Sample records for technology transfer

  1. Technology Transfer Issues and a New Technology Transfer Model

    ERIC Educational Resources Information Center

    Choi, Hee Jun

    2009-01-01

    The following are major issues that should be considered for efficient and effective technology transfer: conceptions of technology, technological activity and transfer, communication channels, factors affecting transfer, and models of transfer. In particular, a well-developed model of technology transfer could be used as a framework for…

  2. Using bibliographic databases in technology transfer

    NASA Technical Reports Server (NTRS)

    Huffman, G. David

    1987-01-01

    When technology developed for a specific purpose is used in another application, the process is called technology transfer--the application of an existing technology to a new use or user for purposes other than those for which the technology was originally intended. Using Bibliographical Databases in Technology Transfer deals with demand-pull transfer, technology transfer that arises from need recognition, and is a guide for conducting demand-pull technology transfer studies. It can be used by a researcher as a self-teaching manual or by an instructor as a classroom text. A major problem of technology transfer is finding applicable technology to transfer. Described in detail is the solution to this problem, the use of computerized, bibliographic databases, which currently contain virtually all documented technology of the past 15 years. A general framework for locating technology is described. NASA technology organizations and private technology transfer firms are listed for consultation.

  3. Robotic technology evolution and transfer

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.

    1992-01-01

    A report concerning technology transfer in the area of robotics is presented in vugraph form. The following topics are discussed: definition of technology innovation and tech-transfer; concepts relevant for understanding tech-transfer; models advanced to portray tech-transfer process; factors identified as promoting tech-transfer; factors identified as impeding tech-transfer; what important roles do individuals fulfill in tech-transfer; federal infrastructure for promoting tech-transfer; federal infrastructure for promoting tech-transfer; robotic technology evolution; robotic technology transferred; and recommendations for successful robotics tech-transfer.

  4. Technology transfer within the NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Plotkin, Henry H.

    1992-01-01

    Viewgraphs on technology transfer within the NASA Goddard Space Flight Center presented to Civil Space Technology Development workshop on technology transfer and effectiveness are provided. Topics covered include: obstacles to technology transfer; technology transfer improvement program at GSFC: communication between technology developers and users; and user feedback to technologists.

  5. Technology transfer within the government

    NASA Technical Reports Server (NTRS)

    Christensen, Carissa Bryce

    1992-01-01

    The report of a workshop panel concerned with technology transfer within the government is presented. The suggested subtopics for the panel were as follows: (1) transfer from non-NASA U.S. government technology developers to NASA space missions/programs; and (2) transfer from NASA to other U.S. government civil space mission programs. Two presentations were made to the panel: Roles/Value of Early Strategic Planning Within the Space Exploration Initiative (SEI) to Facilitate Later Technology Transfer To and From Industry; and NOAA Satellite Programs and Technology Requirements. The panel discussion addresses the following major issues: DOD/NASA cooperation; alternative mechanisms for interagency communication and interactions; current technology transfer relationships among federal research agencies, and strategies for improving this transfer; technology transfer mechanisms appropriate to intragovernment transfer; the importance of industry as a technology transfer conduit; and measures of merit.

  6. 48 CFR 970.2770-3 - Technology transfer and patent rights.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Technology transfer and....2770-3 Technology transfer and patent rights. The National Competitiveness Technology Transfer Act of 1989 (NCTTA) established technology transfer as a mission for Government-owned, contractor-operated...

  7. 48 CFR 970.2770-3 - Technology transfer and patent rights.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Technology transfer and....2770-3 Technology transfer and patent rights. The National Competitiveness Technology Transfer Act of 1989 (NCTTA) established technology transfer as a mission for Government-owned, contractor-operated...

  8. 48 CFR 970.2770-3 - Technology transfer and patent rights.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Technology transfer and....2770-3 Technology transfer and patent rights. The National Competitiveness Technology Transfer Act of 1989 (NCTTA) established technology transfer as a mission for Government-owned, contractor-operated...

  9. 48 CFR 970.2770-3 - Technology transfer and patent rights.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Technology transfer and....2770-3 Technology transfer and patent rights. The National Competitiveness Technology Transfer Act of 1989 (NCTTA) established technology transfer as a mission for Government-owned, contractor-operated...

  10. 48 CFR 970.2770-3 - Technology transfer and patent rights.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Technology transfer and....2770-3 Technology transfer and patent rights. The National Competitiveness Technology Transfer Act of 1989 (NCTTA) established technology transfer as a mission for Government-owned, contractor-operated...

  11. Software engineering technology transfer: Understanding the process

    NASA Technical Reports Server (NTRS)

    Zelkowitz, Marvin V.

    1993-01-01

    Technology transfer is of crucial concern to both government and industry today. In this report, the mechanisms developed by NASA to transfer technology are explored and the actual mechanisms used to transfer software development technologies are investigated. Time, cost, and effectiveness of software engineering technology transfer is reported.

  12. Innovative technology transfer of nondestructive evaluation research

    Treesearch

    Brian Brashaw; Robert J. Ross; Xiping Wang

    2008-01-01

    Technology transfer is often an afterthought for many nondestructive evaluation (NDE) researchers. Effective technology transfer should be considered during the planning and execution of research projects. This paper outlines strategies for using technology transfer in NDE research and presents a wide variety of technology transfer methods used by a cooperative...

  13. ICAT and the NASA technology transfer process

    NASA Technical Reports Server (NTRS)

    Rifkin, Noah; Tencate, Hans; Watkins, Alison

    1993-01-01

    This paper will address issues related to NASA's technology transfer process and will cite the example of using ICAT technologies in educational tools. The obstacles to effective technology transfer will be highlighted, viewing the difficulties in achieving successful transfers of ICAT technologies.

  14. Technology transfer from the viewpoint of a NASA prime contractor

    NASA Technical Reports Server (NTRS)

    Dyer, Gordon

    1992-01-01

    Viewgraphs on technology transfer from the viewpoint of a NASA prime contractor are provided. Technology Transfer Program for Manned Space Systems and the Technology Transfer Program status are addressed.

  15. Toward equality of biodiversity knowledge through technology transfer.

    PubMed

    Böhm, Monika; Collen, Ben

    2015-10-01

    To help stem the continuing decline of biodiversity, effective transfer of technology from resource-rich to biodiversity-rich countries is required. Biodiversity technology as defined by the Convention on Biological Diversity (CBD) is a complex term, encompassing a wide variety of activities and interest groups. As yet, there is no robust framework by which to monitor the extent to which technology transfer might benefit biodiversity. We devised a definition of biodiversity technology and a framework for the monitoring of technology transfer between CBD signatories. Biodiversity technology within the scope of the CBD encompasses hard and soft technologies that are relevant to the conservation and sustainable use of biodiversity, or make use of genetic resources, and that relate to all aspects of the CBD, with a particular focus on technology transfer from resource-rich to biodiversity-rich countries. Our proposed framework introduces technology transfer as a response indicator: technology transfer is increased to stem pressures on biodiversity. We suggest an initial approach of tracking technology flow between countries; charting this flow is likely to be a one-to-many relationship (i.e., the flow of a specific technology from one country to multiple countries). Future developments should then focus on integrating biodiversity technology transfer into the current pressure-state-response indicator framework favored by the CBD (i.e., measuring the influence of technology transfer on changes in state and pressure variables). Structured national reporting is important to obtaining metrics relevant to technology and knowledge transfer. Interim measures, that can be used to assess biodiversity technology or knowledge status while more in-depth indicators are being developed, include the number of species inventories, threatened species lists, or national red lists; databases on publications and project funding may provide measures of international cooperation. Such a pragmatic approach, followed by rigorous testing of specific technology transfer metrics submitted by CBD signatories in a standardized manner may in turn improve the focus of future targets on technology transfer for biodiversity conservation. © 2015 Society for Conservation Biology.

  16. Communication and Cultural Change in University Technology Transfer

    ERIC Educational Resources Information Center

    Wright, David

    2013-01-01

    Faculty culture and communication networks are pivotal components of technology transfer on university campuses. Universities are focused upon diffusing technology to external clients and upon building structure and support systems to enhance technology transfer. However, engaging faculty members in technology transfer requires an internal…

  17. KSC Tech Transfer News, Volume 5, No. 1

    NASA Technical Reports Server (NTRS)

    Buckingham, Bruce (Editor)

    2012-01-01

    In October 2011, the White House released a presidential memorandum titled "Accelerating Technology Transfer and Commercialization of Federal Research in Support of High-Growth Businesses." It emphasized the importance of technology transfer as a driver of successful innovation to fuel economic growth, create jobs, and make U.S. industries more competitive in a global market. In response to this memorandum, NASA developed a 5-year plan for accelerating its own technology transfer activities. This plan outlines key objectives for enhancing NASA's ability to increase the rate, volume, and quality of technology transfers to industry, academia, and other Government agencies. By doing so, we are increasing the economic impact and public benefit of Federal technology investments. In addition, NASA established technology transfer as a key element of one of its Agency High Priority Performance Goals: "Enable bold new missions and make new technologies available to Government agencies and U.S. industry."What does this mean to you? In the broadest sense, NASA defines technology transfer as the utilization of NASA's technological assets- technologies, innovations, unique facilities and equipment, and technical expertise- by public and private sectors to benefit the Nation. So, if your job involves developing new technologies, writing new software, creating innovative ways to do business, performing research, or developing new technical capabilities, you could be contributing to Kennedy Space Center's (KSC) technology transfer activities by creating the technological assets that may one day be used by external partners. Furthermore, anytime you provide technical expertise to external partners, you're participating in technology transfer. The single most important step you can take to support the technology transfer process is to report new technologies and innovations ro the Technology Transfer Office. This is the critical first step in fueling the technology transfer pipeline. This is also a requirement for all Federal employees (see NPD 2091.1 B) and most NASA contractors. Detailed information on when, where, and how ro report new technology is provided on the following page. In addition, it's important that all detailed-oriented discussions about technology between NASA and external partners are documented or that they occur under formal agreements such as Space Act Agreements and Nondisclosure Agreements. Our office can assist you in putting these agreements into place, protecting NASA's interests, and providing the means to accurately measure the Agency's technology transfer activities. Technology transfer is everyone's responsibility. We need your help to ensure that NASA remains the leader in Federal technology transfer, and that the great work done at KSC provides the maximum economic and societal benefit to the Nation.

  18. Urban development applications project. Urban technology transfer study

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Technology transfer is defined along with reasons for attempting to transfer technology. Topics discussed include theoretical models, stages of the innovation model, communication process model, behavior of industrial organizations, problem identification, technology search and match, establishment of a market mechanism, applications engineering, commercialization, and management of technology transfer.

  19. Technology transfer

    NASA Technical Reports Server (NTRS)

    Handley, Thomas

    1992-01-01

    The requirements for a successful technology transfer program and what such a program would look like are discussed. In particular, the issues associated with technology transfer in general, and within the Jet Propulsion Laboratory (JPL) environment specifically are addressed. The section on background sets the stage, identifies the barriers to successful technology transfer, and suggests actions to address the barriers either generally or specifically. The section on technology transfer presents a process with its supporting management plan that is required to ensure a smooth transfer process. Viewgraphs are also included.

  20. Improving NASA's technology transfer process through increased screening and evaluation in the information dissemination program

    NASA Technical Reports Server (NTRS)

    Laepple, H.

    1979-01-01

    The current status of NASA's technology transfer system can be improved if the technology transfer process is better understood. This understanding will only be gained if a detailed knowledge about factors generally influencing technology transfer is developed, and particularly those factors affecting technology transfer from government R and D agencies to industry. Secondary utilization of aerospace technology is made more difficult because it depends on a transfer process which crosses established organizational lines of authority and which is outside well understood patterns of technical applications. In the absence of a sound theory about technology transfer and because of the limited capability of government agencies to explore industry's needs, a team approach to screening and evaluation of NASA generated technologies is proposed which calls for NASA, and other organizations of the private and public sectors which influence the transfer of NASA generated technology, to participate in a screening and evaluation process to determine the commercial feasibility of a wide range of technical applications.

  1. Benchmarking the Economic Impact and Effectiveness of University Technology Transfer in Maryland.

    ERIC Educational Resources Information Center

    Clinch, Richard

    This study examined university technology transfer in Maryland in terms of three issues: (1) the economic impact of university technology transfer; (2) a comparison of the technology transfer effort of University of Maryland System (UMS) institutions with other regional and "best practice" institutions; and (3) the technology transfer…

  2. Technology Transfer: A Case Study of Programs and Practices at NASA, DOD, DOC, and Academia

    ERIC Educational Resources Information Center

    Blood, John R.

    2009-01-01

    Technology transfer is vital to humanity. It spurs innovation, promotes commerce, and provides technology-based goods and services. Technology transfer is also highly complex and interdependent in nature. This interdependence is exemplified principally by the various technology transfer interactions between government, industry, and academia. …

  3. A Study of the Factors Associated with Successful Technology Transfer and their Applicability to Air Force Technology Transfers.

    DTIC Science & Technology

    1995-09-01

    transfer project. (D) 8a Organization has a technology transfer organization. (D,A) 10a Marketing and advertising of technologies targeted to relevant...Entrepreneurial (D) Developer: 10A: Marketing and advertising of technologies targeted to relevant industries. Most developers indicate that they marketed...regard to marketing and advertising . 10B: Technology maturation supported by internal units or by contracting out. Technology maturation is the

  4. Federal Technology Transfer Act Success Stories

    EPA Pesticide Factsheets

    Successful Federal Technology Transfer Act (FTTA) partnerships demonstrate the many advantages of technology transfer and collaboration. EPA and partner organizations create valuable and applicable technologies for the marketplace.

  5. Evaluating Technology Transfer and Diffusion.

    ERIC Educational Resources Information Center

    Bozeman, Barry; And Others

    1988-01-01

    Four articles discuss the evaluation of technology transfer and diffusion: (1) "Technology Transfer at the U.S. National Laboratories: A Framework for Evaluation"; (2) "Application of Social Psychological and Evaluation Research: Lessons from Energy Information Programs"; (3) "Technology and Knowledge Transfer in Energy R and D Laboratories: An…

  6. Technology Transfer Network and Affiliations

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The NASA Technology Transfer Partnership program sponsors a number of organizations around the country that are designed to assist U.S. businesses in accessing, utilizing, and commercializing NASA-funded research and technology. These organizations work closely with the Technology Transfer Offices, located at each of the 10 NASA field centers, providing a full range of technology transfer and commercialization services and assistance.

  7. An Analysis of NASA Technology Transfer. Degree awarded by Pennsylvania State Univ.

    NASA Technical Reports Server (NTRS)

    Bush, Lance B.

    1996-01-01

    A review of previous technology transfer metrics, recommendations, and measurements is presented within the paper. A quantitative and qualitative analysis of NASA's technology transfer efforts is performed. As a relative indicator, NASA's intellectual property performance is benchmarked against a database of over 100 universities. Successful technology transfer (commercial sales, production savings, etc.) cases were tracked backwards through their history to identify the key critical elements that lead to success. Results of this research indicate that although NASA's performance is not measured well by quantitative values (intellectual property stream data), it has a net positive impact on the private sector economy. Policy recommendations are made regarding technology transfer within the context of the documented technology transfer policies since the framing of the Constitution. In the second thrust of this study, researchers at NASA Langley Research Center were surveyed to determine their awareness of, attitude toward, and perception about technology transfer. Results indicate that although researchers believe technology transfer to be a mission of the Agency, they should not be held accountable or responsible for its performance. In addition, the researchers are not well educated about the mechanisms to perform, or policies regarding, technology transfer.

  8. Software Engineering Technology Infusion Within NASA

    NASA Technical Reports Server (NTRS)

    Zelkowitz, Marvin V.

    1996-01-01

    Abstract technology transfer is of crucial concern to both government and industry today. In this paper, several software engineering technologies used within NASA are studied, and the mechanisms, schedules, and efforts at transferring these technologies are investigated. The goals of this study are: 1) to understand the difference between technology transfer (the adoption of a new method by large segments of an industry) as an industry-wide phenomenon and the adoption of a new technology by an individual organization (called technology infusion); and 2) to see if software engineering technology transfer differs from other engineering disciplines. While there is great interest today in developing technology transfer models for industry, it is the technology infusion process that actually causes changes in the current state of the practice.

  9. Optimizing Outcome in the University-Industry Technology Transfer Projects

    NASA Astrophysics Data System (ADS)

    Alavi, Hamed; Hąbek, Patrycja

    2016-06-01

    Transferring inventions of academic scientists to private enterprises for the purpose of commercialization is long known as University-Industry (firm) Technology Transfer While the importance of this phenomenon is simultaneously raising in public and private sector, only a part of patented academic inventions succeed in passing the process of commercialization. Despite the fact that formal Technology Transfer process and licencing of patented innovations to third party is the main legal tool for safeguarding rights of academic inventors in commercialization of their inventions, it is not sufficient for transmitting tacit knowledge which is necessary in exploitation of transferred technology. Existence of reciprocal and complementary relations between formal and informal technology transfer process has resulted in formation of different models for university-industry organizational collaboration or even integration where licensee firms keep contact with academic inventors after gaining legal right for commercialization of their patented invention. Current paper argues that despite necessity for patents to legally pass the right of commercialization of an invention, they are not sufficient for complete knowledge transmission in the process of technology transfer. Lack of efficiency of formal mechanism to end the Technology Transfer loop makes an opportunity to create innovative interpersonal and organizational connections among patentee and licensee company. With emphasize on need for further elaboration of informal mechanisms as critical and underappreciated aspect of technology transfer process, article will try to answer the questions of how to optimize knowledge transmission process in the framework of University-Industry Technology Transfer Projects? What is the theoretical basis for university-industry technology transfer process? What are organization collaborative models which can enhance overall performance by improving transmission of knowledge in University- Firm Technology Transfer process?

  10. 48 CFR 970.5227-3 - Technology transfer mission.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Technology transfer... for Management and Operating Contracts 970.5227-3 Technology transfer mission. As prescribed in 48 CFR 970.2770-4(a), insert the following clause: Technology Transfer Mission (AUG 2002) This clause has as...

  11. 48 CFR 970.5227-3 - Technology transfer mission.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Technology transfer... for Management and Operating Contracts 970.5227-3 Technology transfer mission. As prescribed in 48 CFR 970.2770-4(a), insert the following clause: Technology Transfer Mission (AUG 2002) This clause has as...

  12. 48 CFR 970.5227-3 - Technology transfer mission.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Technology transfer... for Management and Operating Contracts 970.5227-3 Technology transfer mission. As prescribed in 48 CFR 970.2770-4(a), insert the following clause: Technology Transfer Mission (AUG 2002) This clause has as...

  13. 48 CFR 970.5227-3 - Technology transfer mission.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Technology transfer... for Management and Operating Contracts 970.5227-3 Technology transfer mission. As prescribed in 48 CFR 970.2770-4(a), insert the following clause: Technology Transfer Mission (AUG 2002) This clause has as...

  14. Three CCR accomplishments receive Excellence in Technology Transfer Awards | Center for Cancer Research

    Cancer.gov

    The Federal Laboratory Consortium for Technology Transfer has recognized three CCR accomplishments with Excellence in Technology Transfer Awards. This award category honors employees of FLC member laboratories and non-laboratory staff who have accomplished outstanding work in the process of transferring federally developed technology. Read more…

  15. TTC Fellowship Program | NCI Technology Transfer Center | TTC

    Cancer.gov

    The TTC has fellowship opportunities available to qualified candidates in the field of technology transfer. This Fellowship starts with your science, legal, and/or business background to create a new competency in technology transfer, preparing you for technology transfer positions within academia, industry, or the federal government.

  16. The Change Book: A Blueprint for Technology Transfer.

    ERIC Educational Resources Information Center

    Addiction Technology Transfer Centers.

    This document was developed by the Addiction Technology Transfer Center (ATTC) National Network to improve understanding about how valuable effective technology transfer is to the fields of substance abuse treatment and prevention. Technology transfer involves creating a mechanism by which a desired change is accepted, incorporated, and reinforced…

  17. 76 FR 71048 - Sixth Annual Philip S. Chen, Jr. Distinguished Lecture on Innovation and Technology Transfer

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ..., Jr. Distinguished Lecture on Innovation and Technology Transfer AGENCY: National Institutes of Health... sixth annual Philip S. Chen, Jr., Ph.D. Distinguished Lecture on Innovation and Technology Transfer... present ``Treatment of Cancer with Recombinant Immunotoxins: From Technology Transfer to the Patient.'' Dr...

  18. 48 CFR 970.5227-3 - Technology transfer mission.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Technology transfer... for Management and Operating Contracts 970.5227-3 Technology transfer mission. As prescribed in 48 CFR 970.2770-4(a), insert the following clause: Technology Transfer Mission (AUG 2002) This clause has as...

  19. Welcome to Ames Research Center (1987 forum on Federal technology transfer)

    NASA Technical Reports Server (NTRS)

    Ballhaus, William F., Jr.

    1988-01-01

    NASA Ames Research Center has a long and distinguished history of technology development and transfer. Recently, in a welcoming speech to the Forum on Federal Technology Transfer, Director Ballhouse of Ames described significant technologies which have been transferred from Ames to the private sector and identifies future opportunities.

  20. The role of the University Licensing Office in transferring intellectual property to industry

    NASA Technical Reports Server (NTRS)

    Preston, John T.

    1992-01-01

    Universities in the US have a significant impact on business through the transfer of technology. This transfer of technology takes various forms, including faculty communications, faculty consulting activities, and the direct transfer of technology through the licensing of patents, copyrights, and other intellectual property to industry. The topics discussed include the following: background of the MIT Technology Licensing Office (TLO), goals of the MIT TLO, MIT's technology transfer philosophy, and important factors for success in new company formation.

  1. Strategic directions and mechanisms in technology transfer

    NASA Technical Reports Server (NTRS)

    Mackin, Robert

    1992-01-01

    An outline summarizing the Working Panel discussion related to strategic directions for technology transfer is presented. Specific topics addressed include measuring success, management of technology, innovation and experimentation in the tech transfer process, integration of tech transfer into R&D planning, institutionalization of tech transfer, and policy/legislative resources.

  2. 23 CFR 420.205 - What is the FHWA's policy for research, development, and technology transfer funding?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... technology transfer funding? 420.205 Section 420.205 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF... Technology Transfer Program Management § 420.205 What is the FHWA's policy for research, development, and technology transfer funding? (a) It is the FHWA's policy to administer the RD&T program activities utilizing...

  3. 23 CFR 420.205 - What is the FHWA's policy for research, development, and technology transfer funding?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... technology transfer funding? 420.205 Section 420.205 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF... Technology Transfer Program Management § 420.205 What is the FHWA's policy for research, development, and technology transfer funding? (a) It is the FHWA's policy to administer the RD&T program activities utilizing...

  4. 23 CFR 420.205 - What is the FHWA's policy for research, development, and technology transfer funding?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... technology transfer funding? 420.205 Section 420.205 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF... Technology Transfer Program Management § 420.205 What is the FHWA's policy for research, development, and technology transfer funding? (a) It is the FHWA's policy to administer the RD&T program activities utilizing...

  5. 23 CFR 420.205 - What is the FHWA's policy for research, development, and technology transfer funding?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... technology transfer funding? 420.205 Section 420.205 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF... Technology Transfer Program Management § 420.205 What is the FHWA's policy for research, development, and technology transfer funding? (a) It is the FHWA's policy to administer the RD&T program activities utilizing...

  6. 23 CFR 420.205 - What is the FHWA's policy for research, development, and technology transfer funding?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... technology transfer funding? 420.205 Section 420.205 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF... Technology Transfer Program Management § 420.205 What is the FHWA's policy for research, development, and technology transfer funding? (a) It is the FHWA's policy to administer the RD&T program activities utilizing...

  7. Dissemination of CERN's Technology Transfer: Added Value from Regional Transfer Agents

    ERIC Educational Resources Information Center

    Hofer, Franz

    2005-01-01

    Technologies developed at CERN, the European Organization for Nuclear Research, are disseminated via a network of external technology transfer officers. Each of CERN's 20 member states has appointed at least one technology transfer officer to help establish links with CERN. This network has been in place since 2001 and early experiences indicate…

  8. Technology transfer needs and experiences: The NASA Research Center perspective

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.

    1992-01-01

    Viewgraphs on technology transfer needs and experiences - the NASA Research Center perspective are provided. Topics covered include: functions of NASA, incentives and benefits, technology transfer mechanisms, economics of technology commercialization, examples, and conclusions.

  9. Technology transfer

    NASA Technical Reports Server (NTRS)

    Penaranda, Frank E.

    1992-01-01

    The topics are presented in viewgraph form and include the following: international comparison of R&D expenditures in 1989; NASA Technology Transfer Program; NASA Technology Utilization Program thrusts for FY 1992 and FY 1993; National Technology Transfer Network; and NTTC roles.

  10. A continuing program for technology transfer to the apparel industry

    NASA Technical Reports Server (NTRS)

    Clingman, W. H.

    1971-01-01

    A six month program has been carried out to investigate various mechanisms for transferring technology to industry. This program has focused on transfer to the apparel industry through the Apparel Research Foundation. The procedure was to analyze the problem, obtain potentially relevant aerospace technology, and then transfer this technology to the industry organization. This was done in a specific case. Technology was identified relevant to stitchless joining, and this technology was transferred to the Apparel Research Foundation. The feasibility and ground rules for carrying out such activities on a broader scale were established. A specific objective was to transfer new technology from the industry organization to the industry itself. This required the establishment of an application engineering program. Another transfer mechanism tested was publication of solutions to industry problems in a format familiar to the industry. This is to be distinguished from circulating descriptions of new technology. Focus is on the industry problem and the manager is given a formula for solving it that he can follow. It was concluded that this mechanism can complement the problem statement approach to technology transfer. It is useful in achieving transfer when a large amount of application engineering is not necessary. A wide audience is immediately exposed to the technology. On the other hand, the major manufacturing problems which require a sophisticated technical solution integrating many innovations are less likely to be helped.

  11. Technology transfer for adaptation

    NASA Astrophysics Data System (ADS)

    Biagini, Bonizella; Kuhl, Laura; Gallagher, Kelly Sims; Ortiz, Claudia

    2014-09-01

    Technology alone will not be able to solve adaptation challenges, but it is likely to play an important role. As a result of the role of technology in adaptation and the importance of international collaboration for climate change, technology transfer for adaptation is a critical but understudied issue. Through an analysis of Global Environment Facility-managed adaptation projects, we find there is significantly more technology transfer occurring in adaptation projects than might be expected given the pessimistic rhetoric surrounding technology transfer for adaptation. Most projects focused on demonstration and early deployment/niche formation for existing technologies rather than earlier stages of innovation, which is understandable considering the pilot nature of the projects. Key challenges for the transfer process, including technology selection and appropriateness under climate change, markets and access to technology, and diffusion strategies are discussed in more detail.

  12. 15 CFR 740.15 - Aircraft and vessels (AVS).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... transfer of technology. No technology is transferred to a national of a destination in Country Group E:1... destination in Country Group E:1 (see supplement No. 1 to this part); (vi) Technology is not transferred to a... destination in Country Group E:1 (see supplement No. 1 to this part); (vi) Technology is not transferred to a...

  13. NREL Solar Cell Wins Federal Technology Transfer Prize | News | NREL

    Science.gov Websites

    Solar Cell Wins Federal Technology Transfer Prize News Release: NREL Solar Cell Wins Federal ) Solar Cell was named a winner of the 2009 Award for Excellence in Technology Transfer by the Federal Laboratory Consortium for Technology Transfer. The original IMM cell was invented by Mark Wanlass of NREL's

  14. 48 CFR 970.3102-05-30-70 - Patent costs and technology transfer costs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... technology transfer costs. 970.3102-05-30-70 Section 970.3102-05-30-70 Federal Acquisition Regulations System... Principles and Procedures 970.3102-05-30-70 Patent costs and technology transfer costs. (a) For management and operating contracts that do not include the clause at 970.5227-3, Technology Transfer Mission, the...

  15. 48 CFR 970.3102-05-30-70 - Patent costs and technology transfer costs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... technology transfer costs. 970.3102-05-30-70 Section 970.3102-05-30-70 Federal Acquisition Regulations System... Principles and Procedures 970.3102-05-30-70 Patent costs and technology transfer costs. (a) For management and operating contracts that do not include the clause at 970.5227-3, Technology Transfer Mission, the...

  16. 48 CFR 970.3102-05-30-70 - Patent costs and technology transfer costs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... technology transfer costs. 970.3102-05-30-70 Section 970.3102-05-30-70 Federal Acquisition Regulations System... Principles and Procedures 970.3102-05-30-70 Patent costs and technology transfer costs. (a) For management and operating contracts that do not include the clause at 970.5227-3, Technology Transfer Mission, the...

  17. 48 CFR 970.3102-05-30-70 - Patent costs and technology transfer costs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... technology transfer costs. 970.3102-05-30-70 Section 970.3102-05-30-70 Federal Acquisition Regulations System... Principles and Procedures 970.3102-05-30-70 Patent costs and technology transfer costs. (a) For management and operating contracts that do not include the clause at 970.5227-3, Technology Transfer Mission, the...

  18. Environmentally Conscious Manufacturing Technology Transfer and Training Initiative (ECMT3I) Technology Transfer Model Report.

    ERIC Educational Resources Information Center

    Sandia National Labs., Albuquerque, NM.

    The Environmentally Conscious Manufacturing Technology Transfer and Training Initiative (ECMT3I) is a cooperative effort among education and research institutions in New Mexico to analyze problems in transferring environmental technologies from Department of Energy laboratories to small and medium enterprises (SME's). The goal of the ECMT3I is to…

  19. 48 CFR 970.3102-05-30-70 - Patent costs and technology transfer costs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... technology transfer costs. 970.3102-05-30-70 Section 970.3102-05-30-70 Federal Acquisition Regulations System... Principles and Procedures 970.3102-05-30-70 Patent costs and technology transfer costs. (a) For management and operating contracts that do not include the clause at 970.5227-3, Technology Transfer Mission, the...

  20. Tech Transfer News. Volume 6, No. 1

    NASA Technical Reports Server (NTRS)

    Victor, Megan E.

    2014-01-01

    On October 28, 2011, the White House released a Presidential Memorandum entitled: Accelerating Technology Transfer and Commercialization of Federal Research in Support of High-Growth Businesses. With this memo, the President challenged all federal agencies conducting R&D to accelerate technology transfer and commercialization of federally developed technology to help stimulate the national economy. The NASA Technology Transfer Program responded by asking the center technology transfer offices to reach out to - and work more closely with - their regional economic development organizations to promote the transfer of NASA technologies to the local private sector for use in the marketplace. Toward that effort, the KSC Technology Transfer Office teamed with the Florida Space Coast Economic Development Commission (EDC) to host a technology transfer forum designed to increase our business community's awareness of available KSC technologies for transfer. In addition, the forum provided opportunities for commercial businesses to collaborate with KSC in technology development. (see article on page 12) The forum, held on September 12, 2013, focused on KSC technology transfer and partnership opportunities within the Robotics, Sustainability, Information Technology and Environmental Remediation technology areas. The event was well attended with over 120 business leaders from the community. KSC Center Director Robert Cabana and the Center Chief Technologist Karen Thompson provided remarks, and several KSC lead researchers presented technical information and answered questions, which were not in short supply. Florida Today and the Orlando Sentinel ran news stories on the forum and both NASA TV and Channel 6 News filmed portions of the event. Given the reaction by the media and local business to the forum, it is evident the community is recognizing the opportunities that NASA-developed technologies can provide to aspiring entrepreneurs and existing companies to bring new technologies to market, as well as the positive impact KSC technology transfer can have on the local economy. We see even more evidence of this in the efforts by several other organizations to develop programs that provide aspiring entrepreneurs with the opportunity and training needed to identify the commercial potential of specific NASA technologies and develop business plans to exploit that potential. Several initiatives include Florida Startup Quest, CareerSource Brevard Energy Launch, Rollins College Entrepreneurial Scholar of Distinction Program, and a new effort led by the University of Central Florida Office of Research and Commercialization to stimulate new business growth in Florida based on NASA technologies. The KSC Technology Transfer Office has stepped up to support each of these programs and is providing them with the NASA technologies they need to help move the economy forward.

  1. Project for the analysis of technology transfer

    NASA Technical Reports Server (NTRS)

    Kottenstette, J. P.; Freeman, J. E.; Staskin, E. R.

    1971-01-01

    The special task of preparing technology transfer profiles during the first six months of 1971 produced two major results: refining a new method for identifying and describing technology transfer activities, and generating practical insights into a number of issues associated with transfer programs.

  2. Technology transfer within the government

    NASA Technical Reports Server (NTRS)

    Russell, John

    1992-01-01

    The report of a workshop panel concerned with technology transfer within the government is presented. The presentation is made in vugraph form. The assigned subtopic for this panel are as follows: (1) transfer from non-NASA US government technology developers to NASA space missions/programs; and (2) transfer from NASA to other US government space mission programs. A specific area of inquiry was Technology Maturation Milestones. Three areas were investigated: technology development; advanced development; and flight hardware development.

  3. The human element in technology transfer

    NASA Technical Reports Server (NTRS)

    Peake, H. J.

    1978-01-01

    A transfer model composed of three roles and their linkages was considered. This model and a growing body of experience was analyzed to provide guidance in the human elements of technology transfer. For example, criteria for selection of technology transfer agents was described, and some needed working climate factors were known. These concepts were successfully applied to transfer activities.

  4. Technology transfer: the key to fusion commercialization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnett, S.C.

    1981-01-01

    The paper brings to light some of the reasons why technology transfer is difficult in fusion, examines some of the impediments to the process, and finally looks at a successful example of technology transfer. The paper considers some subjective features of fusion - one might call them the sociology of fusion - that are none the less real and that serve as impediments to technology transfer.

  5. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 2

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar (Compiler)

    1994-01-01

    This is the second volume of papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools; systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development; perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; and robotics technologies.

  6. National Technology Transfer Center

    NASA Technical Reports Server (NTRS)

    Rivers, Lee W.

    1992-01-01

    Viewgraphs on the National Technology Transfer Center (NTTC) are provided. The NTTC mission is to serve as a hub for the nationwide technology-transfer network to expedite the movement of federally developed technology into the stream of commerce. A description of the Center is provided.

  7. Technology transfer to a developing nation, Korea

    NASA Technical Reports Server (NTRS)

    Stone, C. A.; Uccetta, S. J.

    1973-01-01

    An experimental project is reported which was undertaken. to determine if selected types of technology developed for the aerospace program during the past decade are relevant to specific industrial problems of a developing nation and to test whether a structured program could facilitate the transfer of relevant technologies. The Korea Institute of Science and Technology and the IIT Research Institute were selected as the active transfer agents to participate in the program. The pilot project was based upon the approach to the transfer of domestic technology developed by the NASA Technology Utilization Division and utilized the extensive data and technical resources available through the Space Agency and its contractors. This pilot project has helped to clarify some aspects of the international technology transfer process and to upgrade Korean technological capabilities.

  8. EPA Reports to Congress on Technology Transfer

    EPA Pesticide Factsheets

    Agencies are required to report to the Congress annually on their technology transfer activities. These reports summarize technology transfer activities of the EPA’s federal laboratories, by fiscal year.

  9. A hypertext-based Internet-assessable database for the MSFC Technology Transfer Office

    NASA Technical Reports Server (NTRS)

    Jackson, Jeff

    1994-01-01

    There exists a continuing need to disseminate technical information and facilities capabilities from NASA field centers in an effort to promote the successful transfer of technologies developed with public funds to the private sector. As technology transfer is a stated NASA mission, there exists a critical need for NASA centers to document technology capabilities and disseminate this information on as wide a basis as possible. Certainly local and regional dissemination is critical, but global dissemination of scientific and engineering facilities and capabilities gives NASA centers the ability to contribute to technology transfer on a much broader scale. Additionally, information should be disseminated in a complete and rapidly available form. To accomplish this information dissemination, the unique capabilities of the Internet are being exploited. The Internet allows widescale information distribution in a rapid fashion to aid in the accomplishment of technology transfer goals established by the NASA/MSFC Technology Transfer Office. Rapid information retrieval coupled with appropriate electronic feedback, allows the scientific and technical capabilities of Marshall Space Flight Center, often unique in the world, to be explored by a large number of potential benefactors of NASA (or NASA-derived) technologies. Electronic feedback, coupled with personal contact with the MSFC Technology Transfer Office personnel, allows rapid responses to technical requests from industry and academic personnel as well as private citizens. The remainder of this report gives a brief overview of the Mosaic software and a discussion of technology transfer office and laboratory facilities data that have been made available on the Internet to promote technology transfer.

  10. Study of Federal technology transfer activities in areas of interest to NASA Office of Space and Terrestrial Applications

    NASA Technical Reports Server (NTRS)

    Madigan, J. A.; Earhart, R. W.

    1978-01-01

    Forty-three ongoing technology transfer programs in Federal agencies other than NASA were selected from over 200 current Federal technology transfer activities. Selection was made and specific technology transfer mechanisms utilized. Detailed information was obtained on the selected programs by reviewing published literature, and conducting telephone interviews with each program manager. Specific information collected on each program includes technology areas; user groups, mechanisms employed, duration of program, and level of effort. Twenty-four distinct mechanisms are currently employed in Federal technology transfer activities totaling $260 million per year. Typical applications of each mechanism were reviewed, and caveats on evaluating program effectiveness were discussed. A review of recent federally funded research in technology transfer to state and local governments was made utilizing the Smithsonian Science Information Exchange, and abstracts of interest to NASA were selected for further reference.

  11. Fuel Reforming Technologies (BRIEFING SLIDES)

    DTIC Science & Technology

    2009-09-01

    Heat and Mass Transfer , Catalysis...Gallons Of Fuel/Day/1100men Deployment  To Reduce Noise/Thermal Signature And 4 Environmental Emissions Advanced Heat and Mass Transfer 5 Advanced... Heat and Mass & Transfer Technologies Objective Identify And Develop New Technologies To Enhance Heat And Mass Transfer In Deployed Energy

  12. Transferability of economic evaluations of medical technologies: a new technology for orthopedic surgery.

    PubMed

    Steuten, Lotte; Vallejo-Torres, Laura; Young, Terry; Buxton, Martin

    2008-05-01

    Transferring results of economic evaluations across countries or jurisdictions can potentially save scarce evaluation resources while helping to make market access and reimbursement decisions in a timely fashion. This article points out why transferring results of economic evaluations is particularly important in the field of medical technologies. It then provides an overview of factors that are previously identified in the literature as affecting transferability of economic evaluations, as well as methods for transferring results in a scientifically sound way. As the current literature almost exclusively relates to transferability of pharmacoeconomic evaluations, this article highlights those factors and methodologies that are of particular relevance to transferring medical technology assessments. Considering the state-of-the-art literature and a worked, real life, example of transferring an economic evaluation of a product used in orthopedic surgery, we provide recommendations for future work in this important area of medical technology assessment.

  13. AAC technology transfer: an AAC-RERC report.

    PubMed

    Higginbotham, D Jeffery; Beukelman, David; Blackstone, Sarah; Bryen, Diane; Caves, Kevin; Deruyter, Frank; Jakobs, Thomas; Light, Janice; McNaughton, David; Moulton, Bryan; Shane, Howard; Williams, Michael B

    2009-03-01

    Transferring innovative technologies from the university to the manufacturing sector can often be an elusive and problematic process. The Rehabilitation and Engineering Research Center on Communication Enhancement (AAC-RERC) has worked with the manufacturing community for the last 10 years. The purpose of this article is to discuss barriers to technology transfer, to outline some technology transfer strategies, and to illustrate these strategies with AAC-RERC related activities.

  14. Technology transfer methodology

    NASA Technical Reports Server (NTRS)

    Labotz, Rich

    1991-01-01

    Information on technology transfer methodology is given in viewgraph form. Topics covered include problems in economics, technology drivers, inhibitors to using improved technology in development, technology application opportunities, and co-sponsorship of technology.

  15. Information to Change the World--Fulfilling the Information Needs of Technology Transfer.

    ERIC Educational Resources Information Center

    Duberman, Josh; Zeller, Martin

    1996-01-01

    Provides an introduction to fulfilling the information needs of technology transfer. Highlights include a definition of technology transfer; government and university involvement; industry's role; publishers; an annotated list of information sources and contacts; technology assessment, including patent searching, competitive intelligence, and…

  16. Search Technologies | NCI Technology Transfer Center | TTC

    Cancer.gov

    Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.

  17. Available Technologies | NCI Technology Transfer Center | TTC

    Cancer.gov

    Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.

  18. Australian University Technology Transfer Managers: Backgrounds, Work Roles, Specialist Skills and Perceptions

    ERIC Educational Resources Information Center

    Harman, Grant; Stone, Christopher

    2006-01-01

    Technology transfer managers are a new group of specialist professionals engaged in facilitating transfer of university research discoveries and inventions to business firms and other research users. With relatively high academic qualifications and enjoying higher salaries than many other comparable university staff, technology transfer managers…

  19. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 1

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar (Compiler)

    1994-01-01

    This document contains papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; new ways of doing business; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; ans robotics technologies. More than 77 papers, 20 presentations, and 20 exhibits covering various disciplines were presented b experts from NASA, universities, and industry.

  20. Applications of aerospace technology in industry: A technology transfer profile, nondestructive testing

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development of nondestructive testing procedures by NASA and the transfer of nondestructive testing to technology to civilian industry are discussed. The subjects presented are: (1) an overview of the nondestructive testing field, (2) NASA contributions to the field of nondestructive testing, (3) dissemination of NASA contributions, and (4) a transfer profile. Attachments are included which provide a brief description of common nondestructive testing methods and summarize the technology transfer reports involving NASA generated nondestructive testing technology.

  1. Program for transfer research and impact studies

    NASA Technical Reports Server (NTRS)

    Rusnak, J. J.; Freeman, J. E.; Hartley, J. M.; Kottenstette, J. P.; Staskin, E. R.

    1973-01-01

    Research activities conducted under the Program for Transfer Research and Impact Studies (TRIS) during 1972 included: (1) preparation of 10,196 TSP requests for TRIS application analysis; (2) interviews with over 500 individuals concerning the technical, economic, and social impacts of NASA-generated technology; (3) preparation of 38 new technology transfer example files and 101 new transfer cases; and (4) maintenance of a technology transfer library containing more than 2,900 titles. Six different modes of technology utilization are used to illustrate the pervasiveness of the transfer and diffusion of aerospace innovations. These modes also provide a basis for distinguishing the unique characteristics of the NASA Technology Utilization Program. An examination is reported of the ways in which NASA-generated technology is contributing to beneficial social change in five major areas of human concern: health, environment, safety, transportation, and communication.

  2. NASA Technology Transfer System

    NASA Technical Reports Server (NTRS)

    Tran, Peter B.; Okimura, Takeshi

    2017-01-01

    NTTS is the IT infrastructure for the Agency's Technology Transfer (T2) program containing 60,000+ technology portfolio supporting all ten NASA field centers and HQ. It is the enterprise IT system for facilitating the Agency's technology transfer process, which includes reporting of new technologies (e.g., technology invention disclosures NF1679), protecting intellectual properties (e.g., patents), and commercializing technologies through various technology licenses, software releases, spinoffs, and success stories using custom built workflow, reporting, data consolidation, integration, and search engines.

  3. Technology transfer of remote sensing technology

    NASA Technical Reports Server (NTRS)

    Smith, A. D.

    1980-01-01

    The basic philosophy and some current activities of MSFC Technology Transfer with regard to remote sensing technology are briefly reviewed. Among the problems that may be alleviated through such technology transfer are the scarcity of energy and mineral resources, the alteration of the environment by man, unpredictable natural disasters, and the effect of unanticipated climatic change on agricultural productivity.

  4. NASA programs in technology transfer and their relation to remote sensing education

    NASA Technical Reports Server (NTRS)

    Weinstein, R. H.

    1980-01-01

    Technology transfer to users is a central feature of NASA programs. In each major area of responsibility, a variety of mechanisms was established to provide for this transfer of operational capability to the proper end user, be it a Federal agency, industry, or other public sector users. In addition, the Technology Utilization program was established to cut across all program areas and to make available a wealth of 'spinoff' technology (i.e., secondary applications of space technology to ground-based use). The transfer of remote sensing technology, particularly to state and local users, presents some real challenges in application and education for NASA and the university community. The agency's approach to the transfer of remote sensing technology and the current and potential role of universities in the process are considered.

  5. Technology transfer metrics: Measurement and verification of data/reusable launch vehicle business analysis

    NASA Technical Reports Server (NTRS)

    Trivoli, George W.

    1996-01-01

    Congress and the Executive Branch have mandated that all branches of the Federal Government exert a concentrated effort to transfer appropriate government and government contractor-developed technology to the industrial use in the U.S. economy. For many years, NASA has had a formal technology transfer program to transmit information about new technologies developed for space applications into the industrial or commercial sector. Marshall Space Flight Center (MSFC) has been in the forefront of the development of U.S. industrial assistance programs using technologies developed at the Center. During 1992-93, MSFC initiated a technology transfer metrics study. The MSFC study was the first of its kind among the various NASA centers. The metrics study is a continuing process, with periodic updates that reflect on-going technology transfer activities.

  6. 77 FR 46909 - Small Business Innovation Research (SBIR) Program and Small Business Technology Transfer (STTR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-06

    ... Technology Transfer (STTR) Program Policy Directives AGENCY: U.S. Small Business Administration. ACTION...) and Small Business Technology Transfer Program (STTR) Policy Directives. These amendments implement... to Edsel Brown, Assistant Director, Office of Technology, U.S. Small Business Administrator, 409...

  7. Development and Technology Transfer of the Syncro Blue Tube (Gabriel) Magnetically Guided Feeding Tube

    DTIC Science & Technology

    2017-06-01

    other documentation. TITLE: Development and Technology Transfer of the Syncro Blue Tube (Gabriel) Magnetically Guided Feeding Tube REPORT DOCUMENTATION...TITLE AND SUBTITLE Development and Technology Transfer of the Syncro Blue Tube (Gabriel) Magnetically Guided Feeding Tube 5a. CONTRACT NUMBER W81XWH-09-2...Technical Abstract: Further Development and Technology Transfer of the Syncro BLUETUBE™ (Gabriel) Magnetically Guided Feeding Tube. New Primary

  8. University Technology Transfer Information Processing from the Attention Based View

    ERIC Educational Resources Information Center

    Hamilton, Clovia

    2015-01-01

    Between 2005 and 2011, there was no substantial growth in licenses executed by university technology transfer offices. Since the passage of the Bayh Dole Act of 1980, universities have owned technological inventions afforded by federal research funding. There are still university technology transfer offices that struggle with increasing their…

  9. Effetive methods in educating extension agents and farmers on conservation farming technology

    USDA-ARS?s Scientific Manuscript database

    Adoption of new technologies requires transfer of information from developers to end users. Efficiency of the transfer process influences the rate of adoption and ultimate impact of the technology. Various channels are used to transfer technology from researchers to farmers. Two commonly used ones ...

  10. Technology Transfer through Training: Emerging Roles for the University.

    ERIC Educational Resources Information Center

    Bergsma, Harold M.

    The importance of training in the technology transfer process is discussed, with special consideration to conditions in developing countries. Also considered is the role universities can play in training to promote technology transfer. Advisors on training and curriculum development are needed to introduce a new technology. Training farmers to…

  11. KSC-2013-3575

    NASA Image and Video Library

    2013-09-12

    CAPE CANAVERAL, Fla. – Lewis Parrish, senior Technology Transfer specialist for Qinetiq at NASA's Kennedy Space Center in Florida, discusses technology transfer with attendees at the Technology Transfer Forum of the Economic Development Commission of Florida's Space Coast. A goal of the session was to showcase ways commercial businesses can work with NASA to develop technology and apply existing technology to commercial uses. Photo credit: NASA/Glenn Benson

  12. What Is Technology Transfer? | Poster

    Cancer.gov

    The NCI Technology Transfer Center (TTC) facilitates partnerships between NIH research laboratories and external partners. With a team of technology transfer specialists, NCI TTC guides interactions from discovery to patenting, as well as from collaboration and invention development to licensing.

  13. Technology Transfer: A Think Tank Approach to Managing Innovation in the Public Sector

    DTIC Science & Technology

    1985-01-01

    TECHNOLOGY TRANSFER: A THINK TANK APPROACH TO MANAGING INNOVATION IN THE PUBLIC SECTOR CISIRIBUTIOtl STATEMENT A Approved for Public Release...NAVAL FACILITIES ENGINEERING COMMAND TECHNOLOGY TRANSFER: A THINK TANK APPROACH TO MANAGING INNOVATION IN THE PUBLIC SECTOR Edited by J. W. Creighton...Publication of this book, Technology Transfer: A Think Tank Approach to Managing Innovation in the Public Sector, was in part supported by funds from the U.S

  14. Auto-disable syringes for immunization: issues in technology transfer.

    PubMed Central

    Lloyd, J. S.; Milstien, J. B.

    1999-01-01

    WHO and its partners recommend the use of auto-disable syringes, "bundled" with the supply of vaccines when donor dollars are used, in all mass immunization campaigns, and also strongly advocate their use in routine immunization programmes. Because of the relatively high price of auto-disable syringes, WHO's Technical Network for Logistics in Health recommends that activities be initiated to encourage the transfer of production technology for these syringes as a means of promoting their use and enhancing access to the technology. The present article examines factors influencing technology transfer, including feasibility, corporate interest, cost, quality assurance, intellectual property considerations, and probable time frames for implementation. Technology transfer activities are likely to be complex and difficult, and may not result in lower prices for syringes. Guidelines are offered on technology transfer initiatives for auto-disable syringes to ensure the quality of the product, the reliability of the supply, and the feasibility of the technology transfer activity itself. PMID:10680248

  15. Technology CAD for integrated circuit fabrication technology development and technology transfer

    NASA Astrophysics Data System (ADS)

    Saha, Samar

    2003-07-01

    In this paper systematic simulation-based methodologies for integrated circuit (IC) manufacturing technology development and technology transfer are presented. In technology development, technology computer-aided design (TCAD) tools are used to optimize the device and process parameters to develop a new generation of IC manufacturing technology by reverse engineering from the target product specifications. While in technology transfer to manufacturing co-location, TCAD is used for process centering with respect to high-volume manufacturing equipment of the target manufacturing equipment of the target manufacturing facility. A quantitative model is developed to demonstrate the potential benefits of the simulation-based methodology in reducing the cycle time and cost of typical technology development and technology transfer projects over the traditional practices. The strategy for predictive simulation to improve the effectiveness of a TCAD-based project, is also discussed.

  16. Evaluating disparities in the U.S. technology transfer ecosystem to improve bench to business translation.

    PubMed

    Weis, James; Bashyam, Ashvin; Ekchian, Gregory J; Paisner, Kathryn; Vanderford, Nathan L

    2018-01-01

    Background: A large number of highly impactful technologies originated from academic research, and the transfer of inventions from academic institutions to private industry is a major driver of economic growth, and a catalyst for further discovery. However, there are significant inefficiencies in academic technology transfer. In this work, we conducted a data-driven assessment of translational activity across United States (U.S.) institutions to better understand how effective universities are in facilitating the transfer of new technologies into the marketplace. From this analysis, we provide recommendations to guide technology transfer policy making at both the university and national level. Methods: Using data from the Association of University Technology Managers U.S. Licensing Activity Survey, we defined a commercialization pipeline that reflects the typical path intellectual property takes; from initial research funding to startup formation and gross income. We use this pipeline to quantify the performance of academic institutions at each step of the process, as well as overall, and identify the top performing institutions via mean reciprocal rank. The corresponding distributions were visualized and disparities quantified using the Gini coefficient. Results: We found significant discrepancies in commercialization activity between institutions; a small number of institutions contribute to the vast majority of total commercialization activity. By examining select top performing institutions, we suggest improvements universities and technology transfer offices could implement to emulate the environment at these high-performing institutions. Conclusion: Significant disparities in technology transfer performance exist in which a select set of institutions produce a majority share of the total technology transfer activity. This disparity points to missed commercialization opportunities, and thus, further investigation into the distribution of technology transfer effectiveness across institutions and studies of policy changes that would improve the effectiveness of the commercialization pipeline is warranted.

  17. Evaluating disparities in the U.S. technology transfer ecosystem to improve bench to business translation

    PubMed Central

    Paisner, Kathryn; Vanderford, Nathan L.

    2018-01-01

    Background: A large number of highly impactful technologies originated from academic research, and the transfer of inventions from academic institutions to private industry is a major driver of economic growth, and a catalyst for further discovery. However, there are significant inefficiencies in academic technology transfer. In this work, we conducted a data-driven assessment of translational activity across United States (U.S.) institutions to better understand how effective universities are in facilitating the transfer of new technologies into the marketplace. From this analysis, we provide recommendations to guide technology transfer policy making at both the university and national level. Methods: Using data from the Association of University Technology Managers U.S. Licensing Activity Survey, we defined a commercialization pipeline that reflects the typical path intellectual property takes; from initial research funding to startup formation and gross income. We use this pipeline to quantify the performance of academic institutions at each step of the process, as well as overall, and identify the top performing institutions via mean reciprocal rank. The corresponding distributions were visualized and disparities quantified using the Gini coefficient. Results: We found significant discrepancies in commercialization activity between institutions; a small number of institutions contribute to the vast majority of total commercialization activity. By examining select top performing institutions, we suggest improvements universities and technology transfer offices could implement to emulate the environment at these high-performing institutions. Conclusion: Significant disparities in technology transfer performance exist in which a select set of institutions produce a majority share of the total technology transfer activity. This disparity points to missed commercialization opportunities, and thus, further investigation into the distribution of technology transfer effectiveness across institutions and studies of policy changes that would improve the effectiveness of the commercialization pipeline is warranted. PMID:29721313

  18. 48 CFR 970.5227-11 - Patent rights-management and operating contracts, for-profit contractor, non-technology transfer.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and operating contracts, for-profit contractor, non-technology transfer. 970.5227-11 Section 970.5227...-technology transfer. Insert the following clause in solicitations and contracts in accordance with 970.2703-1(b)(4): Patent Rights—Management and Operating Contracts, for-Profit Contractor, Non-Technology...

  19. 48 CFR 970.5227-2 - Rights in data-technology transfer.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Rights in data-technology... for Management and Operating Contracts 970.5227-2 Rights in data-technology transfer. As prescribed in 48 CFR 970.2704-3(b), insert the following clause: Rights in Data—Technology Transfer (DEC 2000) (a...

  20. Key Findings and Recommendations for Technology Transfer at the ITS JPO

    DOT National Transportation Integrated Search

    2011-03-18

    This report provides key findings and recommendations for technology transfer at the Intelligent Transportation Systems Joint Program Office (ITS JPO) based upon an assessment of best practices in technology transfer in other industries, such as nati...

  1. On transferring the grid technology to the biomedical community.

    PubMed

    Mohammed, Yassene; Sax, Ulrich; Dickmann, Frank; Lippert, Joerg; Solodenko, Juri; von Voigt, Gabriele; Smith, Matthew; Rienhoff, Otto

    2010-01-01

    Natural scientists such as physicists pioneered the sharing of computing resources, which resulted in the Grid. The inter domain transfer process of this technology has been an intuitive process. Some difficulties facing the life science community can be understood using the Bozeman's "Effectiveness Model of Technology Transfer". Bozeman's and classical technology transfer approaches deal with technologies that have achieved certain stability. Grid and Cloud solutions are technologies that are still in flux. We illustrate how Grid computing creates new difficulties for the technology transfer process that are not considered in Bozeman's model. We show why the success of health Grids should be measured by the qualified scientific human capital and opportunities created, and not primarily by the market impact. With two examples we show how the Grid technology transfer theory corresponds to the reality. We conclude with recommendations that can help improve the adoption of Grid solutions into the biomedical community. These results give a more concise explanation of the difficulties most life science IT projects are facing in the late funding periods, and show some leveraging steps which can help to overcome the "vale of tears".

  2. Risk Management in Biologics Technology Transfer.

    PubMed

    Toso, Robert; Tsang, Jonathan; Xie, Jasmina; Hohwald, Stephen; Bain, David; Willison-Parry, Derek

    Technology transfer of biological products is a complex process that is important for product commercialization. To achieve a successful technology transfer, the risks that arise from changes throughout the project must be managed. Iterative risk analysis and mitigation tools can be used to both evaluate and reduce risk. The technology transfer stage gate model is used as an example tool to help manage risks derived from both designed process change and unplanned changes that arise due to unforeseen circumstances. The strategy of risk assessment for a change can be tailored to the type of change. In addition, a cross-functional team and centralized documentation helps maximize risk management efficiency to achieve a successful technology transfer. © PDA, Inc. 2016.

  3. Transfer research and impact studies program

    NASA Technical Reports Server (NTRS)

    Freeman, J. E. (Editor)

    1975-01-01

    Methods developed for stimulating interest in the transfer of NASA-originated technology are described. These include: new information packaging concepts; technology transfer via people transfer; information management systems; data bank operations; and professional communication activities.

  4. Biomedical technology transfer applications of NASA science and technology

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The identification and solution of research and clinical problems in cardiovascular medicine which were investigated by means of biomedical data transfer are reported. The following are sample areas that were focused upon by the Stanford University Biomedical Technology Transfer Team: electrodes for hemiplegia research; vectorcardiogram computer analysis; respiration and phonation electrodes; radiotelemetry of intracranial pressure; and audiotransformation of the electrocardiographic signal. It is concluded that this biomedical technology transfer is significantly aiding present research in cardiovascular medicine.

  5. Benefits briefing notebook: The secondary application of aerospace technology in other sectors of the economy

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Resource information on the transfer of aerospace technology to other sectors of the U.S. economy is presented. The contents of this notebook are divided into three sections: (1) benefit cases, (2) transfer overview, and (3) indexes. Transfer examples relevant to each subject area are presented. Pertinent transfer data are given. The Transfer Overview section provides a general perspective for technology transfer from NASA to other organizations. In addition to a description of the basic transfer modes, the selection criteria for notebook examples and the kinds of benefit data they contain are also presented.

  6. Spinoff, 1992

    NASA Technical Reports Server (NTRS)

    Haggerty, James J.

    1992-01-01

    This publication is intended to foster the aim of the NASA Technology Transfer Program by heightening awareness of the NASA technology available for reapplication and its potential for public benefit. The publication is organized in three main sections. Section 1 outlines NASA's mainline effort, the major programs that generate new technology and therefore replenish and expand the bank of knowledge available for transfer. Section 2 contains a representative sampling of spinoff products that resulted from secondary application of technology originally developed to meet mainline goals. Section 3 describes the various mechanisms NASA employs to stimulate technology transfer and lists, in an appendix, contact sources for further information about the Technology Transfer Program.

  7. Spinoff 1993

    NASA Technical Reports Server (NTRS)

    Haggerty, James J.

    1993-01-01

    This publication is intended to foster the aim of the NASA Technology Transfer Program by heightening awareness of the NASA technology available for reapplication and its potential for public benefit. The publication is organized in three main sections. Section 1 outlines NASA's mainline effort, the major programs that generate new technology and therefore replenish and expand the bank of knowledge available for transfer. Section 2 contains a representative sampling of spinoff products that resulted from secondary application of technology originally developed to meet mainline goals. Section 3 describes the various mechanisms NASA employs to stimulate technology transfer and lists, in an appendix, contact sources for further information about the Technology Transfer Program.

  8. Technology transfer to the broader economy

    NASA Technical Reports Server (NTRS)

    Dyer, Gordon; Clark, Robert

    1992-01-01

    Approaches to the transfer of government-funded civil space technology to the broader commercial economy were addressed by Working Panel no. 4. Some of the problems related to current strategies for technology transfer and recommendations for new approaches are described in outline form.

  9. Technology Transfer: Technocultures, Power and Communication--The Australian Experience.

    ERIC Educational Resources Information Center

    More, Elizabeth; Irwin, Harry

    1995-01-01

    Discusses issues of communication and power in the organizational dimensions of international technology transfer, including technoculture differences and strategic political alliances. Theoretical discussion is supplemented by analysis of international technology transfer activities involving Australian participation in the aerospace and…

  10. 48 CFR 970.2770 - Technology Transfer.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Technology Transfer. 970.2770 Section 970.2770 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Patents, Data, and Copyrights 970.2770 Technology Transfer. ...

  11. 48 CFR 970.2770 - Technology Transfer.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Technology Transfer. 970.2770 Section 970.2770 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Patents, Data, and Copyrights 970.2770 Technology Transfer. ...

  12. 48 CFR 970.2770 - Technology Transfer.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Technology Transfer. 970.2770 Section 970.2770 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Patents, Data, and Copyrights 970.2770 Technology Transfer. ...

  13. 48 CFR 970.2770 - Technology Transfer.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Technology Transfer. 970.2770 Section 970.2770 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Patents, Data, and Copyrights 970.2770 Technology Transfer. ...

  14. 48 CFR 970.2770 - Technology Transfer.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Technology Transfer. 970.2770 Section 970.2770 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Patents, Data, and Copyrights 970.2770 Technology Transfer. ...

  15. Applications of aerospace technology in industry. A technology transfer profile: Food technology

    NASA Technical Reports Server (NTRS)

    Murray, D. M.

    1971-01-01

    Food processing and preservation technologies are reviewed, expected technological advances are considered including processing and market factors. NASA contributions to food technology and nutrition are presented with examples of transfer from NASA to industry.

  16. [Conceptual foundations of creation of branch database of technology and intellectual property rights owned by scientific institutions, organizations, higher medical educational institutions and enterprises of healthcare sphere of Ukraine].

    PubMed

    Horban', A Ie

    2013-09-01

    The question of implementation of the state policy in the field of technology transfer in the medical branch to implement the law of Ukraine of 02.10.2012 No 5407-VI "On Amendments to the law of Ukraine" "On state regulation of activity in the field of technology transfers", namely to ensure the formation of branch database on technology and intellectual property rights owned by scientific institutions, organizations, higher medical education institutions and enterprises of healthcare sphere of Ukraine and established by budget are considered. Analysis of international and domestic experience in the processing of information about intellectual property rights and systems implementation support transfer of new technologies are made. The main conceptual principles of creation of this branch database of technology transfer and branch technology transfer network are defined.

  17. Ames Lab 101: Technology Transfer

    ScienceCinema

    Covey, Debra

    2017-12-13

    Ames Laboratory Associate Laboratory Director, Sponsored Research Administration, Debra Covey discusses technology transfer. Covey also discusses Ames Laboratory's most successful transfer, lead-free solder.

  18. Aerospace technology transfer to the public sector; Proceedings of the Conference, Crystal City, Va., November 9-11, 1977

    NASA Technical Reports Server (NTRS)

    Grey, J. (Editor); Newman, M.

    1978-01-01

    The dynamics of aerospace technology transfer is discussed with reference to the agencies which facilitate the transfer to both the public and private sectors. Attention is given to NASA's Technology Utilization Program, and to specific applications of aerospace technology spinoff in the daily life of Americans.

  19. 14 CFR 1274.915 - Restrictions on sale or transfer of technology to foreign firms or institutions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... technology to foreign firms or institutions. 1274.915 Section 1274.915 Aeronautics and Space NATIONAL... Conditions § 1274.915 Restrictions on sale or transfer of technology to foreign firms or institutions. Restrictions on Sale or Transfer of Technology to Foreign Firms or Institutions July 2002 (a) The parties agree...

  20. 75 FR 80830 - Proposed Collection; Comment Request; Technology Transfer Center External Customer Satisfaction...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... Request; Technology Transfer Center External Customer Satisfaction Survey (NCI) SUMMARY: In compliance...: Technology Transfer Center External Customer Satisfaction Survey (NCI). Type of Information Collection...: Obtain information on the satisfaction of TTC's external customers with TTC customer services; collect...

  1. Technology Transfer and Technology Transfer Intermediaries

    ERIC Educational Resources Information Center

    Bauer, Stephen M.; Flagg, Jennifer L.

    2010-01-01

    A standard and comprehensive model is needed to evaluate and compare technology transfer systems and the stakeholders within these systems. The principle systems considered include federal laboratories, U.S. universities, the rehabilitation engineering research centers (RERCs), and large small business innovation research programs. An earlier…

  2. Summary Report on Federal Laboratory Technology Transfer: FY 2003 Activity Metrics and Outcomes. 2004 Report to the President and the Congress under the Technology Transfer and Commercialization Act

    DTIC Science & Technology

    2004-12-01

    Agency, FY 1999-2003 Table 1.1 – Overview of the Types of Information on Federal lab Technology Transfer Collected in the...invention disclosure, patenting, and licensing. Table 1.1 – Overview of the Types of Information on Federal Lab Technology Transfer Collected in...results. In addition, ARS hosts a Textile Manufacturing Symposium and a Cotton Ginning Symposium at gin and textile labs to benefit county extension

  3. Training Technology Transfer Act of 1984. Hearing before the Subcommittee on Education, Arts and Humanities of the Committee on Labor and Human Resources, United States Senate, Ninety-Eighth Congress, Second Session on S. 2561. Entitled the "Training Technology Transfer Act of 1984."

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Senate Committee on Labor and Human Resources.

    This is a congressional hearing on the Training Technology Transfer Act of 1984, which would establish a mechanism for transferring the Federal Government's investment in computer programming for training systems to those organizations and groups that can use such technology in training the civilian work force. Focus is on refining this bill,…

  4. The ESA TTP and Recent Spin-off Successes

    NASA Astrophysics Data System (ADS)

    Raitt, D.; Brisson, P.

    2002-01-01

    In the framework of its research and development activities, the European Space Agency (ESA) spends some 250m each year and, recognizing the enormous potential of the know-how developed within its R&D activities, set up a Technology Transfer Programme (TTP) some twelve years ago. Over the years, the Programme has achieved some remarkable results with 120 successful transfers of space technologies to the non-space sector; over 120m received by companies making the technologies available; some 15 new companies established as a direct result of exploiting technologies; nearly 2500 jobs created or saved in Europe; and a portfolio of some 300 (out of over 600) active space technologies available for transfer and licencing. Some of the more recent technologies which have been successfully transferred to the non-space sector include the Mamagoose baby safety pyjamas; a spectrographic system being used to compare colours in fabrics and textiles; Earth observation technology employed to assess remotely how much agrochemicals are being used by farmers; and the Dutch solar car, Nuna, which, using European space technologies, finished first in the 2001 World Solar Challenge breaking all records. The paper will give a brief overview of the ESA Technology Transfer Programme and describe some of its recent successful technology transfers.

  5. Space benefits: The secondary application of aerospace technology in other sectors of the economy

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A 'Benefit Briefing Notebook' was prepared for the NASA Technology Utilization Office to provide accurate, convenient, and integrated resource information on the transfer of aerospace technology to other sectors of the U.S. economy. The contents are divided into three sections: (1) transfer overview, (2) benefit cases, and (3) indexes. The transfer overview section provides a general perspective for technology transfer from NASA to other organizations. In addition to a description of the basic transfer modes, the selection criteria for notebook examples and the kinds of benefit data they contain are also presented. The benefits section is subdivided into nineteen subject areas. Each subsection presents one or more key issues of current interest, with discrete transfer cases related to each key issue. Additional transfer examples relevant to each subject area are then presented. Pertinent transfer data are given at the end of each example.

  6. Commercial non-aerospace technology transfer program for the 2000s: Strategic analysis and implementation

    NASA Technical Reports Server (NTRS)

    Horsham, Gary A. P.

    1992-01-01

    This report presents a strategic analysis and implementation plan for NASA's Office of Commercial Programs (OCP), Technology Transfer Division's (TTD), Technology Transfer Program. The main objectives of this study are to: (1) characterize the NASA TTD's environment and past organizational structure; (2) clearly identify current and prospective programmatic efforts; (3) determine an evolutionary view of an organizational structure which could lead to the accomplishment of NASA's future technology transfer aims; and (4) formulate a strategy and plan to improve NASA's (and other federal agencies) ability to transfer technology to the non-aerospace sectors of the U.S. economy. The planning horizon for this study extends through the remainder of the 1990s to the year 2000.

  7. Biomedical applications of aerospace technology

    NASA Technical Reports Server (NTRS)

    Castles, T. R.

    1971-01-01

    Aerospace technology transfer to biomedical research problems is discussed, including transfer innovations and potential applications. Statistical analysis of the transfer activities and impact is also presented.

  8. Partnering Events | NCI Technology Transfer Center | TTC

    Cancer.gov

    Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.

  9. 40 CFR 63.126 - Transfer operations provisions-reference control technology.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Transfer operations provisions-reference control technology. 63.126 Section 63.126 Protection of Environment ENVIRONMENTAL PROTECTION... Wastewater § 63.126 Transfer operations provisions—reference control technology. (a) For each Group 1...

  10. 40 CFR 63.126 - Transfer operations provisions-reference control technology.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Transfer operations provisions-reference control technology. 63.126 Section 63.126 Protection of Environment ENVIRONMENTAL PROTECTION... Wastewater § 63.126 Transfer operations provisions—reference control technology. (a) For each Group 1...

  11. 40 CFR 63.126 - Transfer operations provisions-reference control technology.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Transfer operations provisions-reference control technology. 63.126 Section 63.126 Protection of Environment ENVIRONMENTAL PROTECTION... Wastewater § 63.126 Transfer operations provisions—reference control technology. (a) For each Group 1...

  12. 40 CFR 63.126 - Transfer operations provisions-reference control technology.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Transfer operations provisions-reference control technology. 63.126 Section 63.126 Protection of Environment ENVIRONMENTAL PROTECTION... Wastewater § 63.126 Transfer operations provisions—reference control technology. (a) For each Group 1...

  13. Standards Development Activities at White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Baker, D. L.; Beeson, H. D.; Saulsberry, R. L.; Julien, H. L.; Woods, S. S.

    2003-01-01

    The development of standards and standard activities at the JSC White Sands Test Facility (WSTF) has been expanded to include the transfer of technology and standards to voluntary consensus organizations in five technical areas of importance to NASA. This effort is in direct response to the National Technology Transfer Act designed to accelerate transfer of technology to industry and promote government-industry partnerships. Technology transfer is especially important for WSTF, whose longterm mission has been to develop and provide vital propellant safety and hazards information to aerospace designers, operations personnel, and safety personnel. Meeting this mission is being accomplished through the preparation of consensus guidelines and standards, propellant hazards analysis protocols, and safety courses for the propellant use of hydrogen, oxygen, and hypergols, as well as the design and inspection of spacecraft pressure vessels and the use of pyrovalves in spacecraft propulsion systems. The overall WSTF technology transfer program is described and the current status of technology transfer activities are summarized.

  14. NASA's Chemical Transfer Propulsion Program for Pathfinder

    NASA Technical Reports Server (NTRS)

    Hannum, Ned P.; Berkopec, Frank D.; Zurawski, Robert L.

    1989-01-01

    Pathfinder is a research and technology project, with specific deliverables, initiated by the National Aeronautics and Space Administration (NASA) which will strengthen the technology base of the United States civil space program in preparation for future space exploration missions. Pathfinder begins in Fiscal Year 1989, and is to advance a collection of critical technologies for these missions and ensure technology readiness for future national decisions regarding exploration of the solar system. The four major thrusts of Pathfinder are: surface exploration, in-space operations, humans-in-space, and space transfer. The space transfer thrust will provide the critical technologies needed for transportation to, and return from, the Moon, Mars, and other planets in the solar system, as well as for reliable and cost-effective Earth-orbit operations. A key element of this thrust is the Chemical Transfer Propulsion program which will provide the propulsion technology for high performance, liquid oxygen/liquid hydrogen expander cycle engines which may be operated and maintained in space. Described here are the program overview including the goals and objectives, management, technical plan, and technology transfer for the Chemical Transfer Propulsion element of Pathfinder.

  15. Strategies for Maximizing Successful Drug Substance Technology Transfer Using Engineering, Shake-Down, and Wet Test Runs.

    PubMed

    Abraham, Sushil; Bain, David; Bowers, John; Larivee, Victor; Leira, Francisco; Xie, Jasmina

    2015-01-01

    The technology transfer of biological products is a complex process requiring control of multiple unit operations and parameters to ensure product quality and process performance. To achieve product commercialization, the technology transfer sending unit must successfully transfer knowledge about both the product and the process to the receiving unit. A key strategy for maximizing successful scale-up and transfer efforts is the effective use of engineering and shake-down runs to confirm operational performance and product quality prior to embarking on good manufacturing practice runs such as process performance qualification runs. We consider key factors to consider in making the decision to perform shake-down or engineering runs. We also present industry benchmarking results of how engineering runs are used in drug substance technology transfers alongside the main themes and best practices that have emerged. Our goal is to provide companies with a framework for ensuring the "right first time" technology transfers with effective deployment of resources within increasingly aggressive timeline constraints. © PDA, Inc. 2015.

  16. Conceptual and empirical themes regarding the design of technology transfer programs : a review of wood utilization research in the United States

    Treesearch

    Paul V. Ellefson; Michael A. Kilgore; Kenneth E. Skog; Christopher D. Risbrudt

    2011-01-01

    Transfer of technologies produced by research is critical to innovation within all organizations. The intent of this paper is to take stock of the conceptual underpinnings of technology transfer processes as they relate to wood utilization research and to identify conditions that promote the successful transfer of research results. Conceptually, research utilization...

  17. How to tap NASA-developed technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruzic, N.

    The National Aeronautics and Space Administration (NASA) space program's contribution to technology and the transfer of its achievements to industrial and consumer products is unprecedented. The process of transferring new technology suffers, however, partly because managers tend to ignore new technological markets unless new products solve their specific problems and partly because managers may not know the technology is available. NASA's Technology Utilization Branch has learned to initiate transfer, using a network of centers to dispense information on applications. NASA also has a large software library and computer programs, as well as teams to make person-to-person contacts. Examples of successfulmore » transfers have affected energy sources, building contruction, health, and safety. (DCK)« less

  18. FY 2004 Technology Transfer Network and Affiliations

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The NASA Innovative Partnerships Program sponsors a number of organizations around the country that are designed to assist U.S. businesses in accessing, utilizing, and commercializing NASA-funded research and technology. These organizations work closely with the Technology Transfer Offices, located at each of the 10 NASA field centers, providing a full range of technology transfer and commercialization services and assistance.

  19. Identifying research needs for wheelchair transfers in the built environment.

    PubMed

    Crytzer, Theresa Marie; Cooper, Rory; Jerome, Genevieve; Koontz, Alicia

    2017-02-01

    The purpose of this study is to describe the results of focus groups held during the Independent Wheelchair Transfer (IWT) Workgroup. The aims were to facilitate exchange of ideas on (1) the impact of the built environment on the wheelchair transfer process within the community (i.e. moving from wheelchair to and from other surfaces (e.g. furniture, toilet seat, bath bench, car seat) to participate in daily activities), (2) wheelchair users' needs during transfers in the built environment, and (3) future research directions. Live web-based conferencing using Adobe Connect technology (Clarix Technologies, Inc., Pittsford, NY) was utilized to conduct three focus groups composed of experts in the field of assistive technology. Investigators independently reviewed focus group meeting transcripts and used qualitative methods to identify main themes. Thirty-one experts in assistive technology and related fields participated in focus groups. Nine main themes were found including the effect of transfer skills training, space considerations in the built environment, wheelchair configuration, and the interaction between the built environment, user preferences, and transfer techniques. All groups raised issues about the transfer process in areas of the built environment with limited access, the effect of wheelchair users' transfer techniques, and user preferences during transfers. The area of independent transfers is multi-faceted and several factors require consideration when contemplating environmental changes to improve accessibility for wheelchair users. Obvious opportunity exists for research which could lead to advances in transfer technology, environments, and techniques for wheelchair users. Implications for Rehabilitation Tremendous opportunities for research collaborations in the field of assistive technology: To develop new terminology to describe wheelchair transfers. To improve the design of the built environment for wheelchair users. To investigate wheelchair transfer training techniques.

  20. Strategic Planning of Technology Transfer.

    ERIC Educational Resources Information Center

    Groff, Warren H.

    Using the Ohio Technology Transfer Organization (OTTO) as its primary example, this paper offers a strategic planning perspective on technology transfer and human resources development. First, a brief overview is provided of the maturation of mission priorities and planning processes in higher education in the United States, followed by a…

  1. Teacher Candidate Technology Integration: For Student Learning or Instruction?

    ERIC Educational Resources Information Center

    Clark, Cynthia; Zhang, Shaoan; Strudler, Neal

    2015-01-01

    Transfer of instructional technology knowledge for student-centered learning by teacher candidates is investigated in this study. Using the transfer of learning theoretical framework, a mixed methods research design was employed to investigate whether secondary teacher candidates were able to transfer the instructional technology knowledge for…

  2. 76 FR 8371 - Notice Correction; Generic Submission of Technology Transfer Center (TTC) External Customer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ... Submission of Technology Transfer Center (TTC) External Customer Satisfaction Surveys (NCI) The Federal... project titled, ``Technology Transfer Center (TTC) External Customer Satisfaction Survey (NCI)'' was... will include multiple customer satisfaction surveys over the course of three years. At this time, only...

  3. Proceedings: international conference on transfer of forest science knowledge and technology.

    Treesearch

    Cynthia Miner; Ruth Jacobs; Dennis Dykstra; Becky Bittner

    2007-01-01

    This proceedings compiles papers presented by extensionists, natural resource specialists, scientists, technology transfer specialists, and others at an international conference that examined knowledge and technology transfer theories, methods, and case studies. Theory topics included adult education, applied science, extension, diffusion of innovations, social...

  4. 77 FR 14324 - National Volatile Organic Compound Emission Standards for Aerosol Coatings-Addition of Dimethyl...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    .... National Technology Transfer and Advancement Act Section 12(d) of the National Technology Transfer and... information claimed to be confidential business information (CBI) or other information whose disclosure is... That Significantly Affect Energy Supply, Distribution, or Use I. National Technology Transfer and...

  5. Technology Transfer Educational Curriculum Plan for the State of Colorado.

    ERIC Educational Resources Information Center

    Dakin, Karl J.

    A recommended plan for an educational curriculum on the topic of technology transfer is outlined. A survey was conducted to determine the current levels of ability and knowledge of technology users and of transfer intermediaries. Information was collected from three sources: individuals and organizations currently presenting educational programs…

  6. Technology Transfer: A Selected Bibliography.

    ERIC Educational Resources Information Center

    Sovel, M. Terry

    This bibliography of 428 items, a product of the NASA-sponsored Project for the Analysis of Technology Transfer (PATT) at the University of Denver's Research Institute (DRI), is the initial attempt at compiling a comprehensive listing on the subject of technology transfer. The bibliography is further concerned with information which leads to a…

  7. Food irradiation: Technology transfer in Asia, practical experiences

    NASA Astrophysics Data System (ADS)

    Kunstadt, Peter; Eng, P.

    1993-10-01

    Nordion International Inc., in cooperation with the Thai Office of Atomic Energy for Peace (OAEP) and the Canadian International Development Agency (CIDA) recently completed a unique food irradiation technology transfer project in Thailand. This complete food irradiation technology transfer project included the design and construction of an automatic multipurpose irradiation facility as well as the services of construction and installation management and experts in facility operation, maintenance and training. This paper provides an insight into the many events that led to the succesful conclusion of the world's first complete food irradiation technology transfer project.

  8. Societal and economic valuation of technology-transfer deals

    NASA Astrophysics Data System (ADS)

    Holmes, Joseph S., Jr.

    2009-09-01

    The industrial adoption of concepts such as open innovation brings new legitimacy to activities technology-transfer professionals have conducted for over 20 years. This movement highlights the need for an increased understanding of the valuation of intellectual property (IP) and technology-transfer deals. Valuation, though a centerpiece of corporate finance, is more challenging when applied to the inherent uncertainty surrounding innovation. Technology-transfer professionals are often overwhelmed by the complexity and data requirements of valuation techniques and skeptical of their applicability to and utility for technology transfer. The market longs for an approach which bridges the gap between valuation fundamentals and technology-transfer realities. This paper presents the foundations of a simple, flexible, precise/accurate, and useful framework for considering the valuation of technology-transfer deals. The approach is predicated on a 12-factor model—a 3×4 value matrix predicated on categories of economic, societal, and strategic value. Each of these three categories consists of three core subcategories followed by a fourth "other" category to facilitate inevitable special considerations. This 12-factor value matrix provides a framework for harvesting data during deals and for the application of best-of-breed valuation techniques which can be employed on a per-factor basis. Future work will include framework implementation within a database platform.

  9. The Diffusion of Military Technologies to Foreign Nations: Arms Transfers Can Preserve the Defense Technological and Industrial Base

    DTIC Science & Technology

    1995-06-01

    required, the Defense Technology Security Administration ( DTSA ) will make a determination on whether or not advanced technologies are being risked by the...sale or transfer of that product. DTSA has this role whether it is a commercial or government-to-government transfer. The Joint Chiefs of Staff also...Office of Defense Relations Security Assistance DSAA Defense Security Assistance Agency DTIB Defense Technological and Industrial Base DTSA Defense

  10. NASA'S Changing Role in Technology Development and Transfer

    NASA Technical Reports Server (NTRS)

    Griner, Carolyn S.; Craft, Harry G., Jr.

    1997-01-01

    National Aeronautics and Space Administration NASA has historically had to develop new technology to meet its mission objectives. The newly developed technologies have then been transferred to the private sector to assist US industry's worldwide competitiveness and thereby spur the US economy. The renewed emphasis by the US Government on a proactive technology transfer approach has produced a number of contractual vehicles that assist technology transfer to industrial, aerospace and research firms. NASA's focus has also been on leveraging the shrinking space budget to accomplish "more with less." NASA's cooperative agreements and resource sharing agreements are measures taken to achieve this goal, and typify the changing role of government technology development and transfer with industry. Large commercial partnerships with aerospace firms, as typified by the X-33 and X-34 Programs, are evolving. A new emphasis on commercialization in the Small Business Innovative Research and Dual Use programs paves the way for more rapid commercial application of new technologies developed for NASA.

  11. Spinoff, 1991

    NASA Technical Reports Server (NTRS)

    Haggerty, James J.

    1991-01-01

    This is an instrument of the Technology Utilization Program and is designed to heighten awareness of the technology available for transfer and its potential for public benefit. NASA's mainline programs, whose objectives require development of new technology and therefore expand the bank of technology available for transfer in future years, are summarized. Focus is on the representative sampling of spinoffs (spinoff, in this context, means products and processes developed as secondary applications of existing NASA technology) that resulted from NASA's mainline programs. The various mechanisms NASA employs to stimulate technology transfer are described and contact sources are listed in the appendix for further information about the Technology Utilization Program.

  12. Commercial application of thermal protection system technology

    NASA Technical Reports Server (NTRS)

    Dyer, Gordon L.

    1991-01-01

    The thermal protection system process technology is examined which is used in the manufacture of the External Tank for the Space Shuttle system and how that technology is applied by private business to create new products, new markets, and new American jobs. The term 'technology transfer' means different things to different people and has become one of the buzz words of the 1980s and 1990s. Herein, technology transfer is defined as a means of transferring technology developed by NASA's prime contractors to public and private sector industries.

  13. Tech Transfer News. Volume 9, No. 1

    NASA Technical Reports Server (NTRS)

    Victor, Megan E. (Compiler)

    2017-01-01

    Kennedy Tech Transfer News is the magazine of the Technology Transfer Office at NASA's Kennedy Space Center, Florida. This magazine seeks to inform and educate civil servant and contractor personnel at Kennedy Space Center about actively participating in achieving NASA's technology transfer and partnership goals.

  14. Technology Transfer: Marketing Tomorrow's Technology

    NASA Technical Reports Server (NTRS)

    Tcheng, Erene

    1995-01-01

    The globalization of the economy and the end of the Cold War have triggered many changes in the traditional practices of U.S. industry. To effectively apply the resources available to the United States, the federal government has firmly advocated a policy of technology transfer between private industry and government labs, in this case the National Aeronautics and Space Administration (NASA). NASA Administrator Daniel Goldin is a strong proponent of this policy and has organized technology transfer or commercialization programs at each of the NASA field centers. Here at Langley Research Center, the Technology Applications Group (TAG) is responsible for facilitating the transfer of Langley developed research and technology to U.S. industry. Entering the program, I had many objectives for my summer research with TAG. Certainly, I wanted to gain a more thorough understanding of the concept of technology transfer and Langley's implementation of a system to promote it to both the Langley community and the community at large. Also, I hoped to become more familiar with Langley's research capabilities and technology inventory available to the public. More specifically, I wanted to learn about the technology transfer process at Langley. Because my mentor is a member of Materials and Manufacturing marketing sector of the Technology Transfer Team, another overriding objective for my research was to take advantage of his work and experience in materials research to learn about the Advanced Materials Research agency wide and help market these developments to private industry. Through the various projects I have been assigned to work on in TAG, I have successfully satisfied the majority of these objectives. Work on the Problem Statement Process for TAG as well as the development of the Advanced Materials Research Brochure have provided me with the opportunity to learn about the technology transfer process from the outside looking in and the inside looking out. Because TAG covers all of the research efforts conducted at Langley, my studies with TAG were ab!e to provide me an excellent overview of Langley's contribution to the aeronautics industry.

  15. Assessment of research and technology transfer needs for wood-frame housing

    Treesearch

    Kevin Powell; David Tilotta; Karen Martinson

    2008-01-01

    Improvements to housing will require both research and the transfer of that research to homebuilders, homebuyers, and others in need of technology. This report summarizes results of a national survey on research and technology transfer needs for housing and prioritizes those needs. Survey participants included academicians, builders, code officials, government...

  16. Successful Technology Transfer in Colorado: A Portfolio of Technology Transfer "Success Stories."

    ERIC Educational Resources Information Center

    Colorado Advanced Tech. Inst., Denver.

    The examples in this portfolio demonstrate how technology transfer among universities, businesses, and federal laboratories solve real-world problems, and create new goods and services. They reveal how, through strengthening the infrastructure joining private and public sectors, Colorado can better compete in the global marketplace. All of the…

  17. Love and Hate in University Technology Transfer: Examining Faculty and Staff Conflicts and Ethical Issues

    ERIC Educational Resources Information Center

    Hamilton, Clovia; Schumann, David

    2016-01-01

    With respect to university technology transfer, the purpose of this paper is to examine the literature focused on the relationship between university research faculty and technology transfer office staff. We attempt to provide greater understanding of how research faculty's personal values and research universities' organization values may differ…

  18. A southern region conference on technology transfer and extension

    Treesearch

    Sarah F. Ashton; William G. Hubbard; H. Michael Rauscher

    2009-01-01

    Forest landowners and managers have different education and technology transfer needs and preferences. To be effective it is important to use a multi-faceted science delivery/technology transfer program to reach them. Multi-faceted science delivery programs can provide similar content over a wide range of mechanisms including printed publications, face-to-face...

  19. Applications of aerospace technology in industry. A technology transfer profile: Cryogenics

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Cryogenics is especially interesting when viewed from the perspective of technology transfer. Its recent rapid growth has been due to demands of both industry and aerospace. This environment provides an unusual opportunity to identify some of the forces active during a period of broad technological change and at the same time further the understanding of the technology transfer process. That process is specifically defined here as the ways in which technology, generated in NASA programs, contributes to technological change. In addition to presenting a brief overview of the cryogenics field and describing certain representative examples of the transfer of NASA-generated technology to the private sector, this presentation explores a singular relationship between NASA and another federal agency, the National Bureau of Standards. The relationship has operated both to generate and disseminate information fundamental to the broad growth of the cryogenics field.

  20. Argonne National Laboratory technology transfer report, FY 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-11-01

    In 1985 Argonne established the Technology Transfer Center (TTC). As of the end of FY 1987, the TTC has a staff equivalent to four full-time professionals, two secretaries, and two student aides; FY 1987 ORTA funding was $220K. A network of technology transfer representatives provides windows into and out of Argonne's technical divisions on technology transfer matters. The TTC works very closely with the ARCH Develoment Corporation, a not-for-profit corporation set up to commercialize selected Argonne and University of Chicago patents. The goal of the Technology Transfer Center at Argonne is to transfer technology developed at Argonne to the domesticmore » private sector by whatever means is most effective. The strategies by which this is accomplished are numerous and the TTC is, in effect, conducting a number of experiments to determine the most effective strategies. These include cooperative RandD agreements, work-for-others contracts, subcontracting to industry, formation of joint ventures via ARCH, residencies by industry staff at Argonne and vice versa, patent licensing and, of course, conferences, workshops and visits by industry and to industry.« less

  1. Technology Transfer Program (TTP). Quality Assurance System. Volume 2. Appendices

    DTIC Science & Technology

    1980-03-03

    LSCo Report No. - 2X23-5.1-4-I TECHNOLOGY TRANSFER PROGRAM (TTP) FINAL REPORT QUALITY ASSURANCE SYSTEM Appendix A Accuracy Control System QUALITY...4-1 TECHNOLOGY TRANSFER PROGRAM (TTP) FINAL REPORT QUALITY ASSURANCE SYSTEM Appendix A Accuracy Control System QUALITY ASSURANCE VOLUME 2 APPENDICES...prepared by: Livingston Shipbuilding Company Orange, Texas March 3, 1980 APPENDIX A ACCURACY CONTROL SYSTEM . IIII MARINE TECHNOLOGY. INC. HP-121

  2. Computers and terminals as an aid to international technology transfer

    NASA Technical Reports Server (NTRS)

    Sweeney, W. T.

    1974-01-01

    As technology transfer becomes more popular and proves to be an economical method for companies of all sizes to take advantage of a tremendous amount of new and available technology from sources all over the world, the introduction of computers and terminals into the international technology transfer process is proving to be a successful method for companies to take part in this beneficial approach to new business opportunities.

  3. Manufacturing process applications team (MATEAM). [technology transfer in the areas of machine tools and robots

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The transfer of NASA technology to the industrial sector is reported. Presentations to the machine tool and robot industries and direct technology transfers of the Adams Manipulator arm, a-c motor control, and the bolt tension monitor are discussed. A listing of proposed RTOP programs with strong potential is included. A detailed description of the rotor technology available to industry is given.

  4. NASA's southeast technology transfer alliance: A cooperative technology assistance initiative

    NASA Astrophysics Data System (ADS)

    Craft, Harry G.; Sheehan, William; Johnson, Anne

    1996-03-01

    Since 1958, NASA has been charged with actively assisting in the transfer of technologies derived from the United States space program into the industrial sector of the U.S. economy. This has historically been accomplished through technology transfer offices working independently at each NASA field center. NASA recently restructured the program to provide regional coordination, maximize efficiencies, eliminate redundancies, and capitalize on each center's fundamental technology strengths. The nation is divided into six NASA technology transfer geographical regions with each region containing one or more NASA field centers and a regional technology transfer center. The southeast region includes the states of Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, and Tennessee. The NASA field centers in this region are: the Marshall Space Flight Center in Huntsville, Alabama; the Kennedy Space Center in Florida; and the Stennis Space Center in Bay St. Louis, Mississippi. The centers have teamed to focus primarily on regional industries and businesses, to provide a wide range of resources for U.S. industries, including access to unique government facilities, regional workshops, and technical problem solving. Hundreds of American businesses have benefited from this new regional initiative, as evidenced by reports of over 10,500 added or saved jobs and over 988 million worth of economic impacts as a result of their technology transfer activities.

  5. Lessons learned during the development and transfer of technology related to a new Hib conjugate vaccine to emerging vaccine manufacturers.

    PubMed

    Hamidi, A; Boog, C; Jadhav, S; Kreeftenberg, H

    2014-07-16

    The incidence of Haemophilus Influenzae type b (Hib) disease in developed countries has decreased since the introduction of Hib conjugate vaccines in their National Immunization Programs (NIP). In countries where Hib vaccination is not applied routinely, due to limited availability and high cost of the vaccines, invasive Hib disease is still a cause of mortality. Through the development of a production process for a Hib conjugate vaccine and related quality control tests and the transfer of this technology to emerging vaccine manufacturers in developing countries, a substantial contribution was made to the availability and affordability of Hib conjugate vaccines in these countries. Technology transfer is considered to be one of the fastest ways to get access to the technology needed for the production of vaccines. The first Hib conjugate vaccine based on the transferred technology was licensed in 2007, since then more Hib vaccines based on this technology were licensed. This paper describes the successful development and transfer of Hib conjugate vaccine technology to vaccine manufacturers in India, China and Indonesia. By describing the lessons learned in this process, it is hoped that other technology transfer projects can benefit from the knowledge and experience gained. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Invention-driven marketing

    NASA Technical Reports Server (NTRS)

    Carlson, William E.

    1994-01-01

    Suppose you have just created a revolutionary bicycle suspension which allows a bike to be ridden over rough terrain at 60 miles per hour. In addition, suppose that you are deeply concerned about the plight of hungry children. Which should you do: be sure all hungry children have bicycles; transfer the technology for your new suspension to bicycle manufacturers worldwide; or start a company to supply premium sports bicycle based on your patented technology, and donate the profits to a charity which feeds hungry children? Woven through this somewhat trivial example is the paradox of technology transfer - the supplier (owner) may want to transfer technology; but to succeed, he or she must reformulate the problem as a user need for which there is a new and better solution. Successful technology transfer is little more than good marketing applied to an existing invention, process, or capability. You must identify who needs the technology, why they need it, why the new technology is better than alternatives, how much the customers are willing and able to pay for these benefits, and how to distribute products based on the technology tc the target customers. In market-driven development, the term 'technology transfer' is rarely used. The developers focus on studying user needs and designing solution They may have technology needs, but they don't have technology in search of a use.

  7. Manufacturing process applications team (MATeam)

    NASA Technical Reports Server (NTRS)

    Bangs, E. R.; Meyer, J. D.

    1978-01-01

    Activities of the manufacturing applications team (MATeam) in effecting widespread transfer of NASA technology to aid in the solution of manufacturing problems in the industrial sector are described. During the program's first year of operation, 450 companies, industry associations, and government agencies were contacted, 150 manufacturing problems were documented, and 20 potential technology transfers were identified. Although none of the technology transfers has been commercialized and put in use, several are in the applications engineering phase, and others are in the early stages of implementation. The technology transfer process is described and guidelines used for the preparation of problems statements are included.

  8. Social issues and implications of remote sensing applications: Paradigms of technology transfer

    NASA Technical Reports Server (NTRS)

    Hoos, I. R.

    1980-01-01

    The transfer of technology from one federal agency to another was observed in the case of the move of LANDSAT to NOAA. An array of unanticipated consequences was found that have important impacts on both the process and outcome of the transfer. When the process was studied from viewpoint of the ultimate recipient, a set of expectations and perceptions were found that figure more in a final assessment than do the attributes of the technology being transfered. The question of how to link a technology with a community of potential users was studed in detail.

  9. Influenza vaccine production for Brazil: a classic example of successful North-South bilateral technology transfer.

    PubMed

    Miyaki, Cosue; Meros, Mauricio; Precioso, Alexander R; Raw, Isaias

    2011-07-01

    Technology transfer is a promising approach to increase vaccine production at an affordable price in developing countries. In the case of influenza, it is imperative that developing countries acquire the technology to produce pandemic vaccines through the transfer of know-how, as this will be the only way for the majority of these countries to face the huge demand for vaccine created by influenza pandemics. Access to domestically produced influenza vaccine in such health crises is thus an important national defence strategy. However, technology transfer is not a simple undertaking. It requires a committed provider who is willing to transfer a complete production process, and not just the formulation and fill-finish parts of the process. It requires a recipient with established experience in vaccine production for human use and the ability to conduct research into new developments. In addition, the country of the recipient should preferably have sufficient financial resources to support the undertaking, and an internal market for the new vaccine. Technology transfer should create a solid partnership that results in the joint development of new competency, improvements to the product, and to further innovation. The Instituto Butantan-sanofi pasteur partnership can be seen as a model for successful technology transfer and has led to the technological independence of the Instituto Butantan in the use a strategic public health tool. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. WLCG Transfers Dashboard: a Unified Monitoring Tool for Heterogeneous Data Transfers

    NASA Astrophysics Data System (ADS)

    Andreeva, J.; Beche, A.; Belov, S.; Kadochnikov, I.; Saiz, P.; Tuckett, D.

    2014-06-01

    The Worldwide LHC Computing Grid provides resources for the four main virtual organizations. Along with data processing, data distribution is the key computing activity on the WLCG infrastructure. The scale of this activity is very large, the ATLAS virtual organization (VO) alone generates and distributes more than 40 PB of data in 100 million files per year. Another challenge is the heterogeneity of data transfer technologies. Currently there are two main alternatives for data transfers on the WLCG: File Transfer Service and XRootD protocol. Each LHC VO has its own monitoring system which is limited to the scope of that particular VO. There is a need for a global system which would provide a complete cross-VO and cross-technology picture of all WLCG data transfers. We present a unified monitoring tool - WLCG Transfers Dashboard - where all the VOs and technologies coexist and are monitored together. The scale of the activity and the heterogeneity of the system raise a number of technical challenges. Each technology comes with its own monitoring specificities and some of the VOs use several of these technologies. This paper describes the implementation of the system with particular focus on the design principles applied to ensure the necessary scalability and performance, and to easily integrate any new technology providing additional functionality which might be specific to that technology.

  11. Applications of aerospace technology in biology and medicine

    NASA Technical Reports Server (NTRS)

    Beall, H. C.; Brown, J. N.; Rouse, D. J.; Ruddle, J. C.; Scearce, R. W.

    1978-01-01

    A bipolar, donor-recipient model of medical technology transfer is introduced to provide a basis for the team's methodology. That methodology is designed (1) to identify medical problems and NASA technology that in combination constitute opportunities for successful medical products, (2) to obtain the early participation of industry in the transfer proces, and (3) to obtain acceptance by the medical community of new medical products based on NASA technology. Two commercial technology transfers and five institutional technology transfers were completed in 1977. A new, commercially available teaching manikin system uses NASA-developed concepts and techniques for effective visual presentation of information and data. Drugs shipped by the National Cancer Institute to locations throughout the world are maintained at low temperatures in shipping containers that incorporate recommendations made by NASA.

  12. Technology Transfer and the Civil Space Program. Volume 2: Workshop proceedings

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The objectives were to (1) provide a top-level review of the Integrated Technology Plan (ITP) and current civil space technology plans, including planning processes and technologies; (2) discuss and assess technology transfer (TT) experiences across a wide range of participants; (3) identify alternate categories/strategies for TT and define the objectives of transfer processes in each case; (4) identify the roles of various government 'stakeholders', aerospace industry, industries at large, and universities in civil space technology research, development, demonstration, and transfer; (5) identify potential barriers and/or opportunities to successful civil space TT; (6) identify specific needs for innovations in policy, programs, and/or procedures to facilitate TT; and (7) develop a plan of attack for the development of a workshop report. Papers from the workshop are presented.

  13. Development of a Technology Transfer Score for Evaluating Research Proposals: Case Study of Demand Response Technologies in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Estep, Judith

    Investment in Research and Development (R&D) is necessary for innovation, allowing an organization to maintain a competitive edge. The U.S. Federal Government invests billions of dollars, primarily in basic research technologies to help fill the pipeline for other organizations to take the technology into commercialization. However, it is not about just investing in innovation, it is about converting that research into application. A cursory review of the research proposal evaluation criteria suggests that there is little to no emphasis placed on the transfer of research results. This effort is motivated by a need to move research into application. One segment that is facing technology challenges is the energy sector. Historically, the electric grid has been stable and predictable; therefore, there were no immediate drivers to innovate. However, an aging infrastructure, integration of renewable energy, and aggressive energy efficiency targets are motivating the need for research and to put promising results into application. Many technologies exist or are in development but the rate at which they are being adopted is slow. The goal of this research is to develop a decision model that can be used to identify the technology transfer potential of a research proposal. An organization can use the model to select the proposals whose research outcomes are more likely to move into application. The model begins to close the chasm between research and application--otherwise known as the "valley of death". A comprehensive literature review was conducted to understand when the idea of technology application or transfer should begin. Next, the attributes that are necessary for successful technology transfer were identified. The emphasis of successful technology transfer occurs when there is a productive relationship between the researchers and the technology recipient. A hierarchical decision model, along with desirability curves, was used to understand the complexities of the researcher and recipient relationship, specific to technology transfer. In this research, the evaluation criteria of several research organizations were assessed to understand the extent to which the success attributes that were identified in literature were considered when reviewing research proposals. While some of the organizations included a few of the success attributes, none of the organizations considered all of the attributes. In addition, none of the organizations quantified the value of the success attributes. The effectiveness of the model relies extensively on expert judgments to complete the model validation and quantification. Subject matter experts ranging from senior executives with extensive experience in technology transfer to principal research investigators from national labs, universities, utilities, and non-profit research organizations were used to ensure a comprehensive and cross-functional validation and quantification of the decision model. The quantified model was validated using a case study involving demand response (DR) technology proposals in the Pacific Northwest. The DR technologies were selected based on their potential to solve some of the region's most prevalent issues. In addition, several sensitivity scenarios were developed to test the model's response to extreme case scenarios, impact of perturbations in expert responses, and if it can be applied to other than demand response technologies. In other words, is the model technology agnostic? In addition, the flexibility of the model to be used as a tool for communicating which success attributes in a research proposal are deficient and need strengthening and how improvements would increase the overall technology transfer score were assessed. The low scoring success attributes in the case study proposals (e.g. project meetings, etc.) were clearly identified as the areas to be improved for increasing the technology transfer score. As a communication tool, the model could help a research organization identify areas they could bolster to improve their overall technology transfer score. Similarly, the technology recipient could use the results to identify areas that need to be reinforced, as the research is ongoing. The research objective is to develop a decision model resulting in a technology transfer score that can be used to assess the technology transfer potential of a research proposal. The technology transfer score can be used by an organization in the development of a research portfolio. An organization's growth, in a highly competitive global market, hinges on superior R&D performance and the ability to apply the results. The energy sector is no different. While there is sufficient research being done to address the issues facing the utility industry, the rate at which technologies are adopted is lagging. The technology transfer score has the potential to increase the success of crossing the chasm to successful application by helping an organization make informed and deliberate decisions about their research portfolio.

  14. 75 FR 42030 - Amendments to National Emission Standards for Hazardous Air Pollutants: Area Source Standards for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-20

    .... National Technology Transfer Advancement Act J. Executive Order 12898: Federal Actions to Address..., or use of energy. I. National Technology Transfer and Advancement Act Section 12(d) of the National Technology Transfer and Advancement Act of 1995 (``NTTAA''), Public Law 104-113 (15 U.S.C. 272 note) directs...

  15. 76 FR 35806 - Amendments to National Emission Standards for Hazardous Air Pollutants for Area Sources: Plating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-20

    ..., or Use I. National Technology Transfer Advancement Act J. Executive Order 12898: Federal Actions To... action under Executive Order 12866. I. National Technology Transfer Advancement Act Section 12(d) of the National Technology Transfer and Advancement Act (NTTAA) of 1995 (Pub. L. 104-113, section 12(d), 15 U.S.C...

  16. 23 CFR 420.207 - What are the requirements for research, development, and technology transfer work programs?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., Development and Technology Transfer Program Management § 420.207 What are the requirements for research, development, and technology transfer work programs? (a) The State DOT's RD&T work program must, as a minimum... 23 Highways 1 2013-04-01 2013-04-01 false What are the requirements for research, development, and...

  17. 23 CFR 420.207 - What are the requirements for research, development, and technology transfer work programs?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., Development and Technology Transfer Program Management § 420.207 What are the requirements for research, development, and technology transfer work programs? (a) The State DOT's RD&T work program must, as a minimum... 23 Highways 1 2010-04-01 2010-04-01 false What are the requirements for research, development, and...

  18. 23 CFR 420.207 - What are the requirements for research, development, and technology transfer work programs?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., Development and Technology Transfer Program Management § 420.207 What are the requirements for research, development, and technology transfer work programs? (a) The State DOT's RD&T work program must, as a minimum... 23 Highways 1 2014-04-01 2014-04-01 false What are the requirements for research, development, and...

  19. 23 CFR 420.207 - What are the requirements for research, development, and technology transfer work programs?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., Development and Technology Transfer Program Management § 420.207 What are the requirements for research, development, and technology transfer work programs? (a) The State DOT's RD&T work program must, as a minimum... 23 Highways 1 2012-04-01 2012-04-01 false What are the requirements for research, development, and...

  20. 23 CFR 420.207 - What are the requirements for research, development, and technology transfer work programs?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., Development and Technology Transfer Program Management § 420.207 What are the requirements for research, development, and technology transfer work programs? (a) The State DOT's RD&T work program must, as a minimum... 23 Highways 1 2011-04-01 2011-04-01 false What are the requirements for research, development, and...

  1. Measuring the Impact of University Technology Transfer: A Guide to Methodologies, Data Needs, and Sources

    ERIC Educational Resources Information Center

    Lowe, Robert A.; Quick, Suzanne K.

    2005-01-01

    This paper discusses measures that capture the impact of university technology transfer activities on a university?s local and regional economies (economic impact). Such assessments are of increasing interest to policy makers, researchers and technology transfer professionals, yet there have been few published discussions of the merits of various…

  2. Technology Transfer as an Entrepreneurial Practice in Higher Education. CELCEE Digest No. 98-9.

    ERIC Educational Resources Information Center

    Faris, Shannon K.

    This digest examines some of the literature on technology transfer in the context of higher education, noting that the practice of capitalizing on academic research for commercial purposes has the potential to generate financial resources for the participating institutions of higher education. Several examples of technology transfer are cited,…

  3. Academic Technology Transfer: Tracking, Measuring and Enhancing Its Impact

    ERIC Educational Resources Information Center

    Fraser, John

    2010-01-01

    Since the 1980 passage of the US Bayh-Dole Act, academic technology transfer has gained profile globally as a key component of knowledge-driven economic development. Research universities are seen as key contributors. In this article, focusing on the USA and drawing on over twenty years of experience in the field of academic technology transfer in…

  4. A New Technology Transfer Paradigm: How State Universities Can Collaborate with Industry in the USA

    ERIC Educational Resources Information Center

    Renault, Catherine S.; Cope, Jeff; Dix, Molly; Hersey, Karen

    2008-01-01

    In some US states, policy makers, pressed by local and regional industrial interests, are debating how to "reform" technology transfer at public universities. "Reform" in this context is generally understood to mean redirecting university technology transfer activities to increase the benefits of state-funded research to local industries.…

  5. Report of a Planning Conference for Solar Technology Information Transfer. Austin, Texas, 12-13 June 1979).

    ERIC Educational Resources Information Center

    Southwestern Library Association, Stillwater, OK.

    Charged with the responsibility of determining the best way to plan for solar technology information transfer within the state of Texas, participants in the Planning Conference for Solar Technology Information Transfer met to discuss the many ongoing activities related to energy information dissemination, to analyze the resources available in…

  6. Summary of the National Technology Transfer and Advancement Act

    EPA Pesticide Factsheets

    Provides a summary of the National Technology Transfer and Advancement Act which pomote economic, environmental, and social well-being by bringing technology and industrial innovation to the marketplace

  7. License Agreements | NCI Technology Transfer Center | TTC

    Cancer.gov

    NCI Technology Transfer Center (TTC) licenses the discoveries of NCI and nine other NIH Institutes so new technologies can be developed and commercialized, to convert them into public health benefits.

  8. Technology transfer and Rockwell International

    NASA Technical Reports Server (NTRS)

    Gernand, Joseph

    1992-01-01

    Two technology partnership models are presented for consideration. The first model posits a government buyer of technology, and the second model posits that the customer is the consumer of the technology. These two models are concerned with methods of and impediments to technology transfer and information dissemination in government/contractor relationships.

  9. Sandia National Laboratories: Working with Sandia

    Science.gov Websites

    Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios Report Economic Impact Environmental Reports Fact Sheets Search Sandia Publications Labs Accomplishments /Technology Transfer Technology Partnerships Economic Impact Facebook Twitter YouTube Flickr RSS Working with

  10. Sandia National Laboratories: News: Economic Impact

    Science.gov Websites

    Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios Report Economic Impact Environmental Reports Fact Sheets Search Sandia Publications Labs Accomplishments /Technology Transfer Technology Partnerships Economic Impact Facebook Twitter YouTube Flickr RSS Working with

  11. SITE TECHNOLOGY CAPSULE: BIOGENESIS SOIL WASHING TECHNOLOGY

    EPA Science Inventory

    Soil washing technologies are designed to transfer contaminants from soil to a liquid phase. The BloGenesis™ soil washing technology uses a proprietary surfactant solution to transfer organic contaminants from soil to wastewater. The surfactant used in the soil washing process wa...

  12. Transferring Technology to Industry

    NASA Technical Reports Server (NTRS)

    Wolfenbarger, J. Ken

    2006-01-01

    This slide presentation reviews the technology transfer processes in which JPL has been involved to assist in transferring the technology derived from aerospace research and development to industry. California Institute of Technology (CalTech), the organization that runs JPL, is the leading institute in patents for all U.S. universities. There are several mechanisms that are available to JPL to inform industry of these technological advances: (1) a dedicated organization at JPL, National Space Technology Applications (NSTA), (2) Tech Brief Magazine, (3) Spinoff magazine, and (4) JPL publications. There have also been many start-up organizations and businesses from CalTech.

  13. Transfer of technology for production of rabies vaccine: Memorandum from a WHO Meeting*

    PubMed Central

    1985-01-01

    The important challenge of prevention and control of rabies in the world will require international efforts to increase the availability and use of high quality cell-culture rabies vaccines for use in man and animals. An important aspect of activities to ensure such availability is transfer of technologies to developing countries for production of these vaccines. This article, which is based on the report of a WHO Consultation, outlines the technical options for vaccine production. The principles and economic aspects of technology transfer are considered, and a WHO assistance programme is outlined. It is concluded that technology transfer should be mediated through a framework of national institutes, expert panels, WHO collaborating centres, production and control laboratories, and other relevant institutions. On this basis, recommendations are made concerning the mechanisms of technology transfer for production of cell-culture rabies vaccines. PMID:3878738

  14. Sandia National Laboratories: Working with Sandia: Current Suppliers

    Science.gov Websites

    Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios Report Economic Impact Environmental Reports Fact Sheets Search Sandia Publications Labs Accomplishments /Technology Transfer Technology Partnerships Economic Impact Facebook Twitter YouTube Flickr RSS Top Current

  15. Sandia National Laboratories: Working with Sandia: Prospective Suppliers

    Science.gov Websites

    Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios Report Economic Impact Environmental Reports Fact Sheets Search Sandia Publications Labs Accomplishments /Technology Transfer Technology Partnerships Economic Impact Facebook Twitter YouTube Flickr RSS Working with

  16. Technology Transfer Center to Assume Patenting and Licensing Responsibilities | Poster

    Cancer.gov

    The NCI Technology Transfer Center (TTC) is undergoing a reorganization that will bring patenting and licensing responsibilities to the Shady Grove and Frederick offices by October 2015. The reorganization is a result of an effort begun in 2014 by NIH to improve the organizational structure of technology transfer at NIH to meet the rapid rate of change within science, technology, and industry, and to better align the science and laboratory goals with the licensing and patenting process.

  17. [Nasal submicron emulsion of Scutellariae Radix extract preparation technology research based on phase transfer of solute technology].

    PubMed

    Shi, Ya-jun; Shi, Jun-hui; Chen, Shi-bin; Yang, Ming

    2015-07-01

    Based on the demand of nasal drug delivery high drug loadings, using the unique phase transfer of solute, integrating the phospholipid complex preparation and submicron emulsion molding process of Scutellariae Radix extract, the study obtained the preparation of the high drug loadings submicron emulsion of Scutellariae Radix extract. In the study of drug solution dispersion method, the uniformity of drug dispersed as the evaluation index, the traditional mixing method, grinding, homogenate and solute phase transfer technology were investigated, and the solute phase transfer technology was adopted in the last. With the adoption of new technology, the drug loading capacity reached 1.33% (phospholipid complex was 4%). The drug loading capacity was improved significantly. The transfer of solute method and timing were studied as follows,join the oil phase when the volume of phospholipid complex anhydrous ethanol solution remaining 30%, the solute phase transfer was completed with the continued recycling of anhydrous ethanol. After drug dissolved away to oil phase, the preparation technology of colostrum was determined with the evaluation index of emulsion droplet form. The particle size of submicron emulsion, PDI and stability parameters were used as evaluation index, orthogonal methodology were adopted to optimize the submicron emulsion ingredient and main influential factors of high pressure homogenization technology. The optimized preparation technology of Scutellariae Radix extract nasal submicron emulsion is practical and stable.

  18. Technology transfer for women entrepreneurs: issues for consideration.

    PubMed

    Everts, S I

    1998-01-01

    This article discusses the effectiveness of technology transfers to women entrepreneurs in developing countries. Most women's enterprises share common characteristics: very small businesses, employment of women owners and maybe some family members, limited working capital, low profit margins, and flexible or part-time work. Many enterprises do not plan for growth. Women tend to diversify and use risk-avoidance strategies. Support for women's enterprises ignores the characteristics of women's enterprises. Support mechanisms could be offered that would perfect risk-spreading strategies and dynamic enterprise management through other means than growth. Many initiatives, since the 1970s, have transferred technologies to women. Technologies were applied to only a few domains and were viewed as appropriate based on their small size, low level of complexity, low cost, and environmental friendliness. Technology transfers may not be viewed by beneficiaries as the appropriate answer to needs. The bottleneck in transfers to women is not in the development of prototypes, but in the dissemination of technology that is sustainable, appropriate, and accessible. Key features for determining appropriateness include baseline studies, consumer linkages, and a repetitive process. Institutional factors may limit appropriateness. There is a need for long-term outputs, better links with users, training in use of the technology, grouping of women into larger units, and technology availability in quantities large enough to meet demand. Guidelines need to be developed that include appropriate content and training that ensures transfer of knowledge to practice.

  19. 76 FR 2860 - National Emission Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-18

    ... action under Executive Order 12866. I. National Technology Transfer and Advancement Act Section 12(d) of the National Technology Transfer and Advancement Act of 1995 (``NTTAA''), Public Law 104-113 (15 U.S.C... of section 12(d) of the National Technology Transfer and Advancement Act of 1995 (15 U.S.C. 272) do...

  20. Describing an Environment for a Self-Sustaining Technology Transfer Service in a Small Research Budget University: A Case Study

    ERIC Educational Resources Information Center

    Nieb, Sharon Lynn

    2014-01-01

    This single-site qualitative study sought to identify the characteristics that contribute to the self sustainability of technology transfer services at universities with small research budgets through a case study analysis of a small research budget university that has been operating a financially self-sustainable technology transfer service for…

  1. Technology Transfer Center to Assume Patenting and Licensing Responsibilities | Poster

    Cancer.gov

    The NCI Technology Transfer Center (TTC) is undergoing a reorganization that will bring patenting and licensing responsibilities to the Shady Grove and Frederick offices by October 2015. The reorganization is a result of an effort begun in 2014 by NIH to improve the organizational structure of technology transfer at NIH to meet the rapid rate of change within science,

  2. Technological inductive power transfer systems

    NASA Astrophysics Data System (ADS)

    Madzharov, Nikolay D.; Nemkov, Valentin S.

    2017-05-01

    Inductive power transfer is a very fast expanding technology with multiple design principles and practical implementations ranging from charging phones and computers to bionic systems, car chargers and continuous power transfer in technological lines. Only a group of devices working in near magnetic field is considered. This article is devoted to overview of different inductive power transfer (IPT) devices. The review of literature in this area showed that industrial IPT are not much discussed and examined. The authors have experience in design and implementation of several types of IPTs belonging to wireless automotive chargers and to industrial application group. Main attention in the article is paid to principles and design of technological IPTs

  3. Reaching for the cloud: on the lessons learned from grid computing technology transfer process to the biomedical community.

    PubMed

    Mohammed, Yassene; Dickmann, Frank; Sax, Ulrich; von Voigt, Gabriele; Smith, Matthew; Rienhoff, Otto

    2010-01-01

    Natural scientists such as physicists pioneered the sharing of computing resources, which led to the creation of the Grid. The inter domain transfer process of this technology has hitherto been an intuitive process without in depth analysis. Some difficulties facing the life science community in this transfer can be understood using the Bozeman's "Effectiveness Model of Technology Transfer". Bozeman's and classical technology transfer approaches deal with technologies which have achieved certain stability. Grid and Cloud solutions are technologies, which are still in flux. We show how Grid computing creates new difficulties in the transfer process that are not considered in Bozeman's model. We show why the success of healthgrids should be measured by the qualified scientific human capital and the opportunities created, and not primarily by the market impact. We conclude with recommendations that can help improve the adoption of Grid and Cloud solutions into the biomedical community. These results give a more concise explanation of the difficulties many life science IT projects are facing in the late funding periods, and show leveraging steps that can help overcoming the "vale of tears".

  4. Federal Technology Transfer Act (FTTA)

    EPA Pesticide Factsheets

    EPA's Federal Technology Transfer Act (FTTA) is a mechanism with which EPA can patent its inventions and license them to companies, through which innovative technologies can enter the marketplace to improve the environment and human health.

  5. Technology Transfer Report

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Since its inception, Goddard has pursued a commitment to technology transfer and commercialization. For every space technology developed, Goddard strives to identify secondary applications. Goddard then provides the technologies, as well as NASA expertise and facilities, to U.S. companies, universities, and government agencies. These efforts are based in Goddard's Technology Commercialization Office. This report presents new technologies, commercialization success stories, and other Technology Commercialization Office activities in 1999.

  6. Technology utilization office data base analysis and design

    NASA Technical Reports Server (NTRS)

    Floyd, Stephen A.

    1993-01-01

    NASA Headquarters is placing a high priority on the transfer of NASA and NASA contractor developed technologies and expertise to the private sector and to other federal, state and local government organizations. The ultimate objective of these efforts is positive economic impact, an improved quality of life, and a more competitive U.S. posture in international markets. The Technology Utilization Office (TUO) currently serves seven states with its technology transfer efforts. Since 1989, the TUO has handled over one-thousand formal requests for NASA related technologies assistance. The technology transfer process requires promoting public awareness of NASA related soliciting requests for assistance, matching technologies to specific needs, assuring appropriate technology transfer, and monitoring and evaluating the process. Each of these activities have one very important aspect in common: the success of each is dissemination of appropriate high quality information. The purpose of the research was to establish the requirements and develop a preliminary design for a database system to increase the effectiveness and efficiency of the TUO's technology transfer function. The research was conducted following the traditional systems development life cycle methodology and was supported through the use of modern structured analysis techniques. The next section will describe the research and findings as conducted under the life cycle approach.

  7. Space technology: A study of the significance of recognition for innovators of spinoff technologies. 1993 activities/1994, 1995 plans

    NASA Technical Reports Server (NTRS)

    1994-01-01

    During the past 30 years as NASA has conducted technology transfer programs, it has gained considerable experience - particularly pertaining to the processes. However, three areas have not had much scrutiny: the examination of the contributions of the individuals who have developed successful spinoffs, the commercial success of the spinoffs themselves, and the degree to which they are understood by the public. In short, there has been limited evaluation to measure the success of technology transfer efforts mandated by Congress. Research conducted during the first year of a three-year NASA grant to the United States Space Foundation has taken the initial steps toward measuring the success of methodologies to accomplish that Congressionally-mandated technology transfer. In particular, the US Space Foundation, in cooperation with ARAC, technology transfer experts; JKA, a nationally recognized themed entertainment design company; and top evaluation consultants, inaugurated and evaluated a fresh approach including commercial practices to encourage, motivate, and energize technology transfer by: recognizing already successful efforts (Space Technology Hall of Fame Award), drawing potential business and industrial players into the process (Space Commerce Expo), and informing and motivating the general public (Space Technology Hall of Fame public venues). The first year's efforts are documented and directions for the future are outlined.

  8. Review and Evaluation of Wireless Power Transfer (WPT) for Electric Transit Applications

    DOT National Transportation Integrated Search

    2014-08-01

    This research report provides a status review of emerging and existing Wireless Power Transfer (WPT) technologies applicable to electric bus (EB) and rail transit. The WPT technology options discussed, especially Inductive Power Transfer (IPT), enabl...

  9. 14 CFR 1274.915 - Restrictions on sale or transfer of technology to foreign firms or institutions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... licensing of the technology. Transfers include: (1) Sales of products or components, (2) Licenses of software or documentation related to sales of products or components, or (3) Transfers to foreign...

  10. 14 CFR § 1274.915 - Restrictions on sale or transfer of technology to foreign firms or institutions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... licensing of the technology. Transfers include: (1) Sales of products or components, (2) Licenses of software or documentation related to sales of products or components, or (3) Transfers to foreign...

  11. 14 CFR 1274.915 - Restrictions on sale or transfer of technology to foreign firms or institutions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... licensing of the technology. Transfers include: (1) Sales of products or components, (2) Licenses of software or documentation related to sales of products or components, or (3) Transfers to foreign...

  12. Applications of aerospace technology in industry, a technology transfer profile: Lubrication

    NASA Technical Reports Server (NTRS)

    Kottenstette, J. P.; Freeman, J. E.; Heins, C. R.; Hildred, W. M.; Johnson, F. D.; Staskin, E. R.

    1971-01-01

    Technology transfer in the lubrication field is discussed in terms of the movement of NASA-generated lubrication technology into the private sector as affected by evolving industrial requirements. An overview of the field is presented, and NASA technical contributions to lubrication technology are described. Specific examples in which these technologies have been used in the private sector are summarized.

  13. Spinoff, 1990

    NASA Technical Reports Server (NTRS)

    Haggerty, James J.

    1990-01-01

    This publication is intended to foster the aim of the NASA Technology Utilization Program by heightening awareness of the NASA technology available for transfer and its potential for benefits realized by secondary applications. Spinoff 1990 is organized in three main sections. Section 1 outlines NASA's mainline effort, the major programs that generate new technology and therefore replenish and expand the bank of knowledge available for transfer. Section 2 contains a representative sampling of spinoff products that resulted from secondary application of technology originally developed to meet mainline goals. Section 3 describes the various mechanisms NASA employs to stimulate technology transfer and lists, in an appendix, contact sources for further information about the Technology Utilization Program.

  14. Applications of aerospace technology in the electric power industry

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An overview of the electric power industry, selected NASA contributions to progress in the industry, linkages affecting the transfer and diffusion of technology, and, finally, a perspective on technology transfer issues are presented.

  15. The role of technology in critical care nursing.

    PubMed

    Crocker, Cheryl; Timmons, Stephen

    2009-01-01

    This paper is a report of a study to identify the meaning for critical care nurses of technology related to weaning from mechanical ventilation and to explore how that technology was used in practice. The literature concerned with the development of critical care (intensive care and high dependency units) focuses mainly on innovative medical technology. Although this use of technology in critical care is portrayed as new, it actually represents a transfer of technology from operating theatres. An ethnographic study was conducted and data were collected on one critical care unit in a large teaching hospital over a 6-month period in 2004. The methods included participant observation, interviews and the collection of field notes. The overall theme 'The nursing-technology relation' was identified. This comprised three sub-themes: definition of technology, technology transferred and technology transformed. Novice nurses took a task-focussed approach to weaning, treating it as a 'medical' technology transferred to them from doctors. Expert nurses used technology differently and saw its potential to become a 'nursing technology'. Nurses need to examine how they can adapt and to 'reconfigure' technology so that it can be transformed into a nursing technology. Those technologies that do not fit with nursing may have no place there. Rather than simply extending and expanding their roles through technology transfer, nurses should transform those technologies that preserve the essence of nursing and can contribute to a positive outcome for patients.

  16. Technology transfer for DOE's office of buildings and community systems: assessment and strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, M.A.; Jones, D.W.; Kolb, J.O.

    1986-07-01

    The uninterrupted availability of oil supplies over the past several years and the moderation of energy price increases has sent signals to consumers and decision-makers in the buildings industry that the ''energy crisis'' is over. As a result, efforts to promote energy-conserving technologies must emphasize benefits other than BTU savings. The improved ambience of daylit spaces and the lower first costs associated with installing down-sized HVAC systems in ''tight'' buildings are examples of benefits which are likely to more influential than estimates of energy saved. Successful technology transfer requires that an R and D product have intrinsic value and thatmore » these values be effectively communicated to potential users. Active technology transfer programs are more effective than passive ones. Transfer activities should involve more than simply making information available to those who seek it. Information should be tailored to meet the needs of specific user groups and disseminated through those channels which users normally employ. In addition to information dissemination, successful technology transfer involves the management of intellectual property, including patented inventions, copyrights, technical data, and rights to future inventions. When the public can best benefit from an invention through commercialization of a new product, the exclusivity necessary to protect the investment from copiers should be provided. Most federal technology transfer programs concentrate on information exchange and largely avoid intellectual property transfers.« less

  17. KSC-2013-3578

    NASA Image and Video Library

    2013-09-12

    CAPE CANAVERAL, Fla. – Carol Craig, founder and CEO of Craig Technologies, discusses technology transfer with attendees at the Technology Transfer Forum of the Economic Development Commission of Florida's Space Coast. A goal of the session was to showcase ways commercial businesses can work with NASA to develop technology and apply existing technology to commercial uses. Photo credit: NASA/Glenn Benson

  18. Joining Together for a Common Cause – Interagency Collaboration to Fight disease

    USDA-ARS?s Scientific Manuscript database

    In addition to the economic and technical benefits of technology transfer, there is the human element-how technology development and technology transfer can make a difference in people’s lives. We will share compelling stories of how individuals have directly benefited from technology development an...

  19. Seeing the Forest and the Trees: Western Forestry Systems and Soviet Engineers, 1955-1964.

    PubMed

    Kochetkova, Elena

    This article examines the transfer of technology from Finnish enterprises to Soviet industry during the USSR's period of technological modernization between 1955 and 1964. It centers on the forestry sector, which was a particular focus of modernization programs and a key area for the transfer of foreign techniques and expertise. The aim of the article is to investigate the role of trips made by Soviet specialists to foreign (primarily Finnish) enterprises in order to illustrate the nontechnological influences that occurred during the transfer of technologies across the cold war border. To do so, the article is divided into two parts: the first presents a general analysis of technology transfer from a micro-level perspective, while the second investigates the cultural influences behind technological transfer in the Soviet-Finnish case. This study contends that although the Soviet government expected its specialists to import advanced foreign technical experience, they brought not only the technologies and expertise needed for modernizing the industry, but also a changed view on Soviet workplace management and everyday practices.

  20. The Role of Empirical Evidence for Transferring a New Technology to Industry

    NASA Astrophysics Data System (ADS)

    Baldassarre, Maria Teresa; Bruno, Giovanni; Caivano, Danilo; Visaggio, Giuseppe

    Technology transfer and innovation diffusion are key success factors for an enterprise. The shift to a new software technology involves, on one hand, inevitable changes to ingrained and familiar processes and, on the other, requires training, changes in practices and commitment on behalf of technical staff and management. Nevertheless, industry is often reluctant to innovation due to the changes it determines. The process of innovation diffusion is easier if the new technology is supported by empirical evidence. In this sense our conjecture is that Empirical Software Engineering (ESE) serves as means for validating and transferring a new technology within production processes. In this paper, the authors report their experience of a method, Multiview Framework, defined in the SERLAB research laboratory as support for designing and managing a goal oriented measurement program that has been validated through various empirical studies before being transferred to an Italian SME. Our discussion points out the important role of empirical evidence for obtaining management commitment and buy-in on behalf of technical staff, and for making technological transfer possible.

  1. Program for transfer research and impact studies

    NASA Technical Reports Server (NTRS)

    Kottenstette, J. P.; Rusnak, J. J.; Staskin, E. R.

    1972-01-01

    The progress made in achieving TRIS research objectives during the first six months of 1972 is reviewed. The Tech Brief-Technical Support Package Program and technology transfer profiles are presented along with summaries of technology transfer in nondestructive testing, and visual display systems.

  2. Tools and technologies for expert systems: A human factors perspective

    NASA Technical Reports Server (NTRS)

    Rajaram, Navaratna S.

    1987-01-01

    It is widely recognized that technologies based on artificial intelligence (AI), especially expert systems, can make significant contributions to the productivity and effectiveness of operations of information and knowledge intensive organizations such as NASA. At the same time, these being relatively new technologies, there is the problem of transfering technology to key personnel of such organizations. The problems of examining the potential of expert systems and of technology transfer is addressed in the context of human factors applications. One of the topics of interest was the investigation of the potential use of expert system building tools, particularly NEXPERT as a technology transfer medium. Two basic conclusions were reached in this regard. First, NEXPERT is an excellent tool for rapid prototyping of experimental expert systems, but not ideal as a delivery vehicle. Therefore, it is not a substitute for general purpose system implementation languages such a LISP or C. This assertion probably holds for nearly all such tools on the market today. Second, an effective technology transfer mechanism is to formulate and implement expert systems for problems which members of the organization in question can relate to. For this purpose, the LIghting EnGineering Expert (LIEGE) was implemented using NEXPERT as the tool for technology transfer and to illustrate the value of expert systems to the activities of the Man-System Division.

  3. Applications of aerospace technology in biology and medicine

    NASA Technical Reports Server (NTRS)

    Rouse, D. J.

    1983-01-01

    Utilization of NASA technology and its application to medicine is discussed. The introduction of new or improved commercially available medical products and incorporation of aerospace technology is outlined. A biopolar donor-recipient model of medical technology transfer is presented to provide a basis for the methodology. The methodology is designed to: (1) identify medical problems and NASA technology that, in combination, constitute opportunities for successful medical products; (2) obtain the early participation of industry in the transfer process; and (3) obtain acceptance by the medical community of new medical products based on NASA technology. Two commercial transfers were completed: the ocular screening device, a system for quick detection of vision problems in preschool children, and Porta-Fib III, a hospital monitoring unit. Two institutional transfers were completed: implant materials testing, the application of NASA fracture control technology to improve reliability of metallic prostheses, and incinerator monitoring, a quadrupole mass spectrometer to monitor combustion products of municipal incinerators. Mobility aids for the blind and ultrasound diagnosis of burn depth are also studied.

  4. Research to practice in addiction treatment: key terms and a field-driven model of technology transfer.

    PubMed

    2011-09-01

    The transfer of new technologies (e.g., evidence-based practices) into substance abuse treatment organizations often occurs long after they have been developed and shown to be effective. Transfer is slowed, in part, due to a lack of clear understanding about all that is needed to achieve full implementation of these technologies. Such misunderstanding is exacerbated by inconsistent terminology and overlapping models of an innovation, including its development and validation, dissemination to the public, and implementation or use in the field. For this reason, a workgroup of the Addiction Technology Transfer Center (ATTC) Network developed a field-driven conceptual model of the innovation process that more precisely defines relevant terms and concepts and integrates them into a comprehensive taxonomy. The proposed definitions and conceptual framework will allow for improved understanding and consensus regarding the distinct meaning and conceptual relationships between dimensions of the technology transfer process and accelerate the use of evidence-based practices. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. NASA technology transfer network communications and information system: TUNS user survey

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Applied Expertise surveyed the users of the deployed Technology Utilization Network System (TUNS) and surveyed prospective new users in order to gather background information for developing the Concept Document of the system that will upgrade and replace TUNS. Survey participants broadly agree that automated mechanisms for acquiring, managing, and disseminating new technology and spinoff benefits information can and should play an important role in meeting NASA technology utilization goals. However, TUNS does not meet this need for most users. The survey describes a number of systematic improvements that will make it easier to use the technology transfer mechanism, and thus expedite the collection and dissemination of technology information. The survey identified 26 suggestions for enhancing the technology transfer system and related processes.

  6. The process for technology transfer in Baltimore

    NASA Technical Reports Server (NTRS)

    Golden, T. S.

    1978-01-01

    Ingredients essential for a successful decision process relative to proper technological choices for a large city were determined during four years of experience in the NASA/Baltimore Applications Project. The general approach, rationale, and process of technology transfer are discussed.

  7. KSC-2013-3572

    NASA Image and Video Library

    2013-09-12

    CAPE CANAVERAL, Fla. – Mike Lester, Research and Technology Partnership manager at NASA's Kennedy Space Center in Florida, discusses technology transfer with attendees at the Technology Transfer Forum of the Economic Development Commission of Florida's Space Coast. A goal of the session was to showcase ways commercial businesses can work with NASA to develop technology and apply existing technology to commercial uses. Photo credit: NASA/Glenn Benson

  8. KSC-2013-3573

    NASA Image and Video Library

    2013-09-12

    CAPE CANAVERAL, Fla. – Joni Richards, Technology Infusion specialist at NASA's Kennedy Space Center in Florida, discusses technology transfer with attendees at the Technology Transfer Forum of the Economic Development Commission of Florida's Space Coast. A goal of the session was to showcase ways commercial businesses can work with NASA to develop technology and apply existing technology to commercial uses. Photo credit: NASA/Glenn Benson

  9. A case history of technology transfer

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A sequence of events, occurring over the last 25 years, are described that chronicle the evolution of ion-bombardment electric propulsion technology. Emphasis is placed on the latter phases of this evolution, where special efforts were made to pave the way toward the use of this technology in operational space flight systems. These efforts consisted of a planned program to focus the technology toward its end applications and an organized process that was followed to transfer the technology from the research-technology NASA Center to the user-development NASA Center and its industry team. Major milestones in this evolution, which are described, include the development of thruster technology across a large size range, the successful completion of two space electric rocket tests, SERT I and SERT II, development of power-processing technology for electric propulsion, completion of a program to make the technology ready for flight system development, and finally the technology transfer events.

  10. NASA's Technology Transfer Program for the Early Detection of Breast Cancer

    NASA Technical Reports Server (NTRS)

    Schmidt, Gregory; Frey, Mary Anne; Vernikos, Joan; Winfield, Daniel; Dalton, Bonnie P. (Technical Monitor)

    1996-01-01

    The National Aeronautics and Space Administration (NASA) has led the development of advanced imaging sensors and image processing technologies for space science and Earth science missions. NASA considers the transfer and commercialization of such technologies a fundamental mission of the agency. Over the last two years, efforts have been focused on the application of aerospace imaging and computing to the field of diagnostic imaging, specifically to breast cancer imaging. These technology transfer efforts offer significant promise in helping in the national public health priority of the early detection of breast cancer.

  11. NASA Intellectual Property Negotiation Practices and their Relationship to Quantitative Measures of Technology Transfer

    NASA Technical Reports Server (NTRS)

    Bush, Lance B.

    1997-01-01

    In the current political climate NASA must be able to show reliable measures demonstrating successful technology transfer. The currently available quantitative data of intellectual property technology transfer efforts portray a less than successful performance. In this paper, the use of only quantitative values for measurement of technology transfer is shown to undervalue the effort. In addition, NASA's current policy in negotiating intellectual property rights results in undervalued royalty rates. NASA has maintained that it's position of providing public good precludes it from negotiating fair market value for its technology and instead has negotiated for reasonable cost in order to recover processing fees. This measurement issue is examined and recommendations made which include a new policy regarding the intellectual property rights negotiation, and two measures to supplement the intellectual property measures.

  12. KSC-2013-3577

    NASA Image and Video Library

    2013-09-12

    CAPE CANAVERAL, Fla. – Percy Luney of Space Florida discusses technology transfer with attendees at the Technology Transfer Forum of the Economic Development Commission of Florida's Space Coast. A goal of the session was to showcase ways commercial businesses can work with NASA to develop technology and apply existing technology to commercial uses. Photo credit: NASA/Glenn Benson

  13. TECHNOLOGY TRANSFER ENVIRONMENTAL REGULATIONS AND TECHNOLOGY : CONTROL OF PATHOGENS IN MUNICIPAL WASTEWATER SLUDGE

    EPA Science Inventory

    This 71 - page Technology Transfer Environmental Regulations and echnology publication describes the Federal requirements promulgated in 1979 for reducing pathogens n wastewater sludge and provides guidance in determining whether individual sludge treatment andated or particular ...

  14. The challenge of technology transfer: Buying in without selling out

    PubMed Central

    Pennypacker, H. S.

    1986-01-01

    Highly effective technologies flowing from the discipline of behavior analysis have not been widely adopted, thus threatening the survival of the discipline itself. An analysis of the contingencies underlying successful technology transfer suggests the need for direct, empirical involvement in the marketplace in order to insure that the maximum demonstrable benefits reach the ultimate users. A successful example of this strategy of technology transfer is provided. Three areas of intense national concern—urban violence, illiteracy, and declining industrial productivity—provide immediate opportunities for the technologies of behavior analysis to secure the place of the discipline in the intellectual mosaic of the 21st century. PMID:22478656

  15. MORE THAN MONEY: THE EXPONENTIAL IMPACT OF ACADEMIC TECHNOLOGY TRANSFER.

    PubMed

    McDevitt, Valerie Landrio; Mendez-Hinds, Joelle; Winwood, David; Nijhawan, Vinit; Sherer, Todd; Ritter, John F; Sanberg, Paul R

    2014-11-01

    Academic technology transfer in its current form began with the passage of the Bayh-Dole Act in 1980, which allowed universities to retain ownership of federally funded intellectual property. Since that time, a profession has evolved that has transformed how inventions arising in universities are treated, resulting in significant impact to US society. While there have been a number of articles highlighting benefits of technology transfer, now, more than at any other time since the Bayh-Dole Act was passed, the profession and the impacts of this groundbreaking legislation have come under intense scrutiny. This article serves as an examination of the many positive benefits and evolution, both financial and intrinsic, provided by academic invention and technology transfer, summarized in Table 1.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McAchran, G.E.

    The author first addresses the impediments to successful technology transfer, e.g., tax programs, planning horizons, and capital availability. He emphasizes that written information emanating from universities and national laboratories, in and of itself, is usually insufficient to insure technology transfer. He notes that most information is transferred through informal channels and, most effectively, through personal contacts. Noting that Monsanto was a founding member and remains active in they Council on Chemical Research and Technology Transfer Conferences, Inc., he cites examples of their activities in the past 15 years. While geographic proximity is an important factor, usually, Monsanto's 5-year program withmore » Oxford Univ., UK, is funded at approximately $2 million; Monsanto scientists are located at Oxford to facilitate the work and bring the technology back home. 7 references« less

  17. MORE THAN MONEY: THE EXPONENTIAL IMPACT OF ACADEMIC TECHNOLOGY TRANSFER

    PubMed Central

    McDevitt, Valerie Landrio; Mendez-Hinds, Joelle; Winwood, David; Nijhawan, Vinit; Sherer, Todd; Ritter, John F.; Sanberg, Paul R.

    2014-01-01

    Academic technology transfer in its current form began with the passage of the Bayh–Dole Act in 1980, which allowed universities to retain ownership of federally funded intellectual property. Since that time, a profession has evolved that has transformed how inventions arising in universities are treated, resulting in significant impact to US society. While there have been a number of articles highlighting benefits of technology transfer, now, more than at any other time since the Bayh–Dole Act was passed, the profession and the impacts of this groundbreaking legislation have come under intense scrutiny. This article serves as an examination of the many positive benefits and evolution, both financial and intrinsic, provided by academic invention and technology transfer, summarized in Table 1. PMID:25061505

  18. Formal methods technology transfer: Some lessons learned

    NASA Technical Reports Server (NTRS)

    Hamilton, David

    1992-01-01

    IBM has a long history in the application of formal methods to software development and verification. There have been many successes in the development of methods, tools and training to support formal methods. And formal methods have been very successful on several projects. However, the use of formal methods has not been as widespread as hoped. This presentation summarizes several approaches that have been taken to encourage more widespread use of formal methods, and discusses the results so far. The basic problem is one of technology transfer, which is a very difficult problem. It is even more difficult for formal methods. General problems of technology transfer, especially the transfer of formal methods technology, are also discussed. Finally, some prospects for the future are mentioned.

  19. Technology Transfer: A Third World Perspective.

    ERIC Educational Resources Information Center

    Akubue, Anthony I.

    2002-01-01

    Technology transfer models are based on assumptions that do not reflect Third-World realities. Obstacles to building indigenous technology capacity include multinational corporations' control of innovations, strings attached to foreign aid, and indigenous reluctance to undertake research. Four areas of development include foreign direct…

  20. Definition of technology development missions for early space station, orbit transfer vehicle servicing, volume 2

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Propellant transfer, storage, and reliquefaction TDM; docking and berthing technology development mission; maintenance technology development mission; OTV/payload integration, space station interface/accommodations; combined TDM conceptual design; programmatic analysis; and TDM equipment usage are discussed.

  1. Ethical Considerations in Technology Transfer.

    ERIC Educational Resources Information Center

    Froehlich, Thomas J.

    1991-01-01

    Examines ethical considerations involved in the transfer of appropriate information technology to less developed countries. Approaches to technology are considered; two philosophical frameworks for studying ethical considerations are discussed, i.e., the Kantian approach and the utilitarian perspective by John Stuart Mill; and integration of the…

  2. 15 CFR 290.3 - Program description.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS REGIONAL CENTERS FOR THE TRANSFER OF MANUFACTURING TECHNOLOGY § 290.3 Program description. (a) The Secretary, acting through the... for the Transfer of Manufacturing Technology. Each Center shall be affiliated with a U.S.-based...

  3. 15 CFR 290.3 - Program description.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS REGIONAL CENTERS FOR THE TRANSFER OF MANUFACTURING TECHNOLOGY § 290.3 Program description. (a) The Secretary, acting through the... for the Transfer of Manufacturing Technology. Each Center shall be affiliated with a U.S.-based...

  4. Commercial technologies from the SP-100 program

    NASA Astrophysics Data System (ADS)

    Truscello, Vincent C.; Fujita, Toshio; Mondt, Jack F.

    1995-01-01

    For more than a decade, the Jet Propulsion Labortory (JPL) and Los Alamos National Laboratory (LANL) have managed a multi-agency funded effort to develop a space reactor power system. This SP-100 Program has developed technologies required for space power systems that can be implemented in the industrial and commercial sectors to improve our competitiveness in the global economy. Initial steps taken to transfer this technology from the laboratories to industrial and commercial entities within the United States include: (1) identifying specific technologies having commercial potential; (2) distributing information describing the identified technologies and interacting with interested commercial and industrial entities to develop application-specific details and requirements; and (3) providing a technological data base that leads to transfer of technology or the forming of teaming arrangements to accomplish the transfer by tailoring the technology to meet application-specific requirements. SP-100 technologies having commercial potential encompass fabrication processes, devices, and components. Examples are a process for bonding refractory metals to graphite, a device to sense the position of an actuator and a component to enable rotating machines to operate without supplying lubrication ( a self-lubricating ball bearing). Shortly after the National Aeronautics and Space Administration (NASA) Regional Technology Transfer Centers widely disseminated information covering SP-100 technologies, over one hundred expressions of interest were received. These early responses indicate that there is a large potential benefit in transferring SP-100 technology. Interactions with industrial and commercial entities have identified a substantial need for creating teaming arrangements involving the interested entity and personnel from laboratories and their contractors, who have the knowledge and ability to tailor the technology to meet application-specific requirements.

  5. Applications of aerospace technology

    NASA Technical Reports Server (NTRS)

    Rouse, Doris J.

    1984-01-01

    The objective of the Research Triangle Institute Technology Transfer Team is to assist NASA in achieving widespread utilization of aerospace technology in terrestrial applications. Widespread utilization implies that the application of NASA technology is to benefit a significant sector of the economy and population of the Nation. This objective is best attained by stimulating the introduction of new or improved commercially available devices incorporating aerospace technology. A methodology is presented for the team's activities as an active transfer agent linking NASA Field Centers, industry associations, user groups, and the medical community. This methodology is designed to: (1) identify priority technology requirements in industry and medicine, (2) identify applicable NASA technology that represents an opportunity for a successful solution and commercial product, (3) obtain the early participation of industry in the transfer process, and (4) successfully develop a new product based on NASA technology.

  6. Technology Transfer: Creating the Right Environment.

    ERIC Educational Resources Information Center

    McCullough, John M.

    2003-01-01

    Small and medium-sized enterprises are considered to be the backbone of many European economies and a catalyst for economic growth. Universities are key players in encouraging and supporting economic growth through technology and knowledge-related transfer. The right environment to foster transfer is a proactive culture. (Contains 22 references.)…

  7. 40 CFR 63.126 - Transfer operations provisions-reference control technology.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Wastewater § 63.126 Transfer operations provisions—reference control technology. (a) For each Group 1... control device. (1) Each vapor collection system shall be designed and operated to collect the organic... process, fuel gas system, or control device shall be operating. (b) For each Group 1 transfer rack the...

  8. Definition of technology development missions for early space station, orbit transfer vehicle servicing. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Orbital Transfer Vehicle (OTV) servicing study scope, propellant transfer, storage and reliquefaction technology development missions (TDM), docking and berthing TDM, maintenance TDM, OTV/payload integration TDM, combined TDMS design, summary space station accomodations, programmatic analysis, and TDM equipment operational usage are discussed.

  9. 76 FR 11498 - Submission for OMB Review; Comment Request; Generic Submission of Technology Transfer Center (TTC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ...; Comment Request; Generic Submission of Technology Transfer Center (TTC) External Customer Satisfaction... Transfer Center (TTC) External Customer Satisfaction Surveys (NCI). Type of Information Collection Request... information on the satisfaction of TTC's external customers with TTC customer services; collect information of...

  10. 76 FR 67153 - Federal Acquisition Regulation; Submission for OMB Review; Payment by Electronic Fund Transfer

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ...; Submission for OMB Review; Payment by Electronic Fund Transfer AGENCY: Department of Defense (DOD), General... collection requirement concerning payment by electronic fund transfer. A notice was published in the Federal... technological collection techniques or other forms of information technology. DATES: Submit comments on or...

  11. Spinoff 1995

    NASA Technical Reports Server (NTRS)

    Haggerty, James J.

    1995-01-01

    Recognizing the great potential of the technology bank, Congress charged NASA with stimulating the widest possible use of this valuable resource in the national interest. NASA's instrument of that purpose is the Technology Transfer Program, which seeks to broaden and accelerate the spinoff process. Its intent is to spur expanded national benefit, in terms of new products and new jobs, by facilitating the commercial application of the technology; it encourages greater use of the storehouse of knowledge by providing a channel linking the technology and those who might be able to put it to advantageous use. In July 1994, NASA implemented an Agenda for Change - a new way of doing business in partnership with the private sector. This Agenda marks the beginning of a new focus to further improve our contributions to America's economic security through the pursuit of aeronautics and space missions. This publication is an implement of the Technology Transfer Program intended to heighten awareness among potential users of the technology available for transfer and the economic and social benefits that might be realized by applications of NASA technology to US commercial interests. Spinoff 1995 is organized in three sections. Section 1 outlines NASA's mainline effort, the major programs that generate new technology and therefore replenish and expand the bank of technical knowledge available for application. Section 2, the focal point of this volume, contains a representative sampling of spinoff products and processes that resulted from applications of technology originally developed to meet NASA aerospace goals. Section 3, describes the various mechanisms NASA employs to stimulate technology transfer and lists, in an appendix, contact sources for further information about the Technology Transfer Program.

  12. Double-layered cell transfer technology for bone regeneration

    PubMed Central

    Akazawa, Keiko; Iwasaki, Kengo; Nagata, Mizuki; Yokoyama, Naoki; Ayame, Hirohito; Yamaki, Kazumasa; Tanaka, Yuichi; Honda, Izumi; Morioka, Chikako; Kimura, Tsuyoshi; Komaki, Motohiro; Kishida, Akio; Izumi, Yuichi; Morita, Ikuo

    2016-01-01

    For cell-based medicine, to mimic in vivo cellular localization, various tissue engineering approaches have been studied to obtain a desirable arrangement of cells on scaffold materials. We have developed a novel method of cell manipulation called “cell transfer technology”, enabling the transfer of cultured cells onto scaffold materials, and controlling cell topology. Here we show that using this technique, two different cell types can be transferred onto a scaffold surface as stable double layers or in patterned arrangements. Various combinations of adherent cells were transferred to a scaffold, amniotic membrane, in overlapping bilayers (double-layered cell transfer), and transferred cells showed stability upon deformations of the material including folding and trimming. Transplantation of mesenchymal stem cells from periodontal ligaments (PDLSC) and osteoblasts, using double-layered cell transfer significantly enhanced bone formation, when compared to single cell type transplantation. Our findings suggest that this double-layer cell transfer is useful to produce a cell transplantation material that can bear two cell layers. Moreover, the transplantation of an amniotic membrane with PDLSCs/osteoblasts by cell transfer technology has therapeutic potential for bone defects. We conclude that cell transfer technology provides a novel and unique cell transplantation method for bone regeneration. PMID:27624174

  13. FSA future directions: FSA technology activities in FY86

    NASA Technical Reports Server (NTRS)

    Leipold, M. H.

    1985-01-01

    The silicon material, advanced silicon sheet, device research, and process research activities are explained. There will be no new initiatives. Many activities are targeted for completion and the emphasis will then be on technology transfer. Industrial development of the fluidized-bed reactor (FBR) deposition technology is proceeding. Technology transfer and industry funding of sheet development are continuing.

  14. KSC-2013-3576

    NASA Image and Video Library

    2013-09-12

    CAPE CANAVERAL, Fla. – Bob Cabana, director of NASA's Kennedy Space Center in Florida, discusses technology transfer with attendees at the Technology Transfer Forum of the Economic Development Commission of Florida's Space Coast. A goal of the session was to showcase ways commercial businesses can work with NASA to develop technology and apply existing technology to commercial uses. Photo credit: NASA/Glenn Benson

  15. KSC-2013-3571

    NASA Image and Video Library

    2013-09-12

    CAPE CANAVERAL, Fla. – Bob Cabana, director of NASA's Kennedy Space Center in Florida, discusses technology transfer with attendees at the Technology Transfer Forum of the Economic Development Commission of Florida's Space Coast. A goal of the session was to showcase ways commercial businesses can work with NASA to develop technology and apply existing technology to commercial uses. Photo credit: NASA/Glenn Benson

  16. KSC-2013-3568

    NASA Image and Video Library

    2013-09-12

    CAPE CANAVERAL, Fla. – Karen Thompson, chief technologist at NASA's Kennedy Space Center in Florida, discusses technology transfer with attendees at the Technology Transfer Forum of the Economic Development Commission of Florida's Space Coast. A goal of the session was to showcase ways commercial businesses can work with NASA to develop technology and apply existing technology to commercial uses. Photo credit: NASA/Glenn Benson

  17. EPA's Technology Transfer: Now Geared to Industry

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1973

    1973-01-01

    Through capsule reports, seminars, and design manuals, Environmental Protection Agency has activated its industrial technology transfer program for marketing the products of federal research, development, and demonstration activities. Its purpose is to disseminate information to industry on available technology for control and treatment of air,…

  18. Facilitation of University Technology Transfer Through a Cooperative Service-University-Industry Program.

    DTIC Science & Technology

    1997-02-01

    through technology transfer centers for applied engineering training and consulting, and second, in assisting and expanding university technology...both the services and industry with an applied engineering program and the training for new engineers and researchers, (2) serve as an information

  19. University Technology Transfer Factors as Predictors of Entrepreneurial Orientation

    ERIC Educational Resources Information Center

    Kirkman, Dorothy M.

    2011-01-01

    University technology transfer is a collaborative effort between academia and industry involving knowledge sharing and learning. Working closely with their university partners affords biotechnology firms the opportunity to successfully develop licensed inventions and gain access to novel scientific and technological discoveries. These factors may…

  20. 15 CFR 290.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS REGIONAL CENTERS FOR THE TRANSFER... efficiency. (b) The term Center or Regional Center means a NIST-established Regional Center for the Transfer... Standards and Technology. (e) The term NIST means the National Institute of Standards and Technology, U.S...

  1. 15 CFR 290.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS REGIONAL CENTERS FOR THE TRANSFER... efficiency. (b) The term Center or Regional Center means a NIST-established Regional Center for the Transfer... Standards and Technology. (e) The term NIST means the National Institute of Standards and Technology, U.S...

  2. 15 CFR 290.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS REGIONAL CENTERS FOR THE TRANSFER... efficiency. (b) The term Center or Regional Center means a NIST-established Regional Center for the Transfer... Standards and Technology. (e) The term NIST means the National Institute of Standards and Technology, U.S...

  3. 15 CFR 290.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS REGIONAL CENTERS FOR THE TRANSFER... efficiency. (b) The term Center or Regional Center means a NIST-established Regional Center for the Transfer... Standards and Technology. (e) The term NIST means the National Institute of Standards and Technology, U.S...

  4. 15 CFR 290.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS REGIONAL CENTERS FOR THE TRANSFER... efficiency. (b) The term Center or Regional Center means a NIST-established Regional Center for the Transfer... Standards and Technology. (e) The term NIST means the National Institute of Standards and Technology, U.S...

  5. Technology transfer and evaluation for Space Station telerobotics

    NASA Technical Reports Server (NTRS)

    Price, Charles R.; Stokes, Lebarian; Diftler, Myron A.

    1994-01-01

    The international space station (SS) must take advantage of advanced telerobotics in order to maximize productivity and safety and to reduce maintenance costs. The Automation and Robotics Division at the NASA Lyndon B. Johnson Space Center (JSC) has designed, developed, and constructed the Automated Robotics Maintenance of Space Station (ARMSS) facility for the purpose of transferring and evaluating robotic technology that will reduce SS operation costs. Additionally, JSC had developed a process for expediting the transfer of technology from NASA research centers and evaluating these technologies in SS applications. Software and hardware system developed at the research centers and NASA sponsored universities are currently being transferred to JSC and integrated into the ARMSS for flight crew personnel testing. These technologies will be assessed relative to the SS baseline, and, after refinements, those technologies that provide significant performance improvements will be recommended as upgrades to the SS. Proximity sensors, vision algorithms, and manipulator controllers are among the systems scheduled for evaluation.

  6. Targeted Technology Transfer to US Independents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donald F. Duttlinger; E. Lance Cole

    2006-09-29

    The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. Coordinated from a Headquarters (HQ) office in Houston, PTTC maintains an active grassroots program executed by 10 Regional Lead Organizations (RLOs) and two satellite offices (Figure 1). Regional Directors interact with domestic oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and cooperative outreach efforts. HQ facilitates inter-regional technology transfer and implements a comprehensive communications program.more » Active volunteers on the National Board and in Producer Advisory Groups (PAGs) in each of the 10 regions focus effort in areas that will create the most impact for domestic producers. Focused effort by dedicated individuals across the country has enabled PTTC to achieve the milestones outlined in Appendix A.« less

  7. Development of Technology Transfer Economic Growth Metrics

    NASA Technical Reports Server (NTRS)

    Mastrangelo, Christina M.

    1998-01-01

    The primary objective of this project is to determine the feasibility of producing technology transfer metrics that answer the question: Do NASA/MSFC technical assistance activities impact economic growth? The data for this project resides in a 7800-record database maintained by Tec-Masters, Incorporated. The technology assistance data results from survey responses from companies and individuals who have interacted with NASA via a Technology Transfer Agreement, or TTA. The goal of this project was to determine if the existing data could provide indications of increased wealth. This work demonstrates that there is evidence that companies that used NASA technology transfer have a higher job growth rate than the rest of the economy. It also shows that the jobs being supported are jobs in higher wage SIC codes, and this indicates improvements in personal wealth. Finally, this work suggests that with correct data, the wealth issue may be addressed.

  8. Cost benefit assessment of NASA remote sensing technology transferred to the State of Georgia

    NASA Technical Reports Server (NTRS)

    Kelly, D. L.; Zimmer, R. P.; Wilkins, R. D.

    1978-01-01

    The benefits involved in the transfer of NASA remote sensing technology to eight Georgia state agencies are identified in quantifiable and qualitative terms, and a value for these benefits is computed by means of an effectiveness analysis. The benefits of the transfer are evaluated by contrasting a baseline scenario without Landsat and an alternative scenario with Landsat. The net present value of the Landsat technology being transferred is estimated at 9.5 million dollars. The estimated value of the transfer is most sensitive to discount rate, the cost of photo acquisition, and the cost of data digitalization. It is estimated that, if the budget is constrained, Landsat could provide data products roughly seven times more frequently than would otherwise be possible.

  9. Incorporating the Delphi Technique to investigate renewable energy technology transfer in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Al-Otaibi, Nasir K.

    Saudi Arabia is a major oil-producing nation facing a rapidly-growing population, high unemployment, climate change, and the depletion of its natural resources, potentially including its oil supply. Technology transfer is regarded as a means to diversify countries' economies beyond their natural resources. This dissertation examined the opportunities and barriers to utilizing technology transfer successfully to build renewable energy resources in Saudi Arabia to diversify the economy beyond oil production. Examples of other developing countries that have successfully used technology transfer to transform their economies are explored, including Japan, Malayasia, and the United Arab Emirates. Brazil is presented as a detailed case study to illustrate its transition to an economy based to a much greater degree than before on renewable energy. Following a pilot study, the Delphi Method was used in this research to gather the opinions of a panel of technology transfer experts consisting of 10 heterogeneous members of different institutions in the Kingdom of Saudi Arabia, including aviation, telecommunication, oil industry, education, health systems, and military and governmental organizations. In three rounds of questioning, the experts identified Education, Dependence on Oil, and Manpower as the 3 most significant factors influencing the potential for success of renewable energy technology transfer for Saudi Arabia. Political factors were also rated toward the "Very Important" end of a Likert scale and were discussed as they impact Education, Oil Dependence, and Manpower. The experts' opinions are presented and interpreted. They form the basis for recommended future research and discussion of how in light of its political system and its dependence on oil, Saudi Arabia can realistically move forward on renewable energy technology transfer and secure its economic future.

  10. Technology transfer from NASA to targeted industries, volume 1

    NASA Technical Reports Server (NTRS)

    Mccain, Wayne; Schroer, Bernard J.; Souder, William E.; Spann, Mary S.; Watters, Harry; Ziemke, M. Carl

    1993-01-01

    This report summarizes the University of Alabama in Huntsville (UAH) technology transfer to three target industries with focus on the apparel manufacturing industry in Alabama. Also included in this report are an analysis of the 1992 problem statements submitted by Alabama firms, the results of the survey of 1987-88 NASA Tech Brief requests, the results of the followup to Alabama submitted problem statements, and the development of the model describing the MSFC technology transfer process.

  11. Guidance and control strategies for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Naidu, Desineni S.; Hibey, Joseph L.

    1989-01-01

    The optimal control problem arising in coplanar orbital transfer employing aeroassist technology and the fuel-optimal control problem arising in orbital transfer vehicles employing aeroassist technology are addressed.

  12. Precision and manufacturing at the Lawrence Livermore National Laboratory

    NASA Technical Reports Server (NTRS)

    Saito, Theodore T.; Wasley, Richard J.; Stowers, Irving F.; Donaldson, Robert R.; Thompson, Daniel C.

    1994-01-01

    Precision Engineering is one of the Lawrence Livermore National Laboratory's core strengths. This paper discusses the past and present current technology transfer efforts of LLNL's Precision Engineering program and the Livermore Center for Advanced Manufacturing and Productivity (LCAMP). More than a year ago the Precision Machine Commercialization project embodied several successful methods of transferring high technology from the National Laboratories to industry. Currently, LCAMP has already demonstrated successful technology transfer and is involved in a broad spectrum of current programs. In addition, this paper discusses other technologies ripe for future transition including the Large Optics Diamond Turning Machine.

  13. Applications of aerospace technology in industry, a technology transfer profile: Contamination control

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The strong influence NASA-sponsored research has had on the development of solutions to difficult contamination problems is considered. The contamination control field is comprised of an industrial base, supplying the tools of control; a user base, adopting control techniques; and a technical base, expanding the concepts of control. Both formal and informal mechanisms used by NASA to communicate a variety of technical advances are reviewed and certain examples of the expansion of the user base through technology transfer are given. Issues related to transfer of NASA-generated contamination control technology are emphasized.

  14. Precision and manufacturing at the Lawrence Livermore National Laboratory

    NASA Astrophysics Data System (ADS)

    Saito, Theodore T.; Wasley, Richard J.; Stowers, Irving F.; Donaldson, Robert R.; Thompson, Daniel C.

    1994-02-01

    Precision Engineering is one of the Lawrence Livermore National Laboratory's core strengths. This paper discusses the past and present current technology transfer efforts of LLNL's Precision Engineering program and the Livermore Center for Advanced Manufacturing and Productivity (LCAMP). More than a year ago the Precision Machine Commercialization project embodied several successful methods of transferring high technology from the National Laboratories to industry. Currently, LCAMP has already demonstrated successful technology transfer and is involved in a broad spectrum of current programs. In addition, this paper discusses other technologies ripe for future transition including the Large Optics Diamond Turning Machine.

  15. Technology transfer in the NASA Ames Advanced Life Support Division

    NASA Technical Reports Server (NTRS)

    Connell, Kathleen; Schlater, Nelson; Bilardo, Vincent; Masson, Paul

    1992-01-01

    This paper summarizes a representative set of technology transfer activities which are currently underway in the Advanced Life Support Division of the Ames Research Center. Five specific NASA-funded research or technology development projects are synopsized that are resulting in transfer of technology in one or more of four main 'arenas:' (1) intra-NASA, (2) intra-Federal, (3) NASA - aerospace industry, and (4) aerospace industry - broader economy. Each project is summarized as a case history, specific issues are identified, and recommendations are formulated based on the lessons learned as a result of each project.

  16. NASA spinoffs to public service

    NASA Technical Reports Server (NTRS)

    Ault, L. A.; Cleland, J. G.

    1989-01-01

    The National Aeronautics and Space Administration (NASA) Technology Utilization (TU) Division of the Office of Commercial Programs has been quite successful in directing the transfer to technology into the public sector. NASA developments of particular interest have been those in the areas of aerodynamics and aviation transport, safety, sensors, electronics and computing, and satellites and remote sensing. NASA technology has helped law enforcement, firefighting, public transportation, education, search and rescue, and practically every other sector of activity serving the U.S. public. NASA works closely with public service agencies and associations, especially those serving local needs of citizens, to expedite technology transfer benefits. A number of examples exist to demonstrate the technology transfer method and opportunities of NASA spinoffs to public service.

  17. Industrial benefits and future expectations in materials and processes resulting from space technology

    NASA Technical Reports Server (NTRS)

    Meyer, J. D.

    1977-01-01

    Space technology transfer is discussed as applied to the field of materials science. Advances made in processing include improved computer techniques, and structural analysis. Technology transfer is shown to have an important impact potential in the overall productivity of the United States.

  18. Technology utilization and American competitiveness

    NASA Astrophysics Data System (ADS)

    Penaranda, Frank; Arnold, Ray; Fetterolf, Fred

    This session of discussions reports on two sides of the technology transfer issue. The speakers are representatives of the aluminum industry (Alcoa Aluminum) and the National Aeronautics and Space Administration, Office of Commercial Programs. They discuss what technology transfer means, what NASA does for industry, and how information is disseminated.

  19. Technology utilization and American competitiveness

    NASA Technical Reports Server (NTRS)

    Penaranda, Frank; Arnold, Ray; Fetterolf, Fred

    1992-01-01

    This session of discussions reports on two sides of the technology transfer issue. The speakers are representatives of the aluminum industry (Alcoa Aluminum) and the National Aeronautics and Space Administration, Office of Commercial Programs. They discuss what technology transfer means, what NASA does for industry, and how information is disseminated.

  20. 76 FR 71562 - Emergint Technologies, Inc.; Transfer of Data

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-18

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPP-2011-0038: FRL-9326-9] Emergint Technologies, Inc... Cosmetic Act (FFDCA), including information that may have been claimed as Confidential Business Information (CBI) by the submitter, will be transferred to Emergint Technologies, Inc. in accordance with 40 CFR 2...

  1. Facilitation of University Technology Transfer through a Cooperative Army-University-Industry Program,

    DTIC Science & Technology

    1995-01-01

    through Army technology transfer centers for applied engineering training and consulting, and second in assisting and expanding university technology...industry with an applied engineering program and the training for new engineers and researchers, serve as an information resource for both the Army and

  2. University-Industry Entrepreneurship: The Organization and Management of American University Technology Transfer Units.

    ERIC Educational Resources Information Center

    Dill, David D.

    1995-01-01

    A survey of 289 university technology transfer units investigated their organization, management, and perceived performance effectiveness. Unit types studied included licensing and patent offices, small business development centers, research and technology centers, business facility incubators, and entrepreneurial investment/endowment offices.…

  3. AFRL Materials and Manufacturing Directorate

    Science.gov Websites

    Laboratory Air Force Installation Contracting Agency Air Force Institute of Technology National Air & Vehicles (RV) Technology Transfer (T2) 711th Human Performance Wing (711 HPW) Airman Systems (RH) Human Interest AF Small Business Innovation Research/Small Business Technology Transfer (SBIR / STTR) AFRL

  4. 75 FR 18826 - Notice of Inventions Available for License

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-13

    ..., Office of the Assistant General Counsel for Technology Transfer and Intellectual Property, U.S..., 2010. Paul A. Gottlieb, Assistant General Counsel for Technology, Transfer and Intellectual Property...

  5. Blending addiction research and practice: strategies for technology transfer.

    PubMed

    Condon, Timothy P; Miner, Lucinda L; Balmer, Curtis W; Pintello, Denise

    2008-09-01

    Consistent with traditional conceptions of technology transfer, efforts to translate substance abuse and addiction research into treatment practice have typically relied on the passive dissemination of research findings. The large gap between addiction research and practice, however, indicates that there are many barriers to successful technology transfer and that dissemination alone is not sufficient to produce lasting changes in addiction treatment. To accelerate the translation of research into practice, the National Institute on Drug Abuse launched the Blending Initiative in 2001. In part a collaboration with the Substance Abuse and Mental Health Services Administration/Center for Substance Abuse Treatment's Addiction Technology Transfer Center program, this initiative aims to improve the development, effectiveness, and usability of evidence-based practices and reduce the obstacles to their timely adoption and implementation.

  6. Task-Technology Fit Assessment of an Expertise Transfer System

    DTIC Science & Technology

    2009-03-01

    Air Education and Training Command In Partial Fulfillment of the Requirements for the Degree of Master of Science in Information Resource Management...Transfer Forum (ETF) developed by the Oklahoma State University for the Defense Ammunition Center’s quality assurance personnel. The preliminary findings...Technology-to-Performance Chain (TPC) ....................................................................13 Expertise Transfer Forum (ETF

  7. "Kaizen" and Technology Transfer Instructors as Work-based Learning Facilitators in Overseas Transplants: A Case Study.

    ERIC Educational Resources Information Center

    Elsey, Barry; Fujiwara, Asahi

    2000-01-01

    A study of 240 instructors of kaizen (continuous quality improvement) and technology transfer in overseas assignments for Toyota found that commitment to work and corporate cultural values were significant. Instructors recognized the responsibility and challenges of communicating and transferring their know-how across cultures. (SK)

  8. Technology transfer and other public policy implications of multi-national arrangements for the production of commercial airframes

    NASA Technical Reports Server (NTRS)

    Gellman, A. J.; Price, J. P.

    1978-01-01

    A study to examine the question of technology transfer through international arrangements for production of commercial transport aircraft is presented. The likelihood of such transfer under various representative conditions was determined and an understanding of the economic motivations for, effects of, joint venture arrangements was developed. Relevant public policy implications were also assessed. Multinational consortia with U.S. participation were focused upon because they generate the full range of pertinent public issues (including especially technology transfer), and also because of recognized trends toward such arrangements. An extensive search and analysis of existing literature to identify the key issues, and in-person interviews with executives of U.S. and European commercial airframe producers was reviewed. Distinctions were drawn among product-embodied, process, and management technologies in terms of their relative possibilities of transfer and the significance of such transfer. Also included are observations on related issues such as the implications of U.S. antitrust policy with respect to the formation of consortia and the competitive viability of the U.S. aircraft manufacturing industry.

  9. Patent and license pearls and pitfalls for taking an idea to the marketplace.

    PubMed

    Mukharji, Indrani

    2011-06-01

    Technology transfer is the process by which novel ideas at academic institutions emanating from research supported by public and private funds are transferred to the private sector for developing marketable products for public use and benefit. Because the primary mission of universities is education and research, technology transfer in an academic environment introduces many challenges. This field is new to most faculty members and is seldom a core mission of their academic careers. The process is also new and unfamiliar to most university administrators. However, universities are increasingly challenged to demonstrate how their research with public funds translates into public benefit. Technology transfer by universities has taken on a new dimension with a focus first on protecting the intellectual property emanating from academic research, then finding means to develop and commercialize such intellectual property for launching new products in the market for public use and benefit. The Bayh-Dole Act enacted in 1980 (Public Law 96-517) allowed universities to elect to retain title to inventions arising from their federally funded research and to grant licenses to the patents, copyrights, or trademarks deriving from these inventions. Universities are allowed to retain the royalties and to share them with the inventors. This article presents the perspectives of technology transfer professionals, specifically, what technology transfer offices do or can do to assist researchers with commercialization of the novel ideas in biomedical research. It also provides a list of successful therapeutics that stemmed from academic research. In conclusion, reference is made to some of the challenges of technology transfer.

  10. Technology Transfer and Commercialization

    NASA Technical Reports Server (NTRS)

    Martin, Katherine; Chapman, Diane; Giffith, Melanie; Molnar, Darwin

    2001-01-01

    During concurrent sessions for Materials and Structures for High Performance and Emissions Reduction, the UEET Intellectual Property Officer and the Technology Commercialization Specialist will discuss the UEET Technology Transfer and Commercialization goals and efforts. This will include a review of the Technology Commercialization Plan for UEET and what UEET personnel are asked to do to further the goals of the Plan. The major goal of the Plan is to define methods for how UEET assets can best be infused into industry. The National Technology Transfer Center will conduct a summary of its efforts in assessing UEET technologies in the areas of materials and emissions reduction for commercial potential. NTTC is assisting us in completing an inventory and prioritization by commercialization potential. This will result in increased exposure of UEET capabilities to the private sector. The session will include audience solicitation of additional commercializable technologies.

  11. Maximizing profits in international technology transfer

    NASA Technical Reports Server (NTRS)

    Straube, W.

    1974-01-01

    Maximum profit can be introduced into international technology transfer by observing the following: (1) ethical and open dealing between the parties; (2) maximum knowledge of all facts concerning the technology, the use of the technology, the market, competition, prices, and alternatives; (3) ability to coordinate exports, service, support activities, licensing and cross licensing; and (4) knowledgeable people which put these factors together.

  12. Applications of aerospace technology in biology and medicine

    NASA Technical Reports Server (NTRS)

    Beall, H. C.; Beadles, R. L.; Brown, J. N., Jr.; Clingman, W. H.; Courtney, M. W.; Rouse, D. J.; Scearce, R. W.

    1979-01-01

    Medical products utilizing and incorporating aerospace technology were studied. A bipolar donor-recipient model for medical transfer is presented. The model is designed to: (1) identify medical problems and aerospace technology which constitute opportunities for successful medical products; (2) obtain early participation of industry in the transfer process; and (3) obtain acceptance by medical community of new medical products based on aerospace technology.

  13. Spinoff 2002: Fortieth Anniversary Technology Utilization Program

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Since its inception 40 years ago, NASA's Technology Transfer Program has led the way for our nation to benefit from cutting-edge aerospace technologies. In addition to contributing to U.S. economic growth, these technologies are improving the quality of life on Earth while finding new ways to protect and preserve it. NASA's research and development efforts have advanced areas in medicine, communications, manufacturing, computer technology, and homeland security. These breakthroughs, translated into commercial products, are enhancing the lives of Americans everywhere. When a congressional mandate led NASA to develop the Scientific and Technical Information (STI) Program, the Agency began a wide dissemination of its research and development results. In doing so, NASA recognized that many of its technologies were transferable to industry for the development of commercial products. As a result, the Technology Utilization Program was born in 1962. The successful program went through several changes over the years, as its philosophy, mission, and goals adapted into the Technology Transfer Program we know today. The program strives to make the latest technologies available to industry as soon as they are developed. Each year, NASA's Spinoff publication showcases new products and services resulting from commercial partnerships between NASA and private industry. In the 2002 issue, the NASA field centers reflect upon the growth that has made these innovations available to the public. The Research and Development section examines past achievements, current successes, and future goals for each of the ten NASA centers. The Commercial Benefits section proudly highlights 51 new spinoff products, including a heart pump for patients needing a heart transplant, as well as an air purifier that destroys anthrax spores. The Technology Transfer and Outreach section describes the outreach achievements and educational successes made possible through the NASA Commercial Technology Network. Each section of Spinoff 2002 provides compelling evidence of the Technology Transfer Program's success and value. With commercial products and successes spanning from work on the Apollo missions to the International Space Station, the 40th anniversary of the Technology Transfer Program invites us to celebrate our history while planning the future.

  14. Technology transfer of NASA microwave remote sensing system

    NASA Technical Reports Server (NTRS)

    Akey, N. D.

    1981-01-01

    Viable techniques for effecting the transfer from NASA to a user agency of state-of-the-art airborne microwave remote sensing technology for oceanographic applications were studied. A detailed analysis of potential users, their needs and priorities; platform options; airborne microwave instrument candidates; ancillary instrumentation; and other, less obvious factors that must be considered were studied. Conclusions and recommendations for the development of an orderly and effective technology transfer of an airborne microwave system that could meet the specific needs of the selected user agencies are reported.

  15. System analysis for technology transfer readiness assessment of horticultural postharvest

    NASA Astrophysics Data System (ADS)

    Hayuningtyas, M.; Djatna, T.

    2018-04-01

    Availability of postharvest technology is becoming abundant, but only a few technologies are applicable and useful to a wider community purposes. Based on this problem it requires a significant readiness level of transfer technology approach. This system is reliable to access readiness a technology with level, from 1-9 and to minimize time of transfer technology in every level, time required technology from the selection process can be minimum. Problem was solved by using Relief method to determine ranking by weighting feasible criteria on postharvest technology in each level and PERT (Program Evaluation Review Technique) to schedule. The results from ranking process of post-harvest technology in the field of horticulture is able to pass level 7. That, technology can be developed to increase into pilot scale and minimize time required for technological readiness on PERT with optimistic time of 7,9 years. Readiness level 9 shows that technology has been tested on the actual conditions also tied with estimated production price compared to competitors. This system can be used to determine readiness of technology innovation that is derived from agricultural raw materials and passes certain stages.

  16. The transferability of information and communication technology skills from university to the workplace: a qualitative descriptive study.

    PubMed

    Bembridge, Elizabeth; Levett-Jones, Tracy; Jeong, Sarah Yeun-Sim

    2011-04-01

    This paper presents the findings from a study that explored whether the information and communication technology (ICT) skills nurses acquired at university are relevant and transferable to contemporary practice environments. Whilst universities have attempted to integrate information and communication technology into nursing curricula it is not known whether the skills developed for educational purposes are relevant or transferable to clinical contexts. A qualitative descriptive study was used to explore the perspectives of a small group of new graduate nurses working in a regional/semi-metropolitan healthcare facility in New South Wales, Australia. Semi-structured interviews were used and the data thematically analysed. The themes that emerged from the study are presented in accordance with the conceptual framework and structured under the three headings of pre-transfer, transition and post-transfer. The transferability of information and communication technology skills from university to the workplace is impacted by a range of educational, individual, organisational and contextual factors. Access to adequate ICT and the necessary training opportunities influences new graduates' work satisfaction and their future employment decisions. The ability to effectively use information and communication technology was viewed as essential to the provision of quality patient care. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. 77 FR 11750 - Idaho: Final Approval of State Underground Storage Tank Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-28

    ... defined under Executive Order 12866. I. National Technology Transfer and Advancement Act Section 12(d) of the National Technology Transfer and Advancement Act of 1995 (``NTTAA''), Public Law 104-113, 12(d... the time needed to review instructions; develop, acquire, install, and utilize technology and systems...

  18. 76 FR 57659 - Oregon: Final Approval of State Underground Storage Tank Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    ... defined under Executive Order 12866. I. National Technology Transfer and Advancement Act Section 12(d) of the National Technology Transfer and Advancement Act of 1995 (``NTTAA''), Public Law 104-113, 12(d... instructions; develop, acquire, install, and utilize technology and systems for the purposes of collecting...

  19. Techno-Nationalism and the Construction of University Technology Transfer

    ERIC Educational Resources Information Center

    Sá, Creso; Kretz, Andrew; Sigurdson, Kristjan

    2013-01-01

    Our historical study of Canada's main research university illuminates the overlooked influence of national identities and interests as forces shaping the institutionalization of technology transfer. Through the use of archival sources we trace the rise and influence of Canadian technological nationalism--a response to Canada's perceived dependency…

  20. Applications of aerospace technology in biomedicine. A technology transfer profile: Patient monitoring

    NASA Technical Reports Server (NTRS)

    Murray, D. M.

    1971-01-01

    NASA contributions to cardiovascular monitoring are described along with innovations in intracardiac blood pressure monitoring. A brief overview of the process of NASA technology transfer in patient monitoring is presented and a list of bioinstrumentation tech briefs and the number of requests for technical support is included.

  1. Applications of aerospace technology in industry, a technology transfer profile: Plastics

    NASA Technical Reports Server (NTRS)

    1971-01-01

    New plastics technology bred out of the space program has moved steadily into the U.S. economy in a variety of organized and deliberate ways. Examples are presented of the transfer of plastics know-how into the plants and eventually the products of American business.

  2. 78 FR 2923 - Proposed Priority-National Institute on Disability and Rehabilitation Research-Disability and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-15

    ..., and rehabilitation technology that maximize the full inclusion and integration into society... of individuals with disabilities and further their participation in society. Technology transfer is a... Technology Transfer CFDA Number: 84.133A-08. AGENCY: Office of Special Education and Rehabilitative Services...

  3. Manufacturing process applications team (MATeam)

    NASA Technical Reports Server (NTRS)

    Bangs, E. R.

    1980-01-01

    Progress in the transfer of aerospace technology to solve key problems in the manufacturing sector of the economy is reported. Potential RTOP programs are summarized along with dissemination activities. The impact of transferred NASA manufacturing technology is discussed. Specific areas covered include aircraft production, robot technology, machining of alloys, and electrical switching systems.

  4. 77 FR 20823 - Prospective Grant of Exclusive License: Family Healthware

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-06

    ... Grant of Exclusive License: Family Healthware AGENCY: Technology Transfer Office, Centers for Disease... and Prevention (CDC), Technology Transfer Office, Department of Health and Human Services (DHHS), is... priority to Provisional Patent Application No. 60/650,076, filed 2/3/2005. CDC Technology ID No. I- 004-04...

  5. NASP technology transfer

    NASA Technical Reports Server (NTRS)

    Morris, Charles

    1992-01-01

    It is the stated goal of this program, the National AeroSpace Plane (NASP) program, to develop and then demonstrate the technologies for single-stage-to-orbit flight and hypersonic cruise with airbreathing primary propulsion and horizontal takeoff and landing. This presentation is concerned with technology transfer in the context of the NASP program.

  6. PNNL Provides Catalyst for Sustainable Propylene Glycol Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madison, Alison L.; Lund, Eric C.

    2012-02-28

    Submission for annual FLC magazine publication, Technology for Today, featuring technologies transferred by federal labs. Subject: PNNL transfer of Propylene Glycol from Renewable Sources catalytic process to Archer Daniels Midland Company.

  7. U.S. EPA Federal Technology Transfer Program Fact Sheet

    EPA Pesticide Factsheets

    The Federal Technology Transfer Act (FTTA), enacted by Congress in 1986 and building on previous legislation, improves access to federal laboratories by non-federal organizations for research and development opportunities.

  8. Collaborating with EPA through the Federal Technology Transfer Act

    EPA Pesticide Factsheets

    Under the Federal Technology Transfer Act (FTTA), EPA can collaborate with external parties on research projects, and share research materials. Learn more about the types of partnerships the EPA offers.

  9. Wireless power transfer inspired by the modern trends in electromagnetics

    NASA Astrophysics Data System (ADS)

    Song, Mingzhao; Belov, Pavel; Kapitanova, Polina

    2017-06-01

    Since the beginning of the 20th century, researchers have been looking for an effective way to transfer power without wired connections, but the wireless power transfer technology started to attract extensive interest from the industry side only in 2007 when the first smartphone was released and a consumer electronics revolution was triggered. Currently, the modern technology of wireless power transfer already has a rich research and development history as well as outstanding advances in commercialization. This review is focused on the description of distinctive implementations of this technology inspired by the modern trends in electrodynamics. We compare the performances of the power transfer systems based on three kinds of resonators, i.e., metallic coil resonators, dielectric resonators, and cavity mode resonators. We argue that metamaterials and meta-atoms are powerful tools to improve the functionalities and to obtain novel properties of the systems. We review different approaches to enhance the functionality of the wireless power transfer systems including control of the power transfer path and increase of the operation range and efficiency. Various applications of wireless power transfer are discussed and currently available standards are reviewed.

  10. System technology analysis of aeroassisted orbital transfer vehicles: Moderate lift/drag (0.75-1.5). Volume 2: Supporting research and technology report, phase 1 and 2

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Technology payoffs of representative ground based (Phase 1) and space based (Phase 2) mid lift/drag ratio (L/D) aeroassisted orbit transfer vehicles (AOTV) were assessed and prioritized. The methodology employed to generate technology payoffs, the major payoffs identified, the urgency of the technology effort required, and the technology plans suggested are summarized for both study phases. Technology issues concerning aerodynamics, aerothermodynamics, thermal protection, propulsion, and guidance, navigation and control are addressed.

  11. Technology and Knowledge Transfer in the Graz Region Ten Years of Experience

    ERIC Educational Resources Information Center

    Hofer, Franz; Adametz, Christoph; Holzer, Franz

    2004-01-01

    Technology and knowledge transfer from universities to small and medium-sized enterprises (SMEs) is seen as one way to strengthen a region's innovation capability. But what if SMEs do not want to play along? Looking back at some 10 years' experience of supporting SMEs, the authors describe in detail the 'Active Knowledge Transfer' programme, which…

  12. Exploration of new perspectives and limitations in Agrobacterium mediated gene transfer technology. Progress report, [June 1, 1992-- May 31, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marton, L.

    1994-12-31

    This report describes progress aimed at constructing gene-transfer technology for Nicotiana plumbaginifolia. Most actual effort as described herein has so far been directed at exploring new perspectives and limitations in Agrobacterium mediated gene transfer. Accomplishments are described using a core homologous gene targeting vector.

  13. Assessing the Suitability of Process and Information Technology in Supporting Tacit Knowledge Transfer

    ERIC Educational Resources Information Center

    Wu, Chien-Hsing; Kao, Shu-Chen; Shih, Lan-Hsin

    2010-01-01

    The transfer of tacit knowledge, one of the most important issues in the knowledge sharing context, needs a multi-dimensional perception in its process. Information technology's (IT) supporting role has already been addressed in the process of tacit knowledge transfer. However, IT has its own characteristics, and in turn, may have dissimilar…

  14. KSC-2013-3574

    NASA Image and Video Library

    2013-09-12

    CAPE CANAVERAL, Fla. – Mike Galluzzi, lead business strategist for the Swamp Works at NASA's Kennedy Space Center in Florida, discusses robotics and technology transfer with attendees at the Technology Transfer Forum of the Economic Development Commission of Florida's Space Coast. A goal of the session was to showcase ways commercial businesses can work with NASA to develop technology and apply existing technology to commercial uses. Photo credit: NASA/Glenn Benson

  15. Tools, courses, and learning pathways offered by the National Interagency Fuels, Fire, and Vegetation Technology Transfer

    Treesearch

    Eva K. Strand; Kathy H. Schon; Jeff Jones

    2010-01-01

    Technological advances in the area of fuel and wildland fire management have created a need for effective decision support tools and technology training. The National Interagency Fuels Committee and LANDFIRE have chartered a team to develop science-based learning tools for assessment of fire and fuels and to provide online training and technology transfer to help...

  16. Waste disposal technology transfer matching requirement clusters for waste disposal facilities in China.

    PubMed

    Dorn, Thomas; Nelles, Michael; Flamme, Sabine; Jinming, Cai

    2012-11-01

    Even though technology transfer has been part of development aid programmes for many decades, it has more often than not failed to come to fruition. One reason is the absence of simple guidelines or decision making tools that help operators or plant owners to decide on the most suitable technology to adopt. Practical suggestions for choosing the most suitable technology to combat a specific problem are hard to get and technology drawbacks are not sufficiently highlighted. Western counterparts in technology transfer or development projects often underestimate or don't sufficiently account for the high investment costs for the imported incineration plant; the differing nature of Chinese MSW; the need for trained manpower; and the need to treat flue gas, bunker leakage water, and ash, all of which contain highly toxic elements. This article sets out requirements for municipal solid waste disposal plant owner/operators in China as well as giving an attribute assessment for the prevalent waste disposal plant types in order to assist individual decision makers in their evaluation process for what plant type might be most suitable in a given situation. There is no 'best' plant for all needs and purposes, and requirement constellations rely on generalisations meaning they cannot be blindly applied, but an alignment of a type of plant to a type of owner or operator can realistically be achieved. To this end, a four-step approach is suggested and a technology matrix is set out to ease the choice of technology to transfer and avoid past errors. The four steps are (1) Identification of plant owner/operator requirement clusters; (2) Determination of different municipal solid waste (MSW) treatment plant attributes; (3) Development of a matrix matching requirement clusters to plant attributes; (4) Application of Quality Function Deployment Method to aid in technology localisation. The technology transfer matrices thus derived show significant performance differences between the various technologies available. It is hoped that the resulting research can build a bridge between technology transfer research and waste disposal research in order to enhance the exchange of more sustainable solutions in future. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Technology Maturation in Preparation for the Cryogenic Propellant Storage and Transfer (CPST) Technology Demonstration Mission (TDM)

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Doherty, Michael P.; Moder, Jeffrey P.

    2014-01-01

    In support of its goal to find an innovative path for human space exploration, NASA embarked on the Cryogenic Propellant Storage and Transfer (CPST) Project, a Technology Demonstration Mission (TDM) to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large in-space cryogenic propulsion stages and propellant depots. Recognizing that key Cryogenic Fluid Management (CFM) technologies anticipated for on-orbit (flight) demonstration would benefit from additional maturation to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate (STMD) authorized funding for a one-year technology maturation phase of the CPST project. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, concept studies, and ground tests of the storage and fluid transfer of CFM technology sub-elements and components that were lower than a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. The specific technologies selected were grouped into five major categories: thick multilayer insulation, tank applied active thermal control, cryogenic fluid transfer, propellant gauging, and analytical tool development. Based on the success of the technology maturation efforts, the CPST project was approved to proceed to flight system development.

  18. Mississippi Technology Transfer Center

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Mississippi Technology Transfer Center at the John C. Stennis Space Center in Hancock County, Miss., was officially dedicated in 1987. The center is home to several state agencies as well as the Center For Higher Learning.

  19. LTRC : 2015-2016 | annual report.

    DOT National Transportation Integrated Search

    2016-01-01

    Inside this report, which covers the years 2015-2016, you will find featured articles on the Lousiana Transportation Research Center's (LTRC) research program, technology transfer and training, : and technology transfer activities. In addition, you w...

  20. 48 CFR 970.5227-2 - Rights in data-technology transfer.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Research and Development Agreement (CRADA) information in accordance with Technology Transfer actions under... descriptive of the data and is suitable for dissemination purposes, (B) The program under which it was funded...

  1. 48 CFR 970.5227-2 - Rights in data-technology transfer.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Research and Development Agreement (CRADA) information in accordance with Technology Transfer actions under... descriptive of the data and is suitable for dissemination purposes, (B) The program under which it was funded...

  2. 48 CFR 970.5227-2 - Rights in data-technology transfer.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Research and Development Agreement (CRADA) information in accordance with Technology Transfer actions under... descriptive of the data and is suitable for dissemination purposes, (B) The program under which it was funded...

  3. 48 CFR 970.5227-2 - Rights in data-technology transfer.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Research and Development Agreement (CRADA) information in accordance with Technology Transfer actions under... descriptive of the data and is suitable for dissemination purposes, (B) The program under which it was funded...

  4. Distance technology transfer course content development.

    DOT National Transportation Integrated Search

    2013-06-01

    The Illinois Department of Transportation (IDOT) offers multiple technology transfer courses for engineering, : project design, and safety training for state and local agency personnel. These courses are often essential to the : agency mission. Becau...

  5. [Application of risk-based approach for determination of critical factors in technology transfer of production of medicinal products].

    PubMed

    Beregovykh, V V; Spitskiy, O R

    2014-01-01

    Risk-based approach is used for examination of impact of different factors on quality of medicinal products in technology transfer. A general diagram is offered for risk analysis execution in technology transfer from pharmaceutical development to production. When transferring technology to full- scale commercial production it is necessary to investigate and simulate production process application beforehand in new real conditions. The manufacturing process is the core factorfor risk analysis having the most impact on quality attributes of a medicinal product. Further importantfactors are linked to materials and products to be handled and manufacturing environmental conditions such as premises, equipment and personnel. Usage of risk-based approach in designing of multipurpose production facility of medicinal products is shown where quantitative risk analysis tool RAMM (Risk Analysis and Mitigation Matrix) was applied.

  6. Space benefits: The secondary application of aerospace technology in other sectors of the economy. [(information dissemination and technology transfer from NASA programs)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Space Benefits is a publication that has been prepared for the NASA Technology Utilization Office by the Denver Research Institute's Program for Transfer Research and Impact Studies, to provide the Agency with accurate, convenient, and integrated resource information on the transfer of aerospace technology to other sectors of the U.S. economy. The technological innovations derived from NASA space programs and their current applications in the following areas are considered: (1) manufacturing consumer products, (2) manufacturing capital goods, (3) new consumer products and retailing, (4) electric utilities, (5) environmental quality, (6) food production and processing, (7) government, (8) petroleum and gas, (9) construction, (10) law enforcement, and (11) highway transportation.

  7. Proceedings: USA-CERL Technology Transfer (T2) Workshop Held in Urbana, Illinois on December 15-16 1986.

    DTIC Science & Technology

    1988-03-01

    February 1986. Kotler , Philip , Bobby J. Calder, Brian Sternthal, and Alice Tybout. "A Marketing Approach to the Development and Dissemination of...intended to cause a particular acquirer, or class of acquirers, to initiate a transfer. In the business world, this operation is called marketing . The... marketing operation and the transfer operation make up the active mode of technology transfer. When operating in the *active mode, the providing

  8. Night vision and electro-optics technology transfer, 1972 - 1981

    NASA Astrophysics Data System (ADS)

    Fulton, R. W.; Mason, G. F.

    1981-09-01

    The purpose of this special report, 'Night Vision and Electro-Optics Technology Transfer 1972-1981,' is threefold: To illustrate, through actual case histories, the potential for exploiting a highly developed and available military technology for solving non-military problems. To provide, in a layman's language, the principles behind night vision and electro-optical devices in order that an awareness may be developed relative to the potential for adopting this technology for non-military applications. To obtain maximum dollar return from research and development investments by applying this technology to secondary applications. This includes, but is not limited to, applications by other Government agencies, state and local governments, colleges and universities, and medical organizations. It is desired that this summary of Technology Transfer activities within Night Vision and Electro-Optics Laboratory (NV/EOL) will benefit those who desire to explore one of the vast technological resources available within the Defense Department and the Federal Government.

  9. The name-locator guide: A new resource for technology transfer

    NASA Technical Reports Server (NTRS)

    Clingman, W. H.

    1974-01-01

    A new transfer mechanism to facilitate technology transfer between aerospace technology and nonaerospace industries, was proposed with the following sequence of steps. First, the key technical problems in a given industry would be analyzed. The analysis will define the characteristics which relevant technology will have. Second, a limited list of subject terms will be developed using words familiar to those working in the industry. It is these which will be applied in subsequent steps to the NASA technology and used to locate technology relevant to a specific problem in the industry. Third, for each Required Technology Program, terms applicable to that program would be chosen from this list. Fourth, a name-locator guide would be provided to the Regional Dissemination Centers. This guide would be analogous to an index. The key words would be chosen from the special subject term list for the given industry.

  10. Transfer of aerospace technology to selected public sector areas of concern

    NASA Technical Reports Server (NTRS)

    Berke, J. G.

    1972-01-01

    The activities of the NASA Technology Applications Team at Stanford Research Institute, California are discussed. The specific activities in the fields of criminalistics and transportation are reported. The overall objectives of the program are stated on the basis of successful technology transfer and providing appropriate visibility for program activities.

  11. 75 FR 41991 - Amendments to National Emission Standards for Hazardous Air Pollutants: Area Source Standards for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-20

    ... Technology Transfer and Advancement Act Section 12(d) of the National Technology Transfer and Advancement Act... confidential business information (CBI) or other information whose disclosure is restricted by statute. Do not... Concerning Regulations That Significantly Affect Energy Supply, Distribution, or Use I. National Technology...

  12. 76 FR 43180 - Finding of Failure To Submit Section 110 State Implementation Plans for Interstate Transport for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-20

    ... 12866. J. National Technology Transfer and Advancement Act Section 12(d) of the National Technology... Concerning Regulations That Significantly Affect Energy Supply, Distribution, or Use J. National Technology Transfer and Advancement Act K. Executive Order 12898: Federal Actions To Address Environmental Justice in...

  13. 78 FR 32640 - Proposed Subsequent Arrangement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-31

    ... Relating to the Transfer of Certain Nuclear Technologies in the Course of the Joint Fuel Cycle Study (the... Agreement is sensitive nuclear technology (SNT) within the meaning of Section 4(a)(5) of the Nuclear Non... Government of the Republic of Korea Relating to the Transfer of Certain Nuclear Technologies in the Course of...

  14. R&D Funding Sources and University Technology Transfer: What Is Stimulating Universities to Be More Entrepreneurial?

    ERIC Educational Resources Information Center

    Powers, Joshua B.

    2004-01-01

    In recent years, universities have become increasingly entrepreneurial as evidenced by their rapid escalation into technology transfer, the process by which university-developed technologies are commercialized. Stimulated in part by a favorable policy environment for patenting and licensing as well as increased competition for limited resources,…

  15. 76 FR 25362 - Cooperative Research and Development Agreement: Butanol Fuel Blend Usage With Marine Outboard...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ... participants would identify and investigate the advantages, disadvantages, required technology enhancements... Development Agreements (CRADAs), are authorized by the Federal Technology Transfer Act of 1986 (Pub. L. 99- 502, codified at 15 U.S.C. 3710(a)). A CRADA promotes the transfer of technology to the private sector...

  16. The Technology Transfer of the ICT Curriculum in Taiwan

    ERIC Educational Resources Information Center

    Huang, Teng

    2015-01-01

    Focusing on the process of "technology transfer", this paper aims to critically examine the production and usage of the information and communication technology (ICT) curriculum, and discusses its possibilities. It is found that the goals in both of the two stages of the ICT curriculum in Taiwan were rather "rhetorical". Three…

  17. 77 FR 42504 - Prospective Grant of Exclusive License: Development of a Diagnostic Tool for Diagnosing Benign...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-19

    ...: [email protected] . SUPPLEMENTARY INFORMATION: This technology is based on the discovery of... which are received by the NIH Office of Technology Transfer on or before August 20, 2012 will be... and Patenting Manager, Office of Technology Transfer, National Institutes of Health, 6011 Executive...

  18. Transfer of space technology to industry

    NASA Technical Reports Server (NTRS)

    Hamilton, J. T.

    1974-01-01

    Some of the most significant applications of the NASA aerospace technology transfer to industry and other government agencies are briefly outlined. The technology utilization program encompasses computer programs for structural problems, life support systems, fuel cell development, and rechargeable cardiac pacemakers as well as reliability and quality research for oil recovery operations and pollution control.

  19. 76 FR 80408 - Addendum to the Memorandum of Understanding with the Department of Energy (August 28, 1992); Oak...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... East Tennessee Technology Park in Oak Ridge, Tennessee; transfer of employee safety and health... occupational safety and health regulatory authority over employees at the East Tennessee Technology Park in Oak... facilities and properties at the East Tennessee Technology Park were transferred to TOSHA jurisdiction under...

  20. Transfer of radiation technology to developing countries

    NASA Astrophysics Data System (ADS)

    Markovic, Vitomir; Ridwan, Mohammad

    1993-10-01

    Transfer of technology is a complex process with many facets, options and constraints. While the concept is an important step in bringing industrialization process to agricultural based countries, it is clear, however, that a country will only benefit from a new technology if it addresses a real need, and if it can be absorbed and adapted to suit the existing cultural and technological base. International Atomic Energy Agency, as UN body, has a mandate to promote nuclear applicationsand assist Member States in transfer of technology for peaceful applications. This mandate has been pursued by many different mechanisms developed in the past years: technical assistance, coordinated research programmes, scientific and technical meetings, publications, etc. In all these activities the Agency is the organizer and initiator, but main contributions come from expert services from developed countries and, increasingly, from developing countries themselves. The technical cooperation among developing coutries more and more becomes part of different programmes. In particular, regional cooperation has been demonstrated as an effective instrument for transfer of technology from developed and among developing countries. Some examples of actual programmes are given.

  1. Technology transfer initiatives

    NASA Technical Reports Server (NTRS)

    Mccain, Wayne; Schroer, Bernard J.; Ziemke, M. Carl

    1994-01-01

    This report summarizes the University of Alabama in Huntsville (UAH) technology transfer activities with the Marshall Space Flight Center (MSFC) for the period of April 1993 through December 1993. Early in 1993, the MSFC/TUO and UAH conceived of the concept of developing stand-alone, integrated data packages on MSFC technology that would serve industrial needs previously determined to be critical. Furthermore, after reviewing over 500 problem statements received by MSFC, it became obvious that many of these requests could be satisfied by a standard type of response. As a result, UAH has developed two critical area response (CAR) packages: CFC (chlorofluorocarbon) replacements and modular manufacturing and simulation. Publicity included news releases, seminars, articles and conference papers. The Huntsville Chamber of Commerce established the Technology Transfer Subcommittee with the charge to identify approaches for the Chamber to assist its members, as well as non-members, access to the technologies at the federal laboratories in North Alabama. The Birmingham Chamber of Commerce has expressed interest in establishing a similar technology transfer program. This report concludes with a section containing a tabulation of the problem statements, including CAR packages, submitted to MSFC from January 1992 through December 1993.

  2. Combinations of chromosome transfer and genome editing for the development of cell/animal models of human disease and humanized animal models.

    PubMed

    Uno, Narumi; Abe, Satoshi; Oshimura, Mitsuo; Kazuki, Yasuhiro

    2018-02-01

    Chromosome transfer technology, including chromosome modification, enables the introduction of Mb-sized or multiple genes to desired cells or animals. This technology has allowed innovative developments to be made for models of human disease and humanized animals, including Down syndrome model mice and humanized transchromosomic (Tc) immunoglobulin mice. Genome editing techniques are developing rapidly, and permit modifications such as gene knockout and knockin to be performed in various cell lines and animals. This review summarizes chromosome transfer-related technologies and the combined technologies of chromosome transfer and genome editing mainly for the production of cell/animal models of human disease and humanized animal models. Specifically, these include: (1) chromosome modification with genome editing in Chinese hamster ovary cells and mouse A9 cells for efficient transfer to desired cell types; (2) single-nucleotide polymorphism modification in humanized Tc mice with genome editing; and (3) generation of a disease model of Down syndrome-associated hematopoiesis abnormalities by the transfer of human chromosome 21 to normal human embryonic stem cells and the induction of mutation(s) in the endogenous gene(s) with genome editing. These combinations of chromosome transfer and genome editing open up new avenues for drug development and therapy as well as for basic research.

  3. Specialized CCDs for high-frame-rate visible imaging and UV imaging applications

    NASA Astrophysics Data System (ADS)

    Levine, Peter A.; Taylor, Gordon C.; Shallcross, Frank V.; Tower, John R.; Lawler, William B.; Harrison, Lorna J.; Socker, Dennis G.; Marchywka, Mike

    1993-11-01

    This paper reports recent progress by the authors in two distinct charge coupled device (CCD) technology areas. The first technology area is high frame rate, multi-port, frame transfer imagers. A 16-port, 512 X 512, split frame transfer imager and a 32-port, 1024 X 1024, split frame transfer imager are described. The thinned, backside illuminated devices feature on-chip correlated double sampling, buried blooming drains, and a room temperature dark current of less than 50 pA/cm2, without surface accumulation. The second technology area is vacuum ultraviolet (UV) frame transfer imagers. A developmental 1024 X 640 frame transfer imager with 20% quantum efficiency at 140 nm is described. The device is fabricated in a p-channel CCD process, thinned for backside illumination, and utilizes special packaging to achieve stable UV response.

  4. Report of a Planning Conference for Solar Technology Information Transfer in Georgia (Atlanta, Georgia, July 24-25, 1978).

    ERIC Educational Resources Information Center

    Aldridge, Mark C., Ed.

    A summary of the deliberations of the Georgia planning conference of the Solar Technology Transfer Program is presented in this report. Topic areas include background information on the Georgia conference and a summary of the discussions and recommendations dealing with solar information transfer within state systems and the need for greater…

  5. Modification of the Genome of Domestic Animals.

    PubMed

    Lotti, Samantha N; Polkoff, Kathryn M; Rubessa, Marcello; Wheeler, Matthew B

    2017-07-03

    In the past few years, new technologies have arisen that enable higher efficiency of gene editing. With the increase ease of using gene editing technologies, it is important to consider the best method for transferring new genetic material to livestock animals. Microinjection is a technique that has proven to be effective in mice but is less efficient in large livestock animals. Over the years, a variety of methods have been used for cloning as well as gene transfer including; nuclear transfer, sperm mediated gene transfer (SMGT), and liposome-mediated DNA transfer. This review looks at the different success rate of these methods and how they have evolved to become more efficient. As well as gene editing technologies, including Zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the most recent clustered regulatory interspaced short palindromic repeats (CRISPRs). Through the advancements in gene-editing technologies, generating transgenic animals is now more accessible and affordable. The goals of producing transgenic animals are to 1) increase our understanding of biology and biomedical science; 2) increase our ability to produce more efficient animals; and 3) produce disease resistant animals. ZFNs, TALENs, and CRISPRs combined with gene transfer methods increase the possibility of achieving these goals.

  6. NASA Langley Research and Technology-Transfer Program in Formal Methods

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Caldwell, James L.; Carreno, Victor A.; Holloway, C. Michael; Miner, Paul S.; DiVito, Ben L.

    1995-01-01

    This paper presents an overview of NASA Langley research program in formal methods. The major goals of this work are to make formal methods practical for use on life critical systems, and to orchestrate the transfer of this technology to U.S. industry through use of carefully designed demonstration projects. Several direct technology transfer efforts have been initiated that apply formal methods to critical subsystems of real aerospace computer systems. The research team consists of five NASA civil servants and contractors from Odyssey Research Associates, SRI International, and VIGYAN Inc.

  7. Welding technology. [technology transfer of NASA developments to commercial organizations

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Welding processes which have been developed during NASA space program activities are discussed. The subjects considered are: (1) welding with an electron gun, (2) technology of welding special alloys, and (3) welding shop techniques and equipment. The material presented is part of the combined efforts of NASA and the Small Business Administration to provide technology transfer of space-related developments to the benefit of commercial organizations.

  8. A research proposal for investigating the effect of foreign direct investments on technology transfer in the Arabian Gulf (GCC)

    NASA Astrophysics Data System (ADS)

    Tahat, Kaher; Whelan, Susan

    2015-02-01

    In terms of hosting countries perspectives, Foreign Direct Investments (FDI) could have a positive effect on its developing economy, by transferring, both: resources of finance in addition to the international technology (ITT) (Choi, 1997). Multinational companies (MNC) are engaging in the transferring of the new technology, internally as well as licensing older one; they create "Spillover" (Knowledge) for facilitating the transfer of ITT in line with geographical location, period of investment, and the type of industry. Furthermore, the effect of these spillovers depends on the level of transferring this knowledge based on FDI attraction policies of the host country (Huang, 2009). Considering the Arabian Gulf council countries (GCC) as "FDI- rich hosting countries", who are not seeking for financial resources, i.e., they already have a huge financial capacity for funding their different projects, even though FDI has been powerfully presented in GCC . They saw noticeable increases in FDI inflows beginning in 2002, (www.unctad.org.fdistatistics). Therefore by assumption, FDI inflows to GCC could positively affect their economic growth through transferring the advanced technology, in order to build up their level of technology (productivity growth) as well as their economic diversification strategy. If so how this Knowledge could be diffused and measured in order to maximize its benefit and enhancing the productivity growth, and what is the current status of (GCC).

  9. Technology transfer in human vaccinology: a retrospective review on public sector contributions in a privatizing science field.

    PubMed

    Hendriks, Jan

    2012-09-28

    As health intervention, vaccination has had a tremendous impact on reducing mortality and morbidity caused by infectious diseases. Traditionally vaccines were developed and made in the western, industrialised world and from there on gradually and with considerable delay became available for developing countries. Today that is beginning to change. Most vaccine doses are now produced in emerging economies, although industrialised countries still have a lead in vaccine development and in manufacturing innovative vaccines. Technology transfer has been an important mechanism for this increase in production capacity in emerging economies. This review looks back on various technology transfer initiatives and outlines the role of WHO and other public and private partners. It goes into a more detailed description of the role of the National Institute of Public Health and the Environment (RIVM) in Bilthoven, the Netherlands. For many decades RIVM has been providing access to vaccine technology by capacity building and technology transfer initiatives not only through multilateral frameworks, but also on a bilateral basis including a major project in China in the 90 s of the previous century. Looking forward it is expected that, in a globalizing world, the ambition of BRICS countries to play a role in global health will lead to an increase of south-south technology transfers. Further, it is argued that push approaches including technology transfer from the public domain, connecting innovative enabling platforms with competent developing country vaccine manufacturers (DCVM), will be critical to ensure a sustainable supply of affordable and quality vaccines to national immunization programmes in developing countries. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Technology Transfer

    NASA Technical Reports Server (NTRS)

    Smith, Nanette R.

    1995-01-01

    The objective of this summer's work was to attempt to enhance Technology Application Group (TAG) ability to measure the outcomes of its efforts to transfer NASA technology. By reviewing existing literature, by explaining the economic principles involved in evaluating the economic impact of technology transfer, and by investigating the LaRC processes our William & Mary team has been able to lead this important discussion. In reviewing the existing literature, we identified many of the metrics that are currently being used in the area of technology transfer. Learning about the LaRC technology transfer processes and the metrics currently used to track the transfer process enabled us to compare other R&D facilities to LaRC. We discuss and diagram impacts of technology transfer in the short run and the long run. Significantly, it serves as the basis for analysis and provides guidance in thinking about what the measurement objectives ought to be. By focusing on the SBIR Program, valuable information regarding the strengths and weaknesses of this LaRC program are to be gained. A survey was developed to ask probing questions regarding SBIR contractors' experience with the program. Specifically we are interested in finding out whether the SBIR Program is accomplishing its mission, if the SBIR companies are providing the needed innovations specified by NASA and to what extent those innovations have led to commercial success. We also developed a survey to ask COTR's, who are NASA employees acting as technical advisors to the SBIR contractors, the same type of questions, evaluating the successes and problems with the SBIR Program as they see it. This survey was developed to be implemented interactively on computer. It is our hope that the statistical and econometric studies that can be done on the data collected from all of these sources will provide insight regarding the direction to take in developing systematic evaluations of programs like the SBIR Program so that they can reach their maximum effectiveness.

  11. Spinoff 1979

    NASA Technical Reports Server (NTRS)

    Haggerty, James J.

    1979-01-01

    Technology is knowledge, the technical "know-how" employed by a society to produce things that improve the quality of human life. Like other forms of knowledge, it is transferable; once developed, technology can be applied to uses different-and often remote-from the original application. Thus, the technology that NASA has developed in more than two decades of space and aeronautical research constitutes a valuable national resource, a bank of knowledge available for secondary utilization, or "spinoff." NASA mainline programs, by their challenging nature, are particularly demanding of technological advance; meeting their goals has forced extraordinary advancements in virtually every scientific and technological discipline. For that reason, the wealth of aerospace-generated knowledge available for transfer is exceptionally diverse, and much of it is readily applicable to secondary use over a broad spectrum of public needs and conveniences. Through its Congressionally mandated Technology Utilization Program, NASA seeks to promote wider use of this technological resource. The program provides a link between the technology bank and those in either the private or public sectors who might be able to re-use the technology productively. Its aim is to accelerate the transfer process, to bring to the marketplace sooner those spinoffs which might eventually occur in the normal course of events, and to gain thereby more immediate economic benefit in terms of new products and new jobs. The program has been remarkably successful. Since its inception 17 years ago, thousands of spinoff products and processes have emerged. Some of these innovations bring only moderate increments of economic gain or lifestyle improvement, but many others amount to significant public benefits, with economic values often running to millions of dollars. Collectively, spinoffs provide a substantial bonus return on the funds invested in aerospace research. This publication is intended to increase public awareness of the resource that is NASA's technology bank and its potential for further public benefit. It is devoted primarily to the NASA technology transfer process, but in the interests of perspective it also describes related areas of NASA endeavor. Section 1 consists of a resume of NASA's current mainline programs. These programs are producing direct public benefit through direct application of technology; at the same time, they are contributing to indirect benefit-spinoff-by generating new technology which may find secondary application in the future. Section 2 is the focal point of this volume. It contains a representative sampling of spinoff products and processes employed in various avenues of everyday life, and it describes briefly the NASA technology from which these transfers derived. Section 3 details the mechanisms of the technology transfer process, including the means by which NASA seeks to stimulate technology utilization. Also described are NASA's activities in a related area of technology transfer: provision of assistance to agencies interested in exploiting the benefit potential of satellite remote sensing technology.

  12. The application test system: An approach to technology transfer. [USDA aerospace and remote sensing information requirements

    NASA Technical Reports Server (NTRS)

    Aaronson, A. C.; Buelow, K.; David, F. C.; Packard, R. L.; Ravet, F. W. (Principal Investigator)

    1979-01-01

    The latest satellite and computer processing and analysis technologies were tested and evaluated in terms of their application feasibility. Technologies evaluated include those developed, tested, and evaluated by the LACIE, as well as candidate technologies developed by the research community and private industry. The implementation of the applications test system and the technology transfer experience between the LACIE and the applications test system is discussed highlighting the approach, the achievements, and the shortcomings.

  13. Sharing values, sharing a vision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-12-31

    Teamwork, partnership and shared values emerged as recurring themes at the Third Technology Transfer/Communications Conference. The program drew about 100 participants who sat through a packed two days to find ways for their laboratories and facilities to better help American business and the economy. Co-hosts were the Lawrence Livermore National Laboratory and the Lawrence Berkeley Laboratory, where most meetings took place. The conference followed traditions established at the First Technology Transfer/Communications Conference, conceived of and hosted by the Pacific Northwest Laboratory in May 1992 in Richmond, Washington, and the second conference, hosted by the National Renewable Energy Laboratory in Januarymore » 1993 in Golden, Colorado. As at the other conferences, participants at the third session represented the fields of technology transfer, public affairs and communications. They came from Department of Energy headquarters and DOE offices, laboratories and production facilities. Continued in this report are keynote address; panel discussion; workshops; and presentations in technology transfer.« less

  14. 78 FR 12961 - Findings of Failure To Submit a Complete State Implementation Plan for Section 110(a) Pertaining...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-26

    ... Significantly Affect Energy Supply, Distribution or Use I. National Technology Transfer and Advancement Act J... Advancement Act Section 12(d) of the National Technology Transfer and Advancement Act of 1995 (NTTAA), Public..., install and utilize technology and systems for the purposes of collecting, validating and verifying...

  15. NASA partnership with industry: Enhancing technology transfer

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Recognizing the need to accelerate and expand the application of NASA-derived technology for other civil uses in the United States, potential opportunities were assessed; the range of benefits to NASA, industry and the nations were explored; public policy implications were assessed; and this new range of opportunities were related to current technology transfer programs of NASA.

  16. Technology Transfer: A Think Tank Approach to Managing Innovation in the Public Sector.

    ERIC Educational Resources Information Center

    Creighton, J. W., Ed.; And Others

    This report reviews a joint attempt of the United States Forest Service and the Naval Service to enhance the utilization of research results and the new technologies through improved effectiveness of technology transfer efforts. It consists of an introduction by J. W. Creighton and seven papers: (1) "Management for Change" by P. A.…

  17. Technology Transfer Activities of NASA/MSFC: Enhancing the Southeast Region's Production Capabilities

    NASA Technical Reports Server (NTRS)

    Trivoli, George W.

    1998-01-01

    The researcher was charged with the task of developing a simplified model to illustrate the impact of how NASA/MSFC technology transfer activities contribute to shifting outward the Southeast region's and the nation's productive capacity. The report is a background of the impact of technological growth on the nation's production possibility frontier (ppf).

  18. Report of a Planning Conference for Solar Technology Information Transfer. Jackson, Mississippi, September 7-8, 1978.

    ERIC Educational Resources Information Center

    Graves, Sid F., Jr., Ed.

    This summary of the decisions and recommendations of the Planning Conference for Solar Technology Information Transfer includes a brief discussion of the outline of a functioning solar energy technology network in the State of Mississippi. During the conference, participants recognized current energy information needs and recommended ways to meet…

  19. 75 FR 53704 - Prospective Grant of Exclusive License: Use of Pentosan Polysulfate To Treat Certain Conditions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-01

    ... the treatment of interstitial fibrosis. The current technology builds on the surprising discovery that... comments and/or application for a license which are received by the NIH Office of Technology Transfer on or... Vepa, PhD, J.D., Licensing and Patenting Manager, Office of Technology Transfer, National Institutes of...

  20. From a social marketing perspective: a proposed customer relationship management technology transfer model

    Treesearch

    Delton Alderman; Kent Nakamoto; David Briberg

    2007-01-01

    Technology and knowledge transfer (TKT) is practiced for a plethora of causes, ranging from AIDS prevention to manufacturing competitiveness. The number of government, university, and association TKT efforts is exhausting and fraught with problems; we know anecdotally that the adoption of technology or knowledge is minimal across all contexts. There are a myriad of...

  1. Investigating Practices in Teacher Education That Promote and Inhibit Technology Integration Transfer in Early Career Teachers

    ERIC Educational Resources Information Center

    Brenner, Aimee M.; Brill, Jennifer M.

    2016-01-01

    The purpose of this study was to identify instructional technology integration strategies and practices in preservice teacher education that contribute to the transfer of technology integration knowledge and skills to the instructional practices of early career teachers. This study used a two-phase, sequential explanatory strategy. Data were…

  2. Technology transfer from biomedical research to clinical practice: measuring innovation performance.

    PubMed

    Balas, E Andrew; Elkin, Peter L

    2013-12-01

    Studies documented 17 years of transfer time from clinical trials to practice of care. Launched in 2002, the National Institutes of Health (NIH) translational research initiative needs to develop metrics for impact assessment. A recent White House report highlighted that research and development productivity is declining as a result of increased research spending while the new drugs output is flat. The goal of this study was to develop an expanded model of research-based innovation and performance thresholds of transfer from research to practice. Models for transfer of research to practice have been collected and reviewed. Subsequently, innovation pathways have been specified based on common characteristics. An integrated, intellectual property transfer model is described. The central but often disregarded role of research innovation disclosure is highlighted. Measures of research transfer and milestones of progress have been identified based on the Association of University Technology Managers 2012 performance reports. Numeric milestones of technology transfer are recommended at threshold (top 50%), target (top 25%), and stretch goal (top 10%) performance levels. Transfer measures and corresponding target levels include research spending to disclosure (<$1.88 million), disclosure to patents (>0.81), patents to start-up (>0.1), patents to licenses (>2.25), and average per license income (>$48,000). Several limitations of measurement are described. Academic institutions should take strategic steps to bring innovation to the center of scholarly discussions. Research on research, particularly on pathways to disclosures, is needed to improve R&D productivity. Researchers should be informed about the technology transfer performance of their institution and regulations should better support innovators.

  3. Space benefits: The secondary application of aerospace technology in other sectors of the economy

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A benefits briefing notebook is presented for the NASA Technology Utilization Office in which 515 applications of NASA aerospace technology to other sections of the economy are described. An overview of technology transfer is given. Benefit cases are cited in 19 categories along with pertinent information, such as communication link, DRI transfer example file, and individual case number. General, organization, geographic, and field center indexes are provided.

  4. Update: Science and security

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    Although ‘a substantial and serious technology transfer [to the Soviet Union] exists,’ open communication of federally funded research does not damage our national security, according to Dale R. Corson, president emeritus of Cornell University and chairman of the National Academy of Sciences' Panel on Scientific Communication and National Security. Corson characterized those technology transfers at a recent press conference on the panel's findings, which are summarized in their report, ‘Science Communications and National Security’ (Eos, October 5, p. 801).‘A net flow of products, processes, and ideas is continually moving from the United States and its allies to the Soviet Union, through both overt and covert means,’ Corson said. While some of this technology transfer has not compromised national security (‘in part because a technology in question had little or no military significance’), a ‘substantial portion of the transfer has been damaging to national security,’ Corson explained. The ‘damaging transfers’ occur through the ‘legal as well as illegal sale of products, through transfers via third countries, and through a highly organized espionage operation.’

  5. Report of the workshop on transferring X-ray Lithography Synchrotron (XLS) technology to industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcuse, W.

    1987-01-01

    This paper reports on plans to develop an x-ray synchrotron for use in lithography. The primary concern of the present paper is technology transfer from national laboratories to private industry. (JDH)

  6. Research Tools and Materials | NCI Technology Transfer Center | TTC

    Cancer.gov

    Research Tools can be found in TTC's Available Technologies and in scientific publications. They are freely available to non-profits and universities through a Material Transfer Agreement (or other appropriate mechanism), and available via licensing to companies.

  7. 14 CFR 1274.915 - Restrictions on sale or transfer of technology to foreign firms or institutions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... that access to technology developments under this Agreement by foreign firms or institutions must be... software or documentation related to sales of products or components, or (3) Transfers to foreign...

  8. How You Can Partner with NIH | NCI Technology Transfer Center | TTC

    Cancer.gov

    NCI Technology Transfer Center (TTC) provides an array of agreements to support the National Cancer Institute's partnering. Deciding which type of agreement to use can be a challenge: CRADA, MTA, collaboration, agreement, CTA, Materials-CRADA

  9. Federal Laboratory Consortium Recognizes Unituxin Collaborators with Excellence in Technology Transfer Awards | Poster

    Cancer.gov

    The Federal Laboratory Consortium (FLC) presented an Excellence in Technology Transfer award to the group that collaborated to bring Unituxin (dinutuximab, also known as ch14.18), an immunotherapy for neuroblastoma, to licensure.

  10. 23 CFR 420.201 - What is the purpose of this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....201 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PLANNING AND RESEARCH PLANNING AND RESEARCH PROGRAM ADMINISTRATION Research, Development and Technology Transfer Program... requirements for research, development, and technology transfer (RD&T) activities, programs, and studies...

  11. Technology and Economics, Inc. Technology Application Team

    NASA Technical Reports Server (NTRS)

    Ballard, T.; Macfadyen, D. J.

    1981-01-01

    Technology + Economics, Inc. (T+E), under contract to the NASA Headquarters Technology Transfer Division, operates a Technology Applications Team (TATeam) to assist in the transfer of NASA-developed aerospace technology. T+E's specific areas of interest are selected urban needs at the local, county, and state levels. T+E contacts users and user agencies at the local, state, and county levels to assist in identifying significant urban needs amenable to potential applications of aerospace technology. Once viable urban needs have been identified in this manner, or through independent research, T+E searches the NASA technology database for technology and/or expertise applicable to the problem. Activities currently under way concerning potential aerospace applications are discussed.

  12. Social Benefits of Space Spin-Offs: An Introduction

    NASA Technical Reports Server (NTRS)

    Cheeks, Nona

    2005-01-01

    This PowerPoint presentation defines technology transfer and discusses spin-out/off pros/cons involving whether to include a project within NASA or to contract outside NASA. The author discusses what would making the technology transfer happen by suggesting to evaluate NASA technologies/needs and find partners with ability to do business with NASA. The presentation concludes with recent Goddard successes.

  13. Report of a Planning Conference for Solar Technology Information Transfer in Kentucky (Frankfort, September 11-12, 1978).

    ERIC Educational Resources Information Center

    Capps, Randall, Ed.

    This summary of the deliberations of the Planning Conference for Solar Technology Information Transfer includes an outline of a functioning solar energy technology network for the State of Kentucky and a set of recommendations for future action. Four main types of information agents were identified: (1) the State Library System; (2) the State…

  14. Report of a Planning Conference for Solar Technology Information Transfer (Nashville, Tennessee, September 28-29, 1977).

    ERIC Educational Resources Information Center

    Gleaves, Edwin S., Ed.

    A summary of the deliberations of the Planning Conference for Solar Technology Information Transfer--to discuss and outline a functioning solar energy technology network in the State of Tennessee--and a set of recommendations for future action are presented in this report. Topic areas include: (1) the Tennessee Regional Library Service; (2) the…

  15. Exemplar Practices for Department of Defense Technology Transfer

    DTIC Science & Technology

    2013-01-01

    2):176–183. Ruegg, R. 2000. “Delivering Public Benefits with Private-Sector Efficiency.” In Advanced Technology Program : Assessing Outcomes, edited ...The literature identified the following critical factors for a successful technology transfer program : an effective ORTA, engaged researchers, well...experts, and stakeholders. These interviews were held between June and September 2012. