Solar array technology evaluation program for SEPS (Solar Electrical Propulsion Stage)
NASA Technical Reports Server (NTRS)
1974-01-01
An evaluation of the technology and the development of a preliminary design for a 25 kilowatt solar array system for solar electric propulsion are discussed. The solar array has a power to weight ratio of 65 watts per kilogram. The solar array system is composed of two wings. Each wing consists of a solar array blanket, a blanket launch storage container, an extension/retraction mast assembly, a blanket tensioning system, an array electrical harness, and hardware for supporting the system for launch and in the operating position. The technology evaluation was performed to assess the applicable solar array state-of-the-art and to define supporting research necessary to achieve technology readiness for meeting the solar electric propulsion system solar array design requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, P.; Eurek, K.; Margolis, R.
2014-07-01
Because solar power is a rapidly growing component of the electricity system, robust representations of solar technologies should be included in capacity-expansion models. This is a challenge because modeling the electricity system--and, in particular, modeling solar integration within that system--is a complex endeavor. This report highlights the major challenges of incorporating solar technologies into capacity-expansion models and shows examples of how specific models address those challenges. These challenges include modeling non-dispatchable technologies, determining which solar technologies to model, choosing a spatial resolution, incorporating a solar resource assessment, and accounting for solar generation variability and uncertainty.
Technical Assistance for Southwest Solar Technologies Inc. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munoz-Ramos, Karina; Brainard, James Robert; McIntyre, Annie
2012-07-01
Southwest Solar Technologies Inc. is constructing a Solar-Fuel Hybrid Turbine energy system. This innovative energy system combines solar thermal energy with compressed air energy storage and natural gas fuel backup capability to provide firm, non-intermittent power. In addition, the energy system will have very little impact on the environment since, unlike other Concentrated Solar Power (CSP) technologies, it requires minimal water. In 2008 Southwest Solar Technologies received a Solar America Showcase award from the Department of Energy for Technical Assistance from Sandia National Laboratories. This report details the work performed as part of the Solar America Showcase award for Southwestmore » Solar Technologies. After many meetings and visits between Sandia National Labs and Southwest Solar Technologies, several tasks were identified as part of the Technical Assistance and the analysis and results for these are included here.« less
Solar Advisor Model User Guide for Version 2.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilman, P.; Blair, N.; Mehos, M.
2008-08-01
The Solar Advisor Model (SAM) provides a consistent framework for analyzing and comparing power system costs and performance across the range of solar technologies and markets, from photovoltaic systems for residential and commercial markets to concentrating solar power and large photovoltaic systems for utility markets. This manual describes Version 2.0 of the software, which can model photovoltaic and concentrating solar power technologies for electric applications for several markets. The current version of the Solar Advisor Model does not model solar heating and lighting technologies.
NASA Technical Reports Server (NTRS)
Dustin, M. O.
1985-01-01
The development of the solar dynamic system is discussed. The benefits of the solar dynamic system over pv systems are enumerated. The history of the solar dynamic development is recounted. The purpose and approach of the advanced development are outlined. Critical concentrator technology and critical heat recover technology are examined.
Solar Cell and Array Technology Development for NASA Solar Electric Propulsion Missions
NASA Technical Reports Server (NTRS)
Piszczor, Michael; McNatt, Jeremiah; Mercer, Carolyn; Kerslake, Tom; Pappa, Richard
2012-01-01
NASA is currently developing advanced solar cell and solar array technologies to support future exploration activities. These advanced photovoltaic technology development efforts are needed to enable very large (multi-hundred kilowatt) power systems that must be compatible with solar electric propulsion (SEP) missions. The technology being developed must address a wide variety of requirements and cover the necessary advances in solar cell, blanket integration, and large solar array structures that are needed for this class of missions. Th is paper will summarize NASA's plans for high power SEP missions, initi al mission studies and power system requirements, plans for advanced photovoltaic technology development, and the status of specific cell and array technology development and testing that have already been conducted.
NASA Astrophysics Data System (ADS)
Various papers on photovoltaics are presented. The general topics considered include: amorphous materials and cells; amorphous silicon-based solar cells and modules; amorphous silicon-based materials and processes; amorphous materials characterization; amorphous silicon; high-efficiency single crystal solar cells; multijunction and heterojunction cells; high-efficiency III-V cells; modeling and characterization of high-efficiency cells; LIPS flight experience; space mission requirements and technology; advanced space solar cell technology; space environmental effects and modeling; space solar cell and array technology; terrestrial systems and array technology; terrestrial utility and stand-alone applications and testing; terrestrial concentrator and storage technology; terrestrial stand-alone systems applications; terrestrial systems test and evaluation; terrestrial flatplate and concentrator technology; use of polycrystalline materials; polycrystalline II-VI compound solar cells; analysis of and fabrication procedures for compound solar cells.
Mission to the Solar System: Exploration and Discovery. A Mission and Technology Roadmap
NASA Technical Reports Server (NTRS)
Gulkis, S. (Editor); Stetson, D. S. (Editor); Stofan, E. R. (Editor)
1998-01-01
Solar System exploration addresses some of humanity's most fundamental questions: How and when did life form on Earth? Does life exist elsewhere in the Solar System or in the Universe? - How did the Solar System form and evolve in time? - What can the other planets teach us about the Earth? This document describes a Mission and Technology Roadmap for addressing these and other fundamental Solar System Questions. A Roadmap Development Team of scientists, engineers, educators, and technologists worked to define the next evolutionary steps in in situ exploration, sample return, and completion of the overall Solar System survey. Guidelines were to "develop aa visionary, but affordable, mission and technology development Roadmap for the exploration of the Solar System in the 2000 to 2012 timeframe." The Roadmap provides a catalog of potential flight missions. (Supporting research and technology, ground-based observations, and laboratory research, which are no less important than flight missions, are not included in this Roadmap.)
Solar Energy Technologies and the Utilization on Native American Tribal Lands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Kathryn
As an undergraduate researcher, I worked on a new technology called nanofluid-based direct absorption solar collectors (DASC) which is a type of solar water heater that has the potential to be more efficient than traditional solar water heaters. Because of my experience with this type of technology, I decided to look into other types of solar energy technologies which could be used on Native American tribal lands. Some types of solar energy technologies that I wanted to focus on are photovoltaic solar energy systems, passive solar design, and solar water heaters.
Solar electric propulsion system technology
NASA Technical Reports Server (NTRS)
Masek, T. D.; Macie, T. W.
1971-01-01
Achievements in the solar electric propulsion system technology program (SEPST 3) are reported and certain propulsion system-spacecraft interaction problems are discussed. The basic solar electric propulsion system concept and elements are reviewed. Hardware is discussed only briefly, relying on detailed fabrication or assembly descriptions reported elsewhere. Emphasis is placed on recent performance data, which are presented to show the relationship between spacecraft requirements and present technology.
Conceptual definition of a technology development mission for advanced solar dynamic power systems
NASA Technical Reports Server (NTRS)
Migra, R. P.
1986-01-01
An initial conceptual definition of a technology development mission for advanced solar dynamic power systems is provided, utilizing a space station to provide a dedicated test facility. The advanced power systems considered included Brayton, Stirling, and liquid metal Rankine systems operating in the temperature range of 1040 to 1400 K. The critical technologies for advanced systems were identified by reviewing the current state of the art of solar dynamic power systems. The experimental requirements were determined by planning a system test of a 20 kWe solar dynamic power system on the space station test facility. These requirements were documented via the Mission Requirements Working Group (MRWG) and Technology Development Advocacy Group (TDAG) forms. Various concepts or considerations of advanced concepts are discussed. A preliminary evolutionary plan for this technology development mission was prepared.
NASA Technical Reports Server (NTRS)
Johnson, Les
2009-01-01
Solar sailing is a topic of growing technical and popular interest. Solar sail propulsion will make space exploration more affordable and offer access to destinations within (and beyond) the solar system that are currently beyond our technical reach. The lecture will describe solar sails, how they work, and what they will be used for in the exploration of space. It will include a discussion of current plans for solar sails and how advanced technology, such as nanotechnology, might enhance their performance. Much has been accomplished recently to make solar sail technology very close to becoming an engineering reality and it will soon be used by the world s space agencies in the exploration of the solar system and beyond. The first part of the lecture will summarize state-of-the-art space propulsion systems and technologies. Though these other technologies are the key to any deep space exploration by humans, robots, or both, solar-sail propulsion will make space exploration more affordable and offer access to distant and difficult destinations. The second part of the lecture will describe the fundamentals of space solar sail propulsion and will describe the near-, mid- and far-term missions that might use solar sails as a propulsion system. The third part of the lecture will describe solar sail technology and the construction of current and future sailcraft, including the work of both government and private space organizations.
Storage systems for solar thermal power
NASA Technical Reports Server (NTRS)
Calogeras, J. E.; Gordon, L. H.
1978-01-01
The development status is reviewed of some thermal energy storage technologies specifically oriented towards providing diurnal heat storage for solar central power systems and solar total energy systems. These technologies include sensible heat storage in caverns and latent heat storage using both active and passive heat exchange processes. In addition, selected thermal storage concepts which appear promising to a variety of advanced solar thermal system applications are discussed.
Solar Spots - Activities to Introduce Solar Energy into the K-8 Curricula.
ERIC Educational Resources Information Center
Longe, Karen M.; McClelland, Michael J.
Following an introduction to solar technology which reviews solar heating and cooling, passive solar systems (direct gain systems, thermal storage walls, sun spaces, roof ponds, and convection loops), active solar systems, solar electricity (photovoltaic and solar thermal conversion systems), wind energy, and biomass, activities to introduce solar…
Selection and Prioritization of Advanced Propulsion Technologies for Future Space Missions
NASA Technical Reports Server (NTRS)
Eberle, Bill; Farris, Bob; Johnson, Les; Jones, Jonathan; Kos, Larry; Woodcock, Gordon; Brady, Hugh J. (Technical Monitor)
2002-01-01
The exploration of our solar system will require spacecraft with much greater capability than spacecraft which have been launched in the past. This is particularly true for exploration of the outer planets. Outer planet exploration requires shorter trip times, increased payload mass, and ability to orbit or land on outer planets. Increased capability requires better propulsion systems, including increased specific impulse. Chemical propulsion systems are not capable of delivering the performance required for exploration of the solar system. Future propulsion systems will be applied to a wide variety of missions with a diverse set of mission requirements. Many candidate propulsion technologies have been proposed but NASA resources do not permit development of a] of them. Therefore, we need to rationally select a few propulsion technologies for advancement, for application to future space missions. An effort was initiated to select and prioritize candidate propulsion technologies for development investment. The results of the study identified Aerocapture, 5 - 10 KW Solar Electric Ion, and Nuclear Electric Propulsion as high priority technologies. Solar Sails, 100 Kw Solar Electric Hall Thrusters, Electric Propulsion, and Advanced Chemical were identified as medium priority technologies. Plasma sails, momentum exchange tethers, and low density solar sails were identified as high risk/high payoff technologies.
Solar hot water systems application to the solar building test facility and the Tech House
NASA Technical Reports Server (NTRS)
Goble, R. L.; Jensen, R. N.; Basford, R. C.
1976-01-01
Projects which relate to the current national thrust toward demonstrating applied solar energy are discussed. The first project has as its primary objective the application of a system comprised of a flat plate collector field, an absorption air conditioning system, and a hot water heating system to satisfy most of the annual cooling and heating requirements of a large commercial office building. The other project addresses the application of solar collector technology to the heating and hot water requirements of a domestic residence. In this case, however, the solar system represents only one of several important technology items, the primary objective for the project being the application of space technology to the American home.
STDAC: Solar thermal design assistance center annual report fiscal year 1994
NASA Astrophysics Data System (ADS)
The Solar Thermal Design Assistance Center (STDAC) at Sandia is a resource provided by the DOE Solar Thermal Program. The STDAC's major objective is to accelerate the use of solar thermal systems by providing direct technical assistance to users in industry, government, and foreign countries; cooperating with industry to test, evaluate, and develop renewable energy systems and components; and educating public and private professionals, administrators, and decision makers. This FY94 report highlights the activities and accomplishments of the STDAC. In 1994, the STDAC continued to provide significant direct technical assistance to domestic and international organizations in industry, government, and education, Applying solar thermal technology to solve energy problems is a vital element of direct technical assistance. The STDAC provides information on the status of new, existing, and developing solar technologies; helps users screen applications; predicts the performance of components and systems; and incorporates the experience of Sandia's solar energy personnel and facilities to provide expert guidance. The STDAC directly enhances the US solar industry's ability to successfully bring improved systems to the marketplace. By collaborating with Sandia's Photovoltaic Design Assistance Center and the National Renewable Energy Laboratory the STDAC is able to offer each customer complete service in applying solar thermal technology. At the National Solar Thermal Test Facility the STDAC tests and evaluates new and innovative solar thermal technologies. Evaluations are conducted in dose cooperation with manufacturers, and the results are used to improve the product and/or quantify its performance characteristics. Manufacturers, in turn, benefit from the improved design, economic performance, and operation of their solar thermal technology. The STDAC provides cost sharing and in-kind service to manufacturers in the development and improvement of solar technology.
A Solar Dynamic Power Option for Space Solar Power
NASA Technical Reports Server (NTRS)
Mason, Lee S.
1999-01-01
A study was performed to determine the potential performance and related technology requirements of Solar Dynamic power systems for a Space Solar Power satellite. Space Solar Power is a concept where solar energy is collected in orbit and beamed to Earth receiving stations to supplement terrestrial electric power service. Solar Dynamic systems offer the benefits of high solar-to-electric efficiency, long life with minimal performance degradation, and high power scalability. System analyses indicate that with moderate component development, SD systems can exhibit excellent mass and deployed area characteristics. Using the analyses as a guide, a technology roadmap was -enerated which identifies the component advances necessary to make SD power generation a competitive option for the SSP mission.
NASDA activities in space solar power system research, development and applications
NASA Technical Reports Server (NTRS)
Matsuda, Sumio; Yamamoto, Yasunari; Uesugi, Masato
1993-01-01
NASDA activities in solar cell research, development, and applications are described. First, current technologies for space solar cells such as Si, GaAs, and InP are reviewed. Second, future space solar cell technologies intended to be used on satellites of 21st century are discussed. Next, the flight data of solar cell monitor on ETS-V is shown. Finally, establishing the universal space solar cell calibration system is proposed.
Solar-gas systems impact analysis study
NASA Astrophysics Data System (ADS)
Neill, C. P.; Hahn, E. F.; Loose, J. C.; Poe, T. E.; Hirshberg, A. S.; Haas, S.; Preble, B.; Halpin, J.
1984-07-01
The impacts of solar/gas technologies on gas consumers and on gas utilities were measured separately and compared against the impacts of competing gas and electric systems in four climatic regions of the U.S. A methodology was developed for measuring the benefits or penalties of solar/gas systems on a combined basis for consumers sand distribution companies. It is shown that the combined benefits associated with solar/gas systems are generally greatest when the systems are purchased by customers who would have otherwise chosen high-efficiency electric systems (were solar/gas systems not available in the market place). The role of gas utilities in encouraging consumer acceptance of solar/gas systems was also examined ion a qualitative fashion. A decision framework for analyzing the type and level of utility involvement in solar/gas technologies was developed.
NASA Technical Reports Server (NTRS)
Costogue, E. N.; Young, L. E.; Brandhorst, H. W., Jr.
1978-01-01
Development efforts are reported in detail for: (1) a lightweight solar array system for solar electric propulsion; (2) a high efficiency thin silicon solar cell; (3) conceptual design of 200 W/kg solar arrays; (4) fluorocarbon encapsulation for silicon solar cell array; and (5) technology assessment of concentrator solar arrays.
NASA Technical Reports Server (NTRS)
1987-01-01
Heat Pipe Technology, Inc. undertook the development of a PV system that could bring solar electricity to the individual home at reasonable cost. His system employs high efficiency PV modules plus a set of polished reflectors that concentrate the solar energy and enhance the output of the modules. Dinh incorporated a sun tracking system derived from space tracking technology. It automatically follows the sun throughout the day and turns the modules so that they get maximum exposure to the solar radiation, further enhancing the system efficiency.
Solar Market Research and Analysis | Solar Research | NREL
stakeholder engagement, NREL's Solar Market Research and Analysis efforts further solar technologies' role in technologies' role in supporting a more efficient and better performing U.S. electricity system. Learn more
NASA Technical Reports Server (NTRS)
Gardner, J. A.
1972-01-01
A solar electric propulsion system integration technology study is discussed. Detailed analyses in support of the solar electric propulsion module were performed. The thrust subsystem functional description is presented. The space vehicle and the space mission to which the propulsion system is applied are analyzed.
Solar thermal program summary. Volume 1: Overview, fiscal year 1988
NASA Astrophysics Data System (ADS)
1989-02-01
The goal of the solar thermal program is to improve overall solar thermal systems performance and provide cost-effective energy options that are strategically secure and environmentally benign. Major research activities include energy collection technology, energy conversion technology, and systems and applications technology for both CR and DR systems. This research is being conducted through research laboratories in close coordination with the solar thermal industry, utilities companies, and universities. The Solar Thermal Technology Program is pursuing the development of critical components and subsystems for improved energy collection and conversion devices. This development follows two basic paths: for CR systems, critical components include stretched membrane heliostats, direct absorption receivers (DARs), and transport subsystems for molten salt heat transfer fluids. These components offer the potential for a significant reduction in system costs; and for DR systems, critical components include stretched membrane dishes, reflux receivers, and Stirling engines. These components will significantly increase system reliability and efficiency, which will reduce costs. The major thrust of the program is to provide electric power. However, there is an increasing interest in the use of concentrated solar energy for applications such as detoxifying hazardous wastes and developing high-value transportable fuels. These potential uses of highly concentrated solar energy still require additional experiments to prove concept feasibility. The program goal of economically competitive energy reduction from solar thermal systems is being cooperatively addressed by industry and government.
Solar Sail Propulsion Technology Readiness Level Database
NASA Technical Reports Server (NTRS)
Adams, Charles L.
2004-01-01
The NASA In-Space Propulsion Technology (ISPT) Projects Office has been sponsoring 2 solar sail system design and development hardware demonstration activities over the past 20 months. Able Engineering Company (AEC) of Goleta, CA is leading one team and L Garde, Inc. of Tustin, CA is leading the other team. Component, subsystem and system fabrication and testing has been completed successfully. The goal of these activities is to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by 2006. These activities will culminate in the deployment and testing of 20-meter solar sail system ground demonstration hardware in the 30 meter diameter thermal-vacuum chamber at NASA Glenn Plum Brook in 2005. This paper will describe the features of a computer database system that documents the results of the solar sail development activities to-date. Illustrations of the hardware components and systems, test results, analytical models, relevant space environment definition and current TRL assessment, as stored and manipulated within the database are presented. This database could serve as a central repository for all data related to the advancement of solar sail technology sponsored by the ISPT, providing an up-to-date assessment of the TRL of this technology. Current plans are to eventually make the database available to the Solar Sail community through the Space Transportation Information Network (STIN).
Recent advances in the PV-CSP hybrid solar power technology
NASA Astrophysics Data System (ADS)
Ju, Xing; Xu, Chao; Han, Xue; Zhang, Hui; Wei, Gaosheng; Chen, Lin
2017-06-01
Photovoltaic - Concentrated Solar Power (PV-CSP) hybrid technology is considered to be an important future research trend in solar energy engineering. The development of the PV-CSP hybrid technology accelerates in recent years with the rapid maturation of photovoltaics (PV) and concentrated solar power (CSP). This paper presents the recent advances on PV-CSP technology, including different technologies based on new dispatch strategies, Organic Rankine Cycles, spectral beam filters and so on. The research status and the hybrid system performance of the recent researches are summarized, aimed to provide an extended recognition on the PV-CSP hybrid technology. The advantages and limitations of the hybrid system are concluded according to the researches reviewed.
USAF solar thermal applications overview
NASA Technical Reports Server (NTRS)
Hauger, J. S.; Simpson, J. A.
1981-01-01
Process heat applications were compared to solar thermal technologies. The generic process heat applications were analyzed for solar thermal technology utilization, using SERI's PROSYS/ECONOMAT model in an end use matching analysis and a separate analysis was made for solar ponds. Solar technologies appear attractive in a large number of applications. Low temperature applications at sites with high insolation and high fuel costs were found to be most attractive. No one solar thermal technology emerges as a clearly universal or preferred technology, however,, solar ponds offer a potential high payoff in a few, selected applications. It was shown that troughs and flat plate systems are cost effective in a large number of applications.
The Implementation of Advanced Solar Array Technology in Future NASA Missions
NASA Technical Reports Server (NTRS)
Piszczor, Michael F.; Kerslake, Thomas W.; Hoffman, David J.; White, Steve; Douglas, Mark; Spence, Brian; Jones, P. Alan
2003-01-01
Advanced solar array technology is expected to be critical in achieving the mission goals on many future NASA space flight programs. Current PV cell development programs offer significant potential and performance improvements. However, in order to achieve the performance improvements promised by these devices, new solar array structures must be designed and developed to accommodate these new PV cell technologies. This paper will address the use of advanced solar array technology in future NASA space missions and specifically look at how newer solar cell technologies impact solar array designs and overall power system performance.
Solar applications analysis for energy storage
NASA Technical Reports Server (NTRS)
Blanchard, T.
1980-01-01
The role of energy storage as it relates to solar energy systems is considered. Storage technologies to support solar energy applications, the status of storage technologies, requirements and specifications for storage technologies, and the adequacy of the current storage research and development program to meet these requirements are among the factors discussed. Emphasis is placed on identification of where the greatest potential exists for energy storage in support of those solar energy systems which could have a significant impact on the U.S. energy mix.
In-Space Propulsion Technologies for Robotic Exploration of the Solar System
NASA Technical Reports Server (NTRS)
Johnson, Les; Meyer, Rae Ann; Frame, Kyle
2006-01-01
Supporting NASA's Science Mission Directorate, the In-Space Propulsion Technology Program is developing the next generation of space propulsion technologies for robotic, deep-space exploration. Recent technological advancements and demonstrations of key, high-payoff propulsion technologies have been achieved and will be described. Technologies under development and test include aerocapture, solar electric propulsion, solar sail propulsion, and advanced chemical propulsion.
Status of Solar Sail Technology Within NASA
NASA Technical Reports Server (NTRS)
Johnson, Les; Young, Roy; Montgomery, Edward; Alhorn, Dean
2010-01-01
In the early 2000s, NASA made substantial progress in the development of solar sail propulsion systems for use in robotic science and exploration of the solar system. Two different 20-m solar sail systems were produced and they successfully completed functional vacuum testing in NASA Glenn Research Center's (GRC's) Space Power Facility at Plum Brook Station, Ohio. The sails were designed and developed by ATK Space Systems and L Garde, respectively. The sail systems consist of a central structure with four deployable booms that support the sails. These sail designs are robust enough for deployment in a one-atmosphere, one-gravity environment and were scalable to much larger solar sails perhaps as large as 150 m on a side. Computation modeling and analytical simulations were also performed to assess the scalability of the technology to the large sizes required to implement the first generation of missions using solar sails. Life and space environmental effects testing of sail and component materials were also conducted. NASA terminated funding for solar sails and other advanced space propulsion technologies shortly after these ground demonstrations were completed. In order to capitalize on the $30M investment made in solar sail technology to that point, NASA Marshall Space Flight Center (MSFC) funded the NanoSail-D, a subscale solar sail system designed for possible small spacecraft applications. The NanoSail-D mission flew on board the ill-fated Falcon-1 Rocket launched August 2, 2008, and due to the failure of that rocket, never achieved orbit. The NanoSail-D flight spare will be flown in the Fall of 2010. This paper will summarize NASA's investment in solar sail technology to-date and discuss future opportunities
Status of solar sail technology within NASA
NASA Astrophysics Data System (ADS)
Johnson, Les; Young, Roy; Montgomery, Edward; Alhorn, Dean
2011-12-01
In the early 2000s, NASA made substantial progress in the development of solar sail propulsion systems for use in robotic science and exploration of the solar system. Two different 20-m solar sail systems were produced. NASA has successfully completed functional vacuum testing in their Glenn Research Center's Space Power Facility at Plum Brook Station, Ohio. The sails were designed and developed by Alliant Techsystems Space Systems and L'Garde, respectively. The sail systems consist of a central structure with four deployable booms that support each sail. These sail designs are robust enough for deployment in a one-atmosphere, one-gravity environment and are scalable to much larger solar sails - perhaps as large as 150 m on a side. Computation modeling and analytical simulations were performed in order to assess the scalability of the technology to the larger sizes that are required to implement the first generation of missions using solar sails. Furthermore, life and space environmental effects testing of sail and component materials was also conducted.NASA terminated funding for solar sails and other advanced space propulsion technologies shortly after these ground demonstrations were completed. In order to capitalize on the $30 M investment made in solar sail technology to that point, NASA Marshall Space Flight Center funded the NanoSail-D, a subscale solar sail system designed for possible small spacecraft applications. The NanoSail-D mission flew on board a Falcon-1 rocket, launched August 2, 2008. As a result of the failure of that rocket, the NanoSail-D was never successfully given the opportunity to achieve orbit. The NanoSail-D flight spare was flown in the Fall of 2010. This review paper summarizes NASA's investment in solar sail technology to date and discusses future opportunities.
Solar power R and D for Air Force space requirements
NASA Technical Reports Server (NTRS)
Wise, J. F.
1980-01-01
The requirements for improved solar power system technology for DOD satellites are reported. It is shown that the technology is required in several areas including solar cells, array blanket technology, energy storage and power system operation, and regulation and control. It is further shown that as the missions become more critical to defence, military aspects such as survivability, hardening, and eventually defence must be addressed.
A Geospatial Comparison of Distributed Solar Heat and Power in Europe and the US
Norwood, Zack; Nyholm, Emil; Otanicar, Todd; Johnsson, Filip
2014-01-01
The global trends for the rapid growth of distributed solar heat and power in the last decade will likely continue as the levelized cost of production for these technologies continues to decline. To be able to compare the economic potential of solar technologies one must first quantify the types and amount of solar resource that each technology can utilize; second, estimate the technological performance potential based on that resource; and third, compare the costs of each technology across regions. In this analysis, we have performed the first two steps in this process. We use physical and empirically validated models of a total of 8 representative solar system types: non-tracking photovoltaics, 2d-tracking photovoltaics, high concentration photovoltaics, flat-plate thermal, evacuated tube thermal, concentrating trough thermal, concentrating solar combined heat and power, and hybrid concentrating photovoltaic/thermal. These models are integrated into a simulation that uses typical meteorological year weather data to create a yearly time series of heat and electricity production for each system over 12,846 locations in Europe and 1,020 locations in the United States. Through this simulation, systems composed of various permutations of collector-types and technologies can be compared geospatially and temporally in terms of their typical production in each location. For example, we see that silicon solar cells show a significant advantage in yearly electricity production over thin-film cells in the colder climatic regions, but that advantage is lessened in regions that have high average irradiance. In general, the results lead to the conclusion that comparing solar technologies across technology classes simply on cost per peak watt, as is usually done, misses these often significant regional differences in annual performance. These results have implications for both solar power development and energy systems modeling of future pathways of the electricity system. PMID:25474632
A geospatial comparison of distributed solar heat and power in Europe and the US.
Norwood, Zack; Nyholm, Emil; Otanicar, Todd; Johnsson, Filip
2014-01-01
The global trends for the rapid growth of distributed solar heat and power in the last decade will likely continue as the levelized cost of production for these technologies continues to decline. To be able to compare the economic potential of solar technologies one must first quantify the types and amount of solar resource that each technology can utilize; second, estimate the technological performance potential based on that resource; and third, compare the costs of each technology across regions. In this analysis, we have performed the first two steps in this process. We use physical and empirically validated models of a total of 8 representative solar system types: non-tracking photovoltaics, 2d-tracking photovoltaics, high concentration photovoltaics, flat-plate thermal, evacuated tube thermal, concentrating trough thermal, concentrating solar combined heat and power, and hybrid concentrating photovoltaic/thermal. These models are integrated into a simulation that uses typical meteorological year weather data to create a yearly time series of heat and electricity production for each system over 12,846 locations in Europe and 1,020 locations in the United States. Through this simulation, systems composed of various permutations of collector-types and technologies can be compared geospatially and temporally in terms of their typical production in each location. For example, we see that silicon solar cells show a significant advantage in yearly electricity production over thin-film cells in the colder climatic regions, but that advantage is lessened in regions that have high average irradiance. In general, the results lead to the conclusion that comparing solar technologies across technology classes simply on cost per peak watt, as is usually done, misses these often significant regional differences in annual performance. These results have implications for both solar power development and energy systems modeling of future pathways of the electricity system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None,
1981-09-01
Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)
Solar Thermal Power Systems parabolic dish project
NASA Technical Reports Server (NTRS)
Truscello, V. C.
1981-01-01
The status of the Solar Thermal Power Systems Project for FY 1980 is summarized. Included is: a discussion of the project's goals, program structure, and progress in parabolic dish technology. Analyses and test results of concentrators, receivers, and power converters are discussed. Progress toward the objectives of technology feasibility, technology readiness, system feasibility, and system readiness are covered.
Projected techno-economic improvements for advanced solar thermal power plants
NASA Technical Reports Server (NTRS)
Fujita, T.; Manvi, R.; Roschke, E. J.
1979-01-01
The projected characteristics of solar thermal power plants (with outputs up to 10 MWe) employing promising advanced technology subsystems/components are compared to current (or pre-1985) steam-Rankine systems. Improvements accruing to advanced technology development options are delineated. The improvements derived from advanced systems result primarily from achieving high efficiencies via solar collector systems which (1) capture a large portion of the available insolation and (2) concentrate this captured solar flux to attain high temperatures required for high heat engine/energy conversion performance. The most efficient solar collector systems employ two-axis tracking. Attractive systems include the central receiver/heliostat and the parabolic dish.
Plant engineers solar energy handbook. [Includes glossaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-01-21
This handbook is to provide plant engineers with factual information on solar energy technology and on the various methods for assessing the future potential of this alternative energy source. The following areas are covered: solar components and systems (collectors, storage, service hot-water systems, space heating with liquid and air systems, space cooling, heat pumps and controls); computer programs for system optimization local solar and weather data; a description of buildings and plants in the San Francisco Bay Area applying solar technology; current Federal and California solar legislation; standards, codes, and performance testing information; a listing of manufacturers, distributors, and professionalmore » services that are available in Northern California; and information access. Finally, solar design checklists are provided for those engineers who wish to design their own systems. (MHR)« less
NASA Technical Reports Server (NTRS)
Young, Roy M.; Montgomery, Edward E.; Montgomery, Sandy; Adams, Charles L.
2007-01-01
The NASA In-Space Propulsion Technology (ISPT) Projects Office has been sponsoring 2 separate, independent system design and development hardware demonstration activities during 2002-2005. ATK Space Systems of Goleta, CA was the prime contractor for one development team and L'Garde, Inc. of Tustin, CA was the prime contractor for the other development team. The goal of these activities was to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by the year 2006. Component and subsystem fabrication and testing were completed successfully, including the ground deployment of 10-meter and 20-meter ground demonstration hardware systems under vacuum conditions. The deployment and structural testing of the 20-meter solar sail systems was conducted in the 30 meter diameter Space Power Facility thermal-vacuum chamber at NASA Glenn Plum Brook in April though August, 2005. This paper will present the results of the TRL assessment following the solar sail technology development activities associated with the design, development, analysis and testing of the 20-meter system ground demonstrators. Descriptions of the system designs for both the ATK and L'Garde systems will be presented. Changes, additions and evolution of the system designs will be highlighted. A description of the modeling and analyses activities performed by both teams, as well as testing conducted to raise the TRL of solar sail technology will be presented. A summary of the results of model correlation activities will be presented. Finally, technology gaps identified during the assessment and gap closure plans will be presented, along with "lessons learned", subsequent planning activities and validation flight opportunities for solar sail propulsion technology.
Toward cost-effective solar energy use.
Lewis, Nathan S
2007-02-09
At present, solar energy conversion technologies face cost and scalability hurdles in the technologies required for a complete energy system. To provide a truly widespread primary energy source, solar energy must be captured, converted, and stored in a cost-effective fashion. New developments in nanotechnology, biotechnology, and the materials and physical sciences may enable step-change approaches to cost-effective, globally scalable systems for solar energy use.
ERIC Educational Resources Information Center
Green, C. Paul; Orsak, Charles G.
Undertaking of a systems approach to curriculum development for solar training led to (1) a feasibility study to determine the role of the community college in solar energy technology, (2) a market analysis to determine the manpower need, and (3) a task analysis for development of a curriculum for training solar energy technicians at Navarro…
Advances in Solar Heating and Cooling Systems
ERIC Educational Resources Information Center
Ward, Dan S.
1976-01-01
Reports on technological advancements in the fields of solar collectors, thermal storage systems, and solar heating and cooling systems. Diagrams aid in the understanding of the thermodynamics of the systems. (CP)
The NASA-Lewis/ERDA Solar Heating and Cooling Technology Program
NASA Technical Reports Server (NTRS)
Couch, J. P.; Bloomfield, H. S.
1975-01-01
The NASA Lewis Research Center plans to carry out a major role in the ERDA Solar Heating and Cooling Program. This role would be to create and test the enabling technology for future solar heating, cooling, and combined heating/cooling systems. The major objectives of the project are to achieve reduction in solar energy system costs, while maintaining adequate performance, reliability, life, and maintenance characteristics. The project approach is to move progressively through component, subsystem, and then system technology advancement phases in parallel with continuing manufacturing cost assessment studies. This approach will be accomplished principally by contract with industry to develop advanced components and subsystems. This advanced hardware will be tested to establish 'technology readiness' both under controlled laboratory conditions and under real sun conditions.
NASA Technical Reports Server (NTRS)
Hanson, J. A.; Escher, W. J. D.
1979-01-01
The paper examines technologies of hydrogen production. Its delivery, distribution, and end-use systems are reviewed, and a classification of solar energy and hydrogen production methods is suggested. The operation of photoelectric processes, biophotolysis, photocatalysis, photoelectrolysis, and of photovoltaic systems are reviewed, with comments on their possible hydrogen production potential. It is concluded that solar hydrogen derived from wind energy, photovoltaic technology, solar thermal electric technology, and hydropower could supply some of the hydrogen for air transport by the middle of the next century.
NASA Technical Reports Server (NTRS)
Young, Roy M.; Adams, Charles L.
2010-01-01
The NASA In-Space Propulsion Technology (ISPT) Projects Office sponsored two separate, independent solar sail system design and development demonstration activities during 2002-2005. ATK Space Systems of Goleta, CA was the prime contractor for one development team and L' Garde, Inc. of Tustin, CA was the prime contractor for the other development team. The goal of these activities was to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by the year 2006. Component and subsystem fabrication and testing were completed successfully, including the ground deployment of 10-meter and 20-meter demonstration hardware systems under vacuum conditions. The deployment and structural testing of the 20-meter solar sail systems was conducted in the 30 meter diameter Space Power Facility thermal-vacuum chamber at NASA Glenn Plum Brook in April though August, 2005. This paper will present the results of the TRL assessment following the solar sail technology development activities associated with the design, development, analysis and testing of the 20-meter system ground demonstrators.
The NASA program in Space Energy Conversion Research and Technology
NASA Astrophysics Data System (ADS)
Mullin, J. P.; Flood, D. J.; Ambrus, J. H.; Hudson, W. R.
The considered Space Energy Conversion Program seeks advancement of basic understanding of energy conversion processes and improvement of component technologies, always in the context of the entire power subsystem. Activities in the program are divided among the traditional disciplines of photovoltaics, electrochemistry, thermoelectrics, and power systems management and distribution. In addition, a broad range of cross-disciplinary explorations of potentially revolutionary new concepts are supported under the advanced energetics program area. Solar cell research and technology are discussed, taking into account the enhancement of the efficiency of Si solar cells, GaAs liquid phase epitaxy and vapor phase epitaxy solar cells, the use of GaAs solar cells in concentrator systems, and the efficiency of a three junction cascade solar cell. Attention is also given to blanket and array technology, the alkali metal thermoelectric converter, a fuel cell/electrolysis system, and thermal to electric conversion.
The NASA program in Space Energy Conversion Research and Technology
NASA Technical Reports Server (NTRS)
Mullin, J. P.; Flood, D. J.; Ambrus, J. H.; Hudson, W. R.
1982-01-01
The considered Space Energy Conversion Program seeks advancement of basic understanding of energy conversion processes and improvement of component technologies, always in the context of the entire power subsystem. Activities in the program are divided among the traditional disciplines of photovoltaics, electrochemistry, thermoelectrics, and power systems management and distribution. In addition, a broad range of cross-disciplinary explorations of potentially revolutionary new concepts are supported under the advanced energetics program area. Solar cell research and technology are discussed, taking into account the enhancement of the efficiency of Si solar cells, GaAs liquid phase epitaxy and vapor phase epitaxy solar cells, the use of GaAs solar cells in concentrator systems, and the efficiency of a three junction cascade solar cell. Attention is also given to blanket and array technology, the alkali metal thermoelectric converter, a fuel cell/electrolysis system, and thermal to electric conversion.
Status of Solar Sail Propulsion: Moving Toward an Interstellar Probe
NASA Technical Reports Server (NTRS)
Johnson, Les; Young, Roy M.; Montgomery, Edward E., IV
2006-01-01
NASA's In-Space Propulsion Technology Program has developed the first-generation of solar sail propulsion systems sufficient to accomplish inner solar system science and exploration missions. These first-generation solar sails, when operational, will range in size from 40 meters to well over 100 meters in diameter and have an areal density of less than 13 grams-per-square meter. A rigorous, multiyear technology development effort culminated last year in the testing of two different 20-meter solar sail systems under thermal vacuum conditions. This effort provided a number of significant insights into the optimal design and expected performance of solar sails as well as an understanding of the methods and costs of building and using them. In a separate effort, solar sail orbital analysis tools for mission design were developed and tested. Laboratory simulations of the effects of long-term space radiation exposure were also conducted on two candidate solar sail materials. Detailed radiation and charging environments were defined for mission trajectories outside the protection of the earth's magnetosphere, in the solar wind environment. These were used in other analytical tools to prove the adequacy of sail design features for accommodating the harsh space environment. Preceding, and in conjunction with these technology efforts, NASA sponsored several mission application studies for solar sails, including one that would use an evolved sail capability to support humanity's first mission into nearby interstellar space. The proposed mission is called the Interstellar Probe. The Interstellar Probe might be accomplished in several ways. A 200-meter sail, with an areal density approaching 1 gram-per-square meter, could accelerate a robotic probe to the very edge of the solar system in just under 20 years from launch. A sail using the technology just demonstrated could make the same mission, but take significantly longer. Conventional chemical propulsion systems would require even longer flight times. Spinner sails of the type being explored by the Japanese may also be a good option, but the level of maturity in that technology is not clear. While the technology to support a 200-meter, ultralightweight sail mission is not yet in hand, the recent NASA investments in solar sail technology are an essential first step toward making it a reality. This paper will describe the status of solar sail propulsion within NASA, near-term solar sail mission applications, and the plan to advance the technology to the point where the Interstellar Probe mission can be flown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendelsohn, M.; Lowder, T.; Canavan, B.
Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary ofmore » the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.« less
NASA's Solar System Exploration Program
NASA Technical Reports Server (NTRS)
Robinson, James
2005-01-01
A viewgraph presentation describing NASA's Solar System Exploration Program is shown. The topics include: 1) Solar System Exploration with Highlights and Status of Programs; 2) Technology Drivers and Plans; and 3) Summary
Recent progress in Si thin film technology for solar cells
NASA Astrophysics Data System (ADS)
Kuwano, Yukinori; Nakano, Shoichi; Tsuda, Shinya
1991-11-01
Progress in Si thin film technology 'specifically amorphous Si (a-Si) and polycrystalline Si (poly-Si) thin film' for solar cells is summarized here from fabrication method, material, and structural viewpoints. In addition to a-Si, primary results on poly-Si thin film research are discussed. Various applications for a-Si solar cells are mentioned, and consumer applications and a-Si solar cell photovoltaic systems are introduced. New product developments include see-through solar cells, solar cell roofing tiles, and ultra-light flexible solar cells. As for new systems, air conditioning equipment powered by solar cells is described. Looking to the future, the proposed GENESIS project is discussed.
Solar Greenhouses and Sunspaces: Lessons Learned.
ERIC Educational Resources Information Center
Thomas, Stephen G.; And Others
Solar technology systems are being studied, managed, built and offered as an effective alternative energy option. This publication presents background material for the building and operation of better sunspaces and greenhouses. Recent developments in solar technology are explained and information on solar greenhouse and sunspace is provided (in…
The Role of Solar Technology Programs In Meeting Our Energy Needs
ERIC Educational Resources Information Center
Valentine, Ivan E.; Larson, Milton E.
1978-01-01
Elements to be included in a solar energy technology training program offered in postsecondary institutions are listed. The article examines various present and future energy sources and describes the solar energy system, stressing the immediate need for training programs for solar energy technicians. (MF)
A 100 kW-Class Technology Demonstrator for Space Solar Power
NASA Technical Reports Server (NTRS)
Carrington, Connie; Howell, Joe; Day, Greg
2004-01-01
A first step in the development of solar power from space is the flight demonstration of critical technologies. These fundamental technologies include efficient solar power collection and generation, power management and distribution, and thermal management. In addition, the integration and utilization of these technologies into a viable satellite bus could provide an energy-rich platform for a portfolio of payload experiments such as wireless power transmission (WPT). This paper presents the preliminary design of a concept for a 100 kW-class fiee-flying platform suitable for flight demonstration of technology experiments. Recent space solar power (SSP) studies by NASA have taken a stepping stones approach that lead to the gigawatt systems necessary to cost-effectively deliver power from space. These steps start with a 100 kW-class satellite, leading to a 500 kW and then a 1 MW-class platform. Later steps develop a 100 M W bus that could eventually lead to a 1-2 GW pilot plant for SSP. Our studies have shown that a modular approach is cost effective. Modular designs include individual laser-power-beaming satellites that fly in constellations or that are autonomously assembled into larger structures at geosynchronous orbit (GEO). Microwave power-beamed approaches are also modularized into large numbers of identical units of solar arrays, power converters, or supporting structures for arrays and microwave transmitting antennas. A cost-effective approach to launching these modular units is to use existing Earth-to-orbit (ETO) launch systems, in which the modules are dropped into low Earth orbit (LEO) and then the modules perform their own orbit transfer to GEO using expendable solar arrays to power solar electric thrusters. At GEO, the modules either rendezvous and are assembled robotically into larger platforms, or are deployed into constellations of identical laser power-beaming satellites. Since solar electric propulsion by the modules is cost-effective for both self-transport of the modules from LEO to GEO, and for on-orbit stationkeeping and repositioning capability during the satellite's lifetime, this technology is also critical in technology development for SSP. The 100 kW-class technology demonstrator will utilize advanced solar power collection and generation technologies, power management and distribution, advanced thermal management, and solar electric propulsion. State-of-the-art solar concentrators, highly efficient multi-junction solar cells, integrated thermal management on the arrays, and innovative deployable structure design and packaging make the 100 kW satellite feasible for launch on one existing launch vehicle. Early SSP studies showed that a major percentage of the on-orbit mass for power-beaming satellites was from massive power converters at the solar arrays, at the bus, at the power transmitter, or at combinations of these locations. Higher voltage mays and power management and distribution (PMAD) systems reduce or eliminate the need for many of these massive power converters, and could enable direct-drive of high-voltage solar electric thrusters. Lightweight, highly efficient thermal management systems are a critical technology that must be developed and flown for SSP feasibility. Large amounts of power on satellites imply that large amounts of waste heat will need to be managed. In addition, several of the more innovative lightweight configurations proposed for SSP satellites take advantage of solar concentrators that are intractable without advanced thermal management technologies for the solar arrays. These thermal management systems include efficient interfaces with the WPT systems or other high-power technology experiments, lightweight deployable radiators that can be easily integrated into satellite buses, and efficient reliable thermal distribution systems that can pipe heat from the technology experiments to the radiators. In addition to demonstrating the integration and use of these mission-ctical technologies, the 100 kw-class satellite will provide a large experiment deck for a portfolio of technology experiments. Current plans for this technology demonstrator allow 2000 kg of payload capability and up to 100 kW of power. The technology experiments could include one or more wireless power transmission demonstrations, either to the Earth s surface or to a suitable space-based receiver. Technology experiments to quantify the on-orbit performance of critical technologies for SSP or space exploration are welcomed. In addition, the technology experiments provide an opportunity for international cooperation, to advance technology readiness levels of SSP technologies that require flight demonstration. This paper will present the preliminary design for a 100 kW solar-powered satellite and a variety of technology experiments that may be suitable for flight demonstration. In addition, a space-to-Earth-surface WPT experiment will be discussed.
Research progress about chemical energy storage of solar energy
NASA Astrophysics Data System (ADS)
Wu, Haifeng; Xie, Gengxin; Jie, Zheng; Hui, Xiong; Yang, Duan; Du, Chaojun
2018-01-01
In recent years, the application of solar energy has been shown obvious advantages. Solar energy is being discontinuity and inhomogeneity, so energy storage technology becomes the key to the popularization and utilization of solar energy. Chemical storage is the most efficient way to store and transport solar energy. In the first and the second section of this paper, we discuss two aspects about the solar energy collector / reactor, and solar energy storage technology by hydrogen production, respectively. The third section describes the basic application of solar energy storage system, and proposes an association system by combining solar energy storage and power equipment. The fourth section briefly describes several research directions which need to be strengthened.
The NASA Langley building solar project and the supporting Lewis solar technology program
NASA Technical Reports Server (NTRS)
Ragsdale, R. G.; Namkoong, D.
1974-01-01
A solar energy technology program is described that includes solar collector testing in an indoor solar simulator facility and in an outdoor test facility, property measurements of solar panel coatings, and operation of a laboratory-scale solar model system test facility. Early results from simulator tests indicate that non-selective coatings behave more nearly in accord with predicted performance than do selective coatings. Initial experiments on the decay rate of thermally stratified hot water in a storage tank have been run. Results suggest that where high temperature water is required, excess solar energy collected by a building solar system should be stored overnight in the form of chilled water rather than hot water.
A Strategic Roadmap to Centauri
NASA Technical Reports Server (NTRS)
Johnson, Les; Harris, David; Trausch, Ann; Matloff, Gregory L.; Taylor, Travis; Cutting, Kathleen
2005-01-01
This paper discusses the connectivity between in-space propulsion and in-space fabrication/repair and is based upon a workshop presentation by Les Johnson, manager of the In-Space Propulsion (ISP) Technology Project at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Ala.. Technologies under study by ISP include aerocapture, advanced solar-electric propulsion, solar-thermal propulsion, advanced chemical propulsion, tethers and solar-photon sails. These propulsion systems are all approaching technology readiness levels (TRLs) at which they can be considered for application in space-science and exploration missions. Historically, human frontiers have expanded as people have learned to live off the land in new environments and to exploit local resorces. With this expansion, frontier settlements have required development of transportation improvements to carry tools and manufactured products to and from the frontier. It is demonstrated how ISP technologies will assist in the development of the solar-system frontier. In-space fabrication and repair will both require and assist the development of ISP propulsion systems, whether humans choose to settle planetary surfaces or to exploit resources of small Solar System bodies. As was true for successful terrestrial pioneers, in-space settlement and exploitation will require sophisticated surveys of inner and outer Solar System objects. ISP technologies will contribute to the success of these surveys, as well as to the efforts to retrieve Solar System resources. In a similar fashion, the utility of ISP products will be greatly enhanced by the technologies of in-space repair and fabrication. As in-space propulsion, fabrication and repair develop, human civilization may expand well beyond the Earth. In the future, small human communities (preceded by robotic explorers) may utilize these techniques to set sail f or the nearest stars.
A Strategic Roadmap to Centauri
NASA Astrophysics Data System (ADS)
Johnson, L.; Harris, D.; Trausch, A.; Matloff, G. L.; Taylor, T.; Cutting, K.
This paper discusses the connectivity between in-space propulsion and in-space fabrication/repair and is based upon a workshop presentation by Les Johnson, manager of the In-Space Propulsion (ISP) Technology Project at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama. Technologies under study by ISP include aerocapture, advanced solar- electric propulsion, solar-thermal propulsion, advanced chemical propulsion, tethers and solar-photon sails. These propulsion systems are all approaching technology readiness levels (TRLs) at which they can be considered for application in space- science and exploration missions. Historically, human frontiers have expanded as people have learned to “live-off-the-land” in new environments and to exploit local resources. With this expansion, frontier settlements have required development of transportation improvements to carry tools and manufactured products to and from the frontier. It is demonstrated how ISP technologies will assist in the development of the solar-system frontier. In-space fabrication and repair will both require and assist the development of ISP propulsion systems, whether humans choose to settle planetary surfaces or to exploit resources of small Solar System bodies. As was true for successful terrestrial pioneers, in-space settlement and exploitation will require sophisticated surveys of inner and outer Solar System objects. ISP technologies will contribute to the success of these surveys, as well as to the efforts to retrieve Solar System resources. In a similar fashion, the utility of ISP products will be greatly enhanced by the technologies of in-space repair and fabrication. As in-space propulsion, fabrication and repair develop, human civilization may expand well beyond the Earth. In the future, small human communities (preceded by robotic explorers) may utilize these techniques to set sail for the nearest stars.
NASA Technical Reports Server (NTRS)
Mikellides, I. G.; Jongeward, G. A.; Schneider, T.; Carruth, M. R.; Peterson, T.; Kerslake, T. W.; Snyder, D.; Ferguson, D.; Hoskins, A.
2004-01-01
A three-year program to develop a Direct Drive Hall-Effect Thruster system (D2HET) begun in 2001 as part of the NASA Advanced Cross-Enterprise Technology Development initiative. The system, which is expected to reduce significantly the power processing, complexity, weight, and cost over conventional low-voltage systems, will employ solar arrays that operate at voltages higher than (or equal to) 300 V. The lessons learned from the development of the technology also promise to become a stepping-stone for the production of the next generation of power systems employing high voltage solar arrays. This paper summarizes the results from experiments conducted mainly at the NASA Marshal Space Flight Center with two main solar array technologies. The experiments focused on electron collection and arcing studies, when the solar cells operated at high voltages. The tests utilized small coupons representative of each solar array technology. A hollow cathode was used to emulate parts of the induced environment on the solar arrays, mostly the low-energy charge-exchange plasma (1012-1013 m-3 and 0.5-1 eV). Results and conclusions from modeling of electron collection are also summarized. The observations from the total effort are used to propose a preliminary, new solar array design for 2 kW and 30-40 kW class, deep space missions that may employ a single or a cluster of Hall- Effect thrusters.
Business developments of nonthermal solar technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, S.A.; Watts, R.L.; Williams, T.A.
1985-10-01
Information on the developments of nonthermal solar technologies is presented. The focus is on the success of wind energy conversion systems (WECS) and photovoltaics. Detailed information on the installed generating capacity, market sectors, financing sources, systems costs and warranties of WECS and photovoltaic systems is summarized. (BCS)
Solar Program Assessment: Environmental Factors - Solar Total Energy Systems.
ERIC Educational Resources Information Center
Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.
The purpose of this report is to present and prioritize the major environmental, safety, and social/institutional issues associated with the further development of Solar Total Energy Systems (STES). Solar total energy systems represent a specific application of the Federally-funded solar technologies. To provide a background for this analysis, the…
High-Power Solar Electric Propulsion for Future NASA Missions
NASA Technical Reports Server (NTRS)
Manzella, David; Hack, Kurt
2014-01-01
NASA has sought to utilize high-power solar electric propulsion as means of improving the affordability of in-space transportation for almost 50 years. Early efforts focused on 25 to 50 kilowatt systems that could be used with the Space Shuttle, while later efforts focused on systems nearly an order of magnitude higher power that could be used with heavy lift launch vehicles. These efforts never left the concept development phase in part because the technology required was not sufficiently mature. Since 2012 the NASA Space Technology Mission Directorate has had a coordinated plan to mature the requisite solar array and electric propulsion technology needed to implement a 30 to 50 kilowatt solar electric propulsion technology demonstration mission. Multiple solar electric propulsion technology demonstration mission concepts have been developed based on these maturing technologies with recent efforts focusing on an Asteroid Redirect Robotic Mission. If implemented, the Asteroid Redirect Vehicle will form the basis for a capability that can be cost-effectively evolved over time to provide solar electric propulsion transportation for a range of follow-on mission applications at power levels in excess of 100 kilowatts.
The NASA Langley building solar project and the supporting Lewis solar technology program
NASA Technical Reports Server (NTRS)
Ragsdale, R. G.; Namkoong, D.
1974-01-01
The use of solar energy to heat and cool a new office building that is now under construction is reported. Planned for completion in December 1975, the 53,000 square foot, single story building will utilize 15,000 square feet of various types of solar collectors in a test bed to provide nearly all of the heating demand and over half of the air conditioning demand. Drawing on its space-program-developed skills and resources in heat transfer, materials, and systems studies, NASA-Lewis will provide technology support for the Langley building project. A solar energy technology program underway at Lewis includes solar collector testing in an indoor solar simulator facility and in an outdoor test facility, property measurements of solar panel coatings, and operation of a laboratory-scale solar model system test facility. Based on results obtained in this program, NASA-Lewis will select and procure the solar collectors for the Langley test bed.
Two alternative solar energy scenarios for Western Europe
NASA Astrophysics Data System (ADS)
Nakicenovic, N.
1982-11-01
Two limiting scenarios that lead to a sustainable energy system in Western Europe toward the end of the next century are described. The scenarios consider exclusively solar energy futures: one based on centralized solar technologies (hard scenario) and the other on decentralized user-oriented technologies (soft scenario). While both scenarios eliminate Western Europe's dependence on domestic and foreign fossil energy sources, the hard solar scenario requires substantial imports of solar produced hydrogen. Fundamental but different changes of the whole energy system, economic structure and lifestyles are necessary in order to achieve sustainable solar energy futures in the scenarios.
Solar sail science mission applications and advancement
NASA Astrophysics Data System (ADS)
Macdonald, Malcolm; McInnes, Colin
2011-12-01
Solar sailing has long been envisaged as an enabling or disruptive technology. The promise of open-ended missions allows consideration of radically new trajectories and the delivery of spacecraft to previously unreachable or unsustainable observation outposts. A mission catalogue is presented of an extensive range of potential solar sail applications, allowing identification of the key features of missions which are enabled, or significantly enhance, through solar sail propulsion. Through these considerations a solar sail application-pull technology development roadmap is established, using each mission as a technology stepping-stone to the next. Having identified and developed a solar sail application-pull technology development roadmap, this is incorporated into a new vision for solar sailing. The development of new technologies, especially for space applications, is high-risk. The advancement difficulty of low technology readiness level research is typically underestimated due to a lack of recognition of the advancement degree of difficulty scale. Recognising the currently low technology readiness level of traditional solar sailing concepts, along with their high advancement degree of difficulty and a lack of near-term applications a new vision for solar sailing is presented which increases the technology readiness level and reduces the advancement degree of difficulty of solar sailing. Just as the basic principles of solar sailing are not new, they have also been long proven and utilised in spacecraft as a low-risk, high-return limited-capability propulsion system. It is therefore proposed that this significant heritage be used to enable rapid, near-term solar sail future advancement through coupling currently mature solar sail, and other, technologies with current solar sail technology developments. As such the near-term technology readiness level of traditional solar sailing is increased, while simultaneously reducing the advancement degree of difficulty along the solar sail application-pull technology development roadmap.
Space power development impact on technology requirements
NASA Technical Reports Server (NTRS)
Cassidy, J. F.; Fitzgerald, T. J.; Gilje, R. I.; Gordon, J. D.
1986-01-01
The paper is concerned with the selection of a specific spacecraft power technology and the identification of technology development to meet system requirements. Requirements which influence the selection of a given technology include the power level required, whether the load is constant or transient in nature, and in the case of transient loads, the time required to recover the power, and overall system safety. Various power technologies, such as solar voltaic power, solar dynamic power, nuclear power systems, and electrochemical energy storage, are briefly described.
The Development Status and Key Technologies of Solar Powered Unmanned Air Vehicle
NASA Astrophysics Data System (ADS)
Sai, Li; Wei, Zhou; Xueren, Wang
2017-03-01
By analyzing the development status of several typical solar powered unmanned aerial vehicles (UAV) at home and abroad, the key technologies involved in the design and manufacture of solar powered UAV and the technical difficulties need to be solved at present are obtained. It is pointed out that with the improvement of energy system efficiency, advanced aerodynamic configuration design, realization of high applicability flight stability and control system, breakthrough of efficient propulsion system, the application prospect of solar powered UAV will be more extensive.
Leading Solar Expertise-A Launch Pad to the Future - Continuum Magazine
&D Magazine and identify each technology as one of the top 100 technological innovations of the 1996 for copper indium gallium diselenide (CIGS). One of the more popular thin-film solar cells to be of the world's first solar power towers-Solar One and Solar Two, shown here. CSP systems produce
Solar energy water desalination in the United States and Saudi Arabia
NASA Technical Reports Server (NTRS)
Luft, W.; William, J.
1981-01-01
Five solar energy water desalination systems were designed to deliver 6000 cubic m/day of desalted water from either seawater or brackish water. Two systems will be selected for pilot plant construction. The pilot plants will have capacities in the range of 100 to 400 m/day. Goals of the Project Agreement for Cooperation in the Field of Solar Energy, under the auspices of the United States-Saudi Arabian Joint Commission on Economic Cooperation, are to: (1) cooperate in the field of solar energy technology for the mutual benefit of the two countries, including the development and stimulation of solar industries within the two countries; (2) advance the development of solar energy technology in the two countries; and (3) facilitate the transfer between the two countries of technology developed under this agreement.
Advanced In-Space Propulsion: "Exploring the Solar System"
NASA Technical Reports Server (NTRS)
Johnson, Les
2003-01-01
This viewgraph presentation reviews a number of advanced propulsion technologies for interplanetary spacecraft. The objective of the In Space Propulsion Technology Projects Office is to develop in-space propulsion technologies that can enable and/or benefit near and mid-term NASA science missions by significantly reducing cost, mass, and/or travel times. The technologies profiled are divided into several categories: High Priority (aerocapture, next generation ion propulsion, solar sails); Medium Priority (advanced chemical propulsion, solar electric propulsion, Hall thrusters); Low Priority (solar thermal propulsion); and High Payoff/High Risk (1 g/sq m solar sails, momentum exchange tethers, and plasma sails).
The Ion Propulsion System for the Solar Electric Propulsion Technology Demonstration Mission
NASA Technical Reports Server (NTRS)
Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard R.; Parker, J. Morgan
2015-01-01
The Asteroid Redirect Robotic Mission is a candidate Solar Electric Propulsion Technology Demonstration Mission whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. The ion propulsion system must be capable of operating over an 8-year time period and processing up to 10,000 kg of xenon propellant. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of an affordable, beyond-low-Earth-orbit, manned-exploration architecture. Under the NASA Space Technology Mission Directorate the critical electric propulsion and solar array technologies are being developed. The ion propulsion system being co-developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory for the Asteroid Redirect Vehicle is based on the NASA-developed 12.5 kW Hall Effect Rocket with Magnetic Shielding (HERMeS0 thruster and power processing technologies. This paper presents the conceptual design for the ion propulsion system, the status of the NASA in-house thruster and power processing activity, and an update on flight hardware.
Solar, Install, Mount, Production, Labor, Equipment Balance of Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gentry, Russell; Al-Haddad, Tristan; Valdes, Francisco
2015-08-27
The GTRI led project team in partnership with the DOE, universities, and numerous industry leaders, have advanced the mission of the DOE EERE, the Solar Energy Technologies Program, and the SunShot Initiative by accelerating the research, development, and demonstration of solar PV technologies that provide Extreme Balance of Systems Cost Reductions (BOS-X). The research produced 132 design concepts, resulting in 19 invention disclosures, five patent applications, four 90% pre-commercial designs, and three licensed technologies. Technology practice rights were obtained by an industry partner, and a new solar commercial start-up company was launched in Atlanta as a result of this project.more » Innovations in residential, commercial, and utility scale balance of systems technologies were realized through an unprecedented multi-disciplinary university/industry partnership with over 50 students and 24 faculty members that produced 18 technical publications, a PhD thesis, and two commercially deployed operating prototypes. The technical effectiveness and economic feasibility of the multidisciplinary systems based approach executed by the project team was realized through 1) a comprehensive evaluation of industry, regulatory, and public stakeholder requirements; 2) numerous industry/student/faculty engagements in design studios, technical conferences, and at solar PV installation sites; 3) time and motion studies with domain experts that provided technical data and costs for each phase and component of the solar PV installation processes; 4) extensive wind tunnel and systems engineering modeling; and 5) design, construction, and demonstration of the selected technologies in the field at high profile sites in Atlanta. The SIMPLE BOS project has benefitted the public in the following ways: • Workforce development: The launch of a start-up company to commercialize the DOE funded SIMPLE BoS designs has directly created 9 new jobs in the State of Georgia. As of November 2014, the Georgia solar industry employs 2,890 solar workers, representing a 12.8% growth in employment over 2013 (Solar Jobs Census, 2014). • Growth of the solar industry: The DOE SIMPLE BoS SunShot Award to GTARC accelerated the growth of the solar industry in Georgia, due to the national publicity of the award and the engagement of numerous solar PV manufacturers, designers, and installers on the SIMPLE BoS project. In 2011 less than 50 megawatts of solar PV capacity existed in Georgia; by 2016 Georgia may reach nearly 800 MW of total approved solar capacity with the 2012 Georgia Power Advanced Solar Initiative. • Technical outreach and publications: Georgia Tech has participated in numerous technical symposiums, technology demonstrations, campus solar PV tours, and produced 18 publications for the solar industry and general public. • Cost reductions for consumers: The SIMPLE BoS pre-commercial systems and discoveries enable cost reductions of 50% or more in labor and materials for residential, commercial and utility scale PV installations.« less
Recent Advances in Solar Sail Propulsion at NASA
NASA Technical Reports Server (NTRS)
Johnson, Les; Young, Roy M.; Montgomery, Edward E., IV
2006-01-01
Supporting NASA's Science Mission Directorate, the In-Space Propulsion Technology Program is developing solar sail propulsion for use in robotic science and exploration of the solar system. Solar sail propulsion will provide longer on-station operation, increased scientific payload mass fraction, and access to previously inaccessible orbits for multiple potential science missions. Two different 20-meter solar sail systems were produced and successfully completed functional vacuum testing last year in NASA Glenn's Space Power Facility at Plum Brook Station, Ohio. The sails were designed and developed by ATK Space Systems and L'Garde, respectively. These sail systems consist of a central structure with four deployable booms that support the sails. This sail designs are robust enough for deployments in a one atmosphere, one gravity environment, and are scalable to much larger solar sails-perhaps as much as 150 meters on a side. In addition, computation modeling and analytical simulations have been performed to assess the scalability of the technology to the large sizes (>150 meters) required for first generation solar sails missions. Life and space environmental effects testing of sail and component materials are also nearly complete. This paper will summarize recent technology advancements in solar sails and their successful ambient and vacuum testing.
OUT Success Stories: Solar Hot Water Technology
DOE R&D Accomplishments Database
Clyne, R.
2000-08-01
Solar hot water technology was made great strides in the past two decades. Every home, commercial building, and industrial facility requires hot water. DOE has helped to develop reliable and durable solar hot water systems. For industrial applications, the growth potential lies in large-scale systems, using flat-plate and trough-type collectors. Flat-plate collectors are commonly used in residential hot water systems and can be integrated into the architectural design of the building.
The Ion Propulsion System for the Solar Electric Propulsion Technology Demonstration Mission
NASA Technical Reports Server (NTRS)
Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard; Parker, J. Morgan
2015-01-01
The Asteroid Redirect Robotic Mission is a candidate Solar Electric Propulsion Technology Demonstration Mission whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a subsequent human-crewed mission. The ion propulsion subsystem must be capable of operating over an 8-year time period and processing up to 10,000 kg of xenon propellant. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as an enabling element of an affordable beyond low-earth orbit human-crewed exploration architecture. Under the NASA Space Technology Mission Directorate the critical electric propulsion and solar array technologies are being developed. The ion propulsion system for the Asteroid Redirect Vehicle is based on the NASA-developed 12.5 kW Hall Effect Rocket with Magnetic Shielding thruster and power processing technologies. This paper presents the conceptual design for the ion propulsion system, a status on the NASA in-house thruster and power processing is provided, and an update on acquisition for flight provided.
NASA Technical Reports Server (NTRS)
Wise, J.
1979-01-01
Progress is reported in the following areas: laser weapon effects, solar silicon solar cell concepts, and high voltage hardened, high power system technology. Emphasis is placed on solar cells with increased energy conversion efficiency and radiation resistance characteristics for application to satellite power systems.
Feasibility study of a 110 watt per kilogram lightweight solar array system
NASA Technical Reports Server (NTRS)
Shepard, N. F.; Stahle, C. V.; Hanson, K. L.; Schneider, A.; Blomstrom, L. E.; Hansen, W. T.; Kirpich, A.
1973-01-01
The feasibility of a 10,000 watt solar array panel which has a minimum power-to-mass ratio of 110 watt/kg is discussed. The application of this ultralightweight solar array to three possible missions was investigated. With the interplanetary mission as a baseline, the constraining requirements for a geosynchronous mission and for a manned space station mission are presented. A review of existing lightweight solar array system concepts revealed that changes in the system approach are necessary to achieve the specified 110 watt/kg goal. A comprehensive review of existing component technology is presented in the areas of thin solar cells, solar cell covers, welded interconnectors, substrates and deployable booms. Advances in the state-of-the-art of solar cell and deployable boom technology were investigated. System level trade studies required to select the optimum boom bending stiffness, system aspect ratio, bus voltage level, and solar cell circuit arrangement are reported. Design analysis tasks included the thermal analysis of the solar cell blanket, thermal stress analysis of the solar cell interconnectors/substrate, and the thermostructural loading of the deployed boom.
Building the Sun4Cast System: Improvements in Solar Power Forecasting
Haupt, Sue Ellen; Kosovic, Branko; Jensen, Tara; ...
2017-06-16
The Sun4Cast System results from a research-to-operations project built on a value chain approach, and benefiting electric utilities’ customers, society, and the environment by improving state-of-the-science solar power forecasting capabilities. As integration of solar power into the national electric grid rapidly increases, it becomes imperative to improve forecasting of this highly variable renewable resource. Thus, a team of researchers from public, private, and academic sectors partnered to develop and assess a new solar power forecasting system, Sun4Cast. The partnership focused on improving decision-making for utilities and independent system operators, ultimately resulting in improved grid stability and cost savings for consumers.more » The project followed a value chain approach to determine key research and technology needs to reach desired results. Sun4Cast integrates various forecasting technologies across a spectrum of temporal and spatial scales to predict surface solar irradiance. Anchoring the system is WRF-Solar, a version of the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) model optimized for solar irradiance prediction. Forecasts from multiple NWP models are blended via the Dynamic Integrated Forecast (DICast) System, the basis of the system beyond about 6 h. For short-range (0-6 h) forecasts, Sun4Cast leverages several observation-based nowcasting technologies. These technologies are blended via the Nowcasting Expert System Integrator (NESI). The NESI and DICast systems are subsequently blended to produce short to mid-term irradiance forecasts for solar array locations. The irradiance forecasts are translated into power with uncertainties quantified using an analog ensemble approach, and are provided to the industry partners for real-time decision-making. The Sun4Cast system ran operationally throughout 2015 and results were assessed. As a result, this paper analyzes the collaborative design process, discusses the project results, and provides recommendations for best-practice solar forecasting.« less
Building the Sun4Cast System: Improvements in Solar Power Forecasting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haupt, Sue Ellen; Kosovic, Branko; Jensen, Tara
The Sun4Cast System results from a research-to-operations project built on a value chain approach, and benefiting electric utilities’ customers, society, and the environment by improving state-of-the-science solar power forecasting capabilities. As integration of solar power into the national electric grid rapidly increases, it becomes imperative to improve forecasting of this highly variable renewable resource. Thus, a team of researchers from public, private, and academic sectors partnered to develop and assess a new solar power forecasting system, Sun4Cast. The partnership focused on improving decision-making for utilities and independent system operators, ultimately resulting in improved grid stability and cost savings for consumers.more » The project followed a value chain approach to determine key research and technology needs to reach desired results. Sun4Cast integrates various forecasting technologies across a spectrum of temporal and spatial scales to predict surface solar irradiance. Anchoring the system is WRF-Solar, a version of the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) model optimized for solar irradiance prediction. Forecasts from multiple NWP models are blended via the Dynamic Integrated Forecast (DICast) System, the basis of the system beyond about 6 h. For short-range (0-6 h) forecasts, Sun4Cast leverages several observation-based nowcasting technologies. These technologies are blended via the Nowcasting Expert System Integrator (NESI). The NESI and DICast systems are subsequently blended to produce short to mid-term irradiance forecasts for solar array locations. The irradiance forecasts are translated into power with uncertainties quantified using an analog ensemble approach, and are provided to the industry partners for real-time decision-making. The Sun4Cast system ran operationally throughout 2015 and results were assessed. As a result, this paper analyzes the collaborative design process, discusses the project results, and provides recommendations for best-practice solar forecasting.« less
High Altitude Long Endurance UAV Analysis of Alternatives and Technology Requirements Development
NASA Technical Reports Server (NTRS)
Nickol, Craig L.; Guynn, Mark D.; Kohout, Lisa L.; Ozoroski, Thomas A.
2007-01-01
An Analysis of Alternatives and a Technology Requirements Study were conducted for two mission areas utilizing various types of High Altitude Long Endurance (HALE) Unmanned Aerial Vehicles (UAV). A hurricane science mission and a communications relay mission provided air vehicle requirements which were used to derive sixteen potential HALE UAV configurations, including heavier-than-air (HTA) and lighter-than-air (LTA) concepts with both consumable fuel and solar regenerative propulsion systems. A HTA diesel-fueled wing-body-tail configuration emerged as the preferred concept given near-term technology constraints. The cost effectiveness analysis showed that simply maximizing vehicle endurance can be a sub-optimum system solution. In addition, the HTA solar regenerative configuration was utilized to perform both a mission requirements study and a technology development study. Given near-term technology constraints, the solar regenerative powered vehicle was limited to operations during the long days and short nights at higher latitudes during the summer months. Technology improvements are required in energy storage system specific energy and solar cell efficiency, along with airframe drag and mass reductions to enable the solar regenerative vehicle to meet the full mission requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blair, N.; Dobos, S.; Janzou, S.
2013-08-01
The System Advisor Model (SAM) is a broad and robust set of models and frameworks for analyzing both system performance and system financing. It does this across a range of technologies dominated by solar technologies including photovoltaics (PV) and concentrated solar power (CSP). The U.S. Department of Energy (DOE) Solar Energy Technology Program requested the SAM development team to review the photovoltaic performance modeling with the development community and specifically, with the independent engineering community. The report summarizes the major effort for this technical review committee (TRC).
A survey of manufacturers of solar thermal energy systems
NASA Technical Reports Server (NTRS)
Levine, N.; Slonski, M. L.
1982-01-01
Sixty-seven firms that had received funding for development of solar thermal energy systems (STES) were surveyed. The effect of the solar thermal technology systems program in accelerating (STES) were assessed. The 54 firms still developing STES were grouped into a production typology comparing the three major technologies with three basic functions. It was discovered that large and small firms were developing primarily central receiver systems, but also typically worked on more than one technology. Most medium-sized firms worked only on distributed systems. Federal support of STES was perceived as necessary to allow producers to take otherwise unacceptable risks. Approximately half of the respondents would drop out of STES if support were terminated, including a disproportionate number of medium-sized firms. A differentiated view of the technology, taking into account differing firm sizes and the various stages of technology development, was suggested for policy and planning purposes.
A survey of manufacturers of solar thermal energy systems
NASA Astrophysics Data System (ADS)
Levine, N.; Slonski, M. L.
1982-08-01
Sixty-seven firms that had received funding for development of solar thermal energy systems (STES) were surveyed. The effect of the solar thermal technology systems program in accelerating (STES) were assessed. The 54 firms still developing STES were grouped into a production typology comparing the three major technologies with three basic functions. It was discovered that large and small firms were developing primarily central receiver systems, but also typically worked on more than one technology. Most medium-sized firms worked only on distributed systems. Federal support of STES was perceived as necessary to allow producers to take otherwise unacceptable risks. Approximately half of the respondents would drop out of STES if support were terminated, including a disproportionate number of medium-sized firms. A differentiated view of the technology, taking into account differing firm sizes and the various stages of technology development, was suggested for policy and planning purposes.
Research opportunities to advance solar energy utilization.
Lewis, Nathan S
2016-01-22
Major developments, as well as remaining challenges and the associated research opportunities, are evaluated for three technologically distinct approaches to solar energy utilization: solar electricity, solar thermal, and solar fuels technologies. Much progress has been made, but research opportunities are still present for all approaches. Both evolutionary and revolutionary technology development, involving foundational research, applied research, learning by doing, demonstration projects, and deployment at scale will be needed to continue this technology-innovation ecosystem. Most of the approaches still offer the potential to provide much higher efficiencies, much lower costs, improved scalability, and new functionality, relative to the embodiments of solar energy-conversion systems that have been developed to date. Copyright © 2016, American Association for the Advancement of Science.
Solar buildings program contract summary, calendar year 1999
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2000-06-07
The mission of the US Department of Energy's Solar Buildings Program is to advance the development and widespread deployment of competitive solar thermal technologies for use in buildings. The long-term goal of the Program is to combine solar energy technologies with energy-efficient construction techniques and create cost-effective buildings that have a zero net need for fossil fuel energy on an annual basis. The Solar Buildings Program conducts research and development on solar technologies that can deliver heat, light, and hot water to residential and commercial buildings. By working closely with manufacturers in both the buildings and solar energy industries andmore » by supporting research at universities and national laboratories, the Solar Buildings Program brings together the diverse players developing reliable and affordable solar technologies for building applications. The National Renewable Energy Laboratory (NREL) in Golden, Colorado, and Sandia National Laboratories (SNL) in Albuquerque, New Mexico, jointly participate in the Solar Buildings Program. These two national laboratories work closely with industry researching new concepts, developing technology improvements, reducing manufacturing costs, monitoring system performance, promoting quality assurance, and identifying potential new markets. In calendar year 1999, the Solar Buildings Program focused primarily on solar hot water system research and development (R and D), US industry manufacturing assistance, and US market assistance. The Program also completed a number of other projects that were begun in earlier years. This Contract Summary describes the Program's contracted activities that were active during 1999.« less
Solar Energy: Its Technologies and Applications
DOE R&D Accomplishments Database
Auh, P. C.
1978-06-01
Solar heat, as a potential source of clean energy, is available to all of us. Extensive R and D efforts are being made to effectively utilize this renewable energy source. A variety of different technologies for utilizing solar energy have been proven to be technically feasible. Here, some of the most promising technologies and their applications are briefly described. These are: Solar Heating and Cooling of Buildings (SHACOB), Solar Thermal Energy Conversion (STC), Wind Energy Conversion (WECS), Bioconversion to Fuels (BCF), Ocean Thermal Energy Conversion (OTEC), and Photovoltaic Electric Power Systems (PEPS). Special emphasis is placed on the discussion of the SHACOB technologies, since the technologies are being expeditiously developed for the near commercialization.
No Photon Left Behind: Advanced Optics at ARPA-E for Buildings and Solar Energy
NASA Astrophysics Data System (ADS)
Branz, Howard M.
2015-04-01
Key technology challenges in building efficiency and solar energy utilization require transformational optics, plasmonics and photonics technologies. We describe advanced optical technologies funded by the Advanced Research Projects Agency - Energy. Buildings technologies include a passive daytime photonic cooler, infra-red computer vision mapping for energy audit, and dual-band electrochromic windows based on plasmonic absorption. Solar technologies include novel hybrid energy converters that combine high-efficiency photovoltaics with concentrating solar thermal collection and storage. Because the marginal cost of thermal energy storage is low, these systems enable generation of inexpensive and dispatchable solar energy that can be deployed when the sun doesn't shine. The solar technologies under development include nanoparticle plasmonic spectrum splitting, Rugate filter interference structures and photovoltaic cells that can operate efficiently at over 400° C.
Summary of NASA Lewis Research Center solar heating and cooling and wind energy programs
NASA Technical Reports Server (NTRS)
Vernon, R. W.
1975-01-01
Plans for the construction and operation of a solar heating and cooling system in conjunction with a office building being constructed at Langley Research Center, are discussed. Supporting research and technology includes: testing of solar collectors with a solar simulator, outdoor testing of collectors, property measurements of selective and nonselective coatings for solar collectors, and a solar model-systems test loop. The areas of a wind energy program that are being conducted include: design and operation of a 100-kW experimental wind generator, industry-designed and user-operated wind generators in the range of 50 to 3000 kW, and supporting research and technology for large wind energy systems. An overview of these activities is provided.
Solar Energy: Solar System Economics.
ERIC Educational Resources Information Center
Knapp, Henry H., III
This module on solar system economics is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies.…
Solar thermal plant impact analysis and requirements definition study
NASA Technical Reports Server (NTRS)
1982-01-01
The technology and economics of solar thermal electric systems (STES) for electric power production is discussed. The impacts of and requirements for solar thermal electric power systems were evaluated.
The NASA-Lewis/ERDA solar heating and cooling technology program. [project planning/energy policy
NASA Technical Reports Server (NTRS)
Couch, J. P.; Bloomfield, H. S.
1975-01-01
Plans by NASA to carry out a major role in a solar heating and cooling program are presented. This role would be to create and test the enabling technology for future solar heating, cooling, and combined heating/cooling systems. The major objectives of the project are to achieve reduction in solar energy system costs, while maintaining adequate performance, reliability, life, and maintenance characteristics. The project approach is discussed, and will be accomplished principally by contract with industry to develop advanced components and subsystems. Advanced hardware will be tested to establish 'technology readiness' both under controlled laboratory conditions and under real sun conditions.
Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%
Jia, Jieyang; Seitz, Linsey C.; Benck, Jesse D.; Huo, Yijie; Chen, Yusi; Ng, Jia Wei Desmond; Bilir, Taner; Harris, James S.; Jaramillo, Thomas F.
2016-01-01
Hydrogen production via electrochemical water splitting is a promising approach for storing solar energy. For this technology to be economically competitive, it is critical to develop water splitting systems with high solar-to-hydrogen (STH) efficiencies. Here we report a photovoltaic-electrolysis system with the highest STH efficiency for any water splitting technology to date, to the best of our knowledge. Our system consists of two polymer electrolyte membrane electrolysers in series with one InGaP/GaAs/GaInNAsSb triple-junction solar cell, which produces a large-enough voltage to drive both electrolysers with no additional energy input. The solar concentration is adjusted such that the maximum power point of the photovoltaic is well matched to the operating capacity of the electrolysers to optimize the system efficiency. The system achieves a 48-h average STH efficiency of 30%. These results demonstrate the potential of photovoltaic-electrolysis systems for cost-effective solar energy storage. PMID:27796309
Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30.
Jia, Jieyang; Seitz, Linsey C; Benck, Jesse D; Huo, Yijie; Chen, Yusi; Ng, Jia Wei Desmond; Bilir, Taner; Harris, James S; Jaramillo, Thomas F
2016-10-31
Hydrogen production via electrochemical water splitting is a promising approach for storing solar energy. For this technology to be economically competitive, it is critical to develop water splitting systems with high solar-to-hydrogen (STH) efficiencies. Here we report a photovoltaic-electrolysis system with the highest STH efficiency for any water splitting technology to date, to the best of our knowledge. Our system consists of two polymer electrolyte membrane electrolysers in series with one InGaP/GaAs/GaInNAsSb triple-junction solar cell, which produces a large-enough voltage to drive both electrolysers with no additional energy input. The solar concentration is adjusted such that the maximum power point of the photovoltaic is well matched to the operating capacity of the electrolysers to optimize the system efficiency. The system achieves a 48-h average STH efficiency of 30%. These results demonstrate the potential of photovoltaic-electrolysis systems for cost-effective solar energy storage.
Exploration of the solar system
NASA Technical Reports Server (NTRS)
Henderson, A., Jr.; Grey, J.
1974-01-01
A sourcebook of information on the solar system and the technology used for its exploration is presented. An outline of the potential achievements of solar system exploration is given along with a course of action which maximizes the rewards to mankind.
Solar Sail Propulsion Technology at NASA
NASA Technical Reports Server (NTRS)
Johnson, Charles Les
2007-01-01
NASA's In-Space Propulsion Technology Program developed the first generation of solar sail propulsion systems sufficient to accomplish inner solar system science and exploration missions. These first generation solar sails, when operational, will range in size from 40 meters to well over 100 meters in diameter and have an area density of less than 13 grams per square meter. A rigorous, multi-year technology development effort culminated in 2005 with the testing of two different 20-m solar sail systems under thermal vacuum conditions. This effort provided a number of significant insights into the optimal design and expected performance of solar sails as well as an understanding of the methods and costs of building and using them. In addition, solar sail orbital analysis tools for mission design were developed and tested. Laboratory simulations of the effects of long-term space radiation exposure were also conducted on two candidate solar sail materials. Detailed radiation and charging environments were defined for mission trajectories outside the protection of the earth's magnetosphere, in the solar wind environment. These were used in other analytical tools to prove the adequacy of sail design features for accommodating the harsh space environment. The presentation will describe the status of solar sail propulsion within NASA, near-term solar sail mission applications, and near-term plans for further development.
Fission Technology for Exploring and Utilizing the Solar System
NASA Technical Reports Server (NTRS)
Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbub, Ivana; Schmidt, George R. (Technical Monitor)
2000-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include bimodal nuclear thermal rockets, high specific energy propulsion systems, and pulsed fission propulsion systems. In-space propellant re-supply enhances the effective performance of all systems, but requires significant infrastructure development. Safe, timely, affordable utilization of first-generation space fission propulsion systems will enable the development of more advanced systems. First generation space systems will build on over 45 years of US and international space fission system technology development to minimize cost,
Solar power satellite system definition study, phase 2.
NASA Technical Reports Server (NTRS)
1979-01-01
A program plan for the Solar Power Satellite Program is presented. The plan includes research, development, and evaluation phase, engineering and development and cost verification phase, prototype construction, and commercialization. Cost estimates and task requirements are given for the following technology areas: (1) solar arrays; (2) thermal engines and thermal systems; (3) power transmission (to earth); (4) large space structures; (5) materials technology; (6) system control; (7) space construction; (8) space transportation; (9) power distribution, and space environment effects.
Modular High-Energy Systems for Solar Power Satellites
NASA Technical Reports Server (NTRS)
Howell, Joe T.; Carrington, Connie K.; Marzwell, Neville I.; Mankins, John C.
2006-01-01
Modular High-Energy Systems are Stepping Stones to provide capabilities for energy-rich infrastructure located in space to support a variety of exploration scenarios as well as provide a supplemental source of energy during peak demands to ground grid systems. Abundant renewable energy at lunar or other locations could support propellant production and storage in refueling scenarios that enable affordable exploration. Renewable energy platforms in geosynchronous Earth orbits can collect and transmit power to satellites, or to Earth-surface locations. Energy-rich space technologies also enable the use of electric-powered propulsion systems that could efficiently deliver cargo and exploration facilities to remote locations. A first step to an energy-rich space infrastructure is a 100-kWe class solar-powered platform in Earth orbit. The platform would utilize advanced technologies in solar power collection and generation, power management and distribution, thermal management, electric propulsion, wireless avionics, autonomous in space rendezvous and docking, servicing, and robotic assembly. It would also provide an energy-rich free-flying platform to demonstrate in space a portfolio of technology flight experiments. This paper summary a preliminary design concept for a 100-kWe solar-powered satellite system to demonstrate in-flight a variety of advanced technologies, each as a separate payload. These technologies include, but are not limited to state-of-the-art solar concentrators, highly efficient multi-junction solar cells, integrated thermal management on the arrays, and innovative deployable structure design and packaging to enable the 100-kW satellite feasible to launch on one existing launch vehicle. Higher voltage arrays and power distribution systems (PDS) reduce or eliminate the need for massive power converters, and could enable direct-drive of high-voltage solar electric thrusters.
NASA Redox system development project status
NASA Technical Reports Server (NTRS)
Nice, A. W.
1981-01-01
NASA-Redox energy storage systems developed for solar power applications and utility load leveling applications are discussed. The major objective of the project is to establish the technology readiness of Redox energy storage for transfer to industry for product development and commercialization by industry. The approach is to competitively contract to design, build, and test Redox systems progressively from preprototype to prototype multi-kW and megawatt systems and conduct supporting technology advancement tasks. The Redox electrode and membrane are fully adequate for multi-kW solar related applications and the viability of the Redox system technology as demonstrated for multi-kW solar related applications. The status of the NASA Redox Storage System Project is described along with the goals and objectives of the project elements.
Redox storage systems for solar applications
NASA Technical Reports Server (NTRS)
Hagedorn, N. H.; Thaller, L. H.
1980-01-01
The NASA Redox energy storage system is described. The system is based on soluble aqueous iron and chromium chloride redox couples. The needed technology advances in the two elements (electrodes and membranes) that are key to its technological feasibility have been achieved and system development has begun. The design, construction, and test of a 1 kilowatt system integrated with a solar photovoltaic array is discussed.
High temperature solar thermal technology
NASA Technical Reports Server (NTRS)
Leibowitz, L. P.; Hanseth, E. J.; Peelgren, M. L.
1980-01-01
Some advanced technology concepts under development for high-temperature solar thermal energy systems to achieve significant energy cost reductions and performance gains and thus promote the application of solar thermal power technology are presented. Consideration is given to the objectives, current efforts and recent test and analysis results in the development of high-temperature (950-1650 C) ceramic receivers, thermal storage module checker stoves, and the use of reversible chemical reactions to transport collected solar energy. It is pointed out that the analysis and testing of such components will accelerate the commercial deployment of solar energy.
Small Body Exploration Technologies as Precursors for Interstellar Robotics
NASA Astrophysics Data System (ADS)
Noble, R. J.; Sykes, M. V.
The scientific activities undertaken to explore our Solar System will be very similar to those required someday at other stars. The systematic exploration of primitive small bodies throughout our Solar System requires new technologies for autonomous robotic spacecraft. These diverse celestial bodies contain clues to the early stages of the Solar System's evolution, as well as information about the origin and transport of water-rich and organic material, the essential building blocks for life. They will be among the first objects studied at distant star systems. The technologies developed to address small body and outer planet exploration will form much of the technical basis for designing interstellar robotic explorers. The Small Bodies Assessment Group, which reports to NASA, initiated a Technology Forum in 2011 that brought together scientists and technologists to discuss the needs and opportunities for small body robotic exploration in the Solar System. Presentations and discussions occurred in the areas of mission and spacecraft design, electric power, propulsion, avionics, communications, autonomous navigation, remote sensing and surface instruments, sampling, intelligent event recognition, and command and sequencing software. In this paper, the major technology themes from the Technology Forum are reviewed, and suggestions are made for developments that will have the largest impact on realizing autonomous robotic vehicles capable of exploring other star systems.
Small Body Exploration Technologies as Precursors for Interstellar Robotics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noble, Robert; /SLAC; Sykes, Mark V.
The scientific activities undertaken to explore our Solar System will be the same as required someday at other stars. The systematic exploration of primitive small bodies throughout our Solar System requires new technologies for autonomous robotic spacecraft. These diverse celestial bodies contain clues to the early stages of the Solar System's evolution as well as information about the origin and transport of water-rich and organic material, the essential building blocks for life. They will be among the first objects studied at distant star systems. The technologies developed to address small body and outer planet exploration will form much of themore » technical basis for designing interstellar robotic explorers. The Small Bodies Assessment Group, which reports to NASA, initiated a Technology Forum in 2011 that brought together scientists and technologists to discuss the needs and opportunities for small body robotic exploration in the Solar System. Presentations and discussions occurred in the areas of mission and spacecraft design, electric power, propulsion, avionics, communications, autonomous navigation, remote sensing and surface instruments, sampling, intelligent event recognition, and command and sequencing software. In this paper, the major technology themes from the Technology Forum are reviewed, and suggestions are made for developments that will have the largest impact on realizing autonomous robotic vehicles capable of exploring other star systems.« less
SunShot solar power reduces costs and uncertainty in future low-carbon electricity systems.
Mileva, Ana; Nelson, James H; Johnston, Josiah; Kammen, Daniel M
2013-08-20
The United States Department of Energy's SunShot Initiative has set cost-reduction targets of $1/watt for central-station solar technologies. We use SWITCH, a high-resolution electricity system planning model, to study the implications of achieving these targets for technology deployment and electricity costs in western North America, focusing on scenarios limiting carbon emissions to 80% below 1990 levels by 2050. We find that achieving the SunShot target for solar photovoltaics would allow this technology to provide more than a third of electric power in the region, displacing natural gas in the medium term and reducing the need for nuclear and carbon capture and sequestration (CCS) technologies, which face technological and cost uncertainties, by 2050. We demonstrate that a diverse portfolio of technological options can help integrate high levels of solar generation successfully and cost-effectively. The deployment of GW-scale storage plays a central role in facilitating solar deployment and the availability of flexible loads could increase the solar penetration level further. In the scenarios investigated, achieving the SunShot target can substantially mitigate the cost of implementing a carbon cap, decreasing power costs by up to 14% and saving up to $20 billion ($2010) annually by 2050 relative to scenarios with Reference solar costs.
Power Generation Potential and Cost of a Roof Top Solar PV System in Kathmandu, Nepal
NASA Astrophysics Data System (ADS)
Sanjel, N.; Zhand, A.
2017-12-01
The paper presents a comparative study of the 3 most used solar PV module technologies in Nepal, which are Si-mono-crystalline, Si-poly-crystalline and Si-amorphous. The aim of the paper is to present and discuss the recorded Global Solar Radiation, received in the Kathmandu valley by three different, Si-mono-crystalline, Si-poly-crystalline and Si-amorphous calibrated solar cell pyranometers and to propose the best-suited solar PV module technology for roof top solar PV systems inside the Kathmandu valley. Data recorded over the course of seven months, thus covering most of the seasonal meteorological conditions determining Kathmandu valley's global solar radiation reception are presented. The results indicate that the Si-amorphous pyranometer captured 1.56% more global solar radiation than the Si-mono-crystalline and 18.4% more than Si-poly-crystalline pyranometer over the course of seven months. Among the three pyranometer technologies the maximum and minimum cell temperature was measured by the Si-mono-crystalline pyranometer. Following the technical data and discussion, an economical analysis, using the versatile software tool PVSYST V5.01is used to calculate the life cycle costs of a 1kW roof top solar PV RAPS system, with battery storage, and a 1kW roof top solar PV grid connected system with no energy storage facility, through simulations, using average recorded global solar radiation data for the KTM valley and investigated market values for each solar PV module and peripheral equipment costs.
ERIC Educational Resources Information Center
Capps, Randall, Ed.
This summary of the deliberations of the Planning Conference for Solar Technology Information Transfer includes an outline of a functioning solar energy technology network for the State of Kentucky and a set of recommendations for future action. Four main types of information agents were identified: (1) the State Library System; (2) the State…
NASA Solar Sail Propulsion Technology Development
NASA Technical Reports Server (NTRS)
Johnson, Les; Montgomery, Edward E.; Young, Roy; Adams, Charles
2007-01-01
NASA's In-Space Propulsion Technology Program has developed the first generation of solar sail propulsion systems sufficient to accomplish inner solar system science and exploration missions. These first generation solar sails, when operational, will range in size from 40 meters to well over 100 meters in diameter and have an areal density of less than 13 grams per square meter. A rigorous, multi-year technology development effort culminated in 2005 with the testing of two different 20-m solar sail systems under thermal vacuum conditions. The first system, developed by ATK Space Systems of Goleta, California, uses rigid booms to deploy and stabilize the sail. In the second approach, L'Garde, Inc. of Tustin, California uses inflatable booms that rigidize in the coldness of space to accomplish sail deployment. This effort provided a number of significant insights into the optimal design and expected performance of solar sails as well as an understanding of the methods and costs of building and using them. In a separate effort, solar sail orbital analysis tools for mission design were developed and tested. Laboratory simulations of the effects of long-term space radiation exposure were also conducted on two candidate solar sail materials. Detailed radiation and charging environments were defined for mission trajectories outside the protection of the earth's magnetosphere, in the solar wind environment. These were used in other analytical tools to prove the adequacy of sail design features for accommodating the harsh space environment. Preceding and in conjunction with these technology efforts, NASA sponsored several mission application studies for solar sails. Potential missions include those that would be flown in the near term to study the sun and be used in space weather prediction to one that would use an evolved sail capability to support humanity's first mission into nearby interstellar space. This paper will describe the status of solar sail propulsion within NASA, nearterm solar sail mission applications, and near-term plans for further development.
NASA Technical Reports Server (NTRS)
Fujita, T.; Manvi, R.; Roschke, E. J.; El-Gabalawi, N.; Herrera, G.; Kuo, T. J.; Chen, K. H.
1979-01-01
Advanced technologies applicable to solar thermal electric power systems in the 1990-200 time-frame are delineated for power applications that fulfill a wide spectrum of small power needs with primary emphasis on power ratings less than 10MWe. Projections of power system characteristics (energy and capital costs as a function of capacity factor) are made based on development of identified promising technologies and are used as the basis for comparing technology development options and combinations of these options to determine developmental directions offering potential for significant improvements. Stirling engines, Brayton/Rankine combined cycles and storage/transport concepts encompassing liquid metals, and reversible-reaction chemical systems are considered for two-axis tracking systems such as the central receiver or power tower concept and distributed parabolic dish receivers which can provide efficient low-cost solar energy collection while achieving high temperatures for efficient energy conversion. Pursuit of advanced technology across a broad front can result in post-1985 solar thermal systems having the potential of approaching the goal of competitiveness with conventional power systems.
Technology for Bayton-cycle powerplants using solar and nuclear energy
NASA Technical Reports Server (NTRS)
English, R. E.
1986-01-01
Brayton cycle gas turbines have the potential to use either solar heat or nuclear reactors for generating from tens of kilowatts to tens of megawatts of power in space, all this from a single technology for the power generating system. Their development for solar energy dynamic power generation for the space station could be the first step in an evolution of such powerplants for a very wide range of applications. At the low power level of only 10 kWe, a power generating system has already demonstrated overall efficiency of 0.29 and operated 38 000 hr. Tests of improved components show that these components would raise that efficiency to 0.32, a value twice that demonstrated by any alternate concept. Because of this high efficiency, solar Brayton cycle power generators offer the potential to increase power per unit of solar collector area to levels exceeding four times that from photovoltaic powerplants using present technology for silicon solar cells. The technologies for solar mirrors and heat receivers are reviewed and assessed. This Brayton technology for solar powerplants is equally suitable for use with the nuclear reactors. The available long time creep data on the tantalum alloy ASTAR-811C show that such Brayton cycles can evolve to cycle peak temperatures of 1500 K (2240 F). And this same technology can be extended to generate 10 to 100 MW in space by exploiting existing technology for terrestrial gas turbines in the fields of both aircraft propulsion and stationary power generation.
Triplet-triplet annihilation photon-upconversion: towards solar energy applications.
Gray, Victor; Dzebo, Damir; Abrahamsson, Maria; Albinsson, Bo; Moth-Poulsen, Kasper
2014-06-14
Solar power production and solar energy storage are important research areas for development of technologies that can facilitate a transition to a future society independent of fossil fuel based energy sources. Devices for direct conversion of solar photons suffer from poor efficiencies due to spectrum losses, which are caused by energy mismatch between the optical absorption of the devices and the broadband irradiation provided by the sun. In this context, photon-upconversion technologies are becoming increasingly interesting since they might offer an efficient way of converting low energy solar energy photons into higher energy photons, ideal for solar power production and solar energy storage. This perspective discusses recent progress in triplet-triplet annihilation (TTA) photon-upconversion systems and devices for solar energy applications. Furthermore, challenges with evaluation of the efficiency of TTA-photon-upconversion systems are discussed and a general approach for evaluation and comparison of existing systems is suggested.
In-Space Propulsion (ISP) Solar Sail Propulsion Technology Development
NASA Technical Reports Server (NTRS)
Montgomery, Edward E., IV
2004-01-01
An overview of the rationale and content for Solar Sail Propulsion (SSP), the on-going project to advance solar technology from technology readiness level 3 to 6 will be provided. A descriptive summary of the major and minor component efforts underway will include identification of the technology providers and a listing of anticipated products Recent important results from major system ground demonstrators will be provided. Finally, a current status of all activities will provided along with the most recent roadmap for the SSP technology development program.
Health and safety implications of alternative energy technologies. II. Solar
NASA Astrophysics Data System (ADS)
Etnier, E. L.; Watson, A. P.
1981-09-01
No energy technology is risk free when all aspects of its utilization are taken into account. Every energy technology has some attendant direct and indirect health and safety concerns. Solar technologies examined in this paper are wind, ocean thermal energy gradients, passive, photovoltaic, satellite power systems, low- and high-temperature collectors, and central power stations, as well as tidal power. For many of these technologies, insufficient historical data are available from which to assess the health risks and environmental impacts. However, their similarities to other projects make certain predictions possible. For example, anticipated problems in worker safety in constructing ocean thermal energy conversion systems will be similar to those associated with other large-scale construction projects, like deep-sea oil drilling platforms. Occupational hazards associated with photovoltaic plant operation would be those associated with normal electricity generation, although for workers involved in the actual production of photovoltaic materials, there is some concern for the toxic effects of the materials used, including silicon, cadmium, and gallium arsenide. Satellite power systems have several unique risks. These include the effects of long-term space travel for construction workers, effects on the ozone layer and the attendant risk of skin cancer in the general public, and the as-yet-undetermined effects of long-term, low-level microwave exposure. Hazards may arise from three sources in solar heating and cooling systems: water contamination from corrosion inhibitors, heat transfer fluids, and bactericides; collector over-heating, fires, and “out-gassing” and handling and disposal of system fluids and wastes. Similar concerns exist for solar thermal power systems. Even passive solar systems may increase indoor exposure levels to various air pollutants and toxic substances, eitherdirectly from the solar system itself or indirectly by trapping released pollutants from furnishings, building materials, and indoor combustion.
A sunny future: expert elicitation of China's solar photovoltaic technologies
NASA Astrophysics Data System (ADS)
Lam, Long T.; Branstetter, Lee; Azevedo, Inês L.
2018-03-01
China has emerged as the global manufacturing center for solar photovoltaic (PV) products. Chinese firms have entered all stages of the supply chain, producing most of the installed solar modules around the world. Meanwhile, production costs are at record lows. The decisions that Chinese solar producers make today will influence the path for the solar industry and its role towards de-carbonization of global energy systems in the years to come. However, to date, there have been no assessments of the future costs and efficiency of solar PV systems produced by the Chinese PV industry. We perform an expert elicitation to assess the technological and non-technological factors that led to the success of China’s silicon PV industry as well as likely future costs and performance. Experts evaluated key metrics such as efficiency, costs, and commercial viability of 17 silicon and non-silicon solar PV technologies by 2030. Silicon-based technologies will continue to be the mainstream product for large-scale electricity generation application in the near future, with module efficiency reaching as high as 23% and production cost as low as 0.24/W. The levelized cost of electricity for solar will be around 34/MWh, allowing solar PV to be competitive with traditional energy resources like coal. The industry’s future developments may be affected by overinvestment, overcapacity, and singular short-term focus.
The Development of Solar Sail Propulsion for NASA Science Missions to the Inner Solar System
NASA Technical Reports Server (NTRS)
Montgomery, Edward E, IV; Johnson, Charles Les
2004-01-01
This paper examines recent assessments of the technology challenges facing solar sails, identifies the systems and technologies needing development, and the approach employed by NASA's In-space Propulsion Program in NASA to achieve near term products that move this important technology from low technology readiness level (TRL) toward the goal of application to science missions in near earth space and beyond. The status of on-going efforts to design, build, and test ground demonstrators of alternate approaches to structures (inflatable versus rigid), membrane materials, optical shape sensing, and attitude control will be presented along with planned future investments.
NASA Astrophysics Data System (ADS)
Alstone, Peter Michael
This work explores the intersections of information technology and off-grid electricity deployment in the developing world with focus on a key instance: the emergence of pay-as-you-go (PAYG) solar household-scale energy systems. It is grounded in detailed field study by my research team in Kenya between 2013-2014 that included primary data collection across the solar supply chain from global businesses through national and local distribution and to the end-users. We supplement the information with business process and national survey data to develop a detailed view of the markets, technology systems, and individuals who interact within those frameworks. The findings are presented in this dissertation as a series of four chapters with introductory, bridging, and synthesis material between them. The first chapter, Decentralized Energy Systems for Clean Electricity Access, presents a global view of the emerging off-grid power sector. Long-run trends in technology create "a unique moment in history" for closing the gap between global population and access to electricity, which has stubbornly held at 1-2 billion people without power since the initiation of the electric utility business model in the late 1800's. We show the potential for widespread near-term adoption of off-grid solar, which could lead to ten times less inequality in access and also ten times lower household-level climate impacts. Decentralized power systems that replace fuel-based incumbent lighting can advance the causes of climate stabilization, economic and social freedom and human health. Chapters two and three are focused on market and institutional dynamics present circa 2014 in for off-grid solar with a focus on the Kenya market. Chapter 2, "Off-grid Power and Connectivity", presents our findings related to the widespread influence of information technology across the supply chain for solar and in PAYG approaches. Using digital financing and embedded payment verification technology, PAYG businesses can help overcome key barriers to adoption of off-grid energy systems. The framework provides financing (or energy service payment structures) for users of off-grid solar, and we show is also instrumental for building trust in off-grid solar technology, facilitating supply chain coordination, and creating mechanisms and incentives for after-sales service. Chapter 3, Quality Communication, delves into detail on the information channels (both incumbent and ICT-based) that link retailers with regional and global markets for solar goods. In it we uncover the linked structure of physical distribution networks and the pathway for information about product characteristics (including, critically, the quality of products). The work shows that a few key decisions about product purchasing at the wholesale level, in places like Nairobi (the capital city for Kenya) create the bulk of the choice set for retail buyers, and show how targeting those wholesale purchasers is critically important for ensuring good-quality products are available. Chapter 4, the last in this dissertation, is titled Off-grid solar energy services enabled and evaluated through information technology and presents an analytic framework for using remote monitoring data from PAYG systems to assess the joint technological and behavioral drivers for energy access through solar home systems. Using large-scale (n ~ 1,000) data from a large PAYG business in Kenya (M-KOPA), we show that people tend to co-optimize between the quantity and reliability of service, using 55% of the energy technically possible but with only 5% system down time. Half of the users move their solar panel frequently (in response to concerns about theft, for the most part) and these users experienced 20% lower energy service quantities. The findings illustrate the implications of key trends for off-grid power: evolving system component technology architectures, opportunities for improved support to markets, and the use of background data from business and technology systems. (Abstract shortened by ProQuest.).
Final Technical Report for Automated Manufacturing of Innovative CPV/PV Modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okawa, David
Cogenra’s Dense Cell Interconnect system was designed to use traditional front-contact cells and string them together into high efficiency and high reliability “supercells”. This novel stringer allows one to take advantage of the ~100 GW/year of existing cell production capacity and create a solar product for the customer that will produce more power and last longer than traditional PV products. The goal for this program was for Cogenra Solar to design and develop a first-of-kind automated solar manufacturing line that produces strings of overlapping cells or “supercells” based on Cogenra’s Dense Cell Interconnect (DCI) technology for their Low Concentration Photovoltaicmore » (LCPV) systems. This will enable the commercialization of DCI technology to improve the efficiency, reliability and economics for their Low Concentration Photovoltaic systems. In this program, Cogenra Solar very successfully designed, developed, built, installed, and started up the ground-breaking manufacturing tools required to assemble supercells. Cogenra then successfully demonstrated operation of the integrated line at high yield and throughput far exceeding expectations. The development of a supercell production line represents a critical step toward a high volume and low cost Low Concentration Photovoltaic Module with Dense Cell Interconnect technology and has enabled the evaluation of the technology for reliability and yield. Unfortunately, performance and cost headwinds on Low Concentration Photovoltaics systems including lack of diffuse capture (10-15% hit) and more expensive tracker requirements resulted in a move away from LCPV technology. Fortunately, the versatility of Dense Cell Interconnect technology allows for application to flat plate module technology as well and Cogenra has worked with the DOE to utilize the learning from this grant to commercialize DCI technology for the solar market through the on-going grant: Catalyzing PV Manufacturing in the US With Cogenra Solar’s Next-Generation Dense Cell Interconnect PV Module Manufacturing Technology. This program is now very successfully building off of this work and commercializing the technology to enable increased solar adoption.« less
Current Status of Study on Hydrogen Production with Space Solar Power Systems (SSPS)
NASA Astrophysics Data System (ADS)
Mori, M.; Kagawa, H.; Nagayama, H.; Saito, Y.
2004-12-01
Japan Aerospace Exploration Agency (JAXA) has been conducting studies on Space Solar Power Systems (SSPS) using microwave and laser beams for years since FY1998 organizing a special committee and working groups. The microwave based SSPS are huge solar power systems that generate GW power by solar cells. The electric power is transmitted via microwave from the SSPS to the ground. In the laser based SSPS, a solar condenser equipped with lenses or mirrors and laser-generator would be put into orbit. A laser beam would be sent to Earth-based hydrogen generating device. We are proposing a roadmap that consists of a stepwise approach to achieve commercial SSPS in 20-30 years. The first step is 50kW class Technology Demonstration Satellite to demonstrate microwave power transmission. The second step is to demonstrate robotic assembly of 10MW class large scale flexible structure in space on ISS co-orbit. The third step is to build a prototype SSPS in GEO. The final step is to build commercial SSPS in GEO. We continue the study of SSPS concepts and architectures, technology flight demonstration and major technology development. System design of tens of kW class Technology Demonstration Satellite and conceptual study of 10MW class demonstration system on ISS co-orbit are also conducted. Several key technologies which are needed to be developed in appropriate R&D roadmap, such as high-voltage solar cell array, fiber type of direct solar pumping solid-state laser, high efficiency magnetron, thermal control technology and control technology of large scale flexible structure etc. are also investigated. In the study of concept design of commercial SSPS mentioned above, we have studied some configurations of both microwave based SSPS and laser based SSPS. In case of microwave based SSPS, the solar energy must be converted to electricity and then converted to a microwave beam. The on-ground rectifying antenna will collect the microwave beam and convert it to electricity to connect to commercial power grids. From the past experiences of the conceptual design of the1GW class SSPS, it is clear that system with the mirrors and modularized unit which integrated solar cells and microwave power transmitters is promising. In this type of SSPS, the solar lights are directed to the energy conversion unit integrated solar cells and microwave power transmitters using mirrors. The key factor in designing systems is feasibility of thermal system. Considering above these factors, some reference models are being considered now. FY2003 reference model is the model for formation flight without the center truss which connect to primary mirrors to energy conversion unit. Using this model as basis, we are carrying out examination from various viewpoints aiming at the cost minimum to build and maintain the systems. In case of laser based SSPS, the laser beam would be directly produced from the solar light using the direct solar pumping solid-state laser device. This laser beams would be collected on ground and used to produce hydrogen from seawater. The receiving / energy conversion station is settled on an ocean, and producing hydrogen can be stored and transported by ships to consumers. In designing laser based SSPS, conversion efficiency of the direct solar pumping solid-state laser and feasibility of thermal system are critical factors. Since magnification of solar concentrator is very high, improvement of thermal control system is important. Feasibility of its ground facilities and production technology of hydrogen using laser beams has been also studied. Both hydrogen generating systems with photo-catalyst device and electrolytic ones have been examined. From the past experiences of this study, high efficient electric power generating technology using the solar cell which suited the wavelength of laser is promising. The life cycle cost model of laser based SSPS was created and evaluated its validity. Sensitivity analysis of laser based SSPS are also continued aiming at hydrogen generating cost of around 20 cent per Nm3 . This paper presents a summary of studies on SSPS that JAXA has examined.
Space Solar Power Satellite Technology Development at the Glenn Research Center: An Overview
NASA Technical Reports Server (NTRS)
Dudenhoefer, James E.; George, Patrick J.
2000-01-01
NASA Glenn Research Center (GRC). is participating in the Space Solar Power Exploratory Research and Technology program (SERT) for the development of a solar power satellite concept. The aim of the program is to provide electrical power to Earth by converting the Sun's energy and beaming it to the surface. This paper will give an overall view of the technologies being pursued at GRC including thin film photovoltaics, solar dynamic power systems, space environmental effects, power management and distribution, and electric propulsion. The developmental path not only provides solutions to gigawatt sized space power systems for the future, but provides synergistic opportunities for contemporary space power architectures. More details of Space Solar Power can be found by reading the references sited in this paper and by connecting to the web site http://moonbase.msfc.nasa.gov/ and accessing the "Space Solar Power" section "Public Access" area.
