a technological advance may actually be an intervention with effects that are normally expected from pharmacologic agents. Rather than merely "jamming" the nervous system circuits involved in Parkinson's disease, deep brain stimulation of the subthalamic nucleus appears to improve the neurotransmitter imbalance that lies at the heart of Parkinson's disease. It may also slow the progression of the disease. Given the example of deep brain stimulation of the subthalamic nucleus for Parkinson's disease, in future one may expect other technological or "hardware" interventions to influence the programming or "software" of the nervous system's physiologic response in certain disease states.
Effect of Technology-Enhanced Continuous Progress Monitoring on Math Achievement
ERIC Educational Resources Information Center
Ysseldyke, Jim; Bolt, Daniel M.
2007-01-01
We examined the extent to which use of a technology-enhanced continuous progress monitoring system would enhance the results of math instruction, examined variability in teacher implementation of the program, and compared math results in classrooms in which teachers did and did not use the system. Classrooms were randomly assigned to within-school…
Photonic quantum information: science and technology.
Takeuchi, Shigeki
2016-01-01
Recent technological progress in the generation, manipulation and detection of individual single photons has opened a new scientific field of photonic quantum information. This progress includes the realization of single photon switches, photonic quantum circuits with specific functions, and the application of novel photonic states to novel optical metrology beyond the limits of standard optics. In this review article, the recent developments and current status of photonic quantum information technology are overviewed based on the author's past and recent works.
Terrestrial Planet Finder Interferometer: Architecture, Mission Design, and Technology Development
NASA Technical Reports Server (NTRS)
Henry, Curt
2004-01-01
This slide presentation represents an overview progress report about the system design and technology development of two interferometer concepts studied for the Terrestrial Planet Finder (TPF) project. The two concepts are a structurally-connected interferometer (SCI) intended to fulfill minimum TPF science goals and a formation-flying interferometer (FFI) intended to fulfill full science goals. Described are major trades, analyses, and technology experiments completed. Near term plans are also described. This paper covers progress since August 2003
Genetic correction using engineered nucleases for gene therapy applications.
Li, Hongmei Lisa; Nakano, Takao; Hotta, Akitsu
2014-01-01
Genetic mutations in humans are associated with congenital disorders and phenotypic traits. Gene therapy holds the promise to cure such genetic disorders, although it has suffered from several technical limitations for decades. Recent progress in gene editing technology using tailor-made nucleases, such as meganucleases (MNs), zinc finger nucleases (ZFNs), TAL effector nucleases (TALENs) and, more recently, CRISPR/Cas9, has significantly broadened our ability to precisely modify target sites in the human genome. In this review, we summarize recent progress in gene correction approaches of the human genome, with a particular emphasis on the clinical applications of gene therapy. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.
FY2016 Advanced Batteries R&D Annual Progress Report - Part 4 of 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Advanced Batteries research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Battery subprogram in 2016. This section covers Advanced Battery Materials Research (BMR)more » part 1.« less
FY2016 Advanced Batteries R&D Annual Progress Report - Part 3 of 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Advanced Batteries research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Battery subprogram in 2016. This section covers the summaries of the Appliedmore » Batteries Research for Transportation Projects part 2.« less
FY2016 Advanced Batteries R&D Annual Progress Report - Part 2 of 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Advanced Batteries research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Battery subprogram in 2016. This section covers the summaries of the Appliedmore » Batteries Research for Transportation Projects part 1.« less
Fifty years of progress in speech and speaker recognition
NASA Astrophysics Data System (ADS)
Furui, Sadaoki
2004-10-01
Speech and speaker recognition technology has made very significant progress in the past 50 years. The progress can be summarized by the following changes: (1) from template matching to corpus-base statistical modeling, e.g., HMM and n-grams, (2) from filter bank/spectral resonance to Cepstral features (Cepstrum + DCepstrum + DDCepstrum), (3) from heuristic time-normalization to DTW/DP matching, (4) from gdistanceh-based to likelihood-based methods, (5) from maximum likelihood to discriminative approach, e.g., MCE/GPD and MMI, (6) from isolated word to continuous speech recognition, (7) from small vocabulary to large vocabulary recognition, (8) from context-independent units to context-dependent units for recognition, (9) from clean speech to noisy/telephone speech recognition, (10) from single speaker to speaker-independent/adaptive recognition, (11) from monologue to dialogue/conversation recognition, (12) from read speech to spontaneous speech recognition, (13) from recognition to understanding, (14) from single-modality (audio signal only) to multi-modal (audio/visual) speech recognition, (15) from hardware recognizer to software recognizer, and (16) from no commercial application to many practical commercial applications. Most of these advances have taken place in both the fields of speech recognition and speaker recognition. The majority of technological changes have been directed toward the purpose of increasing robustness of recognition, including many other additional important techniques not noted above.
Technology Development for Fire Safety in Exploration Spacecraft and Habitats
NASA Technical Reports Server (NTRS)
Ruff, Gary A.; Urban, David L.
2007-01-01
Fire during an exploration mission far from Earth is a particularly critical risk for exploration vehicles and habitats. The Fire Prevention, Detection, and Suppression (FPDS) project is part of the Exploration Technology Development Program (ETDP) and has the goal to enhance crew health and safety on exploration missions by reducing the likelihood of a fire, or, if one does occur, minimizing the risk to the mission, crew, or system. Within the past year, the FPDS project has been formalized within the ETDP structure and has seen significant progress on its tasks in fire prevention, detection, and suppression. As requirements for Constellation vehicles and, specifically, the CEV have developed, the need for the FPDS technologies has become more apparent and we continue to make strides to infuse them into the Constellation architecture. This paper describes the current structure of the project within the ETDP and summarizes the significant programmatic activities. Major technical accomplishments are identified as are activities planned for FY07.
Technology Development for Fire Safety in Exploration Spacecraft and Habitats
NASA Technical Reports Server (NTRS)
Ruff, Gary A.; Urban, David L.
2006-01-01
Fire during an exploration mission far from Earth is a particularly critical risk for exploration vehicles and habitats. The Fire Prevention, Detection, and Suppression (FPDS) project is part of the Exploration Technology Development Program (ETDP) and has the goal to enhance crew health and safety on exploration missions by reducing the likelihood of a fire, or, if one does occur, minimizing the risk to the mission, crew, or system. Within the past year, the FPDS project has been formalized within the ETDP structure and has seen significant progress on its tasks in fire prevention, detection, and suppression. As requirements for Constellation vehicles and, specifically, the CEV have developed, the need for the FPDS technologies has become more apparent and we continue to make strides to infuse them into the Constellation architecture. This paper describes the current structure of the project within the ETDP and summarizes the significant programmatic activities. Major technical accomplishments are identified as are activities planned for FY07.
In Vivo Biomarkers for Targeting Colorectal Neoplasms
Hsiung, Pei-Lin; Wang, Thomas
2011-01-01
Summary Colorectal carcinoma continues to be a leading cause of cancer morbidity and mortality despite widespread adoption of screening methods. Targeted detection and therapy using recent advances in our knowledge of in vivo cancer biomarkers promise to significantly improve methods for early detection, risk stratification, and therapeutic intervention. The behavior of molecular targets in transformed tissues is being comprehensively assessed using new techniques of gene expression profiling and high throughput analyses. The identification of promising targets is stimulating the development of novel molecular probes, including significant progress in the field of activatable and peptide probes. These probes are being evaluated in small animal models of colorectal neoplasia and recently in the clinic. Furthermore, innovations in optical imaging instrumentation are resulting in the scaling down of size for endoscope compatibility. Advances in target identification, probe development, and novel instruments are progressing rapidly, and the integration of these technologies has a promising future in molecular medicine. PMID:19126961
CMC Technology Advancements for Gas Turbine Engine Applications
NASA Technical Reports Server (NTRS)
Grady, Joseph E.
2013-01-01
CMC research at NASA Glenn is focused on aircraft propulsion applications. The objective is to enable reduced engine emissions and fuel consumption for more environmentally friendly aircraft. Engine system studies show that incorporation of ceramic composites into turbine engines will enable significant reductions in emissions and fuel burn due to increased engine efficiency resulting from reduced cooling requirements for hot section components. This presentation will describe recent progress and challenges in developing fiber and matrix constituents for 2700 F CMC turbine applications. In addition, ongoing research in the development of durable environmental barrier coatings, ceramic joining integration technologies and life prediction methods for CMC engine components will be reviewed.
Recent advances in spacecraft thermal-control materials research.
NASA Technical Reports Server (NTRS)
Zerlaut, G. A.; Gilligan, J. E.; Gates, D. W.
1972-01-01
The state-of-the-art of spacecraft thermal-control materials technology has been significantly advanced during the past 4 years. Selective black coatings are discussed together with black paints, dielectric films on metal surfaces, and white radiator coatings. Criteria for the selection of thermal-control surfaces are considered, giving attention to prelaunch protection, the capability of being measured, reproducibility, simulator response, and aspects of a nonindigenous space environment. Progress in space simulation is related to vacuum technology, ultraviolet sources, solar wind simulation, and the production of protons. Advances have been made in the protection against space environmental effects, and in the development of thermal-control surfaces and pigments.
The NASA light-emitting diode medical program-progress in space flight and terrestrial applications
NASA Astrophysics Data System (ADS)
Whelan, Harry T.; Houle, John M.; Whelan, Noel T.; Donohoe, Deborah L.; Cwiklinski, Joan; Schmidt, Meic H.; Gould, Lisa; Larson, David L.; Meyer, Glenn A.; Cevenini, Vita; Stinson, Helen
2000-01-01
This work is supported and managed through the NASA Marshall Space Flight Center-SBIR Program. Studies on cells exposed to microgravity and hypergravity indicate that human cells need gravity to stimulate cell growth. As the gravitational force increases or decreases, the cell function responds in a linear fashion. This poses significant health risks for astronauts in long termspace flight. LED-technology developed for NASA plant growth experiments in space shows promise for delivering light deep into tissues of the body to promote wound healing and human tissue growth. This LED-technology is also biologically optimal for photodynamic therapy of cancer. .
Emerging solid-state laser technology by lidar/DIAL remote sensing
NASA Technical Reports Server (NTRS)
Killinger, Dennis
1992-01-01
Significant progress has been made in recent years in the development of new, solid-state laser sources. This talk will present an overview of some of the new developments in solid-state lasers, and their application toward lidar/DIAL measurements of the atmosphere. Newly emerging lasers such as Ho:YAG, Tm:YAG, OPO, and Ti:Sapphire will be covered, along with the spectroscopic parameters required for differential operational modes of atmospheric remote sensing including Doppler-Windshear lidar, Tunable laser detection of water/CO2, and broad linewidth OPO's for open path detection of pollutant hydrocarbon gases. Additional considerations of emerging laser technology for lidar/DIAL will also be covered.
Some recent applications of Navier-Stokes codes to rotorcraft
NASA Technical Reports Server (NTRS)
Mccroskey, W. J.
1992-01-01
Many operational limitations of helicopters and other rotary-wing aircraft are due to nonlinear aerodynamic phenomena incuding unsteady, three-dimensional transonic and separated flow near the surfaces and highly vortical flow in the wakes of rotating blades. Modern computational fluid dynamics (CFD) technology offers new tools to study and simulate these complex flows. However, existing Euler and Navier-Stokes codes have to be modified significantly for rotorcraft applications, and the enormous computational requirements presently limit their use in routine design applications. Nevertheless, the Euler/Navier-Stokes technology is progressing in anticipation of future supercomputers that will enable meaningful calculations to be made for complete rotorcraft configurations.
Advances in neuroprosthetic learning and control.
Carmena, Jose M
2013-01-01
Significant progress has occurred in the field of brain-machine interfaces (BMI) since the first demonstrations with rodents, monkeys, and humans controlling different prosthetic devices directly with neural activity. This technology holds great potential to aid large numbers of people with neurological disorders. However, despite this initial enthusiasm and the plethora of available robotic technologies, existing neural interfaces cannot as yet master the control of prosthetic, paralyzed, or otherwise disabled limbs. Here I briefly discuss recent advances from our laboratory into the neural basis of BMIs that should lead to better prosthetic control and clinically viable solutions, as well as new insights into the neurobiology of action.
Gur, Ilan
2018-01-16
An overview presentation about ARPA-E's AMPED program. AMPED projects seek to develop advanced sensing, control, and power management technologies that redefine the way we think about battery management. Energy storage can significantly improve U.S. energy independence, efficiency, and security by enabling a new generation of electric vehicles. While rapid progress is being made in new battery materials and storage technologies, few innovations have emerged in the management of advanced battery systems. AMPED aims to unlock enormous untapped potential in the performance, safety, and lifetime of today's commercial battery systems exclusively through system-level innovations, and is thus distinct from existing efforts to enhance underlying battery materials and architectures.
Advances in Neuroprosthetic Learning and Control
Carmena, Jose M.
2013-01-01
Significant progress has occurred in the field of brain–machine interfaces (BMI) since the first demonstrations with rodents, monkeys, and humans controlling different prosthetic devices directly with neural activity. This technology holds great potential to aid large numbers of people with neurological disorders. However, despite this initial enthusiasm and the plethora of available robotic technologies, existing neural interfaces cannot as yet master the control of prosthetic, paralyzed, or otherwise disabled limbs. Here I briefly discuss recent advances from our laboratory into the neural basis of BMIs that should lead to better prosthetic control and clinically viable solutions, as well as new insights into the neurobiology of action. PMID:23700383
Hazard of Sulfonamides and Detection Technology Research Progress
NASA Astrophysics Data System (ADS)
Jiang, Jiahui; Wang, Guangyu
2017-12-01
As a kind of widely used antibiotic with typical characteristics, sulfonamides have been greatly applied in clinical medicine for long time. It can’t be effectively treated by pollutant disposal system during pharmaceutical process and utilization and will be discharged into natural environment to be one of the antibiotics with great effect. This kind of substance is difficult to be biodegraded and will be easy to accumulate in the environment, generating huge eco-toxicological effect with significant mutagenicity and teratogenic effect. It is the severe threat for ecological balance, human health and drinking water safety. Its environmental behavior and detection technology attract extensive attention home and abroad.
NASA Technical Reports Server (NTRS)
Ambur, Manjula Y.; Yagle, Jeremy J.; Reith, William; McLarney, Edward
2016-01-01
In 2014, a team of researchers, engineers and information technology specialists at NASA Langley Research Center developed a Big Data Analytics and Machine Intelligence Strategy and Roadmap as part of Langley's Comprehensive Digital Transformation Initiative, with the goal of identifying the goals, objectives, initiatives, and recommendations need to develop near-, mid- and long-term capabilities for data analytics and machine intelligence in aerospace domains. Since that time, significant progress has been made in developing pilots and projects in several research, engineering, and scientific domains by following the original strategy of collaboration between mission support organizations, mission organizations, and external partners from universities and industry. This report summarizes the work to date in Data Intensive Scientific Discovery, Deep Content Analytics, and Deep Q&A projects, as well as the progress made in collaboration, outreach, and education. Recommendations for continuing this success into future phases of the initiative are also made.
Photonic technology revolution influence on the defence area
NASA Astrophysics Data System (ADS)
Galas, Jacek; Litwin, Dariusz; Błocki, Narcyz; Daszkiewicz, Marek
2017-10-01
Revolutionary progress in the photonic technology provides the ability to develop military systems of new properties not possible to obtain with the use of classical technologies. In recent years, this progress has resulted in developing advanced, complex, multifunctional and relatively cheap Photonic Integrated Circuits (PIC) or Hybrid Photonics Circuits (HPC) built of a collection of standardized optical, optoelectronic and photonic components. This idea is similar to the technology of Electronic Integrated Circuits, which has revolutionized the microelectronic market. The novel approach to photonic technology is now revolutionizing the photonics' market. It simplifies the photonics technology and enables creation of technological centers for designing, development and production of advanced optical and photonic systems in the EU and other countries. This paper presents some selected photonic technologies and their impact on such defense systems like radars, radiolocation, telecommunication, and radio-communication systems.
Advancing automation and robotics technology for the Space Station Freedom and for the US economy
NASA Technical Reports Server (NTRS)
Lum, Henry, Jr.
1992-01-01
Described here is the progress made by Levels 1, 2, and 3 of the Space Station Freedom in developing and applying advanced automation and robotics technology. Emphasis was placed on the Space Station Freedom program responses to specific recommendations made in the Advanced Technology Advisory Committee (ATAC) Progress Report 13, and issues of A&R implementation into the payload operations integration Center at Marshall Space Flight Center. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for Space Station Freedom.
Ceramic Technology Project semiannual progress report, October 1992--March 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.R.
1993-09-01
This project was developed to meet the ceramic technology requirements of the OTS`s automotive technology programs. Although progress has been made in developing reliable structural ceramics, further work is needed to reduce cost. The work described in this report is organized according to the following work breakdown structure project elements: Materials and processing (monolithics [Si nitride, carbide], ceramic composites, thermal and wear coatings, joining, cost effective ceramic machining), materials design methodology (contact interfaces, new concepts), data base and life prediction (structural qualification, time-dependent behavior, environmental effects, fracture mechanics, nondestructive evaluation development), and technology transfer.
NASA Technical Reports Server (NTRS)
Christensen, Elmer
1985-01-01
The objectives were to develop the flat-plate photovoltaic (PV) array technologies required for large-scale terrestrial use late in the 1980s and in the 1990s; advance crystalline silicon PV technologies; develop the technologies required to convert thin-film PV research results into viable module and array technology; and to stimulate transfer of knowledge of advanced PV materials, solar cells, modules, and arrays to the PV community. Progress reached on attaining these goals, along with future recommendations are discussed.
Task 10 - technology development integration. Semi-annual report, April 1--September 30, 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendrikson, J.G.; Daly, D.J.
1997-05-01
The Energy and Environmental Research Center (EERC), in conjunction with the Waste Policy Institute (WPI), will identify and integrate new technologies to meet site-specific environmental management (EM) requirements at contaminated sites appropriate to U.S. Department of Energy (DOE) interests. This paper briefly reports overall progress for three activities: technology management, project management, and technology integration. Work performed over the reporting period has focused on providing logistical and administrative support. In addition, six monthly WPI reports to the EERC are included as appendices. The WPI reports contained detailed information for progress in each activity.
Astronomical technology - the past and the future. Karl Schwarzschild Award Lecture 2015
NASA Astrophysics Data System (ADS)
Appenzeller, I.
2016-07-01
The past fifty years have been an epoch of impressive progress in the field of astronomical technology. Practically all the technical tools, which we use today, have been developed during that time span. While the first half of this period has been dominated by advances in the detector technologies, during the past two decades innovative telescope concepts have been developed for practically all wavelength ranges where astronomical observations are possible. Further important advances can be expected in the next few decades. Based on the experience of the past, some of the main sources of technological progress can be identified.
Brenkus, Lawrence M.
1984-01-01
Artificial intelligence applications are finally beginning to move from the university research laboratory into commercial use. Before the end of the century, this new computer technology will have profound effects on our work, economy, and lives. At present, relatively few products have appeared in the hospital, but we can anticipate significant product offerings in instrumentation and affecting hospital administration within 5 years.
Energy Innovations: Science & Technology at NREL, Winter 2010 (Brochure)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2010-02-01
The Energy Innovations newsletter serves as a key outreach tool for NREL to tout the lab's accomplishments, progress, and activities to key stakeholders who can impact the lab's level of funding and potential resources. Audiences include VIP visitors to NREL, current and potential partners in our work, and key decision makers who want to know about NREL's R&D directions and the quality and significance of our results.
Atomistic Design and Simulations of Nanoscale Machines and Assembly
NASA Technical Reports Server (NTRS)
Goddard, William A., III; Cagin, Tahir; Walch, Stephen P.
2000-01-01
Over the three years of this project, we made significant progress on critical theoretical and computational issues in nanoscale science and technology, particularly in:(1) Fullerenes and nanotubes, (2) Characterization of surfaces of diamond and silicon for NEMS applications, (3) Nanoscale machine and assemblies, (4) Organic nanostructures and dendrimers, (5) Nanoscale confinement and nanotribology, (6) Dynamic response of nanoscale structures nanowires (metals, tubes, fullerenes), (7) Thermal transport in nanostructures.
NASA Technical Reports Server (NTRS)
Deur, J. M.; Kundu, K. P.; Nguyen, H. L.
1992-01-01
Emissions of pollutants from future commercial transports are a significant concern. As a result, the Lewis Research Center (LeRC) is investigating various low emission combustor technologies. As part of this effort, a combustor analysis code development program was pursued to guide the combustor design process, to identify concepts having the greatest promise, and to optimize them at the lowest cost in the minimum time.
Energy Innovations: Science & Technology at NREL, Fall 2009
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2009-09-01
The Energy Innovations newsletter serves as a key outreach tool for NREL to tout the lab's accomplishments, progress, and activities to key stakeholders who can impact the lab's level of funding and potential resources. Audiences include VIP visitors to NREL, current and potential partners in our work, and key decision makers who want to know about NREL's R&D directions and the quality and significance of our results.
High beta and second stability region transport and stability analysis. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, M.H.; Phillips, M.W.
1996-01-01
This report describes MHD equilibrium and stability studies carried out at Northrop Grumman`s Advanced Technology and Development Center during the period March 1 to December 31, 1995. Significant progress is reported in both ideal and resistive MHD modeling of TFTR plasmas. Specifically, attention is concentrated on analysis of Advanced Tokamak experiments at TFTR involving plasmas in which the q-profiles were non-monotonic.
Evaluation of Extended-Wear Hearing Aid Technology for Operational Military Use
2016-07-01
listeners without degrading auditory situational awareness. To this point, significant progress has been made in this evaluation process. The devices...provide long-term hearing protection for listeners with normal hearing with minimal impact on auditory situational awareness and minimal annoyance due to...Test Plan: A comprehensive test plan is complete for the measurements at AFRL, which will incorporate goals 1-2 and 4-5 above using a normal
Chemical Looping Technology: Oxygen Carrier Characteristics.
Luo, Siwei; Zeng, Liang; Fan, Liang-Shih
2015-01-01
Chemical looping processes are characterized as promising carbonaceous fuel conversion technologies with the advantages of manageable CO2 capture and high energy conversion efficiency. Depending on the chemical looping reaction products generated, chemical looping technologies generally can be grouped into two types: chemical looping full oxidation (CLFO) and chemical looping partial oxidation (CLPO). In CLFO, carbonaceous fuels are fully oxidized to CO2 and H2O, as typically represented by chemical looping combustion with electricity as the primary product. In CLPO, however, carbonaceous fuels are partially oxidized, as typically represented by chemical looping gasification with syngas or hydrogen as the primary product. Both CLFO and CLPO share similar operational features; however, the optimum process configurations and the specific oxygen carriers used between them can vary significantly. Progress in both CLFO and CLPO is reviewed and analyzed with specific focus on oxygen carrier developments that characterize these technologies.
Research progress on quantum informatics and quantum computation
NASA Astrophysics Data System (ADS)
Zhao, Yusheng
2018-03-01
Quantum informatics is an emerging interdisciplinary subject developed by the combination of quantum mechanics, information science, and computer science in the 1980s. The birth and development of quantum information science has far-reaching significance in science and technology. At present, the application of quantum information technology has become the direction of people’s efforts. The preparation, storage, purification and regulation, transmission, quantum coding and decoding of quantum state have become the hotspot of scientists and technicians, which have a profound impact on the national economy and the people’s livelihood, technology and defense technology. This paper first summarizes the background of quantum information science and quantum computer and the current situation of domestic and foreign research, and then introduces the basic knowledge and basic concepts of quantum computing. Finally, several quantum algorithms are introduced in detail, including Quantum Fourier transform, Deutsch-Jozsa algorithm, Shor’s quantum algorithm, quantum phase estimation.
Recent developments in terahertz sensing technology
NASA Astrophysics Data System (ADS)
Shur, Michael
2016-05-01
Terahertz technology has found numerous applications for the detection of biological and chemical hazardous agents, medical diagnostics, detection of explosives, providing security in buildings, airports, and other public spaces, shortrange covert communications (in the THz and sub-THz windows), and applications in radio astronomy and space research. The expansion of these applications will depend on the development of efficient electronic terahertz sources and sensitive low-noise terahertz detectors. Schottky diode frequency multipliers have emerged as a viable THz source technology reaching a few THz. High speed three terminal electronic devices (FETs and HBTs) have entered the THz range (with cutoff frequencies and maximum frequencies of operation above 1 THz). A new approach called plasma wave electronics recently demonstrated an efficient terahertz detection in GaAs-based and GaN-based HEMTs and in Si MOS, SOI, FINFETs and in FET arrays. This progress in THz electronic technology has promise for a significant expansion of THz applications.
Tsurumaki, M; Kotake, M; Iwasaki, M; Saito, M; Tanaka, K; Aw, W; Fukuda, S; Tomita, M
2015-01-01
Inulin, a natural renewable polysaccharide resource produced by various plants in nature, has been reported to possess a significant number of diverse pharmaceutical and food applications. Recently, there has been rapid progress in high-throughput technologies and platforms to assay global mRNA, proteins, metabolites and gut microbiota. In this review, we will describe the current status of utilizing omics technologies of elucidating the impact of inulin and inulin-containing prebiotics at the transcriptome, proteome, metabolome and gut microbiome levels. Although many studies in this review have addressed the impact of inulin comprehensively, these omics technologies only enable us to understand physiological information at each different stage of mRNA, protein, metabolite and gut microbe. We believe that a synergistic approach is vital in order to fully illustrate the intricate beauty behind the relatively modest influence of food factors like inulin on host health. PMID:26619369
[Robot--a member of (re)habilitation team].
Krasnik, Rastislava; Mikov, Aleksandra; Golubović, Spela; Komazec, Zoran; Komazec, Slobodanka Lemajić
2012-01-01
The rehabilitation process involves a whole team of experts who participate in it over a long period oftime. The Intensive development of science and technology has made it possible to design a number of robots which are used for therapeutic purposes and participate in the rehabilitation process. During the long history of technological development of mankind, a number of conceptual and technological solutions for the construction of robots have been known. By using robots in medical rehabilitation it is possible to implement the rehabilitation of peripheral and central motor neurons by increasing the motivation of patients for further recovery and effectiveness of therapy. The paper presents some technological solutions for robot-assisted rehabilitation of patients of different age groups and some possibilities of its use in the treatment. Using robots in standard physiotherapy protocols that involve a number of repetitions, exact dosage, quality design and adaptability to each individual patient leads to the significant progress in the rehabilitation of patients.
Progress in space nuclear reactor power systems technology development - The SP-100 program
NASA Technical Reports Server (NTRS)
Davis, H. S.
1984-01-01
Activities related to the development of high-temperature compact nuclear reactors for space applications had reached a comparatively high level in the U.S. during the mid-1950s and 1960s, although only one U.S. nuclear reactor-powered spacecraft was actually launched. After 1973, very little effort was devoted to space nuclear reactor and propulsion systems. In February 1983, significant activities toward the development of the technology for space nuclear reactor power systems were resumed with the SP-100 Program. Specific SP-100 Program objectives are partly related to the determination of the potential performance limits for space nuclear power systems in 100-kWe and 1- to 100-MW electrical classes. Attention is given to potential missions and applications, regimes of possible space power applicability, safety considerations, conceptual system designs, the establishment of technical feasibility, nuclear technology, materials technology, and prospects for the future.
Compact, High Power, Multi-Spectral Mid-Infrared Semiconductor Laser Package
NASA Astrophysics Data System (ADS)
Guo, Bujin; Hwang, Wen-Yen; Lin, Chich-Hsiang
2001-10-01
Through a vertically integrated effort involving atomic level material engineering, advanced device processing development, state-of-the-art optomechanical packaging, and thermal management, Applied Optoelectronics, Inc. (AOI), University of Houston (U H), and Physical Science, Inc. (PSI) have made progress in both Sb-based type-II semiconductor material and in P-based type-I laser device development. We have achieved record performance on inP based quantum cascade continuous wave (CW) laser (with more than 5 mW CW power at 210 K). Grating-coupled external-cavity quantum cascade lasers were studied for temperatures from 20 to 230 K. A tuning range of 88 nm has been obtained at 80 K. The technology can be made commercially available and represents a significant milestone with regard to the Dual Use Science and Technology (DUST) intention of fostering dual use commercial technology for defense need. AOI is the first commercial company to ship products of this licensed technology.
Induced pluripotent stem cell technology: a decade of progress.
Shi, Yanhong; Inoue, Haruhisa; Wu, Joseph C; Yamanaka, Shinya
2017-02-01
Since the advent of induced pluripotent stem cell (iPSC) technology a decade ago, enormous progress has been made in stem cell biology and regenerative medicine. Human iPSCs have been widely used for disease modelling, drug discovery and cell therapy development. Novel pathological mechanisms have been elucidated, new drugs originating from iPSC screens are in the pipeline and the first clinical trial using human iPSC-derived products has been initiated. In particular, the combination of human iPSC technology with recent developments in gene editing and 3D organoids makes iPSC-based platforms even more powerful in each area of their application, including precision medicine. In this Review, we discuss the progress in applications of iPSC technology that are particularly relevant to drug discovery and regenerative medicine, and consider the remaining challenges and the emerging opportunities in the field.
Advances in Omics and Bioinformatics Tools for Systems Analyses of Plant Functions
Mochida, Keiichi; Shinozaki, Kazuo
2011-01-01
Omics and bioinformatics are essential to understanding the molecular systems that underlie various plant functions. Recent game-changing sequencing technologies have revitalized sequencing approaches in genomics and have produced opportunities for various emerging analytical applications. Driven by technological advances, several new omics layers such as the interactome, epigenome and hormonome have emerged. Furthermore, in several plant species, the development of omics resources has progressed to address particular biological properties of individual species. Integration of knowledge from omics-based research is an emerging issue as researchers seek to identify significance, gain biological insights and promote translational research. From these perspectives, we provide this review of the emerging aspects of plant systems research based on omics and bioinformatics analyses together with their associated resources and technological advances. PMID:22156726
Photonic quantum information: science and technology
TAKEUCHI, Shigeki
2016-01-01
Recent technological progress in the generation, manipulation and detection of individual single photons has opened a new scientific field of photonic quantum information. This progress includes the realization of single photon switches, photonic quantum circuits with specific functions, and the application of novel photonic states to novel optical metrology beyond the limits of standard optics. In this review article, the recent developments and current status of photonic quantum information technology are overviewed based on the author’s past and recent works. PMID:26755398
Useful Sensor Web Capabilities to Enable Progressive Mission Autonomy
NASA Technical Reports Server (NTRS)
Mandl, Dan
2007-01-01
This viewgraph presentation reviews using the Sensor Web capabilities as an enabling technology to allow for progressive autonomy of NASA space missions. The presentation reviews technical challenges for future missions, and some of the capabilities that exist to meet those challenges. To establish the ability of the technology to meet the challenges, experiments were conducted on three missions: Earth Observing 1 (EO-1), Cosmic Hot Interstellar Plasma Spectrometer (CHIPS) and Space Technology 5 (ST-5). These experiments are reviewed.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1986-01-01
This publication, one of a series formerly titled The Deep Space Network (DSN) Progress Report, documents DSN progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations. In addition, developments in Earth-based radio technology as applied to geodynamics, astrophysics, and the radio search for extraterrestrial intelligence are reported.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1988-01-01
This publication, one of a series formerly titled The Deep Space Network Progress Report, documents DSN progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations. In addition, developments in earth-based radio technology as applied to geodynamics, astrophysics, and the radio search for extraterrestrial intelligence are reported.
The Telecommunications and Data Acquisition Report. [Deep Space Network
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1986-01-01
This publication, one of a series formerly titled The Deep Space Network Progress Report, documents DSN progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations. In addition, developments in Earth-based radio technology as applied to geodynamics, astrophysics and the radio search for extraterrestrial intelligence are reported.
Naef, Olivier
2012-01-01
This short paper presents the abstracts of the different presentations during 10. Freiburger Symposium 2011 der SCG-Division Industrielle Chemie: Technology Progress, Success key for our production sites held Thursday and Friday, September 29 and 30, 2011 at the Ecole d'ingénieurs et d'architectes de Fribourg (Switzerland).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marton, L.
1994-12-31
This report describes progress aimed at constructing gene-transfer technology for Nicotiana plumbaginifolia. Most actual effort as described herein has so far been directed at exploring new perspectives and limitations in Agrobacterium mediated gene transfer. Accomplishments are described using a core homologous gene targeting vector.
NASA Technical Reports Server (NTRS)
Skelly, Darin M.
2005-01-01
Viewgraphs on the National Research Council's diaglog to assess progress on NASA's transformational spaceport and range technologies capability roadmap development is presented. The topics include: 1) Agency Goals and Objectives; 2) Strategic Planning Transformation; 3) Advanced Planning Organizational Roles; 4) Public Involvement in Strategic Planning; 5) Strategic Roadmaps; 6) Strategic Roadmaps Schedule; 7) Capability Roadmaps; 8) Capability Charter; 9) Process for Team Selection; 10) Capability Roadmap Development Schedule Overview; 11) Purpose of NRC Review; 12) Technology Readiness Levels; 13) Capability Readiness Levels; 14) Crosswalk Matrix Trans Spaceport & Range; 15) Example linkage to other roadmaps; 16) Capability Readiness Levels Defined; and 17) Crosswalk Matrix Ratings Work In-progress.
Universality of accelerating change
NASA Astrophysics Data System (ADS)
Eliazar, Iddo; Shlesinger, Michael F.
2018-03-01
On large time scales the progress of human technology follows an exponential growth trend that is termed accelerating change. The exponential growth trend is commonly considered to be the amalgamated effect of consecutive technology revolutions - where the progress carried in by each technology revolution follows an S-curve, and where the aging of each technology revolution drives humanity to push for the next technology revolution. Thus, as a collective, mankind is the 'intelligent designer' of accelerating change. In this paper we establish that the exponential growth trend - and only this trend - emerges universally, on large time scales, from systems that combine together two elements: randomness and amalgamation. Hence, the universal generation of accelerating change can be attained by systems with no 'intelligent designer'.
NASA 2009 Body of Knowledge (BoK) Through-Slicon Via Technology
NASA Technical Reports Server (NTRS)
Gerke, David
2009-01-01
Through-silicon via (TSV) is the latest in a progression of technologies for stacking silicon devices in three dimensions (3D). Driven by the need for improved performance, methods to use short vertical interconnects to replace the long interconnects found in 2D structures have been developed. The industry is moving past the feasibility (research and development [R and D]) phase for TSV technology into the commercialization phase where economic realities will determine which technologies are adopted. Low-cost fine via hole formation and highly reliable via filling technologies have been demonstrated; process equipment and materials are available. Even though design, thermal, and test issues remain, much progress has been made.
Nanomaterial-enabled Rapid Detection of Water Contaminants.
Mao, Shun; Chang, Jingbo; Zhou, Guihua; Chen, Junhong
2015-10-28
Water contaminants, e.g., inorganic chemicals and microorganisms, are critical metrics for water quality monitoring and have significant impacts on human health and plants/organisms living in water. The scope and focus of this review is nanomaterial-based optical, electronic, and electrochemical sensors for rapid detection of water contaminants, e.g., heavy metals, anions, and bacteria. These contaminants are commonly found in different water systems. The importance of water quality monitoring and control demands significant advancement in the detection of contaminants in water because current sensing technologies for water contaminants have limitations. The advantages of nanomaterial-based sensing technologies are highlighted and recent progress on nanomaterial-based sensors for rapid water contaminant detection is discussed. An outlook for future research into this rapidly growing field is also provided. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Research on Technology Innovation Management in Big Data Environment
NASA Astrophysics Data System (ADS)
Ma, Yanhong
2018-02-01
With the continuous development and progress of the information age, the demand for information is getting larger. The processing and analysis of information data is also moving toward the direction of scale. The increasing number of information data makes people have higher demands on processing technology. The explosive growth of information data onto the current society have prompted the advent of the era of big data. At present, people have more value and significance in producing and processing various kinds of information and data in their lives. How to use big data technology to process and analyze information data quickly to improve the level of big data management is an important stage to promote the current development of information and data processing technology in our country. To some extent, innovative research on the management methods of information technology in the era of big data can enhance our overall strength and make China be an invincible position in the development of the big data era.
Recent Progress in Engine Noise Reduction Technologies
NASA Technical Reports Server (NTRS)
Huff, Dennis; Gliebe, Philip
2003-01-01
Highlights from NASA-funded research over the past ten years for aircraft engine noise reduction are presented showing overall technical plans, accomplishments, and selected applications to turbofan engines. The work was sponsored by NASA's Advanced Subsonic Technology (AST) Noise Reduction Program. Emphasis is given to only the engine noise reduction research and significant accomplishments that were investigated at Technology Readiness Levels ranging from 4 to 6. The Engine Noise Reduction sub-element was divided into four work areas: source noise prediction, model scale tests, engine validation, and active noise control. Highlights from each area include technologies for higher bypass ratio turbofans, scarf inlets, forward-swept fans, swept and leaned stators, chevron/tabbed nozzles, advanced noise prediction analyses, and active noise control for fans. Finally, an industry perspective is given from General Electric Aircraft Engines showing how these technologies are being applied to commercial products. This publication contains only presentation vu-graphs from an invited lecture given at the 41st AIAA Aerospace Sciences Meeting, January 6-9, 2003.
A Survey of Geosensor Networks: Advances in Dynamic Environmental Monitoring
Nittel, Silvia
2009-01-01
In the recent decade, several technology trends have influenced the field of geosciences in significant ways. The first trend is the more readily available technology of ubiquitous wireless communication networks and progress in the development of low-power, short-range radio-based communication networks, the miniaturization of computing and storage platforms as well as the development of novel microsensors and sensor materials. All three trends have changed the type of dynamic environmental phenomena that can be detected, monitored and reacted to. Another important aspect is the real-time data delivery of novel platforms today. In this paper, I will survey the field of geosensor networks, and mainly focus on the technology of small-scale geosensor networks, example applications and their feasibility and lessons learnt as well as the current research questions posed by using this technology today. Furthermore, my objective is to investigate how this technology can be embedded in the current landscape of intelligent sensor platforms in the geosciences and identify its place and purpose. PMID:22346721
Chemical Gas Sensors for Aeronautic and Space Applications
NASA Technical Reports Server (NTRS)
Hunter, Gary W.; Chen, Liang-Yu; Neudeck, Philip G.; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai; Zhou, Huan-Jun
1997-01-01
Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Two areas of particular interest are safety monitoring and emission monitoring. In safety monitoring, detection of low concentrations of hydrogen at potentially low temperatures is important while for emission monitoring the detection of nitrogen oxides, hydrogen, hydrocarbons and oxygen is of interest. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: (1) Micromachining and microfabrication technology to fabricate miniaturized sensors. (2) The development of high temperature semiconductors, especially silicon carbide. The detection of each type of gas involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this general area of sensor development a field of significant interest.
Wearable smart systems: from technologies to integrated systems.
Lymberis, A
2011-01-01
Wearable technology and integrated systems, so called Smart Wearable Systems (SWS) have demonstrated during the last 10-15 years significant advances in terms of, miniaturisation, seamless integration, data processing & communication, functionalisation and comfort. This is mainly due to the huge progress in sciences and technologies e.g. biomedical and micro & nano technologies, but also to a strong demand for new applications such as continuous personal health monitoring, healthy lifestyle support, human performance monitoring and support of professionals at risk. Development of wearable systems based of smart textile have, in addition, benefited from the eagerness of textile industry to develop new value-added apparel products like functionalized garments and smart clothing. Research and development in these areas has been strongly promoted worldwide. In Europe the major R&D activities were supported through the Information & Communication Technologies (ICT) priority of the R&D EU programs. The paper presents and discusses the main achievements towards integrated systems as well as future challenges to be met in order to reach a market with reliable and high value-added products.
X-43 Hypersonic Vehicle Technology Development
NASA Technical Reports Server (NTRS)
Voland, Randall T.; Huebner, Lawrence D.; McClinton, Charles R.
2005-01-01
NASA recently completed two major programs in Hypersonics: Hyper-X, with the record-breaking flights of the X-43A, and the Next Generation Launch Technology (NGLT) Program. The X-43A flights, the culmination of the Hyper-X Program, were the first-ever examples of a scramjet engine propelling a hypersonic vehicle and provided unique, convincing, detailed flight data required to validate the design tools needed for design and development of future operational hypersonic airbreathing vehicles. Concurrent with Hyper-X, NASA's NGLT Program focused on technologies needed for future revolutionary launch vehicles. The NGLT was "competed" by NASA in response to the President s redirection of the agency to space exploration, after making significant progress towards maturing technologies required to enable airbreathing hypersonic launch vehicles. NGLT quantified the benefits, identified technology needs, developed airframe and propulsion technology, chartered a broad University base, and developed detailed plans to mature and validate hypersonic airbreathing technology for space access. NASA is currently in the process of defining plans for a new Hypersonic Technology Program. Details of that plan are not currently available. This paper highlights results from the successful Mach 7 and 10 flights of the X-43A, and the current state of hypersonic technology.
Olson, Kristian R; Walsh, Madeline; Garg, Priya; Steel, Alexis; Mehta, Sahil; Data, Santorino; Petersen, Rebecca; Guarino, Anthony J; Bailey, Elizabeth; Bangsberg, David R
2017-02-01
Healthcare-focused hackathons are 48-hour platforms intended to accelerate novel medical technology. However, debate exists about how much they contribute to medical technology innovation. The Consortium for Affordable Medical Technologies (CAMTech) has developed a three-pronged model to maximise their effectiveness. To gauge the success of this model, we examined follow-up outcomes. Outcomes of 12 hackathons from 2012 to 2015 in India, Uganda and the USA were measured using emailed surveys. To minimise response bias, non-responding teams were coded as having made no progress. 331 individuals provided information on 196 of 356 projects (55.1% response rate), with no difference in responses from teams participating in different countries (Cramer's V=0.09, p=0.17). 30.3% of projects had made progress after a mean of 12.2 months. 88 (24.7%) teams had initiated pilot testing, with 42 (11.8%) piloting with care providers and 24 (6.7%) with patients. Overall, 97 teams (8.1 per hackathon) drafted business plans, 22 (1.8 per hackathon) had filed patents on their innovations and 15 (1.3 per hackathon) had formed new companies. Teams raised US$64.08 million in funding (average US$5.34 million per hackathon; median award size of $1800). In addition, 108 teams (30.3%) reported at least one member working on additional technologies with people they met at a hackathon. Individual confidence to address medical technology challenges was significantly increased after attending (t(1282)=192.77, p 0.001). CAMTech healthcare hackathons lead to consistent output with respect to medical technology innovation, including clinical trials, business plan development, securing investment capital/funding and new company formation.
Walsh, Madeline; Garg, Priya; Steel, Alexis; Mehta, Sahil; Data, Santorino; Petersen, Rebecca; Guarino, Anthony J; Bailey, Elizabeth; Bangsberg, David R
2017-01-01
Background Healthcare-focused hackathons are 48-hour platforms intended to accelerate novel medical technology. However, debate exists about how much they contribute to medical technology innovation. The Consortium for Affordable Medical Technologies (CAMTech) has developed a three-pronged model to maximise their effectiveness. To gauge the success of this model, we examined follow-up outcomes. Methods Outcomes of 12 hackathons from 2012 to 2015 in India, Uganda and the USA were measured using emailed surveys. To minimise response bias, non-responding teams were coded as having made no progress. Results 331 individuals provided information on 196 of 356 projects (55.1% response rate), with no difference in responses from teams participating in different countries (Cramer's V=0.09, p=0.17). 30.3% of projects had made progress after a mean of 12.2 months. 88 (24.7%) teams had initiated pilot testing, with 42 (11.8%) piloting with care providers and 24 (6.7%) with patients. Overall, 97 teams (8.1 per hackathon) drafted business plans, 22 (1.8 per hackathon) had filed patents on their innovations and 15 (1.3 per hackathon) had formed new companies. Teams raised US$64.08 million in funding (average US$5.34 million per hackathon; median award size of $1800). In addition, 108 teams (30.3%) reported at least one member working on additional technologies with people they met at a hackathon. Individual confidence to address medical technology challenges was significantly increased after attending (t(1282)=192.77, p 0.001). Conclusion CAMTech healthcare hackathons lead to consistent output with respect to medical technology innovation, including clinical trials, business plan development, securing investment capital/funding and new company formation. PMID:28250965
Lauder, S; Cosgrove, V E; Gliddon, E; Grimm, D; Dodd, S; Berk, L; Castle, D; Suppes, T S; Berk, M
2017-05-01
MoodSwings 2.0 is a self-guided online intervention for bipolar disorder. The intervention incorporates technological improvements on an earlier validated version of the intervention (MoodSwings 1.0). The previous MoodSwings trial provides this study with a unique opportunity to progress previous work, whilst being able to take into consideration lesson learnt, and technological enhancements. The structure and technology of MoodSwings 2.0 are described and the relevance to other online health interventions is highlighted. An international team from Australia and the US updated and improved the programs content pursuant to changes in DSM-5, added multimedia components and included larger numbers of participants in the group discussion boards. Greater methodological rigour in this trial includes an attention control condition, quarterly telephone assessments, and red flag alerts for significant clinical change. This paper outlines these improvements, including additional security and safety measures. A 3 arm RCT is currently evaluating the enhanced program to assess the efficacy of MS 2.0; the primary outcome is change in depressive and manic symptoms. To our knowledge this is the first randomized controlled online bipolar study with a discussion board attention control and meets the key methodological criteria for online interventions. Copyright © 2017. Published by Elsevier Inc.
Perspective on CFD studies of coronary artery disease lesions and hemodynamics: a review.
Zhang, Jun-Mei; Zhong, Liang; Su, Boyang; Wan, Min; Yap, Jinq Shya; Tham, Jasmine P L; Chua, Leok Poh; Ghista, Dhanjoo N; Tan, Ru San
2014-06-01
Coronary artery disease (CAD) is the most common cardiovascular disease. Early diagnosis of CAD's physiological significance is of utmost importance for guiding individualized risk-tailored treatment strategies. In this paper, we first review the state-of-the-art clinical diagnostic indices to quantify the severity of CAD and the associated invasive and noninvasive imaging technologies in order to quantify the anatomical parameters of diameter stenosis, area stenosis, and hemodynamic indices of coronary flow reserve and fractional flow reserve. With the development of computational technologies and CFD methods, tremendous progress has been made in applying image-based CFD simulation techniques to elucidate the effects of hemodynamics in vascular pathophysiology toward the initialization and progression of CAD. So then, we review the advancements of CFD technologies in patient-specific modeling, involving the development of geometry reconstruction, boundary conditions, and fluid-structure interaction. Next, we review the applications of CFD to stenotic sites, in order to compute their hemodynamic parameters and study the relationship between the hemodynamic conditions and the clinical indices, to thereby assess the amount of viable myocardium and candidacy for percutaneous coronary intervention. Finally, we review the strengths and limitations of current researches of applying CFD to CAD studies. Copyright © 2014 John Wiley & Sons, Ltd.
Lauder, S.; Cosgrove, V.E.; Gliddon, E.; Grimm, D.; Dodd, S.; Berk, L.; Castle, D.; Suppes, T.S.; Berk, M.
2017-01-01
MoodSwings 2.0 is a self-guided online intervention for bipolar disorder. The intervention incorporates technological improvements on an earlier validated version of the intervention (MoodSwings 1.0). The previous MoodSwings trial provides this study with a unique opportunity to progress previous work, whilst being able to take into consideration lesson learnt, and technological enhancements. The structure and technology of MoodSwings 2.0 are described and the relevance to other online health interventions is highlighted. An international team from Australia and the US updated and improved the programs content pursuant to changes in DSM-5, added multimedia components and included larger numbers of participants in the group discussion boards. Greater methodological rigour in this trial includes an attention control condition, quarterly telephone assessments, and red flag alerts for significant clinical change. This paper outlines these improvements, including additional security and safety measures. A 3 arm RCT is currently evaluating the enhanced program to assess the efficacy of MS 2.0; the primary outcome is change in depressive and manic symptoms. To our knowledge this is the first randomised controlled online bipolar study with a discussion board attention control and meets the key methodological criteria for online interventions PMID:28257919
Ultra-realistic imaging: a new beginning for display holography
NASA Astrophysics Data System (ADS)
Bjelkhagen, Hans I.; Brotherton-Ratcliffe, David
2014-02-01
Recent improvements in key foundation technologies are set to potentially transform the field of Display Holography. In particular new recording systems, based on recent DPSS and semiconductor lasers combined with novel recording materials and processing, have now demonstrated full-color analogue holograms of both lower noise and higher spectral accuracy. Progress in illumination technology is leading to a further major reduction in display noise and to a significant increase of the clear image depth and brightness of such holograms. So too, recent progress in 1-step Direct-Write Digital Holography (DWDH) now opens the way to the creation of High Virtual Volume Displays (HVV) - large format full-parallax DWDH reflection holograms having fundamentally larger clear image depths. In a certain fashion HVV displays can be thought of as providing a high quality full-color digital equivalent to the large-format laser-illuminated transmission holograms of the sixties and seventies. Back then, the advent of such holograms led to much optimism for display holography in the market. However, problems with laser illumination, their monochromatic analogue nature and image noise are well cited as being responsible for their failure in reality. Is there reason for believing that the latest technology improvements will make the mark this time around? This paper argues that indeed there is.
FY2016 Lightweight Materials Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Lightweight Materials research and development (R&D) area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing lightweight materials for passenger and commercial vehicles. This report describes the progress made on the research and development projects funded by the Lightweight Materials area.
Jin, Lei; Duan, Keran; Shi, Chunming; Ju, Xianwei
2017-01-01
This paper investigates the relationship between technological progress in the energy sector and carbon emissions based on the Environment Kuznets Curve (EKC) and data from China during the period of 1995–2012. Our study confirms that the situation in China conforms to the EKC hypothesis and presents the inverted U-curve relationship between per capita income and carbon emissions. Furthermore, the inflection point will be reached in at least five years. Then, we use research and development (R & D) investment in the energy industry as the quantitative indicator of its technological progress to test its impact on carbon emissions. Our results show that technological progress in the energy sector contributes to a reduction in carbon emissions with hysteresis. Furthermore, our results show that energy efficiency improvements are also helpful in reducing carbon emissions. However, climate policy and change in industrial structure increase carbon emissions to some extent. Our conclusion demonstrates that currently, China is not achieving economic growth and pollution reduction simultaneously. To further achieve the goal of carbon reduction, the government should increase investment in the energy industry research and improve energy efficiency. PMID:29207562
Jin, Lei; Duan, Keran; Shi, Chunming; Ju, Xianwei
2017-12-04
This paper investigates the relationship between technological progress in the energy sector and carbon emissions based on the Environment Kuznets Curve (EKC) and data from China during the period of 1995-2012. Our study confirms that the situation in China conforms to the EKC hypothesis and presents the inverted U-curve relationship between per capita income and carbon emissions. Furthermore, the inflection point will be reached in at least five years. Then, we use research and development (R & D) investment in the energy industry as the quantitative indicator of its technological progress to test its impact on carbon emissions. Our results show that technological progress in the energy sector contributes to a reduction in carbon emissions with hysteresis. Furthermore, our results show that energy efficiency improvements are also helpful in reducing carbon emissions. However, climate policy and change in industrial structure increase carbon emissions to some extent. Our conclusion demonstrates that currently, China is not achieving economic growth and pollution reduction simultaneously. To further achieve the goal of carbon reduction, the government should increase investment in the energy industry research and improve energy efficiency.
ITER activities and fusion technology
NASA Astrophysics Data System (ADS)
Seki, M.
2007-10-01
At the 21st IAEA Fusion Energy Conference, 68 and 67 papers were presented in the categories of ITER activities and fusion technology, respectively. ITER performance prediction, results of technology R&D and the construction preparation provide good confidence in ITER realization. The superconducting tokamak EAST achieved the first plasma just before the conference. The construction of other new experimental machines has also shown steady progress. Future reactor studies stress the importance of down sizing and a steady-state approach. Reactor technology in the field of blanket including the ITER TBM programme and materials for the demonstration power plant showed sound progress in both R&D and design activities.
FY2015 Energy Storage R&D Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Energy Storage research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush.
Wan, Chun; Alam, Md Asraful; Zhao, Xin-Qing; Zhang, Xiao-Yue; Guo, Suo-Lian; Ho, Shih-Hsin; Chang, Jo-Shu; Bai, Feng-Wu
2015-05-01
Microalgae have been extensively studied for the production of various valuable products. Application of microalgae for the production of renewable energy has also received increasing attention in recent years. However, high cost of microalgal biomass harvesting is one of the bottlenecks for commercialization of microalgae-based industrial processes. Considering harvesting efficiency, operation economics and technological feasibility, flocculation is a superior method to harvest microalgae from mass culture. In this article, the latest progress of various microalgal cell harvesting methods via flocculation is reviewed with the emphasis on the current progress and prospect in environmentally friendly bio-based flocculation. Harvesting microalgae through bio-based flocculation is a promising component of the low-cost microalgal biomass production technology. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jiang, Shan; Liu, Shuihua
2004-04-01
Current optical communication systems are more and more relying on the advanced opto-electronic components. A series of revolutionary optical and optoelectronics components technology accounts for the fast progress and field deployment of high-capacity telecommunication and data-transmission systems. Since 1990s, the optical communication industry in China entered a high-speed development period and its wide deployment had already established the solid base for China information infrastructure. In this presentation, the main progress of optoelectronics components and technology in China are reviewed, which includes semiconductor laser diode/photo receiver, fiber optical amplifier, DWDM multiplexer/de-multiplexer, dispersion compensation components and all optical network node components, such as optical switch, OADM, tunable optical filters and variable optical attenuators, etc. Integration discrete components into monolithic/hybrid platform component is an inevitable choice for the consideration of performance, mass production and cost reduction. The current status and the future trends of OEIC and PIC components technology in China will also be discuss mainly on the monolithic integration DFB LD + EA modulator, and planar light-wave circuit (PLC) technology, etc.
FY2016 Advanced Batteries R&D Annual Progress Report - Part 5 of 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Advanced Batteries research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Battery subprogram in 2016. This section cover Advanced Battery Materials Research (BMR)more » part 2, Battery500 Innovation Centers project summaries, and appendices.« less
Research advances in major cereal crops for adaptation to abiotic stresses
Maiti, RK; Satya, Pratik
2014-01-01
With devastating increase in population there is a great necessity to increase crop productivity of staple crops but the productivity is greatly affected by various abiotic stress factors such as drought, salinity. An attempt has been made a brief account on abiotic stress resistance of major cereal crops viz. In spite of good successes obtained on physiological and use molecular biology, the benefits of this high cost technology are beyond the reach of developing countries. This review discusses several morphological, anatomical, physiological, biochemical and molecular mechanisms of major cereal crops related to the adaptation of these crop to abiotic stress factors. It discusses the effect of abiotic stresses on physiological processes such as flowering, grain filling and maturation and plant metabolisms viz. photosynthesis, enzyme activity, mineral nutrition, and respiration. Though significant progress has been attained on the physiological, biochemical basis of resistance to abiotic stress factors, very little progress has been achieved to increase productivity under sustainable agriculture. Therefore, there is a great necessity of inter-disciplinary research to address this issue and to evolve efficient technology and its transfer to the farmers’ fields. PMID:25523172
Recent advances in nanoplasmonic biosensors: applications and lab-on-a-chip integration
NASA Astrophysics Data System (ADS)
Lopez, Gerardo A.; Estevez, M.-Carmen; Soler, Maria; Lechuga, Laura M.
2017-01-01
Motivated by the recent progress in the nanofabrication field and the increasing demand for cost-effective, portable, and easy-to-use point-of-care platforms, localized surface plasmon resonance (LSPR) biosensors have been subjected to a great scientific interest in the last few years. The progress observed in the research of this nanoplasmonic technology is remarkable not only from a nanostructure fabrication point of view but also in the complete development and integration of operative devices and their application. The potential benefits that LSPR biosensors can offer, such as sensor miniaturization, multiplexing opportunities, and enhanced performances, have quickly positioned them as an interesting candidate in the design of lab-on-a-chip (LOC) optical biosensor platforms. This review covers specifically the most significant achievements that occurred in recent years towards the integration of this technology in compact devices, with views of obtaining LOC devices. We also discuss the most relevant examples of the use of the nanoplasmonic biosensors for real bioanalytical and clinical applications from assay development and validation to the identification of the implications, requirements, and challenges to be surpassed to achieve fully operative devices.
Research advances in major cereal crops for adaptation to abiotic stresses.
Maiti, R K; Satya, Pratik
2014-01-01
With devastating increase in population there is a great necessity to increase crop productivity of staple crops but the productivity is greatly affected by various abiotic stress factors such as drought, salinity. An attempt has been made a brief account on abiotic stress resistance of major cereal crops viz. In spite of good successes obtained on physiological and use molecular biology, the benefits of this high cost technology are beyond the reach of developing countries. This review discusses several morphological, anatomical, physiological, biochemical and molecular mechanisms of major cereal crops related to the adaptation of these crop to abiotic stress factors. It discusses the effect of abiotic stresses on physiological processes such as flowering, grain filling and maturation and plant metabolisms viz. photosynthesis, enzyme activity, mineral nutrition, and respiration. Though significant progress has been attained on the physiological, biochemical basis of resistance to abiotic stress factors, very little progress has been achieved to increase productivity under sustainable agriculture. Therefore, there is a great necessity of inter-disciplinary research to address this issue and to evolve efficient technology and its transfer to the farmers' fields.
Status of nickel/zinc and nickel/iron battery technology for electric vehicle applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, N.P.; Christianson, C.C.; Elliott, R.C.
1980-01-01
Significant progress in nickel/zinc and nickel/iron technology has been made towards achieving the battery technical performance goals necessary for widespread use of these battery systems in electric vehicle applications. This progress is reviewed. Nickel/zinc module test data have shown a specific energy of nearly 70 Whr/kg and a specific power of 130 W/kg. However, cycle life improvements are still needed (presently demonstrated capability of 120 cycles) and are expected to be demonstrated during 1980. Nickel/iron modules have demonstrated a specific energy of nearly 50 Wh/kg and a specific power of 100 W/kg. Indications are that improved performance in these areasmore » can be shown during 1980. Nickel/iron modules cycle lives of 300 have been achieved during early 1980 and testing continues. Energy efficiency has been improved from less than 50% to over 65%. Cost reduction (both initial and operating) continues to receive major emphasis at developers of both nickel/zinc and nickel/iron batteries in order to achieve the lowest possible life cycle cost to the battery user.« less
Induced pluripotent stem cell technology for modelling and therapy of cerebellar ataxia
Watson, Lauren M.; Wong, Maggie M. K.; Becker, Esther B. E.
2015-01-01
Induced pluripotent stem cell (iPSC) technology has emerged as an important tool in understanding, and potentially reversing, disease pathology. This is particularly true in the case of neurodegenerative diseases, in which the affected cell types are not readily accessible for study. Since the first descriptions of iPSC-based disease modelling, considerable advances have been made in understanding the aetiology and progression of a diverse array of neurodegenerative conditions, including Parkinson's disease and Alzheimer's disease. To date, however, relatively few studies have succeeded in using iPSCs to model the neurodegeneration observed in cerebellar ataxia. Given the distinct neurodevelopmental phenotypes associated with certain types of ataxia, iPSC-based models are likely to provide significant insights, not only into disease progression, but also to the development of early-intervention therapies. In this review, we describe the existing iPSC-based disease models of this heterogeneous group of conditions and explore the challenges associated with generating cerebellar neurons from iPSCs, which have thus far hindered the expansion of this research. PMID:26136256
Progress in MMIC technology for satellite communications
NASA Technical Reports Server (NTRS)
Haugland, Edward J.; Leonard, Regis F.
1987-01-01
NASA's Lewis Research Center is actively involved in the development of monolithic microwave and millimeter-wave integrated circuits (MMICs). The approach of the program is to support basic research under grant or in-house, while MMIC development is done under contract, thereby facilitating the transfer of technology to users. Preliminary thrusts of the program have been the extension of technology to higher frequencies (60 GHz), degrees of complexity, and performance (power, efficiency, noise figure) by utilizing novel circuit designs, processes, and materials. A review of the progress made so far is presented.
NASA Astrophysics Data System (ADS)
Takagi, Hirotaka; Sugiyama, Tomonari; Zashibo, Toshihito
Since its foundation, the power system of Chubu Electric Power Company (hereinafter CEPCO) has developed through power source and transmission facility formation to meet electricity demand increases. This development has been accompanied by progress in transmission technologies including capacity scale-up, compactification and power system stabilization to operate complex power systems. Now, changes in business situation due to electricity market liberalizatin may bring new challenges to future facility formation. This paper reviews CEPCO's history of power system formation and progress in transmission technologies, and describes future challenges.
Dawson, David A; Purnell, Phil; Roelich, Katy; Busch, Jonathan; Steinberger, Julia K
2014-11-04
Renewable energy technologies, necessary for low-carbon infrastructure networks, are being adopted to help reduce fossil fuel dependence and meet carbon mitigation targets. The evolution of these technologies has progressed based on the enhancement of technology-specific performance criteria, without explicitly considering the wider system (global) impacts. This paper presents a methodology for simultaneously assessing local (technology) and global (infrastructure) performance, allowing key technological interventions to be evaluated with respect to their effect on the vulnerability of wider infrastructure systems. We use exposure of low carbon infrastructure to critical material supply disruption (criticality) to demonstrate the methodology. A series of local performance changes are analyzed; and by extension of this approach, a method for assessing the combined criticality of multiple materials for one specific technology is proposed. Via a case study of wind turbines at both the material (magnets) and technology (turbine generators) levels, we demonstrate that analysis of a given intervention at different levels can lead to differing conclusions regarding the effect on vulnerability. Infrastructure design decisions should take a systemic approach; without these multilevel considerations, strategic goals aimed to help meet low-carbon targets, that is, through long-term infrastructure transitions, could be significantly jeopardized.
Technologies for Aircraft Noise Reduction
NASA Technical Reports Server (NTRS)
Huff, Dennis L.
2006-01-01
Technologies for aircraft noise reduction have been developed by NASA over the past 15 years through the Advanced Subsonic Technology (AST) Noise Reduction Program and the Quiet Aircraft Technology (QAT) project. This presentation summarizes highlights from these programs and anticipated noise reduction benefits for communities surrounding airports. Historical progress in noise reduction and technologies available for future aircraft/engine development are identified. Technologies address aircraft/engine components including fans, exhaust nozzles, landing gear, and flap systems. New "chevron" nozzles have been developed and implemented on several aircraft in production today that provide significant jet noise reduction. New engines using Ultra-High Bypass (UHB) ratios are projected to provide about 10 EPNdB (Effective Perceived Noise Level in decibels) engine noise reduction relative to the average fleet that was flying in 1997. Audio files are embedded in the presentation that estimate the sound levels for a 35,000 pound thrust engine for takeoff and approach power conditions. The predictions are based on actual model scale data that was obtained by NASA. Finally, conceptual pictures are shown that look toward future aircraft/propulsion systems that might be used to obtain further noise reduction.
Molecular Neuroanatomy: A Generation of Progress
Pollock, Jonathan D.; Wu, Da-Yu; Satterlee, John
2014-01-01
The neuroscience research landscape has changed dramatically over the past decade. An impressive array of neuroscience tools and technologies have been generated, including brain gene expression atlases, genetically encoded proteins to monitor and manipulate neuronal activity and function, cost effective genome sequencing, new technologies enabling genome manipulation, new imaging methods and new tools for mapping neuronal circuits. However, despite these technological advances, several significant scientific challenges must be overcome in the coming decade to enable a better understanding of brain function and to develop next generation cell type-targeted therapeutics to treat brain disorders. For example, we do not have an inventory of the different types of cells that exist in the brain, nor do we know how to molecularly phenotype them. We also lack robust technologies to map connections between cells. This review will provide an overview of some of the tools and technologies neuroscientists are currently using to move the field of molecular neuroanatomy forward and also discuss emerging technologies that may enable neuroscientists to address these critical scientific challenges over the coming decade. PMID:24388609
Clinical utility of circulating tumour cell detection in non-small-cell lung cancer.
Fusi, Alberto; Metcalf, Robert; Krebs, Matthew; Dive, Caroline; Blackhall, Fiona
2013-12-01
Recent years have witnessed increased interest in the detection of circulating tumour cells (CTCs) for diagnosis, monitoring, and treatment decision making in patients with cancer. Factors that have led to accelerated research in this field include advances in technologies for examination of intact CTCs, personalised medicine with treatment selection according to molecular characteristics, and continued lack of understanding of the biology of treatment resistance and metastasis. CTCs offer promise as a surrogate for tissue where there is insufficient tissue for molecular analysis and where there is a requirement to serially monitor molecular changes in cancer cells through treatment or on progression. In patients with either small cell or non-small cell lung cancer (NSCLC), there is evidence that CTC number is prognostic and that CTCs counted before and after treatment mirror treatment response. In patients with molecularly defined subtypes of NSCLC, CTCs demonstrate the same molecular changes as the cancer cells of the tumour. However, CTCs are not quite ready for "primetime" in the lung cancer clinic. There are still more questions than answers with respect to the optimal technologies for their detection and analysis, their biological significance, and their clinical utility. Despite this the current pace of progress in CTC technology development seems set to make "liquid biopsies" a clinical reality within the next decade. For the everyday clinician and clinical trialist, it will be important to maintain knowledge of the strengths and weaknesses of the technologies and evolving evidence base for CTCs as a routinely used diagnostic tool.
A future of living machines?: International trends and prospects in biomimetic and biohybrid systems
NASA Astrophysics Data System (ADS)
Prescott, Tony J.; Lepora, Nathan; Vershure, Paul F. M. J.
2014-03-01
Research in the fields of biomimetic and biohybrid systems is developing at an accelerating rate. Biomimetics can be understood as the development of new technologies using principles abstracted from the study of biological systems, however, biomimetics can also be viewed from an alternate perspective as an important methodology for improving our understanding of the world we live in and of ourselves as biological organisms. A biohybrid entity comprises at least one artificial (engineered) component combined with a biological one. With technologies such as microscale mobile computing, prosthetics and implants, humankind is moving towards a more biohybrid future in which biomimetics helps us to engineer biocompatible technologies. This paper reviews recent progress in the development of biomimetic and biohybrid systems focusing particularly on technologies that emulate living organisms—living machines. Based on our recent bibliographic analysis [1] we examine how biomimetics is already creating life-like robots and identify some key unresolved challenges that constitute bottlenecks for the field. Drawing on our recent research in biomimetic mammalian robots, including humanoids, we review the future prospects for such machines and consider some of their likely impacts on society, including the existential risk of creating artifacts with significant autonomy that could come to match or exceed humankind in intelligence. We conclude that living machines are more likely to be a benefit than a threat but that we should also ensure that progress in biomimetics and biohybrid systems is made with broad societal consent.
Progress and challenges in improving the nutritional quality of rice (Oryza sativa L.).
Birla, Deep Shikha; Malik, Kapil; Sainger, Manish; Chaudhary, Darshna; Jaiwal, Ranjana; Jaiwal, Pawan K
2017-07-24
Rice is a staple food for more than 3 billion people in more than 100 countries of the world but ironically it is deficient in many bioavailable vitamins, minerals, essential amino- and fatty-acids and phytochemicals that prevent chronic diseases like type 2 diabetes, heart disease, cancers, and obesity. To enhance the nutritional and other quality aspects of rice, a better understanding of the regulation of the processes involved in the synthesis, uptake, transport, and metabolism of macro-(starch, seed storage protein and lipid) and micronutrients (vitamins, minerals and phytochemicals) is required. With the publication of high quality genomic sequence of rice, significant progress has been made in identification, isolation, and characterization of novel genes and their regulation for the nutritional and quality enhancement of rice. During the last decade, numerous efforts have been made to refine the nutritional and other quality traits either by using the traditional breeding with high through put technologies such as marker assisted selection and breeding, or by adopting the transgenic approach. A significant improvement in vitamins (A, folate, and E), mineral (iron), essential amino acid (lysine), and flavonoids levels has been achieved in the edible part of rice, i.e., endosperm (biofortification) to meet the daily dietary allowance. However, studies on bioavailability and allergenicity on biofortified rice are still required. Despite the numerous efforts, the commercialization of biofortified rice has not yet been achieved. The present review summarizes the progress and challenges of genetic engineering and/or metabolic engineering technologies to improve rice grain quality, and presents the future prospects in developing nutrient dense rice to save the everincreasing population, that depends solely on rice as the staple food, from widespread nutritional deficiencies.
Progress in nanotechnology for healthcare.
Raffa, V; Vittorio, O; Riggio, C; Cuschieri, A
2010-06-01
This review based on the Wickham lecture given by AC at the 2009 SMIT meeting in Sinaia outlines the progress made in nano-technology for healthcare. It describes in brief the nature of nano-materials and their unique properties which accounts for the significant research both in scientific institutions and industry for translation into new therapies embodied in the emerging field of nano-medicine. It stresses that the potential of nano-medicine to make significant inroads for more effective therapies both for life-threatening and life-disabling disorders will only be achieved by high-quality life science research. The first generation of passive nano-diagnostics based on nanoparticle contrast agents for magnetic resonance imaging is well established in clinical practice and new such contrast agents are undergoing early clinical evaluation. Likewise active (second generation) nano-therapies, exemplified by targeted control drug release systems are undergoing early clinical evaluation. The situation concerning other nano-materials such as carbon nanotubes (CNTs) and boron nitride nanotubes (BNNTs) is less advanced although considerable progress has been made on their coating for aqueous dispersion and functionalisation to enable carriage of drugs, genes and fluorescent markers. The main problem related to the clinical use of these nanotubes is that there is no consent among scientists on the fate of such nano-materials following injection or implantation in humans. Provided carbon nanotubes are manufactured to certain medical criteria (length around 1 mum, purity of 97-99% and low Fe content) they exhibit no cytotoxicity on cell cultures and demonstrate full bio-compatibility on in vivo animal studies. The results of recent experimental studies have demonstrated the potential of technologies based on CNTs for low voltage wireless electro-chemotherapy of tumours and for electro-stimulation therapies for cardiac, neurodegenerative and skeletal and visceral muscle disorders.
NASA Technical Reports Server (NTRS)
1987-01-01
The conference provided a forum to assess the progress made, the problems remaining, and the strategy for the future of photovoltaic research. Cell research and technology, space environmental effects, array technology and applications were discussed.
Social Adjustment of At-Risk Technology Education Students
ERIC Educational Resources Information Center
Ernst, Jeremy V.; Moye, Johnny J.
2013-01-01
Individual technology education students' subgroup dynamic informs progressions of research while apprising technology teacher educators and classroom technology education teachers of intricate differences between students. Recognition of these differences help educators realize that classroom structure, instruction, and activities must be…
NASA R and T aerospace plane vehicles: Progress and plans
NASA Technical Reports Server (NTRS)
Dixon, S. C.
1985-01-01
Progress made in key technologies such as materials, structures, aerothermodynamics, hypersonic aerodynamics, and hypersonic airbreathing propulsion are reported. Advances were made in more generic, areas such as active controls, flight computer hardware and software, and interdisciplinary analytical design methodology. These technology advances coupled with the development of and experiences with the Space Shuttle make feasible aerospace plane-type vehicles that meet the more demanding requirements of various DOD missions and/or an all-weather Shuttle II with reduced launch costs. Technology needs and high payoff technologies, and the technology advancements in propulsion, control-configured-vehicles, aerodynamics, aerothermodynamics, aerothermal loads, and materials and structures were studied. The highest payoff technologies of materials and structures including thermal-structural analysis and high temperature test techniques are emphasized. The high priority technology of propulsion, and plans, of what remains to be done rather than firm program commitments, are briefly discussed.
NASA Technical Reports Server (NTRS)
Gasch, Matthew J.
2011-01-01
Early NASA missions (Gemini, Apollo, Mars Viking) employed new ablative TPS that were tailored for the entry environment. After 40 years, heritage ablative TPS materials using Viking or Pathfinder era materials are at or near their performance limits and will be inadequate for future exploration missions. Significant advances in TPS materials technology are needed in order to enable any subsequent human exploration missions beyond Low Earth Orbit. This poster summarizes some recent progress at NASA in developing families of advanced rigid/conformable and flexible ablators that could potentially be used for thermal protection in planetary entry missions. In particular the effort focuses technologies required to land heavy (approx.40 metric ton) masses on Mars to facilitate future exploration plans.
Advanced refractory-metal and process technology for the fabrication of x-ray masks
NASA Astrophysics Data System (ADS)
Brooks, Cameron J.; Racette, Kenneth C.; Lercel, Michael J.; Powers, Lynn A.; Benoit, Douglas E.
1999-06-01
This paper provides an in-depth report of the advanced materials and process technology being developed for x-ray mask manufacturing at IBM. Masks using diamond membranes as replacement for silicon carbide are currently being fabricated. Alternate tantalum-based absorbers, such as tantalum boron, which offer improved etch resolution and critical dimension control, as well as higher x-ray absorption, are also being investigated. In addition to the absorber studies, the development of conductive chromium- based hard-mask films to replace the current silicon oxynitride layer is being explored. The progress of this advanced-materials work, which includes significant enhancements to x-ray mask image-placement performance, will be outlined.
Coal Mining Machinery Development As An Ecological Factor Of Progressive Technologies Implementation
NASA Astrophysics Data System (ADS)
Efremenkov, A. B.; Khoreshok, A. A.; Zhironkin, S. A.; Myaskov, A. V.
2017-01-01
At present, a significant amount of energy spent for the work of mining machines and coal mining equipment on coal mines and open pits goes to the coal grinding in the process of its extraction in mining faces. Meanwhile, the increase of small fractions in mined coal does not only reduce the profitability of its production, but also causes a further negative impact on the environment and degrades labor conditions for miners. The countermeasure to the specified processes is possible with the help of coal mining equipment development. However, against the background of the technological decrease of coal mine equipment applied in Russia the negative impact on the environment is getting reinforced.
Bringing DNA vaccines closer to commercial use.
Carvalho, Joana A; Prazeres, Duarte M F; Monteiro, Gabriel A
2009-10-01
Progress in the application of DNA vaccines as an immunization protocol is evident from the increasing number of such vaccines under evaluation in clinical trials and by the recent approval of several DNA vaccine products for veterinary applications. DNA vaccine technology offers important therapeutic and commercial advantages compared with conventional approaches, including the opportunity to target pathogens characterized by significant genetic diversity using a safe immunization platform, and the ability to use a simple, rapid and well-characterized production method. However, further optimization of DNA vaccine technology through the use of improved constructs, delivery systems and immunization protocols is necessary to clinically achieve the promising results that have been demonstrated in preclinical models.
2006-01-01
From - To) 13-06-2006 Technical Paper 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER F04611-00-C-0055 Xenon Feed System Progress (Preprint) 5b. GRANT...propulsion xenon feed system for a flight technology demonstration program. Major accomplishments include: 1) Utilization of the Moog...successfully fed xenon to a 200 watt Hall Effect Thruster in a Technology Demonstration Program. The feed system has demonstrated throttling of xenon
The status, recent progress and promise of superconducting materials for practical applications
NASA Astrophysics Data System (ADS)
Rowell, J. M.
1989-03-01
The author summarizes the progress in materials science and engineering that created today's superconducting technology. He reviews the state of the technology with conventional materials by looking at two particular applications: large-scale applications involving conductors, for example, magnets; and electronics and instrumentation applications. The state-of-the art is contrasted with the present understanding of the high-Tc oxide materials.
NASA Technical Reports Server (NTRS)
Lum, Henry, Jr.
1991-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on Space Station Freedom. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. The report describes the progress made by Levels 1, 2 and 3 of the Office Space Station in developing and applying advanced automation and robotics technology. Emphasis has been placed upon the Space Station Freedom Program responses to specific recommendations made in ATAC Progress Report 11, the status of the Flight Telerobotic Servicer, and the status of the Advanced Development Program. In addition, an assessment is provided of the automation and robotics status of the Canadian Space Station Program.
Technologies for diagnosis and treatment of acute stroke
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitch, J.P.
1998-02-09
From October 1994 to June 1997, a multidisciplinary team of scientists and engineers at Lawrence Livermore National Laboratory were funded through LDRD to develop and integrate technologies for diagnosis and treatment of acute stroke. The project was summarized in a Science and Technology Review article `Brain Attack` that appeared in June 1997 and again in the Center for Healthcare Technologies Report (UCRL-LR-124761). This article is the best overview of the project, epidemiology of stroke and technical progress. Most of the technical progress has been documented in conference papers and presentations and refereed journal articles. Additional technical publication can be expectedmore » as our remaining patent applications progress through the US Patent and Trademark Office. The purpose of this report is to provide an appropriate introduction and organization to the numerous publications so that interested readers can quickly find information. Because there is no documentation for the history of this project, this report provides a summary. It also provides the final status report for the LDRD funding.« less
Scientific and Technological Progress: Problems for the West.
ERIC Educational Resources Information Center
de Rose, Francois
1978-01-01
Discusses the impact of science and technology on major social problems confronting the Western world. Topics include pollution and ecology, military impact, computer science, and the benefits of science and technology. (Author/MA)
Quantum technology past, present, future: quantum energetics (Conference Presentation)
NASA Astrophysics Data System (ADS)
Choi, Sang H.
2017-04-01
Since the development of quantum physics in the early part of the 1900s, this field of study has made remarkable contributions to our civilization. Some of these advances include lasers, light-emitting diodes (LED), sensors, spectroscopy, quantum dots, quantum gravity and quantum entanglements. In 1998, the NASA Langley Research Center established a quantum technology committee to monitor the progress in this area and initiated research to determine the potential of quantum technology for future NASA missions. The areas of interest in quantum technology at NASA included fundamental quantum-optics materials associated with quantum dots and quantum wells, device-oriented photonic crystals, smart optics, quantum conductors, quantum information and computing, teleportation theorem, and quantum energetics. A brief review of the work performed, the progress made in advancing these technologies, and the potential NASA applications of quantum technology will be presented.
Salinity Gradients for Sustainable Energy: Primer, Progress, and Prospects.
Yip, Ngai Yin; Brogioli, Doriano; Hamelers, Hubertus V M; Nijmeijer, Kitty
2016-11-15
Combining two solutions of different composition releases the Gibbs free energy of mixing. By using engineered processes to control the mixing, chemical energy stored in salinity gradients can be harnessed for useful work. In this critical review, we present an overview of the current progress in salinity gradient power generation, discuss the prospects and challenges of the foremost technologies - pressure retarded osmosis (PRO), reverse electrodialysis (RED), and capacitive mixing (CapMix) and provide perspectives on the outlook of salinity gradient power generation. Momentous strides have been made in technical development of salinity gradient technologies and field demonstrations with natural and anthropogenic salinity gradients (for example, seawater-river water and desalination brine-wastewater, respectively), but fouling persists to be a pivotal operational challenge that can significantly ebb away cost-competitiveness. Natural hypersaline sources (e.g., hypersaline lakes and salt domes) can achieve greater concentration difference and, thus, offer opportunities to overcome some of the limitations inherent to seawater-river water. Technological advances needed to fully exploit the larger salinity gradients are identified. While seawater desalination brine is a seemingly attractive high salinity anthropogenic stream that is otherwise wasted, actual feasibility hinges on the appropriate pairing with a suitable low salinity stream. Engineered solutions are foulant-free and can be thermally regenerative for application in low-temperature heat utilization. Alternatively, PRO, RED, and CapMix can be coupled with their analog separation process (reverse osmosis, electrodialysis, and capacitive deionization, respectively) in salinity gradient flow batteries for energy storage in chemical potential of the engineered solutions. Rigorous techno-economic assessments can more clearly identify the prospects of low-grade heat conversion and large-scale energy storage. While research attention is squarely focused on efficiency and power improvements, efforts to mitigate fouling and lower membrane and electrode cost will be equally important to reduce levelized cost of salinity gradient energy production and, thus, boost PRO, RED, and CapMix power generation to be competitive with other renewable technologies. Cognizance of the recent key developments and technical progress on the different technological fronts can help steer the strategic advancement of salinity gradient as a sustainable energy source.
Enabling technologies for nanostructuring (Invited Paper)
NASA Astrophysics Data System (ADS)
Gerlinger, Hermann
2005-06-01
Galileo Galilei once said in the 17th century that "anyone who understands geometry can understand everything in this world." But he had never heard of molecules, atoms or even smaller components. These days we would imitate Galileo by saying "anyone who understands the processes inside atoms and molecules understands the world." This nano world has its own unique appeal: something that is invisible to the naked eye, yet has dimensions that the mind still requires images/comparisons to understand, is a source of tremendous fascination. Even if we are a long way from understanding these processes, we now know one thing for certain: these days, decisive technological progress is made in the world of the minuscule. Specific examples of this come from the areas of gene technology, materials research and electronics on a daily basis. As a result, nanotechnologies have become the focal point of research and development - not only in industry but also in politics. For example, in March 2004, the German Federal Government launched the German innovation initiative for nanotechnology under the slogan "Nanotechnology Conquers Markets". According to a press release by the German Federal Ministry of Education and Research (BMBF), euro 200 million in funding will be made available to four leading-edge innovations over the next four years. However, there is still some debate about how to define the term "nanotechnology". While some see the essence of nanotechnology as the creation of a large entity from the minutest components by means of partly self-organizing processes, such as car paint consisting of nanoparticles, others simply regard the scale of particles or structures as the area of crucial significance. Scientists set a value of 100 nanometers as the "limit". A BMBF brochure argues: "It [nanotechnology] does not, therefore, represent a basic technology in the classical sense-one with clearly defined parameters. Instead, it describes a new interdisciplinary approach that will help us to make further progress in the fields of biotechnology, electronics, optics and new materials." There seems to be no end to the debate, with definitions continuing to clash and overlap. One thing is for sure, though, and that is the importance of nanotechnologies as a driving force for technological progress.
Present status of metrology of electro-optical surveillance systems
NASA Astrophysics Data System (ADS)
Chrzanowski, K.
2017-10-01
There has been a significant progress in equipment for testing electro-optical surveillance systems over the last decade. Modern test systems are increasingly computerized, employ advanced image processing and offer software support in measurement process. However, one great challenge, in form of relative low accuracy, still remains not solved. It is quite common that different test stations, when testing the same device, produce different results. It can even happen that two testing teams, while working on the same test station, with the same tested device, produce different results. Rapid growth of electro-optical technology, poor standardization, limited metrology infrastructure, subjective nature of some measurements, fundamental limitations from laws of physics, tendering rules and advances in artificial intelligence are major factors responsible for such situation. Regardless, next decade should bring significant improvements, since improvement in measurement accuracy is needed to sustain fast growth of electro-optical surveillance technology.
NASA Astrophysics Data System (ADS)
Roco, Mihail C.; Bainbridge, William S.
2013-09-01
Convergence of knowledge and technology for the benefit of society (CKTS) is the core opportunity for progress in the twenty-first century. CKTS is defined as the escalating and transformative interactions among seemingly different disciplines, technologies, communities, and domains of human activity to achieve mutual compatibility, synergism, and integration, and through this process to create added value and branch out to meet shared goals. Convergence has been progressing by stages over the past several decades, beginning with nanotechnology for the material world, followed by convergence of nanotechnology, biotechnology, information, and cognitive science (NBIC) for emerging technologies. CKTS is the third level of convergence. It suggests a general process to advance creativity, innovation, and societal progress based on five general purpose principles: (1) the interdependence of all components of nature and society, (2) decision analysis for research, development, and applications based on dynamic system-logic deduction, (3) enhancement of creativity and innovation through evolutionary processes of convergence that combines existing principles and divergence that generates new ones, (4) the utility of higher-level cross-domain languages to generate new solutions and support transfer of new knowledge, and (5) the value of vision-inspired basic research embodied in grand challenges. CKTS is a general purpose approach in knowledge society. It allows society to answer questions and resolve problems that isolated capabilities cannot, as well as to create new competencies, knowledge, and technologies on this basis. Possible solutions are outlined for key societal challenges in the next decade, including support for foundational emerging technologies NBIC to penetrate essential platforms of human activity and create new industries and jobs, improve lifelong wellness and human potential, achieve personalized and integrated healthcare and education, and secure a sustainable quality of life for all. This paper provides a 10-year "NBIC2" vision within a longer-term framework for converging technology and human progress outlined in a previous study of unifying principles across "NBIC" fields that began with nanotechnology, biotechnology, information technology, and technologies based on and enabling cognitive science (Roco and Bainbridge, Converging technologies for improving human performance: nanotechnology, biotechnology, information technology and cognitive sciences, 2003).
Cell biomechanics and its applications in human disease diagnosis
NASA Astrophysics Data System (ADS)
Nematbakhsh, Yasaman; Lim, Chwee Teck
2015-04-01
Certain diseases are known to cause changes in the physical and biomechanical properties of cells. These include cancer, malaria, and sickle cell anemia among others. Typically, such physical property changes can result in several fold increases or decreases in cell stiffness, which are significant and can result in severe pathology and eventual catastrophic breakdown of the bodily functions. While there are developed biochemical and biological assays to detect the onset or presence of diseases, there is always a need to develop more rapid, precise, and sensitive methods to detect and diagnose diseases. Biomechanical property changes can play a significant role in this regard. As such, research into disease biomechanics can not only give us an in-depth knowledge of the mechanisms underlying disease progression, but can also serve as a powerful tool for detection and diagnosis. This article provides some insights into opportunities for how significant changes in cellular mechanical properties during onset or progression of a disease can be utilized as useful means for detection and diagnosis. We will also showcase several technologies that have already been developed to perform such detection and diagnosis.
NASA Astrophysics Data System (ADS)
Chalk, Steven G.; Miller, James F.
Reducing or eliminating the dependency on petroleum of transportation systems is a major element of US energy research activities. Batteries are a key enabling technology for the development of clean, fuel-efficient vehicles and are key to making today's hybrid electric vehicles a success. Fuel cells are the key enabling technology for a future hydrogen economy and have the potential to revolutionize the way we power our nations, offering cleaner, more efficient alternatives to today's technology. Additionally fuel cells are significantly more energy efficient than combustion-based power generation technologies. Fuel cells are projected to have energy efficiency twice that of internal combustion engines. However before fuel cells can realize their potential, significant challenges remain. The two most important are cost and durability for both automotive and stationary applications. Recent electrocatalyst developments have shown that Pt alloy catalysts have increased activity and greater durability than Pt catalysts. The durability of conventional fluorocarbon membranes is improving, and hydrocarbon-based membranes have also shown promise of equaling the performance of fluorocarbon membranes at lower cost. Recent announcements have also provided indications that fuel cells can start from freezing conditions without significant deterioration. Hydrogen storage systems for vehicles are inadequate to meet customer driving range expectations (>300 miles or 500 km) without intrusion into vehicle cargo or passenger space. The United States Department of Energy has established three centers of Excellence for hydrogen storage materials development. The centers are focused on complex metal hydrides that can be regenerated onboard a vehicle, chemical hydrides that require off-board reprocessing, and carbon-based storage materials. Recent developments have shown progress toward the 2010 DOE targets. In addition DOE has established an independent storage material testing center to verify storage capacity of promising materials. These developments point to a viable path to achieving the DOE/FreedomCAR cost and performance goals. The transition to hydrogen-powered fuel cell vehicles will occur over the next 10-15 years. In the interim, fossil fuel consumption will be reduced by increased penetration of battery/gasoline hybrid cars.
NASA Technical Reports Server (NTRS)
Venkatapathy, Ethiraj; Ellerby, Don; Gage, Peter
2017-01-01
Heat-shield for Extreme Entry Environment Technology (HEEET) has been in development since 2014 with the goal of enabling missions to Venus, Saturn and other high-speed sample return missions. It is offered as a new technology and incentivized for mission use in the New Frontiers 4 AO by NASA. The current plans are to mature the technology to TRL 6 by FY18. The HEEET Team has been working closely with multiple NF-4 proposals to Venus, Saturn and has been supporting recent Ice-Giants mission studies. This presentation will provide progress made to date and the plans for development in FY18.
Applications of aerospace technology in the electric power industry
NASA Technical Reports Server (NTRS)
1973-01-01
An overview of the electric power industry, selected NASA contributions to progress in the industry, linkages affecting the transfer and diffusion of technology, and, finally, a perspective on technology transfer issues are presented.
Advancing automation and robotics technology for the Space Station Freedom and for the US economy
NASA Technical Reports Server (NTRS)
1990-01-01
In April 1985, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on Space Station Freedom. This material was documented in the initial report (NASA Technical Memorandum 87566). The progress made by Levels 1, 2, and 3 of the Office of Space Station in developing and applying advanced automation and robotics technology are described. Emphasis was placed upon the Space Station Freedom Program responses to specific recommendations made in ATAC Progress Report 9, the Flight Telerobotic Servicer, the Advanced Development Program, and the Data Management System. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for the Space Station Freedom.
Progress on Fuel Efficiency and Market Adoption - SuperTruck Factsheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-06-30
The Department of Energy (DOE) launched the SuperTruck initiative in 2009 with the goal of developing and demonstrating a 50 percent improvement in overall freight efficiency (expressed in a ton-mile per gallon metric) for a heavy-duty Class 8 tractor-trailer. To date, the industry teams participating in the initiative have successfully met or are on track to exceed this goal, leveraging suites of technologies that hold significant potential for market success.
Ramsey, Rachelle R; Holbein, Christina E; Powers, Scott W; Hershey, Andrew D; Kabbouche, Marielle A; O'Brien, Hope L; Kacperski, Joanne; Shepard, Jeffrey; Hommel, Kevin A
2018-01-01
Background Effective management of migraine requires adherence to treatment recommendations; however, adolescents with migraine take their daily medications only 75% of the time. Low-cost adherence-focused interventions using technology may improve adherence, but have not been investigated. Methods Thirty-five adolescents and young adults (13-21 years) with migraine participated in an AB-design pilot study to assess the use of a mobile phone adherence-promotion application ("app") and progressive reminder system. Adherence was calculated using electronic monitoring during the baseline period and medication adherence intervention. Results Relative to baseline, adherence significantly improved during the first month of the intervention. Specifically, improvements existed for older participants with lower baseline adherence. Self-reported app-based adherence rates were significantly lower than electronically monitored adherence rates. Participants rated the intervention as acceptable and easy to use. Conclusions "Apps" have the potential to improve medication adherence and are a promising intervention for adolescents and young adults with low adherence. Involving parents in the intervention is also helpful. Providers should assess barriers to adherence and use of technology-based interventions, encourage parents to incorporate behavioral incentives, and provide referrals for more intensive interventions to improve long-term outcomes. Further, tracking adherence in an app may result in an underestimation of adherence. Future full-scale studies should be conducted to examine adherence promotion app interventions.
ERIC Educational Resources Information Center
Truxal, John G.
Technological advances during the past few decades have revolutionized many complex systems that influence human activity. As the rate of technological progress accelerates, these systems will become more complex, and new ones will evolve. Citizens in a technological society need to be able to make intelligent choices about how technology will…
Current Progress of Capacitive Deionization for Removal of Pollutant Ions
NASA Astrophysics Data System (ADS)
Gaikwad, Mahendra S.; Balomajumder, Chandrajit
2016-08-01
A mini review of a recently developing water purification technology capacitive deionization (CDI) applied for removal of pollutant ions is provided. The current progress of CDI for removal of different pollutant ions such as arsenic, fluoride, boron, phosphate, lithium, copper, cadmium, ferric, and nitrate ions is presented. This paper aims at motivating new research opportunities in capacitive deionization technology for removal of pollutant ions from polluted water.
Introducing modern technology to promote transparency in health services.
Islam, Mohammad Shafiqul
2015-01-01
Quantitative indicators show that Bangladeshi maternal and child healthcare is progressing satisfactorily. However, healthcare quality is still inadequate. It is hypothesised that modern technology enhances healthcare quality. Therefore, the purpose of this paper is to investigate how modern technology such as electronic record keeping and the internet can contribute to enhancing Bangladeshi healthcare quality. This study also explores how socio-economic and political factors affect the healthcare quality. This paper is based on a qualitative case study involving 68 in-depth interviews with healthcare professionals, elected representatives, local informants and five focus group discussions with healthcare service users to understand technology's effect on health service quality. The study has been conducted in one rural and one urban service organisations to understand how various factors contribute differently to healthcare quality. The findings show that modern technology, such as the internet and electronic devices for record keeping, contribute significantly to enhancing health service transparency, which in turn leads to quality health and family planning services. The findings also show that information and communication technology (ICT) is an effective mechanism for reducing corruption and promoting transparency. However, resource constraints impact adversely on the introduction of technology, which leads to less transparent healthcare. Progress in education and general socio-economic conditions makes it suitable to enhance ICT usage, which could lead to healthcare transparency, but political and bureaucratic factors pose a major challenge to ensure transparency. This paper can be a useful guide for promoting governance and healthcare quality in developing countries including Bangladesh. It analyses the ICT challenges that healthcare staff face when promoting transparent healthcare. This paper provides a deeper understanding of transparency and healthcare quality in an ICT context using empirical data, which has not been explored in Bangladesh. This critical thinking is useful for policy makers and healthcare practitioners for promoting health service quality.
10 kW SOFC Power System Commercialization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dan Norrick; Brad Palmer; Charles Vesely
2006-02-01
Cummins Power Generation (CPG) as the prime contractor and SOFCo-EFS Holdings LLC (SOFCo), as their subcontractor, teamed under the Solid-state Energy Conversion Alliance (SECA) program to develop 3-10kW solid oxide fuel cell systems for use in recreational vehicles, commercial work trucks and stand-by telecommunications applications. The program goal is demonstration of power systems that meet commercial performance requirements and can be produced in volume at a cost of $400/kW. This report summarizes the team's activities during the seventh six-month period (July-December 2005) of the four-year Phase I effort. While there has been significant progress in the development of the SOFCmore » subsystems that can support meeting the program Phase 1 goals, the SOFCo ceramic stack technology has progressed significantly slower than plan and CPG consider it unlikely that the systemic problems encountered will be overcome in the near term. SOFCo has struggled with a series of problems associated with inconsistent manufacturing, inadequate cell performance, and the achievement of consistent, durable, low resistance inter-cell connections with reduced or no precious materials. A myriad of factors have contributed to these problems, but the fact remains that progress has not kept pace with the SECA program. A contributing factor in SOFCo's technical difficulties is attributed to their significantly below plan industry cost share spending over the last four years. This has resulted in a much smaller SOFC stack development program, has contributed to SOFCo not being able to aggressively resolve core issues, and clouds their ability to continue into a commercialization phase. In view of this situation, CPG has conducted an independent assessment of the state-of-the-art in planar SOFC's stacks and have concluded that alternative technology exists offering the specific performance, durability, and low cost needed to meet the SECA objectives. We have further concluded that there is insufficient evidence to reliably predict that SOFCo will be able to achieve the SECA performance and cost goals on a schedule consistent with SECA or CPG commercialization goals. CPG believes SOFCo have made a good faith effort consistent with the available resources, but have repeatedly fallen short of achieving the programs scheduled targets. CPG has therefore initiated a process of application for extension of Phase 1 of our SECA program with the intent of transitioning to an alternative stack supplier with more mature SOFC technology, and demonstrating a system meeting the SECA Phase 1 goals by the end of calendar 2006. We have identified an alternative supplier and will be reporting the progress on transition and program planning in monthly technical reports, reviews, and in the next semiannual report.« less
ERIC Educational Resources Information Center
Moallem, Mahnaz; Micallef, Suzanne
Human resource positions that are becoming known as Technology Coordinator (for district-level personnel) and Technology Resource Teacher (for school-level personnel) have been created to help integrate technology into classroom instruction. This study assessed the progress and effectiveness of Technology Resource Teachers, or TRTs, as technical…
Applying Technology to Unmet Needs. Technology and the American Economy, Appendix, Volume V.
ERIC Educational Resources Information Center
National Commission on Technology, Automation and Economic Progress, Washington, DC.
Twelve studies dealing with the problems of applying technology to unmet human and community needs are presented. "Urban Planning and Metropolitan Development--The Role of Technology," examines the possibilities of the computer and other modern planning tools. "Technology, Automation, and Economic Progress in Housing and Urban Development"…
Progression in Technology Education in New Zealand: Components of Practice as a Way Forward
ERIC Educational Resources Information Center
Compton, Vicki; Harwood, Cliff
2005-01-01
Understanding and undertaking technological practice is fundamental to student learning in technology education in New Zealand, and the enhancement of student technological literacy. The implementation of technology into New Zealand's core curriculum has reached the stage where it has become critical that learning programmes are based on student…
NASA Astrophysics Data System (ADS)
Kilbourne, Caroline; Adams, J. S.; Bandler, S.; Chervenak, J.; Chiao, M.; Doriese, R.; Eckart, M.; Finkbeiner, F.; Fowler, J. W.; Hilton, G.; Irwin, K.; Kelley, R. L.; Moseley, S. J.; Porter, F. S.; Reintsema, C.; Sadleir, J.; Smith, S. J.; Swetz, D.; Ullom, J.
2014-01-01
NASA/GSFC and NIST-Boulder are collaborating on a program to advance superconducting transition-edge sensor (TES) microcalorimeter technology toward Technology Readiness Level (TRL) 6. The technology development for a TES imaging X-ray microcalorimeter spectrometer (TES microcalorimeter arrays and time-division multiplexed SQUID readout) is now at TRL 4, as evaluated by both NASA and the European Space Agency (ESA) during mission formulation for the International X-ray Observatory (IXO). We will present the status of the development program. The primary goal of the current project is to advance the core X-ray Microcalorimeter Spectrometer (XMS) detector-system technologies to a demonstration of TRL 5 in 2014. Additional objectives are to develop and demonstrate two important related technologies to at least TRL 4: position-sensitive TES devices and code-division multiplexing (CDM). These technologies have the potential to expand significantly the range of possible instrument optimizations; together they allow an expanded focal plane and higher per-pixel count rates without greatly increasing mission resources. The project also includes development of a design concept and critical technologies needed for the thermal, electrical, and mechanical integration of the detector and readout components into the focal-plane assembly. A verified design concept for the packaging of the focal-plane components will be needed for the detector system eventually to advance to TRL 6. Thus, the current project is a targeted development and demonstration program designed to make significant progress in advancing the XMS detector system toward TRL 6, establishing its readiness for a range of possible mission implementations.
Strategies to advance vaccine technologies for resource-poor settings.
Kristensen, Debra; Chen, Dexiang
2013-04-18
New vaccine platform and delivery technologies that can have significant positive impacts on the effectiveness, acceptability, and safety of immunizations in developing countries are increasingly available. Although donor support for vaccine technology development is strong, the uptake of proven technologies by the vaccine industry and demand for them by purchasers continues to lag. This article explains the challenges and opportunities associated with accelerating the availability of innovative and beneficial vaccine technologies to meet critical needs in resource-poor settings over the next decade. Progress will require increased dialog between the public and private sectors around vaccine product attributes; establishment of specifications for vaccines that mirror programmatic needs; stronger encouragement of vaccine developers to consider novel technologies early in the product development process; broader facilitation of research and access to technologies through the formation of centers of excellence; the basing of vaccine purchase decisions on immunization systems costs rather than price per dose alone; possible subsidization of early technology adoption costs for vaccine producers that take on the risks of new technologies of importance to the public sector; and the provision of data to purchasers, better enabling them to make informed decisions that take into account the value of specific product attributes. Copyright © 2012 Elsevier Ltd. All rights reserved.
Terrestrial Planet Finder Interferometer: Architecture, Mission Design and Technology Development
NASA Technical Reports Server (NTRS)
Henry, Curt; Lay, Oliver; Aung, MiMi; Gunter, Steven M.; Dubovitsky, Serge; Blackwood, Gary
2004-01-01
This overview paper is a progress report about the system design and technology development of two interferometer concepts studied for the Terrestrial Planet Finder (TPF) project. The two concepts are a structurally-connected interferometer (SCI) intended to fulfill minimum TPF science goals and a formation-flying interferometer (FFI) intended to fulfill full science goals. Described are major trades, analyses, and technology experiments completed. Near term plans are also described. This paper covers progress since August 2003 and serves as an update to a paper presented at that month's SPIE conference, 'Techniques and Instrumentation for Detection of Exoplanets.
Highlights of Aeroacoustics Research in the U.S. 1998
NASA Technical Reports Server (NTRS)
Raman, Ganesh; McLaughlin, Dennis K.
1999-01-01
Highlights of aeroacoustics research in the United States of America during 1998 are reported in a summary compiled from information provided by members of the Aeroacoustics Technical Committee of the American Institute of Aeronautics and Astronautics (AIAA) and other leading research groups in industry, national laboratories, and academia. The past few years have seen significant progress in aeroacoustics. Research has steadily progressed toward enhanced safety, noise benefits, and lower costs. Since industrial progress is generally not published in the archival literature, it is particularly important to highlight these accomplishments. This year we chose to report on five topics of great interest to the aerospace industry including a synopsis of fundamental research at universities and national laboratories. The topics chosen are: (1) Advanced Subsonic Technology (AST), (2) High Speed Research (HSR), (3) Rotorcraft, (4) Weapons bay aeroacoustics control and (5) Academic research including Computational AeroAcoustics (CAA). Although the information presented in this review is not all encompassing we hope that the topics covered will provide some insights into aeroacoustics activity in the U.S.
SP-100 - The national space reactor power system program in response to future needs
NASA Astrophysics Data System (ADS)
Armijo, J. S.; Josloff, A. T.; Bailey, H. S.; Matteo, D. N.
The SP-100 system has been designed to meet comprehensive and demanding NASA/DOD/DOE requirements. The key requirements include: nuclear safety for all mission phases, scalability from 10's to 100's of kWe, reliable performance at full power for seven years of partial power for ten years, survivability in civil or military threat environments, capability to operate autonomously for up to six months, capability to protect payloads from excessive radiation, and compatibility with shuttle and expendable launch vehicles. The authors address of major progress in terms of design, flexibility/scalability, survivability, and development. These areas, with the exception of survivability, are discussed in detail. There has been significant improvement in the generic flight system design with substantial mass savings and simplification that enhance performance and reliability. Design activity has confirmed the scalability and flexibility of the system and the ability to efficiently meet NASA, AF, and SDIO needs. SP-100 development continues to make significant progress in all key technology areas.
NASA Astrophysics Data System (ADS)
Sarma, Kalluri
2015-05-01
Organic light emitting diode (OLED) display technology has advanced significantly in recent years and it is increasingly being adapted in consumer electronics products with premium performance, such as high resolution smart phones, Tablet PCs and TVs. Even flexible OLED displays are beginning to be commercialized in consumer electronic devices such as smart phones and smart watches. In addition to the advances in OLED emitters, successful development and adoption of OLED displays for premium performance applications relies on the advances in several enabling technologies including TFT backplanes, pixel drive electronics, pixel patterning technologies, encapsulation technologies and system level engineering. In this paper we will discuss the impact of the recent advances in LTPS and AOS TFTs, R, G, B and White OLED with color filter pixel architectures, and encapsulation, on the success of the OLEDs in consumer electronic devices. We will then discuss potential of these advances in addressing the requirements of OLED and flexible displays for the military and avionics applications.
Commercial involvement in the development of space-based plant growing technology
NASA Astrophysics Data System (ADS)
Bula, R. J.; Tibbitts, T. W.; Morrow, R. C.; Dinauer, W. R.
1992-07-01
Considerable technological progress has been made in the development of controlled environment facilities for plant growth. Although not all of the technology used for terrestrial facilities is applicable to space-based plant growth facilities, the information resident in the commercial organizations that market these facilities can provide a significant resource for the development of the plant growing component of a CELSS. In 1985, NASA initiated an effort termed the Centers for the Commercial Development of Space (CCDS). This program endeavors to develop cooperative research and technology development programs with industrial companies that capitalize on the strengths of industry-university working relationships. One of the these CCDSs, the Wisconsin Center for Space Automation and Robotics (WCSAR), deals with developing automated plant growth facilities for space, in cooperation with several industrial partners. Concepts have been developed with industrial partners for the irradiation, water and nutrient delivery, nutrient composition control and automation and robotics subsystems of plant growing units. Space flight experiments are planned for validation of the concepts in a space environment.
NASA Astrophysics Data System (ADS)
King, Sean W.; Simka, Harsono; Herr, Dan; Akinaga, Hiro; Garner, Mike
2013-10-01
Recent discussions concerning the continuation of Moore's law have focused on announcements by several major corporations to transition from traditional 2D planar to new 3D multi-gate field effect transistor devices. However, the growth and progression of the semiconductor microelectronics industry over the previous 4 decades has been largely driven by combined advances in new materials, lithography, and materials related process technologies. Looking forward, it is therefore anticipated that new materials and materials technologies will continue to play a significant role in both the pursuit of Moore's law and the evolution of the industry. In this research update, we discuss and illustrate some of the required and anticipated materials innovations that could potentially lead to the continuation of Moore's law for another decade (or more). We focus primarily on the innovations needed to achieve single digit nanometer technologies and illustrate how at these dimensions not only new materials but new metrologies and computational modeling will be needed.
Quantitative real-time single particle analysis of virions.
Heider, Susanne; Metzner, Christoph
2014-08-01
Providing information about single virus particles has for a long time been mainly the domain of electron microscopy. More recently, technologies have been developed-or adapted from other fields, such as nanotechnology-to allow for the real-time quantification of physical virion particles, while supplying additional information such as particle diameter concomitantly. These technologies have progressed to the stage of commercialization increasing the speed of viral titer measurements from hours to minutes, thus providing a significant advantage for many aspects of virology research and biotechnology applications. Additional advantages lie in the broad spectrum of virus species that may be measured and the possibility to determine the ratio of infectious to total particles. A series of disadvantages remain associated with these technologies, such as a low specificity for viral particles. In this review we will discuss these technologies by comparing four systems for real-time single virus particle analysis and quantification. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Commercial involvement in the development of space-based plant growing technology.
Bula, R J; Tibbitts, T W; Morrow, R C; Dinauer, W R
1992-01-01
Considerable technological progress has been made in the development of controlled environment facilities for plant growth. Although not all of the technology used for terrestrial facilities is applicable to space-based plant growth facilities, the information resident in the commercial organizations that market these facilities can provide a significant resource for the development of the plant growing component of a CELSS. In 1985, NASA initiated an effort termed the Centers for the Commercial Development of Space (CCDS). This program endeavors to develop cooperative research and technology development programs with industrial companies that capitalize on the strengths of industry-university working relationships. One of the these CCDSs, the Wisconsin Center for Space Automation and Robotics (WCSAR), deals with developing automated plant growth facilities for space, in cooperation with several industrial partners. Concepts have been developed with industrial partners for the irradiation, water and nutrient delivery, nutrient composition control and automation and robotics subsystems of plant growing units. Space flight experiments are planned for validation of the concepts in a space environment.
Genome assembly from synthetic long read clouds
Kuleshov, Volodymyr; Snyder, Michael P.; Batzoglou, Serafim
2016-01-01
Motivation: Despite rapid progress in sequencing technology, assembling de novo the genomes of new species as well as reconstructing complex metagenomes remains major technological challenges. New synthetic long read (SLR) technologies promise significant advances towards these goals; however, their applicability is limited by high sequencing requirements and the inability of current assembly paradigms to cope with combinations of short and long reads. Results: Here, we introduce Architect, a new de novo scaffolder aimed at SLR technologies. Unlike previous assembly strategies, Architect does not require a costly subassembly step; instead it assembles genomes directly from the SLR’s underlying short reads, which we refer to as read clouds. This enables a 4- to 20-fold reduction in sequencing requirements and a 5-fold increase in assembly contiguity on both genomic and metagenomic datasets relative to state-of-the-art assembly strategies aimed directly at fully subassembled long reads. Availability and Implementation: Our source code is freely available at https://github.com/kuleshov/architect. Contact: kuleshov@stanford.edu PMID:27307620
Wang, Hsiu-Yun; Stocker, Joel F; Fu, Daiwie
2012-02-01
Science education often adopts a narrow view of science that assumes the lay public is ignorant, which seemingly justifies a science education limited to a promotional narrative of progress in the form of scientific knowledge void of meaningful social context. We propose that to prepare students as future concerned citizens of a technoscientific society, science education should be informed by science, technology, and society (STS) perspectives. An STS-informed science education, in our view, will include the following curricular elements: science controversy education, gender issues, historical perspective, and a move away from a Eurocentric view by looking into the distinctive patterns of other regional (in this case of Taiwan, East Asian) approaches to science, technology, and medicine. This article outlines the significance of some major STS studies as a means of illustrating the ways in which STS perspectives can, if incorporated into science education, enhance our understanding of science and technology and their relationships with society. Copyright © 2011. Published by Elsevier B.V.
Progress in preliminary studies at Ottana Solar Facility
NASA Astrophysics Data System (ADS)
Demontis, V.; Camerada, M.; Cau, G.; Cocco, D.; Damiano, A.; Melis, T.; Musio, M.
2016-05-01
The fast increasing share of distributed generation from non-programmable renewable energy sources, such as the strong penetration of photovoltaic technology in the distribution networks, has generated several problems for the management and security of the whole power grid. In order to meet the challenge of a significant share of solar energy in the electricity mix, several actions aimed at increasing the grid flexibility and its hosting capacity, as well as at improving the generation programmability, need to be investigated. This paper focuses on the ongoing preliminary studies at the Ottana Solar Facility, a new experimental power plant located in Sardinia (Italy) currently under construction, which will offer the possibility to progress in the study of solar plants integration in the power grid. The facility integrates a concentrating solar power (CSP) plant, including a thermal energy storage system and an organic Rankine cycle (ORC) unit, with a concentrating photovoltaic (CPV) plant and an electrical energy storage system. The facility has the main goal to assess in real operating conditions the small scale concentrating solar power technology and to study the integration of the two technologies and the storage systems to produce programmable and controllable power profiles. A model for the CSP plant yield was developed to assess different operational strategies that significantly influence the plant yearly yield and its global economic effectiveness. In particular, precise assumptions for the ORC module start-up operation behavior, based on discussions with the manufacturers and technical datasheets, will be described. Finally, the results of the analysis of the: "solar driven", "weather forecasts" and "combined storage state of charge (SOC)/ weather forecasts" operational strategies will be presented.
The Growth of Hydrological Understanding: Technologies, Ideas, and Societal Needs Shape the Field
NASA Astrophysics Data System (ADS)
Sivapalan, Murugesu; Blöschl, Günter
2017-10-01
Inspired by the work of Newton, Darwin, and Wegener, this paper tracks the drivers and dynamics that have shaped the growth of hydrological understanding over the last century. On the basis of an interpretation of this history, the paper then speculates about what kind of future is in store for hydrology and how we can better prepare for it. The historical narrative underpinning this analysis indicates that progress in hydrological understanding is brought about by changing societal needs and technological opportunities: new ideas are generated by hydrologists through addressing societal needs with the technologies of their time. We suggest that progress in hydrological understanding over the last century has expressed itself through repeated cycles of euphoria and disenchantment, which have served as stimuli for the progress. The progress, for it to happen, also needed inspirational leaders as well as a supportive scientific community that provided the backdrop to major advances in the field. The paper concludes that, in a similar way to how Newton, Darwin, and Wegener conducted their research, hydrology too can benefit from synthesis activities aimed at "connecting the dots."
Progress in MOCVD growth of HgCdTe epilayers for HOT infrared detectors
NASA Astrophysics Data System (ADS)
Kebłowski, A.; Gawron, W.; Martyniuk, P.; Stepień, D.; Kolwas, K.; Piotrowski, J.; Madejczyk, P.; Kopytko, M.; Piotrowski, A.; Rogalski, A.
2016-05-01
In this paper we present progress in MOCVD growth of (100) HgCdTe epilayers achieved recently at the Institute of Applied Physics, Military University of Technology and Vigo System S.A. It is shown that MOCVD technology is an excellent tool in fabrication of different HgCdTe detector structures with a wide range of composition, donor/acceptor doping and without post grown annealing. Particular progress has been achieved in the growth of (100) HgCdTe epilayers for long wavelength infrared photoconductors operated in HOT conditions. The (100) HgCdTe photoconductor optimized for 13-μm attain detectivity equal to 6.5x109 Jones and therefore outperform its (111) counterpart. The paper also presents technological progress in fabrication of MOCVD-grown (111) HgCdTe barrier detectors. The barrier device performance is comparable with state-of-the-art of HgCdTe photodiodes. The detectivity of HgCdTe detectors is close to the value marked HgCdTe photodiodes. Dark current densities are close to the values given by "Rule 07".
NASA Technical Reports Server (NTRS)
1990-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Space Station Freedom. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the ninth in a series of progress updates and covers the period between February 24, 1989, and July 12, 1989. NASA has accepted the basic recommendation of ATAC for its Space Station Freedom efforts. ATAC and NASA agree that the thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station program and serve as a highly visible stimulator, affecting the U.S. long-term economy. The work of NASA and the Freedom contractors, e.g., Work Packages, as well as the Flight Telerobotic Servicer is identified. Research in progress is also described and assessments of the advancement of automation and robotics technology on the Space Station Freedom are given.
ERIC Educational Resources Information Center
Visich, Marian, Jr.
Technological advances during the past few decades have revolutionized many complex systems that influence human activity. As the rate of technological progress accelerates, these systems will become more complex, and new ones will evolve. Citizens in a technological society need to be able to make intelligent choices about how technology will…
ENVIRONMENTAL TECHNOLOGY VERIFICATION FOR AIR POLLUTION CONTROL TECHNOLOGIES
The report describes the activities and progress of the pilot Air Pollution Control Technologies (APCT) portion of the Environmental Technology Verification (ETV) Program during the period from 09/15/97 to 09/15/02. The objective of the ETV Program is to verify the performance of...
2013 Geothermal Technologies Office Peer Review Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geothermal Technologies Office
Geothermal Technologies Office conducted its annual program peer review in April of 2013. The review provided an independent, expert evaluation of the technical progress and merit of GTO-funded projects. Further, the review was a forum for feedback and recommendations on future GTO strategic planning. During the course of the peer review, DOE-funded projects were evaluated for 1) their contribution to the mission and goals of the GTO and 2) their progress against stated project objectives. Principal Investigators (PIs) came together in sessions organized by topic “tracks” to disseminate information, progress, and results to a panel of independent experts as wellmore » as attendees.« less
Space ventures and society long-term perspectives
NASA Technical Reports Server (NTRS)
Brown, W. M.
1985-01-01
A futuristic evaluation of mankind's potential long term future in space is presented. Progress in space will not be inhibited by shortages of the Earth's physical resources, since long term economic growth will be focused on ways to constrain industrial productivity by changing social values, management styles, or government competence. Future technological progress is likely to accelerate with an emphasis on international cooperation, making possible such large joint projects as lunar colonies or space stations on Mars. The long term future in space looks exceedingly bright even in relatively pessimistic scenarios. The principal driving forces will be technological progress, commercial and public-oriented satellites, space industrialization, space travel, and eventually space colonization.
Kotowski, Jacek; Wollstein, Gadi; Ishikawa, Hiroshi; Schuman, Joel S
2014-01-01
Because glaucomatous damage is irreversible early detection of structural changes in the optic nerve head and retinal nerve fiber layer is imperative for timely diagnosis of glaucoma and monitoring of its progression. Significant improvements in ocular imaging have been made in recent years. Imaging techniques such as optical coherence tomography, scanning laser polarimetry and confocal scanning laser ophthalmoscopy rely on different properties of light to provide objective structural assessment of the optic nerve head, retinal nerve fiber layer and macula. In this review, we discuss the capabilities of these imaging modalities pertinent for diagnosis of glaucoma and detection of progressive glaucomatous damage and provide a review of the current knowledge on the clinical performance of these technologies. Copyright © 2014 Elsevier Inc. All rights reserved.
Strouthidis, N G; Chandrasekharan, G; Diamond, J P; Murdoch, I E
2014-01-01
Telemedicine technologies and services allow today's ophthalmic clinicians to remotely diagnose, manage and monitor several ophthalmic conditions from a distance. But is this the case for glaucomas? There has been a proliferation of telemedicine friendly devices in recent years that improves the capabilities of the clinician in managing glaucomas. The existing instruments still need to align themselves with accepted industry standards. There are successful programmes running in several areas of the world. The safety and efficacy of these programmes needs further exploration. The inability of a single device or test to diagnose glaucomas satisfactorily has also hampered progress in remotely diagnosing these conditions. There is, however, significant potential for telemedicine-friendly devices to remotely monitor the progress of glaucoma and, thereby, reduce some of the workload on an overstretched health service. PMID:24723617
NASA Technical Reports Server (NTRS)
Dankanich, John W.; Schumacher, Daniel M.
2015-01-01
The NASA Marshall Space Flight Center Science and Technology Office is continuously exploring technology options to increase performance or reduce cost and risk to future NASA missions including science and exploration. Electric propulsion is a prevalent technology known to reduce mission costs by reduction in launch costs and spacecraft mass through increased post launch propulsion performance. The exploration of alternative propellants for electric propulsion continues to be of interest to the community. Iodine testing has demonstrated comparable performance to xenon. However, iodine has a higher storage density resulting in higher ?V capability for volume constrained systems. Iodine's unique properties also allow for unpressurized storage yet sublimation with minimal power requirements to produce required gas flow rates. These characteristics make iodine an ideal propellant for secondary spacecraft. A range of mission have been evaluated with a focus on low-cost applications. Results highlight the potential for significant cost reduction over state of the art. Based on the potential, NASA has been developing the iodine Satellite for a near-term iodine Hall propulsion technology demonstration. Mission applications and progress of the iodine Satellite project are presented.
The lartge-area picosecond photo-detector (LAPPD) project
NASA Astrophysics Data System (ADS)
Varner, Gary
2012-03-01
The technological revolution that replaced the bulky Cathode Ray Tube with a wide variety of thin, reduced-cost display technologies, has yet to be realized for photosensors. Such a low-cost, robust and flexible photon detector, capable of efficient single photon measurement with good spatial and temporal resolution, would have numerous scientific, medical and industrial applications. To address the significant technological challenges of realizing such a disruptive technology, the Large Area Picosecond Photo-Detector (LAPPD) collaboration was formed, and has been strongly supported by the Department of Energy. This group leverages the inter-disciplinary capabilities and facilities at Argonne National Laboratory, the Berkeley Space Sciences Laboratory (SSL), electronics expertise at the Universities of Chicago and Hawaii, and close work with industrial partners to extend the known technologies. Advances in theory-inspired design and in-situ photocathode characterization during growth, Atomic Layer Deposition (ALD) for revolutionizing micro-channel plate fabrication, and compact, wave-form sampling CMOS ASIC readout of micro striplines are key tools toward realizing a viable LAPPD device. Progress toward a first 8" x 8" demonstrator module will be presented.
Performing quantum computing experiments in the cloud
NASA Astrophysics Data System (ADS)
Devitt, Simon J.
2016-09-01
Quantum computing technology has reached a second renaissance in the past five years. Increased interest from both the private and public sector combined with extraordinary theoretical and experimental progress has solidified this technology as a major advancement in the 21st century. As anticipated my many, some of the first realizations of quantum computing technology has occured over the cloud, with users logging onto dedicated hardware over the classical internet. Recently, IBM has released the Quantum Experience, which allows users to access a five-qubit quantum processor. In this paper we take advantage of this online availability of actual quantum hardware and present four quantum information experiments. We utilize the IBM chip to realize protocols in quantum error correction, quantum arithmetic, quantum graph theory, and fault-tolerant quantum computation by accessing the device remotely through the cloud. While the results are subject to significant noise, the correct results are returned from the chip. This demonstrates the power of experimental groups opening up their technology to a wider audience and will hopefully allow for the next stage of development in quantum information technology.
Microfabricated Chemical Gas Sensors and Sensor Arrays for Aerospace Applications
NASA Technical Reports Server (NTRS)
Hunter, Gary W.
2005-01-01
Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring, and fire detection. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors; 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity; 3) The development of high temperature semiconductors, especially silicon carbide. This presentation discusses the needs of space applications as well as the point-contact sensor technology and sensor arrays being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, nitrogen oxides (NO,), carbon monoxide, oxygen, and carbon dioxide are being developed as well as arrays for leak, fire, and emissions detection. Demonstrations of the technology will also be discussed. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.
Nanosatellites for quantum science and technology
NASA Astrophysics Data System (ADS)
Oi, Daniel K. L.; Ling, Alex; Grieve, James A.; Jennewein, Thomas; Dinkelaker, Aline N.; Krutzik, Markus
2017-01-01
Bringing quantum science and technology to the space frontier offers exciting prospects for both fundamental physics and applications such as long-range secure communication and space-borne quantum probes for inertial sensing with enhanced accuracy and sensitivity. But despite important terrestrial pathfinding precursors on common microgravity platforms and promising proposals to exploit the significant advantages of space quantum missions, large-scale quantum test beds in space are yet to be realised due to the high costs and lead times of traditional 'Big Space' satellite development. But the 'small space' revolution, spearheaded by the rise of nanosatellites such as CubeSats, is an opportunity to greatly accelerate the progress of quantum space missions by providing easy and affordable access to space and encouraging agile development. We review space quantum science and technology, CubeSats and their rapidly developing capabilities and how they can be used to advance quantum satellite systems.
Coronary Stents: The Impact of Technological Advances on Clinical Outcomes.
Mennuni, Marco G; Pagnotta, Paolo A; Stefanini, Giulio G
2016-02-01
Percutaneous coronary interventions (PCI) were proposed in the late 1970s as an alternative to surgical coronary artery bypass grafting for the treatment of coronary artery disease. Important technological progress has been made since. Balloon angioplasty was replaced by bare metal stents, which allowed to permanently scaffold the coronary vessel avoiding acute recoil and abrupt occlusion. Thereafter, the introduction of early generation drug-eluting stents (DES) has significantly improved clinical outcomes, primarily by markedly reducing the risk of restenosis. New generation DES with thinner stent struts, novel durable or biodegradable polymer coatings, and new limus antiproliferative agents, have further improved upon the safety and efficacy profile of early generation DES. The present article aims to review the impact of technological advances on clinical outcomes in the field of PCI with coronary stents, and to provide a brief overview on clinical margins of improvement and unmet needs of available DES.
Feng, Qingshan; Li, Rui; Nie, Baohua; Liu, Shucong; Zhao, Lianyu; Zhang, Hong
2016-01-01
Girth weld cracking is one of the main failure modes in oil and gas pipelines; girth weld cracking inspection has great economic and social significance for the intrinsic safety of pipelines. This paper introduces the typical girth weld defects of oil and gas pipelines and the common nondestructive testing methods, and systematically generalizes the progress in the studies on technical principles, signal analysis, defect sizing method and inspection reliability, etc., of magnetic flux leakage (MFL) inspection, liquid ultrasonic inspection, electromagnetic acoustic transducer (EMAT) inspection and remote field eddy current (RFDC) inspection for oil and gas pipeline girth weld defects. Additionally, it introduces the new technologies for composite ultrasonic, laser ultrasonic, and magnetostriction inspection, and provides reference for development and application of oil and gas pipeline girth weld defect in-line inspection technology. PMID:28036016
The NASA/OAST telerobot testbed architecture
NASA Technical Reports Server (NTRS)
Matijevic, J. R.; Zimmerman, W. F.; Dolinsky, S.
1989-01-01
Through a phased development such as a laboratory-based research testbed, the NASA/OAST Telerobot Testbed provides an environment for system test and demonstration of the technology which will usefully complement, significantly enhance, or even replace manned space activities. By integrating advanced sensing, robotic manipulation and intelligent control under human-interactive supervision, the Testbed will ultimately demonstrate execution of a variety of generic tasks suggestive of space assembly, maintenance, repair, and telescience. The Testbed system features a hierarchical layered control structure compatible with the incorporation of evolving technologies as they become available. The Testbed system is physically implemented in a computing architecture which allows for ease of integration of these technologies while preserving the flexibility for test of a variety of man-machine modes. The development currently in progress on the functional and implementation architectures of the NASA/OAST Testbed and capabilities planned for the coming years are presented.
Development of stimulation diagnostic technology. Annual report, May 1990--December 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warpinski, N.R.; Lorenz, J.C.
The objective of this project is to apply Sandia`s expertise and technology towards the development of stimulation diagnostic technology in the areas of in situ stress, natural fracturing, stimulation processes and instrumentation systems. Initial work has concentrated on experiment planning for a site where hydraulic fracturing could be evaluated and design models and fracture diagnostics could be validated and improved. Important issues have been defined and new diagnostics, such as inclinometers, identified. In the area of in situ stress, circumferential velocity analysis is proving to be a useful diagnostic for stress orientation. Natural fracture studies of the Frontier formation aremore » progressing; two fracture sets have been found and their relation to tectonic events have been hypothesized. Analyses of stimulation data have been performed for several sites, primarily for in situ stress information. Some new ideas in stimulation diagnostics have been proposed; these ideas may significantly improve fracture diagnostic capabilities.« less
Development of stimulation diagnostic technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warpinski, N.R.; Lorenz, J.C.
The objective of this project is to apply Sandia's expertise and technology towards the development of stimulation diagnostic technology in the areas of in situ stress, natural fracturing, stimulation processes and instrumentation systems. Initial work has concentrated on experiment planning for a site where hydraulic fracturing could be evaluated and design models and fracture diagnostics could be validated and improved. Important issues have been defined and new diagnostics, such as inclinometers, identified. In the area of in situ stress, circumferential velocity analysis is proving to be a useful diagnostic for stress orientation. Natural fracture studies of the Frontier formation aremore » progressing; two fracture sets have been found and their relation to tectonic events have been hypothesized. Analyses of stimulation data have been performed for several sites, primarily for in situ stress information. Some new ideas in stimulation diagnostics have been proposed; these ideas may significantly improve fracture diagnostic capabilities.« less
Terrestrial Planet Finder Interferometer: 2007-2008 Progress and Plans
NASA Technical Reports Server (NTRS)
Lawson, P. R.; Lay, O. P.; Martin, S. R.; Peters, R. D.; Gappinger, R. O.; Ksendzov, A.; Scharf, D. P.; Booth, A. J.; Beichman, C. A.; Serabyn, E.;
2008-01-01
This paper provides an overview of technology development for the Terrestrial Planet Finder Interferometer (TPF-I). TPF-I is a mid-infrared space interferometer being designed with the capability of detecting Earth-like planets in the habitable zones around nearby stars. The overall technology roadmap is presented and progress with each of the testbeds is summarized. The current interferometer architecture, design trades, and the viability of possible reduced-scope mission concepts are also presented.
2007-07-01
Systems , Boeing-led Airborne Laser Team Actively Tracks Airborne Target, Compensates for Atmospheric Turbulence and Fires Sur- rogate High-Energy Laser...7100 System Requirements Analysis and Technological Support for the Ballistic Missile Defense System (BMDS) FY07 Progress Report By...Office of Management and Budget , Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE July
NASA Astrophysics Data System (ADS)
Zhao, Shijia; Liu, Zongwei; Wang, Yue; Zhao, Fuquan
2017-01-01
Subjectivity usually causes large fluctuations in evaluation results. Many scholars attempt to establish new mathematical methods to make evaluation results consistent with actual objective situations. An improved catastrophe progression method (ICPM) is constructed to overcome the defects of the original method. The improved method combines the merits of the principal component analysis' information coherence and the catastrophe progression method's none index weight and has the advantage of highly objective comprehensive evaluation. Through the systematic analysis of the influencing factors of the automotive industry's core technology capacity, the comprehensive evaluation model is established according to the different roles that different indices play in evaluating the overall goal with a hierarchical structure. Moreover, ICPM is developed for evaluating the automotive industry's core technology capacity for the typical seven countries in the world, which demonstrates the effectiveness of the method.
Connecting Learners: The South Carolina Educational Technology Plan.
ERIC Educational Resources Information Center
South Carolina State Dept. of Education, Columbia.
This educational technology plan for South Carolina contains the following sections: (1) statewide progress related to the telecommunications infrastructure, professional development, video infrastructure, administrative infrastructure, and funding; (2) introduction to educational technology concepts, including major components and factors…
The Development of Sociocultural Competence with the Help of Computer Technology
ERIC Educational Resources Information Center
Rakhimova, Alina E.; Yashina, Marianna E.; Mukhamadiarova, Albina F.; Sharipova, Astrid V.
2017-01-01
The article deals with the description of the process of development sociocultural knowledge and competences using computer technologies. On the whole the development of modern computer technologies allows teachers to broaden trainees' sociocultural outlook and trace their progress online. Observation of modern computer technologies and estimation…
Exploring Technology Supported Collaborative and Cooperative Group Formation Mechanisms
ERIC Educational Resources Information Center
Carapina, Mia; Boticki, Ivica
2015-01-01
This paper reflects on the systematic literature review paper (in progress), which analyzes technology enhanced collaborative and cooperative learning in elementary education worldwide from 2004 to 2015, focusing on the exploration of technology mediated group formation. The review paper reports on only a few cases of technology supported methods…
"Future Proofing" Faculty: The Struggle To Create Technical Lifelong Learners.
ERIC Educational Resources Information Center
Nay, Fred W.; Malm, Loren D.; Malone, Bobby G.; Oliver, Brad E.; Saunders, Nancy G.; Thompson, Jay C., Jr.
College faculty can avoid investing valuable time and resources in inappropriate technologies by staying in step with technological progress. A "future proof" approach to technology recognizes and welcomes small failures, considering them part of the ongoing process of absorbing technology into the learning process. Future proofing attempts to…
Novel technologies for the lost foam casting process
NASA Astrophysics Data System (ADS)
Jiang, Wenming; Fan, Zitian
2018-03-01
Lost foam casting (LFC) is a green precision casting process categorized as a near net forming technology. Yet, despite its popularity, it still suffers from some technological problems, such as poor filling ability of the castings, coarse and non-dense microstructure, low mechanical properties for the Al and Mg LFC processes, and defective carburization for the low carbon steel LFC process. These drawbacks restrict the development and widespread application of the LFC process. To solve these problems, the present study developed several novel LFC technologies, namely, LFC technologies under vacuum and low pressure, vibration solidification, and pressure solidification conditions; expendable shell casting technology; and preparation technology of bimetallic castings based on the LFC process. The results showed that the LFC under vacuum and low pressure evidently improved the filling ability and solved the oxidization problem of the alloys, which is suitable for producing complex and thinwall castings. The vibration and pressure solidifications increased the compactness of the castings and refined the microstructure, significantly improving the mechanical properties of the castings. The expendable shell casting technology could solve the pore, carburization, and inclusion defects of the traditional LFC method, obtaining castings with acceptable surface quality. Moreover, the Al/Mg and Al/Al bimetallic castings with acceptable metallurgical bonding were successfully fabricated using the LFC process. These proposed novel LFC technologies can solve the current technological issues and promote the technological progress of the LFC process.
Research on the Integration of IT Network Technology and TV Production and Broadcasting System
NASA Astrophysics Data System (ADS)
Zhang, Wenqing
2017-12-01
In recent years, based on the development of China’s economy and the progress of science and technology, China’s TV industry has made great progress and provided a new platform for residents to understand the social situation. In this situation, in order to protect the efficiency of the TV system and the steady improvement on quality, technical staff have strengthened the rational use of IT technology, and as a basis to promote the sound of television production system. Based on this, this paper focuses on the connotation of IT network technology, and discusses the integration of the design and TV production system, hoping to realize the sustainable development of China’s TV industry.
Neuroprotective "agents" in surgery. Secret "agent" man, or common "agent" machine?
NASA Technical Reports Server (NTRS)
Andrews, R. J.
1999-01-01
The search for clinically-effective neuroprotective agents has received enormous support in recent years--an estimated $200 million by pharmaceutical companies on clinical trials for traumatic brain injury alone. At the same time, the pathophysiology of brain injury has proved increasingly complex, rendering the likelihood of a single agent "magic bullet" even more remote. On the other hand, great progress continues with technology that makes surgery less invasive and less risky. One example is the application of endovascular techniques to treat coronary artery stenosis, where both the invasiveness of sternotomy and the significant neurological complication rate (due to microemboli showering the cerebral vasculature) can be eliminated. In this paper we review aspects of intraoperative neuroprotection both present and future. Explanations for the slow progress on pharmacologic neuroprotection during surgery are presented. Examples of technical advances that have had great impact on neuroprotection during surgery are given both from coronary artery stenosis surgery and from surgery for Parkinson's disease. To date, the progress in neuroprotection resulting from such technical advances is an order of magnitude greater than that resulting from pharmacologic agents used during surgery. The progress over the last 20 years in guidance during surgery (CT and MRI image-guidance) and in surgical access (endoscopic and endovascular techniques) will soon be complemented by advances in our ability to evaluate biological tissue intraoperatively in real-time. As an example of such technology, the NASA Smart Probe project is considered. In the long run (i.e., in 10 years or more), pharmacologic "agents" aimed at the complex pathophysiology of nervous system injury in man will be the key to true intraoperative neuroprotection. In the near term, however, it is more likely that mundane "agents" based on computers, microsensors, and microeffectors will be the major impetus to improved intraoperative neuroprotection.
Reduced cost alternatives to premise wiring using ATM and microcellular technologies
NASA Technical Reports Server (NTRS)
Gejji, Raghvendra R.
1993-01-01
The cost of premises wiring keeps increasing due to personnel moves, new equipment, capacity upgrades etc. It would be desirable to have a wireless interface from the workstations to the fixed network, so as to minimize the wiring changes needed. New technologies such as microcellular personal communication systems are promising to bring down the cost of wireless communication. Another promising technology is Code Division Multiple Access (CDMA), which could dramatically increase the bandwidth available for wireless connections. In addition, Asynchronous Transfer Mode (ATM) technology is emerging as a technique for integrated management of voice, data, and video traffic on a single network. The focus of this investigation will be to assess the future utility of these new technologies for reducing the premise wiring cost at KSC. One of the issues to be studied is the cost comparison of 'old' versus 'new,' especially as time and technology progress. An additional issue for closer study is a feasible time-line for progress in technological capability.
Connected Health and Progress against Cancer
An NCI Cancer Currents blog post about a new report from President’s Cancer Panel outlining how connective technologies can promote cancer prevention, enhance patients’ treatment experience, and accelerate progress in cancer research.
A Review of Hydrogen/Halogen Flow Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Kyu Taek; Tucker, Michael C.; Weber, Adam Z.
Flow batteries provide an energy-storage solution for various grid-related stability and service issues that arise as renewable-energy-generation technologies are adopted. Among the most promising flow-battery systems are those using hydrogen/halogen redox couples, which promise the possibility of meeting the cost target of the US Department of Energy (DOE), due to their fast and reversible kinetics and low materials cost. However, significant critical issues and barriers for their adoption remain. In this review of halogen/hydrogen systems, technical and performance issues, and research and development progress are reviewed. The information in this review can be used as a technical guide for researchmore » and development of related redox-flow-battery systems and other electrochemical technologies.« less
A Review of Hydrogen/Halogen Flow Cells
Cho, Kyu Taek; Tucker, Michael C.; Weber, Adam Z.
2016-05-17
Flow batteries provide an energy-storage solution for various grid-related stability and service issues that arise as renewable-energy-generation technologies are adopted. Among the most promising flow-battery systems are those using hydrogen/halogen redox couples, which promise the possibility of meeting the cost target of the US Department of Energy (DOE), due to their fast and reversible kinetics and low materials cost. However, significant critical issues and barriers for their adoption remain. In this review of halogen/hydrogen systems, technical and performance issues, and research and development progress are reviewed. The information in this review can be used as a technical guide for researchmore » and development of related redox-flow-battery systems and other electrochemical technologies.« less
Patient centric formulations for paediatrics and geriatrics: Similarities and differences.
Hanning, Sara M; Lopez, Felipe L; Wong, Ian C K; Ernest, Terry B; Tuleu, Catherine; Orlu Gul, Mine
2016-10-30
Paediatrics and geriatrics both represent highly heterogenous populations and require special consideration when developing appropriate dosage forms. This paper discusses similarities, differences and considerations with respect to the development of appropriate medicine formulations for paediatrics and geriatrics. Arguably the most significant compliance challenge in older people is polypharmacy, whereas for children the largest barrier is taste. Pharmaceutical technology has progressed rapidly and technologies including FDCs, multi-particulates and orodispersible dosage forms provide unprecedented opportunities to develop novel and appropriate formulations for both old and new drugs. However, it is important for the formulation scientists to work closely with patients, carers and clinicians to develop such formulations for both the paediatric and geriatric population. Copyright © 2016 Elsevier B.V. All rights reserved.
[Possibilities of modern imaging technologies in early diagnosis of Alzheimer disease].
Unschuld, Paul G
2015-04-01
Recent advances in neuroimaging technology and image analysis algorithms have significantly contributed to a better understanding of spatial and temporal aspects of brain change associated with Alzheimer Disease. The current review will demonstrate how functional (fMRI) and structural magnetic resonance imaging (MRI) techniques may be used to identify distinct patterns of brain change associated with disease progression and also increased risk for Alzheimer Disease. Moreover, Positron Emission Tomography (PET) based measures of glucosemetabolism (Fluorodeoxyglucose, FDG) and Amyloid-beta plaque density (11-C-Pittsburgh Compound B, PiB and 18-F) will be reviewed regarding their diagnostic value for assessing the individual degree of Alzheimer -pathology and thus complement the information provided by MRI and other clinical measures.
Demonstrating tactical information services from coordinated UAV operations
NASA Astrophysics Data System (ADS)
Bay, John S.
2006-05-01
As the component technologies for unmanned aerial vehicles mature, increased attention is being paid to the problem of command and control. Many UAVs, even small lightweight versions, are seeing significant operational time as a result of the Iraq war, and consequently, users are becoming increasingly proficient with the platform technologies and are considering new and more elaborate tactics, techniques, and procedures (TTPs), as well as concepts of operations (CONOPS), for their use, both individually and in teams. This paper presents one such concept and summarizes the progress made toward that goal in a recent research program. In particularly, the means by which a team of UAVs can be considered a tactical information resource is investigated, and initial experimental results are summarized.
Fundamental Challenges for Modeling Electrochemical Energy Storage Systems at the Atomic Scale.
Groß, Axel
2018-04-23
There is a strong need to improve the efficiency of electrochemical energy storage, but progress is hampered by significant technological and scientific challenges. This review describes the potential contribution of atomic-scale modeling to the development of more efficient batteries, with a particular focus on first-principles electronic structure calculations. Numerical and theoretical obstacles are discussed, along with ways to overcome them, and some recent examples are presented illustrating the insights into electrochemical energy storage that can be gained from quantum chemical studies.
NASA Astrophysics Data System (ADS)
Bouma, Brett E.
1998-09-01
The pace of technological advancement of Optical Coherence Tomography (OCT) over the last several years has been extremely rapid. The field has progressed from one-dimensional low-coherence ranging to full three-dimensional imaging with individual two-dimensional images aquired at near video rate in a span of less than eight years. Imaging applications have included polymers and advanced composites, Ophthalmology, Developmental Biology, Gastroenterology, Urology, Cardiology, Neurology, and Gynecology. These preliminary studies indicate the great potential for OCT to make a significant impact, especially in clinical medicine.
1992-06-01
the problems of that system should address the GA segment 11 General Aviation Shipments and Billings 35,000- 3.00 30,000 -2.50 25,000 -2.00 Factory...avoidance; . certification: time/cost for licensing, "* Airport noise: rate of closings; curfews 22 PROGRESS IN TECHNOLOGY NONAL CAL "* airbags * anti...demonstrated that the technical problems involved with transmitting significant amounts of weather data to an aircraft in-flight or on-the-ground via
photonic sensors review progress of optical fiber sensors and its application in harsh environment
NASA Astrophysics Data System (ADS)
Zhang, Min; Ma, Xiaohong; Wang, Liwei; Lai, Shurong; Zhou, Hongpu; Zhao, Huafeng; Liao, Yanbiao
2011-03-01
Fiber sensors have been developed for industry application with significant advantages. In this paper, Fiber sensors for oil field service and harsh environment monitoring which have been investigated in Tsinghua University are demonstrated. By discussing the requirements of practical applications, the key technologies of long-period fiber grating (LPFG) based fiber sensor, optical spectrum analyzer for oil detection, laser induced breakdown spectroscopy (LIBS) system for soil contamination monitoring, and seismic sensor arrays are described.
Applications of structural optimization methods to fixed-wing aircraft and spacecraft in the 1980s
NASA Technical Reports Server (NTRS)
Miura, Hirokazu; Neill, Douglas J.
1992-01-01
This report is the summary of a technical survey on the applications of structural optimization in the U.S. aerospace industry through the 1980s. Since applications to rotary wing aircraft will be covered by other literature, applications to fixed-wing aircraft and spacecraft were considered. It became clear that very significant progress has been made during this decade, indicating this technology is about to become one of the practical tools in computer aided structural design.
Research Challenges in Financial Data Modeling and Analysis.
Alexander, Lewis; Das, Sanjiv R; Ives, Zachary; Jagadish, H V; Monteleoni, Claire
2017-09-01
Significant research challenges must be addressed in the cleaning, transformation, integration, modeling, and analytics of Big Data sources for finance. This article surveys the progress made so far in this direction and obstacles yet to be overcome. These are issues that are of interest to data-driven financial institutions in both corporate finance and consumer finance. These challenges are also of interest to the legal profession as well as to regulators. The discussion is relevant to technology firms that support the growing field of FinTech.
Surrogacy: Pathway to Parenthood.
Joseph, Rachel A; Rafanello, Alexandria M; Morris, Cassidy J; Fleming, Kerry F
2018-01-01
Assistive reproductive technology has progressed significantly over the past few decades. In spite of the advances, people may still resort to a surrogate for bearing and birthing a baby. Surrogacy, though an altruistic act, has been commercialized in the past few years, leading to emergence of several ethico-legal concerns. Nurses care for the surrogates, the infants, and the intended parents through their journey with sensitivity, advocacy, compassion, and confidentiality. This article intends to explore the implications of surrogacy to individuals, families, nations, and health care.
Intelligent systems for urban search and rescue: challenges and lessons learned
NASA Astrophysics Data System (ADS)
Jacoff, Adam; Messina, Elena; Weiss, Brian A.
2003-09-01
Urban search and rescue (USAR) is one of the most dangerous and time-critical non-wartime activities. Researchers have been developing hardware and software to enable robots to perform some search and rescue functions so as to minimize the exposure of human rescue personnel to danger and maximize the survival of victims. Significant progress has been achieved, but much work remains. USAR demands a blending of numerous specialized technologies. An effective USAR robot must be endowed with key competencies, such as being able to negotiate collapsed structures, find victims and assess their condition, identify potential hazards, generate maps of the structure and victim locations, and communicate with rescue personnel. These competencies bring to bear work in numerous sub-disciplines of intelligent systems (or artificial intelligence) such as sensory processing, world modeling, behavior generation, path planning, and human-robot interaction, in addition to work in communications, mechanism design and advanced sensors. In an attempt to stimulate progress in the field, reference USAR challenges are being developed and propagated worldwide. In order to make efficient use of finite research resources, the robotic USAR community must share a common understanding of what is required, technologically, to attain each competency, and have a rigorous measure of the current level of effectiveness of various technologies. NIST is working with partner organizations to measure the performance of robotic USAR competencies and technologies. In this paper, we describe the reference test arenas for USAR robots, assess the current challenges within the field, and discuss experiences thus far in the testing effort.
Hasler, John F
2014-01-01
After the first successful transfer of mammalian embryos in 1890, it was approximately 60 years before significant progress was reported in the basic technology of embryo transfer (ET) in cattle. Starting in the early 1970s, technology had progressed sufficiently to support the founding of commercial ET programs in several countries. Today, well-established and reliable techniques involving superovulation, embryo recovery and transfer, cryopreservation, and IVF are utilized worldwide in hundreds, if not thousands, of commercial businesses located in many countries. The mean number of embryos produced via superovulation has changed little in 40 years, but there have been improvements in synchrony and hormonal protocols. Cryopreservation of in vivo-derived embryos is a reliable procedure, but improvements are needed for biopsied and in vitro-derived embryos. High pregnancy rates are achieved when good quality embryos are transferred into suitable recipients and low pregnancy rates are often owing to problems in recipient management and not technology per se. In the future, unanticipated disease outbreaks and the ever-changing economics of cattle and milk prices will continue to influence the ET industry. The issue of abnormal pregnancies involving in vitro embryos has not been satisfactorily resolved and the involvement of abnormal epigenetics associate with this technology merits continued research. Last, genomic testing of bovine embryos is likely to be available in the foreseeable future. This may markedly decrease the number of embryos that are actually transferred and stimulate the evolution of more sophisticated ET businesses. Copyright © 2014 Elsevier Inc. All rights reserved.
He, Qiu-ju; Wang, Li-qin
2016-02-01
As the birthplace of Silk Road, China has a long dyeing history. The valuable information about the production time, the source of dyeing material, dyeing process and preservation status were existed in organic dyestuff deriving from cultural relics and artifacts. However, because of the low contents, complex compositions and easily degraded of dyestuff, it is always a challenging task to identify the dyestuff in relics analyzing field. As a finger-print spectrum, Raman spectroscopy owns unique superiorities in dyestuff identification. Thus, the principle, characteristic, limitation, progress and development direction of micro-Raman spectroscopy (MRS/µ-Raman), near infrared reflection and Fourier transform Raman spectroscopy (NIR-FT-Raman), surface-enhanced Raman spectroscopy (SERS) and resonance raman spectroscopy (RRS) have been introduced in this paper. Furthermore, the features of Raman spectra of gardenia, curcumin and other natural dyestuffs were classified by MRS technology, and then the fluorescence phenomena of purpurin excitated with different wavelength laser was compared and analyzed. At last, gray green silver colloidal particles were made as the base, then the colorant of madder was identified combining with thin layer chromatography (TLC) separation technology and SERS, the result showed that the surface enhancement effect of silver colloidal particles could significantly reduce fluorescence background of the Raman spectra. It is pointed out that Raman spectroscopy is a rapid and convenient molecular structure qualitative methodology, which has broad application prospect in dyestuff analysis of cultural relics and artifacts. We propose that the combination of multi-Raman spectroscopy, separation technology and long distance transmission technology are the development trends of Raman spectroscopy.
The International AIDS Vaccine Initiative's Capacity Building Activities in East Africa
Cochrane, Gavin; Robin, Enora; Hanlin, Rebecca; Castle-Clarke, Sophie; MacLure, Calum; Parks, Sarah; Chataway, Joanna
2016-01-01
Abstract The International AIDS Vaccine Initiative (IAVI) is one of a number of Product Development Partnerships created to bridge the gap between scientific and technological potential and the needs of low income populations in low and middle income countries. Specifically IAVI is focused on creating a preventative vaccine for HIV/AIDS. Whilst the remit of IAVI is to create new science, technology and products, its work necessarily involves a wide range of stakeholders and different constituencies in industrially developing and developed countries. Its capacity building activities relate to strengthening the ability to conduct clinical trials and are broad based, spanning scientific and technological capacity through to organisational, advocacy and broader development capabilities. The aim of this study was to deepen IAVI's understanding of how it contributes to capacity building activities in East Africa (Uganda, Kenya and Rwanda), spanning scientific and technological capacity through to organisational, advocacy and broader development capabilities. IAVI's mission to develop an HIV vaccine has become increasingly connected to wider health systems strengthening, through its clinical research activities in East Africa. Since it began its operations in the region, IAVI has made a significant contribution to training interventions to support scientific excellence and good clinical practice and invested in infrastructure and laboratories at Clinical Research Centres in East Africa. Although clear challenges still exist with ensuring sustained investment, accessing marginalized populations and demonstrating progress in capacity building, the experiences of IAVI to date suggest that substantial progress is being made towards wider health systems strengthening in the region. PMID:28083400
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Christopher F.; Rapko, Brian M.; Serne, R. Jeffrey
2014-03-03
The U.S. Department of Energy Office of Environmental Management (EM) is engaging the national laboratories to provide the scientific and technological rigor to support EM program and project planning, technology development and deployment, project execution, and assessment of program outcomes. As an early demonstration of this new responsibility, Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) were chartered to implement a science and technology program addressing low-temperature waste forms for immobilization of DOE aqueous waste streams, including technetium removal as an implementing technology. As a first step, the laboratories examined the technical risks and uncertainties associated withmore » the Cast Stone waste immobilization and technetium removal projects at Hanford. Science and technology gaps were identified for work associated with 1) conducting performance assessments and risk assessments of waste form and disposal system performance, and 2) technetium chemistry in tank wastes and separation of technetium from waste processing streams. Technical approaches to address the science and technology gaps were identified and an initial sequencing priority was suggested. A subset of research was initiated in 2013 to begin addressing the most significant science and technology gaps. The purpose of this paper is to report progress made towards closing these gaps and provide notable highlights of results achieved to date.« less
Gaining Momentum, Losing Ground. Progress Report, 2008
ERIC Educational Resources Information Center
Business Roundtable, 2008
2008-01-01
This report presents an update of the progress of Tapping America's Potential (TAP), a coalition of 15 of the nation's leading business organizations, and assesses three years' progress since 2005 in working towards the goal of doubling the number of students earning bachelor's degrees in science, technology, engineering and math (STEM) by 2015.…
Peela, Nitish; Truong, Danh; Saini, Harpinder; Chu, Hunghao; Mashaghi, Samaneh; Ham, Stephanie L; Singh, Sunil; Tavana, Hossein; Mosadegh, Bobak; Nikkhah, Mehdi
2017-07-01
Cancer is one of the leading causes of death globally according to the World Health Organization. Although improved treatments and early diagnoses have reduced cancer related mortalities, metastatic disease remains a major clinical challenge. The local tumor microenvironment plays a significant role in cancer metastasis, where tumor cells respond and adapt to a plethora of biochemical and biophysical signals from stromal cells and extracellular matrix (ECM) proteins. Due to these complexities, there is a critical need to understand molecular mechanisms underlying cancer metastasis to facilitate the discovery of more effective therapies. In the past few years, the integration of advanced biomaterials and microengineering approaches has initiated the development of innovative platform technologies for cancer research. These technologies enable the creation of biomimetic in vitro models with physiologically relevant (i.e. in vivo-like) characteristics to conduct studies ranging from fundamental cancer biology to high-throughput drug screening. In this review article, we discuss the biological significance of each step of the metastatic cascade and provide a broad overview on recent progress to recapitulate these stages using advanced biomaterials and microengineered technologies. In each section, we will highlight the advantages and shortcomings of each approach and provide our perspectives on future directions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Economic impact of stimulated technological activity
NASA Technical Reports Server (NTRS)
1971-01-01
The findings are reported of research into the relationships between technological progress and economic development, with emphasis on several ways in which NASA research and development has aided in the accumulation and commercial application of new or improved scientific and technological knowledge.
Ponticorvo, Adrien; Burmeister, David M.; Rowland, Rebecca; Baldado, Melissa; Kennedy, Gordon T.; Saager, Rolf; Bernal, Nicole; Choi, Bernard; Durkin, Anthony J.
2017-01-01
The current standard for diagnosis of burn severity and subsequent wound healing is through clinical examination, which is highly subjective. Several new technologies are shifting focus to burn care in an attempt to help quantify not only burn depth but also the progress of healing. While accurate early assessment of partial thickness burns is critical for dictating the course of treatment, the ability to quantitatively monitor wound status over time is critical for understanding treatment efficacy. SFDI and LSI are both non-invasive imaging modalities that have been shown to have great diagnostic value for burn severity, but have yet to be tested over the course of wound healing. In this study, a hairless rat model (n=6, 300-450g) was used with a four pronged comb to create four identical partial thickness burns (superficial n=3 and deep n=3) that were used to monitor wound healing over a 28 day period. Weekly biopsies were taken for histological analysis to verify wound progression. Both SFDI and LSI were performed weekly to track the evolution of hemodynamic (blood flow and oxygen saturation) and structural (reduced scattering coefficient) properties for the burns. LSI showed significant changes in blood flow from baseline to 220% in superficial and 165% in deep burns by day 7. In superficial burns, blood flow returned to baseline levels by day 28, but not for deep burns where blood flow remained elevated. Smaller increases in blood flow were also observed in the surrounding tissue over the same time period. Oxygen saturation values measured with SFDI showed a progressive increase from baseline values of 66% to 74% in superficial burns and 72% in deep burns by day 28. Additionally, SFDI showed significant decreases in the reduced scattering coefficient shortly after the burns were created. The scattering coefficient progressively decreased in the wound area, but returned towards baseline conditions at the end of the 28 day period. Scattering changes in the surrounding tissue remained constant despite the presence of hemodynamic changes. Here we show that LSI and SFDI are capable of monitoring changes in hemodynamic and scattering properties in burn wounds over a 28 day period. These results highlight the potential insights that can be gained by using noninvasive imaging technologies to study wound healing. Further development of these technologies could be revolutionary for wound monitoring and studying the efficacy of different treatments. PMID:28220508
Using tablet technology and instructional videos to enhance preclinical dental laboratory learning.
Gadbury-Amyot, Cynthia C; Purk, John H; Williams, Brian Joseph; Van Ness, Christopher J
2014-02-01
The purpose of this pilot study was to examine if tablet technology with accompanying instructional videos enhanced the teaching and learning outcomes in a preclinical dental laboratory setting. Two procedures deemed most challenging in Operative Dentistry II were chosen for the development of instructional videos. A random sample of thirty students was chosen to participate in the pilot. Comparison of faculty evaluations of the procedures between the experimental (tablet) and control (no tablet) groups resulted in no significant differences; however, there was a trend toward fewer failures in the experimental group. Examination of the ability to accurately self-assess was compared by exploring correlations between faculty and student evaluations. While correlations were stronger in the experimental group, the control group had significant correlations for all three procedures, while the experimental group had significant correlations on only two of the procedures. Students strongly perceived that the tablets and videos helped them perform better and more accurately self-assess their work products. Students did not support requiring that they purchase/obtain a specific brand of technology. As a result of this pilot study, further development of ideal and non-ideal videos are in progress, and the school will be implementing a "Bring Your Own Device" policy with incoming students.
Ball, Susan; Vickery, Jane; Hobart, Jeremy; Wright, Dave; Green, Colin; Shearer, James; Nunn, Andrew; Cano, Mayam Gomez; MacManus, David; Miller, David; Mallik, Shahrukh; Zajicek, John
2015-02-01
The Cannabinoid Use in Progressive Inflammatory brain Disease (CUPID) trial aimed to determine whether or not oral Δ(9)-tetrahydrocannabinol (Δ(9)-THC) slowed the course of progressive multiple sclerosis (MS); evaluate safety of cannabinoid administration; and, improve methods for testing treatments in progressive MS. There were three objectives in the CUPID study: (1) to evaluate whether or not Δ(9)-THC could slow the course of progressive MS; (2) to assess the long-term safety of Δ(9)-THC; and (3) to explore newer ways of conducting clinical trials in progressive MS. The CUPID trial was a randomised, double-blind, placebo-controlled, parallel-group, multicentre trial. Patients were randomised in a 2 : 1 ratio to Δ(9)-THC or placebo. Randomisation was balanced according to Expanded Disability Status Scale (EDSS) score, study site and disease type. Analyses were by intention to treat, following a pre-specified statistical analysis plan. A cranial magnetic resonance imaging (MRI) substudy, Rasch measurement theory (RMT) analyses and an economic evaluation were undertaken. Twenty-seven UK sites. Adults aged 18-65 years with primary or secondary progressive MS, 1-year evidence of disease progression and baseline EDSS 4.0-6.5. Oral Δ(9)-THC (maximum 28 mg/day) or matching placebo. Three and 6 months, and then 6-monthly up to 36 or 42 months. Primary outcomes were time to EDSS progression, and change in Multiple Sclerosis Impact Scale-29 version 2 (MSIS-29v2) 20-point physical subscale (MSIS-29phys) score. Various secondary patient- and clinician-reported outcomes and MRI outcomes were assessed. RMT analyses examined performance of MS-specific rating scales as measurement instruments and tested for a symptomatic or disease-modifying treatment effect. Economic evaluation estimated mean incremental costs and quality-adjusted life-years (QALYs). Effectiveness - recruitment targets were achieved. Of the 498 randomised patients (332 to active and 166 to placebo), 493 (329 active and 164 placebo) were analysed. no significant treatment effect; hazard ratio EDSS score progression (active : placebo) 0.92 [95% confidence interval (CI) 0.68 to 1.23]; and estimated between-group difference in MSIS-29phys score (active-placebo) -0.9 points (95% CI -2.0 to 0.2 points). Secondary clinical and MRI outcomes: no significant treatment effects. Safety - at least one serious adverse event: 35% and 28% of active and placebo patients, respectively. RMT analyses - scale evaluation: MSIS-29 version 2, MS Walking Scale-12 version 2 and MS Spasticity Scale-88 were robust measurement instruments. There was no clear symptomatic or disease-modifying treatment effect. Economic evaluation - estimated mean incremental cost to NHS over usual care, over 3 years £27,443.20 per patient. No between-group difference in QALYs. The CUPID trial failed to demonstrate a significant treatment effect in primary or secondary outcomes. There were no major safety concerns, but unwanted side effects seemed to affect compliance. Participants were more disabled than in previous studies and deteriorated less than expected, possibly reducing our ability to detect treatment effects. RMT analyses supported performance of MS-specific rating scales as measures, enabled group- and individual person-level examination of treatment effects, but did not influence study inferences. The intervention had significant additional costs with no improvement in health outcomes; therefore, it was dominated by usual care and not cost-effective. Future work should focus on determining further factors to predict clinical deterioration, to inform the development of new studies, and modifying treatments in order to minimise side effects and improve study compliance. The absence of disease-modifying treatments in progressive MS warrants further studies of the cannabinoid pathway in potential neuroprotection. Current Controlled Trials ISRCTN62942668. The National Institute for Health Research Health Technology Assessment programme, the Medical Research Council Efficacy and Mechanism Evaluation programme, Multiple Sclerosis Society and Multiple Sclerosis Trust. The report will be published in full in Health Technology Assessment; Vol. 19, No. 12. See the NIHR Journals Library website for further project information.
Nuclear rocket propulsion. NASA plans and progress, FY 1991
NASA Technical Reports Server (NTRS)
Clark, John S.; Miller, Thomas J.
1991-01-01
NASA has initiated planning for a technology development project for nuclear rocket propulsion systems for space explorer initiative (SEI) human and robotic missions to the moon and Mars. An interagency project is underway that includes the Department of Energy National Laboratories for nuclear technology development. The activities of the project planning team in FY 1990 and 1991 are summarized. The progress to date is discussed, and the project plan is reviewed. Critical technology issues were identified and include: (1) nuclear fuel temperature, life, and reliability; (2) nuclear system ground test; (3) safety; (4) autonomous system operation and health monitoring; and (5) minimum mass and high specific impulse.
Quantum image processing: A review of advances in its security technologies
NASA Astrophysics Data System (ADS)
Yan, Fei; Iliyasu, Abdullah M.; Le, Phuc Q.
In this review, we present an overview of the advances made in quantum image processing (QIP) comprising of the image representations, the operations realizable on them, and the likely protocols and algorithms for their applications. In particular, we focus on recent progresses on QIP-based security technologies including quantum watermarking, quantum image encryption, and quantum image steganography. This review is aimed at providing readers with a succinct, yet adequate compendium of the progresses made in the QIP sub-area. Hopefully, this effort will stimulate further interest aimed at the pursuit of more advanced algorithms and experimental validations for available technologies and extensions to other domains.
Nuclear rocket propulsion: NASA plans and progress - FY 1991
NASA Technical Reports Server (NTRS)
Clark, John S.; Miller, Thomas J.
1991-01-01
NASA has initiated planning for a technology development project for nuclear rocket propulsion systems for space exploration initiative (SEI) human and robotic missions to the Moon and to Mars. An interagency project is underway that includes the Department of Energy National Laboratories for nuclear technology development. The activities of the project planning team in FY 1990 and 1991 are summarized. The progress to date is discussed, and the project plan is reviewed. Critical technology issues were identified and include: (1) nuclear fuel temperature, life, and reliability; (2) nuclear system ground test; (3) safety; (4) autonomous system operation and health monitoring; and (5) minimum mass and high specific impulse.
Chemical Technology Division: Progress report, January 1, 1987--June 30, 1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-02-01
This progress report summarizes the research and development efforts conducted in the Chemical Technology Division (Chem Tech) during the period January 1, 1987, to June 30, 1988. The following major areas are covered: waste management and environmental programs, radiochemical and reactor engineering programs, basic science and technology, Nuclear Regulatory Commission programs, and administrative resources and facilities. The Administrative Summary, an appendix, presents a comprehensive listing of publications, oral presentations, awards and recognitions, and patents of Chem Tech staff members during this period. A staffing level and financial summary and lists of seminars and Chem Tech consultants for the period aremore » also included.« less
[Application and progress of RNA in forensic science].
Gao, Lin-Lin; Li, You-Ying; Yan, Jiang-Wei; Liu, Ya-Cheng
2011-12-01
With the development of molecular biology, the evidences of genetics has been used widely in forensic sciences. DNA technology has played an important role in individual identification and paternity testing, RNA technology is showing more and more wide application in prospect. This article reviews the application and progress of RNA in forensic science including estimation of postmortem interval, bloodstain age, wound age, as well as determination of cause of death and the source of body fluids.
Summary of space nuclear reactor power systems, 1983 - 1992
NASA Astrophysics Data System (ADS)
Buden, D.
1993-08-01
This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressed from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987-88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power.
Instructional Technology and Reading: Progress, Problems, and Promise.
ERIC Educational Resources Information Center
Smith, Nila Banton
As the invention of the wheel played a large role in the technological advancement of transportation, so many new teaching devices have played an important role in the technological advancement of reading instruction. Though the spread of technology was initially slow, it now offers many instructional aids (e.g., tapes, records, television,…
ERIC Educational Resources Information Center
Behrens, John T.; DiCerbo, Kristen E.
2014-01-01
Background: It would be easy to think the technological shifts in the digital revolution are simple incremental progressions in societal advancement. However, the nature of digital technology is resulting in qualitative differences in nearly all parts of daily life. Purpose: This paper investigates how the new possibilities for understanding,…
Organic Photodiodes: The Future of Full Color Detection and Image Sensing.
Jansen-van Vuuren, Ross D; Armin, Ardalan; Pandey, Ajay K; Burn, Paul L; Meredith, Paul
2016-06-01
Major growth in the image sensor market is largely as a result of the expansion of digital imaging into cameras, whether stand-alone or integrated within smart cellular phones or automotive vehicles. Applications in biomedicine, education, environmental monitoring, optical communications, pharmaceutics and machine vision are also driving the development of imaging technologies. Organic photodiodes (OPDs) are now being investigated for existing imaging technologies, as their properties make them interesting candidates for these applications. OPDs offer cheaper processing methods, devices that are light, flexible and compatible with large (or small) areas, and the ability to tune the photophysical and optoelectronic properties - both at a material and device level. Although the concept of OPDs has been around for some time, it is only relatively recently that significant progress has been made, with their performance now reaching the point that they are beginning to rival their inorganic counterparts in a number of performance criteria including the linear dynamic range, detectivity, and color selectivity. This review covers the progress made in the OPD field, describing their development as well as the challenges and opportunities. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Solar Electric Propulsion Vehicle Demonstration to Support Future Space Exploration Missions
NASA Technical Reports Server (NTRS)
Smith, Bryan K.; Nazario, Margaret L.; Cunningham, Cameron C.
2012-01-01
Human and robotic exploration beyond Low Earth Orbit (LEO) will require enabling capabilities that are efficient, affordable, and reliable. Solar Electric Propulsion (SEP) is highly advantageous because of its favorable in-space mass transfer efficiency compared to traditional chemical propulsion systems. The NASA studies have demonstrated that this advantage becomes highly significant as missions progress beyond Earth orbit. Recent studies of human exploration missions and architectures evaluated the capabilities needed to perform a variety of human exploration missions including missions to Near Earth Objects (NEOs). The studies demonstrated that SEP stages have potential to be the most cost effective solution to perform beyond LEO transfers of high mass cargoes for human missions. Recognizing that these missions require power levels more than 10X greater than current electric propulsion systems, NASA embarked upon a progressive pathway to identify critical technologies needed and a plan for an incremental demonstration mission. The NASA studies identified a 30kW class demonstration mission that can serve as a meaningful demonstration of the technologies, operational challenges, and provide the appropriate scaling and modularity required. This paper describes the planning options for a representative demonstration 30kW class SEP mission.
Lundkvist, Johan; Halldin, Magnus M; Sandin, Johan; Nordvall, Gunnar; Forsell, Pontus; Svensson, Samuel; Jansson, Liselotte; Johansson, Gunilla; Winblad, Bengt; Ekstrand, Jonas
2014-01-01
Alzheimer's Disease (AD) is the most common form of dementia, affecting approximately 36 million people worldwide. To date there is no preventive or curative treatment available for AD, and in absence of major progress in therapeutic development, AD manifests a concrete socioeconomic threat. The awareness of the growing problem of AD is increasing, exemplified by the recent G8 Dementia Summit, a meeting held in order to set the stage and steer the compass for the future. Simultaneously, and paradoxically, we have seen key players in the pharmaceutical industry that have recently closed or significantly decreased their R&D spending on AD and other CNS disorders. Given the pressing need for new treatments in this area, other actors need to step-in and enter this drug discovery arena complementing the industrial efforts, in order to turn biological and technological progress into novel therapeutics. In this article, we present an example of a novel drug discovery initiative that in a non-profit setting, aims to integrate with both preclinical and clinical academic groups and pharmaceutical industry to explore the therapeutic potential of new concepts in patients, using novel biology, state of the art technologies and rapid concept testing.
Eljamel, M Sam; Mahboob, Syed Osama
2016-12-01
Surgical resection of high-grade gliomas (HGG) is standard therapy because it imparts significant progression free (PFS) and overall survival (OS). However, HGG-tumor margins are indistinguishable from normal brain during surgery. Hence intraoperative technology such as fluorescence (ALA, fluorescein) and intraoperative ultrasound (IoUS) and MRI (IoMRI) has been deployed. This study compares the effectiveness and cost-effectiveness of these technologies. Critical literature review and meta-analyses, using MEDLINE/PubMed service. The list of references in each article was double-checked for any missing references. We included all studies that reported the use of ALA, fluorescein (FLCN), IoUS or IoMRI to guide HGG-surgery. The meta-analyses were conducted according to statistical heterogeneity between studies. If there was no heterogeneity, fixed effects model was used; otherwise, a random effects model was used. Statistical heterogeneity was explored by χ 2 and inconsistency (I 2 ) statistics. To assess cost-effectiveness, we calculated the incremental cost per quality-adjusted life-year (QALY). Gross total resection (GTR) after ALA, FLCN, IoUS and IoMRI was 69.1%, 84.4%, 73.4% and 70% respectively. The differences were not statistically significant. All four techniques led to significant prolongation of PFS and tended to prolong OS. However none of these technologies led to significant prolongation of OS compared to controls. The cost/QALY was $16,218, $3181, $6049 and $32,954 for ALA, FLCN, IoUS and IoMRI respectively. ALA, FLCN, IoUS and IoMRI significantly improve GTR and PFS of HGG. Their incremental cost was below the threshold for cost-effectiveness of HGG-therapy, denoting that each intraoperative technology was cost-effective on its own. Copyright © 2016 Elsevier B.V. All rights reserved.
76 FR 71033 - Federal Advisory Committee Act; Technological Advisory Council
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-16
... FEDERAL COMMUNICATIONS COMMISSION Federal Advisory Committee Act; Technological Advisory Council... Communications Commission's (FCC) Technological Advisory Council will hold a meeting on Tuesday, December 20... in progress and discuss potential agendas for the coming year. The FCC will attempt to accommodate as...
VERIFICATION OF THE PERFORMANCE OF DECONTAMINATION TECHNOLOGIES IN EPA'S SAFE BUILDINGS PROGRAM
The paper describes initial progress in identifying and testing technologies applicable for decontaminating workplaces and other buildings that may be subject to chemical or biological attack. The EPA is using the process established in its Environmental Technology Verification (...
ERIC Educational Resources Information Center
Kirk, Albert S.; And Others
1991-01-01
Three articles discuss the importance of wood processing to manufacturing and construction industries and the need for progressive change in the curriculum; the evolution of wood-based synthetic panel materials; and the technological advances in the computer control of machine tools and their incorporation into wood technology curricula. (JOW)
SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION PROGRAM: PROGRESS AND ACCOMPLISHMENTS - FISCAL YEAR 1991
The Superfund Innovative Technology Evaluation (SITE) program was the first major program for demonstrating and evaluating full-scale innovative treatment technologies at hazardous waste sites. Having concluded its fifth year, the SITE program is recognized as a leading advocate ...
The telecommunications and data acquisition progress report 42-64
NASA Technical Reports Server (NTRS)
Renzetti, N. A. (Editor)
1981-01-01
Progress in the development and operations of the Deep Space Network is reported. Developments in Earth-based radio technology as applied to geodynamics, astrophysics, and the radio search for extraterrestrial intelligence are included.
FY2011 Annual Progress Report for Propulsion Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Patrick B.; Schutte, Carol L.; Gibbs, Jerry L.
Annual Progress Report for Propulsion Materials focusing on enabling and innovative materials technologies that are critical in improving the efficiency of advanced engines by providing enabling materials support for combustion, hybrid, and power electronics development.
Progress in advanced high temperature turbine materials, coatings, and technology
NASA Technical Reports Server (NTRS)
Freche, J. C.; Ault, G. M.
1977-01-01
Material categories as well as coatings and recent turbine cooling developments are reviewed. Current state of the art is identified, and as assessment, when appropriate, of progress, problems, and future directions is provided.
Fossil Energy Program Annual Progress Report for the Period April 1, 2000 through March 31, 2001
DOE Office of Scientific and Technical Information (OSTI.GOV)
Judkins, RR
This report covers progress made at Oak Ridge National Laboratory (ORNL) on research and development projects that contribute to the advancement of fossil energy technologies. Projects on the ORNL Fossil Energy Program are supported by the U.S. Department of Energy (DOE) Office of Fossil Energy, the DOE National Energy Technology Laboratory (NETL), the DOE Fossil Energy Clean Coal Technology (CCT) Program, the DOE National Petroleum Technology Office, and the DOE Fossil Energy Office of Strategic Petroleum Reserve (SPR). The ORNL Fossil Energy Program research and development activities cover the areas of coal, clean coal technology, gas, petroleum, and support tomore » the SPR. An important part of the Fossil Energy Program is technical management of all activities on the DOE Fossil Energy Advanced Research (AR) Materials Program. The AR Materials Program involves research at other DOE and government laboratories, at universities, and at industrial organizations.« less
Research progress on the brewing techniques of new-type rice wine.
Jiao, Aiquan; Xu, Xueming; Jin, Zhengyu
2017-01-15
As a traditional alcoholic beverage, Chinese rice wine (CRW) with high nutritional value and unique flavor has been popular in China for thousands of years. Although traditional production methods had been used without change for centuries, numerous technological innovations in the last decades have greatly impacted on the CRW industry. However, reviews related to the technology research progress in this field are relatively few. This article aimed at providing a brief summary of the recent developments in the new brewing technologies for making CRW. Based on the comparison between the conventional methods and the innovative technologies of CRW brewing, three principal aspects were summarized and sorted, including the innovation of raw material pretreatment, the optimization of fermentation and the reform of sterilization technology. Furthermore, by comparing the advantages and disadvantages of these methods, various issues are addressed related to the prospect of the CRW industry. Copyright © 2016 Elsevier Ltd. All rights reserved.
Communication Technology Enhances a Magnet School.
ERIC Educational Resources Information Center
Harrison, Jennifer
2001-01-01
Explains how a web-based management tool helped Foothill Technology High School successfully solve its school management and communications needs to keep parents in touch with their children's progress. (GR)
NASA Astrophysics Data System (ADS)
Ishikawa, Kenji; Karahashi, Kazuhiro; Ishijima, Tatsuo; Cho, Sung Il; Elliott, Simon; Hausmann, Dennis; Mocuta, Dan; Wilson, Aaron; Kinoshita, Keizo
2018-06-01
In this review, we discuss the progress of emerging dry processes for nanoscale fabrication of high-aspect-ratio features, including emerging design technology for manufacturability. Experts in the fields of plasma processing have contributed to addressing the increasingly challenging demands of nanoscale deposition and etching technologies for high-aspect-ratio features. The discussion of our atomic-scale understanding of physicochemical reactions involving ion bombardment and neutral transport presents the major challenges shared across the plasma science and technology community. Focus is placed on advances in fabrication technology that control surface reactions on three-dimensional features, as well as state-of-the-art techniques used in semiconductor manufacturing with a brief summary of future challenges.
Microbeam complex at TIARA: Technologies to meet a wide range of applications
NASA Astrophysics Data System (ADS)
Kamiya, T.; Takano, K.; Satoh, T.; Ishii, Y.; Nishikawa, H.; Seki, S.; Sugimoto, M.; Okumura, S.; Fukuda, M.
2011-10-01
Since 1990 R&Ds of microbeam technology has been progressed at the TIARA facility of JAEA Takasaki. In order to meet a wide variety of ion beam applications, analysis, radiation effect studies, or fabrication in regions of micro- or nano-structures, three different types of ion microbeam systems were developed. In these systems, high-spatial resolutions have been achieved and techniques of micro-PIXE, single ion hit and particle beam writing (PBW) were also developed for these applications. Microbeams, on the other hand, require the highest quality of beams from the accelerators, the cyclotron in particular, which was an important part of the microbeam technology of TIARA. In this paper, the latest progress of the ion microbeam technology and applications are summarized and a future prospect of them is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iverson, C.H.; Coury, G.E.
1979-01-01
Progress to date in the development of a study of the application of the technologies of mechanical vapor recompression and falling film evaporators as applied to the beet sugar industry is reported. Progress is reported in the following areas: technical literature search and plant visitations of existing applications of VR/FFE.
Webinar May 17: Fuel Cell Electric Bus Progress Toward Meeting Technical
Targets | News | NREL Webinar May 17: Fuel Cell Electric Bus Progress toward Meeting Technical Targets Webinar May 17: Fuel Cell Electric Bus Progress toward Meeting Technical Targets May 14, 2018 The U.S. Department of Energy's (DOE's) Fuel Cell Technologies Office will present a live webinar titled
Role of long-term mechanical circulatory support in patients with advanced heart failure.
Stokes, M B; Bergin, P; McGiffin, D
2016-05-01
Advanced heart failure represents a small proportion of patients with heart failure that possess high-risk features associated with high hospital readmission rates, significant functional impairment and mortality. Identification of those who have progressed to, or are near a state of advanced heart failure should prompt referral to a service that offers therapies in mechanical circulatory support (MCS) and cardiac transplantation. MCS has grown as a management strategy in the care of these patients, most commonly as a bridge to cardiac transplantation. The predominant utilisation of MCS is implantation of left ventricular assist devices (LVAD), which have evolved significantly in their technology and application over the past 15-20 years. The technology has evolved to such an extent that Destination Therapy is now being utilised as a strategy in management of advanced heart failure in appropriately selected patients. Complication rates have decreased with VAD implantation, but remain a significant consideration in the decision to implant a device, and in the follow up of these patients. © 2016 Royal Australasian College of Physicians.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-04-01
The ORNL Fossil Energy Materials Program Office compiles and issues this combined quarterly progress report from camera-ready copies submitted by each of the participating subcontractor organizations. This report of activities on the program is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FY 1982-1986 in which projects are organized according to fossil energy technologies. This report is divided into parts and chapters with each part describing projects related to a particular fossil energy technology. Chapters within a part provide details of the various projects associated with that technology.more » We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program. Plans for the program will be issued annually. A draft of the program plan for FY 1982 to 1986 has been prepared and is in the review process. The implementation of these plans will be reflected by these quarterly progress reports, and this dissemination of information will bw augmented by topical or final reports as appropriate.« less
Adaptive Technologies for Accommodating Persons with Disabilities.
ERIC Educational Resources Information Center
Berliss, Jane; And Others
1993-01-01
Eight articles review the progress achieved in making library computing technologies and library services accessible to people with disabilities. Adaptive technologies, automated conversion into Braille, and successful programs that demonstrate compliance with the American with Disabilities Act are described. A resource list is included. (EA)
A Research Agenda for Geospatial Technologies and Learning
ERIC Educational Resources Information Center
Baker, Tom R.; Battersby, Sarah; Bednarz, Sarah W.; Bodzin, Alec M.; Kolvoord, Bob; Moore, Steven; Sinton, Diana; Uttal, David
2015-01-01
Knowledge around geospatial technologies and learning remains sparse, inconsistent, and overly anecdotal. Studies are needed that are better structured; more systematic and replicable; attentive to progress and findings in the cognate fields of science, technology, engineering, and math education; and coordinated for multidisciplinary approaches.…
SITE CHARACTERIZATION AND MONITORING TECHNOLOGY VERIFICATION: PROGRESS AND RESULTS
The Site Characterization and Monitoring Technology Pilot of the U.S. Environmental Protection Agency's Environmental Technology Verification Program (ETV) has been engaged in verification activities since the fall of 1994 (U.S. EPA, 1997). The purpose of the ETV is to promote th...
Status of NASA's Stirling Space Power Converter Program
NASA Technical Reports Server (NTRS)
Dudenhoefer, James E.; Winter, Jerry M.
1991-01-01
An overview is presented of the NASA-Lewis Free-Piston Stirling Space Power Convertor Technology Program. The goal is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. Stirling experience in space and progress toward 1050 and 1300 K Stirling Space Power Converters is discussed. Fabrication is nearly completed for the 1050 K Component Test Power Converters (CTPC); results of motoring tests of cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing and predictive methodologies. An update is provided of progress in some of these technologies leading off with a discussion of free-piston Stirling experience in space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adom, Felix K.; Cai, Hao; Dunn, Jennifer B.
2016-03-01
The Department of Energy’s (DOE) Bioenergy Technology Office (BETO) aims at developing and deploying technologies to transform renewable biomass resources into commercially viable, high-performance biofuels, bioproducts and biopower through public and private partnerships (DOE, 2015). BETO and its national laboratory teams conduct in-depth techno-economic assessments (TEA) of technologies to produce biofuels. These assessments evaluate feedstock production, logistics of transporting the feedstock, and conversion of the feedstock to biofuel. There are two general types of TEAs. A design case is a TEA that outlines a target case for a particular biofuel pathway. It enables identification of data gaps and research andmore » development needs, and provides goals and targets against which technology progress is assessed. On the other hand, a state of technology (SOT) analysis assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases, and includes technical, economic, and environmental criteria as available.« less
Craniofacial imaging informatics and technology development.
Vannier, M W
2003-01-01
'Craniofacial imaging informatics' refers to image and related scientific data from the dentomaxillofacial complex, and application of 'informatics techniques' (derived from disciplines such as applied mathematics, computer science and statistics) to understand and organize the information associated with the data. Major trends in information technology determine the progress made in craniofacial imaging and informatics. These trends include industry consolidation, disruptive technologies, Moore's law, electronic atlases and on-line databases. Each of these trends is explained and documented, relative to their influence on craniofacial imaging. Craniofacial imaging is influenced by major trends that affect all medical imaging and related informatics applications. The introduction of cone beam craniofacial computed tomography scanners is an example of a disruptive technology entering the field. An important opportunity lies in the integration of biologic knowledge repositories with craniofacial images. The progress of craniofacial imaging will continue subject to limitations imposed by the underlying technologies, especially imaging informatics. Disruptive technologies will play a major role in the evolution of this field.
The OPTICON technology roadmap for optical and infrared astronomy
NASA Astrophysics Data System (ADS)
Cunningham, Colin; Melotte, David; Molster, Frank
2010-07-01
The Key Technology Network (KTN) within the OPTICON programme has been developing a roadmap for the technology needed to meet the challenges of optical and infrared astronomy over the next few years, with particular emphasis on the requirements of Extremely Large Telescopes. The process and methodology so far will be described, along with the most recent roadmap. The roadmap shows the expected progression of ground-based astronomy facilities and the technological developments which will be required to realise these new facilities. The roadmap highlights the key stages in the development of these technologies. In some areas, such as conventional optics, gradual developments in areas such as light-weighting of optics will slowly be adopted into future instruments. In other areas, such as large area IR detectors, more rapid progress can be expected as new processing techniques allow larger and faster arrays. Finally, other areas such as integrated photonics have the potential to revolutionise astronomical instrumentation. Future plans are outlined, in particular our intention to look at longer term development and disruptive technologies.
Driving Extreme Efficiency to Market
NASA Astrophysics Data System (ADS)
Garbesi, Karina
2014-03-01
The rapid development of extremely energy efficient appliances and equipment is essential to curtail catastrophic climate disruption. This will require the on-going development of products that apply all best-practices and that take advantage of the synergies of hybridization and building integration. Beyond that, it requires the development of new disruptive technologies and concepts. To facilitate these goals, in 2011 the Lawrence Berkeley National Laboratory and the U.S. Department of Energy launched the Max Tech and Beyond Design Competition for Ultra-Low-Energy-Use Appliances and Equipment. Now in its third year, the competition supports faculty-lead student design teams at U.S. universities to develop and test new technology prototypes. This talk describes what the competition and the Max Tech Program are doing to drive such rapid technology progress and to facilitate the entry to the market of successful Max Tech prototypes. The talk also initiates a discussion of physicists' unique role in driving that technology progress faster and farther. Emerging Technologies, Building Technologies Office, U.S. Department of Energy.
The future of computing--new architectures and new technologies.
Warren, P
2004-02-01
All modern computers are designed using the 'von Neumann' architecture and built using silicon transistor technology. Both architecture and technology have been remarkably successful. Yet there are a range of problems for which this conventional architecture is not particularly well adapted, and new architectures are being proposed to solve these problems, in particular based on insight from nature. Transistor technology has enjoyed 50 years of continuing progress. However, the laws of physics dictate that within a relatively short time period this progress will come to an end. New technologies, based on molecular and biological sciences as well as quantum physics, are vying to replace silicon, or at least coexist with it and extend its capability. The paper describes these novel architectures and technologies, places them in the context of the kinds of problems they might help to solve, and predicts their possible manner and time of adoption. Finally it describes some key questions and research problems associated with their use.
Progress In Electromagnetics Research Symposium (PIERS)
NASA Technical Reports Server (NTRS)
1993-01-01
The third Progress In Electromagnetics Research Symposium (PIERS) was held 12-16 Jul. 1993, at the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California. More than 800 presentations were made, and those abstracts are included in this publication.
Progress in manufacturing large primary aircraft structures using the stitching/RTM process
NASA Technical Reports Server (NTRS)
Markus, Alan; Thrash, Patrick; Rohwer, Kim
1993-01-01
The Douglas Aircraft/NASA Act contract has been focused over the past three years at developing a materials, manufacturing, and cost base for stitched/Resin Transfer Molded (RTM) composites. The goal of the program is to develop RTM and stitching technology to provide enabling technology for application of these materials in primary aircraft structure with a high degree of confidence. Presented in this paper will be the progress to date in the area of manufacturing and associated cost values of stitched/RTM composites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Summaries of 41 research projects on enhanced recovery are presented under the following sections: (1) chemical flooding; (2) gas displacement; (3) thermal recovery; (4) geoscience technology; (5) resource assessment technology; and (6) reservoir classes. Each presentation gives the title of the project, contract number, research facility, contract date, expected completion data, amount of the award, principal investigator, and DOE program manager, and describes the objectives of the project and a summary of the technical progress.
Supercritical Wing Technology: A Progress Report on Flight Evaluations
NASA Technical Reports Server (NTRS)
1972-01-01
The papers in this compilation were presented at the NASA Symposium on "Supercritical Wing Technology: A Progress Report on Flight Evaluation" held at the NASA Flight Research Center, Edwards, Calif., on February 29, 1972. The purpose of the symposium was to present timely information on flight results obtained with the F-8 and T-2C supercritical wing configurations, discuss comparisons with wind-tunnel predictions, and project [ ] flight programs planned for the F-8 and F-III (TACT) airplanes.
Technical Progress of the New Worlds Observer Mission
NASA Astrophysics Data System (ADS)
Lo, Amy; Noecker, C.; Cash, W.; NWO Study Team
2009-01-01
We report on the technical progress of the New Worlds Observer (NWO) mission concept. NWO is a two spacecraft mission that is capable of detecting and characterizing extra-solar, terrestrial planets and planetary systems. NWO consists of an external starshade and an UV-optical space telescope, flying in tandem. The starshade is a petal-shaped, opaque screen that creates an extremely dark shadow large enough to shade the telescope aperture from the target star. The NWO team has been addressing the top technology challenges of the concept, and report here our progress. We will present the current mission configuration best suited to address Terrestrial Planet Finding requirements, and highlight the technological breakthroughs that we have achieved this year. In particular, we will report on progress made in precision deployables for the large starshade, and the trajectory & alignment control system for NWO. We will also briefly highlight advances in understanding the starshade optical performance.
Light fidelity (Li-Fi): towards all-optical networking
NASA Astrophysics Data System (ADS)
Tsonev, Dobroslav; Videv, Stefan; Haas, Harald
2013-12-01
Motivated by the looming radio frequency (RF) spectrum crisis, this paper aims at demonstrating that optical wireless communication (OWC) has now reached a state where it can demonstrate that it is a viable and matured solution to this fundamental problem. In particular, for indoor communications where most mobile data traffic is consumed, light fidelity (Li-Fi) which is related to visible light communication (VLC) offers many key advantages, and effective solutions to the issues that have been posed in the last decade. This paper discusses all key component technologies required to realize optical cellular communication systems referred to here as optical attocell networks. Optical attocells are the next step in the progression towards ever smaller cells, a progression which is known to be the most significant contributor to the improvements in network spectral efficiencies in RF wireless networks.
NASA Astrophysics Data System (ADS)
Wilson, J. R.; Bonoli, P. T.
2015-02-01
Ion cyclotron range of frequency (ICRF) heating is foreseen as an integral component of the initial ITER operation. The status of ICRF preparations for ITER and supporting research were updated in the 2007 [Gormezano et al., Nucl. Fusion 47, S285 (2007)] report on the ITER physics basis. In this report, we summarize progress made toward the successful application of ICRF power on ITER since that time. Significant advances have been made in support of the technical design by development of new techniques for arc protection, new algorithms for tuning and matching, carrying out experimental tests of more ITER like antennas and demonstration on mockups that the design assumptions are correct. In addition, new applications of the ICRF system, beyond just bulk heating, have been proposed and explored.
Resource Prospector Mission Animation (June 2018)
2018-05-30
Expanding human presence beyond low-Earth orbit will require the maximum possible use of local materials, so-called in-situ resources (ISRU). The Moon presents a unique destination to conduct robotic investigations that advance ISRU capabilities, as well as providing significant exploration and science value. This video animation shows one mission concept under study by NASA called Resource Prospector (RP), an ISRU prospecting and technology demonstration mission. RP would scan the surface and sub-surface terrain, and demonstrate extraction of hydrogen and oxygen from lunar regolith to validate one possible ISRU approach. As NASA plans a series of progressive robotic missions to the lunar surface, the agency is considering a variety of approaches to evolve progressively larger landers leading to an eventual human lander capability. Part of this expanded lunar campaign includes early flight of select instruments from Resource Prospector to the Moon.
Identifying Common Genetic Risk Factors of Diabetic Neuropathies
Witzel, Ini-Isabée; Jelinek, Herbert F.; Khalaf, Kinda; Lee, Sungmun; Khandoker, Ahsan H.; Alsafar, Habiba
2015-01-01
Type 2 diabetes mellitus (T2DM) is a global public health problem of epidemic proportions, with 60–70% of affected individuals suffering from associated neurovascular complications that act on multiple organ systems. The most common and clinically significant neuropathies of T2DM include uremic neuropathy, peripheral neuropathy, and cardiac autonomic neuropathy. These conditions seriously impact an individual’s quality of life and significantly increase the risk of morbidity and mortality. Although advances in gene sequencing technologies have identified several genetic variants that may regulate the development and progression of T2DM, little is known about whether or not the variants are involved in disease progression and how these genetic variants are associated with diabetic neuropathy specifically. Significant missing heritability data and complex disease etiologies remain to be explained. This article is the first to provide a review of the genetic risk variants implicated in the diabetic neuropathies and to highlight potential commonalities. We thereby aim to contribute to the creation of a genetic-metabolic model that will help to elucidate the cause of diabetic neuropathies, evaluate a patient’s risk profile, and ultimately facilitate preventative and targeted treatment for the individual. PMID:26074879
Update of patient-specific maxillofacial implant.
Owusu, James A; Boahene, Kofi
2015-08-01
Patient-specific implant (PSI) is a personalized approach to reconstructive and esthetic surgery. This is particularly useful in maxillofacial surgery in which restoring the complex three-dimensional (3D) contour can be quite challenging. In certain situations, the best results can only be achieved with implants custom-made to fit a particular need. Significant progress has been made over the past decade in the design and manufacture of maxillofacial PSIs. Computer-aided design (CAD)/computer-aided manufacturing (CAM) technology is rapidly advancing and has provided new options for fabrication of PSIs with better precision. Maxillofacial PSIs can now be designed using preoperative imaging data as input into CAD software. The designed implant is then fabricated using a CAM technique such as 3D printing. This approach increases precision and decreases or completely eliminates the need for intraoperative modification of implants. The use of CAD/CAM-produced PSIs for maxillofacial reconstruction and augmentation can significantly improve contour outcomes and decrease operating time. CAD/CAM technology allows timely and precise fabrication of maxillofacial PSIs. This approach is gaining increasing popularity in maxillofacial reconstructive surgery. Continued advances in CAD technology and 3D printing are bound to improve the cost-effectiveness and decrease the production time of maxillofacial PSIs.
NASA Technical Reports Server (NTRS)
Goodrich, Kenneth H.; Nickolaou, Jim; Moore, Mark D.
2016-01-01
Highly automated cars have undergone tremendous investment and progress over the past ten years with speculation about fully-driverless cars within the foreseeable, or even near future, becoming common. If a driverless future is realized, what might be the impact on personal aviation? Would self-piloting airplanes be a relatively simple spin-off, possibly making travel by personal aircraft also commonplace? What if the technology for completely removing human drivers turns out to be further in the future rather than sooner; would such a delay suggest that transformational personal aviation is also somewhere over the horizon or can transformation be achieved with less than full automation? This paper presents a preliminary exploration of these questions by comparing the operational, functional, and implementation requirements and constraints of cars and small aircraft for on-demand mobility. In general, we predict that the mission management and perception requirements of self-piloting aircraft differ significantly from self-driving cars and requires the development of aviation specific technologies. We also predict that the highly-reliable control and system automation technology developed for conditionally and highly automated cars can have a significant beneficial effect on personal aviation, even if full automation is not immediately feasible.
Six-Port Based Interferometry for Precise Radar and Sensing Applications.
Koelpin, Alexander; Lurz, Fabian; Linz, Sarah; Mann, Sebastian; Will, Christoph; Lindner, Stefan
2016-09-22
Microwave technology plays a more important role in modern industrial sensing applications. Pushed by the significant progress in monolithic microwave integrated circuit technology over the past decades, complex sensing systems operating in the microwave and even millimeter-wave range are available for reasonable costs combined with exquisite performance. In the context of industrial sensing, this stimulates new approaches for metrology based on microwave technology. An old measurement principle nearly forgotten over the years has recently gained more and more attention in both academia and industry: the six-port interferometer. This paper reviews the basic concept, investigates promising applications in remote, as well as contact-based sensing and compares the system with state-of-the-art metrology. The significant advantages will be discussed just as the limitations of the six-port architecture. Particular attention will be paid to impairment effects and non-ideal behavior, as well as compensation and linearization concepts. It will be shown that in application fields, like remote distance sensing, precise alignment measurements, as well as interferometrically-evaluated mechanical strain analysis, the six-port architecture delivers extraordinary measurement results combined with high measurement data update rates for reasonable system costs. This makes the six-port architecture a promising candidate for industrial metrology.
Design and process aspects of laboratory scale SCF particle formation systems.
Vemavarapu, Chandra; Mollan, Matthew J; Lodaya, Mayur; Needham, Thomas E
2005-03-23
Consistent production of solid drug materials of desired particle and crystallographic morphologies under cGMP conditions is a frequent challenge to pharmaceutical researchers. Supercritical fluid (SCF) technology gained significant attention in pharmaceutical research by not only showing a promise in this regard but also accommodating the principles of green chemistry. Given that this technology attained commercialization in coffee decaffeination and in the extraction of hops and other essential oils, a majority of the off-the-shelf SCF instrumentation is designed for extraction purposes. Only a selective few vendors appear to be in the early stages of manufacturing equipment designed for particle formation. The scarcity of information on the design and process engineering of laboratory scale equipment is recognized as a significant shortcoming to the technological progress. The purpose of this article is therefore to provide the information and resources necessary for startup research involving particle formation using supercritical fluids. The various stages of particle formation by supercritical fluid processing can be broadly classified into delivery, reaction, pre-expansion, expansion and collection. The importance of each of these processes in tailoring the particle morphology is discussed in this article along with presenting various alternatives to perform these operations.
IVS Technology Coordinator Report
NASA Technical Reports Server (NTRS)
Whitney, Alan
2013-01-01
This report of the Technology Coordinator includes the following: 1) continued work to implement the new VLBI2010 system, 2) the 1st International VLBI Technology Workshop, 3) a VLBI Digital- Backend Intercomparison Workshop, 4) DiFX software correlator development for geodetic VLBI, 5) a review of progress towards global VLBI standards, and 6) a welcome to new IVS Technology Coordinator Bill Petrachenko.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-09-01
Accomplishments for the past quarter are presented for the following tasks: Chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; microbial technology; and novel technology. A list of available publication is also provided.
ERIC Educational Resources Information Center
Williams, Mia Kim; Foulger, Teresa S.; Wetzel, Keith
2009-01-01
Keeping-up with progressing technology tools has been a troublesome issue for educational technology instructors for over ten years as they endeavor to prepare beginning teachers to integrate technology in their future classrooms. This paper promotes instructors' ideas about behaviors of 21st century teachers, and explores efforts to support their…
Environmental policies to enhance technological change in the electricity sector
NASA Astrophysics Data System (ADS)
Sunol Del Rio, Eric
International agreements on climate change mitigation set quantitative carbon emission reduction targets in a country for a given year with respect to a given base year. A central question is then on what time do the new clean and costly technologies need to start functioning to comply with the agreed targets, and under what incentive does the market implement them. The planner's economic problem is to design an incentive that makes the new clean technology less costly than the vintage polluting facility, at the precise time in order to comply with the agreements at minimum cost. Chapter 1 reviews the literature on efficient allocation of pollution, discussing its validity to explain induced technological change. It then presents a simple model of technological change showing that market power determes the optimal adoption time of a new technology. Chapter 2 analyzes the effectiveness of carbon costs in accelerating technological change under different paths of technological progress. Furthermore, the paper examines the influence of market conditions. It shows that emission charges do reduce the firm's optimal adoption time when investment cost paths for the new technology are convex. On the contrary, emission charges may delay the optimal the switching time of a technology when the investment cost path is concave. Chapter 3 explores the results of Chapter 2 in an agent-based model. Simulations of firms adjusting their output a la Cournot show that the effectiveness of carbon costs in accelerating technological change is highly dependant on the number of firms in the market. Moreover, the shape of the technological progress curve is determinant: the effects of carbon charges are not linear on carbon price, and become more uncertain the more concave the investment cost path is. These results show that policies aiming at internalizing pollution costs enhance technological change at very different rates, depending on the actual market conditions in the industry and the dynamics of technological progress. This has profound implications in policy design: not only do carbon charges need to be used with precaution in oligopolistic industries, but also its effectiveness depends on the inner dynamics of cleaner technological alternatives.
The Obligation to Provide Assistive Technology: Enhancing the General Curriculum Access.
ERIC Educational Resources Information Center
Smith, Sean J.; Jones, Eric D.
1999-01-01
Describes public commitment (expressed in federal legislation) to using assistive technology devices and services in K-12 special education and discusses approaches for addressing obstacles in meeting this commitment. Reauthorization of the Individuals with Disabilities Act represents progress toward integrating assistive technology into disabled…
Information Technology and the Third Industrial Revolution.
ERIC Educational Resources Information Center
Fitzsimmons, Joe
1994-01-01
Discusses the so-called third industrial revolution, or the information revolution. Topics addressed include the progression of the revolution in the U.S. economy, in Europe, and in Third World countries; the empowering technologies, including digital switches, optical fiber, semiconductors, CD-ROM, networks, and combining technologies; and future…
An Integrated Mobile Application to Improve the Watershed Management in Taiwan
NASA Astrophysics Data System (ADS)
Chou, T. Y.; Chen, M. H.; Lee, C. Y.
2015-12-01
This study aims to focus on the application of information technology on the reservoir watershed management. For the civil and commercial water usage, reservoirs and its upstream plays a significant role due to water scarcity and inequality, especially in Taiwan. Due to the progress of information technology, apply it can improve the efficiency and accuracy of daily affairs significantly which already proved by previous researches. Taipei Water Resource District (TWRD) is selected as study area for this study, it is the first reservoir watershed which authorized as special protection district by urban planning act. This study has designed a framework of mobile application, which addressed three types of public affairs relate to watershed management, includes building management, illegal land-use investigation, and a dashboard of real time stream information. This mobile application integrated a dis-connected map and interactive interface to collect, record and calculate field information which helps the authority manage the public affairs more efficiency.