Solar/hydrogen systems for the 1985-2000 time frame - A review and assessment
NASA Technical Reports Server (NTRS)
Hanson, J. A.; Foster, R. W.; Escher, W. J. D.; Tison, R. R.
1982-01-01
A comprehensive state-of-the-art review of solar/hydrogen technologies has been conducted. From this, solar/hydrogen production systems which could be commercialized by the year 2000 have been characterized technically and economically. Incentives and disincentives for the early commercialization of four solar/hydrogen systems have been explored, conclusions drawn and recommendations made.
Technology Projections for Solar Dynamic Power
NASA Technical Reports Server (NTRS)
Mason, Lee S.
1999-01-01
Solar Dynamic power systems can offer many potential benefits to Earth orbiting satellites including high solar-to-electric efficiency, long life without performance degradation, and high power capability. A recent integrated system test of a 2 kilowatt SD power system in a simulated space environment has successfully demonstrated technology readiness for space flight. Conceptual design studies of SD power systems have addressed several potential mission applications: a 10 kilowatt LEO satellite, a low power Space Based Radar, and a 30 kilowatt GEO communications satellite. The studies show that with moderate component development, SD systems can exhibit excellent mass and deployed area characteristics. Using the conceptual design studies as a basis, a SD technology roadmap was generated which identifies the component advances necessary to assure SD systems a competitive advantage for future NASA, DOD, and commercial missions.
Reinventing the Solar Power Satellite
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
2002-01-01
Economy of scale is inherent in the microwave power transmission aperture/spot-size trade-off, resulting in a requirement for large space systems in the existing design concepts. Unfortunately, this large size means that the initial investment required before the first return, and the price of amortization of this initial investment, is a daunting (and perhaps insurmountable) barrier to economic viability. As the growth of ground-based solar power applications will fund the development of the PV technology required for space solar power and will also create the demand for space solar power by manufacturing a ready-made market, space power systems must be designed with an understanding that ground-based solar technologies will be implemented as a precursor to space-based solar. for low initial cost, (3) operation in synergy with ground solar systems, and (4) power production profile tailored to peak rates. A key to simplicity of design is to maximize the integration of the system components. Microwave, millimeter-wave, and laser systems are analyzed. A new solar power satellite design concept with no sun-tracking and no moving parts is proposed to reduce the required cost to initial operational capability.
Expanding public outreach: The solar system ambassadors program.
NASA Astrophysics Data System (ADS)
Ferrari, K.
The Solar System Ambassadors Program is a public outreach program sponsored by the Jet Propulsion Laboratory (JPL) in Pasadena, California designed to work with motivated volunteers across the nation. These competitively selected volunteers or- ganize and conduct public events that communicate exciting discoveries and plans in Solar System research, exploration and technology through non_traditional forums; e.g. community service clubs, libraries, museums, planetariums, "star parties," mall displays, etc. In this talk I will give an overview of the program and discuss lessons learned. The Solar System Ambassadors Program is , an operating division of the California Institute of Technology (Caltech) and a lead research and development center for the National Aeronautics and Space Administration (NASA)
Progress of solar technology and potential farm uses
NASA Astrophysics Data System (ADS)
Heid, W. G., Jr.; Trotter, W. K.
1982-09-01
The efficient use of solar energy on farms for space heating and cooling of livestock buildings, drying crops, and heating farm homes is discussed. Low cost, homemade solar collectors, having multiple uses and a payback of less than 5 years, are the most popular systems. In contrast, most commercially produced systems are still too expensive for agricultural uses, partly because they fail to qualify for tax credits as large as those allowed for residential uses. The solar industry has shown little interest in marketing the low cost technologies specifically developed for agriculture.
Utilization of space technology for terrestrial solar power applications
NASA Technical Reports Server (NTRS)
Yasui, R. K.; Patterson, R. E.
1974-01-01
A description is given of the evolution of photovoltaic power systems designed and built for terrestrial applications, giving attention to problem areas which are currently impeding the further development of such systems. The rooftop testing of surplus solar panels is considered along with solar powered seismic observatories, solar powered portable radio sets, and design considerations identified from past experience. Present activities discussed are related to a solar powered on-shore beacon flasher system, a solar powered buoy, and a solar powered beacon flasher buoy.
Energy 101: Concentrating Solar Power
None
2018-02-07
From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.
Utilizing Fission Technology to Enable Rapid and Affordable Access to any Point in the Solar System
NASA Technical Reports Server (NTRS)
Houts, Mike; Bonometti, Joe; Morton, Jeff; Hrbud, Ivana; Bitteker, Leo; VanDyke, Melissa; Godfroy, T.; Pedersen, K.; Dobson, C.; Patton, B.;
2000-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include bimodal nuclear thermal rockets, high specific energy propulsion systems, and pulsed fission propulsion systems. In-space propellant re-supply enhances the effective performance of all systems, but requires significant infrastructure development. Safe, timely, affordable utilization of first-generation space fission propulsion systems will enable the development of more advanced systems. First generation systems can build on over 45 years of US and international space fission system technology development to minimize cost.
NASA Astrophysics Data System (ADS)
Hussey, K. J.
2011-10-01
NASA's Jet Propulsion Laboratory is using videogame technology to immerse students, the general public and mission personnel in our solar system and beyond. "Eyes on the Solar System," a cross-platform, real-time, 3D-interactive application that runs inside a Web browser, was released worldwide late last year (solarsystem.nasa.gov/eyes). It gives users an extraordinary view of our solar system by virtually transporting them across space and time to make first-person observations of spacecraft and NASA/ESA missions in action. Key scientific results illustrated with video presentations and supporting imagery are imbedded contextually into the solar system. The presentation will include a detailed demonstration of the software along with a description/discussion of how this technology can be adapted for education and public outreach, as well as a preview of coming attractions. This work is being conducted by the Visualization Technology Applications and Development Group at NASA's Jet Propulsion Laboratory, the same team responsible for "Eyes on the Earth 3D," which can be viewed at climate.nasa.gov/Eyes.html.
Systems Integration | Photovoltaic Research | NREL
& Engineering pages: Real-Time PV & Solar Resource Testing Accelerated Testing & Analysis integration support, system-level testing, and systems analysis for the Department of Energy's solar issues and develop solutions for high-penetration grid integration of solar technologies into the
Review of NASA programs in applying aerospace technology to energy
NASA Technical Reports Server (NTRS)
Schwenk, F. C.
1981-01-01
NASA's role in energy research and development, with the aid of aerospace technology, is reviewed. A brief history, which began in 1974 with studies of solar energy systems on earth, is presented, and the major energy programs, consisting of over 60 different projects, are described, and include solar terrestrial systems, conservation and fossil energy systems, and space utilization systems. Special attention is given to the Satellite Power System and the isolation of nuclear wastes in space. Emerging prospects for NASA programs in energy technology include bioenergy, and ocean thermal energy conversion, coal extraction and conversion technologies, and support to the nuclear industry in power plant systems safety.
Solar Stirling system development
NASA Technical Reports Server (NTRS)
Stearns, J. W., Jr.; Won, Y. S.; Poon, P. T.; Das, R.; Chow, E. Y.
1979-01-01
A low-cost, high-efficiency dish-Stirling solar thermal-electric power system is being developed for test in 1981. System components are the solar concentrator, receiver, fossil fuel combustor, thermal energy storage (TES), engine-generator, and power processing. System conceptualization is completed and design is in progress. Two receiver alternatives are being evaluated, a direct-coupled receiver-engine configuration with no TES and a heat pipe receiver with TES. System cost projections are being made. Goals for the system development task are (1) to develop an advanced dish-Stirling technology, utilizing a team of industrial contractors, (2) to demonstrate that technology at the system level, and (3) to determine how to achieve low production cost.
Revitalize Electrical Program with Renewable Energy Focus
ERIC Educational Resources Information Center
Karns, Robert J.
2012-01-01
Starting a renewable energy technology (RET) program can be as simple as shifting the teaching and learning focus of a traditional electricity program toward energy production and energy control systems. Redirecting curriculum content and delivery to address photovoltaic solar (PV solar) technology and small wind generation systems is a natural…
Prior indigenous technological species
NASA Astrophysics Data System (ADS)
Wright, Jason T.
2018-01-01
One of the primary open questions of astrobiology is whether there is extant or extinct life elsewhere the solar system. Implicit in much of this work is that we are looking for microbial or, at best, unintelligent life, even though technological artefacts might be much easier to find. Search for Extraterrestrial Intelligence (SETI) work on searches for alien artefacts in the solar system typically presumes that such artefacts would be of extrasolar origin, even though life is known to have existed in the solar system, on Earth, for eons. But if a prior technological, perhaps spacefaring, species ever arose in the solar system, it might have produced artefacts or other technosignatures that have survived to present day, meaning solar system artefact SETI provides a potential path to resolving astrobiology's question. Here, I discuss the origins and possible locations for technosignatures of such a prior indigenous technological species, which might have arisen on ancient Earth or another body, such as a pre-greenhouse Venus or a wet Mars. In the case of Venus, the arrival of its global greenhouse and potential resurfacing might have erased all evidence of its existence on the Venusian surface. In the case of Earth, erosion and, ultimately, plate tectonics may have erased most such evidence if the species lived Gyr ago. Remaining indigenous technosignatures might be expected to be extremely old, limiting the places they might still be found to beneath the surfaces of Mars and the Moon, or in the outer solar system.
ERIC Educational Resources Information Center
Lennox Industries, Inc., Dallas, TX.
This book contains comprehensive instruction in design, installation, and service procedures for typical solar space heat and domestic hot water systems. The book is comprised of five major sections. Solar Systems: Past and Present presents a brief look at how far solar technology has advanced. Included in this section are descriptions of over…
NASA Technical Reports Server (NTRS)
LaPointe, Michael
2006-01-01
The Solar Electric Propulsion (SEP) technology area is tasked to develop near and mid-term SEP technology to improve or enable science mission capture while minimizing risk and cost to the end user. The solar electric propulsion investments are primarily driven by SMD cost-capped mission needs. The technology needs are determined partially through systems analysis tasks including the recent "Re-focus Studies" and "Standard Architecture Study." These systems analysis tasks transitioned the technology development to address the near term propulsion needs suitable for cost-capped open solicited missions such as Discovery and New Frontiers Class missions. Major SEP activities include NASA's Evolutionary Xenon Thruster (NEXT), implementing a Standard Architecture for NSTAR and NEXT EP systems, and developing a long life High Voltage Hall Accelerator (HiVHAC). Lower level investments include advanced feed system development and xenon recovery testing. Future plans include completion of ongoing ISP development activities and evaluating potential use of commercial electric propulsion systems for SMD applications. Examples of enhanced mission capability and technology readiness dates shall be discussed.
An Overview Of NASA's Solar Sail Propulsion Project
NASA Technical Reports Server (NTRS)
Garbe, Gregory; Montgomery, Edward E., IV
2003-01-01
Research conducted by the In-Space Propulsion (ISP) Technologies Projects is at the forefront of NASA's efforts to mature propulsion technologies that will enable or enhance a variety of space science missions. The ISP Program is developing technologies from a Technology Readiness Level (TRL) of 3 through TRL 6. Activities under the different technology areas are selected through the NASA Research Announcement (NRA) process. The ISP Program goal is to mature a suite of reliable advanced propulsion technologies that will promote more cost efficient missions through the reduction of interplanetary mission trip time, increased scientific payload mass fraction, and allowing for longer on-station operations. These propulsion technologies will also enable missions with previously inaccessible orbits (e.g., non-Keplerian, high solar latitudes). The ISP Program technology suite has been prioritized by an agency wide study. Solar Sail propulsion is one of ISP's three high-priority technology areas. Solar sail propulsion systems will be required to meet the challenge of monitoring and predicting space weather by the Office of Space Science s (OSS) Living with a Star (LWS) program. Near-to-mid-term mission needs include monitoring of solar activity and observations at high solar latitudes. Near-term work funded by the ISP solar sail propulsion project is centered around the quantitative demonstration of scalability of present solar sail subsystem designs and concepts to future mission requirements through ground testing, computer modeling and analytical simulations. This talk will review the solar sail technology roadmap, current funded technology development work, future funding opportunities, and mission applications.
Concentrating Solar Power Projects | Concentrating Solar Power | NREL
construction, or under development. CSP technologies include parabolic trough, linear Fresnel reflector, power Technology-listing by parabolic trough, linear Fresnel reflector, power tower, or dish/engine systems Status
Solar thermal technology evaluation, fiscal year 1982. Volume 2: Technical
NASA Technical Reports Server (NTRS)
1983-01-01
The technology base of solar thermal energy is investigated. The materials, components, subsystems, and processes capable of meeting specific energy cost targets are emphasized, as are system efficiency and reliability.
Technology development program for an advanced microsheet glass concentrator
NASA Technical Reports Server (NTRS)
Richter, Scott W.; Lacy, Dovie E.
1990-01-01
Solar Dynamic Space Power Systems are candidate electrical power generating systems for future NASA missions. One of the key components in a solar dynamic power system is the concentrator which collects the sun's energy and focuses it into a receiver. In 1985, the NASA Lewis Research Center initiated the Advanced Solar Dynamic Concentrator Program with funding from NASA's Office of Aeronautics and Space Technology (OAST). The objectives of the Advanced Concentrator Program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived (7 to 10 years) space solar dynamic concentrators. The Advanced Concentrator Program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. The Advanced Microsheet Glass Concentrator Program, a reflector concept, that is currently being investigated both in-house and under contract is discussed.
Nonimaging optics maximizing exergy for hybrid solar system
NASA Astrophysics Data System (ADS)
Winston, Roland; Jiang, Lun; Abdelhamid, Mahmoud; Widyolar, Bennett K.; Ferry, Jonathan; Cygan, David; Abbasi, Hamid; Kozlov, Alexandr; Kirk, Alexander; Elarde, Victor; Osowski, Mark
2016-09-01
The project team of University of California at Merced (UC-Merced), Gas Technology Institute (GTI) and MicroLink Devices Inc. (MicroLink) are developing a hybrid solar system using a nonimaging compound parabolic concentrator (CPC) that maximizes the exergy by delivering direct electricity and on-demand heat. The hybrid solar system technology uses secondary optics in a solar receiver to achieve high efficiency at high temperature, collects heat in particles and uses reflective liftoff cooled double junction (2J) InGaP/GaAs solar cells with backside infrared (IR) reflectors on the secondary optical element to raise exergy efficiency. The nonimaging optics provides additional concentration towards the high temperature thermal stream and enables it to operate efficiently at 650 °C while the solar cell is maintained at 40 °C to operate as efficiently as possible.
Power Systems for Future Missions: Appendices A-L
NASA Technical Reports Server (NTRS)
Gill, S. P.; Frye, P. E.; Littman, Franklin D.; Meisl, C. J.
1994-01-01
Selection of power system technology for space applications is typically based on mass, readiness of a particular technology to meet specific mission requirements, and life cycle costs (LCC). The LCC is typically used as a discriminator between competing technologies for a single mission application. All other future applications for a given technology are usually ignored. As a result, development cost of a technology becomes a dominant factor in the LCC comparison. Therefore, it is common for technologies such as DIPS and LMR-CBC to be potentially applicable to a wide range of missions and still lose out in the initial LCC comparison due to high development costs. This collection of appendices (A through L) contains the following power systems technology plans: CBC DIPS Technology Roadmap; PEM PFC Technology Roadmap; NAS Battery Technology Roadmap; PV/RFC Power System Technology Roadmap; PV/NAS Battery Technology Roadmap; Thermionic Reactor Power System Technology Roadmap; SP-100 Power System Technology Roadmap; Dynamic SP-100 Power System Technology Roadmap; Near-Term Solar Dynamic Power System Technology Roadmap; Advanced Solar Dynamic Power System Technology Roadmap; Advanced Stirling Cycle Dynamic Isotope Power System Technology Roadmap; and the ESPPRS (Evolutionary Space Power and Propulsion Requirements System) User's Guide.
NASA Astrophysics Data System (ADS)
1984-01-01
Calibrated in kilowatt hours per square meter, the solar counter produced by Dodge Products, Inc. provides a numerical count of the solar energy that has accumulated on a surface. Solar energy sensing, measuring and recording devices in corporate solar cell technology developed by Lewis Research Center. Customers for their various devices include architects, engineers and others engaged in construction and operation of solar energy facilities; manufacturers of solar systems or solar related products, such as glare reducing windows; and solar energy planners in federal and state government agencies.
Microgravity fluid management requirements of advanced solar dynamic power systems
NASA Technical Reports Server (NTRS)
Migra, Robert P.
1987-01-01
The advanced solar dynamic system (ASDS) program is aimed at developing the technology for highly efficient, lightweight space power systems. The approach is to evaluate Stirling, Brayton and liquid metal Rankine power conversion systems (PCS) over the temperature range of 1025 to 1400K, identify the critical technologies and develop these technologies. Microgravity fluid management technology is required in several areas of this program, namely, thermal energy storage (TES), heat pipe applications and liquid metal, two phase flow Rankine systems. Utilization of the heat of fusion of phase change materials offers potential for smaller, lighter TES systems. The candidate TES materials exhibit large volume change with the phase change. The heat pipe is an energy dense heat transfer device. A high temperature application may transfer heat from the solar receiver to the PCS working fluid and/or TES. A low temperature application may transfer waste heat from the PCS to the radiator. The liquid metal Rankine PCS requires management of the boiling/condensing process typical of two phase flow systems.
Photovoltaic at Hollywood and Desert Breeze Recreational Centers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ammerman, Shane
Executive Summary Renewable Energy Initiatives for Clark County Parks and Recreation Solar Project DOE grant # DE-EE0003180 In accordance with the goals of the Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy for promoting solar energy as clean, carbon-free and cost-effective, the County believed that a recreational center was an ideal place to promote solar energy technologies to the public. This project included the construction of solar electricity generation facilities (40kW) at two Clark County facility sites, Desert Breeze Recreational Center and Hollywood Recreational Center, with educational kiosks and Green Boxes for classroom instruction. The major objectivesmore » and goals of this Solar Project include demonstration of state of the art technologies for the generation of electricity from solar technology and the creation of an informative and educational tool in regards to the benefits and process of generating alternative energy. Clark County partnered with Anne Johnson (design architect/consultant), Affiliated Engineers Inc. (AEI), Desert Research Institute (DRI), and Morse Electric. The latest photovoltaic technologies were used in the project to help create the greatest expected energy savings for60443 each recreational center. This coupled with the data created from the monitoring system will help Clark County and NREL further understand the real time outputs from the system. The educational portion created with AEI and DRI incorporates material for all ages with a focus on K - 12. The AEI component is an animated story telling the fundamentals of how sunlight is turned into electricity and DRI‘s creation of Solar Green Boxes brings environmental education into the classroom. In addition to the educational component for the public, the energy that is created through the photovoltaic system also translates into saved money and health benefits for the general public. This project has helped Clark County to further add to its own energy reduction goals created by the energy management agenda (Resolution to Encourage Sustainability) and the County’s Eco-initiative. Each site has installed photovoltaic panels on the existing roof structures that exhibit suitable solar exposure. The generation systems utilize solar energy creating electricity used for the facility’s lighting system and other electrical requirements. Unused electricity is sent to the electric utility grid, often at peak demand times. Educational signage, kiosks and information have been included to inform and expand the public’s understanding of solar energy technology. The Solar Green Boxes were created for further hands on classroom education of solar power. In addition, data is sent by a Long Term PV performance monitoring system, complete with data transmission to NREL (National Renewable Energy Laboratory), located in Golden, CO. This system correlates local solar irradiance and weather with power production. The expected outcomes of this Solar Project are as follows: (1) Successful photovoltaic electricity generation technologies to capture solar energy in a useful form of electrical energy. (2) Reduction of greenhouse gas emissions and environmental degradation resulting from reduced energy demand from traditional electricity sources such as fossil fuel fired and nuclear power plants. (3) Advance the research and development of solar electricity generation. (4) The education of the general public in regards to the benefits of environmentally friendly electricity generation and Clark County’s efforts to encourage sustainable living practices. (5) To provide momentum for the nexus for future solar generation facilities in Clark County facilities and buildings and further the County’s energy reduction goals. (6) To ultimately contribute to the reduction of dependence on foreign oil and other unsustainable sources of energy. This Solar Project addresses several objectives and goals of the U.S. Department of Energy’s Solar Energy Technology Program. The project improves the integration and performance of solar electricity directly through implementation of cutting edge technology. The project further addresses this goal by laying important ground work and infrastructure for integration into the utility grid in future related projects. There will also be added security, reliability, and diversity to the energy system by providing and using reliable, secure, distributed electricity in Clark County facilities as well as sending such electricity back into the utility electric grid. A final major objective met by the Solar Project will be the displacement of energy derived by fossil fuels with clean renewable energy created by photovoltaic panels.« less
Progress in solar thermal distributed receiver technology
NASA Astrophysics Data System (ADS)
Leonard, J. A.; Otts, J. V.
A brief discussion is given on the fundamentals of parabolic dish collectors. Private and Department of Energy supported projects which employ parabolic dish collector systems are described. These projects include: the Distribution Receiver Test Facility, Shenandoah Solar Total Energy Project, Vangurd I, Solar Plant No. 1, the Dish/Stirling Solar Electric Generating System, the Organic Rankine Cycle, and the Solarized Automotive Gas Turbine.
Advanced tendencies in development of photovoltaic cells for power engineering
NASA Astrophysics Data System (ADS)
Strebkov, D. S.
2015-01-01
Development of solar power engineering must be based on original innovative Russian and world technologies. It is necessary to develop promising Russian technologies of manufacturing of photovoltaic cells and semiconductor materials: chlorine-free technology for obtaining solar silicon; matrix solar cell technology with an efficiency of 25-30% upon the conversion of concentrated solar, thermal, and laser radiation; encapsulation technology for high-voltage silicon solar modules with a voltage up to 1000 V and a service life up to 50 years; new methods of concentration of solar radiation with the balancing illumination of photovoltaic cells at 50-100-fold concentration; and solar power systems with round-the-clock production of electrical energy that do not require energy storage devices and reserve sources of energy. The advanced tendency in silicon power engineering is the use of high-temperature reactions in heterogeneous modular silicate solutions for long-term (over one year) production of heat and electricity in the autonomous mode.
Summary of NASA-Lewis Research Center solar heating and cooling and wind energy programs
NASA Technical Reports Server (NTRS)
Vernon, R. W.
1975-01-01
NASA is planning to construct and operate a solar heating and cooling system in conjunction with a new office building being constructed at Langley Research Center. The technology support for this project will be provided by a solar energy program underway at NASA's Lewis Research Center. The solar program at Lewis includes: testing of solar collectors with a solar simulator, outdoor testing of collectors, property measurements of selective and nonselective coatings for solar collectors, and a solar model-systems test loop. NASA-Lewis has been assisting the National Science Foundation and now the Energy Research and Development Administration in planning and executing a national wind energy program. The areas of the wind energy program that are being conducted by Lewis include: design and operation of a 100 kW experimental wind generator, industry-designed and user-operated wind generators in the range of 50 to 3000 kW, and supporting research and technology for large wind energy systems. An overview of these activities is provided.
Solar cell array design handbook - The principles and technology of photovoltaic energy conversion
NASA Technical Reports Server (NTRS)
Rauschenbach, H. S.
1980-01-01
Photovoltaic solar cell array design and technology for ground-based and space applications are discussed from the user's point of view. Solar array systems are described, with attention given to array concepts, historical development, applications and performance, and the analysis of array characteristics, circuits, components, performance and reliability is examined. Aspects of solar cell array design considered include the design process, photovoltaic system and detailed array design, and the design of array thermal, radiation shielding and electromagnetic components. Attention is then given to the characteristics and design of the separate components of solar arrays, including the solar cells, optical elements and mechanical elements, and the fabrication, testing, environmental conditions and effects and material properties of arrays and their components are discussed.
Effects of solar photovoltaic technology on the environment in China.
Qi, Liqiang; Zhang, Yajuan
2017-10-01
Among the various types of renewable energy, solar photovoltaic has elicited the most attention because of its low pollution, abundant reserve, and endless supply. Solar photovoltaic technology generates both positive and negative effects on the environment. The environmental loss of 0.00666 yuan/kWh from solar photovoltaic technology is lower than that from coal-fired power generation (0.05216 yuan/kWh). The negative effects of solar photovoltaic system production include wastewater and waste gas pollutions, the representatives of which contain fluorine, chromium with wastewater and hydrogen fluoride, and silicon tetrachloride gas. Solar panels are also a source of light pollution. Improper disposal of solar cells that have reached the end of their service life harms the environment through the stench they produce and the damage they cause to the soil. So, the positive and negative effects of green energy photovoltaic power generation technology on the environment should be considered.
Beyond Our Boundaries: Research and Technology
NASA Technical Reports Server (NTRS)
1996-01-01
Topics considered include: Propulsion and Fluid Management; Structures and Dynamics; Materials and Manufacturing Processes; Sensor Technology; Software Technology; Optical Systems; Microgravity Science; Earth System Science; Astrophysics; Solar Physics; and Technology Transfer.
Outer Planet Science Missions enabled by Solar Power
NASA Astrophysics Data System (ADS)
Kaplan, M.; Klaus, K.; Smith, D. B.
2009-12-01
Our studies demonstrate that New Frontiers-class science missions to the Jupiter and Saturn systems are possible with commercial solar powered space craft. These spacecraft are flight proven with more than 60 years of in-space operation and are equipped with highly efficient solar arrays capable of up to 25kW in low earth orbit. Such a vehicle could generate nearly 1kW in the Jovian System. Our analysis shows substantially greater power at the end of mission with this solar array system than the system that is planned for use in the Europa Jupiter System Flagship mission study. In the next few years, a new solar array technology will be developed and demonstrated by DARPA that will provide even higher power. DARPA’s Fast Access Space Testbed (FAST) program objective is to develop a revolutionary approach to spacecraft high power generation. This high power generation Subsystem, when combined with electric propulsion, will form the technological basis for a light weight, high power, highly mobile spacecraft platform. The FAST program will demonstrate the implementation of solar concentrators and high flux solar cells in conjunction with high specific impulse electric propulsion, to produce a high performance, lightweight power and propulsion system. A basic FAST spacecraft design provides about 60 kW in LEO, which scales to > 2 kW at 5 AU, or a little less than 1 kW at 10 AU. In principle, higher power levels (120 kW or even 180kW at 1 AU) could be accommodated with this technology. We envision missions using this FAST array and NASA’s NEXT engines for solar electric propulsion (SEP) Jovian and Saturn system maneuvers. We envision FAST arrays to cost in the tens of millions, making this an affordable, plutonium-free way to do outer planets science. Continued funding will mean flight experiments conducted in the 2012 timeframe that could make this technology flight proven for the New Frontiers 4 opportunity.
Solar energy in buildings: Implications for California energy policy
NASA Technical Reports Server (NTRS)
Hirshberg, A. S.; Davis, E. S.
1977-01-01
An assessment of the potential of active solar energy systems for buildings in California is summarized. The technology used for solar heating, cooling, and water heating in buildings is discussed. The major California weather zones and the solar energy designs are described, as well as the sizing of solar energy systems and their performance. The cost of solar energy systems is given both at current prices and at prices consistent with optimistic estimates for the cost of collectors. The main institutional barriers to the wide spread use of solar energy are summarized.
Mars Technology Program Planetary Protection Technology Development
NASA Technical Reports Server (NTRS)
Lin, Ying
2006-01-01
The objectives of the NASA Planetary Protection program are to preserve biological and organic conditions of solar-system bodies for future scientific exploration and to protect the Earth from potential hazardous extraterrestrial contamination. As the exploration of solar system continues, NASA remains committed to the implementation of planetary protection policy and regulations. To fulfill this commitment, the Mars Technology Program (MTP) has invested in a portfolio of tasks for developing necessary technologies to meet planetary protection requirements for the next decade missions.
A Multi-scale, Multi-Model, Machine-Learning Solar Forecasting Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamann, Hendrik F.
The goal of the project was the development and demonstration of a significantly improved solar forecasting technology (short: Watt-sun), which leverages new big data processing technologies and machine-learnt blending between different models and forecast systems. The technology aimed demonstrating major advances in accuracy as measured by existing and new metrics which themselves were developed as part of this project. Finally, the team worked with Independent System Operators (ISOs) and utilities to integrate the forecasts into their operations.
Solar Power Satellite Development: Advances in Modularity and Mechanical Systems
NASA Technical Reports Server (NTRS)
Belvin, W. Keith; Dorsey, John T.; Watson, Judith J.
2010-01-01
Space solar power satellites require innovative concepts in order to achieve economically and technically feasible designs. The mass and volume constraints of current and planned launch vehicles necessitate highly efficient structural systems be developed. In addition, modularity and in-space deployment will be enabling design attributes. This paper reviews the current challenges of launching and building very large space systems. A building block approach is proposed in order to achieve near-term solar power satellite risk reduction while promoting the necessary long-term technology advances. Promising mechanical systems technologies anticipated in the coming decades including modularity, material systems, structural concepts, and in-space operations are described
Solar technology in the Federal Republic of Germany
NASA Technical Reports Server (NTRS)
1979-01-01
A series of papers dealing with the status of solar research and development in the Federal Republic of Germany are presented at a conference in Greece with the object of promoting international cooperation in solar energy utilization. The reports focus on solar collector designs, solar systems, heat pumps, solar homes, solar cooling and refrigeration, desalination and electric power generation. Numerous examples of systems produced by German manufacturers are illustrated and described, and performance data are presented.
NASA Astrophysics Data System (ADS)
Arias-Rosales, Andrés.; Barrera-Velásquez, Jorge; Osorio-Gómez, Gilberto; Mejía-Gutiérrez, Ricardo
2014-06-01
Solar competition cars are a very interesting research laboratory for the development of new technologies heading to their further implementation in either commercial passenger vehicles or related applications. Besides, worldwide competitions allow the spreading of such ideas where the best and experienced teams bet on innovation and leading edge technologies, in order to develop more efficient vehicles. In these vehicles, some aspects generally make the difference such as aerodynamics, shape, weight, wheels and the main solar panels. Therefore, seeking to innovate in a competitive advantage, the first Colombian solar vehicle "Primavera", competitor at the World Solar Challenge (WSC)-2013, has implemented the usage of a Concentrating Photovoltaic (CPV) system as a complementary solar energy module to the common silicon photovoltaic panel. By harvesting sunlight with concentrating optical devices, CPVs are capable of maximizing the allowable photovoltaic area. However, the entire CPV system weight must be less harmful than the benefit of the extra electric energy generated, which in adjunct with added manufacture and design complexity, has intervened in the fact that CPVs had never been implemented in a solar car in such a scale as the one described in this work. Design considerations, the system development process and implementation are presented in this document considering both the restrictions of the context and the interaction of the CPV system with the solar car setup. The measured data evidences the advantage of using this complementary system during the competition and the potential this technology has for further developments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, Joseph J; Doris, Elizabeth S; Farrar, Sara L
The U.S. Department of Energy (DOE) Solar Decathlon is a collegiate competition that challenges student teams to design and build full-size, solar-powered houses. Because of balanced design priorities of architecture, engineering, innovation, performance, and energy use, teams have focused on a range of technologies in the built environment, from wall materials to home control systems, from electric lighting to HVAC equipment, and from geothermal to solar photovoltaic technology. This report provides insights into building technology innovation from a review of the Solar Decathlon competition entry designs, anecdotal experiences, and related market reports. The report describes example case studies of themore » evolution of technology solutions over time to illustrate the innovative, market-driving nature of the Solar Decathlon. It charts technologies utilized in the team designs over seven competitions and compares those to broader market adoption. It is meant to illustrate the technology innovation aspects of the competition, not to be a comprehensive or quantitative analysis. Solar Decathlon also has impacts on public perception of innovative technologies as well as workforce development through the thousands of participating students. The focus of these case studies is to showcase how it contributes to marketplace adoption of innovative energy technologies.« less
Energy efficiency of a solar domestic hot water system
NASA Astrophysics Data System (ADS)
Zukowski, Miroslaw
2017-11-01
The solar domestic hot water (SDHW) system located on the campus of Bialystok University of Technology is the object of the research described in the current paper. The solar thermal system is composed of 35 flat plate collectors, 21 evacuated tube collectors and eight hot water tanks with the capacity of 1 m3 of each. Solar facility is equipped with hardware for automatic data collection. Additionally, the weather station located on the roof of the building provides measurements of basic parameters of ambient air and solar radiation. The main objective of Regional Operational Program was the assessment of the effectiveness of this solar energy technology in the climatic conditions of the north-eastern Poland. Energy efficiency of SDHW system was defined in this research as the ratio between the useful heat energy supplied to the domestic hot water system and solar energy incident on the surface of solar panels. Heat loss from water storage tanks, and from the pipe network to the surrounding air, as well as the electrical energy consumed by the pumps have been included in the calculations. The paper presents the detailed results and conclusions obtained from this energy analysis.
The Ion Propulsion System for the Asteroid Redirect Robotic Mission
NASA Technical Reports Server (NTRS)
Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard R.; Sekerak, Michael J.
2016-01-01
The Asteroid Redirect Robotic Mission is a Solar Electric Propulsion Technology Demonstration Mission (ARRM) whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of NASA'a future beyond-low-Earth-orbit, human-crewed exploration plans. Under the NASA Space Technology Mission Directorate the critical electric propulsion and solar array technologies are being developed. This paper presents the conceptual design of the ARRM ion propulsion system, the status of the NASA in-house thruster and power processing development activities, the status of the planned technology maturation for the mission through flight hardware delivery, and the status of the mission formulation and spacecraft acquisition.
Exploration of the solar system
NASA Technical Reports Server (NTRS)
Henderson, A., Jr. (Editor); Grey, J.
1974-01-01
The potential achievements of solar system exploration are outlined, and a course of action is suggested which will maximize the rewards. Also provided is a sourcebook of information on the solar system and the technology being brought to bear for its exploration. The document explores the degree to which three practical questions can be answered: why it is necessary to explore the solar system, why understanding of the solar system is important to us, and why we cannot wait until all terrestrial problems are solved before an attempt is made to solve problems in space.
NASA Astrophysics Data System (ADS)
Telsnig, Thomas; Potz, Christian; Haas, Jannik; Eltrop, Ludger; Palma-Behnke, Rodrigo
2017-06-01
The arid northern regions of Chile are characterized by an intensive mineral mining industry and high solar irradiance levels. Besides Chile's main mining products, copper, molybdenum and iron, the production of lithium carbonate from lithium containing brines has become strategically important due to the rising demand for battery technologies worldwide. Its energy-intensive production may affect the ecological footprint of the product and the country's climate targets. Thus, the use of solar technologies for electricity and heat production might constitute an interesting option for CO2 mitigation. This study aims to quantify the impacts of the lithium carbonate production processes in Chile on climate change, and to identify site-specific integration options of solar energy technologies to reduce GHG life-cycle emissions. The considered solar integration options include a parabolic trough power plant with a molten salt storage, a solar tower power plant with molten salt receiver and molten salt storage, a one-axis tracking photovoltaic energy system for electricity, and two solar thermal power plants with Ruths storage (steam accumulator) for thermal heat production. CSP plants were identified as measures with the highest GHG mitigation potential reducing the CO2 emissions for the entire production chain and the lithium production between 16% and 33%. In a scenario that combines solar technologies for electricity and thermal energy generation, up to 59% of the CO2 emissions at the lithium production sites in Chile can be avoided. A comparison of the GHG abatement costs of the proposed solar integration options indicates that the photovoltaic system, the solar thermal plant with limited storage and the solar tower power plant are the most cost effective options.
NASA Astrophysics Data System (ADS)
Kaplan, M.; Tadros, A.
2017-02-01
Obtaining answers to questions posed by planetary scientists over the next several decades will require the ability to travel further while exploring and gathering data in more remote locations of our solar system. Timely investments need to be made in developing and demonstrating solar electric propulsion and advanced space robotics technologies.
PV technology and success of solar electricity in Vietnam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dung, T.Q.
1997-12-31
Since 1990 the PV Technology and the Solar electricity have been strongly developed in Vietnam. The PV experts of Solarlab have studied and set up an appropriate PV Technology responding to local Market needs. It has not only stood well but has been also transferred to Mali Republic and Lao P.D.R. The PV off grid systems of Solarlab demonstrate good efficiency and low prices. Over 60 solar stations and villages have been built to provide solar lighting for about 3000 families along the country in remote, mountainous areas and islands. 400 families are using stand-alone Solar Home Systems. The Solarmore » electricity has been chosen for Rural Electrification and National Telecommunication Network in remote and mountainous regions. Many International projects in cooperation with FONDEM-France, SELF USA and Governmental PV projects have been realized by Solarlab. The experiences of maintenance, management and finance about PV development in Vietnam are also mentioned.« less
Conversion system overview assessment. Volume 1: solar thermoelectrics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayadev, T. S.; Henderson, J.; Finegold, J.
1979-08-01
An assessment of thermoelectrics for solar energy conversion is given. There is significant potential for solar thermoelectrics in solar technologies where collector costs are low; e.g., Ocean Thermal Energy Conversion (OTEC) and solar ponds. Reports of two studies by manufacturers assessing the cost of thermoelectric generators in large scale production are included in the appendix and several new concepts thermoelectric systems are presented. (WHK)
NASA Technical Reports Server (NTRS)
Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)
2002-01-01
Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.
Our Solar System. Our Solar System Topic Set
ERIC Educational Resources Information Center
Phelan, Glen
2006-01-01
This book examines the planets and other objects in space that make up the solar system. It also shows how technology helps students learn about our neighbors in space. The suggested age range for this book is 3-8 with a guided reading level of Q-R. The Fry level is 3.2.
Solar photovoltaic power systems: an electric utility R & d perspective.
Demeo, E A; Taylor, R W
1984-04-20
Solar photovoltaic technology is receiving increasing attention as a prospective source of bulk, electric utility power within the next 10 to 20 years. Successful development will require solar energy conversion efficiencies of about 15 percent for photovoltaic flat-plate modules, or about 25 percent for photovoltaic cells using highly concentrated sunlight. Three different cell technologies have a better than even chance of achieving these target efficiencies with costs and operating lifetimes that would allow significant use by electric utilities. The challenge for the next decade is to push photovoltaic technology to its physical limits while expanding markets and user confidence with currently available systems.
Solar Electric Propulsion Technology Development for Electric Propulsion
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Kerslake, Thomas W.; Scheidegger, Robert J.; Woodworth, Andrew A.; Lauenstein, Jean-Marie
2015-01-01
NASA is developing technologies to prepare for human exploration missions to Mars. Solar electric propulsion (SEP) systems are expected to enable a new cost effective means to deliver cargo to the Mars surface. Nearer term missions to Mars moons or near-Earth asteroids can be used to both develop and demonstrate the needed technology for these future Mars missions while demonstrating new capabilities in their own right. This presentation discusses recent technology development accomplishments for high power, high voltage solar arrays and power management that enable a new class of SEP missions.
An Overview of Solar Sail Propulsion within NASA
NASA Technical Reports Server (NTRS)
Johnson, Les; Swartzlander, Grover A.; Artusio-Glimpse, Alexandra
2013-01-01
Solar Sail Propulsion (SSP) is a high-priority new technology within The National Aeronautics and Space Administration (NASA), and several potential future space missions have been identified that will require SSP. Small and mid-sized technology demonstration missions using solar sails have flown or will soon fly in space. Multiple mission concept studies have been performed to determine the system level SSP requirements for their implementation and, subsequently, to drive the content of relevant technology programs. The status of SSP technology and potential future mission implementation within the United States (US) will be described.
Research and Development Needs for Building-Integrated Solar Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2014-01-01
The Building Technologies Office (BTO) has identified Building Integrated Solar Technologies (BIST) as a potentially valuable piece of the comprehensive pathway to help achieve its goal of reducing energy consumption in residential and commercial buildings by 50% by the year 2030. This report helps to identify the key research and development (R&D) needs that will be required for BIST to make a substantial contribution toward that goal. BIST include technologies for space heating and cooling, water heating, hybrid photovoltaic-thermal systems (PV/T), active solar lighting, and building-integrated photovoltaics (BIPV).
Particle tower technology applied to metallurgic plants and peak-time boosting of steam power plants
NASA Astrophysics Data System (ADS)
Amsbeck, Lars; Buck, Reiner; Prosin, Tobias
2016-05-01
Using solar tower technology with ceramic particles as heat transfer and storage medium to preheat scrap for induction furnaces in foundries provides solar generated heat to save electricity. With such a system an unsubsidized payback time of only 4 years is achieved for a 70000t/a foundry in Brazil. The same system can be also used for heat treatment of metals. If electricity is used to heat inert atmospheres a favorable economic performance is also achievable for the particle system. The storage in a particle system enables solar boosting to be restricted to only peak times, enabling an interesting business case opportunity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.
This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of productionmore » builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.« less
NASA Technical Reports Server (NTRS)
Holbeck, H. J.; Ireland, S. J.
1979-01-01
The siting issues associated with small, dispersed solar thermal power plants for utility/small community applications of less than 10 MWe are reported. Some specific requirements are refered to the first engineering experiment for the Small Power Systems Applications (SPSA) Project. The background for the subsequent issue discussions is provided. The SPSA Project and the requirements for the first engineering experiment are described, and the objectives and scope for the report as a whole. A overview of solar thermal technologies and some technology options are discussed.
Solar Electric Propulsion Concepts for Human Space Exploration
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Mcguire, Melissa L.; Oleson, Steven R.; Barrett, Michael J.
2016-01-01
Advances in solar array and electric thruster technologies now offer the promise of new, very capable space transportation systems that will allow us to cost effectively explore the solar system. NASA has developed numerous solar electric propulsion spacecraft concepts with power levels ranging from tens to hundreds of kilowatts for robotic and piloted missions to asteroids and Mars. This paper describes nine electric and hybrid solar electric/chemical propulsion concepts developed over the last 5 years and discusses how they might be used for human exploration of the inner solar system.
Solar Electric Propulsion Concepts for Human Space Exploration
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; McGuire, Melissa L.; Oleson, Steven R.; Barrett, Michael J.
2015-01-01
Advances in solar array and electric thruster technologies now offer the promise of new, very capable space transportation systems that will allow us to cost effectively explore the solar system. NASA has developed numerous solar electric propulsion spacecraft concepts with power levels ranging from tens to hundreds of kilowatts for robotic and piloted missions to asteroids and Mars. This paper describes nine electric and hybrid solar electric/chemical propulsion concepts developed over the last 5 years and discusses how they might be used for human exploration of the inner solar system.
ERIC Educational Resources Information Center
Aldridge, Mark C., Ed.
A summary of the deliberations of the Georgia planning conference of the Solar Technology Transfer Program is presented in this report. Topic areas include background information on the Georgia conference and a summary of the discussions and recommendations dealing with solar information transfer within state systems and the need for greater…
2 kWe Solar Dynamic Ground Test Demonstration Project. Volume 1; Executive Summary
NASA Technical Reports Server (NTRS)
Alexander, Dennis
1997-01-01
The Solar Dynamic Ground Test Demonstration (SDGTD) successfully demonstrated a solar-powered closed Brayton cycle system in a relevant space thermal environment. In addition to meeting technical requirements the project was completed 4 months ahead of schedule and under budget. The following conclusions can be supported: 1. The component technology for solar dynamic closed Brayton cycle technology has clearly been demonstrated. 2. The thermal, optical, control, and electrical integration aspects of systems integration have also been successfully demonstrated. Physical integration aspects were not attempted as these tend to be driven primarily by mission-specific requirements. 3. System efficiency of greater than 15 percent (all losses fully accounted for) was demonstrated using equipment and designs which were not optimized. Some preexisting hardware was used to minimize cost and schedule. 4. Power generation of 2 kWe. 5. A NASA/industry team was developed that successfully worked together to accomplish project goals. The material presented in this report will show that the technology necessary to design and fabricate solar dynamic electrical power systems for space has been successfully developed and demonstrated. The data will further show that achieved results compare well with pretest predictions. The next step in the development of solar dynamic space power will be a flight test.
The economic viability of pursuing a space power system concept
NASA Technical Reports Server (NTRS)
Hazelrigg, G. A., Jr.
1977-01-01
The development of a space power system requires no fundamental technological breakthroughs. There are, however, uncertainties regarding the degree to which necessary developments can be achieved or exceeded. An analysis is conducted concerning the implementation of a 5000 MW space-based solar power system based on photovoltaic conversion of solar energy to electrical energy. The solar array is about 13 km long and 5 km wide. Placed in geosynchronous orbit, it provides power to the earth for 30 years. Attention is given to the economic feasibility of a space power system, a risk analysis for space power systems, and the use of the presented methodology for comparing alternative technology development programs.
What is stopping you from installing solar systems? Contrasting Chilean with German homes.
NASA Astrophysics Data System (ADS)
Haas, J.; Caro Castro, C. P.
2017-12-01
Towards meeting Paris` climate change goals, a rapid shift towards clean energy sources is needed. While the deployment of centralized solar photovoltaic (PV) power plants has been remarkable in Germany and -in the last years- also in Chile, the residential PV installations in Chile lag greatly in contrast to Germany. In fact, Chile's largest PV system until 2012 was smaller than 25 kW. And, although the recently implemented net-billing scheme has brightened this scenario, most of Chile's roofs keep being bald. Beyond the evident economic contrasts among both countries, there are many other underlying differences in public acceptance of renewable technologies. Understanding them is of both conceptual and practical importance. Here, we study the variables that determine the public acceptance of residential PV systems in Germany and Chile. We survey the positions of laypersons on the support of climate change goals, on the necessity of renewable technologies, on their auto-sustainability (how much I identify myself with being sustainable), and on their auto-effectiveness (do I believe that my behavior has impact on global targets). The sample is further characterized by socioeconomic status, knowledge and experience and proximity to solar systems, esthetic perception of the systems, security of the neighborhood and house ownership, willingness of installing solar systems, and trust in the technology. We identify the main factors via data correlation analysis. From our findings, actions to improve the acceptance and literacy of solar technologies in Chile can be derived.
Advanced Energy Conversion Technologies and Architectures for Earth and Beyond
NASA Technical Reports Server (NTRS)
Howell, Joe T.; Fikes, John C.; Phillips, Dane J.; Laycock, Rustin L.; ONeill, Mark; Henley, Mark W.; Fork, Richard L.
2006-01-01
Research, development and studies of novel space-based solar power systems, technologies and architectures for Earth and beyond are needed to reduce the cost of clean electrical power for terrestrial use and to provide a stepping stone for providing an abundance of power in space, i.e., manufacturing facilities, tourist facilities, delivery of power between objects in space, and between space and surface sites. The architectures, technologies and systems needed for space to Earth applications may also be used for in-space applications. Advances in key technologies, i.e., power generation, power management and distribution, power beaming and conversion of beamed power are needed to achieve the objectives of both terrestrial and extraterrestrial applications. There is a need to produce "proof-ofconcept" validation of critical WPT technologies for both the near-term, as well as far-term applications. Investments may be harvested in near-term beam safe demonstrations of commercial WPT applications. Receiving sites (users) include ground-based stations for terrestrial electrical power, orbital sites to provide power for satellites and other platforms, future space elevator systems, space vehicle propulsion, and space surface sites. Space surface receiving sites of particular interest include the areas of permanent shadow near the moon s North and South poles, where WPT technologies could enable access to ice and other useful resources for human exploration. This paper discusses work addressing a promising approach to solar power generation and beamed power conversion. The approach is based on a unique high-power solar concentrator array called Stretched Lens Array (SLA) applied to both solar power generation and beamed power conversion. Since both versions (solar and laser) of SLA use many identical components (only the photovoltaic cells need to be different), economies of manufacturing and scale may be realized by using SLA on both ends of the laser power beaming system in a space solar power application. Near-term uses of this SLA-laser-SLA system may include terrestrial and space exploration in near Earth space. Later uses may include beamed power for bases or vehicles on Mars. Strategies for developing energy infrastructures in space which utilize this technology are presented. This dual use system produces electrical energy efficiently from either coherent light, such as from a highly coherent laser, or from conventional solar illumination. This allows, for example, supplementing solar energy with energy provided by highly coherent laser illumination during periods of low solar illumination or no illumination. This reduces the need for batteries and alternate sources of power. The capability of using laser illumination in a lowest order Gaussian laser mode provides means for transmitting power optically with maximum efficiency and precision over the long distances characteristic of space. A preliminary receiving system similar to that described here, has been produced and tested under solar and laser illumination. A summary of results is given.
Multiple NEO Rendezvous Using Solar Sail Propulsion
NASA Technical Reports Server (NTRS)
Johnson, Les; Alexander, Leslie; Fabisinski, Leo; Heaton, Andy; Miernik, Janie; Stough, Rob; Wright, Roosevelt; Young, Roy
2012-01-01
The NASA Marshall Space Flight Center (MSFC) Advanced Concepts Office performed an assessment of the feasibility of using a near-term solar sail propulsion system to enable a single spacecraft to perform serial rendezvous operations at multiple Near Earth Objects (NEOs) within six years of launch on a small-to-moderate launch vehicle. The study baselined the use of the sail technology demonstrated in the mid-2000 s by the NASA In-Space Propulsion Technology Project and is scheduled to be demonstrated in space by 2014 as part of the NASA Technology Demonstration Mission Program. The study ground rules required that the solar sail be the only new technology on the flight; all other spacecraft systems and instruments must have had previous space test and qualification. The resulting mission concept uses an 80-m X 80-m 3-axis stabilized solar sail launched by an Athena-II rocket in 2017 to rendezvous with 1999 AO10, Apophis and 2001 QJ142. In each rendezvous, the spacecraft will perform proximity operations for approximately 30 days. The spacecraft science payload is simple and lightweight; it will consist of only the multispectral imager flown on the Near Earth Asteroid Rendezvous (NEAR) mission to 433 Eros and 253 Mathilde. Most non-sail spacecraft systems are based on the Messenger mission spacecraft. This paper will describe the objectives of the proposed mission, the solar sail technology to be employed, the spacecraft system and subsystems, as well as the overall mission profile.
Solar power satellite system definition study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1979-01-01
Configuration concepts, option sizes, and systems definitions study design evolutions are reviewed. The main features of the present reference design silicon solar cell solar power satellite are described, as well as the provisions for space construction and support systems. The principal study accomplishments and conclusions are summarized according to the following tasks: (1) baseline critique; (2) construction and maintenance; (3) industrial complex needs, cost estimates, and production capacity; (4) launch complex requirements at KSC or at an offshore facility; (5) integration of the SPS/ground power network; (6) technology advancement and development; (7) costs and schedules; and (8) exploratory technology: laser annealing of solar cells degraded by proton irradiation, and a fiber-optic phase distribution link at 980 MHz.
Thermal Storage Applications Workshop. Volume 2: Contributed Papers
NASA Technical Reports Server (NTRS)
1979-01-01
The solar thermal and the thermal and thermochemical energy storage programs are described as well as the technology requirements for both external (electrical) and internal (thermal, chemical) modes for energy storage in solar power plants. Specific technical issues addressed include thermal storage criteria for solar power plants interfacing with utility systems; optimal dispatch of storage for solar plants in a conventional electric grid; thermal storage/temperature tradeoffs for solar total energy systems; the value of energy storage for direct-replacement solar thermal power plants; systems analysis of storage in specific solar thermal power applications; the value of seasonal storage of solar energy; criteria for selection of the thermal storage system for a 10 MW(2) solar power plant; and the need for specific requirements by storage system development teams.
Solar energy concentrator system for crystal growth and zone refining in space
NASA Technical Reports Server (NTRS)
Mcdermit, J. H.
1975-01-01
The technological feasibility of using solar concentrators for crystal growth and zone refining in space has been performed. Previous studies of space-deployed solar concentrators were reviewed for their applicability to materials processing and a new state-of-the-art concentrator-receiver radiation analysis was developed. The radiation analysis is in the form of a general purpose computer program. It was concluded from this effort that the technology for fabricating, orbiting and deploying large solar concentrators has been developed. It was also concluded that the technological feasibility of space processing materials in the focal region of a solar concentrator depends primarily on two factors: (1) the ability of a solar concentrator to provide sufficient thermal energy for the process and (2) the ability of a solar concentrator to provide a thermal environment that is conductive to the processes of interest. The analysis indicate that solar concentrators can satisfactorily provide both of these factors.
Application of field-modulated generator systems to dispersed solar thermal electric generation
NASA Technical Reports Server (NTRS)
Ramakumar, R.
1979-01-01
The state-of-the-art of field modulated generation system (FMGS) is presented, and the application of FMGS to dispersed solar thermal electric generation is discussed. The control and monitoring requirements for solar generation system are defined. A comparison is presented between the FMGS approach and other options and the technological development needs are discussed.
Solar thermal electric hybridization issues
NASA Astrophysics Data System (ADS)
Williams, Tom A.; Bohn, Mark S.; Price, Henry W.
1994-10-01
Solar thermal electric systems have an advantage over many other renewable energy technologies because the former use heat as an intermediate energy carrier. This is an advantage, as it allows for a relatively simple method of hybridization by using heat from fossil-fuel. Hybridization of solar thermal electric systems is a topic that has recently generated significant interest and controversy and has led to many diverse opinions. This paper discusses many of the issues associated with hybridization of solar thermal electric systems such as what role hybridization should play; how it should be implemented; what are the efficiency, environmental, and cost implications; what solar fraction is appropriate; how hybrid systems compete with solar-only systems; and how hybridization can impact commercialization efforts for solar thermal electric systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wainwright, K.
1999-10-01
Solar technologies and indigenous materials are used in this remote Texas ranch house. Passive solar, thermal mass of adobe walls, photovoltaics, wood stoves, native stone, a ventilated roof, reflective barrier, and porch overhangs surrounding the house combine to keep the house comfortable all summer. The PV system used a passive solar tracking system that increased the electrical output by an overall 29 percent.
Siting Issues for Solar Thermal Power Plants with Small Community Applications
NASA Technical Reports Server (NTRS)
Holbeck, J. J.; Ireland, S. J.
1978-01-01
Technologies for solar thermal plants are being developed to provide energy alternatives for the future. Implementation of these plants requires consideration of siting issues as well as power system technology. While many conventional siting considerations are applicable, there is also a set of unique siting issues for solar thermal plants. Early experimental plants will have special siting considerations. The siting issues associated with small, dispersed solar thermal power plants in the 1 to 10 MWe power range for utility/small community applications are considered. Some specific requirements refer to the first 1 MWe engineering experiment for the Small Power Systems Applications (SPSA) Project. The siting issues themselves are discussed in three categories: (1) system resource requirements, (2) environmental effects on the system, and (3) potential impact of the plant on the environment. Within these categories, specific issues are discussed in a qualitative manner. Examples of limiting factors for some issues are taken from studies of other solar systems.
NASA Astrophysics Data System (ADS)
Santoni, Fabio; Piergentili, Fabrizio; Bulgarelli, Fabio; Graziani, Filippo
2005-05-01
An overview of the UNISAT-3 microsatellite power subsystem is given. This is an educational, low weight and low cost microsatellite designed, built, launched and operated in space by students and professors of Scuola di Ingegneria Aerospaziale, at University of Rome "La Sapienza". The satellite power system is based on terrestrial technology solar arrays and NiCd batteries. The microsatellite hosts other solar arrays, including multi-junction solar cells and mono- crystalline silicon high efficiency solar cells, in order to compare their behaviour in orbit. Moreover a MPPT (Maximum Power Point Tracking ) system has been designed and tested, and it is a technological payload of UNISAT-3. The MPPT design follows the studies performed in the field of solar powered racing cars, with modifications to make the system suitable for use in space. The system design, numerical simulation and hardware ground testing are described in the paper. The experiment and the performance evaluation criterion are described, together with the preliminary results of the first eight months of operation in orbit.
NASA Technical Reports Server (NTRS)
Bents, David J.; Lu, Cheng Y.
1989-01-01
Solar photovoltaic and thermal dynamic power systems for application to selected low-earth-orbit (LEO) and high-earth-orbit (HEO) missions are characterized in the regime 7 to 35 kWe. Input parameters to the characterization are varied to correspond to anticipated introduction of improved or new technologies. A comparative assessment is made of the two power system types for emerging technologies in cells and arrays, energy storage, optical surfaces, heat engines, thermal energy storage and thermal management. The assessment is made to common ground rules and assumptions. The four missions (Space Station, sun-synchronous, Van Allen belt, and GEO) are representative of the anticipated range of multikilowatt earth-orbit missions. The results give the expected performance, mass and drag of multikilowatt earth-orbiting solar power systems and show how the overall system figure of merit will improve as new component technologies are incorporated.
NASA Technical Reports Server (NTRS)
Berman, P. A.
1972-01-01
Three major options for wide-scale generation of photovoltaic energy for terrestrial use are considered: (1) rooftop array, (2) solar farm, and (3) satellite station. The rooftop array would use solar cell arrays on the roofs of residential or commercial buildings; the solar farm would consist of large ground-based arrays, probably in arid areas with high insolation; and the satellite station would consist of an orbiting solar array, many square kilometers in area. The technology advancement requirements necessary for each option are discussed, including cost reduction of solar cells and arrays, weight reduction, resistance to environmental factors, reliability, and fabrication capability, including the availability of raw materials. The majority of the technology advancement requirements are applicable to all three options, making possible a flexible basic approach regardless of the options that may eventually be chosen. No conclusions are drawn as to which option is most advantageous, since the feasibility of each option depends on the success achieved in the technology advancement requirements specified.
NASA Technical Reports Server (NTRS)
1979-01-01
The solar collectors shown are elements of domestic solar hot water systems produced by Solar One Ltd., Virginia Beach, Virginia. Design of these systems benefited from technical expertise provided Solar One by NASA's Langley Research Center. The company obtained a NASA technical support package describing the d e sign and operation of solar heating equipment in NASA's Tech House, a demonstration project in which aerospace and commercial building technology are combined in an energy- efficient home. Solar One received further assistance through personal contact with Langley solar experts. The company reports that the technical information provided by NASA influenced Solar One's panel design, its selection of a long-life panel coating which increases solar collection efficiency, and the method adopted for protecting solar collectors from freezing conditions.
Space Solar Power Demonstrations: Challenges and Progress
NASA Technical Reports Server (NTRS)
Howell, Joe T.; Mankins, John C.; Lavoie, Anthony R. (Technical Monitor)
2002-01-01
The prospects of using electrical power beamed from space are coming closer to reality with the continued pursuit and improvements in the supporting space solar research and technology. Space Solar Power (SSP) has been explored off and on for approximately three decades as a viable alternative and clean energy source. Results produced through the more recent Space Solar Power Exploratory Research and Technology (SERT) program involving extensive participation by industry, universities, and government has provided a sound technical basis for believing that technology can be improved to the extent that SSP systems can be built, economically feasible, and successfully deployed in space. Considerable advancements have been made in conceptual designs and supporting technologies including solar power generation, wireless power transmission, power management distribution, thermal management and materials, and the integrated systems engineering assessments. Basic technologies have progressed to the point were the next logical step is to formulate and conduct sophisticated demonstrations involving prototype hardware as final proof of concepts and identify high end technology readiness levels in preparation for full scale SSP systems designs. In addition to continued technical development issues, environmental and safety issues must be addressed and appropriate actions taken to reassure the public and prepare them for the future use of this alternative renewable energy resource. Accomplishing these objectives will allow informed future decisions regarding further SSP and related R&D investments by both NASA management and prospective external partners. In particular, accomplishing these objectives will also guide further definition of SSP and related technology roadmaps including performance objectives, resources and schedules; including 'multi-purpose' applications (terrestrial markets, science, commercial development of space, and other government missions).
Design Factors for Applying Cryogen Storage and Delivery Technology to Solar Thermal Propulsion
NASA Technical Reports Server (NTRS)
Millis, Marc G.
1996-01-01
Thermodynamic Vent System (TVS) and Multilayer Insulation (MLI) technology, originally developed for long term storage of cryogen propellants in microgravity, is ideally suited for propellant storage and delivery systems for solar thermal propulsion. With this technology the heat-induced pressure rise in the tank provides the propellant delivery pressure without the need for an auxiliary pressurant system, and propellant delivery is used to remove the excess heat to control tank pressure. The factors to consider in designing such a balanced system, are presented. An example of a minimum system design is presented along with examples of laboratory-tested hardware.
Solar power satellite system definition study. Volume 1, phase 1: Executive summary
NASA Technical Reports Server (NTRS)
1979-01-01
A systems definition study of the solar satellite system (SPS) is presented. The technical feasibility of solar power satellites based on forecasts of technical capability in the various applicable technologies is assessed. The performance, cost, operational characteristics, reliability, and the suitability of SPS's as power generators for typical commercial electricity grids are discussed. The uncertainties inherent in the system characteristics forecasts are assessed.
Chemical and Solar Electric Propulsion Systems Analyses for Mars Sample Return Missions
NASA Technical Reports Server (NTRS)
Donahue, Benjamin B.; Green, Shaun E.; Coverstone, Victoria L.; Woo, Byoungsam
2004-01-01
Conceptual in-space transfer stages, including those utilizing solar electric propulsion, chemical propulsion, and chemical propulsion with aerobraking or aerocapture assist at Mars, were evaluated. Roundtrip Mars sample return mission vehicles were analyzed to determine how specific system technology selections influence payload delivery capability. Results show how specific engine, thruster, propellant, capture mode, trip time and launch vehicle technology choices would contribute to increasing payload or decreasing the size of the required launch vehicles. Heliocentric low-thrust trajectory analyses for Solar Electric Transfer were generated with the SEPTOP code.
Solar electric propulsion for Mars transport vehicles
NASA Technical Reports Server (NTRS)
Hickman, J. M.; Curtis, H. B.; Alexander, S. W.; Gilland, J. H.; Hack, K. J.; Lawrence, C.; Swartz, C. K.
1990-01-01
Solar electric propulsion (SEP) is an alternative to chemical and nuclear powered propulsion systems for both piloted and unpiloted Mars transport vehicles. Photovoltaic solar cell and array technologies were evaluated as components of SEP power systems. Of the systems considered, the SEP power system composed of multijunction solar cells in an ENTECH domed fresnel concentrator array had the least array mass and area. Trip times to Mars optimized for minimum propellant mass were calculated. Additionally, a preliminary vehicle concept was designed.
NASA Technical Reports Server (NTRS)
1974-01-01
NASA technology contributions to create energy sources include direct solar heating and cooling systems, wind generation of electricity, solar thermal energy turbine drives, solar cells, and techniques for locating, producing, and collecting organic materials for conversion into fuel.
FOCUSing on Innovative Solar Technologies
Rohlfing, Eric; Holman, Zak, Angel, Roger
2018-06-22
Many of ARPA-Eâs technology programs seek to break down silos and build new technological communities around a specific energy challenge. In this video, ARPA-Eâs Deputy Director for Technology Eric Rohlfing, discusses how the Full-Spectrum Optimized Conversion and Utilization of Sunlight (FOCUS) program is bringing together the photovoltaic (PV) and concentrated solar power (CSP) communities to develop hybrid solar energy systems. This video features interviews with innovators from the FOCUS project team made up by Arizona State University and the University of Arizona, and showcases how the FOCUS program is combining.
Optical design considerations for high-concentration photovoltaics
NASA Astrophysics Data System (ADS)
Garboushian, Vahan; Gordon, Robert
2006-08-01
Over the past 15 years, major advances in Concentrating Photovoltaics (CPV) have been achieved. Ultra-efficient Si solar cells have produced commercial concentration systems which are being fielded today and are competitively priced. Advanced research has primarily focused on significantly more efficient multi-junction solar cells for tomorrow's systems. This effort has produced sophisticated solar cells that significantly improve power production. Additional performance and cost improvements, especially in the optical system area and system integration, must be made before CPV can realize its ultimate commercial potential. Structural integrity and reliability are vital for commercial success. As incremental technical improvements are made in solar cell technologies, evaluation and 'fine-tuning' of optical systems properly matched to the solar cell are becoming increasingly necessary. As we move forward, it is increasingly important to optimize all of the interrelated elements of a CPV system for high performance without sacrificing the marketable cost and structural requirements of the system. Areas such as wavelength absorption of refractive optics need to be carefully matched to the solar cell technology employed. Reflective optics require advanced engineering models to insure uniform flux distribution without excessive losses. In Situ measurement of the 'fine-grain' improvements are difficult as multiple variables such as solar insolation, temperature, wind, altitude, etc. infringe on analytical data. This paper discusses design considerations based on 10 years of field trials of high concentration systems and their relevance for tomorrow's advanced CPV systems.
In-Space Propulsion Technology Program Solar Electric Propulsion Technologies
NASA Technical Reports Server (NTRS)
Dankanich, John W.
2006-01-01
NASA's In-space Propulsion (ISP) Technology Project is developing new propulsion technologies that can enable or enhance near and mid-term NASA science missions. The Solar Electric Propulsion (SEP) technology area has been investing in NASA s Evolutionary Xenon Thruster (NEXT), the High Voltage Hall Accelerator (HiVHAC), lightweight reliable feed systems, wear testing, and thruster modeling. These investments are specifically targeted to increase planetary science payload capability, expand the envelope of planetary science destinations, and significantly reduce the travel times, risk, and cost of NASA planetary science missions. Status and expected capabilities of the SEP technologies are reviewed in this presentation. The SEP technology area supports numerous mission studies and architecture analyses to determine which investments will give the greatest benefit to science missions. Both the NEXT and HiVHAC thrusters have modified their nominal throttle tables to better utilize diminished solar array power on outbound missions. A new life extension mechanism has been implemented on HiVHAC to increase the throughput capability on low-power systems to meet the needs of cost-capped missions. Lower complexity, more reliable feed system components common to all electric propulsion (EP) systems are being developed. ISP has also leveraged commercial investments to further validate new ion and hall thruster technologies and to potentially lower EP mission costs.
Human Exploration of the Solar System by 2100
NASA Technical Reports Server (NTRS)
Litchford, Ronald J.
2017-01-01
It has been suggested that the U.S., in concert with private entities and international partners, set itself on a course to accomplish human exploration of the solar system by the end of this century. This is a strikingly bold vision intended to revitalize the aspirations of HSF in service to the security, economic, and scientific interests of the nation. Solar system distance and time scales impose severe requirements on crewed space transportation systems, however, and fully realizing all objectives in support of this goal will require a multi-decade commitment employing radically advanced technologies - most prominently, space habitats capable of sustaining and protecting life in harsh radiation environments under zero gravity conditions and in-space propulsion technologies capable of rapid deep space transits with earth return, the subject of this paper. While near term mission destinations such as the moon and Mars can be accomplished with chemical propulsion and/or high power SEP, fundamental capability constraints render these traditional systems ineffective for solar system wide exploration. Nuclear based propulsion and alternative energetic methods, on the other hand, represent potential avenues, perhaps the only viable avenues, to high specific power space transport evincing reduced trip time, reduced IMLEO, and expanded deep space reach. Here, very long term HSF objectives for solar system wide exploration are examined in relation to the advanced propulsion technology solution landscape including foundational science, technical/engineering challenges, and developmental prospects.
Demonstrations of Deployable Systems for Robotic Precursor Missions
NASA Technical Reports Server (NTRS)
Dervan, J.; Johnson, L.; Lockett, T.; Carr, J.; Boyd, D.
2017-01-01
NASA is developing thin-film based, deployable propulsion, power, and communication systems for small spacecraft that serve as enabling technologies for exploration of the solar system. By leveraging recent advancements in thin films, photovoltaics, deployment systems, and miniaturized electronics, new mission-level capabilities will be demonstrated aboard small spacecraft enabling a new generation of frequent, inexpensive, and highly capable robotic precursor missions with goals extensible to future human exploration. Specifically, thin-film technologies are allowing the development and use of solar sails for propulsion, small, lightweight photovoltaics for power, and omnidirectional antennas for communication as demonstrated by recent advances on the Near Earth Asteroid (NEA) Scout and Lightweight Integrated Solar Array and anTenna (LISA-T) projects.
Technology Challenges and Opportunities for Very Large In-Space Structural Systems
NASA Technical Reports Server (NTRS)
Belvin, W. Keith; Dorsey, John T.; Watson, Judith J.
2009-01-01
Space solar power satellites and other large space systems will require creative and innovative concepts in order to achieve economically viable designs. The mass and volume constraints of current and planned launch vehicles necessitate highly efficient structural systems be developed. In addition, modularity and in-space deployment/construction will be enabling design attributes. While current space systems allocate nearly 20 percent of the mass to the primary structure, the very large space systems of the future must overcome subsystem mass allocations by achieving a level of functional integration not yet realized. A proposed building block approach with two phases is presented to achieve near-term solar power satellite risk reduction with accompanying long-term technology advances. This paper reviews the current challenges of launching and building very large space systems from a structures and materials perspective utilizing recent experience. Promising technology advances anticipated in the coming decades in modularity, material systems, structural concepts, and in-space operations are presented. It is shown that, together, the current challenges and future advances in very large in-space structural systems may provide the technology pull/push necessary to make solar power satellite systems more technically and economically feasible.
Application of solar energy to air conditioning systems
NASA Technical Reports Server (NTRS)
Nash, J. M.; Harstad, A. J.
1976-01-01
The results of a survey of solar energy system applications of air conditioning are summarized. Techniques discussed are both solar powered (absorption cycle and the heat engine/Rankine cycle) and solar related (heat pump). Brief descriptions of the physical implications of various air conditioning techniques, discussions of status, proposed technological improvements, methods of utilization and simulation models are presented, along with an extensive bibliography of related literature.
Solar thermal power storage applications lead laboratory overview
NASA Technical Reports Server (NTRS)
Radosevich, L. G.
1980-01-01
The implementation of the applications elements of the thermal energy storage for Solar Thermal Applications program is described. The program includes the accelerated development of thermal storage technologies matched to solar thermal power system requirements and scheduled milestones. The program concentrates on storage development in the FY80 to 85 time period with emphasis on the more near-term solar thermal power system application.
Energy System Basics and Distribution Integration Video Series | Energy
renewablesparticularly solar photovoltaic (PV) technologiesonto the distribution grid. Solar Energy Technologies PV Integration Case Studies Integrating Photovoltaic Systems onto Secondary Network Distribution Systems Standards and Codes for U.S. Photovoltaic System Installation Network-Optimal Control of Photovoltaics on
Solar technology assessment project. Volume 6: Photovoltaic technology assessment
NASA Astrophysics Data System (ADS)
Backus, C. E.
1981-04-01
Industrial production of photovoltaic systems and volume of sales are reviewed. Low cost silicon production techniques are reviewed, including the Czochralski process, heat exchange method, edge defined film fed growth, dentritic web growth, and silicon on ceramic process. Semicrystalline silicon, amorphous silicon, and low cost poly-silicon are discussed as well as advanced materials and concentrator systems. Balance of system components beyond those needed to manufacture the solar panels are included. Nontechnical factors are assessed. The 1986 system cost goals are briefly reviewed.
Initial operation of a solar heating and cooling system in a full-scale solar building test facility
NASA Technical Reports Server (NTRS)
Knoll, R. H.; Miao, D.; Hamlet, I. L.; Jensen, R. N.
1976-01-01
The Solar Building Test Facility (SBTF) was constructed to advance the technology for heating and cooling of office buildings with solar energy. Its purposes are to (1) test system components which include high-performing collectors, (2) test the performance of a complete solar heating and cooling system, (3) investigate component interactions, and (4) investigate durability, maintenance and reliability of components. The SBTF consists of a 50,000 square foot office building modified to accept solar heated water for operation of an absorption air conditioner and for the baseboard heating system. A 12,666 square foot solar collector field with a 30,000 gallon storage tank provides the solar heated water. A description of the system and the collectors selected is printed along with the objectives, test approach, expected system performance, and some preliminary results.
NASA Astrophysics Data System (ADS)
Mooney, David
The U.S. electricity system is currently undergoing a dramatic transformation. State-level renewable portfolio standards, abundant natural gas at low prices, and rapidly falling prices for wind and solar technologies are among the factors that have ushered in this transformation. With objective, rigorous, technology-neutral analysis, NREL aims to increase the understanding of energy policies, markets, resources, technologies, and infrastructure and their connections with economic, environmental, and security priorities. The results of these analyses are meant to inform R&D, policy, and investment decisions as energy-efficient and renewable energy technologies advance from concept to commercial application to market penetration. This talk will provide an overview of how NREL uses high-fidelity data, deep knowledge of energy technology cost and performance, and advanced models and tools to provide the information needed to ensure this transformation occurs economically, while maintaining system reliability. Examples will be explored and will include analysis of tax credit impacts on wind and solar deployment and power sector emissions, as well as analysis of power systems operations in the Eastern Interconnection under 30% wind and solar penetration scenarios. Invited speaker number 47185.
76 FR 54747 - Proposed Agency Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-02
... processes, available financing options, and planning and zoning issues as they relate to rooftop solar PV... information on solar energy market indicators. The Solar Energy Technologies Program (SETP) seeks to reduce non-hardware costs of solar systems associated with processes such as project siting, permitting and...
Solar power satellite system definition study, volume 4, phase 2
NASA Technical Reports Server (NTRS)
1979-01-01
Results of an overall evaluation of the solar power satellite concept are reported. Specific topics covered include: solid state sandwich configuration; parametric development of reliability design; power distribution system for solid state solar power satellites; multibeam transmission; GEO base system configuration; suppression of the heavy lift launch vehicle trajectory; conceptual design of an offshore space center facility; solar power satellite development and operations scenario; and microwave power transmission technology, advancement, development, and facility requirements.
Multistep Methods for Integrating the Solar System
1988-07-01
Technical Report 1055 [Multistep Methods for Integrating the Solar System 0 Panayotis A. Skordos’ MIT Artificial Intelligence Laboratory DTIC S D g8...RMA ELEENT. PROECT. TASK Artific ial Inteligence Laboratory ARE1A G WORK UNIT NUMBERS 545 Technology Square Cambridge, MA 02139 IL. CONTROLLING...describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute of Technology, supported by the Advanced Research Projects
Photovoltaics | Climate Neutral Research Campuses | NREL
Photovoltaics Photovoltaics Solar photovoltaics (PV) is a mature, commercially available technology arrays. Campus Solar Energy Options A PV system requires periodic maintenance, but upkeep averages two to undertaking a solar energy assessment or PV installation. Solar Energy Resources Solar energy production
Some thoughts on Mercurian resources
NASA Astrophysics Data System (ADS)
Gillett, Stephen L.
Virtually all scenarios on Solar System development ignore Mercury, but such inattention is probably undeserved. Once viable lunar and (probably) asteroidal facilities are established in the next century, Mercury warrants further investigation. Mercury's high solar energy density is a major potential advantage for space-based industries. Indeed, despite its higher gravity, Mercury is roughly twice as easy to leave as the Moon if the additional solar flux is taken into account. Moreover, with solar-driven technologies such as solar sails or electric propulsion, its depth in the Sun's gravity well is less important. Because Mercury is airless and almost certainly waterless, it will be an obvious place to export lunar technology, which will have been developed to deal with very similar conditions. Methods for extracting resources from anhydrous silicates will be particularly germane. Even without solar-powered propulsion, the discovery of low-delta-V access via multiple Venus and Earth encounters makes the planet easier to reach than had been thought. Technology developed for multi-year missions to asteroids and Mars should be readily adaptable to such Mercurian missions. Mercury will not be our first outpost in the Solar System. Nonetheless, as facilities are established in cis-Earth space, it probably merits attention as a next step for development.
USAF solar thermal applications case studies
NASA Technical Reports Server (NTRS)
1981-01-01
The potential of solar energy technologies to meet mission related applications for process heat was investigated. The reduction of the dependence of military installations on fossil fuels by promoting the use of more abundant resources where liquid hydrocarbons and natural gas are now used is examined. The evaluation and utilization of renewable energy systems to provide process heat and space heating are emphasized. The application of thermal energy systems is divided into four steps: (1) investigation of the potential operational cost effectiveness of selected thermal technologies; (2) selection of a site and preliminary design of point focussing solar thermal plant; (3) construction and test of an engineering prototype; and (4) installation and operation of a solar thermal energy plant.
NASA Technical Reports Server (NTRS)
Ferber, R. R.
1980-01-01
As part of the National Solar Energy program, the US Department of Energy is now engaged in the development of technically feasible, low cost candidate component and system technologies to the point where technical readiness can be demonstrated by 1982. The overall strategy is to pursue parallel options that continue to show promise of meeting the program goals, thus increasing the probability that at least one technology will be successful. Included in technology development are both flat plate solar collectors and concentrator solar collectors, as well as the balance of system components, such as structures, power conditioning, power controls, protection, and storage. Generally, these last items are common to both flat plate and concentrator systems, but otherwise there is considerable disparity in design philosophy, photovoltaic cell requirements, and possible applications between the two systems. Objectives for research activities at NASA Lewis for stand alone applications, and at Sandia Laboratories where intermediate load center applications are addressed, are highlighted as well as college projects directed by Oak Ridge National Laboratory, and international applications managed by the Solar Energy Research Institute. Joint DOD/DOE effects for military applications are also summarized.
Solar Thermoelectricity via Advanced Latent Heat Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olsen, Michele L.; Rea, J.; Glatzmaier, Greg C.
2016-05-31
We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a 'thermalmore » valve,' which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.« less
Solar thermoelectricity via advanced latent heat storage
NASA Astrophysics Data System (ADS)
Olsen, M. L.; Rea, J.; Glatzmaier, G. C.; Hardin, C.; Oshman, C.; Vaughn, J.; Roark, T.; Raade, J. W.; Bradshaw, R. W.; Sharp, J.; Avery, A. D.; Bobela, D.; Bonner, R.; Weigand, R.; Campo, D.; Parilla, P. A.; Siegel, N. P.; Toberer, E. S.; Ginley, D. S.
2016-05-01
We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a "thermal valve," which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.
Bridging worlds/charting new courses
NASA Astrophysics Data System (ADS)
This report describes the work being done within Sandia's renewable energy program. This work touches on four major disciplines. (1) Photovoltaics. The goal of this project is to develop costeffective, reliable energy system technologies for energy supplies worldwide produced by U.S. industry. It encompasses cell research and development, collector development, technology evaluation, systems engineering, domestic and international applications, and design assistance. (2) Solar Thermal. This project endeavors to develop and increase acceptance of solar thermal electric and industrial technologies as cost-competitive candidates for power generation and to promote their commercialization. Its' major activities are with dish/Stirling systems, the Solar Two power tower, design assistance to industry and users, technology development and research activities. (3) Wind. The wind project impacts domestic and international markets with commercially feasible systems for utility-scale and other applications of wind energy. The project conducts applied research in aerodynamics, structural dynamics, fatigue, materials and controls, and engineering systems, and develops cooperative work with industry. (4) Geothermal. This project is developing technology to increase proven geothermal reserves and is assisting industry in expanding geothermal power on-line. Development work is in stemhole drilling, drilling techniques, instrumentation for geothermal wells, acoustic telemetry, and drilling exploratory wells.
Near Earth Asteroid Scout: NASA's Solar Sail Mission to a NEA
NASA Technical Reports Server (NTRS)
Johnson, Les; Lockett, Tiffany
2017-01-01
NASA is developing a solar sail propulsion system for use on the Near Earth Asteroid (NEA) Scout reconnaissance mission and laying the groundwork for their use in future deep space science and exploration missions. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellantless thrust, allowing for very high Delta V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. The Near Earth Asteroid (NEA) Scout mission, funded by NASA's Advanced Exploration Systems Program and managed by NASA MSFC, will use the sail as primary propulsion allowing it to survey and image Asteroid 1991VG and, potentially, other NEA's of interest for possible future human exploration. NEA Scout uses a 6U cubesat (to be provided by NASA's Jet Propulsion Laboratory), an 86 m(exp. 2) solar sail and will weigh less than 12 kilograms. NEA Scout will be launched on the first flight of the Space Launch System in 2018. The solar sail for NEA Scout will be based on the technology developed and flown by the NASA NanoSail-D and The Planetary Society's Lightsail-A. Four approximately 7 m stainless steel booms wrapped on two spools (two overlapping booms per spool) will be motor deployed and pull the sail from its stowed volume. The sail material is an aluminized polyimide approximately 2.5 microns thick. As the technology matures, solar sails will increasingly be used to enable science and exploration missions that are currently impossible or prohibitively expensive using traditional chemical and electric propulsion systems. This paper will summarize the status of the NEA Scout mission and solar sail technology in general.
Greening the Grid - Advancing Solar, Wind, and Smart Grid Technologies (Spanish Version)
DOE Office of Scientific and Technical Information (OSTI.GOV)
This is the Spanish version of 'Greening the Grid - Advancing Solar, Wind, and Smart Grid Technologies'. Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid.
The potential impact of new power system technology on the design of a manned space station
NASA Technical Reports Server (NTRS)
Fordyce, J. S.; Schwartz, H. J.
1984-01-01
Larger, more complex spacecraft of the future such as a manned Space Station will require electric power systems of 100 kW and more, orders of magnitude greater than the present state of the art. Power systems at this level will have a significant impact on the spacecraft design. Historically, long-lived spacecraft have relied on silicon solar cell arrays, a nickel-cadmium storage battery and operation at 28 V dc. These technologies lead to large array areas and heavy batteries for a Space Station application. This, in turn, presents orbit altitude maintenance, attitude control, energy management and launch weight and volume constraints. Size (area) and weight of such a power system can be reduced if new higher efficiency conversion and lighter weight storage technologies are used. Several promising technology options including concentrator solar photovoltaic arrays, solar thermal dynamic and ultimately nuclear dynamic systems to reduce area are discussed. Also, higher energy storage systems such as nickel-hydrogen and the regenerative fuel cell (RFC) and higher voltage power distribution which add system flexibility, simplicity and reduce weight are examined. Emphasis is placed on the attributes and development status of emerging technologies that are sufficiently developed so that they could be available for flight use in the early to mid 1990's.
The potential impact of new power system technology on the design of a manned Space Station
NASA Technical Reports Server (NTRS)
Fordyce, J. S.; Schwartz, H. J.
1984-01-01
Larger, more complex spacecraft of the future such as a manned Space Station will require electric power systems of 100 kW and more, orders of magnitude greater than the present state of the art. Power systems at this level will have a significant impact on the spacecraft design. Historically, long-lived spacecraft have relied on silicon solar cell arrays, a nickel-cadmium storage battery and operation at 28 V dc. These technologies lead to large array areas and heavy batteries for a Space Station application. This, in turn, presents orbit altitude maintenance, attitude control, energy management and launch weight and volume constraints. Size (area) and weight of such a power system can be reduced if new higher efficiency conversion and lighter weight storage technologies are used. Several promising technology options including concentrator solar photovoltaic arrays, solar thermal dynamic and ultimately nuclear dynamic systems to reduce area are discussed. Also, higher energy storage systems such as nickel-hydrogen and the regenerative fuel cell (RFC) and higher voltage power distribution which add system flexibility, simplicity and reduce weight are examined. Emphasis placed on the attributes and development status of emerging technologies that are sufficiently developed so that they could be available for flight use in the early to mid 1990's.
Overview of NASA's Space Solar Power Technology Advanced Research and Development Program
NASA Technical Reports Server (NTRS)
Howell, Joe; Mankins, John C.; Davis, N. Jan (Technical Monitor)
2001-01-01
Large solar power satellite (SPS) systems that might provide base load power into terrestrial markets were examined extensively in the 1970s by the US Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA). Following a hiatus of about 15 years, the subject of space solar power (SSP) was reexamined by NASA from 1995-1997 in the 'fresh look' study, and during 1998 in an SSP 'concept definition study', and during 1999-2000 in the SSP Exploratory Research and Technology (SERT) program. As a result of these efforts, during 2001, NASA has initiated the SSP Technology Advanced Research and Development (STAR-Dev) program based on informed decisions. The goal of the STAR-Dev program is to conduct preliminary strategic technology research and development to enable large, multi-megawatt to gigawatt-class space solar power (SSP) systems and wireless power transmission (WPT) for government missions and commercial markets (in-space and terrestrial). Specific objectives include: (1) Release a NASA Research Announcement (NRA) for SSP Projects; (2) Conduct systems studies; (3) Develop Component Technologies; (4) Develop Ground and Flight demonstration systems; and (5) Assess and/or Initiate Partnerships. Accomplishing these objectives will allow informed future decisions regarding further SSP and related research and development investments by both NASA management and prospective external partners. In particular, accomplishing these objectives will also guide further definition of SSP and related technology roadmaps including performance objectives, resources and schedules; including 'multi-purpose' applications (commercial, science, and other government).
NASA Technical Reports Server (NTRS)
Laue, Greg; Case, David; Moore, Jim
2005-01-01
In order for solar sail propulsion technologies to be considered as a viable option for a wide range of near term practical missions a predictable, stable, reliable, manufactureable, scaleable, and cost effective system must be developed and tested first on earth and then on orbit. The design and development of a Scaleable Square Solar Sail System (S^4) is well underway a t AEC-Able Engineering Co. Inc., and the design and production of the Solar Sails for this system is being carried out by SRS Technologies. In April and May of 2004 a single quadrant 10-meter system was tested at NASA LARC's vacuum chamber and a four quadrant 20-meter system has been designed and built for deployment and testing in the Spring of 2005 at NASA/Glenn Research Center's Plumb Brook Facility. SRS has developed an effective and efficient design for triangular sail quadrants that are supported are three points and provide a flat reflective surface with a high fill factor. This sail design is robust enough for deployments in a one atmosphere, one gravity environment and incorporates several advanced features including adhesiveless seaming of membrane strips, compliant edge borders to allow for film membrane cord strain mismatch without causing wrinkling and low mass (3% of total sail mass) ripstop. This paper will outline the sail design and fabrication process, the lessons learned and the resulting mature production, packaging and deployment processes that have been developed. It will also highlight the scalability of the equipment and processes that were developed to fabricate and package the sails. Based on recent experience, SRS is confidant that flight worthy solar sails in the 40-120-meter size range with areal density in the 4-5g/sq m (sail minus structure) range can be produced with existing technology. Additional film production research will lead to further reductions in film thickness to less than 1 micron enabling production of sails with areal densities as low as 20 g/sq m using the current design resulting in a system areal density of as low as 5.3g/sq m. These areal densities are low enough to allow nearly all of the Solar Sail missions that have been proposed by the scientific community and the fundamental technology required to produce these sails has been demonstrated on the ground test sails that have recently been built. These demonstrations have shown that the technology is mature enough to build sails needed to support critical science missions. Solar Sails will be an enabling technology for NASA's Vision for Space Exploration by allowing communication satellite orbits that can maintain continuous communication with the polar regions of the Moon and Mars and to support solar weather monitoring to provide early warning of solar flares and storms that could threaten the safety of astronauts and other spacecraft.
NASA Technical Reports Server (NTRS)
1979-01-01
An environmentally oriented microwave technology exploratory research program aimed at reducing the uncertainty associated with microwave power system critical technical issues is described. Topics discussed include: (1) Solar Power Satellite System (SPS) development plan elements; (2) critical technology issues related to the SPS preliminary reference configuration; (3) pilot plant to demonstrate commercial viability of the SPS system; and (4) research areas required to demonstrate feasibility of the SPS system. Progress in the development of advanced GaAs solar cells is reported along with a power distribution subsystem.
A program for advancing the technology of space concentrators
NASA Technical Reports Server (NTRS)
Naujokas, Gerald J.; Savino, Joseph M.
1989-01-01
In 1985, the NASA Lewis Research Center formed a project, the Advanced Solar Dynamics Power Systems Project, for the purpose of advancing the technology of Solar Dynamic Power Systems for space applications beyond 2000. Since then, technology development activities have been initiated for the major components and subsystems such as the concentrator, heat receiver and engine, and radiator. Described here is a program for developing long lived (10 years or more), lighter weight, and more reflective space solar concentrators than is presently possible. The program is progressing along two parallel paths: one is concentrator concept development and the other is the resolution of those critical technology issues that will lead to durable, highly specular, and lightweight reflector elements. Outlined are the specific objectives, long-term goals, approach, planned accomplishments for the future, and the present status of the various program elements.
A program for advancing the technology of space concentrators
NASA Technical Reports Server (NTRS)
Naujokas, Gerald J.; Savino, Joseph M.
1989-01-01
In 1985, the NASA Lewis Research Center formed a project, the Advanced Solar Dynamics Power Systems Project, for the purpose of advancing the technology of Solar Dynamic Power Systems for space applications beyond 2000. Since then, technology development activities have been initiated for the major components and subsystems such as the concentrator, heat receiver and engine, and radiator. Described here is a program for developing long lived (10 years or more), lighter weight, and more reflective space solar concentrators than is presently possible. The program is progressing along two parallel paths: one is concentrator concept development and the other is the resolution of those critical technology issues that will lead to durable, highly specular, and lightweight reflector elements. Outlined are the specific objectives, long term goals, approach, planned accomplishments for the future, and the present status of the various program elements.
Rapid Development of Gossamer Propulsion for NASA Inner Solar System Science Missions
NASA Technical Reports Server (NTRS)
Young, Roy M.; Montgomery, Edward E.
2006-01-01
Over a two and one-half year period dating from 2003 through 2005, NASA s In-Space Propulsion Program matured solar sail technology from laboratory components to full systems, demonstrated in as relevant a space environment as could feasibly be simulated on the ground. This paper describes the challenges identified; as well as the approaches taken toward solving a broad set of issues spanning material science, manufacturing technology, and interplanetary trajectory optimization. Revolutionary advances in system structural predictive analysis and characterization testing occurred. Also addressed are the remaining technology challenges that might be resolved with further ground technology research, geared toward reducing technical risks associated with future space validation and science missions.
DKIST Adaptive Optics System: Simulation Results
NASA Astrophysics Data System (ADS)
Marino, Jose; Schmidt, Dirk
2016-05-01
The 4 m class Daniel K. Inouye Solar Telescope (DKIST), currently under construction, will be equipped with an ultra high order solar adaptive optics (AO) system. The requirements and capabilities of such a solar AO system are beyond those of any other solar AO system currently in operation. We must rely on solar AO simulations to estimate and quantify its performance.We present performance estimation results of the DKIST AO system obtained with a new solar AO simulation tool. This simulation tool is a flexible and fast end-to-end solar AO simulator which produces accurate solar AO simulations while taking advantage of current multi-core computer technology. It relies on full imaging simulations of the extended field Shack-Hartmann wavefront sensor (WFS), which directly includes important secondary effects such as field dependent distortions and varying contrast of the WFS sub-aperture images.
Preliminary Results From NASA's Space Solar Power Exploratory Research and Technology Program
NASA Technical Reports Server (NTRS)
Howell, Joe T.; Mankins, John C.
2000-01-01
Large solar power satellite (SPS) systems that might provide base load power into terrestrial markets were examined extensively in the 1970s by the US Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA). Following a hiatus of about 15 years, the subject of space solar power (SSP) was reexamined by NASA from 1995-1997 in the "fresh look" study, and during 1998 in an SSP "concept definition study". As a result of these efforts, during 1999-2000, NASA has been conducting the SSP Exploratory Research and Technology (SERT) program. The goal of the SERT activity has been to conduct preliminary strategic technology research and development to enable large, multi-megawatt SSP systems and wireless power transmission (WPT) for government missions and commercial markets (in-space and terrestrial). In pursuing that goal, the SERT: (1) refined and modeled systems approaches for the utilization of SSP concepts and technologies, ranging from the near-term (e.g., for space science, exploration and commercial space applications) to the far-term (e.g., SSP for terrestrial markets), including systems concepts, architectures, technology, infrastructure (e.g. transportation), and economics; (2) conducted technology research, development and demonstration activities to produce "proof-of-concept" validation of critical SSP elements for both nearer and farther-term applications; and (3) engendered the beginnings of partnerships (nationally and internationally) that could be expanded, as appropriate, to pursue later SSP technology and applications. Through these efforts, the SERT should allow better informed future decisions regarding further SSP and related technology research and development investments by both NASA and prospective partners, and guide further definition of technology roadmaps - including performance objectives, resources and schedules, as well as "multi-purpose" applications (e.g., commerce, science, and government). This paper presents preliminary results from the SERT effort at a summary level, including the study approach, SPS concepts, applications findings, and concludes with a revised assessment of the prospects for solar power satellites using SSP technologies and systems.
NASA Technical Reports Server (NTRS)
Yasui, R. K.
1976-01-01
Report describes evolution of photovoltaic power systems designed and built for terrestrial use. Discussion focuses on technological problems impeding further systems development. Experiments and test data on seven types of solar panels and six material test specimens are described in detail.
Feasibility study of solar energy in residential electricity generation
NASA Astrophysics Data System (ADS)
Solanki, Divyangsinh G.
With the increasing demand for energy and the concerns about the global environment, along with the steady progress in the field of renewable energy technologies, new opportunities and possibilities are opening up for an efficient utilization of renewable energy sources. Solar energy is undoubtedly the most clean, inexhaustible and abundant source of renewable energy. Photovoltaic (PV) technology is one of the most efficient mean to utilize solar power. The focus of this study was to establish economics of a residential photovoltaic system for a typical home in south Texas. The PV system serves the needs of a typical mid-size home inhibited by a typical family. Assumptions are made for the typical daily energy consumption, and the necessary equipments like solar arrays, batteries, inverter, etc. are sized and evaluated optimally so as to reduce the life cycle cost (LCC) of the system. Calculations are done taking into consideration the economic parameters concerned with the system.
NASA Technical Reports Server (NTRS)
Berman, P. A.
1972-01-01
The various factors involved in the development of solar photovoltaic power systems for terrestrial application are discussed. The discussion covers the tradeoffs, compromises, and optimization studies which must be performed in order to develop a viable terrestrial solar array system. It is concluded that the technology now exists for the fabrication of terrestrial solar arrays but that the economics are prohibitive. Various approaches to cost reduction are presented, and the general requirements for materials and processes to be used are delineated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilcox, S.
2013-08-01
Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilcox, S.
Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.
Solar and Drag Sail Propulsion: From Theory to Mission Implementation
NASA Technical Reports Server (NTRS)
Johnson, Les; Alhorn, Dean; Boudreaux, Mark; Casas, Joe; Stetson, Doug; Young, Roy
2014-01-01
Solar and drag sail technology is entering the mainstream for space propulsion applications within NASA and around the world. Solar sails derive propulsion by reflecting sunlight from a large, mirror- like sail made of a lightweight, reflective material. The continuous sunlight pressure provides efficient primary propulsion without the expenditure of propellant or any other consumable, allowing for very high V maneuvers and long-duration deep space exploration. Drag sails increase the aerodynamic drag on Low Earth Orbit (LEO) spacecraft, providing a lightweight and relatively inexpensive approach for end-of-life deorbit and reentry. Since NASA began investing in the technology in the late 1990's, significant progress has been made toward their demonstration and implementation in space. NASA's Marshall Space Flight Center (MSFC) managed the development and testing of two different 20-m solar sail systems and rigorously tested them under simulated space conditions in the Glenn Research Center's Space Power Facility at Plum Brook Station, Ohio. One of these systems, developed by L'Garde, Inc., is planned for flight in 2015. Called Sunjammer, the 38m sailcraft will unfurl in deep space and demonstrate solar sail propulsion and navigation as it flies to Earth-Sun L1. In the interim, NASA MSFC funded the NanoSail-D, a subscale drag sail system designed for small spacecraft applications. The NanoSail-D flew aboard the Fast Affordable Science and Technology SATellite (FASTSAT) in 2010, also developed by MSFC, and began its mission after it was was ejected from the FASTSAT into Earth orbit, where it remained for several weeks before deorbiting as planned. NASA recently selected two small satellite missions as part of the Advanced Exploration Systems (AES) Program, both of which will use solar sails to enable their scientific objectives. Lunar Flashlight, managed by JPL, will search for and map volatiles in permanently shadowed Lunar craters using a solar sail as a gigantic mirror to steer sunlight into the shaded craters. The Near Earth Asteroid (NEA) Scout mission will use the sail as primary propulsion allowing it to survey and image one or more NEA's of interest for possible future human exploration. Both are planned for launch in 2017. As the technology matures, solar sails will increasingly be used to enable science and exploration missions that are currently impossible or prohibitively expensive using traditional chemical and electric rockets. For example, the NASA Heliophysics Decadal Survey identifies no less than three such missions for possible flight before the mid-2020's. Solar sail propulsion technology is no longer an intesting theoretical possibility; it has been demonstrated in space and is now a critical technology for science and solar system exploration.
NASA Technical Reports Server (NTRS)
1993-01-01
As a Jet Propulsion Laboratory (JPL) scientist Dr. Eldon Haines studied the solar energy source and solar water heating. He concluded he could build a superior solar water heating system using the geyser pumping principle. He resigned from JPL to develop his system and later form Sage Advance Corporation to market the technology. Haines' Copper Cricket residential system has no moving parts, is immune to freeze damage, needs no roof-mounted tanks, and features low maintenance. It provides 50-90 percent of average hot water requirements. A larger system, the Copper Dragon, has been developed for commercial installations.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-22
... collectors for solar thermal systems (when used in an educational context for the purposes of comparing relative efficiency of solar thermal technologies); (3) 2-ton adsorption chillers (for educational purposes... thermal technologies); (3) 2- ton adsorption chillers (for educational purposes, or where alternative...
NASA Technical Reports Server (NTRS)
Ferber, R. R.; Marriott, A. T.; Truscello, V.
1978-01-01
The Small Power Systems Applications (SPSA) Project has been established to develop and commercialize small solar thermal power plants. The technologies of interest include all distributed and central receiver technologies which are potentially economically viable in power plant sizes of one to 10 MWe. The paper presents an overview of the SPSA Project and briefly discusses electric utility involvement in the Project.
Novel Space-based Solar Power Technologies and Architectures for Earth and Beyond
NASA Technical Reports Server (NTRS)
Howell, Joe T.; Fikes, John C.; O'Neill, Mark J.
2005-01-01
Research, development and studies of novel space-based solar power systems, technologies and architectures for Earth and beyond are needed to reduce the cost of clean electrical power for terrestrial use and to provide a stepping stone for providing an abundance of power in space, i.e., manufacturing facilities, tourist facilities, delivery of power between objects in space, and between space and surface sites. The architectures, technologies and systems needed for space to Earth applications may also be used for in-space applications. Advances in key technologies, i.e., power generation, power management and distribution, power beaming and conversion of beamed power are needed to achieve the objectives of both terrestrial and extraterrestrial applications. Power beaming or wireless power transmission (WPT) can involve lasers or microwaves along with the associated power interfaces. Microwave and laser transmission techniques have been studied with several promising approaches to safe and efficient WPT identified. These investigations have included microwave phased array transmitters, as well as laser transmission and associated optics. There is a need to produce "proof-of-concept" validation of critical WPT technologies for both the near-term, as well as far-term applications. Investments may be harvested in near-term beam safe demonstrations of commercial WPT applications. Receiving sites (users) include ground-based stations for terrestrial electrical power, orbital sites to provide power for satellites and other platforms, future space elevator systems, space vehicle propulsion, and space to surface sites. This paper briefly discusses achieving a promising approach to the solar power generation and beamed power conversion. The approach is based on a unique high-power solar concentrator array called Stretched Lens Array (SLA) for both solar power generation and beamed power conversion. Since both versions (solar and laser) of SLA use many identical components (only the photovoltaic cells need to be different), economies of manufacturing and scale may be realized by using SLA on both ends of the laser power beaming system in a space solar power application. Near-term uses of this SLA-laser-SLA system may include terrestrial and space exploration in near Earth space. Later uses may include beamed power for bases or vehicles on Mars.
Employment from Solar Energy: A Bright but Partly Cloudy Future.
ERIC Educational Resources Information Center
Smeltzer, K. K.; Santini, D. J.
A comparison of quantitative and qualitative employment effects of solar and conventional systems can prove the increased employment postulated as one of the significant secondary benefits of a shift from conventional to solar energy use. Current quantitative employment estimates show solar technology-induced employment to be generally greater…
2004-04-15
Harnessing the Sun's energy through Solar Thermal Propulsion will propel vehicles through space by significantly reducing weight, complexity, and cost while boosting performance over current conventional upper stages. Another solar powered system, solar electric propulsion, demonstrates ion propulsion is suitable for long duration missions. Pictured is an artist's concept of space flight using solar thermal propulsion.
NASA Astrophysics Data System (ADS)
Hakkarainen, Elina; Tähtinen, Matti
2016-05-01
Demonstrations of direct steam generation (DSG) in linear Fresnel collectors (LFC) have given promising results related to higher steam parameters compared to the current state-of-the-art parabolic trough collector (PTC) technology using oil as heat transfer fluid (HTF). However, DSG technology lacks feasible solution for long-term thermal energy storage (TES) system. This option is important for CSP technology in order to offer dispatchable power. Recently, molten salts have been proposed to be used as HTF and directly as storage medium in both line-focusing solar fields, offering storage capacity of several hours. This direct molten salt (DMS) storage concept has already gained operational experience in solar tower power plant, and it is under demonstration phase both in the case of LFC and PTC systems. Dynamic simulation programs offer a valuable effort for design and optimization of solar power plants. In this work, APROS dynamic simulation program is used to model a DMS linear Fresnel solar field with two-tank TES system, and example simulation results are presented in order to verify the functionality of the model and capability of APROS for CSP modelling and simulation.
Energy Systems Integration News | Energy Systems Integration Facility |
us at the ESIF. NREL Releases High-Pen PV Handbook for Distribution Engineers As solar photovoltaic PV for Ancillary Services NREL, AES, the Puerto Rico Electric Power Authority, First Solar, and the technologies, such as solar, demand response, and smart consumer appliances Advances in grid design and
ERIC Educational Resources Information Center
Wallace, William; Wang, Zhongying
2006-01-01
China is the world's largest market for solar water heating systems, installing 13 million square meters of new systems in 2004, mostly in large cities. Municipal authorities, however, are sensitive to quality and visual impact issues created by this technology deployment. Therefore, there is currently a trend toward developing building integrated…
The Expanded Owens Valley Solar Array
NASA Astrophysics Data System (ADS)
Gary, Dale E.; Hurford, G. J.; Nita, G. M.; White, S. M.; Tun, S. D.; Fleishman, G. D.; McTiernan, J. M.
2011-05-01
The Expanded Owens Valley Solar Array (EOVSA) is now under construction near Big Pine, CA as a solar-dedicated microwave imaging array operating in the frequency range 1-18 GHz. The solar science to be addressed focuses on the 3D structure of the solar corona (magnetic field, temperature and density), on the sudden release of energy and subsequent particle acceleration, transport and heating, and on space weather phenomena. The project will support the scientific community by providing open data access and software tools for analysis of the data, to exploit synergies with on-going solar research in other wavelengths. The New Jersey Institute of Technology (NJIT) is expanding OVSA from its previous complement of 7 antennas to a total of 15 by adding 8 new antennas, and will reinvest in the existing infrastructure by replacing the existing control systems, signal transmission, and signal processing with modern, far more capable and reliable systems based on new technology developed for the Frequency Agile Solar Radiotelescope (FASR). The project will be completed in time to provide solar-dedicated observations during the upcoming solar maximum in 2013 and beyond. We provide an update on current status and our preparations for exploiting the data through modeling and data analysis tools. This research is supported by NSF grants AST-0908344, and AGS-0961867 and NASA grant NNX10AF27G to New Jersey Institute of Technology.
Commercialization of dish-Stirling solar terrestrial systems
NASA Technical Reports Server (NTRS)
Ross, Brad; Penswick, Barry; White, Maury; Cooper, Martin; Farbman, Gerald
1990-01-01
The requirements for dish-Stirling commercialization are described. The requirements for practical terrestrial power systems, both technical and economic, are described. Solar energy availability, with seasonal and regional variations, is discussed. The advantages and disadvantages of hybrid operation are listed. The two systems described use either a 25-kW free-piston Stirling hydraulic engine or a 5-kW kinematic Stirling engine. Both engines feature long-life characteristics that result from the use of welded metal bellows as hermetic seals between the working gas and the crankcase fluid. The advantages of the systems, the state of the technology, and the challenges that remain are discussed. Technology transfer between solar terrestrial Stirling applications and other Stirling applications is predicted to be important and synergistic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharp, M. Keith; Barnett, Russell
The objective of this project is to promote awareness and knowledge of active solar energy technologies by installing and monitoring the following demonstration systems in Kentucky: 1) Pool heating system, Churchill Park School, 2) Water heating and daylighting systems, Middletown and Aiken Road Elementary Schools, 3) Photovoltaic street light comparison, Louisville Metro, 4) up to 25 domestic water heating systems across Kentucky. These tasks will be supported by outreach activities, including a solar energy installer training workshop and a Kentucky Solar Energy Conference.
NASA Technical Reports Server (NTRS)
1980-01-01
Solar Energy's solar panels are collectors for a solar energy system which provides heating for a drive-in bank in Akron, OH. Collectors were designed and manufactured by Solar Energy Products, a firm established by three former NASA employees. Company President, Frank Rom, an example of a personnel-type technology transfer, was a Research Director at Lewis Research Center, which conducts extensive solar heating and cooling research, including development and testing of high-efficiency flat-plate collectors. Rom acquired solar energy expertise which helped the company develop two types of collectors, one for use in domestic/commercial heating systems and the other for drying grain.
Promising Results from Three NASA SBIR Solar Array Technology Development Programs
NASA Technical Reports Server (NTRS)
Eskenazi, Mike; White, Steve; Spence, Brian; Douglas, Mark; Glick, Mike; Pavlick, Ariel; Murphy, David; O'Neill, Mark; McDanal, A. J.; Piszczor, Michael
2005-01-01
Results from three NASA SBIR solar array technology programs are presented. The programs discussed are: 1) Thin Film Photovoltaic UltraFlex Solar Array; 2) Low Cost/Mass Electrostatically Clean Solar Array (ESCA); and 3) Stretched Lens Array SquareRigger (SLASR). The purpose of the Thin Film UltraFlex (TFUF) Program is to mature and validate the use of advanced flexible thin film photovoltaics blankets as the electrical subsystem element within an UltraFlex solar array structural system. In this program operational prototype flexible array segments, using United Solar amorphous silicon cells, are being manufactured and tested for the flight qualified UltraFlex structure. In addition, large size (e.g. 10 kW GEO) TFUF wing systems are being designed and analyzed. Thermal cycle and electrical test and analysis results from the TFUF program are presented. The purpose of the second program entitled, Low Cost/Mass Electrostatically Clean Solar Array (ESCA) System, is to develop an Electrostatically Clean Solar Array meeting NASA s design requirements and ready this technology for commercialization and use on the NASA MMS and GED missions. The ESCA designs developed use flight proven materials and processes to create a ESCA system that yields low cost, low mass, high reliability, high power density, and is adaptable to any cell type and coverglass thickness. All program objectives, which included developing specifications, creating ESCA concepts, concept analysis and trade studies, producing detailed designs of the most promising ESCA treatments, manufacturing ESCA demonstration panels, and LEO (2,000 cycles) and GEO (1,350 cycles) thermal cycling testing of the down-selected designs were successfully achieved. The purpose of the third program entitled, "High Power Platform for the Stretched Lens Array," is to develop an extremely lightweight, high efficiency, high power, high voltage, and low stowed volume solar array suitable for very high power (multi-kW to MW) applications. These objectives are achieved by combining two cutting edge technologies, the SquareRigger solar array structure and the Stretched Lens Array (SLA). The SLA SquareRigger solar array is termed SLASR. All program objectives, which included developing specifications, creating preliminary designs for a near-term SLASR, detailed structural, mass, power, and sizing analyses, fabrication and power testing of a functional flight-like SLASR solar blanket, were successfully achieved.
Making the Most of Waste Energy
NASA Technical Reports Server (NTRS)
2005-01-01
The Thermo-Mechanical Systems Branch at NASA s Glenn Research Center is responsible for planning and conducting research efforts to advance thermal systems for space, aerospace, and non-aerospace applications. Technological areas pertain to solar and thermal energy conversion. For example, thermo-mechanical systems researchers work with gas (Stirling) and liquid/vapor (Rankine) systems that convert thermal energy to electrical power, as well as solar dynamic power systems that concentrate sunlight to electrical power. The branch s development of new solar and thermal energy technologies is propelling NASA s missions deep into unfamiliar territories of space. Solar dynamic power systems are actively improving the health of orbiting satellites, giving them longer life and a stronger radiation tolerance, thus, creating less need for on-orbit maintenance. For future missions, NASA may probe even deeper into the mysterious cosmos, with the adoption of highly efficient thermal energy converters that have the potential to serve as the source of onboard electrical power for satellites and spacecraft. Research indicates that these thermal converters can deliver up to 5 times as much power as radioisotope thermoelectric generators in use today, for the same amount of radioisotope. On Earth, energy-converting technologies associated with NASA s Thermo-Mechanical Systems Branch are being used to recover and transform low-temperature waste heat into usable electric power, with a helping hand from NASA.
Study of Power Options for Jupiter and Outer Planet Missions
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Fincannon, James
2015-01-01
Power for missions to Jupiter and beyond presents a challenging goal for photovoltaic power systems, but NASA missions including Juno and the upcoming Europa Clipper mission have shown that it is possible to operate solar arrays at Jupiter. This work analyzes photovoltaic technologies for use in Jupiter and outer planet missions, including both conventional arrays, as well as analyzing the advantages of advanced solar cells, concentrator arrays, and thin film technologies. Index Terms - space exploration, spacecraft solar arrays, solar electric propulsion, photovoltaic cells, concentrator, Fresnel lens, Jupiter missions, outer planets.
Coating Processes Boost Performance of Solar Cells
NASA Technical Reports Server (NTRS)
2012-01-01
NASA currently has spacecraft orbiting Mercury (MESSENGER), imaging the asteroid Vesta (Dawn), roaming the red plains of Mars (the Opportunity rover), and providing a laboratory for humans to advance scientific research in space (the International Space Station, or ISS). The heart of the technology that powers those missions and many others can be held in the palm of your hand - the solar cell. Solar, or photovoltaic (PV), cells are what make up the panels and arrays that draw on the Sun s light to generate electricity for everything from the Hubble Space Telescope s imaging equipment to the life support systems for the ISS. To enable NASA spacecraft to utilize the Sun s energy for exploring destinations as distant as Jupiter, the Agency has invested significant research into improving solar cell design and efficiency. Glenn Research Center has been a national leader in advancing PV technology. The Center s Photovoltaic and Power Technologies Branch has conducted numerous experiments aimed at developing lighter, more efficient solar cells that are less expensive to manufacture. Initiatives like the Forward Technology Solar Cell Experiments I and II in which PV cells developed by NASA and private industry were mounted outside the ISS have tested how various solar technologies perform in the harsh conditions of space. While NASA seeks to improve solar cells for space applications, the results are returning to Earth to benefit the solar energy industry.
Status of the use of microwave power transmission technology in the solar power satellite
NASA Technical Reports Server (NTRS)
Brown, W. C.
1985-01-01
Attention is given to recent advances in the technologies needed to build and transport a Solar Power satellite. Among the areas of NASA sponsored SPS research are: the application of ground-based, electronically steerable arrays to the SPS space-based microwave transmitting antenna; and the application of microwave transmission technology to a low-cost LEO-to-GEO transportation system to build the SPS. A photograph of a thin-film etched circuit rectenna for powering the LEO-to-GEO transportation system is provided.
Keeping Cool With Solar-Powered Refrigeration
NASA Technical Reports Server (NTRS)
2003-01-01
In the midst of developing battery-free, solar-powered refrigeration and air conditioning systems for habitats in space, David Bergeron, the team leader for NASA's Advanced Refrigerator Technology Team at Johnson Space Center, acknowledged the need for a comparable solar refrigerator that could operate in conjunction with the simple lighting systems already in place on Earth. Bergeron, a 20-year veteran in the aerospace industry, founded the company Solus Refrigeration, Inc., in 1999 to take the patented advanced refrigeration technology he co-developed with his teammate, Johnson engineer Michael Ewert, to commercial markets. Now known as SunDanzer Refrigeration, Inc., Bergeron's company is producing battery-free, photovoltaic (PV) refrigeration systems under license to NASA, and selling them globally.
Advanced photovoltaic power system technology for lunar base applications
NASA Astrophysics Data System (ADS)
Brinker, David J.; Flood, Dennis J.
1992-09-01
The development of an advanced photovoltaic power system that would have application for a manned lunar base is currently planned under the Surface Power element of Pathfinder. Significant mass savings over state-of-the-art photovoltaic/battery systems are possible with the use of advanced lightweight solar arrays coupled with regenerative fuel cell storage. The solar blanket, using either ultrathin GaAs or amorphous silicon solar cells, would be integrated with a reduced-g structure. Regenerative fuel cells with high-pressure gas storage in filament-wound tanks are planned for energy storage. An advanced PV/RFC power system is a leading candidate for a manned lunar base as it offers a tremendous weight advantage over state-of-the-art photovoltaic/battery systems and is comparable in mass to other advanced power generation technologies.
NASA Technical Reports Server (NTRS)
Laue, Greg; Case, David; Moore, Jim
2005-01-01
A 20-meter Scalable Square Solar Sail (S(sup 4)) System was produced and successfully completed functional vacuum testing in NASA Glenn's Space Power Facility at Plum Brook Station Ohio in May 2005. The S(sup 4) system was designed and developed by ATK Space Systems, and the design and production of the Solar Sails for this system was carried out by SRS Technologies. The S(sup 4) system consists of a central structure with four deployable carbon fiber masts that support four triangular sails. SRS has developed an effective and efficient design for triangular sail quadrants that are supported at three points and provide a flat reflective surface with a high fill factor. This sail design is robust enough for deployments in a one atmosphere, one gravity environment and incorporates several advanced features including adhesiveless seaming of membrane strips, compliant edge borders to allow for film membrane cord strain mismatch without causing wrinkling and low mass (3% of total sail mass) ripstop. This paper will outline some of the sail design and fabrication processes and the mature production, packaging and deployment processes that have been developed. This paper will also detail the successful ambient and vacuum testing of the sails and the ATK spacecraft structure. Based on recent experience and testing, SRS is confidant that high Technology Readiness Level (TRL) 5-6 solar sails in the 40-120-meter size range with areal density in the 4-5 grams per square meters (sail minus structure) range can be produced with existing technology. Additional film production research will lead to further reductions in film thickness to less than 1 micron enabling production of sails with areal densities as low as 2.0 grams per square meters using the current design, resulting in a system areal densities as low as 5.3 grams per square meters (sail and structure). These areal densities are low enough to allow nearly all of the Solar Sail missions that have been proposed by the scientific community. The fundamental technologies required to produce these systems has been demonstrated on the 20-meter S(sup 4) sails that have recently completed ground testing demonstrating a mature and technology suitable for incorporation into future flight validation and future mission. Solar Sails can support NASA's Vision for Space Exploration by allowing communication satellite orbits that can maintain continuous communication with the polar regions of the Moon and Mars and to support solar weather monitoring to provide early warning of solar flares and storms that could threaten the safety of astronauts and other spacecraft.
Facing technological challenges of Solar Updraft Power Plants
NASA Astrophysics Data System (ADS)
Lupi, F.; Borri, C.; Harte, R.; Krätzig, W. B.; Niemann, H.-J.
2015-01-01
The Solar Updraft Power Plant technology addresses a very challenging idea of combining two kinds of renewable energy: wind and solar. The working principle is simple: a Solar Updraft Power Plant (SUPP) consists of a collector area to heat the air due to the wide-banded ultra-violet solar radiation, the high-rise solar tower to updraft the heated air to the atmosphere, and in between the power conversion unit, where a system of coupled turbines and generators transforms the stream of heated air into electric power. A good efficiency of the power plant can only be reached with extra-large dimensions of the tower and/or the collector area. The paper presents an up-to-date review of the SUPP technology, focusing on the multi-physics modeling of the power plant, on the structural behavior of the tower and, last but not least, on the modeling of the stochastic wind loading process.
Status of FEP encapsulated solar cell modules used in terrestrial applications
NASA Technical Reports Server (NTRS)
Ratajczak, A. F.; Forestieri, A. F.
1974-01-01
The Lewis Research Center has been engaged in transferring the FEP encapsulated solar cell technology developed for the space program to terrestrial applications. FEP encapsulated solar cell modules and arrays were designed and built expressly for terrestrial applications. Solar cell power systems were installed at three different land sites, while individual modules are undergoing marine environment tests. Four additional power systems are being completed for installation during the summer of 1974. These tests have revealed some minor problems which have been corrected. The results confirm the inherent utility of FEP encapsulated terrestrial solar cell systems.
NASA's Evolutionary Xenon Thruster: The NEXT Ion Propulsion System for Solar System Exploration
NASA Technical Reports Server (NTRS)
Pencil, Eric J.; Benson, Scott W.
2008-01-01
This viewgraph presentation reviews NASA s Evolutionary Xenon Thruster (NEXT) Ion Propulsion system. The NEXT project is developing a solar electric ion propulsion system. The NEXT project is advancing the capability of ion propulsion to meet NASA robotic science mission needs. The NEXT system is planned to significantly improve performance over the state of the art electric propulsion systems, such as NASA Solar Electric Propulsion Technology Application Readiness (NSTAR). The status of NEXT development is reviewed, including information on the NEXT Thruster, the power processing unit, the propellant management system (PMS), the digital control interface unit, and the gimbal. Block diagrams NEXT system are presented. Also a review of the lessons learned from the Dawn and NSTAR systems is provided. In summary the NEXT project activities through 2007 have brought next-generation ion propulsion technology to a sufficient maturity level.
SPS Energy Conversion Power Management Workshop
NASA Technical Reports Server (NTRS)
1980-01-01
Energy technology concerning photovoltaic conversion, solar thermal conversion systems, and electrical power distribution processing is discussed. The manufacturing processes involving solar cells and solar array production are summarized. Resource issues concerning gallium arsenides and silicon alternatives are reported. Collector structures for solar construction are described and estimates in their service life, failure rates, and capabilities are presented. Theories of advanced thermal power cycles are summarized. Power distribution system configurations and processing components are presented.
Solar Energy and Other Appropriate Technologies for Small Potable Water Systems in Puerto Rico
This Region 2 research demonstration project presentation studied the efficacy of sustainable solar-powered water delivery and monitoring systems to reduce the economic burden of operating and maintaining Non-PRASA drinking water systems and to reduce the impact of climate change...
Solar and Drag Sail Propulsion: From Theory to Mission Implementation
NASA Technical Reports Server (NTRS)
Johnson, Les; Alhorn, Dean; Boudreaux, Mark; Casas, Joe; Stetson, Doug; Young, Roy
2014-01-01
Solar and drag sail technology is entering the mainstream for space propulsion applications within NASA and around the world. Solar sails derive propulsion by reflecting sunlight from a large, mirror- like sail made of a lightweight, reflective material. The continuous sunlight pressure provides efficient primary propulsion, without the expenditure of propellant or any other consumable, allowing for very high V maneuvers and long-duration deep space exploration. Drag sails increase the aerodynamic drag on Low Earth Orbit (LEO) spacecraft, providing a lightweight and relatively inexpensive approach for end-of-life deorbit and reentry. Since NASA began investing in the technology in the late 1990's, significant progress has been made toward their demonstration and implementation in space. NASA's Marshall Space Flight Center (MSFC) managed the development and testing of two different 20-m solar sail systems and rigorously tested them under simulated space conditions in the Glenn Research Center's Space Power Facility at Plum Brook Station, Ohio. One of these systems, developed by L'Garde, Inc., is planned for flight in 2015. Called Sunjammer, the 38m sailcraft will unfurl in deep space and demonstrate solar sail propulsion and navigation as it flies to Earth-Sun L1. In the Flight Center (MSFC) managed the development and testing of two different 20-m solar sail systems and rigorously tested them under simulated space conditions in the Glenn Research Center's Space Power Facility at Plum Brook Station, Ohio. One of these systems, developed by L'Garde, Inc., is planned for flight in 2015. Called Sunjammer, the 38m sailcraft will unfurl in deep space and demonstrate solar sail propulsion and navigation as it flies to Earth-Sun L1. In the interim, NASA MSFC funded the NanoSail-D, a subscale drag sail system designed for small spacecraft applications. The NanoSail-D flew aboard the Fast Affordable Science and Technology SATellite (FASTSAT) in 2010, also developed by MSFC, and began its mission after it was ejected from the FASTSAT into Earth orbit, where it remained for several weeks before deorbiting as planned. NASA recently selected two small satellite missions for study as part of the Advanced Exploration Systems (AES) Program, both of which will use solar sails to enable their scientific objectives. Lunar Flashlight, managed by JPL, will search for and map volatiles in permanently shadowed Lunar craters using a solar sail as a gigantic mirror to steer sunlight into the shaded craters. The Near Earth Asteroid (NEA) Scout mission will use the sail as primary propulsion allowing it to survey and image one or more NEA's of interests for possible future human exploration. Both are being studied for possible launch in 2017. The Planetary Society's privately funded LightSail-A and -B cubesat-class spacecraft are nearly complete and scheduled for launch in 2015 and 2016, respectively. MMA Design launched their DragNet deorbit system in November 2013, which will deploy from the STPSat-3 spacecraft as an end of life deorbit system. The University of Surrey is building a suite of cubesat class drag and solar sail systems that will be launched beginning in 2015. As the technology matures, solar sails will increasingly be used to enable science and exploration missions that are currently impossible or prohibitively expensive using traditional chemical and electric rockets. For example, the NASA Heliophysics Decadal Survey identifies no less than three such missions for possible flight before the mid-2020's. Solar and drag sail propulsion technology is no longer merely an interesting theoretical possibility; it has been demonstrated in space and is now a critical technology for science and solar system exploration.
Forward Technology Solar Cell Experiment First On-Orbit Data
NASA Technical Reports Server (NTRS)
Walters, R. J.; Garner, J. C.; Lam, S. N.; Vazquez, J. A.; Braun, W. R.; Ruth, R. E.; Warner, J. H.; Lorentzen, J. R.; Messenger, S. R.; Bruninga, R.;
2007-01-01
This paper presents first on orbit measured data from the Forward Technology Solar Cell Experiment (FTSCE). FTSCE is a space experiment housed within the 5th Materials on the International Space Station Experiment (MISSE-5). MISSE-5 was launched aboard the Shuttle return to flight mission (STS-114) on July 26, 2005 and deployed on the exterior of the International Space Station (ISS). The experiment will remain in orbit for nominally one year, after which it will be returned to Earth for post-flight testing and analysis. While on orbit, the experiment is designed to measure a 36 point current vs. voltage (IV) curve on each of the experimental solar cells, and the data is continuously telemetered to Earth. The experiment also measures the solar cell temperature and the orientation of the solar cells to the sun. A range of solar cell technologies are included in the experiment including state-of-the-art triple junction InGaP/GaAs/Ge solar cells from several vendors, thin film amorphous Si and CuIn(Ga)Se2 cells, and next-generation technologies like single-junction GaAs cells grown on Si wafers and metamorphic InGaP/InGaAs/Ge triple-junction cells. In addition to FTSCE, MISSE-5 also contains a Thin-Film Materials experiment. This is a passive experiment that will provide data on the effect of the space environment on more than 200 different materials. FTSCE was initially conceived in response to various on-orbit and ground test anomalies associated with space power systems. The Department of Defense (DoD) required a method of rapidly obtaining on orbit validation data for new space solar cell technologies, and NRL was tasked to devise an experiment to meet this requirement. Rapid access to space was provided by the MISSE Program which is a NASA Langley Research Center program. MISSE-5 is a completely self-contained experiment system with its own power generation and storage system and communications system. The communications system, referred to as PCSat, transmits and receives in the Amateur Radio band providing a node on the Amateur Radio Satellite Service. This paper presents an overview of the various aspects of MISSE-5 and a sample of the first measured on orbit data.
A compendium of solar dish/Stirling technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stine, W.B.; Diver, R.B.
1994-01-01
This report surveys the emerging dish/Stirling technology. It documents -- using consistent terminology the design characteristics of dish concentrators, receivers, and Stirling engines applicable to solar electric power generation. Development status and operating experience for each system and an overview of dish/Stirling technology are also presented. This report enables comparisons of concentrator, receiver, and engine technologies. Specifications and performance data are presented on systems and on components that are in use or that could be used in dish/Stirling systems. This report is organized into two parts: The first part (Chapters 1 through 4) provides an overview of dish/Stirling technology --more » the dish/ Stirling components (concentrator, receiver, and engine/alternator), current technology, basic theory, and technology development. The second part (Chapters 5 through 7) provides a detailed survey of the existing dish/Stirling concentrators, receivers, and engine/alternators.« less
Near-term viability of solar heat applications for the federal sector
NASA Astrophysics Data System (ADS)
Williams, T. A.
1991-12-01
Solar thermal technologies are capable of providing heat across a wide range of temperatures, making them potentially attractive for meeting energy requirements for industrial process heat applications and institutional heating. The energy savings that could be realized by solar thermal heat are quite large, potentially several quads annually. Although technologies for delivering heat at temperatures above 100 C currently exist within industry, only a fairly small number of commercial systems have been installed to date. The objective of this paper is to investigate and discuss the prospects for near term solar heat sales to federal facilities as a mechanism for providing an early market niche to the aid the widespread development and implementation of the technology. The specific technical focus is on mid-temperature (100 to 350 C) heat demands that could be met with parabolic trough systems. Federal facilities have several features relative to private industry that may make them attractive for solar heat applications relative to other sectors. Key features are specific policy mandates for conserving energy, a long term planning horizon with well defined decision criteria, and prescribed economic return criteria for conservation and solar investments that are generally less stringent than the investment criteria used by private industry. Federal facilities also have specific difficulties in the sale of solar heat technologies that are different from those of other sectors, and strategies to mitigate these difficulties will be important. For the baseline scenario developed in this paper, the solar heat application was economically competitive with heat provided by natural gas. The system levelized energy cost was $5.9/MBtu for the solar heat case, compared to $6.8/MBtu for the life cycle fuel cost of a natural gas case. A third-party ownership would also be attractive to federal users, since it would guarantee energy savings and would not need initial federal funds.
In-Space Propulsion for Science and Exploration
NASA Technical Reports Server (NTRS)
Bishop-Behel, Karen; Johnson, Les
2004-01-01
This paper presents viewgraphs on the development of In-Space Propulsion Technologies for Science and Exploration. The topics include: 1) In-Space Propulsion Technology Program Overview; 2) In-Space Propulsion Technology Project Status; 3) Solar Electric Propulsion; 4) Next Generation Electric Propulsion; 5) Aerocapture Technology Alternatives; 6) Aerocapture; 7) Advanced Thermal Protection Systems Developed and Being Tested; 8) Solar Sails; 9) Advanced Chemical Propulsion; 10) Momentum Exchange Tethers; and 11) Momentum-exchange/electrodynamic reboost (MXER) Tether Basic Operation.
Utilizing Solar Power Technologies for On-Orbit Propellant Production
NASA Technical Reports Server (NTRS)
Fikes, John C.; Howell, Joe T.; Henley, Mark W.
2006-01-01
The cost of access to space beyond low Earth orbit may be reduced if vehicles can refuel in orbit. The cost of access to low Earth orbit may also be reduced by launching oxygen and hydrogen propellants in the form of water. To achieve this reduction in costs of access to low Earth orbit and beyond, a propellant depot is considered that electrolyzes water in orbit, then condenses and stores cryogenic oxygen and hydrogen. Power requirements for such a depot require Solar Power Satellite technologies. A propellant depot utilizing solar power technologies is discussed in this paper. The depot will be deployed in a 400 km circular equatorial orbit. It receives tanks of water launched into a lower orbit from Earth, converts the water to liquid hydrogen and oxygen, and stores up to 500 metric tons of cryogenic propellants. This requires a power system that is comparable to a large Solar Power Satellite capable of several 100 kW of energy. Power is supplied by a pair of solar arrays mounted perpendicular to the orbital plane, which rotates once per orbit to track the Sun. The majority of the power is used to run the electrolysis system. Thermal control is maintained by body-mounted radiators; these also provide some shielding against orbital debris. The propellant stored in the depot can support transportation from low Earth orbit to geostationary Earth orbit, the Moon, LaGrange points, Mars, etc. Emphasis is placed on the Water-Ice to Cryogen propellant production facility. A very high power system is required for cracking (electrolyzing) the water and condensing and refrigerating the resulting oxygen and hydrogen. For a propellant production rate of 500 metric tons (1,100,000 pounds) per year, an average electrical power supply of 100 s of kW is required. To make the most efficient use of space solar power, electrolysis is performed only during the portion of the orbit that the Depot is in sunlight, so roughly twice this power level is needed for operations in sunlight (slightly over half of the time). This power level mandates large solar arrays, using advanced Space Solar Power technology. A significant amount of the power has to be dissipated as heat, through large radiators. This paper briefly describes the propellant production facility and the requirements for a high power system capability. The Solar Power technologies required for such an endeavor are discussed.
Space-based solar power conversion and delivery systems study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Hazelrigg, G. A., Jr.
1976-01-01
The technical and economic aspects of satellite solar power systems are presented with a focus on the current configuration 5000 MW system. The technical studies include analyses of the orbital system structures, control and stationkeeping, and the formulation of program plans and costs for input to the economic analyses. The economic analyses centered about the development and use of a risk analysis model for a system cost assessment, identification of critical issues and technologies, and to provide information for programmatic decision making. A preliminary economic examination of some utility interface issues is included. Under the present state-of-knowledge, it is possible to formulate a program plan for the development of a satellite solar power system that can be economically justified. The key area of technological uncertainty is man's ability to fabricate and assemble large structures in space.
ERIC Educational Resources Information Center
Aksoy, Gokhan
2013-01-01
The purpose of this study is to determine the effect of computer animation technique on academic achievement of students in the "Solar System and Beyond" unit lecture as part of the Science and Technology course of the seventh grade in primary education. The sample of the study consists of 60 students attending to the 7th grade of primary school…
Solar energy system economic evaluation for Wormser Columbia, South Carolina
NASA Technical Reports Server (NTRS)
1980-01-01
The Solar Energy System is not economically beneficial under the assumed economic conditions at the sites considered. Economic benefits from this system depend on decreasing the initial investment and the continued increase in the cost of conventional energy. Decreasing the cost depends on favorable tax treatment and continuing development of solar energy technology. Fuel cost would have to increase drastically while the cost of the system would have to remain constant or decrease for the system to become economically feasible.
Evolutionary growth for Space Station Freedom electrical power system
NASA Technical Reports Server (NTRS)
Marshall, Matthew Fisk; Mclallin, Kerry; Zernic, Mike
1989-01-01
Over an operational lifetime of at least 30 yr, Space Station Freedom will encounter increased Space Station user requirements and advancing technologies. The Space Station electrical power system is designed with the flexibility to accommodate these emerging technologies and expert systems and is being designed with the necessary software hooks and hardware scars to accommodate increased growth demand. The electrical power system is planned to grow from the initial 75 kW up to 300 kW. The Phase 1 station will utilize photovoltaic arrays to produce the electrical power; however, for growth to 300 kW, solar dynamic power modules will be utilized. Pairs of 25 kW solar dynamic power modules will be added to the station to reach the power growth level. The addition of solar dynamic power in the growth phase places constraints in the initial Space Station systems such as guidance, navigation, and control, external thermal, truss structural stiffness, computational capabilities and storage, which must be planned-in, in order to facilitate the addition of the solar dynamic modules.
Solar energy: Technology and applications
NASA Technical Reports Server (NTRS)
Williams, J. R.
1974-01-01
It is pointed out that in 1970 the total energy consumed in the U.S. was equal to the energy of sunlight received by only 0.15% of the land area of the continental U.S. The utilization of solar energy might, therefore, provide an approach for solving the energy crisis produced by the consumption of irreplaceable fossil fuels at a steadily increasing rate. Questions regarding the availability of solar energy are discussed along with the design of solar energy collectors and various approaches for heating houses and buildings by utilizing solar radiation. Other subjects considered are related to the heating of water partly or entirely with solar energy, the design of air conditioning systems based on the use of solar energy, electric power generation by a solar thermal and a photovoltaic approach, solar total energy systems, industrial and agricultural applications of solar energy, solar stills, the utilization of ocean thermal power, power systems based on the use of wind, and solar-energy power systems making use of geosynchronous power plants.
Solar Village--Educational Initiative for Kids.
ERIC Educational Resources Information Center
Hugerat, Muhamad; Ilyian, Salman; Toren, Zehava; Anabosi, Fawzi
2003-01-01
Explains a model of a solar village in the context of the school which does not contribute to air pollution by using only solar energy. Suggests that pupils would be active participants in building systems and understanding the contact between the knowledge of the basic science of solar energy and the technology processes in daily life.…
Solar applications of thermal energy storage. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C.; Taylor, L.; DeVries, J.
A technology assessment is presented on solar energy systems which use thermal energy storage. The study includes characterization of the current state-of-the-art of thermal energy storage, an assessment of the energy storage needs of solar energy systems, and the synthesis of this information into preliminary design criteria which would form the basis for detailed designs of thermal energy storage. (MHR)
Modular, Reconfigurable, High-Energy Systems Stepping Stones
NASA Technical Reports Server (NTRS)
Howell, Joe T.; Carrington, Connie K.; Mankins, John C.
2005-01-01
Modular, Reconfigurable, High-Energy Systems are Stepping Stones to provide capabilities for energy-rich infrastructure strategically located in space to support a variety of exploration scenarios. Abundant renewable energy at lunar or L1 locations could support propellant production and storage in refueling scenarios that enable affordable exploration. Renewable energy platforms in geosynchronous Earth orbits can collect and transmit power to satellites, or to Earth-surface locations. Energy-rich space technologies also enable the use of electric-powered propulsion systems that could efficiently deliver cargo and exploration facilities to remote locations. A first step to an energy-rich space infrastructure is a 100-kWe class solar-powered platform in Earth orbit. The platform would utilize advanced technologies in solar power collection and generation, power management and distribution, thermal management, and electric propulsion. It would also provide a power-rich free-flying platform to demonstrate in space a portfolio of technology flight experiments. This paper presents a preliminary design concept for a 100-kWe solar-powered satellite with the capability to flight-demonstrate a variety of payload experiments and to utilize electric propulsion. State-of-the-art solar concentrators, highly efficient multi-junction solar cells, integrated thermal management on the arrays, and innovative deployable structure design and packaging make the 100-kW satellite feasible for launch on one existing launch vehicle. Higher voltage arrays and power management and distribution (PMAD) systems reduce or eliminate the need for massive power converters, and could enable direct- drive of high-voltage solar electric thrusters.
A novel application for concentrator photovoltaic in the field of agriculture photovoltaics
NASA Astrophysics Data System (ADS)
Liu, Luqing; Guan, Chenggang; Zhang, Fangxin; Li, Ming; Lv, Hui; Liu, Yang; Yao, Peijun; Ingenhoff, Jan; Liu, Wen
2017-09-01
Agriculture photovoltaics is a trend setting area which has already led to a new industrial revolution. Shortage of land in some countries and desertification of land where regular solar panels are deployed are some of the major problems in the photovoltaic industry. Concentrator photovoltaics experienced a decline in applicability after the cost erosion of regular solar panels at the end of the last decade. We demonstrate a novel and unique application for concentrator photovoltaics tackling at a same time the issue of conventional photovoltaics preventing the land being used for agricultural purpose where ever solar panels are installed. We leverage the principle of diffractive and interference technology to split the sun light into transmitted wavelengths necessary for plant growth and reflected wavelengths useful for solar energy generation. The technology has been successfully implemented in field trials and sophisticated scientific studies have been undertaken to evaluate the suitability of this technology for competitive solar power generation and simultaneous high-quality plant growth. The average efficiency of the agriculture photovoltaic system has reached more than 8% and the average efficiency of the CPV system is 6.80%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2012-03-01
This fact sheet highlights the energy challenges faced by the Virgin Islands Environmental Resource Station (VIERS), the renewable energy and energy efficiency solutions implemented, the resulting energy efficiency savings, and other project benefits. In 2011, VIERS installed a 9.4 kW solar system funded by a $50,000 American Recovery and Reinvestment Act (ARRA) grant, which was administered by VIEO. To identify additional energy-saving opportunities, VIERS performed an energy audit of appliances, which resulted in the removal of two water coolers and the installation of a water meter to monitor water use and how it relates to electric pump use. VIERS alsomore » added an educational component to the project, developing a solar classroom near the original solar system. By building on previous energy conservation measures and making additional investments in renewable energy technology, VIERS has lowered its average monthly energy consumption nearly 30%, even with an increase in guests. The VIERS efforts are not limited to the technology installations, however. They also serve to impact the youth of the U.S. Virgin Islands (USVI) by educating young people about energy efficiency and renewable energy technologies and their energy and environmental impacts. VIERS solar system is connected to the Web via a live feed that posts solar output data in real time, increasing the VIERS solar classroom's potential educational impact exponentially.« less
Structural Analysis and Test Comparison of a 20-Meter Inflation-Deployed Solar Sail
NASA Technical Reports Server (NTRS)
Sleight, David W.; Mann, Troy; Lichodziejewski, David; Derbes, Billy
2006-01-01
Under the direction of the NASA In-Space Propulsion Technology Office, the team of L Garde, NASA Jet Propulsion Laboratory, Ball Aerospace, and NASA Langley Research Center has been developing a scalable solar sail configuration to address NASA s future space propulsion needs. Prior to a flight experiment of a full-scale solar sail, a comprehensive test program was implemented to advance the technology readiness level of the solar sail design. These tests consisted of solar sail component, subsystem, and sub-scale system ground tests that simulated the aspects of the space environment such as vacuum and thermal conditions. In July 2005, a 20-m four-quadrant solar sail system test article was tested in the NASA Glenn Research Center s Space Power Facility to measure its static and dynamic structural responses. Key to the maturation of solar sail technology is the development of validated finite element analysis (FEA) models that can be used for design and analysis of solar sails. A major objective of the program was to utilize the test data to validate the FEA models simulating the solar sail ground tests. The FEA software, ABAQUS, was used to perform the structural analyses to simulate the ground tests performed on the 20-m solar sail test article. This paper presents the details of the FEA modeling, the structural analyses simulating the ground tests, and a comparison of the pretest and post-test analysis predictions with the ground test results for the 20-m solar sail system test article. The structural responses that are compared in the paper include load-deflection curves and natural frequencies for the beam structural assembly and static shape, natural frequencies, and mode shapes for the solar sail membrane. The analysis predictions were in reasonable agreement with the test data. Factors that precluded better correlation of the analyses and the tests were unmeasured initial conditions in the test set-up.
Proceedings of the Fifth Parabolic Dish Solar Thermal Power Program
NASA Technical Reports Server (NTRS)
Lucas, J. W. (Editor)
1984-01-01
The proceedings of the Fifth Parabolic Dish Solar Thermal Power Program Annual Review are presented. The results of activities within the Parabolic Dish Technology and Module/Systems Development element of the Department of Energy's Solar Thermal Energy Systems Program were emphasized. Among the topics discussed were: overall Project and Program aspects, Stirling and Brayton module development, concentrator and engine/receiver development along with associated hardware and test results; distributed systems operating experience; international parabolic dish development activities; and non-DOE-sponsored domestic dish activities. Solar electric generation was also addressed.
Potential of HVAC and solar technologies for hospital retrofit to reduce heating energy consumption
NASA Astrophysics Data System (ADS)
Pop, Octavian G.; Abrudan, Ancuta C.; Adace, Dan S.; Pocola, Adrian G.; Balan, Mugur C.
2018-02-01
The study presents a combination of several energy efficient technologies together with their potential to reduce the energy consumption and to increase the comfort through the retrofit of a hospital building. The existing situation is characterized by an old and inefficient heating system, by the complete missing of any ventilation and by no cooling. The retrofit proposal includes thermal insulation and a distributed HVAC system consisting of several units that includes air to air heat exchangers and air to air heat pumps. A condensing boiler was also considered for heating. A solar thermal system for preparing domestic hot water and a solar photovoltaic system to assist the HVAC units are also proposed. Heat transfer principles are used for modelling the thermal response of the building to the environmental parameters and thermodynamic principles are used for modelling the behaviour of HVAC, solar thermal system and photovoltaic system. All the components of the heating loads were determined for one year period. The study reveals the capacity of the proposed systems to provide ventilation and thermal comfort with a global reduction of energy consumption of 71.6 %.
The World's Largest Photovoltaic Concentrator System.
ERIC Educational Resources Information Center
Smith, Harry V.
1982-01-01
The Mississippi County Community College large-scale energy experiment, featuring the emerging high technology of solar electricity, is described. The project includes a building designed for solar electricity and a power plant consisting of a total energy photovoltaic system, and features two experimental developments. (MLW)
Measures for diffusion of solar PV in selected African countries
NASA Astrophysics Data System (ADS)
Nygaard, Ivan; Hansen, Ulrich Elmer; Mackenzie, Gordon; Pedersen, Mathilde Brix
2017-08-01
This paper investigates how African governments are considering supporting and promoting the diffusion of solar PV. This issue is explored by examining so-called 'technology action plans (TAPs)', which were main outputs of the Technology Needs Assessment project implemented in 10 African countries from 2010 to 2013. The paper provides a review of three distinct but characteristic trajectories for PV market development in Kenya (private-led market for solar home systems), Morocco (utility-led fee-for service model) and Rwanda (donor-led market for institutional systems). The paper finds that governments' strategies to promoting solar PV are moving from isolated projects towards frameworks for market development and that there are high expectations to upgrading in the PV value chain through local assembly of panels and local production of other system elements. Commonly identified measures include support to: local production; financing schemes; tax exemptions; establishment and reinforcement of standards; technical training; and research and development.
Comparison of Solar Electric and Chemical Propulsion Missions
NASA Technical Reports Server (NTRS)
Freeh, Joshua E.; Burke, Laura M.; Sjauw, Waldy K.; McGuire, Melissa L.; Smith, Bryan K.
2015-01-01
Solar Electric Propulsion (SEP) offers fuel efficiency and mission robustness for spacecraft. The combination of solar power and electric propulsion engines is currently used for missions ranging from geostationary stationkeeping to deep space science because of these benefits. Both solar power and electric propulsion technologies have progressed to the point where higher electric power systems can be considered, making substantial cargo missions and potentially human missions viable. This paper evaluates and compares representative lunar, Mars, and Sun-Earth Langrangian point missions using SEP and chemical propulsion subsystems. The potential benefits and limitations are discussed along with technology gaps that need to be resolved for such missions to become possible. The connection to NASA's human architecture and technology development efforts will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurup, Parthiv; Turchi, Craig
2015-11-01
After significant interest in the 1970s, but relatively few deployments, the use of solar technologies for thermal applications, including enhanced oil recovery (EOR), desalination, and industrial process heat (IPH), is again receiving global interest. In particular, the European Union (EU) has been a leader in the use, development, deployment, and tracking of Solar Industrial Process Heat (SIPH) plants. The objective of this study is to ascertain U.S. market potential of IPH for concentrating collector technologies that have been developed and promoted through the U.S. Department of Energy's Concentrating Solar Power (CSP) Program. For this study, the solar-thermal collector technologies ofmore » interest are parabolic trough collectors (PTCs) and linear Fresnel (LF) systems.« less
Solar concentrator technology development for space based applications, volume 1
NASA Technical Reports Server (NTRS)
Pintz, A.; Castle, C. H.; Reimer, R. R.
1992-01-01
Thermoelectric conversion using a radio-isotope heat source has been used where outer planetary space craft are too far away for absorbing significant solar energy. Solar dynamic power (SDP) conversion is one technology that offers advantages for applications within the inner planet region. Since SDP conversion efficiency can be 2 to 3 times higher than photovoltaic, the collecting surfaces are much reduced in area and therefore lighter. This becomes an advantage in allocating more weight to launched payloads. A second advantage results for low earth orbit applications. The reduced area results in lower drag forces on the spacecraft and requires less reboost propellant to maintain orbit. A third advantage occurs because of the sun-to-shade cycling while in earth orbit. Photovoltaic systems require batteries to store energy for use when in the shade, and battery life for periods of 10 to 15 years is not presently achievable. For these reasons the Solar Dynamics and Thermal Systems Branch at NASA LeRC has funded work in developing SDP systems. The generic SDP system uses a large parabolic solar concentrator to focus solar energy onto a power conversion device. The concentrators are large areas and must therefore be efficient and have low specific weights. Yet these surfaces must be precise and capable of being stowed in a launch vehicle and then deployed and sometimes unfurled in space. There are significant technical challenges in engineering such structures, and considerable investigation has been made to date. This is the first of two volumes reporting on the research done by the Advanced Manufacturing Center at Cleveland State University to assist NASA LeRC in evaluating this technology. The objective of the grant was to restore the solar concentrator development technology of the 1960s while improving it with advances that have occurred since then. This report summarizes the work done from January 1989 through December 1991.
Solar concentrator technology development for space based applications, volume 2
NASA Technical Reports Server (NTRS)
Pintz, A.; Castle, C. H.; Reimer, R. R.
1992-01-01
Thermoelectric conversion using a radio-isotope heat source has been used where outer planetary space craft are too far away for absorbing significant solar energy. Solar dynamic power (SDP) conversion is one technology that offers advantages for applications within the inner planet region. Since SDP conversion efficiency can be 2 to 3 times higher than photovoltaic, the collecting surfaces are much reduced in area and therefore lighter. This becomes an advantage in allocating more weight to launched payloads. A second advantage results for low earth orbit applications. The reduced area results in lower drag forces on the spacecraft and requires less reboost propellant to maintain orbit. A third advantage occurs because of the sun-to-shade cycling while in earth orbit. Photovoltaic systems require batteries to store energy for use when in the shade, and battery life for periods of 10 to 15 years is not presently achievable. For these reasons the Solar Dynamics and Thermal Systems Branch at NASA LeRC has funded work in developing SDP systems. The generic SDP system uses a large parabolic solar concentrator to focus solar energy onto a power conversion device. The concentrators are large areas and must therefore be efficient and have low specific weights. Yet these surfaces must be precise and capable of being stowed in a launch vehicle and then deployed and sometimes unfurled in space. There are significant technical challenges in engineering such structures, and considerable investigation has been made to date. This is the second of two volumes reporting on the research done by the Advanced Manufacturing Center at Cleveland State University to assist NASA LeRC in evaluating this technology. This volume includes the appendices of selected data sets, drawings, and procedures. The objective of the grant was to restore the solar concentrator development technology of the 1960s while improving it with advances that have occurred since then. This report summarizes the work done from January 1989 through December 1991.
The Solar Energy Consortium of New York Photovoltaic Research and Development Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, Petra M.
2012-10-15
Project Objective: To lead New York State to increase its usage of solar electric systems. The expected outcome is that appropriate technologies will be made available which in turn will help to eliminate barriers to solar energy usage in New York State. Background: The Solar Energy Consortium has been created to lead New York State research on solar systems specifically directed at doubling the efficiency, halving the cost and reducing the cost of installation as well as developing unique form factors for the New York City urban environment.
Solar dynamic power system definition study
NASA Technical Reports Server (NTRS)
Wallin, Wayne E.; Friefeld, Jerry M.
1988-01-01
The solar dynamic power system design and analysis study compared Brayton, alkali-metal Rankine, and free-piston Stirling cycles with silicon planar and GaAs concentrator photovoltaic power systems for application to missions beyond the Phase 2 Space Station level of technology for all power systems. Conceptual designs for Brayton and Stirling power systems were developed for 35 kWe and 7 kWe power levels. All power systems were designed for 7-year end-of-life conditions in low Earth orbit. LiF was selected for thermal energy storage for the solar dynamic systems. Results indicate that the Stirling cycle systems have the highest performance (lowest weight and area) followed by the Brayton cycle, with photovoltaic systems considerably lower in performance. For example, based on the performance assumptions used, the planar silicon power system weight was 55 to 75 percent higher than for the Stirling system. A technology program was developed to address areas wherein significant performance improvements could be realized relative to the current state-of-the-art as represented by Space Station. In addition, a preliminary evaluation of hardenability potential found that solar dynamic systems can be hardened beyond the hardness inherent in the conceptual designs of this study.
Advanced Solar Cell and Array Technology for NASA Deep Space Missions
NASA Technical Reports Server (NTRS)
Piszczor, Michael; Benson, Scott; Scheiman, David; Finacannon, Homer; Oleson, Steve; Landis, Geoffrey
2008-01-01
A recent study by the NASA Glenn Research Center assessed the feasibility of using photovoltaics (PV) to power spacecraft for outer planetary, deep space missions. While the majority of spacecraft have relied on photovoltaics for primary power, the drastic reduction in solar intensity as the spacecraft moves farther from the sun has either limited the power available (severely curtailing scientific operations) or necessitated the use of nuclear systems. A desire by NASA and the scientific community to explore various bodies in the outer solar system and conduct "long-term" operations using using smaller, "lower-cost" spacecraft has renewed interest in exploring the feasibility of using photovoltaics for to Jupiter, Saturn and beyond. With recent advances in solar cell performance and continuing development in lightweight, high power solar array technology, the study determined that photovoltaics is indeed a viable option for many of these missions.
Research and technology, fiscal year 1982
NASA Technical Reports Server (NTRS)
1982-01-01
Advanced studies are reviewed. Atmospheric sciences, magnetospheric physics, solar physics, gravitational physics, astronomy, and materials processing in space comprise the research programs. Large space systems, propulsion technology, materials and processes, electrical/electronic systems, data bases/design criteria, and facilities development comprise the technology development activities.
Research and technology: Fiscal year 1984 report
NASA Technical Reports Server (NTRS)
1985-01-01
Topics covered include extraterrestrial physics, high energy astrophysics, astronomy, solar physics, atmospheres, oceans, terrestrial physics, space technology, sensors, techniques, user space data systems, space communications and navigation, and system and software engineering.
The SERI solar energy storage program
NASA Technical Reports Server (NTRS)
Copeland, R. J.; Wright, J. D.; Wyman, C. E.
1980-01-01
In support of the DOE thermal and chemical energy storage program, the solar energy storage program (SERI) provides research on advanced technologies, systems analyses, and assessments of thermal energy storage for solar applications in support of the Thermal and Chemical Energy Storage Program of the DOE Division of Energy Storage Systems. Currently, research is in progress on direct contact latent heat storage and thermochemical energy storage and transport. Systems analyses are being performed of thermal energy storage for solar thermal applications, and surveys and assessments are being prepared of thermal energy storage in solar applications. A ranking methodology for comparing thermal storage systems (performance and cost) is presented. Research in latent heat storage and thermochemical storage and transport is reported.
New Propulsion Technologies For Exploration of the Solar System and Beyond
NASA Technical Reports Server (NTRS)
Johnson, Les; Cook, Stephen (Technical Monitor)
2001-01-01
In order to implement the ambitious science and exploration missions planned over the next several decades, improvements in in-space transportation and propulsion technologies must be achieved. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs. Future missions will require 2 to 3 times more total change in velocity over their mission lives than the NASA Solar Electric Technology Application Readiness (NSTAR) demonstration on the Deep Space 1 mission. Rendezvous and return missions will require similar investments in in-space propulsion systems. New opportunities to explore beyond the outer planets and to the stars will require unparalleled technology advancement and innovation. The Advanced Space Transportation Program (ASTP) is investing in technologies to achieve a factor of 10 reduction in the cost of Earth orbital transportation and a factor of 2 reduction in propulsion system mass and travel time for planetary missions within the next 15 years. Since more than 70% of projected launches over the next 10 years will require propulsion systems capable of attaining destinations beyond Low Earth Orbit, investment in in-space technologies will benefit a large percentage of future missions. The ASTP technology portfolio includes many advanced propulsion systems. From the next generation ion propulsion system operating in the 5 - 10 kW range, to fission-powered multi-kilowatt systems, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called, "propellantless" because they do not require on-board fuel to achieve thrust. An overview of the state-of-the-art in propellantless propulsion technologies such as solar and plasma sails, electrodynamic and momentum transfer tethers, and aeroassist and aerocapture will also be described. Results of recent earth-based technology demonstrations and space tests for many of these new propulsion technologies will be discussed.
Dish concentrators for solar thermal energy - Status and technology development
NASA Technical Reports Server (NTRS)
Jaffe, L. D.
1981-01-01
Comparisons are presented of point-focusing, or 'dish' solar concentrator system features, development status, and performance levels demonstrated to date. In addition to the requirements of good optical efficiency and high geometric concentration ratios, the most important future consideration in solar thermal energy dish concentrator design will be the reduction of installed and lifetime costs, as well as the materials and labor costs of production. It is determined that technology development initiatives are needed in such areas as optical materials, design wind speeds and wind loads, structural configuration and materials resistance to prolonged exposure, and the maintenance of optical surfaces. The testing of complete concentrator systems, with energy-converting receivers and controls, is also necessary. Both reflector and Fresnel lens concentrator systems are considered.
SOLTECH 1992 proceedings: Solar Process Heat Program, volume 1
NASA Astrophysics Data System (ADS)
1992-03-01
This document is a limited Proceedings, documenting the presentations given at the symposia conducted by the U.S. Department of Energy's (DOE) Solar Industrial Program and Solar Thermal Electrical Program at SOLTECH92. The SOLTECH92 national solar energy conference was held in Albuquerque, New Mexico during the period February 17-20, 1992. The National Renewable Energy Laboratory manages the Solar Industrial Program; Sandia National Laboratories (Albuquerque) manages the Solar Thermal Electric Program. The symposia sessions were as follows: (1) Solar Industrial Program and Solar Thermal Electric Program Overviews, (2) Solar Process Heat Applications, (3) Solar Decontamination of Water and Soil, (4) Solar Building Technologies, (5) Solar Thermal Electric Systems, and (6) Photovoltaic (PV) Applications and Technologies. For each presentation given in these symposia, these Proceedings provide a one- to two-page abstract and copies of the viewgraphs and/or 35 mm slides utilized by the speaker. Some speakers provided additional materials in the interest of completeness. The materials presented in this document were not subjected to a peer review process.
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Kerslake, Thomas W.; Jenkins, Phillip P.; Scheiman, David A.
2004-01-01
NASA missions to Mars, both robotic and human, rely on solar arrays for the primary power system. Mars presents a number of challenges for solar power system operation, including a dusty atmosphere which modifies the spectrum and intensity of the incident solar illumination as a function of time of day, degradation of the array performance by dust deposition, and low temperature operation. The environmental challenges to Mars solar array operation will be discussed and test results of solar cell technology operating under Mars conditions will be presented, along with modeling of solar cell performance under Mars conditions. The design implications for advanced solar arrays for future Mars missions is discussed, and an example case, a Martian polar rover, are analyzed.
77 FR 36085 - Enterprise Underwriting Standards
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-15
... National Laboratory showed that homes with solar PV systems had an average $17,000 sales price premium... projects, such as solar panels, insulation, energy-efficient windows, and other technologies. Homeowners... Berkeley National Laboratory * * * showed an average $17,000 sales price premium for homes with solar P...
ERIC Educational Resources Information Center
von Hippel, Frank; Williams, Robert H.
1975-01-01
As fossil fuels decrease in availability and environmental concerns increase, soalr energy is becoming a potential major energy source. Already solar energy is used for space heating in homes. Proposals for solar-electric generating systems include land-based or ocean-based collectors and harnessing wind and wave power. Photosynthesis can also…
Direct solar heating for Space Station application
NASA Technical Reports Server (NTRS)
Simon, W. E.
1985-01-01
Early investigations have shown that a large percentage of the power generated on the Space Station will be needed in the form of high-temperature thermal energy. The most efficient method of satisfying this requirement is through direct utilization of available solar energy. A system concept for the direct use of solar energy on the Space Station, including its benefits to customers, technologists, and designers of the station, is described. After a brief discussion of energy requirements and some possible applications, results of selective tradeoff studies are discussed, showing area reduction benefits and some possible configurations for the practical use of direct solar heating. Following this is a description of system elements and required technologies. Finally, an assessment of available contributive technologies is presented, and a Space Shuttle Orbiter flight experiment is proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Shaughnessy, Eric; Cutler, Dylan; Ardani, Kristen
As utility electricity rates evolve, pairing solar photovoltaic (PV) systems with battery storage has potential to ensure the value proposition of residential solar by mitigating economic uncertainty. In addition to batteries, load control technologies can reshape customer load profiles to optimize PV system use. The combination of PV, energy storage, and load control provides an integrated approach to PV deployment, which we call 'solar plus'. The U.S. National Renewable Energy Laboratory's Renewable Energy Optimization (REopt) model is utilized to evaluate cost-optimal technology selection, sizing, and dispatch in residential buildings under a variety of rate structures and locations. The REopt modelmore » is extended to include a controllable or 'smart' domestic hot water heater model and smart air conditioner model. We find that the solar plus approach improves end user economics across a variety of rate structures - especially those that are challenging for PV - including lower grid export rates, non-coincident time-of-use structures, and demand charges.« less
O'Shaughnessy, Eric; Cutler, Dylan; Ardani, Kristen; ...
2018-01-11
As utility electricity rates evolve, pairing solar photovoltaic (PV) systems with battery storage has potential to ensure the value proposition of residential solar by mitigating economic uncertainty. In addition to batteries, load control technologies can reshape customer load profiles to optimize PV system use. The combination of PV, energy storage, and load control provides an integrated approach to PV deployment, which we call 'solar plus'. The U.S. National Renewable Energy Laboratory's Renewable Energy Optimization (REopt) model is utilized to evaluate cost-optimal technology selection, sizing, and dispatch in residential buildings under a variety of rate structures and locations. The REopt modelmore » is extended to include a controllable or 'smart' domestic hot water heater model and smart air conditioner model. We find that the solar plus approach improves end user economics across a variety of rate structures - especially those that are challenging for PV - including lower grid export rates, non-coincident time-of-use structures, and demand charges.« less
Choi, Jusol; Park, Chan Gyu; Yoon, Jeyong
2013-02-01
Affordable water disinfection is key to reducing the waterborne disease experienced worldwide where resources are limited. A simple electrochemical system that can generate chlorine as a disinfectant from the electrolysis of sodium chloride is an appropriate technology to produce clean water, particularly if driven by solar energy. This study examined the affordability of an electrochemical chlorine generation system using solar energy and developed the necessary design information for its implementation. A two-electrode batch reactor, equipped with commercial IrO(2)-coated electrodes and a solar panel (approximate area 0.2 m(2)), was used to produce chlorine from a 35g/L solution of NaCl. Within 1 h, sufficient chlorine (0.8 g) was generated to produce clean drinking water for about 80 people for 1 day (target microorganism: Escherichia coli; daily drinking water requirement: 2 L per person; chlorine demand: 4 mg/L; solar power: 650 W/m(2) in Seoul, Korea. Small household batteries were demonstrated to be a suitable alternative power source when there is insufficient solar irradiation. Using a 1 m(2) solar panel, the reactor would take only 15 min in Seoul, Korea, or 7 min in the tropics (solar power 1300 W/m(2)), to generate 1 g of chlorine. The solar-powered electrochemical chlorine generation system for which design information is provided here is a simple and affordable way to produce chlorine with which to convert contaminated water into clean drinking water.
Satellite mirror systems for providing terrestrial power - System concept
NASA Technical Reports Server (NTRS)
Billman, K. W.; Gilbreath, W. P.; Bowen, S. W.
1978-01-01
A system of orbiting reflectors, SOLARES, has been studied as a possible means of providing terrestrial power with a space system of minimum mass and complexity. The key impact that such a system, providing continuous and slightly concentrated insolation, makes on the economic viability of solar farming is demonstrated. New developments in solar sailing are incorporated to reduce mirror mass and transportation cost. The system is compatible with incremental implementation and continual expansion to produce the world's power needs. Key technology, environmental, and economic issues and payoffs are identified. SOLARES appears to be economically superior to other advanced, and even conventional, energy systems and could be scaled to completely abate our fossil fuel usage for power generation.
Initial operation of a solar heating and cooling system in a full-scale solar building test facility
NASA Technical Reports Server (NTRS)
Knoll, R. H.; Miao, D.; Hamlet, I. L.; Jensen, R. N.
1976-01-01
The Solar Building Test Facility (SBTF) located at Hampton, Virginia became operational in early summer of 1976. This facility is a joint effort by NASA-Lewis and NASA-Langley to advance the technology for heating and cooling of office buildings with solar energy. Its purposes are to (1) test system components which include high-performing collectors, (2) test performance of complete solar heating and cooling system, (3) investigate component interactions and (4) investigate durability, maintenance and reliability of components. The SBTF consists of a 50,000 square foot office building modified to accept solar heated water for operation of an absorption air conditioner and for the baseboard heating system. A 12,666 square foot solar collector field with a 30,000 gallon storage tank provides the solar heated water. A description of the system and the collectors selected is given here, along with the objectives, test approach, expected system performance and some preliminary results.
Medical and technology requirements for human solar system exploration missions
NASA Technical Reports Server (NTRS)
Nicogossian, Arnauld; Harris, Leonard; Couch, Lana; Sulzman, Frank; Gaiser, Karen
1989-01-01
Measures that need to be taken to cope with the health problems posed by zero gravity and radiation in manned solar system exploration missions are discussed. The particular systems that will be used aboard Space Station Freedom are addressed, and relevant human factors problems are examined. The development of a controlled ecological life support system is addressed.
NASA Technical Reports Server (NTRS)
1983-01-01
A medical refrigeration and a water pump both powered by solar cells that convert sunlight directly into electricity are among the line of solar powered equipment manufactured by IUS (Independent Utility Systems) for use in areas where conventional power is not available. IUS benefited from NASA technology incorporated in the solar panel design and from assistance provided by Kerr Industrial Applications Center.
NASA Technical Reports Server (NTRS)
1988-01-01
Flight projects and mission definition studies for 1988 are briefly described. Technology research is presented in the following areas: sensors and space technology; space communication systems; system and software engineering; user space data systems; and techniques. Studies are presented for the following space and Earth science areas: atmospheres, SN 1987A, astronomy, high energy astrophysics, land and climate, solar systems, and oceans.
NASA Astrophysics Data System (ADS)
Dinetta, L. C.; Hannon, M. H.
1995-10-01
Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products. Dual-use applications can include battery chargers and remote power supplies for consumer electronics products such as portable telephones/beepers, portable radios, CD players, dashboard radar detectors, remote walkway lighting, etc.
NASA Technical Reports Server (NTRS)
Dinetta, L. C.; Hannon, M. H.
1995-01-01
Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products. Dual-use applications can include battery chargers and remote power supplies for consumer electronics products such as portable telephones/beepers, portable radios, CD players, dashboard radar detectors, remote walkway lighting, etc.
Solar Thermal Upper Stage Cryogen System Engineering Checkout Test
NASA Technical Reports Server (NTRS)
Olsen, A. D; Cady, E. C.; Jenkins, D. S.
1999-01-01
The Solar Thermal Upper Stage technology (STUSTD) program is a solar thermal propulsion technology program cooperatively sponsored by a Boeing led team and by NASA MSFC. A key element of its technology program is development of a liquid hydrogen (LH2) storage and supply system which employs multi-layer insulation, liquid acquisition devices, active and passive thermodynamic vent systems, and variable 40W tank heaters to reliably provide near constant pressure H2 to a solar thermal engine in the low-gravity of space operation. The LH2 storage and supply system is designed to operate as a passive, pressure fed supply system at a constant pressure of about 45 psia. During operation of the solar thermal engine over a small portion of the orbit the LH2 storage and supply system propulsively vents through the enjoy at a controlled flowrate. During the long coast portion of the orbit, the LH2 tank is locked up (unvented). Thus, all of the vented H2 flow is used in the engine for thrust and none is wastefully vented overboard. The key to managing the tank pressure and therefore the H2 flow to the engine is to manage and balance the energy flow into the LH2 tank with the MLI and tank heaters with the energy flow out of the LH2 tank through the vented H2 flow. A moderate scale (71 cu ft) LH2 storage and supply system was installed and insulated at the NASA MSFC Test Area 300. The operation of the system is described in this paper. The test program for the LH2 system consisted of two parts: 1) a series of engineering tests to characterize the performance of the various components in the system: and 2) a 30-day simulation of a complete LEO and GEO transfer mission. This paper describes the results of the engineering tests, and correlates these results with analytical models used to design future advanced Solar Orbit Transfer Vehicles.
Concentrating Solar Power Projects - Puerto Errado 1 Thermosolar Power
linear Fresnel reflector system. Status Date: September 7, 2011 Photo showing an aerial view at an angle ): Novatec Solar España S.L. (100%) Technology: Linear Fresnel reflector Turbine Capacity: Gross: 1.4 MW Technology: Linear Fresnel reflector Status: Operational Country: Spain City: Calasparra Region: Murcia Lat
Study of Membrane Reflector Technology
NASA Technical Reports Server (NTRS)
Knapp, K.; Hedgepeth, J.
1979-01-01
Very large reflective surfaces are required by future spacecraft for such purposes as solar energy collection, antenna surfaces, thermal control, attitude and orbit control with solar pressure, and solar sailing. The performance benefits in large membrane reflector systems, which may be derived from an advancement of this film and related structures technology, are identified and qualified. The results of the study are reported and summarized. Detailed technical discussions of various aspects of the study are included in several separate technical notes which are referenced.
Considerations for Solar Energy Technologies to Make Progress Towards Grid Price Parity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodhouse, Michael; Fu, Ran; Chung, Donald
2015-11-07
In this seminar the component costs for solar photovoltaics module and system prices will be highlighted. As a basis for comparison to other renewable and traditional energy options, the metric of focus will be total lifecycle cost-of-energy (LCOE). Several innovations to traditional photovoltaics technologies (including crystalline silicon, CdTe, and CIGS) and developing technologies (including organics and perovskites) that may close the gaps in LCOE will be discussed.
Toward large-scale solar energy systems with peak concentrations of 20,000 suns
NASA Astrophysics Data System (ADS)
Kribus, Abraham
1997-10-01
The heliostat field plays a crucial role in defining the achievable limits for central receiver system efficiency and cost. Increasing system efficiency, thus reducing the reflective area and system cost, can be achieved by increasing the concentration and the receiver temperature. The concentration achievable in central receiver plants, however, is constrained by current heliostat technology and design practices. The factors affecting field performance are surface and tracking errors, astigmatism, shadowing, blocking and dilution. These are geometric factors that can be systematically treated and reduced. We present improvements in collection optics and technology that may boost concentration (up to 20,000 peak), achievable temperature (2,000 K), and efficiency in solar central receiver plants. The increased performance may significantly reduce the cost of solar energy in existing applications, and enable solar access to new ultra-high-temperature applications, such as: future gas turbines approaching 60% combined cycle efficiency; high-temperature thermo-chemical processes; and gas-dynamic processes.
NASA Astrophysics Data System (ADS)
Canzian, Blaise; Barentine, J.; Hull, T.
2012-01-01
L-3 Integrated Optical Systems (IOS) Division has been selected by the National Solar Observatory (NSO) to make the Top End Optical Assembly (TEOA) for the 4-meter Advanced Technology Solar Telescope (ATST) to operate at Haleakala, Maui. ATST will perform to a very high optical performance level in a difficult thermal environment. The TEOA, containing the 0.65-meter silicon carbide secondary mirror and support, mirror thermal management system, mirror positioning and fast tip-tilt system, field stop with thermally managed heat dump, thermally managed Lyot stop, safety interlock and control system, and support frame, operates in the "hot spot” at the prime focus of the ATST and so presents special challenges. In this paper, we will describe the L-3 IOS technical approach to meet these challenges, including subsystems for opto-mechanical positioning, rejected and stray light control, wavefront tip-tilt compensation, and thermal management. Key words: ATST, TEOA, L-3 IOS, thermal management, silicon carbide (SiC) mirrors, hexapods, solar astronomy
Near Earth Asteroid Scout: NASA's Solar Sail Mission to a NEA
NASA Technical Reports Server (NTRS)
Johnson, Les; Castillo-Rogez, Julie; Dervan, Jared
2017-01-01
NASA is developing a solar sail propulsion system for use on the Near Earth Asteroid (NEA) Scout reconnaissance mission and laying the groundwork for their use in future deep space science and exploration missions. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellant-less thrust, allowing for very high delta V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. The Near Earth Asteroid (NEA) Scout mission, funded by NASA’s Advanced Exploration Systems Program and managed by NASA MSFC, will use the sail as primary propulsion allowing it to survey and image Asteroid 1991VG and, potentially, other NEA’s of interest for possible future human exploration. The NEA Scout spacecraft is housed in a 6U CubeSat-form factor and utilizes an 86 square meter solar sail for a total mass less than 14 kilograms. The mission is in partnership with the Jet Propulsion Laboratory with support from Langley Research Center and science participants from various institutions. NEA Scout will be launched on the maiden flight of the Space Launch System in 2019. The solar sail for NEA Scout will be based on the technology developed and flown by the NASA NanoSail-D and flown on The Planetary Society’s Lightsail-A. Four approximately-7-meter stainless steel booms wrapped on two spools (two overlapping booms per spool) will be motor driven and pull the sail from its stowed volume. The sail material is an aluminized polyimide approximately 2.5 microns thick. As the technology matures, solar sails will increasingly be used to enable science and exploration missions that are currently impossible or prohibitively expensive using traditional chemical and electric propulsion systems. This paper will summarize the status of the NEA Scout mission and solar sail technology in general.
Study of Systems and Technology for Liquid Hydrogen Production Independent of Fossil Fuels
NASA Technical Reports Server (NTRS)
Sprafka, R. J.; Escher, W. J. D.; Foster, R. W.; Tison, R. R.; Shingleton, J.; Moore, J. S.; Baker, C. R.
1983-01-01
Based on Kennedy Space Center siting and logistics requirements and the nonfossil energy resources at the Center, a number of applicable technologies and system candidates for hydrogen production were identified and characterized. A two stage screening of these technologies in the light of specific criteria identified two leading candidates as nonfossil system approaches. Conceptual design and costing of two solar-operated, stand alone systems, one photovoltaic based on and the other involving the power tower approach reveals their technical feasibility as sited as KSC, and the potential for product cost competitiveness with conventional supply approaches in the 1990 to 1210 time period. Conventional water hydrolysis and hydrogen liquefaction subsystems are integrated with the solar subsystems.
Efficient 'Optical Furnace': A Cheaper Way to Make Solar Cells is Reaching the Marketplace
DOE Office of Scientific and Technical Information (OSTI.GOV)
von Kuegelgen, T.
In Bhushan Sopori's laboratory, you'll find a series of optical furnaces he has developed for fabricating solar cells. When not in use, they sit there discreetly among the lab equipment. But when a solar silicon wafer is placed inside one for processing, Sopori walks over to a computer and types in a temperature profile. Almost immediately this fires up the furnace, which glows inside and selectively heats up the silicon wafer to 800 degrees centigrade by the intense light it produces. Sopori, a principal engineer at the National Renewable Energy Laboratory, has been researching and developing optical furnace technology formore » around 20 years. He says it's a challenging technology to develop because there are many issues to consider when you process a solar cell, especially in optics. Despite the challenges, Sopori and his research team have advanced the technology to the point where it will benefit all solar cell manufacturers. They are now developing a commercial version of the furnace in partnership with a manufacturer. 'This advanced optical furnace is highly energy efficient, and it can be used to manufacture any type of solar cell,' he says. Each type of solar cell or manufacturing process typically requires a different furnace configuration and temperature profile. With NREL's new optical furnace system, a solar cell manufacturer can ask the computer for any temperature profile needed for processing a solar cell, and the same type of furnace is suitable for several solar cell fabrication process steps. 'In the future, solar cell manufacturers will only need this one optical furnace because it can be used for any process, including diffusion, metallization and oxidation,' Sopori says. 'This helps reduce manufacturing costs.' One startup company, Applied Optical Systems, has recognized the furnace's potential for manufacturing thin-film silicon cells. 'We'd like to develop thin-film silicon cells with higher efficiencies, up to 15 to 18 percent, and we believe this furnace will enable us to do so,' says A. Rangappan, founder and CEO of Applied Optical Systems. Rangappan also says it will take only a few minutes for the optical furnace to process a thin-film solar cell, which reduces manufacturing costs. Overall, he estimates the company's solar cell will cost around 80 cents per watt. For manufacturing these thin-film silicon cells, Applied Optical Systems and NREL have developed a partnership through a cooperative research and development agreement (CRADA) to construct an optical furnace system prototype. DOE is providing $500,000 from its Technology Commercialization Development Fund to help offset the prototype's development costs because of the technology's significant market potential. The program has provided the NREL technology transfer office with a total of $4 million to expand such collaborative efforts between NREL researchers and companies. Applied Optical will construct a small version of the optical furnace based on the prototype design in NREL's process development and integration laboratory through a separate CRADA. This small furnace will only develop one solar cell wafer at a time. Then, the company will construct a large, commercial-scale optical furnace at its own facilities, which will turn out around 1,000 solar cell wafers per hour. 'We hope to start using the optical furnace for manufacturing within four to five years,' Rangappan says. Meanwhile, another partnership using the optical furnace has evolved between NREL and SiXtron Advanced Materials, another startup. Together they'll use the optical furnace to optimize the metallization process for novel antireflective solar cell coatings. The process is not only expected to yield higher efficiencies for silicon-based solar cells, but also lowers processing costs and eliminates safety concerns for manufacturers. Most solar cell manufacturers currently use a plasma-enhanced chemical vapor deposition (PECVD) system with compressed and extremely pyrophoric silane gas (SiH4) for applying passivation antireflective coatings (ARC). If silane is exposed to air, the SiH4 will explode - a serious safety issue for high-volume manufacturers. SiXtron's process uses a solid, silicon-based polymer that's converted into noncompressed, nonexplosive gas, which then flows to a standard PECVD system. 'The solid source is so safe to handle that it can be shipped by FedEx,' says Zbigniew Barwicz, president and CEO of SiXtron. Barwicz says manufacturers can use the same PECVD processing equipment for the SiXtron process that they already use for SiH4, a plug-and-play solution. For this novel passivation ARC process, NREL is helping to optimize the metallization parameters. NREL has developed a new technology called optical processing. One of the applications of this process is fire-through contact formation of silicon solar cells.« less
NASA Astrophysics Data System (ADS)
Hussey, K.
2014-12-01
NASA's Jet Propulsion Laboratory is using video game technology to immerse students, the general public and mission personnel in our solar system and beyond. "Eyes on the Solar System," a cross-platform, real-time, 3D-interactive application that can run on-line or as a stand-alone "video game," is of particular interest to educators looking for inviting tools to capture students interest in a format they like and understand. (eyes.nasa.gov). It gives users an extraordinary view of our solar system by virtually transporting them across space and time to make first-person observations of spacecraft, planetary bodies and NASA/ESA missions in action. Key scientific results illustrated with video presentations, supporting imagery and web links are imbedded contextually into the solar system. Educators who want an interactive, game-based approach to engage students in learning Planetary Science will see how "Eyes" can be effectively used to teach its principles to grades 3 through 14.The presentation will include a detailed demonstration of the software along with a description/demonstration of how this technology is being adapted for education. There will also be a preview of coming attractions. This work is being conducted by the Visualization Technology Applications and Development Group at NASA's Jet Propulsion Laboratory, the same team responsible for "Eyes on the Earth 3D," and "Eyes on Exoplanets," which can be viewed at eyes.nasa.gov/earth and eyes.nasa.gov/exoplanets.
Solar System Planetary Science Decadal Survey and Missions in the Next Decade, 2013-2022
NASA Technical Reports Server (NTRS)
Reh, Kim
2011-01-01
In 2010, the National Research Council Space Studies Board established a decadal survey committee to develop a comprehensive science, mission, and technology strategy for planetary science that updates and extends the Board's 2003 Solar System Exploration Decadal Survey, "New Frontiers in the Solar System: An Integrated Exploration Strategy." The scope of the survey encompasses the inner planets (Mercury, Venus, and Mars), the Earth's Moon, the giant planets (Jupiter, Saturn, Uranus, and Neptune), the moons of the giant planets, dwarf planets and small bodies, primitive bodies including comets and Kuiper Belt objects, and astrobiology. Over this past year, the decadal survey committee has interacted with the broad solar system science community to determine the current state of knowledge and to identify the most important scientific questions expected to face the community during the interval 2013-2022. The survey has identified candidate missions that address the most important science questions and has conducted, through NASA sponsorship, concept studies to assess the cost of such missions as well as technology needs. The purpose of this paper is to provide an overview of the 2012 Solar System Planetary Science Decadal Survey study approach and missions that were studied for implementation in the upcoming decade. Final results of the decadal survey, including studies that were completed and the specific science, programmatic, and technology recommendations will be disclosed publically in the spring of 2011 and are not the subject of this paper.
Solar-Powered Desalination: A Modelling and Experimental Study
NASA Astrophysics Data System (ADS)
Leblanc, Jimmy; Andrews, John
2007-10-01
Water shortage is becoming one of the major problems worldwide. As such, desalination technologies have been implemented to meet growing demands for fresh water. Among the desalination technologies, thermal desalination, including multi stage flash (MSF) and multi effect evaporation (MEE), is the current leading desalination process. Reverse osmosis (RO) is also being increasingly used. Despite technological improvements, thermal desalination and reverse osmosis continue to be intensive fossil-fuel consumers and contribute to increased levels of greenhouse gases. As energy costs rise, thermal desalination by solar energy and/or low cost waste heat is likely to become increasingly attractive. As part of a project investigating the productive use of saline land and the development of sustainable desalination systems, the feasibility of producing potable water from seawater or brackish water using desalination systems powered by renewable energy in the form of low-temperature solar-thermal sources has been studied. A salinity-gradient solar pond and an evacuated tube solar collector system have been used as heat sources. Solar ponds combine solar energy collection with long-term storage and can provide reliable thermal energy at temperature ranges from 50 to 90 °C. A visual basic computer model of the different multi-stage flash desalination processes coupled with a salinity-gradient solar pond was developed to determine which process is preferable in regards to performance and greenhouse impact. The governing mathematical equations are derived from mass balances, heat energy balances, and heat transfer characteristics. Using the results from the modelling, a small-scale solar-powered desalination system, capable of producing up to 500 litres of fresh water per day, was designed and manufactured. This single-stage flash system consists of two main units: the heat supply and storage system and the flash desalination unit. Two different condenser heat exchanger materials were investigated: copper-nickel and a commercially available plastic. The modelling and design of a three effects MEE system is also discussed. The effects of the important design and operating parameters (recovery ratio, thermal energy, parasitic electrical energy, distillate production and solar collection area) controlling the cost of fresh water determined both from the computer simulation and experimental results are presented and analysed in this paper. Future work in the overall research program is also outlined.
Photovoltaic options for solar electric propulsion
NASA Technical Reports Server (NTRS)
Stella, Paul M.; Flood, Dennis J.
1990-01-01
During the past decade, a number of advances have occurred in solar cell and array technology. These advances have lead to performance improvement for both conventional space arrays and for advanced technology arrays. Performance enhancements have occurred in power density, specific power, and environmental capability. Both state-of-the-art and advanced development cells and array technology are discussed. Present technology will include rigid, rollout, and foldout flexible substrate designs, with silicon and GaAs solar cells. The use of concentrator array systems is also discussed based on both DOD and NASA efforts. The benefits of advanced lightweight array technology, for both near term and far term utilization, and of advanced high efficiency, thin, radiation resistant cells is examined. This includes gallium arsenide on germaniun substrates, indium phosphide, and thin film devices such as copper indium diselenide.
Study of solar array switching power management technology for space power system
NASA Technical Reports Server (NTRS)
Cassinelli, J. E.
1982-01-01
This report documents work performed on the Solar Array Switching Power Management Study. Mission characteristics for three missions were defined to the depth necessary to determine their power management requirements. Solar array switching concepts were identified that could safisfy the mission requirements. These switching concepts were compared with a conventional buck regulator system on the basis of cost, weight and volume, reliability, efficiency and thermal control. For the missions reviewed, solar array switching provided significant advantages in all areas of comparison.
Design Considerations for an Integrated Solar Sail Diagnostics System
NASA Technical Reports Server (NTRS)
Jenkins, Christopher H. M.; Gough, Aaron R.; Pappa, Richard S.; Carroll, Joe; Blandino, Joseph R.; Miles, Jonathan J.; Rakoczy, John
2004-01-01
Efforts are continuing under NASA support to improve the readiness level of solar sail technology. Solar sails have one of the best chances to be the next gossamer spacecraft flown in space. In the gossamer spacecraft community thus far, solar sails have always been considered a "low precision" application compared with, say, radar or optical devices. However, as this paper shows, even low precision gossamer applications put extraordinary demands on structural measurement systems if they are to be traceable to use in space.
Study of solar array switching power management technology for space power system
NASA Technical Reports Server (NTRS)
Cassinelli, J. E.
1982-01-01
This report documents work performed on the Solar Array Switching Power Management Study. Mission characteristics for three missions were defined to the depth necessary to determine their power management requirements. Solar array switching concepts which could satisfy the mission requirements were identified. The switching concepts were compared with a conventional buck regulator system for cost, weight and volume, reliability, efficiency and thermal control. Solar array switching provided significant advantages in all areas of comparison for the reviewed missions.
NASA Technical Reports Server (NTRS)
Young, Roy
2006-01-01
The Solar Sail Propulsion investment area has been one of the three highest priorities within the In-Space Propulsion Technology (ISPT) Project. In the fall of 2003, the NASA Headquarters' Science Mission Directorate provided funding and direction to mature the technology as far as possible through ground research and development from TRL 3 to 6 in three years. A group of experts from government, industry, and academia convened in Huntsville, Alabama to define technology gaps between what was needed for science missions to the inner solar system and the current state of the art in ultra1ightweight materials and gossamer structure design. This activity set the roadmap for development. The centerpiece of the development would be the ground demonstration of scalable solar sail systems including masts, sails, deployment mechanisms, and attitude control hardware and software. In addition, new materials would be subjected to anticipated space environments to quantify effects and assure mission life. Also, because solar sails are huge structures, and it is not feasible to validate the technology by ground test at full scale, a multi-discipline effort was established to develop highly reliable analytical models to serve as mission assurance evidence in future flight program decision-making. Two separate contractor teams were chosen to develop the SSP System Ground Demonstrator (SGD). After a three month conceptual mission/system design phase, the teams developed a ten meter diameter pathfinder set of hardware and subjected it to thermal vacuum tests to compare analytically predicted structural behavior with measured characteristics. This process developed manufacturing and handling techniques and refined the basic design. In 2005, both contractor teams delivered 20 meter, four quadrant sail systems to the largest thermal vacuum chamber in the world in Plum Brook, Ohio, and repeated the tests. Also demonstrated was the deployment and articulation of attitude control mechanisms. In conjunction with these tests, the stowed sails were subjected to launch vibration and ascent vent tests. Other investments studied radiation effects on the solar sail materials, investigated spacecraft charging issues, developed shape measuring techniques and instruments, produced advanced trajectory modeling capabilities, and identified and resolved gossamer structure dynamics issues. Technology validation flight and application to a He1iophysics science mission is on the horizon.
The development of a residential heating and cooling system using NASA derived technology
NASA Technical Reports Server (NTRS)
Oneill, M. J.; Mcdanal, A. J.; Sims, W. H.
1972-01-01
A study to determine the technical and economic feasibility of a solar-powered space heating, air-conditioning, and hot water heating system for residential applications is presented. The basic system utilizes a flat-plate solar collector to process incident solar radiation, a thermal energy storage system to store the collected energy for use during night and heavily overcast periods, and an absorption cycle heat pump for actually heating and cooling the residence. In addition, heat from the energy storage system is used to provide domestic hot water. The analyses of the three major components of the system (the solar collector, the energy storage system, and the heat pump package) are discussed and results are presented. The total system analysis is discussed in detail, including the technical performance of the solar-powered system and a cost comparison between the solar-powered system and a conventional system. The projected applicability of the system to different regions of the nation is described.
The effect of atmospheric drag on the design of solar-cell power systems for low Earth orbit
NASA Technical Reports Server (NTRS)
Kyser, A. C.
1983-01-01
The feasibility of reducing the atmospheric drag of low orbit solar powered satellites by operating the solar-cell array in a minimum-drag attitude, rather than in the conventional Sun pointing attitude was determined. The weights of the solar array, the energy storage batteries, and the fuel required to overcome the drag of the solar array for a range of design life times in orbit were considered. The drag of the array was estimated by free molecule flow theory, and the system weights were calculated from unit weight estimates for 1990 technology. The trailing, minimum drag system was found to require 80% more solar array area, and 30% more battery capacity, the system weights for reasonable life times were dominated by the thruster fuel requirements.
NASA Astrophysics Data System (ADS)
Kost, Christoph; Friebertshäuser, Chris; Hartmann, Niklas; Fluri, Thomas; Nitz, Peter
2017-06-01
This paper analyses the role of solar technologies (CSP and PV) and their interaction in the South African electricity system by using a fundamental electricity system modelling (ENTIGRIS-SouthAfrica). The model is used to analyse the South African long-term electricity generation portfolio mix, optimized site selection and required transmission capacities until the year 2050. Hereby especially the location and grid integration of solar technology (PV and CSP) and wind power plants is analysed. This analysis is carried out by using detailed resource assessment of both technologies. A cluster approach is presented to reduce complexity by integrating the data in an optimization model.
Dynamic and Static Shape Test/Analysis Correlation of a 10 Meter Quadrant Solar Sail
NASA Technical Reports Server (NTRS)
Taleghani, Barmac K.; Lively, Peter S.; Gaspar, James L.; Murphy, David M.; Trautt, Thomas A.
2005-01-01
This paper describes finite element analyses and correlation studies to predict deformations and vibration modes/frequencies of a 10-meter quadrant solar sail system. Thin film membranes and booms were analyzed at the component and system-level. The objective was to verify the design and structural responses of the sail system and to mature solar sail technology to a TRL 5. The focus of this paper is in test/analysis correlation.
Workshop on Advanced Technologies for Planetary Instruments, part 1
NASA Technical Reports Server (NTRS)
Appleby, John F. (Editor)
1993-01-01
This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. This volume contains papers presented at the Workshop on Advanced Technologies for Planetary Instruments on 28-30 Apr. 1993. This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. Over the past several years, SDIO has sponsored a significant technology development program aimed, in part, at the production of instruments with these characteristics. This workshop provided an opportunity for specialists from the planetary science and DoD communities to establish contacts, to explore common technical ground in an open forum, and more specifically, to discuss the applicability of SDIO's technology base to planetary science instruments.
Energy cost unit of street and park lighting system with solar technology for a more friendly city
NASA Astrophysics Data System (ADS)
Warman, E.; Nasution, F. S.; Fahmi, F.
2018-03-01
Street and park lighting system is part of a basic infrastructure need to be available in such a friendly city. Enough light will provide more comfort to citizens, especially at night since its function to illuminate roads and park environments around the covered area. The necessity to add more and more lighting around the city caused the rapid growth of the street and park lighting system while the power from PLN (national electricity company) is insufficient and the cost is getting higher. Therefore, it is necessary to consider other energy sources that are economical, environmentally friendly with good continuity. Indonesia, which located on the equator, have benefited from getting solar radiation throughout the year. This free solar radiation can be utilized as an energy source converted by solar cells to empower street and park lighting system. In this study, we planned the street and park lighting with solar technology as alternatives. It was found that for Kota Medan itself, an average solar radiation intensity of 3,454.17 Wh / m2 / day is available. By using prediction and projection method, it was calculated that the energy cost unit for this system was at Rp 3,455.19 per kWh. This cost was higher than normal energy cost unit but can answer the scarcity of energy availability for street and park lighting system
Energy return on investment (EROI) of solar PV: An attempt at reconciliation
Carbajales-Dale, Michael; Raugei, Marco; Fthenakis, Vasilis; ...
2015-07-01
This research examines the importance of energy return on investment (EROI) as a useful metric for assessing long-term viability of energy-dependent systems. Here, focuses on the methods, applications, and analyses for determining EROI for solar power and solar energy technologies.
Solar Technology Curriculum, 1980.
ERIC Educational Resources Information Center
Seward County Community Coll., Liberal, KS.
This curriculum guide contains lecture outlines and handouts for training solar technicians in the installation, maintenance, and repair of solar energy hot water and space heating systems. The curriculum consists of four modular units developed to provide a model through which community colleges and area vocational/technical schools can respond…
Advanced solar dynamic space power systems perspectives, requirements and technology needs
NASA Technical Reports Server (NTRS)
Dustin, M. O.; Savino, J. M.; Lacy, D. E.; Migra, R. P.; Juhasz, A. J.; Coles, C. E.
1986-01-01
Projected NASA, Civil, Commercial, and Military missions will require space power systems of increased versatility and power levels. The Advanced Solar Dynamic (ASD) Power systems offer the potential for efficient, lightweight, survivable, relatively compact, long-lived space power systems applicable to a wide range of power levels (3 to 300 kWe), and a wide variety of orbits. The successful development of these systems could satisfy the power needs for a wide variety of these projected missions. Thus, the NASA Lewis Research Center has embarked upon an aggressive ASD reserach project under the direction of NASA's Office of Aeronautics and Space Technology (DAST). The project is being implemented through a combination of in-house and contracted efforts. Key elements of this project are missions analysis to determine the power systems requirements, systems analysis to identify the most attractive ASD power systems to meet these requirements, and to guide the technology development efforts, and technology development of key components.
Space-based solar power conversion and delivery systems study. Volume 5: Economic analysis
NASA Technical Reports Server (NTRS)
1977-01-01
Space-based solar power conversion and delivery systems are studied along with a variety of economic and programmatic issues relevant to their development and deployment. The costs, uncertainties and risks associated with the current photovoltaic Satellite Solar Power System (SSPS) configuration, and issues affecting the development of an economically viable SSPS development program are addressed. In particular, the desirability of low earth orbit (LEO) and geosynchronous (GEO) test satellites is examined and critical technology areas are identified. The development of SSPS unit production (nth item), and operation and maintenance cost models suitable for incorporation into a risk assessment (Monte Carlo) model (RAM) are reported. The RAM was then used to evaluate the current SSPS configuration expected costs and cost-risk associated with this configuration. By examining differential costs and cost-risk as a function of postulated technology developments, the critical technologies, that is, those which drive costs and/or cost-risk, are identified. It is shown that the key technology area deals with productivity in space, that is, the ability to fabricate and assemble large structures in space, not, as might be expected, with some hardware component technology.
Solar energy system economic evaluation for Colt Pueblo, Pueblo, Colorado
NASA Technical Reports Server (NTRS)
1980-01-01
The Solar Energy System is not economically beneficial under the assumed economic conditions at Pueblo, Colorado; Yosemite, California; Albuquerque, New Mexico; Fort Worth, Texas; and Washington, D.C. Economic benefits from this system depend on decreasing the initial investment and the continued increase in the cost of conventional energy. Decreasing the cost depends on favorable tax treatment and continuing development of solar energy technology. Fuel cost would have to increase drastically while the cost of the system would have to remain constant or decrease for the system to become economically feasible.
Photovoltaics and solar thermal conversion to electricity - Status and prospects
NASA Technical Reports Server (NTRS)
Alper, M. E.
1979-01-01
Photovoltaic power system technology development includes flat-plate silicon solar arrays and concentrating solar cell systems, which use silicon and other cell materials such as gallium arsenide. System designs and applications include small remote power systems ranging in size from tens of watts to tens of kilowatts, intermediate load-center applications ranging in size from tens to hundreds of kilowatts, and large central plant installations, as well as grid-connected rooftop applications. The thermal conversion program is concerned with large central power systems and small power applications.
Concentrating solar power (CSP) power cycle improvements through application of advanced materials
NASA Astrophysics Data System (ADS)
Siefert, John A.; Libby, Cara; Shingledecker, John
2016-05-01
Concentrating solar power (CSP) systems with thermal energy storage (TES) capability offer unique advantages to other renewable energy technologies in that solar radiation can be captured and stored for utilization when the sun is not shining. This makes the technology attractive as a dispatchable resource, and as such the Electric Power Research Institute (EPRI) has been engaged in research and development activities to understand and track the technology, identify key technical challenges, and enable improvements to meet future cost and performance targets to enable greater adoption of this carbon-free energy resource. EPRI is also involved with technically leading a consortium of manufacturers, government labs, and research organizations to enable the next generation of fossil fired power plants with advanced ultrasupercritical (A-USC) steam temperatures up to 760°C (1400°F). Materials are a key enabling technology for both of these seemingly opposed systems. This paper discusses how major strides in structural materials for A-USC fossil fired power plants may be translated into improved CSP systems which meet target requirements.
Conservation and solar energy program: congressional budget request, FY 1982
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1981-01-01
Funding summaries are presented for the Conservation and Solar Energy Program funding information and program overview on energy conservation (Volume 7 of 7, DOE/CR-0011/2) are included for the Buildings and Community Systems, Industrial, Transportation; State and Local, Multi-Sector, Energy Impact Assistance, and Residential/Commercial retrofit programs. Funding information and program overviews on solar technology (Volume 2 of 7, DOE/CR-011/2) are included for Active and Passive Solar Heating and Cooling, Photovoltaics Energy Systems, Solar Thermal Power Systems, Biomass Energy Systems, Wind Energy Conversion Systems, Ocean Systems, Solar International Activities, Solar Information Systems, SERI Facility, MX-RES, Program Direction, and Alcohol Fuels programs. Informationmore » and overviews on energy production, demonstration, and distribution (Volume 6 of 7, DOE/CR-0011/2) are given for the solar program. A funding summary and a program overview are included for electrochemical and physical and chemical storage systems as appearing in DOE/CR-0011/2, Volume 3 of 7. Relevant tabulated data from the FY 1981. Request to the Congress are presented for Supplementals, Rescissions, and Deferrals. (MCW)« less
Thermodynamic characteristics of a novel wind-solar-liquid air energy storage system
NASA Astrophysics Data System (ADS)
Ji, W.; Zhou, Y.; Sun, Y.; Zhang, W.; Pan, C. Z.; Wang, J. J.
2017-12-01
Due to the nature of fluctuation and intermittency, the utilization of wind and solar power will bring a huge impact to the power grid management. Therefore a novel hybrid wind-solar-liquid air energy storage (WS-LAES) system was proposed. In this system, wind and solar power are stored in the form of liquid air by cryogenic liquefaction technology and thermal energy by solar thermal collector, respectively. Owing to the high density of liquid air, the system has a large storage capacity and no geographic constraints. The WS-LAES system can store unstable wind and solar power for a stable output of electric energy and hot water. Moreover, a thermodynamic analysis was carried out to investigate the best system performance. The result shows that the increases of compressor adiabatic efficiency, turbine inlet pressure and inlet temperature all have a beneficial effect.
2014-05-15
important performance degradation mechanism, and provides a target for future comparisons with MBE-grown QD/host systems . 15. SUBJECT TERMS solar ...challenge for every photovoltaics ( PV ) technology. For space solar cell technologies, the III-V multijunction (MJ) concept has been the leading approach to...gap composition, without the need for high Al concentrations, is nonetheless available in the GaAsP alloy system at GaAs0.52P0.48, which is
CSPonD demonstrative project: Start-up process of a 25 kW prototype
NASA Astrophysics Data System (ADS)
Gil, Antoni; Grange, Benjamin; Perez, Victor G.; Tetreault-Friend, Melanie; Codd, Daniel S.; Calvet, Nicolas; Slocum, Alexander S.
2017-06-01
The current concept of commercial concentrated solar power (CSP) plants, based on the concept of a solar field, receiver, storage and power block, experienced significant growth in the past decades. The power block is the most well know part of the plant, while solar field depends on the receiver technology. The dominant receiver technologies are parabolic troughs and central towers. Most thermal energy storage (TES) relies on two tanks of molten salts, one hot and one cold serviced by pumps and piping systems. In spite of the technical development level achieved by these systems, efficiency is limited, mainly caused by thermal losses in piping, parasitic losses due to electric tracing and pumping and receiver limitations. In order to mitigate the these issues, a new concept called Concentrated Solar Power on Demand (CSPonD), was developed, consisting of a direct absorption Solar Salt CSP receiver which simultaneously acts as TES tank. Currently, in the frame of the flagship collaborative project between the Masdar Institute (UAE) and the Massachusetts Institute of Technology (USA) a 25 kW demonstrative prototype is in its final building phase at the Masdar Institute Solar Platform. The present paper, explains the demonstration prototype based on the CSPonD concept, with emphasis on the planned start-up process for the facility.
Validation of a Scalable Solar Sailcraft
NASA Technical Reports Server (NTRS)
Murphy, D. M.
2006-01-01
The NASA In-Space Propulsion (ISP) program sponsored intensive solar sail technology and systems design, development, and hardware demonstration activities over the past 3 years. Efforts to validate a scalable solar sail system by functional demonstration in relevant environments, together with test-analysis correlation activities on a scalable solar sail system have recently been successfully completed. A review of the program, with descriptions of the design, results of testing, and analytical model validations of component and assembly functional, strength, stiffness, shape, and dynamic behavior are discussed. The scaled performance of the validated system is projected to demonstrate the applicability to flight demonstration and important NASA road-map missions.
Heat engine development for solar thermal power systems
NASA Astrophysics Data System (ADS)
Pham, H. Q.; Jaffe, L. D.
The parabolic dish solar collector systems for converting sunlight to electrical power through a heat engine will, require a small heat engine of high performance long lifetime to be competitive with conventional power systems. The most promising engine candidates are Stirling, high temperature Brayton, and combined cycle. Engines available in the current market today do not meet these requirements. The development of Stirling and high temperature Brayton for automotive applications was studied which utilizes much of the technology developed in this automotive program for solar power engines. The technical status of the engine candidates is reviewed and the components that may additional development to meet solar thermal system requirements are identified.
Concentrated solar power in the built environment
NASA Astrophysics Data System (ADS)
Montenon, Alaric C.; Fylaktos, Nestor; Montagnino, Fabio; Paredes, Filippo; Papanicolas, Costas N.
2017-06-01
Solar concentration systems are usually deployed in large open spaces for electricity generation; they are rarely used to address the pressing energy needs of the built environment sector. Fresnel technology offers interesting and challenging CSP energy pathways suitable for the built environment, due to its relatively light weight (<30 kg.m-2) and low windage. The Cyprus Institute (CyI) and Consorzio ARCA are cooperating in such a research program; we report here the construction and integration of a 71kW Fresnel CSP system into the HVAC (Heating, Ventilation, and Air Conditioning) system of a recently constructed office & laboratory building, the Novel Technologies Laboratory (NTL). The multi-generative system will support cooling, heating and hot water production feeding the system of the NTL building, as a demonstration project, part of the STS-MED program (Small Scale Thermal Solar District Units for Mediterranean Communities) financed by the European Commission under the European Neighbourhood and Partnership Instrument (ENPI), CBCMED program.
NASA Technical Reports Server (NTRS)
Summers, Geoffrey P.; Walters, Robert J.; Messenger, Scott R.; Burke, Edward A.
1996-01-01
An analysis embodied in a PC computer program is presented, which quantitatively demonstrates how the availability of radiation hard solar cells can help minimize the cost of a global satellite communications system. An important distinction between the currently proposed systems, such as Iridium, Odyssey and Ellipsat, is the number of satellites employed and their operating altitudes. Analysis of the major costs associated with implementing these systems shows that operation at orbital altitudes within the earth's radiation belts (10(exp 3) to 10(exp 4)km) can reduce the total cost of a system by several hundred percent, so long as radiation hard components including solar cells can be used. A detailed evaluation of the predicted performance of photovoltaic arrays using several different planar solar cell technologies is given, including commercially available Si and GaAs/Ge, and InP/Si which is currently under development. Several examples of applying the program are given, which show that the end of life (EOL) power density of different technologies can vary by a factor of ten for certain missions. Therefore, although a relatively radiation-soft technology can usually provide the required EOL power by simply increasing the size of the array, the impact upon the total system budget could be unacceptable, due to increased launch and hardware costs. In aggregate, these factors can account for more than a 10% increase in the total system cost. Since the estimated total costs of proposed global-coverage systems range from $1B to $9B, the availability of radiation-hard solar cells could make a decisive difference in the selection of a particular constellation architecture.
Solar-terrestrial research for the 1980's
NASA Technical Reports Server (NTRS)
1981-01-01
The solar-terrestrial system is described. Techniques for observations involving all relevant platforms: spacecraft, the Earth's surface, aircraft, balloons, and rockets are proposed. The need for interagency coordination of programs, efficient data management, theoretical studies and modeling, the continuity of long time series observations, and innovative instrument design is emphasized. Examples of the practical impact of interactions between solar terrestrial phenomena and the environment, including technological systems are presented.
NASA Astrophysics Data System (ADS)
Edgar, L. A.; Anderson, R. B.; Gaither, T. A.; Milazzo, M. P.; Vaughan, R. G.; Rubino-Hare, L.; Clark, J.; Ryan, S.
2017-12-01
"Water in the Solar System" is an out-of-school time (OST) science education activity for middle school students that was developed as part of the Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) project. The PLANETS project was selected in support of the NASA Science Mission Directorate's Science Education Cooperative Agreement Notice, with the goal of developing and disseminating OST curriculum and related professional development modules that integrate planetary science, technology, and engineering. "Water in the Solar System" is a science activity that addresses the abundance and availability of water in the solar system. The activity consists of three exercises based on the following guiding questions: 1) How much water is there on the Earth? 2) Where can you find water in the solar system? and 3) What properties affect whether or not water can be used by astronauts? The three exercises involve a scaling relationship demonstration about the abundance of useable water on Earth, a card game to explore where water is found in the solar system, and a hands-on exercise to investigate pH and salinity. Through these activities students learn that although there is a lot of water on Earth, most of it is not in a form that is accessible for humans to use. They also learn that most water in the solar system is actually farther from the sun, and that properties such as salinity and pH affect whether water can be used by humans. In addition to content for students, the activity includes background information for educators, and links to in-depth descriptions of the science content. "Water in the Solar System" was developed through collaboration between subject matter experts at the USGS Astrogeology Science Center, and curriculum and professional development experts in the Center for Science Teaching and Learning at Northern Arizona University. Here we describe our process of curriculum development, education objectives of "Water in the Solar System" and lessons learned.
Space Solar Power: Satellite Concepts
NASA Technical Reports Server (NTRS)
Little, Frank E.
1999-01-01
Space Solar Power (SSP) applies broadly to the use of solar power for space related applications. The thrust of the NASA SSP initiative is to develop concepts and demonstrate technology for applying space solar power to NASA missions. Providing power from satellites in space via wireless transmission to a receiving station either on earth, another celestial body or a second satellite is one goal of the SSP initiative. The sandwich design is a satellite design in which the microwave transmitting array is the front face of a thin disk and the back of the disk is populated with solar cells, with the microwave electronics in between. The transmitter remains aimed at the earth in geostationary orbit while a system of mirrors directs sunlight to the photovoltaic cells, regardless of the satellite's orientation to the sun. The primary advantage of the sandwich design is it eliminates the need for a massive and complex electric power management and distribution system for the satellite. However, it requires a complex system for focusing sunlight onto the photovoltaic cells. In addition, positioning the photovoltaic array directly behind the transmitting array power conversion electronics will create a thermal management challenge. This project focused on developing designs and finding emerging technology to meet the challenges of solar tracking, a concentrating mirror system including materials and coatings, improved photovoltaic materials and thermal management.
Floating Solar Photovoltaics Gaining Ground | State, Local, and Tribal
Gaining Ground January 24, 2017 by Alison Holm Floating solar photovoltaic (PV) systems, so-called flotovoltaics (a trademarked term) or floating solar, represent an emerging application in which PV panels are sited on bodies of water. The PV panel technology used for floating solar applications is very similar
NASA Technical Reports Server (NTRS)
Howell, Joe T.; O'Neill, Mark J.; Mankins, John C.
2006-01-01
Development is underway on a unique high-voltage, high energy solar concentrator array called Stretched Lens Array Square-Rigger (SLASR) for direct drive electric propulsion. The SLASR performance attributes closely match the critical needs of solar electric propulsion (SEP) systems, which may be used for space tugs to fuel efficiently transport cargo from low earth orbit (LEO) to low lunar orbit (LLO), in support of NASA's robotic and human exploration missions. Later SEP systems may similarly transport cargo from the earth-moon neighborhood to the Mars neighborhood. This paper will describe the SLASR technology, discuss SLASR developments and ground testing, and outline plans for future SLASR technology maturation.
NASA Technical Reports Server (NTRS)
Howell, Joe T.; O'Neill, Mark; Mankins, John C.
2006-01-01
Development is underway on a unique high-voltage, high-energy solar concentrator array called Stretched Lens Array Square-Rigger (SLASR) for direct drive electric propulsion. The SLASR performance attributes closely match the critical needs of solar electric propulsion (SEP) systems, which may be used for space tugs to fuel-efficiently transport cargo from low earth orbit (LEO) to low lunar orbit (LLO), in support of NASA s robotic and human exploration missions. Later SEP systems may similarly transport cargo from the earth-moon neighborhood to the Mars neighborhood. This paper will describe the SLASR technology, discuss SLASR developments and ground testing, and outline plans for future SLASR technology maturation.
Energy harvesting concepts for small electric unmanned systems
NASA Astrophysics Data System (ADS)
Qidwai, Muhammad A.; Thomas, James P.; Kellogg, James C.; Baucom, Jared N.
2004-07-01
In this study, we identify and survey energy harvesting technologies for small electrically powered unmanned systems designed for long-term (>1 day) time-on-station missions. An environmental energy harvesting scheme will provide long-term, energy additions to the on-board energy source. We have identified four technologies that cover a broad array of available energy sources: solar, kinetic (wind) flow, autophagous structure-power (both combustible and metal air-battery systems) and electromagnetic (EM) energy scavenging. We present existing conceptual designs, critical system components, performance, constraints and state-of-readiness for each technology. We have concluded that the solar and autophagous technologies are relatively matured for small-scale applications and are capable of moderate power output levels (>1 W). We have identified key components and possible multifunctionalities in each technology. The kinetic flow and EM energy scavenging technologies will require more in-depth study before they can be considered for implementation. We have also realized that all of the harvesting systems require design and integration of various electrical, mechanical and chemical components, which will require modeling and optimization using hybrid mechatronics-circuit simulation tools. This study provides a starting point for detailed investigation into the proposed technologies for unmanned system applications under current development.
NASA Technical Reports Server (NTRS)
Wong, Wayne A.
2002-01-01
Thin-film inflatable solar concentrators offer significant advantages in comparison to stateof- the-art rigid panel concentrators, including low weight, low stowage volume, and simple gas deployment. From June 10 to 22, 2001, the ElectroMagnetic Radiation Control Experiment (EMRCE) Team used simulated solar energy to demonstrate the operation of an inflatable concentrator system at NASA Glenn Research Center's Tank 6 thermal vacuum facility. The joint Government/industry test team was composed of engineers and technicians from Glenn, the Air Force Research Laboratory, SRS Technologies, and ATK Thiokol Propulsion. The research hardware consisted of the following: 1) A thin-film inflatable concentrator; 2) The hexapod pointing and focus control system; 3) Two rigidized support struts using two candidate technologies - ultraviolet-rigidized glass and radiation-cured isographite.
Skylab technology electrical power system
NASA Technical Reports Server (NTRS)
Woosley, A. P.; Smith, O. B.; Nassen, H. S.
1974-01-01
The solar array/battery power systems for the Skylab vehicle were designed to operate in a solar inertial pointing mode to provide power continuously to the Skylab. Questions of power management are considered, taking into account difficulties caused by the reduction in power system performance due to the effects of structural failure occurring during the launching process. The performance of the solar array of the Apollo Telescope Mount Power System is discussed along with the Orbital Workshop solar array performance and the Airlock Module power conditioning group performance. A list is presented of a number of items which have been identified during mission monitoring and are recommended for electrical power system concepts, designs, and operation for future spacecraft.
Colors of Outer Solar System Objects Measured with VATT
NASA Astrophysics Data System (ADS)
Romanishin, William; Tegler, S. C.; Consolmagno, G. J.
2010-10-01
Over the past 7 years, we have measured optical B-V and V-R colors for about 40 minor outer solar system objects using the 1.8-m Vatican Advanced Technology Telescope (VATT) located on Mt. Graham in southeast Arizona. We will present these colors and use them to update the discussion of colors of minor bodies in the outer solar system. We gratefully acknowledge funding from the NASA Planetary Astronomy Program to Northern Arizona University and the U. of Oklahoma which helped support this work.
Past, present and future of passive homes in solar village 3, Athens
NASA Astrophysics Data System (ADS)
Kalogridis, Achilles
Solar village 3 in Pefki, Athens, was part of an ambitious program for the promotion of solar technology, applied to a large scale social housing scheme, designed in mid 80's and firstly inhabited in the early 1990's. Among the aims of the project was the demonstration of the latest of technology in active solar systems and passive techniques, incorporated in a new settlement's layout and houses' building envelop, in order to create an energy saving, comfortable environment. More than fifteen years later, the housing complex remains the largest residential development of bioclimatic "solar" architecture in Athens, with the active and passive solar systems providing space and water heating for about 1750 inhabitants. The study focuses in the passive solar systems that have been applied to a number of the buildings of the settlement. The systems provide space heating with no need of any active mechanism, however with demand of the participation of the end users for their proper operation. The essay reviews various previous studies, monitoring reports and criticisms that have appeared throughout the past years, and identifies how the houses perform today, through a recent survey, sample monitoring and thermal comfort simulation. The report records things that have changed, features which worked well or others that did not and comments on the residents' behaviour. Interesting findings come into question, regarding the passive solar systems, their integration into the building's design, their current condition and their contribution to energy savings and thermal comfort conditions. Finally, current plans concerning the future of the settlement are highlighted, and considerations about the houses sustainability are suggested.
Training for a Place in the Sun.
ERIC Educational Resources Information Center
Fillippini, W. L.
1979-01-01
To train sheet metal workers in energy conservation technology, the National Training Fund (NTF) of the Sheet Metal and Air Conditioning Industry collaborated with universities in developing their apprenticeship curricula on solar-powered environmental systems, a solar air system training film, and NTF instructor training courses and workshops.…
Solar parabolic dish technology evaluation report
NASA Technical Reports Server (NTRS)
Lucas, J. W.
1984-01-01
The activities of the JPL Solar Thermal Power Systems Parabolic Dish Project for FY 1983 are summarized. Included are discussions on designs of module development including concentrator, receiver, and power conversion subsystems together with a separate discussion of field tests, Small Community Experiment system development, and tests at the Parabolic Dish Test Site.
Application of a reversible chemical reaction system to solar thermal power plants
NASA Technical Reports Server (NTRS)
Hanseth, E. J.; Won, Y. S.; Seibowitz, L. P.
1980-01-01
Three distributed dish solar thermal power systems using various applications of SO2/SO3 chemical energy storage and transport technology were comparatively assessed. Each system features various roles for the chemical system: (1) energy storage only, (2) energy transport, or (3) energy transport and storage. These three systems were also compared with the dish-Stirling, using electrical transport and battery storage, and the central receiver Rankine system, with thermal storage, to determine the relative merit of plants employing a thermochemical system. As an assessment criterion, the busbar energy costs were compared. Separate but comparable solar energy cost computer codes were used for distributed receiver and central receiver systems. Calculations were performed for capacity factors ranging from 0.4 to 0.8. The results indicate that SO2/SO3 technology has the potential to be more cost effective in transporting the collected energy than in storing the energy for the storage capacity range studied (2-15 hours)
NASA Astrophysics Data System (ADS)
Ranjitha, P. Raj; Ratheesh, R.; Jayakumar, J. S.; Balakrishnan, Shankar
2018-02-01
Availability and utilization of energy and water are the top most global challenges being faced by the new millennium. At the present state water scarcity has become a global as well as a regional challenge. 40 % of world population faces water shortage. Challenge of water scarcity can be tackled only with increase in water supply beyond what is obtained from hydrological cycle. This can be achieved either by desalinating the sea water or by reusing the waste water. High energy requirement need to be overcome for either of the two processes. Of many desalination technologies, humidification dehumidification (HDH) technology powered by solar energy is widely accepted for small scale production. Detailed optimization studies on system have the potential to effectively utilize the solar energy for brackish water desalination. Dehumidification technology, specifically, require further study because the dehumidifier effectiveness control the energetic performance of the entire HDH system. The reason attributes to the high resistance involved to diffuse dilute vapor through air in a dehumidifier. The present work intends to optimize the design of a bubble column dehumidifier for a solar energy driven desalination process. Optimization is carried out using Matlab simulation. Design process will identify the unique needs of a bubble column dehumidifier in HDH system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-09-01
A number of investigations, including those conducted by The Aerospace Corporation and other contractors, have led to the recognition of technical, economic, and institutional issues relating to the interface between solar electric technologies and electric utility systems. These issues derive from three attributes of solar electric power concepts, including (1) the variability and unpredictability of the solar resources, (2) the dispersed nature of those resources which suggests the feasible deployment of small dispersed power units, and (3) a high initial capital cost coupled with relatively low operating costs. It is imperative that these integration issues be pursued in parallel withmore » the development of each technology if the nation's electric utility systems are to effectively utilize these technologies in the near to intermediate term. Analyses of three of these issues are presented: utility information requirements, generation mix and production cost impacts, and rate structures in the context of photovoltaic units integrated into the utility system. (WHK)« less
Concentrated solar power on demand demonstration: Construction and operation of a 25 kW prototype
NASA Astrophysics Data System (ADS)
Gil, Antoni; Codd, Daniel S.; Zhou, Lei; Trumper, David; Calvet, Nicolas; Slocum, Alexander H.
2016-05-01
Currently, the majority of concentrated solar power (CSP) plants built worldwide integrate thermal energy storage (TES) systems which enable dispatchable output and higher global plant efficiencies. TES systems are typically based on two tank molten salt technology which involves inherent drawbacks such as parasitic pumping losses and electric tracing of pipes, risk of solidification and high capital costs. The concept presented in this paper is based on a single tank where the concentrated sunlight is directly focused on the molten salt. Hot and cold volumes of salt (at 565 °C and 280 °C, respectively) are axially separated by an insulated divider plate which helps maintain the thermal gradient. The concept, based on existing technologies, seeks to avoid the listed drawbacks as well as reducing the final cost of the TES system. In order to demonstrate its feasibility, Masdar Institute (MI) and Massachusetts Institute of Technology are developing a 25 kW prototype to be tested in the Masdar Solar Platform beam down facility.
NASA Astrophysics Data System (ADS)
Choudhary, Piyush; Srivastava, Rakesh K.; Nath Mahendra, Som; Motahhir, Saad
2017-08-01
In today’s scenario to combat with climate change effects, there are a lot of reasons why we all should use renewable energy sources instead of fossil fuels. Solar energy is one of the best options based on features like good for the environment, independent of electricity prices, underutilized land, grid security, sustainable growth, etc. This concept paper is oriented primarily focused on the use of Solar Energy for the crude oil heating purpose besides other many prospective industrial applications to reduce cost, carbon footprint and moving towards a sustainable and ecologically friendly Oil & Gas Industry. Concentrated Solar Power technology based prototype system is proposed to substitute the presently used system based on natural gas burning method. The hybrid system which utilizes the solar energy in the oil and gas industry would strengthen the overall field working conditions, safety measures and environmental ecology. 40% reduction on natural gas with this hybrid system is estimated. A positive implication for an environment, working conditions and safety precautions is the additive advantage. There could also decrease air venting of CO2, CH4 and N2O by an average of 30-35%.
NASA Technical Reports Server (NTRS)
Pulkkinen, A.; Mahmood, S.; Ngwira, C.; Balch, C.; Lordan, R.; Fugate, D.; Jacobs, W.; Honkonen, I.
2015-01-01
A NASA Goddard Space Flight Center Heliophysics Science Division-led team that includes NOAA Space Weather Prediction Center, the Catholic University of America, Electric Power Research Institute (EPRI), and Electric Research and Management, Inc., recently partnered with the Department of Homeland Security (DHS) Science and Technology Directorate (S&T) to better understand the impact of Geomagnetically Induced Currents (GIC) on the electric power industry. This effort builds on a previous NASA-sponsored Applied Sciences Program for predicting GIC, known as Solar Shield. The focus of the new DHS S&T funded effort is to revise and extend the existing Solar Shield system to enhance its forecasting capability and provide tailored, timely, actionable information for electric utility decision makers. To enhance the forecasting capabilities of the new Solar Shield, a key undertaking is to extend the prediction system coverage across Contiguous United States (CONUS), as the previous version was only applicable to high latitudes. The team also leverages the latest enhancements in space weather modeling capacity residing at Community Coordinated Modeling Center to increase the Technological Readiness Level, or Applications Readiness Level of the system http://www.nasa.gov/sites/default/files/files/ExpandedARLDefinitions4813.pdf.
Benefits of solar/fossil hybrid gas turbine systems
NASA Technical Reports Server (NTRS)
Bloomfield, H. S.
1978-01-01
The potential benefits of solar/fossil hybrid gas turbine power systems were assessed. Both retrofit and new systems were considered from the aspects of; cost of electricity, fuel conservation, operational mode, technology requirements, and fuels flexibility. Hybrid retrofit (repowering) of existing combustion (simple Brayton cycle) turbines can provide near-term fuel savings and solar experience, while new and advanced recuperated or combined cycle systems may be an attractive fuel saving and economically competitive vehicle to transition from today's gas and oil-fired powerplants to other more abundant fuels.
Benefits of solar/fossil hybrid gas turbine systems
NASA Technical Reports Server (NTRS)
Bloomfield, H. S.
1979-01-01
The potential benefits of solar/fossil hybrid gas turbine power systems were assessed. Both retrofit and new systems were considered from the aspects of cost of electricity, fuel conservation, operational mode, technology requirements, and fuels flexibility. Hybrid retrofit (repowering) of existing combustion (simple Brayton cycle) turbines can provide near-term fuel savings and solar experience, while new and advanced recuperated or combined cycle systems may be an attractive fuel saving and economically competitive vehicle to transition from today's gas and oil-fired powerplants to other more abundant fuels.
NASA Technical Reports Server (NTRS)
1976-01-01
Power requirements for the multipurpose space power platform, for space industrialization, SETI, the solar system exploration facility, and for global services are assessed for various launch dates. Priorities and initiatives for the development of elements of space power systems are described for systems using light power input (solar energy source) or thermal power input, (solar, chemical, nuclear, radioisotopes, reactors). Systems for power conversion, power processing, distribution and control are likewise examined.
A New Approach to Geoengineering: Manna From Heaven
NASA Astrophysics Data System (ADS)
Ellery, Alex
2015-04-01
Geo-engineering, although controversial, has become an emerging factor in coping with climate change. Although most are terrestrial-based technologies, I focus on a space-based approach implemented through a solar shield system. I present several new elements that essentially render the high-cost criticism moot. Of special relevance are two seemingly unrelated technologies - the Resource Prospector Mission (RPM) to the Moon in 2018 that shall implement a technology demonstration of simple material resource extraction from lunar regolith, and the emergence of multi-material 3D printing technology that promises unprecedented robotic manufacturing capabilities. My research group has begun theoretical and experimentation work in developing the concept of a 3D printed electric motor system from lunar-type resources. The electric motor underlies every universal mechanical machine. Together with 3D printed electronics, I submit that this would enable self-replicating machines to be realised. A detailed exposition on how this may be achieved will be outlined. Such self-replicating machines could construct the spacecraft required to implement a solar shield and solar power satellites in large numbers from lunar resources with the same underlying technologies at extremely low cost.
Critical technology areas of an SPS development and the applicability of European technology
NASA Technical Reports Server (NTRS)
Kassing, D.; Ruth, J.
1980-01-01
Possible system development and implementation scenarios for the hypothetical European part of a cooperative Satellite Power System effort are discussed, and the technology and systems requirements which could be used as an initial guideline for further evaluation studies are characterized. Examples of advanced European space technologies are described including high power microwave amplifiers, antennas, advanced structures, multi-kilowatt solar arrays, attitude and orbit control systems, and electric propulsion.
New Markets for Solar Photovoltaic Power Systems
NASA Astrophysics Data System (ADS)
Thomas, Chacko; Jennings, Philip; Singh, Dilawar
2007-10-01
Over the past five years solar photovoltaic (PV) power supply systems have matured and are now being deployed on a much larger scale. The traditional small-scale remote area power supply systems are still important and village electrification is also a large and growing market but large scale, grid-connected systems and building integrated systems are now being deployed in many countries. This growth has been aided by imaginative government policies in several countries and the overall result is a growth rate of over 40% per annum in the sales of PV systems. Optimistic forecasts are being made about the future of PV power as a major source of sustainable energy. Plans are now being formulated by the IEA for very large-scale PV installations of more than 100 MW peak output. The Australian Government has announced a subsidy for a large solar photovoltaic power station of 154 MW in Victoria, based on the concentrator technology developed in Australia. In Western Australia a proposal has been submitted to the State Government for a 2 MW photovoltaic power system to provide fringe of grid support at Perenjori. This paper outlines the technologies, designs, management and policies that underpin these exciting developments in solar PV power.
Technology for large space systems: A special bibliography with indexes (supplement 03)
NASA Technical Reports Server (NTRS)
1980-01-01
A bibliography containing 217 abstracts addressing the technology for large space systems is presented. State of the art and advanced concepts concerning interactive analysis and design, structural concepts, control systems, electronics, advanced materials, assembly concepts, propulsion, solar power satellite systems, and flight experiments are represented.
NASA's future space power needs and requirements
NASA Technical Reports Server (NTRS)
Schnyer, A. D.; Sovie, Ronald J.
1990-01-01
The National Space Policy of 1988 established the U.S.'s long-range civil space goals, and has served to guide NASA's recent planning for future space mission operations. One of the major goals was to extend the human presence beyond earth's boundaries and to advance the scientific knowledge of the solar system. A broad spectrum of potential civil space mission opportunities and interests are currently being investigated by NASA to meet the espoused goals. Participation in many of these missions requires power systems with capabilities far beyond what exists today. In other mission examples, advanced power systems technology could enhance mission performance significantly. Power system requirements and issues that need resolution to ensure eventual mission accomplishment are addressed, in conjunction with the ongoing NASA technology development efforts and the need for even greater innovative efforts to match the ambitious solar exploration mission goals. Particular attention is given to potential lunar surface operations and technology goals, based on investigations to date. It is suggested that the nuclear reactor power systems can best meet long-life requirements as well as dramatically reduce the earth-surface-to-lunar-surface transportation costs due to the lunar day/night cycle impact on the solar system's energy storage mass requirements. The state of the art of candidate power systems and elements for the lunar application and the respective exploration technology goals for mission life requirements from 10 to 25 years are examined.
NASA Astrophysics Data System (ADS)
Welch, K. M.
1981-09-01
The Loyola University site is a student dormitory in New Orleans, Louisiana whose active solar energy system is designed to supply 52% of the hot water demand. The system is equipped with 4590 square feet of flat-plate collectors, a 5000-gallon water tank, auxiliary water supplied at high temperature and pressure from a central heating plant with a gas-fired boiler, and a differential controller that selects from 5 operating modes. System performance data are given, including the solar fraction, solar savings ratio, conventional fuel savings, system performance factor, and system coefficient of performance. The solar fraction is well below the design goal; this is attributed to great fluctuations in demand. Insolation, temperature, operation and solar energy utilization data are also presented. The performance of the collector, storage, and domestic hot water subsystems, the system operating energy, energy savings, and weather conditions are also evaluated. Appended are a system description, performance evaluation techniques and equations, site history, sensor technology, and typical monthly data.
Propellantless Attitude Control of Solar Sail Technology Utilizing Reflective Control Devices
NASA Technical Reports Server (NTRS)
Munday, Jeremy
2016-01-01
Solar sails offer an opportunity for a CubeSatscale, propellant-free spacecraft technology that enables long-term and long-distance missions not possible with traditional methods. Solar sails operate using the transfer of linear momentum from photons of sunlight reflected from the surface of the sail. To propel the spacecraft, no mechanically moving parts, thrusters, or propellant are needed. However, attitude control, or orientation, is still performed using traditional methods involving reaction wheels and propellant ejection, which severely limit mission lifetime. For example, the current state of the art solutions employed by upcoming missions couple solar sails with a state of the art propellant ejection gas system. Here, the use of the gas thruster has limited the lifetime of the mission. To solve the limited mission lifetime problem, the Propellantless Attitude Control of Solar Sail Technology Utilizing Reflective Control Devices project team is working on propellantless attitude control using thin layers of material, an optical film, electrically switchable from transparent to reflective. The technology is based on a polymer-dispersed liquid crystal (PDLC), which allows this switch upon application of a voltage. This technology removes the need for propellant, which reduces weight and cost while improving performance and lifetime.
German-Korean cooperation for erection and test of industrialized solar technologies
NASA Astrophysics Data System (ADS)
Pfeiffer, H.
1986-01-01
A combined small solar-wind power station and a solar-thermal experimental plant were built. The plants are designed to demonstrate the effective exploitation of solar energy and wind energy and enhanced availability achievable through combination of these two energy sources. A 14 kW wind energy converter and a 2.5 kW solar-cell generator were operated in parallel. The biaxial tracking system used on the solar generator leads to increased and constant generation of electricity throughout the day. A consumer control system switches the energy generators and the consumers in autonomous mode according to changing supply and demand. The solar powered air conditioning unit operates with an absorption type refrigerating unit, high-output flat collectors and an automatic control system. All design values are achieved on start-up of the plant.
Optimized dispatch in a first-principles concentrating solar power production model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Michael J.; Newman, Alexandra M.; Hamilton, William T.
Concentrating solar power towers, which include a steam-Rankine cycle with molten salt thermal energy storage, is an emerging technology whose maximum effectiveness relies on an optimal operational and dispatch policy. Given parameters such as start-up and shut-down penalties, expected electricity price profiles, solar availability, and system interoperability requirements, this paper seeks a profit-maximizing solution that determines start-up and shut-down times for the power cycle and solar receiver, and the times at which to dispatch stored and instantaneous quantities of energy over a 48-h horizon at hourly fidelity. The mixed-integer linear program (MIP) is subject to constraints including: (i) minimum andmore » maximum rates of start-up and shut-down, (ii) energy balance, including energetic state of the system as a whole and its components, (iii) logical rules governing the operational modes of the power cycle and solar receiver, and (iv) operational consistency between time periods. The novelty in this work lies in the successful integration of a dispatch optimization model into a detailed techno-economic analysis tool, specifically, the National Renewable Energy Laboratory's System Advisor Model (SAM). The MIP produces an optimized operating strategy, historically determined via a heuristic. Using several market electricity pricing profiles, we present comparative results for a system with and without dispatch optimization, indicating that dispatch optimization can improve plant profitability by 5-20% and thereby alter the economics of concentrating solar power technology. While we examine a molten salt power tower system, this analysis is equally applicable to the more mature concentrating solar parabolic trough system with thermal energy storage.« less
Solar Electric Power System Analyses for Mars Surface Missions
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.; Kohout, Lisa L.
1999-01-01
The electric power system is a crucial element of any architecture supporting human surface exploration of Mars. In this paper, we describe the conceptual design and detailed analysis of solar electric power system using photovoltaics and regenerative fuel cells to provide surface power on Mars. System performance, mass and deployed area predictions are discussed along with the myriad environmental factors and trade study results that helped to guide system design choices. Based on this work, we have developed a credible solar electric power option that satisfies the surface power requirements of a human Mars mission. The power system option described in this paper has a mass of approximately 10 metric tons, a approximately 5000-sq m deployable photovoltaic array using thin film solar cell technology.
Lunar orbiting microwave beam power system
NASA Technical Reports Server (NTRS)
Fay, Edgar H.; Cull, Ronald C.
1990-01-01
A microwave beam power system using lunar orbiting solar powered satellite(s) and surface rectenna(s) was investigated as a possible energy source for the Moon's surface. The concept has the potential of reduced system mass by placing the power source in orbit. This can greatly reduce and/or eliminate the 14 day energy storage requirement of a lunar surface solar system. Also propellants required to de-orbit to the surface are greatly reduced. To determine the practicality of the concept and the most important factors, a zero-th order feasibility analysis was performed. Three different operational scenarios employing state of the art technology and forecasts for two different sets of advanced technologies were investigated. To reduce the complexity of the problem, satellite(s) were assumed in circular equatorial orbits around the Moon, supplying continuous power to a single equatorial base through a fixed horizontal rectenna on the surface. State of the art technology yielded specific masses greater than 2500 kg/kw, well above projections for surface systems. Using advanced technologies the specific masses are on the order of 100 kg/kw which is within the range of projections for surface nuclear (20 kg/kw) and solar systems (500 kg/kw). Further studies examining optimization of the scenarios, other technologies such as lasers transmitters and nuclear sources, and operational issues such as logistics, maintenance and support are being carried out to support the Space Exploration Initiative (SEI) to the Moon and Mars.
NASA Technical Reports Server (NTRS)
Hazelrigg, G. A., Jr.
1976-01-01
A variety of economic and programmatic issues are discussed concerning the development and deployment of a fleet of space-based solar power satellites (SSPS). The costs, uncertainties and risks associated with the current photovoltaic SSPS configuration, and with issues affecting the development of an economically viable SSPS development program are analyzed. The desirability of a low earth orbit (LEO) demonstration satellite and a geosynchronous (GEO) pilot satellite is examined and critical technology areas are identified. In addition, a preliminary examination of utility interface issues is reported. The main focus of the effort reported is the development of SSPS unit production, and operation and maintenance cost models suitable for incorporation into a risk assessment (Monte Carlo) model (RAM). It is shown that the key technology area deals with the productivity of man in space, not, as might be expected, with some hardware component technology.
NASA Astrophysics Data System (ADS)
Sun, J.; Jasieniak, J. J.
2017-03-01
Semi-transparent solar cells are a type of technology that combines the benefits of visible light transparency and light-to-electricity conversion. One of the biggest opportunities for such technologies is in their integration as windows and skylights within energy-sustainable buildings. Currently, such building integrated photovoltaics (BIPV) are dominated by crystalline silicon based modules; however, the opaque nature of silicon creates a unique opportunity for the adoption of emerging photovoltaic candidates that can be made truly semi-transparent. These include: amorphous silicon-, kesterite-, chalcopyrite-, CdTe-, dye-sensitized-, organic- and perovskite- based systems. For the most part, amorphous silicon has been the workhorse in the semi-transparent solar cell field owing to its established, low-temperature fabrication processes. Excitement around alternative classes, particularly perovskites and the inorganic candidates, has recently arisen because of the major efficiency gains exhibited by these technologies. Importantly, each of these presents unique opportunities and challenges within the context of BIPV. This topic review provides an overview into the broader benefits of semi-transparent solar cells as building-integrated features, as well as providing the current development status into all of the major types of semi-transparent solar cells technologies.
Sail film materials and supporting structure for a solar sail, a preliminary design, volume 4
NASA Technical Reports Server (NTRS)
Rowe, W. M. (Editor)
1978-01-01
Solar sailing technology was examined in relation to a mission to rendezvous with Halley's Comet. Development of an ultra-light, highly reflecting material system capable of operating at high solar intensity for long periods of time was emphasized. Data resulting from the sail materials study are reported. Topics covered include: basic film; coatings and thermal control; joining and handling; system performance; and supporting structures assessment for the heliogyro.
ERIC Educational Resources Information Center
Orsak, Charles G., Jr.; And Others
The objective of this project was to determine the need for manpower training in solar energy technology and report it on a regional and/or state basis. Three basic questions were to be answered by the project: (1) Based on a survey of solar heating and cooling systems equipment, what types of systems are being manufactured? (2) What is the…
NASA Technical Reports Server (NTRS)
1989-01-01
The Marshall Space Flight Center annual report summarizes their advanced studies, research programs, and technological developments. Areas covered include: transportation systems; space systems such as Gravity Probe-B and Gamma Ray Imaging Telescope; data systems; microgravity science; astronomy and astrophysics; solar, magnetospheric, and atomic physics; aeronomy; propulsion; materials and processes; structures and dynamics; automated systems; space systems; and avionics.
FogEye UV Sensor System evaluation : Phase III report.
DOT National Transportation Integrated Search
2002-11-01
FogEye technology offers the potential for operation of electro optical sensors and systems that function "hands-off", over extended distances during varying atmospheric conditions, day and night. The technology has been shown to employ solar blind u...
Solar and Wind Forecasting | Grid Modernization | NREL
and Wind Forecasting Solar and Wind Forecasting As solar and wind power become more common system operators. An aerial photo of the National Wind Technology Center's PV arrays. Capabilities value of accurate forecasting Wind power visualization to direct questions and feedback during industry
Maryland | Midmarket Solar Policies in the United States | Solar Research |
(RECs). Meter aggregation: Virtual net metering is allowed for agricultural customers, non-profits, and solar PV technology. Mathias Agricultural Energy Efficiency Grant Program Maryland Energy Administration Farms and agricultural businesses are eligible for grants of up to 50% of the system cost, capped at
NASA Technical Reports Server (NTRS)
Summers, Geoffrey P.; Walters, Robert J.; Messenger, Scott R.; Burke, Edward A.
1995-01-01
An analysis embodied in a PC computer program is presented which quantitatively demonstrates how the availability of radiation hard solar cells can minimize the cost of a global satellite communication system. The chief distinction between the currently proposed systems, such as Iridium Odyssey and Ellipsat, is the number of satellites employed and their operating altitudes. Analysis of the major costs associated with implementing these systems shows that operation within the earth's radiation belts can reduce the total system cost by as much as a factor of two, so long as radiation hard components including solar cells, can be used. A detailed evaluation of several types of planar solar cells is given, including commercially available Si and GaAs/Ge cells, and InP/Si cells which are under development. The computer program calculates the end of life (EOL) power density of solar arrays taking into account the cell geometry, coverglass thickness, support frame, electrical interconnects, etc. The EOL power density can be determined for any altitude from low earth orbit (LEO) to geosynchronous (GEO) and for equatorial to polar planes of inclination. The mission duration can be varied over the entire range planned for the proposed satellite systems. An algorithm is included in the program for determining the degradation of cell efficiency for different cell technologies due to proton and electron irradiation. The program can be used to determine the optimum configuration for any cell technology for a particular orbit and for a specified mission life. Several examples of applying the program are presented, in which it is shown that the EOL power density of different technologies can vary by an order of magnitude for certain missions. Therefore, although a relatively radiation soft technology can be made to provide the required EOL power by simply increasing the size of the array, the impact on the total system budget could be unacceptable, due to increased launch and hardware costs. In aggregate these factors can account for more than a 10% increase in the total system cost. Since the estimated total costs of proposed global coverage systems range from $1 Billion to $9 Billion, the availability of radiation hard solar cells could make a decisive difference in the selection of a particular constellation architecture.
Solar/hydrogen systems assessment. Volume 1: Solar/hydrogen systems for the 1985 - 2000 time frame
NASA Technical Reports Server (NTRS)
Foster, R. W.; Tison, R. R.; Escher, W. J. D.; Hanson, J. A.
1980-01-01
Opportunities for commercialization of systems capable of producing hydrogen from solar energy were studied. The hydrogen product costs that might be achieved by the four selected candidate systems was compared with the pricing structure and practices of the commodity gas market. Subsequently, product cost and market price match was noted to exist in the small user sector of the hydrogen marketplace. Barriers to and historical time lags in, commercialization of new technologies are reviewed. Recommendations for development and demonstration programs designed to accelerate the commercialization of the candidate systems are presented.
Solar/hydrogen systems assessment. Volume 1: Solar/hydrogen systems for the 1985 - 2000 time frame
NASA Astrophysics Data System (ADS)
Foster, R. W.; Tison, R. R.; Escher, W. J. D.; Hanson, J. A.
1980-06-01
Opportunities for commercialization of systems capable of producing hydrogen from solar energy were studied. The hydrogen product costs that might be achieved by the four selected candidate systems was compared with the pricing structure and practices of the commodity gas market. Subsequently, product cost and market price match was noted to exist in the small user sector of the hydrogen marketplace. Barriers to and historical time lags in, commercialization of new technologies are reviewed. Recommendations for development and demonstration programs designed to accelerate the commercialization of the candidate systems are presented.
NASA Technical Reports Server (NTRS)
1979-01-01
The preliminary design for a prototype small (20 kWe) solar thermal electric generating unit was completed, consisting of several subsystems. The concentrator and the receiver collect solar energy and a thermal buffer storage with a transport system is used to provide a partially smoothed heat input to the Stirling engine. A fossil-fuel combustor is included in the receiver designs to permit operation with partial or no solar insolation (hybrid). The engine converts the heat input into mechanical action that powers a generator. To obtain electric power on a large scale, multiple solar modules will be required to operate in parallel. The small solar electric power plant used as a baseline design will provide electricity at remote sites and small communities.
ERIC Educational Resources Information Center
Gissendanner, Cassandra S., Ed.
The deliberations of the planning conference to discuss and outline a statewide functioning solar energy technology network and a set of recommendations for future action are presented in this report. Topic areas include background information on both the project and the current energy information system in South Carolina, along with a summary of…
77 FR 15140 - Notice of Buy American Waiver Under the American Recovery and Reinvestment Act of 2009
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-14
... mirror system that will be used in the Advanced Technology Solar Telescope (ATST). This system is... features in the solar atmosphere. DATED: March 14, 2012. ADDRESSES: National Science Foundation, 4201... system (DMS) that will be used in the ATST. The basis for this exemption is section 1605(b)(2) of the...
Analysis and design of the ultraviolet warning optical system based on interference imaging
NASA Astrophysics Data System (ADS)
Wang, Wen-cong; Hu, Hui-jun; Jin, Dong-dong; Chu, Xin-bo; Shi, Yu-feng; Song, Juan; Liu, Jin-sheng; Xiao, Ting; Shao, Si-pei
2017-10-01
Ultraviolet warning technology is one of the important methods for missile warning. It provides a very effective way to detect the target for missile approaching alarm. With the development of modern technology, especially the development of information technology at high speed, the ultraviolet early warning system plays an increasingly important role. Compared to infrared warning, the ultraviolet warning has high efficiency and low false alarm rate. In the modern warfare, how to detect the threats earlier, prevent and reduce the attack of precision-guided missile has become a new challenge of missile warning technology. Because the ultraviolet warning technology has high environmental adaptability, the low false alarm rate, small volume and other advantages, in the military field applications it has been developed rapidly. For the ultraviolet warning system, the optimal working waveband is 250 nm 280 nm (Solar Blind UV) due to the strong absorption of ozone layer. According to current application demands for solar blind ultraviolet detection and warning, this paper proposes ultraviolet warning optical system based on interference imaging, which covers solar blind ultraviolet (250nm-280nm) and dual field. This structure includes a primary optical system, an ultraviolet reflector array, an ultraviolet imaging system and an ultraviolet interference imaging system. It makes use of an ultraviolet beam-splitter to achieve the separation of two optical systems. According to the detector and the corresponding application needs of two visual field of the optical system, the calculation and optical system design were completed. After the design, the MTF of the two optical system is more than 0.8@39lp/mm.A single pixel energy concentration is greater than 80%.
NASA Technical Reports Server (NTRS)
Somers, Alan; Celano, Luigi; Kauffman, Jeffrey; Rogers, Laura; Peterson, Craig
2005-01-01
Missions with planned launch dates several years from today pose significant design challenges in properly accounting for technology advances that may occur in the time leading up to actual spacecraft design, build, test and launch. Conceptual mission and spacecraft designs that rely solely on off the shelf technology will result in conservative estimates that may not be attractive or truly representative of the mission as it actually will be designed and built. This past summer, as part of one of NASA s Vision Mission Studies, a group of students at the Laboratory for Spacecraft and Mission Design (LSMD) have developed and analyzed different Neptune mission baselines, and determined the benefits of various assumed technology improvements. The baseline mission uses either a chemical propulsion system or a solar-electric system. Insertion into orbit around Neptune is achieved by means of aerocapture. Neptune s large moon Triton is used as a tour engine. With these technologies a comprehensive Cassini-class investigation of the Neptune system is possible. Technologies under investigation include the aerocapture heat shield and thermal protection system, both chemical and solar electric propulsion systems, spacecraft power, and energy storage systems.
The use of solar energy - photovoltaic - in hydrogen production and arid zones like Saudi Arabia
NASA Astrophysics Data System (ADS)
Sayigh, A. A. M.
This paper deals with the use of photovoltaic technology for the production of hydrogen from water by electrolysis. First of all the amount of electricity needed for this process was assessed, then various types of solar cell systems to generate the electricity needed were discussed and the best system was established. Some of the investigations involved testing of solar cells with concentrators and with fixed tilt or tracking devices. Several small panels of solar cells were used in testing the effect of local dust and sand as well as the fixed tilt in the area of Riyadh. The cost of producing hydrogen by electrolysis using electricity from a conventional grid was calculated. This cost was compared with the cost of production of hydrogen if a solar cell array was used. The paper outlines the continuous price increase of oil to produce electricity and the rapid decrease in price of solar cells. Both these advances will lead to a cheaper way of producing hydrogen by solar energy. In addition it is shown that technology is almost trouble free and requires very little know-how as far as operation is concerned.
1999-11-01
Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. This photograph shows a fully assembled solar thermal engine placed inside the vacuum chamber at the test facility prior to testing. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move theNation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.
Solar Energy: System Sizing, Design, and Retrofit: Student Material. First Edition.
ERIC Educational Resources Information Center
Younger, Charles; Orsak, Charles G., Jr.
Designed for student use in "System Sizing, Design, and Retrofit," one of 11 courses in a 2-year associate degree program in solar technology, this manual provides readings, exercises, worksheets, bibliographies, and illustrations for 13 course modules. The manual, which corresponds to an instructor guide for the same course, covers the…
From Static to Dynamic: Choosing and Implementing a Web-Based CMS
ERIC Educational Resources Information Center
Kneale, Ruth
2008-01-01
Working as systems librarian for the Advanced Technology Solar Telescope (ATST), a project for the National Solar Observatory (NSO) based in Tucson, Arizona, a large part of the author's responsibilities involve running the web site. She began looking into content management systems (CMSs), specifically ones for website control. A CMS is generally…
Aerospace-Oriented Units for Use in Secondary School Classes.
ERIC Educational Resources Information Center
Williams, Mary H.; And Others
This set of nine units is intended to furnish aerospace-oriented resource material to help teachers include recent scientific and technological advances in the secondary school science curriculum. The units provided are as follows: history of astronomy, the solar system, beyond the solar system, history of flight, spaceflight facts, aerology,…
NASA Technical Reports Server (NTRS)
Holland, T. H.; Borzoni, J. T.
1976-01-01
A low cost flat plate solar energy collector was designed for the heating and cooling of residential buildings. The system meets specified performance requirements, at the desired system operating levels, for a useful life of 15 to 20 years, at minimum cost and uses state-of-the-art materials and technology. The rationale for the design method was based on identifying possible material candidates for various collector components and then selecting the components which best meet the solar collector design requirements. The criteria used to eliminate certain materials were: performance and durability test results, cost analysis, and prior solar collector fabrication experience.
Small solar thermal electric power plants with early commercial potential
NASA Technical Reports Server (NTRS)
Jones, H. E.; Bisantz, D. J.; Clayton, R. N.; Heiges, H. H.; Ku, A. C.
1979-01-01
Cost-effective small solar thermal electric power plants (1- to 10-MW nominal size) offer an attractive way of helping the world meet its future energy needs. The paper describes the characteristics of a conceptual near-term plant (about 1 MW) and a potential 1990 commercial version. The basic system concept is one in which steam is generated using two-axis tracking, parabolic dish, and point-focusing collectors. The steam is transported through low-loss piping to a central steam turbine generator unit where it is converted to electricity. The plants have no energy storage and their output power level varies with the solar insolation level. This system concept, which is firmly based on state-of-the-art technology, is projected to offer one of the fastest paths for U.S. commercialization of solar thermal electric power plants through moderate technology advances and mass production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stettenheim, Joel
Norwich Technologies (NT) is developing a disruptively superior solar field for trough concentrating solar power (CSP). Troughs are the leading CSP technology (85% of installed capacity), being highly deployable and similar to photovoltaic (PV) systems for siting. NT has developed the SunTrap receiver, a disruptive alternative to vacuum-tube concentrating solar power (CSP) receivers, a market currently dominated by the Schott PTR-70. The SunTrap receiver will (1) operate at higher temperature (T) by using an insulated, recessed radiation-collection system to overcome the energy losses that plague vacuum-tube receivers at high T, (2) decrease acquisition costs via simpler structure, and (3) dramaticallymore » increase reliability by eliminating vacuum. It offers comparable optical efficiency with thermal loss reduction from ≥ 26% (at presently standard T) to ≥ 55% (at high T), lower acquisition costs, and near-zero O&M costs.« less
Progress in preliminary studies at Ottana Solar Facility
NASA Astrophysics Data System (ADS)
Demontis, V.; Camerada, M.; Cau, G.; Cocco, D.; Damiano, A.; Melis, T.; Musio, M.
2016-05-01
The fast increasing share of distributed generation from non-programmable renewable energy sources, such as the strong penetration of photovoltaic technology in the distribution networks, has generated several problems for the management and security of the whole power grid. In order to meet the challenge of a significant share of solar energy in the electricity mix, several actions aimed at increasing the grid flexibility and its hosting capacity, as well as at improving the generation programmability, need to be investigated. This paper focuses on the ongoing preliminary studies at the Ottana Solar Facility, a new experimental power plant located in Sardinia (Italy) currently under construction, which will offer the possibility to progress in the study of solar plants integration in the power grid. The facility integrates a concentrating solar power (CSP) plant, including a thermal energy storage system and an organic Rankine cycle (ORC) unit, with a concentrating photovoltaic (CPV) plant and an electrical energy storage system. The facility has the main goal to assess in real operating conditions the small scale concentrating solar power technology and to study the integration of the two technologies and the storage systems to produce programmable and controllable power profiles. A model for the CSP plant yield was developed to assess different operational strategies that significantly influence the plant yearly yield and its global economic effectiveness. In particular, precise assumptions for the ORC module start-up operation behavior, based on discussions with the manufacturers and technical datasheets, will be described. Finally, the results of the analysis of the: "solar driven", "weather forecasts" and "combined storage state of charge (SOC)/ weather forecasts" operational strategies will be presented.
2015 Materials Research Society Spring Meeting
2016-05-12
State University, Raleigh, NC 27695 Eicke R. Weber, Fraunhofer Institute for Solar Energy Systems, Freiburg, Germany Symposium Highlights: The...emission from fossil fuels. Materials hold the key to advanced renewable energy technologies including solar cells, batteries, fuel cells, and catalysis...systems. For example, among renewable energy technologies, solar energy is a limitless source of energy, and photovoltaic energy conversion is one of the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jorgenson, J.; Denholm, P.; Mehos, M.
2014-06-01
Concentrating solar power with thermal energy storage (CSP-TES) is a unique source of solar energy in that its output can be shifted over time. The ability of CSP-TES to be a flexible source of generation may be particularly valuable in regions with high overall penetration of solar energy, such as the state of California. California's Renewable Portfolio Standard (RPS) requires the state to increase generation from eligible renewable energy resources to reach 33% of retail electricity sales by 2020. Beyond 2020, California targets a further reduction in greenhouse gas emissions. To help reach this goal, current California governor Jerry Brownmore » has stated that a higher 40% RPS might be reachable in the near term. The levelized cost of energy is generally emphasized when assessing the economic viability of renewable energy systems implemented to achieve the RPS. However, the operational and capacity benefits of such systems are often ignored, which can lead to incorrect economic comparisons between CSP-TES and variable renewable generation technologies such as solar photovoltaics (PV). Here we evaluate a 40% RPS scenario in a California grid model with PV or CSP-TES providing the last 1% of RPS energy. We compare the technical and economic implications of integrating either solar technology under several sensitivities, finding that the ability to displace new conventional thermal generation capacity may be the largest source of value of CSP-TES compared to PV at high solar penetrations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jorgenson, J.; Denholm, P.; Mehos, M.
2014-05-01
Concentrating solar power with thermal energy storage (CSP-TES) is a unique source of solar energy in that its output can be shifted over time. The ability of CSP-TES to be a flexible source of generation may be particularly valuable in regions with high overall penetration of solar energy, such as the state of California. California's Renewable Portfolio Standard (RPS) requires the state to increase generation from eligible renewable energy resources to reach 33% of retail electricity sales by 2020. Beyond 2020, California targets a further reduction in greenhouse gas emissions. To help reach this goal, current California governor Jerry Brownmore » has stated that a higher 40% RPS might be reachable in the near term. The levelized cost of energy is generally emphasized when assessing the economic viability of renewable energy systems implemented to achieve the RPS. However, the operational and capacity benefits of such systems are often ignored, which can lead to incorrect economic comparisons between CSP-TES and variable renewable generation technologies such as solar photovoltaics (PV). Here we evaluate a 40% RPS scenario in a California grid model with PV or CSP-TES providing the last 1% of RPS energy. We compare the technical and economic implications of integrating either solar technology under several sensitivities, finding that the ability to displace new conventional thermal generation capacity may be the largest source of value of CSP-TES compared to PV at high solar penetrations.« less
Solar Electric Propulsion (SEP) Systems for SMD Mission Needs. Technology Infusion Study.
NASA Technical Reports Server (NTRS)
Anderson, David
2014-01-01
Two presentations for SBAG and OPAG meetings: 1) Solar Electric Propulsion Systems for SMD Missions, and 2) Technology Infusion Study - Draft Findings Recommendation Small Bodies Assessment Group (SBAG) meeting is January 9th in Washington D.C., and the Outer Planets Assessment Group (OPAG) meeting is January 23-14 in Tucson, AZ. NASA sponsors these assessment groups, through the NRC, for the science community to assess and provide advice. These talks are to provide a status of 2 NASA activities, and to seek feedback from the respective science communities.
Systems Integration Fact Sheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-06-01
This fact sheet is an overview of the Systems Integration subprogram at the U.S. Department of Energy SunShot Initiative. The Systems Integration subprogram enables the widespread deployment of safe, reliable, and cost-effective solar energy technologies by addressing the associated technical and non-technical challenges. These include timely and cost-effective interconnection procedures, optimal system planning, accurate prediction of solar resources, monitoring and control of solar power, maintaining grid reliability and stability, and many more. To address the challenges associated with interconnecting and integrating hundreds of gigawatts of solar power onto the electricity grid, the Systems Integration program funds research, development, and demonstrationmore » projects in four broad, interrelated focus areas: grid performance and reliability, dispatchability, power electronics, and communications.« less
NASA Technical Reports Server (NTRS)
Newsom, D. E.; Wolsko, T.
1980-01-01
A preliminary comparative assessment of land use for the satellite power system (SPS), other solar technologies, and alternative electric energy technologies was conducted. The alternative technologies are coal gasification/combined-cycle, coal fluidized-bed combustion (FBC), light water reactor (LWR), liquid metal fast breeder reactor (LMFBR), terrestrial photovoltaics (TPV), solar thermal electric (STE), and ocean thermal energy conversion (OTEC). The major issues of a land use assessment are the quantity, purpose, duration, location, and costs of the required land use. The phased methodology described treats the first four issues, but not the costs. Several past efforts are comparative or single technology assessment are reviewed briefly. The current state of knowledge about land use is described for each technology. Conclusions are drawn regarding deficiencies in the data on comparative land use and needs for further research.
150 kW Class Solar Electric Propulsion Spacecraft Power Architecture Model
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; Aulisio, Michael V.; Loop, Benjamin
2017-01-01
The National Aeronautics and Space Administration (NASA) Solar Electric Propulsion Technology Demonstration Mission in conjunction with PC Krause and Associates has created a Simulink-based power architecture model for a 50 kilo-Watt (kW) solar electric propulsion system. NASA has extended this model to investigate 150 kW solar electric propulsion systems. Increasing the power system capability from 50 kW to 150 kW better aligns with the anticipated power requirements for Mars and other deep space explorations. The high-power solar electric propulsion capability has been identified as a critical part of NASAs future beyond-low-Earth-orbit for human-crewed exploration missions. This paper presents multiple 150 kW architectures, simulation results, and a discussion of their merits.
Fabrication and comparison of selective, transparent optics for concentrating solar systems
NASA Astrophysics Data System (ADS)
Taylor, Robert A.; Hewakuruppu, Yasitha; DeJarnette, Drew; Otanicar, Todd P.
2015-09-01
Concentrating optics enable solar thermal energy to be harvested at high temperature (<100oC). As the temperature of the receiver increases, radiative losses can become dominant. In many concentrating systems, the receiver is coated with a selectively absorbing surface (TiNOx, Black Chrome, etc.) to obtain higher efficiency. Commercial absorber coatings are well-developed to be highly absorbing for short (solar) wavelengths, but highly reflective at long (thermal emission) wavelengths. If a solar system requires an analogous transparent, non-absorbing optic - i.e. a cover material which is highly transparent at short wavelengths, but highly reflective at long wavelengths - the technology is simply not available. Low-e glass technology represents a commercially viable option for this sector, but it has only been optimized for visible light transmission. Optically thin metal hole-arrays are another feasible solution, but are often difficult to fabricate. This study investigates combinations of thin film coatings of transparent conductive oxides and nanoparticles as a potential low cost solution for selective solar covers. This paper experimentally compares readily available materials deposited on various substrates and ranks them via an `efficiency factor for selectivity', which represents the efficiency of radiative exchange in a solar collector. Out of the materials studied, indium tin oxide and thin films of ZnS-Ag-ZnS represent the most feasible solutions for concentrated solar systems. Overall, this study provides an engineering design approach and guide for creating scalable, selective, transparent optics which could potentially be imbedded within conventional low-e glass production techniques.
Low-cost distributed solar-thermal-electric power generation
NASA Astrophysics Data System (ADS)
Der Minassians, Artin; Aschenbach, Konrad H.; Sanders, Seth R.
2004-01-01
Due to their high relative cost, solar electric energy systems have yet to be exploited on a widespread basis. It is believed in the energy community that a technology similar to photovoltaic (PV), but offered at about $1/W would lead to widespread deployment at residential and commercial sites. This paper addresses the investigation and feasibility study of a low-cost solar thermal electricity generation technology, suitable for distributed deployment. Specifically, we discuss a system based on nonimaging solar concentrators, integrated with free-piston Stirling engine devices incorporating integrated electric generation. We target concentrator-collector operation at moderate temperatures, in the range of 125°C to 150°C. This temperature is consistent with use of optical concentrators with concentration ratios on the order of 1-2. These low ratio concentrators admit wide angles of radiation acceptance and are thus compatible with no diurnal tracking, and no or only a few seasonal adjustments. Thus, costs and reliability hazards associated with tracking hardware systems are avoided. Further, we note that in the intended application, there is no shortage of incident solar energy, but rather it is the capital cost of the solar-electric system that is most precious. Thus, we outline a strategy for exploiting solar resources in a cost constrained manner. The paper outlines design issues, and a specific design for an appropriately dimensioned free-piston Stirling engine. Only standard low-cost materials and manufacturing methods are required to realize such a machine.
Solar thermal power & gas turbine hybrid design with molten salt storage tank
NASA Astrophysics Data System (ADS)
Martín, Fernando; Wiesenberg, Ralf; Santana, Domingo
2017-06-01
Taking into consideration the need to decelerate the global climatic change, power generation has to shift from burning fossil fuel to renewable energy source in short medium period of time. In this work, we are presenting a new model of a solar-gas natural hybrid power cycle with the main aim of decoupling the solar generation system from the gas turbine system. The objective is to have high solar power contribution compared to conventional ISCC plants [2], producing firm and dispatchable electricity at the same time. The decoupling is motivated by the low solar contribution reached by the ISCC, which is technically limited to maximum of 15%, [4]. In our case, we have implemented a solar tower with molten salts as working fluid. Central receiver systems get higher performance than others systems, like parabolic trough technology [1], due to the higher temperature achieved in the heat transferred fluid HTF, close to 560°C.
Solar Airplanes and Regenerative Fuel Cells
NASA Technical Reports Server (NTRS)
Bents, David J.
2007-01-01
A solar electric aircraft with the potential to "fly forever" has captured NASA's interest, and the concept for such an aircraft was pursued under Aeronautics Environmental Research Aircraft and Sensor Technology (ERAST) project. Feasibility of this aircraft happens to depend on the successful development of solar power technologies critical to NASA's Exploration Initiatives; hence, there was widespread interest throughout NASA to bring these technologies to a flight demonstration. The most critical is an energy storage system to sustain mission power during night periods. For the solar airplane, whose flight capability is already limited by the diffuse nature of solar flux and subject to latitude and time of year constraints, the feasibility of long endurance flight depends on a storage density figure of merit better than 400-600 watt-hr per kilogram. This figure of merit is beyond the capability of present day storage technologies (other than nuclear) but may be achievable in the hydrogen-oxygen regenerative fuel cell (RFC). This potential has led NASA to undertake the practical development of a hydrogen-oxygen regenerative fuel cell, initially as solar energy storage for a high altitude UAV science platform but eventually to serve as the primary power source for NASAs lunar base and other planet surface installations. Potentially the highest storage capacity and lowest weight of any non-nuclear device, a flight-weight RFC aboard a solar-electric aircraft that is flown continuously through several successive day-night cycles will provide the most convincing demonstration that this technology's widespread potential has been realized. In 1998 NASA began development of a closed cycle hydrogen oxygen PEM RFC under the Aeronautics Environmental Research Aircraft and Sensor Technology (ERAST) project and continued its development, originally for a solar electric airplane flight, through FY2005 under the Low Emissions Alternative Power (LEAP) project. Construction of the closed loop system began in 2002 at the NASA Glenn Research Center in Cleveland, Ohio. System checkout was completed, and testing began, in July of 2003. The initial test sequences were done with only a fuel cell or electrolyzer in the test rig. Those tests were used to verify the test apparatus, procedures, and software. The first complete cycles of the fully closed loop, regenerative fuel cell system were successfully completed in the following September. Following some hardware upgrades to increase reactant recirculation flow, the test rig was operated at full power in December 2003 and again in January 2004. In March 2004 a newer generation of fuel cell and electrolyzer stacks was substituted for the original hardware and these stacks were successfully tested at full power under cyclic operation in June of 2004.
NASA Technical Reports Server (NTRS)
McSpadden, James; Mankins, John C.; Howell, Joe T. (Technical Monitor)
2002-01-01
The concept of placing enormous solar power satellite (SPS) systems in space represents one of a handful of new technological options that might provide large-scale, environmentally clean base load power into terrestrial markets. In the US, the SPS concept was examined extensively during the late 1970s by the U.S. Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA). More recently, the subject of space solar power (SSP) was reexamined by NASA from 1995-1997 in the "fresh look" study, and during 1998 in an SSP "concept definition study". As a result of these efforts, in 1999-2000, NASA undertook the SSP Exploratory Research and Technology (SERT) program which pursued preliminary strategic technology research and development to enable large, multi-megawatt SSP systems and wireless power transmission (WPT) for government missions and commercial markets (in-space and terrestrial). During 2001-2002, NASA has been pursuing an SSP Concept and Technology Maturation (SCTM) program follow-on to the SERT, with special emphasis on identifying new, high-leverage technologies that might advanced the feasibility of future SSP systems. In addition, in 2001, the U.S. National Research Council (NRC) released a major report providing the results of a peer review of NASA's SSP strategic research and technology (R&T) road maps. One of the key technologies needed to enable the future feasibility of SSP/SPS is that of wireless power transmission. Advances in phased array antennas and rectennas have provided the building blocks for a realizable WPT system. These key components include the dc-RF converters in the transmitter, the retrodirective beam control system, and the receiving rectenna. Each subject is briefly covered, and results from the SERT program that studied a 5.8 GHz SPS system are presented. This paper presents a summary results from NASA's SSP efforts, along with a summary of the status of microwave WPT technology development.
NASA Technical Reports Server (NTRS)
Pankratz, Chris; Beland, Stephane; Craft, James; Baltzer, Thomas; Wilson, Anne; Lindholm, Doug; Snow, Martin; Woods, Thomas; Woodraska, Don
2018-01-01
The Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado in Boulder, USA operates the Solar Radiation and Climate Experiment (SORCE) NASA mission, as well as several other NASA spacecraft and instruments. Dozens of Solar Irradiance data sets are produced, managed, and disseminated to the science community. Data are made freely available to the scientific immediately after they are produced using a variety of data access interfaces, including the LASP Interactive Solar Irradiance Datacenter (LISIRD), which provides centralized access to a variety of solar irradiance data sets using both interactive and scriptable/programmatic methods. This poster highlights the key technological elements used for the NASA SORCE mission ground system to produce, manage, and disseminate data to the scientific community and facilitate long-term data stewardship. The poster presentation will convey designs, technological elements, practices and procedures, and software management processes used for SORCE and their relationship to data quality and data management standards, interoperability, NASA data policy, and community expectations.
Solar hydrogen production with cerium oxides thermochemical cycle
NASA Astrophysics Data System (ADS)
Binotti, Marco; Di Marcoberardino, Gioele; Biassoni, Mauro; Manzolini, Giampaolo
2017-06-01
This paper discusses the hydrogen production using a solar driven thermochemical cycle. The thermochemical cycle is based on nonstoichiometric cerium oxides redox and the solar concentration system is a solar dish. Detailed optical and redox models were developed to optimize the hydrogen production performance as function of several design parameters (i.e. concentration ratio, reactor pressures and temperatures) The efficiency of the considered technology is compared against two commercially available technologies namely PV + electrolyzer and Dish Stirling + electrolyzer. Results show that solar-to-fuel efficiency of 21.2% can be achieved at design condition assuming a concentration ratio around 5000, reduction and oxidation temperatures of 1500°C and 1275 °C. When moving to annual performance, the annual yield of the considered approach can be as high as 16.7% which is about 43% higher than the best competitive technology. The higher performance implies that higher installation costs around 40% can be accepted for the innovative concept to achieve the same cost of hydrogen.
Selected OAST/OSSA space experiment activities in support of Space Station Freedom
NASA Astrophysics Data System (ADS)
Delombard, Richard
The Space Experiments Division at NASA Lewis Research Center is developing technology and science space experiments for the Office of Aeronautics and Space Technology (OAST) and the Office of Space Sciences and Applications (OSSA). Selected precursor experiments and technology development activities supporting the Space Station Freedom (SSF) are presented. The Tank Pressure Control Experiment (TPCE) is an OAST-funded cryogenic fluid dynamics experiment, the objective of which is to determine the effectiveness of jet mixing as a means of equilibrating fluid temperatures and controlling tank pressures, thereby permitting the design of lighter cryogenic tanks. The information from experiments such as this will be utilized in the design and operation of on board cryogenic storage for programs such as SSF. The Thermal Energy Storage Flight Project (TES) is an OAST-funded thermal management experiment involving phase change materials for thermal energy storage. The objective of this project is to develop and fly in-space experiments to characterize void shape and location in phase change materials used in a thermal energy storage configuration representative of an advanced solar dynamic system design. The information from experiments such as this will be utilized in the design of future solar dynamic power systems. The Solar Array Module Plasma Interaction Experiment (SAMPIE) is an OAST-funded experiment to determine the environmental effects of the low earth orbit (LEO) space plasma environment on state-of-the-art solar cell modules biased to high potentials relative to the plasma. Future spacecraft designs and structures will push the operating limits of solar cell arrays and other high voltage systems. SAMPIE will provide key information necessary for optimum module design and construction. The Vibration Isolation Technology (VIT) Advanced Technology Development effort is funded by OSSA to provide technology necessary to maintain a stable microgravity environment for sensitive payloads on board spacecraft. The proof of concept will be demonstrated by laboratory tests and in low-gravity aircraft flights. VIT is expected to be utilized by many SSF microgravity science payloads. The Space Acceleration Measurement System (SAMS) is an OSSA-funded instrument to measure the microgravity acceleration environment for OSSA payloads on the shuttle and SSF.
Selected OAST/OSSA space experiment activities in support of Space Station Freedom
NASA Technical Reports Server (NTRS)
Delombard, Richard
1992-01-01
The Space Experiments Division at NASA Lewis Research Center is developing technology and science space experiments for the Office of Aeronautics and Space Technology (OAST) and the Office of Space Sciences and Applications (OSSA). Selected precursor experiments and technology development activities supporting the Space Station Freedom (SSF) are presented. The Tank Pressure Control Experiment (TPCE) is an OAST-funded cryogenic fluid dynamics experiment, the objective of which is to determine the effectiveness of jet mixing as a means of equilibrating fluid temperatures and controlling tank pressures, thereby permitting the design of lighter cryogenic tanks. The information from experiments such as this will be utilized in the design and operation of on board cryogenic storage for programs such as SSF. The Thermal Energy Storage Flight Project (TES) is an OAST-funded thermal management experiment involving phase change materials for thermal energy storage. The objective of this project is to develop and fly in-space experiments to characterize void shape and location in phase change materials used in a thermal energy storage configuration representative of an advanced solar dynamic system design. The information from experiments such as this will be utilized in the design of future solar dynamic power systems. The Solar Array Module Plasma Interaction Experiment (SAMPIE) is an OAST-funded experiment to determine the environmental effects of the low earth orbit (LEO) space plasma environment on state-of-the-art solar cell modules biased to high potentials relative to the plasma. Future spacecraft designs and structures will push the operating limits of solar cell arrays and other high voltage systems. SAMPIE will provide key information necessary for optimum module design and construction. The Vibration Isolation Technology (VIT) Advanced Technology Development effort is funded by OSSA to provide technology necessary to maintain a stable microgravity environment for sensitive payloads on board spacecraft. The proof of concept will be demonstrated by laboratory tests and in low-gravity aircraft flights. VIT is expected to be utilized by many SSF microgravity science payloads. The Space Acceleration Measurement System (SAMS) is an OSSA-funded instrument to measure the microgravity acceleration environment for OSSA payloads on the shuttle and SSF.
NanoSail-D: A Solar Sail Demonstration Mission
NASA Technical Reports Server (NTRS)
Johnson, Les; Whorton, Mark; Heaton, Andy; Pinson, robin; Laue, Greg; Adams, Charles
2009-01-01
During the past decade, within the United States, NASA Marshall Space Flight Center (MSFC) was heavily engaged in the development of revolutionary new technologies for in-space propulsion. One of the major in-space propulsion technologies developed was a solar sail propulsion system. Solar sail propulsion uses the solar radiation pressure exerted by the momentum transfer of reflected photons to generate a net force on a spacecraft. To date, solar sail propulsion systems have been designed for large spacecraft in the tens to hundreds of kilograms mass range. Recently, however, MSFC has been investigating the application of solar sails for small satellite propulsion. Likewise, NASA Ames Research Center (ARC) has been developing small spacecraft missions that have a need for amass-efficient means of satisfying deorbit requirements. Hence, a synergistic collaboration was established between these two NASA field Centers with the objective of conducting a flight demonstration of solar sail technologies for small satellites. The NanoSail-D mission flew onboard the ill-fated Falcon Rocket launched August 2, 2008, and, due to the failure of that rocket, never achieved orbit. The NanoSail-D flight spare is ready for flight and a suitable launch arrangement is being actively pursued. Both the original sailcraft and the flight spare are hereafter referred to as NanoSail-D. The sailcraft consists of a sail subsystem stowed in a three-element CubeSat. Shortly after deployment of the NanoSail-D, the solar sail will deploy and mission operations will commence. This demonstration flight has two primary technical objectives: (1) to successfully stow and deploy the sail and (2) to demonstrate deorbit functionality. Given a near-term opportunity for launch on Falcon, the project was given the challenge of delivering the flight hardware in 6 mo, which required a significant constraint on flight system functionality. As a consequence, passive attitude stabilization of the spacecraft will be achieved using permanent magnets to detumble and orient the body with the magnetic field lines and then rely on atmospheric drag to passively stabilize the sailcraft in an essentially maximum drag attitude. This paper will present an introduction to solar sail propulsion systems and an overview of the NanoSail-D spacecraft.
Photovoltaic power system for a lunar base
NASA Astrophysics Data System (ADS)
Karia, Kris
An assessment is provided of the viability of using photovoltaic power technology for lunar base application during the initial phase of the mission. The initial user power demands were assumed to be 25 kW (daytime) and 12.5 kW (night time). The effect of lunar adverse environmental conditions were also considered in deriving the photovoltaic power system concept. The solar cell array was found to impose no more design constraints than those solar arrays currently being designed for spacecraft and the Space Station Freedom. The long lunar night and the need to store sufficient energy to sustain a lunar facility during this period was found to be a major design driver. A photovoltaic power system concept was derived using high efficiency thin GaAs solar cells on a deployable flexible Kapton blanket. The solar array design was sized to generate sufficient power for daytime use and for a regenerative fuel cell (RFC) energy storage system to provide power during the night. Solar array sun-tracking is also proposed to maximize the array power output capability. The system launch mass was estimated to be approximately 10 metric tons. For mission application of photovoltaic technology other issues have to be addressed including the constraints imposed by launch vehicle, safety, and cost. For the initial phase of the mission a photovoltaic power system offers a safe option.
Ship Integration of Energy Scavenging Technology for Sea Base Operations
2009-07-01
operates similar to the common commercial refrigerating system in reverse like a heat pump.3 However, cold water pipes do pose a 12 Naval Surface...sunlight at the focal point in a solar collector , more light can be converted to electricity for less solar cell material. Solar concentrators come in...Kotter, D.K., et al. (2008). Proceeding from ES2008: Solar Nantenna Electromagnetic Collectors . Jacksonville, Florida: Energy Sustainability 2008
Report of the Power Sub systems Panel. [spacecraft instrumentation technology
NASA Technical Reports Server (NTRS)
1979-01-01
Problems in spacecraft power system design, testing, integration, and operation are identified and solutions are defined. The specific technology development problems discussed include substorm and plasma design data, modeling of the power subsystem and components, power system monitoring and degraded system management, rotary joints for transmission of power and signals, nickel cadmium battery manufacturing and application, on-array power management, high voltage technology, and solar arrays.
NASA Technical Reports Server (NTRS)
Benson, H.; Jenkins, L. M.
1981-01-01
The construction, operation, and maintenance requirements for a solar power satellite, including the space and ground systems, are reviewed. The basic construction guidelines are explained, and construction location options are discussed. The space construction tasks, equipment, and base configurations are discussed together with the operations required to place a solar power satellite in geosynchronous orbit. A rectenna construction technique is explained, and operation with the grid is defined. Maintenance requirements are summarized for the entire system. Key technology issues required for solar power satellite construction operations are defined.
Solar central receiver reformer system for ammonia plants
NASA Astrophysics Data System (ADS)
1980-07-01
An overview of a study to retrofit the Valley Nitrogen Producers, Inc., El Centro, California 600 ST/SD Ammonia Plant with Solar Central Receiver Technology is presented. The retrofit system consists of a solar central receiver reformer (SCRR) operating in parallel with the existing fossil fired reformer. Steam and hydrocarbon react in the catalyst filled tubes of the inner cavity receiver to form a hydrogen rich mixture which is the syngas feed for the ammonia production. The SCRR system will displace natural gas presently used in the fossil reformer combustion chamber.
NASA Technical Reports Server (NTRS)
Potter, P. Y.
1990-01-01
The annual report of the Marshall Space Flight Center for 1990 is presented. Brief summaries of research are presented for work in the fields of transportation systems, space systems, data systems, microgravity science, astronomy, astrophysics, solar physics, magnetospheric physics, atomic physics, aeronomy, Earth science and applications, propulsion technology, materials and processes, structures and dynamics, automated systems, space systems, and avionics.
Candidate thermal energy storage technologies for solar industrial process heat applications
NASA Technical Reports Server (NTRS)
Furman, E. R.
1979-01-01
A number of candidate thermal energy storage system elements were identified as having the potential for the successful application of solar industrial process heat. These elements which include storage media, containment and heat exchange are shown.
Performance of advanced missions using fusion propulsion
NASA Technical Reports Server (NTRS)
Friedlander, Alan; Mcadams, Jim; Schulze, Norm
1989-01-01
A quantitive evaluation of the premise that nuclear fusion propulsion offers benefits as compared to other propulsion technologies for carrying out a program of advanced exploration of the solar system and beyond is presented. Using a simplified analytical model of trajectory performance, numerical results of mass requirements versus trip time are given for robotic missions beyond the solar system that include flyby and rendezvous with the Oort cloud of comets and with the star system Alpha Centauri. Round trip missions within the solar system, including robotic sample returns from the outer planet moons and multiple asteroid targets, and manned Mars exploration are also described.
Solar System Science with the Twinkle Space Mission
NASA Astrophysics Data System (ADS)
Bowles, N.; Lindsay, S.; Tessenyi, M.; Tinetti, G.; Savini, G.; Tennyson, J.; Pascale, E.; Jason, S.; Vora, A.
2017-09-01
Twinkle is a space-based telescope mission designed for the spectroscopic observation (0.4 to 4.5 μm) of exoplanet atmospheres and Solar System objects. The system design and mission implementation are based on existing, well studied concepts pioneered by Surrey Satellite Technology Ltd for low-Earth orbit Earth Observation satellites, supported by a novel international access model to allow facility access to researchers worldwide. Whilst Twinkle's primary science goal is the observation of exoplanet atmospheres its wide spectroscopic range and photometric stability also make it a unique platform for the observation of Solar system objects.
Deployable Propulsion, Power and Communications Systems for Solar System Exploration
NASA Technical Reports Server (NTRS)
Johnson, L.; Carr, J.; Boyd, D.
2017-01-01
NASA is developing thin-film based, deployable propulsion, power, and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. By leveraging recent advancements in thin films, photovoltaics, and miniaturized electronics, new mission-level capabilities will be enabled aboard lower-cost small spacecraft instead of their more expensive, traditional counterparts, enabling a new generation of frequent, inexpensive deep space missions. Specifically, thin-film technologies are allowing the development and use of solar sails for propulsion, small, lightweight photovoltaics for power, and omnidirectional antennas for communication.
NASA Technical Reports Server (NTRS)
1981-01-01
A waste water treatment plant in Wilton, Maine, where sludge is converted to methane gas, and Monsanto Company's Environmental Health Laboratory in St. Louis Missouri, where more than 200 solar collectors provide preheating of boiler feed water for laboratory use are representative of Grumman's Sunstream line of solar energy equipment. This equipment was developed with technology from NASA's Apollo lunar module program.
Solar Heating and Cooling Experiment for a School in Atlanta. Performance Report.
ERIC Educational Resources Information Center
Westinghouse Electric Corp., Falls Church, VA.
This report documents the performance and conclusions of a 13-month period of monitoring the performance of the experimental solar heating and cooling system installed in the George A. Towns Elementary School, Atlanta, Georgia. The objectives of the project were to (1) make a significant contribution to solar design, technology, and acceptability;…
NASA Technical Reports Server (NTRS)
Bents, David J.; Lu, Cheng Y.
1989-01-01
Solar Photo Voltaic (PV) and thermal dynamic power systems for application to selected Low Earth Orbit (LEO) and High Eccentric Orbit (Energy) (HEO) missions are characterized in the regime 7 to 35 kWe. Input parameters to the characterization are varied corresponding to anticipated introduction of improved or new technologies. Comparative assessment is made between the two power system types utilizing newly emerging technologies in cells and arrays, energy storage, optical surfaces, heat engines, thermal energy storage, and thermal management. The assessment is made to common ground rules and assumptions. The four missions (space station, sun-synchronous, Van Allen belt and GEO) are representative of the anticipated range of multi-kWe earth orbit missions. System characterizations include all required subsystems, including power conditioning, cabling, structure, to deliver electrical power to the user. Performance is estimated on the basis of three different levels of component technology: (1) state-of-art, (2) near-term, and (3) advanced technologies. These range from planar array silicon/IPV nickel hydrogen batteries and Brayton systems at 1000 K to thin film GaAs with high energy density secondary batteries or regenerative fuel cells and 1300 K Stirling systems with ultra-lightweight concentrators and radiators. The system estimates include design margin for performance degradations from the known environmental mechanisms (micrometeoroids and space debris, atomic oxygen, electron and proton flux) which are modeled and applied depending on the mission. The results give expected performance, mass and drag of multi-kWe earth orbiting solar power systems and show how overall system figures of merit will improve as new component technologies are incorporated.
Photovoltaic (PV) Systems Comparison at Fort Hood
2010-06-01
Monocrystalline PV panels • Energy Photovoltaics, EPV-42 Solar Modules: Thin film PV panels • OutBack Flexware PV Advanced Photovoltaic Combiner...energy for an administrative building – Compare the performance between two different PV technologies: thin film and crystalline PV panels • Demo Team...Center for Energy and Environment PV Technology • Monocrystalline silicon1 • Thin film2 1 “About Solar,” DBK Corporation, http://www.dbksolar.com
Thermal Energy Storage: Fourth Annual Review Meeting
NASA Technical Reports Server (NTRS)
1980-01-01
The development of low cost thermal energy storage technologies is discussed in terms of near term oil savings, solar energy applications, and dispersed energy systems for energy conservation policies. Program definition and assessment and research and technology development are considered along with industrial storage, solar thermal power storage, building heating and cooling, and seasonal thermal storage. A bibliography on seasonal thermal energy storage emphasizing aquifer thermal energy is included.
Technology for large space systems: A bibliography with indexes (supplement 08)
NASA Technical Reports Server (NTRS)
1983-01-01
This bibliography lists 414 reports, articles and other documents introduced into the NASA scientific and technical information system. It provides helpful information to the researcher, manager, and designer in technology development and mission design in the area of Large Space System Technology. Subject matter is grouped according to systems, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems.
Technology for large space systems: A bibliography with indexes (supplement 09)
NASA Technical Reports Server (NTRS)
1983-01-01
This bibliography lists 414 reports, articles and other documents introduced into the NASA scientific and technical information system between January 1, 1983 and June 30, 1983. Information on technology development and mission design in the area of Large Space System Technology is provided. Subject matter is grouped according to systems, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics. advanced materials, assembly concepts, propulsion, and solar power satellite systems.
Technology for large space systems: A bibliography with indexes (supplement 10)
NASA Technical Reports Server (NTRS)
1984-01-01
The bibliography lists 408 reports, articles and other documents introduced into the NASA scientific and technical information system to provide helpful information to the researcher, manager, and designer in technology development and mission design in the area of large space system technology. Subject matter is grouped according to systems, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems.
Overview of the Solar Dynamic Ground Test Demonstration Program at the NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.
1995-01-01
The Solar Dynamic (SD) Ground Test Demonstration (GTD) program demonstrates the availability of SD technologies in a simulated space environment at the NASA Lewis Research Center (LERC) vacuum facility. Data from the SD GTD program will be provided to the joint U.S. and Russian team which is currently designing a 2 kW SD flight demonstration power system. This SD technology has the potential as a future power source for the International Space Station. This paper reviews the goals and status of the SD GTD program. A description of the SD GTD system includes key design features of the system, subsystems and components.
Multiple-etalon systems for the Advanced Technology Solar Telescope
NASA Technical Reports Server (NTRS)
Gary, G. Allen; Balasubramaniam, K. S.; Sigwarth, Michael
2003-01-01
Multiple etalon systems are discussed that meet the science requirements for a narrow-passband imaging system for the 4-meter National Solar Observatory (NSO)/Advance Technology Solar Telescope (ATST). A multiple etalon system can provide an imaging interferometer that works in four distinct modes: as a spectro-polarimeter, a filter-vector magnetograph, an intermediate-band imager, and broadband high-resolution imager. Specific dual and triple etalon configurations are described that provide a spectrographic passband of 2.0-3.5 micron and reduce parasitic light levels to 10(exp -4) as required for precise polarization measurement, e.g., Zeeman measurements of magnetic sensitive lines. A TESOS-like (Telecentric Etalon SOlar Spectrometer) triple etalon system provides a spectral purity of 10(exp -5). The triple designs have the advantage of reducing the finesse requirement on each etalon; allow the use of more stable blocking filters, and have very high spectral purity. A dual-etalon double-pass (Cavallini-like) system can provide a competing configuration. Such a dual-etalon design can provide high contrast. The selection of the final focal plane instrument will depend on a trade-off between an ideal instrument and practical reality. The trade study will include the number of etalons, their aperture sizes, complexities of the optical train, number of blocking filters, configuration of the electronic control system, computer interfaces, temperature controllers, etalon controllers, and their associated feedback electronics. The heritage of single and multiple etalon systems comes from their use in several observatories, including the Marshall Space Flight Center (MSFC) Solar Observatory, Sacramento Peak Observatory (NSO), and Kiepenheuer-Institut fur Sonnenphysik (KIS, Germany), Mees Solar Observatory (University of Hawaii), and Arcetri Astrophysical Observatory (Italy). The design of the ATST multiple etalon system will benefit from the experience gained at these observatories.
Stretched Lens Array Photovoltaic Concentrator Technology Developed
NASA Technical Reports Server (NTRS)
Piszczor, Michael F., Jr.; O'Neill, Mark J.
2004-01-01
Solar arrays have been and continue to be the mainstay in providing power to nearly all commercial and government spacecraft. Light from the Sun is directly converted into electrical energy using solar cells. One way to reduce the cost of future space power systems is by minimizing the size and number of expensive solar cells by focusing the sunlight onto smaller cells using concentrator optics. The stretched lens array (SLA) is a unique concept that uses arched Fresnel lens concentrators to focus sunlight onto a line of high-efficiency solar cells located directly beneath. The SLA concept is based on the Solar Concentrator Array with Refractive Linear Element Technology (SCARLET) design that was used on NASA's New Millennium Deep Space 1 mission. The highly successful asteroid/comet rendezvous mission (1998 to 2001) demonstrated the performance and long-term durability of the SCARLET/SLA solar array design and set the foundation for further improvements to optimize its performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duty, C.; Angelini, J.; Armstrong, B.
The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication ofmore » high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and thin film solar cells, to explore non-vacuum ink-based approaches to solar cell production, as well as large-scale and low-cost deposition and processing of thin film CdTe material.« less
NASA Astrophysics Data System (ADS)
Porter, Wayne Eliot
Arizona has an abundant solar resource and technologically mature systems are available to capture it, but solar energy systems are still considered to be an innovative technology. Adoption rates for solar and wind energy systems rise and fall with the political tides, and are relatively low in most rural areas in Arizona. This thesis tests the hypothesis that a consumer profile developed to characterize the adopters of renewable energy technology (RET) systems in rural Arizona is the same as the profile of other area residents who performed renovations, upgrades or additions to their homes. Residents of Santa Cruz and Cochise Counties who had obtained building permits to either install a solar or wind energy system or to perform a substantial renovation or upgrade to their home were surveyed to gather demographic, psychographic and behavioristic data. The data from 133 survey responses (76 from RET adopters and 57 from non-adopters) provided insights about their decisions regarding whether or not to adopt a RET system. The results, which are statistically significant at the 99% level of confidence, indicate that RET adopters had smaller households, were older and had higher education levels and greater income levels than the non-adopters. The research also provides answers to three related questions: First, are the energy conservation habits of RET adopters the same as those of non-adopters? Second, what were the sources of information consulted and the most important factors that motivated the decision to purchase a solar or wind energy system? And finally, are any of the factors which influenced the decision to live in a rural area in southeastern Arizona related to the decision to purchase a renewable energy system? The answers are provided, along with a series of recommendations that are designed to inform marketers and other promoters of RETs about how to utilize these results to help achieve their goals.
NASA Technical Reports Server (NTRS)
Nickol, Craig L.; Guynn, Mark D.; Kohout, Lisa L.; Ozoroski, Thomas A.
2007-01-01
The objective of this study was to develop a variety of High Altitude Long Endurance (HALE) Unmanned Aerial Vehicle (UAV) conceptual designs for two operationally useful missions (hurricane science and communications relay) and compare their performance and cost characteristics. Sixteen potential HALE UAV configurations were initially developed, including heavier-than-air (HTA) and lighter-than-air (LTA) concepts with both consumable fuel and solar regenerative (SR) propulsion systems. Through an Analysis of Alternatives (AoA) down select process, the two leading consumable fuel configurations (one each from the HTA and LTA alternatives) and an HTA SR configuration were selected for further analysis. Cost effectiveness analysis of the consumable fuel configurations revealed that simply maximizing vehicle endurance can lead to a sub-optimum system solution. An LTA concept with a hybrid propulsion system (solar arrays and a hydrogen-air proton exchange membrane fuel cell) was found to have the best mission performance; however, an HTA diesel-fueled wing-body-tail configuration emerged as the preferred consumable fuel concept because of the large size and technical risk of the LTA concept. The baseline missions could not be performed by even the best HTA SR concept. Mission and SR technology trade studies were conducted to enhance understanding of the potential capabilities of such a vehicle. With near-term technology SR-powered HTA vehicles are limited to operation in favorable solar conditions, such as the long days and short nights of summer at higher latitudes. Energy storage system specific energy and solar cell efficiency were found to be the key technology areas for enhancing HTA SR performance.
NASA Technical Reports Server (NTRS)
Crabtree, W. L.
1980-01-01
A spectrophotovoltaic converter, a thermophotovoltaic converter, a cassegrainian concentrator, a large silicon cell blanket, and a high flux approach are among the concepts being investigated as part of the multihundred kW solar array program for reducing the cost of photovoltaic energy in space. These concepts involve a range of technology risks, the highest risk being represented by the thermophotovoltaics and spectrophotovoltaics approaches which involve manipulation to of the incoming spectrum to enhance system efficiency. The planar array (solar blanket) has no technology risk and a moderate payback. The primary characteristics, components, and technology concerns of each of these concepts are summarized. An orbital power platform mission in the late 1980's is being used to allow a coherent technology advancement program in order to achieve a ten year life with maintenance at a capital recurring cost of $30/watt based on 1978 dollars.
Inflatable Vehicles for In-Situ Exploration of Titan
NASA Technical Reports Server (NTRS)
Jones, J. A.
2001-01-01
Space Inflatable vehicles have been finding popularity in recent years for applications as varied as spacecraft antennas, space-based telescopes, solar sails, and manned habitats. Another branch of space inflatable technology has also considered developing ambient-filled, solar balloons for Mars as well as ambient-filled inflatable rovers. More recently, some of these inflatable technologies have been applied to the outer solar system bodies with the result that there are some rather unique and compelling inflatable mission capabilities for in situ explorations of Titan, Triton, Uranus, and Neptune. Additional information is contained in the original extended abstract.
ERIC Educational Resources Information Center
Wilkinson, John
2013-01-01
Humans have always had the vision to one day live on other planets. This vision existed even before the first person was put into orbit. Since the early space missions of putting humans into orbit around Earth, many advances have been made in space technology. We have now sent many space probes deep into the Solar system to explore the planets and…
Science and Technology Text Mining: Electric Power Sources
2004-04-01
Transactions of Power Systems), Thermal Engineering (Applied Thermal Engineering, JSME International Journal Series B – Fluids Thermal Engineering...Renewables ( International Journal of Hydrogen Energy, Biomass and Bioenergy, Solar Energy), Electrochemistry (Solid State Ionics, Journal of the...pollutants, with balanced emphasis given to solar and biomass systems. The papers in International Journal of Energy Research focus on performance of total
Solar Parabolic Dish Annual Technology Evaluation Report
NASA Technical Reports Server (NTRS)
1983-01-01
The activities of the JPL Solar Thermal Power Systems Parabolic Dish Project for FY 1982 are summarized. Included are discussions on designs of module development including their concentrator, receiver, and power conversion subsystems. Analyses and test results, along with progress on field tests, Small Community Experiment System development, and tests at the Parabolic Dish Test Site are also included.
New solar selective coating based on carbon nanotubes
NASA Astrophysics Data System (ADS)
Abendroth, Thomas; Leupolt, Beate; Mäder, Gerrit; Härtel, Paul; Grählert, Wulf; Althues, Holger; Kaskel, Stefan; Beyer, Eckhard
2016-05-01
Carbon nanotubes (CNTs) can be applied to assemble a new type of solar selective coating system for solar thermal applications. In this work the predominant absorption processes occurring by interaction with π-plasmon and Van Hove singularities (VHS) were investigated by UV-VIS-NIR spectroscopy and ellipsometry. Not only optical properties for as deposited SWCNT thin films itself, but also the potential for systematic tailoring will be presented. Besides low cost technologies required, the adjustability of optical properties, as well as their thermal stability render CNT based solar selective coatings as promising alternative to commercially available coating systems.
NASA Technical Reports Server (NTRS)
1986-01-01
Activities of the Goddard Space Flight Center are described in the areas of planets and interplanetary media, comets, astronomy and high-energy physics, solar physics, atmospheres, terrestrial physics, ocean science, sensors and space technology, techniques, user space data systems, space communications and navigation, and system and software engineering. Flight projects and mission definition studies are presented, and institutional technology is described.
Dish Stirling solar receiver program
NASA Technical Reports Server (NTRS)
Haglund, R. A.
1980-01-01
A technology demonstration of a Dish Stirling solar thermal electric system can be accomplished earlier and at a much lower cost than previous planning had indicated by employing technical solutions that allow already existing hardware, with minimum modifications, to be integrated into a total system with a minimum of development. The DSSR operates with a modified United Stirling p-40 engine/alternator and the JPL Test Bed Concentrator as a completely integrated solar thermal electric system having a design output of 25 kWe. The system is augmented by fossil fuel combustion which ensures a continuous electrical output under all environmental conditions. Technical and economic studies by government and industry in the United States and abroad identify the Dish Stirling solar electric system as the most appropriate, efficient and economical method for conversion of solar energy to electricity in applications when the electrical demand is 10 MWe and less.
Otanicar, Todd P; Golden, Jay S
2009-08-01
This study compares environmental and economic impacts of using nanofluids to enhance solar collector efficiency as compared to conventional solar collectors for domestic hotwater systems. Results show that for the current cost of nanoparticles the nanofluid based solar collector has a slightly longer payback period but at the end of its useful life has the same economic savings as a conventional solar collector. The nanofluid based collector has a lower embodied energy (approximately 9%) and approximately 3% higher levels of pollution offsets than a conventional collector. In addition if 50% penetration of residential nanofluid based solar collector systems for hot water heating could be achieved in Phoenix, Arizona over 1 million metric tons of CO2 would be offset per year.
Concept designs for NASA's Solar Electric Propulsion Technology Demonstration Mission
NASA Technical Reports Server (NTRS)
Mcguire, Melissa L.; Hack, Kurt J.; Manzella, David H.; Herman, Daniel A.
2014-01-01
Multiple Solar Electric Propulsion Technology Demonstration Mission were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kilogram spacecraft capable of delivering 4000 kilogram of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kilogram spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload. Low-cost and maximum Delta-V capability variants of a spacecraft concept based on utilizing a secondary payload adapter as the primary bus structure were developed as were concepts designed to be co-manifested with another spacecraft on a single launch vehicle. Each of the Solar Electric Propulsion Technology Demonstration Mission concepts developed included an estimated spacecraft cost. These data suggest estimated spacecraft costs of $200 million - $300 million if 30 kilowatt-class solar arrays and the corresponding electric propulsion system currently under development are used as the basis for sizing the mission concept regardless of launch vehicle costs. The most affordable mission concept developed based on subscale variants of the advanced solar arrays and electric propulsion technology currently under development by the NASA Space Technology Mission Directorate has an estimated cost of $50M and could provide a Delta-V capability comparable to much larger spacecraft concepts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welch, K.M.
1981-01-01
The Loyola University site is a student dormitory in New Orleans, Louisiana whose active solar energy system is designed to supply 52% of the hot water demand. The system is equipped with 4590 square feet of flat-plate collectors, a 5000-gallon water tank, auxiliary water supplied at high temperature and pressure from a central heating plant with a gas-fired boiler, and a differential controller that selects from 5 operating modes. System performance data are given, including the solar fraction, solar savings ratio, conventional fuel savings, system performance factor, and system coefficient of performance. The solar fraction is well below the designmore » goal; this is attributed to great fluctuations in demand. Insolation, temperature, operation and solar energy utilization data are also presented. The performance of the collector, storage, and domestic hot water subsystems, the system operating energy, energy savings, and weather conditions are also evaluated. Appended are a system description, performance evaluation techniques and equations, site history, sensor technology, and typical monthly data. (LEW)« less
Solar Sails: Sneaking up on Interstellar Travel
NASA Astrophysics Data System (ADS)
Johnson, L.
Throughout the world, government agencies, universities and private companies are developing solar sail propulsion systems to more efficiently explore the solar system and to enable science and exploration missions that are simply impossible to accomplish by any other means. Solar sail technology is rapidly advancing to support these demonstrations and missions, and in the process, is incrementally advancing one of the few approaches allowed by physics that may one day take humanity to the stars. Continuous solar pressure provides solar sails with propellantless thrust, potentially enabling them to propel a spacecraft to tremendous speeds theoretically much faster than any present-day propulsion system. The next generation of sails will enable us to take our first real steps beyond the edge of the solar system, sending spacecraft out to distances of 1000 Astronomical Units, or more. In the farther term, the descendants of these first and second generation sails will augment their thrust by using high power lasers and enable travel to nearby stellar systems with flight times less than 500 years a tremendous improvement over what is possible with conventional chemical rockets. By fielding these first solar sail systems, we are sneaking up on a capability to reach the stars.
Extraterrestrial applications of solar optics for interior illumination
NASA Technical Reports Server (NTRS)
Eijadi, David A.; Williams, Kyle D.
1992-01-01
Solar optics is a terrestrial technology that has potential extraterrestrial applications. Active solar optics (ASO) and passive solar optics (PSO) are two approaches to the transmission of sunlight to remote interior spaces. Active solar optics is most appropriate for task illumination, while PSO is most appropriate for general illumination. Research into solar optics, motivated by energy conservation, has produced lightweight and low-cost materials, products that have applications to NASA's Controlled Ecological Life Support System (CELSS) program and its lunar base studies. Specifically, prism light guides have great potential in these contexts. Several applications of solar optics to lunar base concepts are illustrated.
Human Mars Transportation Applications Using Solar Electric Propulsion
NASA Technical Reports Server (NTRS)
Donahue, Benjamin B.; Martin, Jim; Potter, Seth; Henley, Mark; Carrington, Connie (Technical Monitor)
2000-01-01
Advanced solar electric power systems and electric propulsion technology constitute viable elements for conducting human Mars transfer missions that are roughly comparable in performance to similar missions utilizing alternative high thrust systems, with the one exception being their inability to achieve short Earth-Mars trip times. A modest solar electric propulsion human Mars scenario is presented that features the use of conjunction class trajectories in concert with pre-emplacement of surface assets that can be used in a series of visits to Mars. Major elements of the Mars solar electric transfer vehicle can be direct derivatives of present state-of-the-art Solar array and electric thruster systems. During the study, several elements affecting system performance were evaluated, including varying Earth orbit altitude for departure, recapturing the transfer stage at Earth for reuse, varying power system mass-to-power ratio, and assessing solar array degradation on performance induced by Van Allen belt passage. Comparisons are made to chemical propulsion and nuclear thermal propulsion Mars vehicles carrying similar payloads.
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.
1989-01-01
Engines promise cost-effective solar-power generation. Report describes two concepts for Stirling-engine systems for conversion of solar heat to electrical energy. Recognized most promising technologies for meeting U.S. Department of Energy goals for performance and cost for terrestrial electrical-energy sources.
The Energy Problem: What the Helios Project Can Do About it (LBNL Science at the Theater)
Chu, Steven
2018-06-15
The energy problem is one of the most important issues that science and technology has to solve. Nobel laureate and Berkeley Lab Director Steven Chu proposes an aggressive research program to transform the existing and future energy systems of the world away from technologies that emit greenhouse gases. Berkeley Lab's Helios Project concentrates on renewable fuels, such as biofuels, and solar technologies, including a new generation of solar photovoltaic cells and the conversion of electricity into chemical storage to meet future demand.
Photovoltaic options for solar electric propulsion
NASA Technical Reports Server (NTRS)
Stella, Paul M.; Flood, Dennis J.
1990-01-01
This paper discusses both state-of-the-art and advanced development cell and array technology. Present technology includes rigid, roll-out, and foldout flexible substrate designs, with silicon and GaAs solar cells. The use of concentrator array systems is discussed based on both DOD efforts and NASA work. The benefits of advanced lightweight array technology, for both near term and far term utilization, and of advanced high efficiency thin radiation resistant cells is examined. This includes gallium arsenide/germanium, indium phosphide, and thin film devices such as copper indium disclenide.
Mission applications for advanced photovoltaic solar arrays
NASA Technical Reports Server (NTRS)
Stella, Paul M.; West, John L.; Chave, Robert G.; Mcgee, David P.; Yen, Albert S.
1990-01-01
The suitability of the Advanced Photovoltaic Solar Array (APSA) for future space missions was examined by considering the impact on the spacecraft system in general. The lightweight flexible blanket array system was compared to rigid arrays and a radio-isotope thermoelectric generator (RTG) static power source for a wide range of assumed future earth orbiting and interplanetary mission applications. The study approach was to establish assessment criteria and a rating scheme, identify a reference mission set, perform the power system assessment for each mission, and develop conclusions and recommendations to guide future APSA technology development. The authors discuss the three selected power sources, the assessment criteria and rating definitions, and the reference missions. They present the assessment results in a convenient tabular format. It is concluded that the three power sources examined, APSA, conventional solar arrays, and RTGs, can be considered to complement each other. Each power technology has its own range of preferred applications.
Solar power satellites - Technical, social and political implications
NASA Astrophysics Data System (ADS)
Knelman, F. H.
Solar power satellite systems (SPS) are examined, together with their environmental and social impacts and the energy policies necessary for their construction. The energy source, the sun, is acceptable to advocates of decentralized technologies, while the conversion system is fitted to large institutions. However, large-scale power plants are subject to persistent malfunctions, and the approximately 50 sq km SPS solar array is projected to suffer from at least recurring cell contact failures. The power could also be generated by heat engines for transmission by either laser or microwaves. Numerous feasibility and cost-benefit studies are still required, including defining the transmission beam's effects on the atmosphere, ionosphere, and human health. Furthermore, the resource allocations, capital costs, insurance, and institutional problems still need clarification, as do the design, logistics, and development of an entire new, much larger launch system based on Shuttle technology. Finally, the military defensibility of the SPS power station is questioned.
The South Pole, Antarctica, Solar Radio Telescope (SPASRT) System
NASA Astrophysics Data System (ADS)
Gerrard, A. J.; Weatherwax, A. T.; Gary, D. E.; Kujawski, J. T.; Nita, G. M.; Melville, R.; Stillinger, A.; Jeffer, G.
2014-12-01
The study of the sun in the radio portion of the electromagnetic spectrum furthers our understanding of fundamental solar processes observed in the X-ray, UV, and visible regions of the spectrum. For example, the study of solar radio bursts, which have been shown to cause serious disruptions of technologies at Earth, are essential for advancing our knowledge and understanding of solar flares and their relationship to coronal mass ejections and solar energetic particles, as well as the underlying particle acceleration mechanisms associated with these processes. In addition, radio coverage of the solar atmosphere could yield completely new insights into the variations of output solar energy, including Alfven wave propagation through the solar atmosphere and into the solar wind, which can potentially modulate and disturb the solar wind and Earth's geospace environment. In this presentation we discuss the development, construction, and testing of the South Pole, Antarctica, Solar Radio Telescope that is planned for installation at South Pole. The system will allow for 24-hour continuous, long-term observations of the sun across the 1-18 GHz frequency band and allow for truly continuous solar observations. We show that this system will enable unique scientific investigations of the solar atmosphere.
Recent Developments in Smart Adaptive Structures for Solar Sailcraft
NASA Technical Reports Server (NTRS)
Whorton, M. S.; Kim, Y. K.; Oakley, J.; Adetona, O.; Keel, L. H.
2007-01-01
The "Smart Adaptive Structures for Solar Sailcraft" development activity at MSFC has investigated issues associated with understanding how to model and scale the subsystem and multi-body system dynamics of a gossamer solar sailcraft with the objective of designing sailcraft attitude control systems. This research and development activity addressed three key tasks that leveraged existing facilities and core competencies of MSFC to investigate dynamics and control issues of solar sails. Key aspects of this effort included modeling and testing of a 30 m deployable boom; modeling of the multi-body system dynamics of a gossamer sailcraft; investigation of control-structures interaction for gossamer sailcraft; and development and experimental demonstration of adaptive control technologies to mitigate control-structures interaction.
Electrical design for origami solar panels and a small spacecraft test mission
NASA Astrophysics Data System (ADS)
Drewelow, James; Straub, Jeremy
2017-05-01
Efficient power generation is crucial to the design of spacecraft. Mass, volume, and other limitations prevent the use of traditional spacecraft support structures from being suitable for the size of solar array required for some missions. Folding solar panel / panel array systems, however, present a number of design challenges. This paper considers the electrical design of an origami system. Specifically, it considers how to provide low impedance, durable channels for the generated power and the electrical aspects of the deployment system and procedure. The ability to dynamically reconfigure the electrical configuration of the solar cells is also discussed. Finally, a small satellite test mission to demonstrate the technology is proposed, before concluding.
NASA Astrophysics Data System (ADS)
Gilpin, Matthew R.
Solar thermal propulsion (STP) offers an unique combination of thrust and efficiency, providing greater total DeltaV capability than chemical propulsion systems without the order of magnitude increase in total mission duration associated with electric propulsion. Despite an over 50 year development history, no STP spacecraft has flown to-date as both perceived and actual complexity have overshadowed the potential performance benefit in relation to conventional technologies. The trend in solar thermal research over the past two decades has been towards simplification and miniaturization to overcome this complexity barrier in an effort finally mount an in-flight test. A review of micro-propulsion technologies recently conducted by the Air Force Research Laboratory (AFRL) has identified solar thermal propulsion as a promising configuration for microsatellite missions requiring a substantial Delta V and recommended further study. A STP system provides performance which cannot be matched by conventional propulsion technologies in the context of the proposed microsatellite ''inspector" requiring rapid delivery of greater than 1500 m/s DeltaV. With this mission profile as the target, the development of an effective STP architecture goes beyond incremental improvements and enables a new class of microsatellite missions. Here, it is proposed that a bi-modal solar thermal propulsion system on a microsatellite platform can provide a greater than 50% increase in Delta V vs. chemical systems while maintaining delivery times measured in days. The realization of a microsatellite scale bi-modal STP system requires the integration of multiple new technologies, and with the exception of high performance thermal energy storage, the long history of STP development has provided "ready" solutions. For the target bi-modal STP microsatellite, sensible heat thermal energy storage is insufficient and the development of high temperature latent heat thermal energy storage is an enabling technology for the platform. The use of silicon and boron as high temperature latent heat thermal energy storage materials has been in the background of solar thermal research for decades without a substantial investigation. This is despite a broad agreement in the literature about the performance benefits obtainable from a latent heat mechanisms which provides a high energy storage density and quasi-isothermal heat release at high temperature. In this work, an experimental approach was taken to uncover the practical concerns associated specifically with applying silicon as an energy storage material. A new solar furnace was built and characterized enabling the creation of molten silicon in the laboratory. These tests have demonstrated the basic feasibility of a molten silicon based thermal energy storage system and have highlighted asymmetric heat transfer as well as silicon expansion damage to be the primary engineering concerns for the technology. For cylindrical geometries, it has been shown that reduced fill factors can prevent damage to graphite walled silicon containers at the expense of decreased energy storage density. Concurrent with experimental testing, a cooling model was written using the "enthalpy method" to calculate the phase change process and predict test section performance. Despite a simplistic phase change model, and experimentally demonstrated complexities of the freezing process, results coincided with experimental data. It is thus possible to capture essential system behaviors of a latent heat thermal energy storage system even with low fidelity freezing kinetics modeling allowing the use of standard tools to obtain reasonable results. Finally, a technological road map is provided listing extant technological concerns and potential solutions. Improvements in container design and an increased understanding of convective coupling efficiency will ultimately enable both high temperature latent heat thermal energy storage and a new class of high performance bi-modal solar thermal spacecraft.
Multiple Etalon Systems for the Advanced Technology Solar Telescope
NASA Technical Reports Server (NTRS)
Gary, G. Allen; Balasubramaniam, K. S.; Sigwarth, Michael; Six, N. Frank (Technical Monitor)
2002-01-01
Multiple etalons systems are discussed that meet the 4-meter NSO/Advance Technology Solar Telescope (http://www.nso.edu/ATST/index.html) instrument and science requirements for a narrow bandpass imaging system. A multiple etalon system can provide an imaging interferometer working in four distinct modes: as a spectro-polarimeter, a filter-vector magnetograph, and a wide-band and broad-band high-resolution imager. Specific dual and triple etalon configurations will be described that provides spectrographic passband of 2.0-3.5nm and reduces parasitic light levels to 1/10000 as required by precise polarization measurement, e.g., Zeeman measurements of magnetic sensitive lines. A TESOS-like triple etalon system provides for spectral purity of 100 thousandths. The triple designs have the advantage of reducing the finesse requirement on each etalon, allowing much more stable blocking filters, and can have very high spectral purity. A dual-etalon double-pass Cavallini-like configuration can provide a competing configuration. This design can provide high contrast with only a double etalon. The selection of the final focal plan instrument will depend on a trade-off of the ideal instrument versus reality, the number of etalons, the aperture of etalons, the number of blocking filters the electronic control system and computer interfaces, the temperature control and controllers for the etalons and the electronics. The use of existing experience should provide significant cost savings. The heritage of use of etalons and multiple etalon systems in solar physics come from a number of observatories, which includes MSFC Solar Observatory (NASA), Sac Peak Observatory (NSO), and Kiepenheuer Institute for Solar Physics (Germany), Mees Solar Observatory (University of Hawaii), and Arcetri Astrophysical Observatory (Italy). The design of the ATST multiple etalon system will reply on the existing experience from these observatories.
NASA Technical Reports Server (NTRS)
Wolsko, T.; Buehring, W.; Cirillo, R.; Gasper, J.; Habegger, L.; Hub, K.; Newsom, D.; Samsa, M.; Stenehjem, E.; Whitfield, R.
1980-01-01
The energy systems concerned are the satellite power system, several coal technologies, geothermal energy, fission, fusion, terrestrial solar systems, and ocean thermal energy conversion. Guidelines are suggested for the characterization of these systems, side-by-side analysis, alternative futures analysis, and integration and aggregation of data. A description of the methods for assessing the technical, economic, environmental, societal, and institutional issues surrounding the development of the selected energy technologies is presented.
NASA Astrophysics Data System (ADS)
Wang, Wen-cong; Jin, Dong-dong; Shao, Fei; Hu, Hui-jun; Shi, Yu-feng; Song, Juan; Zhang, Yu-tu; Yong, Liu
2016-07-01
With the development of modern technology, especially the development of information technology at high speed, the ultraviolet early warning system plays an increasingly important role. In the modern warfare, how to detect the threats earlier, prevent and reduce the attack of precision-guided missile has become a new challenge. Because the ultraviolet warning technology has high environmental adaptability, the low false alarm rate, small volume and other advantages, in the military field applications it has been developed rapidly. According to current application demands for solar blind ultraviolet detection and warning, this paper proposes a reconnaissance and early-warning optical system, which covers solar blind ultraviolet (250nm-280nm) and dual field. This structure takes advantage of a narrow field of view and long focal length optical system to achieve the target object detection, uses wide-field and short focal length optical system to achieve early warning of the target object. It makes use of an ultraviolet beam-splitter to achieve the separation of two optical systems. According to the detector and the corresponding application needs of two visual field of the optical system, the calculation and optical system design were completed. After the design, the MTF of the two optical system is more than 0.8@39lp/mm. A single pixel energy concentration is greater than 80%.
High-efficiency photovoltaic technology including thermoelectric generation
NASA Astrophysics Data System (ADS)
Fisac, Miguel; Villasevil, Francesc X.; López, Antonio M.
2014-04-01
Nowadays, photovoltaic solar energy is a clean and reliable source for producing electric power. Most photovoltaic systems have been designed and built up for use in applications with low power requirements. The efficiency of solar cells is quite low, obtaining best results in monocrystalline silicon structures, with an efficiency of about 18%. When temperature rises, photovoltaic cell efficiency decreases, given that the short-circuit current is slightly increased, and the open-circuit voltage, fill factor and power output are reduced. To ensure that this does not affect performance, this paper describes how to interconnect photovoltaic and thermoelectric technology into a single structure. The temperature gradient in the solar panel is used to supply thermoelectric cells, which generate electricity, achieving a positive contribution to the total balance of the complete system.
Science, technology and mission design for LATOR experiment
NASA Astrophysics Data System (ADS)
Turyshev, Slava G.; Shao, Michael; Nordtvedt, Kenneth L.
2017-11-01
The Laser Astrometric Test of Relativity (LATOR) is a Michelson-Morley-type experiment designed to test the Einstein's general theory of relativity in the most intense gravitational environment available in the solar system - the close proximity to the Sun. By using independent time-series of highly accurate measurements of the Shapiro time-delay (laser ranging accurate to 1 cm) and interferometric astrometry (accurate to 0.1 picoradian), LATOR will measure gravitational deflection of light by the solar gravity with accuracy of 1 part in a billion, a factor {30,000 better than currently available. LATOR will perform series of highly-accurate tests of gravitation and cosmology in its search for cosmological remnants of scalar field in the solar system. We present science, technology and mission design for the LATOR mission.
The Ion Propulsion System for the Asteroid Redirect Robotic Mission
NASA Technical Reports Server (NTRS)
Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard; Sekerak, Michael
2016-01-01
The Asteroid Redirect Robotic Mission is a Solar Electric Propulsion Technology Demonstration Mission (ARRM) whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of NASA's future beyond-low-Earth-orbit, human-crewed exploration plans. This presentation presents the conceptual design of the ARRM ion propulsion system, the status of the NASA in-house thruster and power processing development activities, the status of the planned technology maturation for the mission through flight hardware delivery, and the status of the mission formulation and spacecraft acquisition.
1997-02-01
Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. This photograph shows components for the thermal propulsion engine being laid out prior to assembly. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space.
NASA Astrophysics Data System (ADS)
Calvet, Nicolas; Martins, Mathieu; Grange, Benjamin; Perez, Victor G.; Belasri, Djawed; Ali, Muhammad T.; Armstrong, Peter R.
2016-05-01
Masdar Institute established a new solar platform dedicated to research and development of concentrated solar power (CSP), and thermal energy storage systems. The facility includes among others, state of the art solar resource assessment apparatuses, a 100 kW beam down CSP plant that has been adapted to research activity, one independent 100 kW hot-oil loop, and new thermal energy storage systems. The objective of this platform is to develop cost efficient CSP solutions, promote and test these technologies in extreme desert conditions, and finally develop local expertise. The purpose of this paper is not to present experimental results, but more to give a general overview of the different capabilities of the Masdar Institute Solar Platform.
The Future of Low-Carbon Electricity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenblatt, Jeffery B.; Brown, Nicholas R.; Slaybaugh, Rachel
Here, we review future global demand for electricity and major technologies positioned to supply itwith minimal greenhouse gas (GHG) emissions: renewables (wind, solar, water, geothermal and biomass), nuclear fission, and fossil power with CO 2 capture and sequestration. Two breakthrough technologies (space solar power and nuclear fusion) are discussed as exciting but uncertain additional options for low net GHG emissions (“low-carbon”) electricity generation. Grid integration technologies (monitoring and forecasting of transmission and distribution systems, demand-side load management, energy storage, and load balancing with low-carbon fuel substitutes) are also discussed. For each topic, recent historical trends and future prospects are reviewed,more » along with technical challenges, costs and other issues as appropriate. While no technology represents an ideal solution, their strengths can be enhanced by deployment in combination, along with grid integration that forms a critical set of enabling technologies to assure a reliable and robust future low-carbon electricity system.« less
The Future of Low-Carbon Electricity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenblatt, Jeffery B.; Brown, Nicholas R.; Slaybaugh, Rachel
We review future global demand for electricity and major technologies positioned to supply it with minimal greenhouse gas (GHG) emissions: renewables (wind, solar, water, geothermal, and biomass), nuclear fission, and fossil power with CO2 capture and sequestration. We discuss two breakthrough technologies (space solar power and nuclear fusion) as exciting but uncertain additional options for low-net GHG emissions (i.e., low-carbon) electricity generation. In addition, we discuss grid integration technologies (monitoring and forecasting of transmission and distribution systems, demand-side load management, energy storage, and load balancing with low-carbon fuel substitutes). For each topic, recent historical trends and future prospects are reviewed,more » along with technical challenges, costs, and other issues as appropriate. Although no technology represents an ideal solution, their strengths can be enhanced by deployment in combination, along with grid integration that forms a critical set of enabling technologies to assure a reliable and robust future low-carbon electricity system.« less
The Future of Low-Carbon Electricity
Greenblatt, Jeffery B.; Brown, Nicholas R.; Slaybaugh, Rachel; ...
2017-07-10
Here, we review future global demand for electricity and major technologies positioned to supply itwith minimal greenhouse gas (GHG) emissions: renewables (wind, solar, water, geothermal and biomass), nuclear fission, and fossil power with CO 2 capture and sequestration. Two breakthrough technologies (space solar power and nuclear fusion) are discussed as exciting but uncertain additional options for low net GHG emissions (“low-carbon”) electricity generation. Grid integration technologies (monitoring and forecasting of transmission and distribution systems, demand-side load management, energy storage, and load balancing with low-carbon fuel substitutes) are also discussed. For each topic, recent historical trends and future prospects are reviewed,more » along with technical challenges, costs and other issues as appropriate. While no technology represents an ideal solution, their strengths can be enhanced by deployment in combination, along with grid integration that forms a critical set of enabling technologies to assure a reliable and robust future low-carbon electricity system.« less
NASA Technical Reports Server (NTRS)
Stanhouse, R.; Cokonis, J.; Rayl, G.
1976-01-01
Progress in an investigation of the feasibility of designing a lightweight solar array with a power-to-weight ratio of 200 watts per kilogram is described. This solar array will produce 10,000 watts of electrical power at 1 A.U. at its beginning of life (BOL), and degrade less than 20% over a three year period in interplanetary flight. A review of existing lightweight solar array system concepts is presented along with discussion pertaining to their applicable technology as it relates to a 200 watt/kilogram array. Also presented is a discussion of the candidate development solar cells being considered, and various deployable boom concepts under investigation.
A Process for Technology Prioritization in a Competitive Environment
NASA Technical Reports Server (NTRS)
Stephens, Karen; Herman, Melody; Griffin, Brand
2006-01-01
This slide presentation reviews NASA's process for prioritizing technology requirements where there is a competitive environment. The In-Space Propulsion Technology (ISPT) project is used to exemplify the process. The ISPT project focuses on the mid level Technology Readiness Level (TRL) for development. These are TRL's 4 through 6, (i.e. Technology Development and Technology Demonstration. The objective of the planning activity is to identify the current most likely date each technology is needed and create ISPT technology development schedules based on these dates. There is a minimum of 4 years between flight and pacing mission. The ISPT Project needed to identify the "pacing mission" for each technology in order to provide funding for each area. Graphic representations show the development of the process. A matrix shows which missions are currently receiving pull from the both the Solar System Exploration and the Sun-Solar System Connection Roadmaps. The timeframes of the pacing missions technologies are shown for various types of propulsion. A pacing mission that was in the near future serves to increase the priority for funding. Adaptations were made when budget reductions precluded the total implementation of the plan.
Solar Sail Roadmap Mission GN and C Challenges
NASA Technical Reports Server (NTRS)
Heaton, Andrew F.
2005-01-01
The NASA In-Space Propulsion program is funding development work for solar sails to enhance future scientific opportunities. Key to this effort are scientific solar sail roadmap missions identified by peer review. The two near-term missions of interest are L1 Diamond and Solar Polar Imager. Additionally, the New Millennium Program is sponsoring the Space Technology 9 (ST9) demonstration mission. Solar sails are one of five technologies competing for the ST9 flight demonstration. Two candidate solar sail missions have been identified for a potential ST9 flight. All the roadmap missions and candidate flight demonstration missions face various GN&C challenges. A variety of efforts are underway to address these challenges. These include control actuator design and testing, low thrust optimization studies, attitude control system design and modeling, control-structure interaction studies, trajectory control design, and solar radiation pressure model development. Here we survey the various efforts underway and identify a few of specific recent interest and focus.
2017-11-20
Robert Youngquist, Ph.D., tests a sample disk with a "Solar White" cryogenic selective surface coating with a flash light, demonstrating the coating’s reflective properties. The innovative coating is predicted to reflect more than 99.9 percent of the simulated solar infrared radiation. This technology could enable storing super-cold, or cryogenic, liquids and support systems that shield astronauts against radiation during the Journey to Mars.
Technology for large space systems: A special bibliography with indexes (supplement 04)
NASA Technical Reports Server (NTRS)
1981-01-01
This bibliography lists 259 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1980 and December 31, 1980. Its purpose is to provide information to the researcher, manager, and designer in technology development and mission design in the area of the Large Space Systems Technology Program. Subject matter is grouped according to systems, interactive analysis and design. Structural concepts, control systems, electronics, advanced materials, assembly concepts, propulsion, solar power satellite systems, and flight experiments.
1999-03-01
Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. This image, taken during the test, depicts the light being concentrated into the focal point inside the vacuum chamber. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.
1999-11-01
This photograph shows an overall view of the Solar Thermal Propulsion Test Facility at the Marshall Space Flight Center (MSFC). The 20-by 24-ft heliostat mirror, shown at the left, has dual-axis control that keeps a reflection of the sunlight on an 18-ft diameter concentrator mirror (right). The concentrator mirror then focuses the sunlight to a 4-in focal point inside the vacuum chamber, shown at the front of concentrator mirror. Researchers at MSFC have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than chemical a combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propell nt. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space.
NASA Astrophysics Data System (ADS)
Jhirad, D. J.; Mubayi, V.; Weingart, J.
1981-08-01
The technical and economic evidence is reviewed for solar industrial process heat, highlighting the fact that financial parameters such as tax credits and depreciation allowance play a very large role in determining the economic competitiveness of solar investments. An analysis of the energy (and oil) consumed in providing industrial process heat in a number of selected developing countries is presented. Solar industrial process heat technology is discussed including the operating experience of several demonstration plants in the US Solar ponds are also described briefly. A financial and economic analysis of solar industrial process heat systems under different assumptions on future oil prices and various financial parameters is given. Financial analyses are summarized for a solar industrial process heat retrofit of a brewery in Zimbabwe and a high efficiency system operating in financial conditions typical of the US and a number of other industrialized nations. A set of recommended policy actions for countries wishing to enhance the commercial feasibility of renewable energy technologies in the commercial and industrial sections is presented.
Deployment Technology of a Heliogyro Solar Sail for Long Duration Propulsion
NASA Technical Reports Server (NTRS)
Peerawan, Wiwattananon; Bryant, Robert G.; Edmonson, William W.; Moore, William B.; Bell, Jared M.
2015-01-01
Interplanetary, multi-mission, station-keeping capabilities will require that a spacecraft employ a highly efficient propulsion-navigation system. The majority of space propulsion systems are fuel-based and require the vehicle to carry and consume fuel as part of the mission. Once the fuel is consumed, the mission is set, thereby limiting the potential capability. Alternatively, a method that derives its acceleration and direction from solar photon pressure using a solar sail would eliminate the requirement of onboard fuel to meet mission objectives. MacNeal theorized that the heliogyro-configured solar sail architecture would be lighter, less complex, cheaper, and less risky to deploy a large sail area versus a masted sail. As sail size increases, the masted sail requires longer booms resulting in increased mass, and chaotic uncontrollable deployment. With a heliogyro, the sail membrane is stowed as a roll of thin film forming a blade when deployed that can extend up to kilometers. Thus, a benefit of using a heliogyro-configured solar sail propulsion technology is the mission scalability as compared to masted versions, which are size constrained. Studies have shown that interplanetary travel is achievable by the heliogyro solar sail concept. Heliogyro solar sail concept also enables multi-mission missions such as sample returns, and supply transportation from Earth to Mars as well as station-keeping missions to provide enhanced warning of solar storm. This paper describes deployment technology being developed at NASA Langley Research Center to deploy and control the center-of-mass/center-of-pressure using a twin bladed heliogyro solar sail 6-unit (6U) CubeSat. The 6U comprises 2x2U blade deployers and 2U for payload. The 2U blade deployers can be mounted to 6U or larger scaled systems to serve as a non-chemical in-space propulsion system. A single solar sail blade length is estimated to be 2.4 km with a total area from two blades of 720 m2; total allowable weight of a 6U CubeSat is approximately 8 kg. This makes the theoretical characteristic acceleration of approximately 0.75 mm/s2 at I AU (astronomical unit), when compared to IKAROS (0.005 mm/s2) and NanoSail-D (0.02 mm/s2).
Solar Electric Propulsion for Future NASA Missions
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Oleson, Steven R.; Mercer, Carolyn R.
2015-01-01
Use of high-power solar arrays, at power levels ranging from approximately 500 KW to several megawatts, has been proposed for a solar-electric propulsion (SEP) demonstration mission, using a photovoltaic array to provide energy to a high-power xenon-fueled engine. One of the proposed applications of the high-power SEP technology is a mission to rendezvous with an asteroid and move it into lunar orbit for human exploration, the Asteroid Retrieval mission. The Solar Electric Propulsion project is dedicated to developing critical technologies to enable trips to further away destinations such as Mars or asteroids. NASA needs to reduce the cost of these ambitious exploration missions. High power and high efficiency SEP systems will require much less propellant to meet those requirements.
Solar dynamic power system development for Space Station Freedom
NASA Technical Reports Server (NTRS)
1993-01-01
The development of a solar dynamic electric power generation system as part of the Space Station Freedom Program is documented. The solar dynamic power system includes a solar concentrator, which collects sunlight; a receiver, which accepts and stores the concentrated solar energy and transfers this energy to a gas; a Brayton turbine, alternator, and compressor unit, which generates electric power; and a radiator, which rejects waste heat. Solar dynamic systems have greater efficiency and lower maintenance costs than photovoltaic systems and are being considered for future growth of Space Station Freedom. Solar dynamic development managed by the NASA Lewis Research Center from 1986 to Feb. 1991 is covered. It summarizes technology and hardware development, describes 'lessons learned', and, through an extensive bibliography, serves as a source list of documents that provide details of the design and analytic results achieved. It was prepared by the staff of the Solar Dynamic Power System Branch at the NASA Lewis Research Center in Cleveland, Ohio. The report includes results from the prime contractor as well as from in-house efforts, university grants, and other contracts. Also included are the writers' opinions on the best way to proceed technically and programmatically with solar dynamic efforts in the future, on the basis of their experiences in this program.
Solar electricity and solar fuels
NASA Astrophysics Data System (ADS)
Spiers, David J.
1989-04-01
The nature of solar radiation and its variation with location is described. The distribution of energy in the solar spectrum places immediate limits on the theoretical efficiency of conversion processes, since practical absorbers cannot convert all wavelengths received to useful energy. The principles of solar energy conversion methods are described. Absorption of solar energy can give rise to direct electrical generation, heating, or chemical change. Electrical generation from sunlight can be achieved by photovoltaic systems directly or by thermal systems which use solar heat to drive a heat engine and generator. The technology used and under research for promising ways of producing electricity or fuel from solar energy is described. Photovoltaic technology is established today for remote area, small power applications, and photovoltaic module sales alone are over 100 million dollars per year at present. The photovoltaic market has grown steadily since the mid-1970's, as prices have fallen continuously. Future energy options are briefly described. The merits of a sustainable energy economy, based on renewable energy resources, including solar energy, are emphasized, as this seems to provide the only hope of eliminating the problems caused by the build-up of atmospheric carbon dioxide, acid rain pollution and nuclear waste disposal. There is no doubt that clean fuels which were derived from solar energy and either did not involve carbon dioxide and used atmospheric carbon dioxide as the source dioxide as the source of carbon would be a worthy ideal. Methods described could one day achieve this.
NASA Technical Reports Server (NTRS)
Spence, Brian; White, Steve; Schmid, Kevin; Douglas Mark
2012-01-01
The Flexible Array Concentrator Technology (FACT) is a lightweight, high-performance reflective concentrator blanket assembly that can be used on flexible solar array blankets. The FACT concentrator replaces every other row of solar cells on a solar array blanket, significantly reducing the cost of the array. The modular design is highly scalable for the array system designer, and exhibits compact stowage, good off-pointing acceptance, and mass/cost savings. The assembly s relatively low concentration ratio, accompanied by a large radiative area, provides for a low cell operating temperature, and eliminates many of the thermal problems inherent in high-concentration-ratio designs. Unlike other reflector technologies, the FACT concentrator modules function on both z-fold and rolled flexible solar array blankets, as well as rigid array systems. Mega-ROSA (Mega Roll-Out Solar Array) is a new, highly modularized and extremely scalable version of ROSA that provides immense power level range capability from 100 kW to several MW in size. Mega-ROSA will enable extremely high-power spacecraft and SEP-powered missions, including space-tug and largescale planetary science and lunar/asteroid exploration missions. Mega-ROSA's inherent broad power scalability is achieved while retaining ROSA s solar array performance metrics and missionenabling features for lightweight, compact stowage volume and affordability. This innovation will enable future ultra-high-power missions through lowcost (25 to 50% cost savings, depending on PV and blanket technology), lightweight, high specific power (greater than 200 to 400 Watts per kilogram BOL (beginning-of-life) at the wing level depending on PV and blanket technology), compact stowage volume (greater than 50 kilowatts per cubic meter for very large arrays), high reliability, platform simplicity (low failure modes), high deployed strength/stiffness when scaled to huge sizes, and high-voltage operation capability. Mega-ROSA is adaptable to all photovoltaic and concentrator flexible blanket technologies, and can readily accommodate standard multijunction and emerging ultra-lightweight IMM (inverted metamorphic) photovoltaic flexible blanket assemblies, as well as ENTECHs Stretched Lens Array (SLA) and DSSs (Deployable Space Systems) FACT, which allows for cost reduction at the array level.
Solar power satellite system definition study. Volume 3: Laser SPS analysis, phase 3
NASA Technical Reports Server (NTRS)
1980-01-01
The potential use of lasers for transmitting power to Earth from Solar Power Satellites was examined. Free electron lasers appear most promising and would have some benefits over microwave power transmission. Further research in laser technology is needed.
20 Meter Solar Sail Analysis and Correlation
NASA Technical Reports Server (NTRS)
Taleghani, B. K.; Lively, P. S.; Banik, J.; Murphy, D. M.; Trautt, T. A.
2005-01-01
This paper describes finite element analyses and correlation studies to predict deformations and vibration modes/frequencies of a 20-meter solar sail system developed by ATK Space Systems. Under the programmatic leadership of NASA Marshall Space Flight Center's In-Space Propulsion activity, the 20-meter solar sail program objectives were to verify the design, to assess structural responses of the sail system, to implement lessons learned from a previous 10-meter quadrant system analysis and test program, and to mature solar sail technology to a technology readiness level (TRL) of 5. For this 20 meter sail system, static and ground vibration tests were conducted in NASA Glenn Research Center's 100 meter diameter vacuum chamber at Plum Brook station. Prior to testing, a preliminary analysis was performed to evaluate test conditions and to determine sensor and actuator locations. After testing was completed, an analysis of each test configuration was performed. Post-test model refinements included updated properties to account for the mass of sensors, wiring, and other components used for testing. This paper describes the development of finite element models (FEM) for sail membranes and masts in each of four quadrants at both the component and system levels, as well as an optimization procedure for the static test/analyses correlation.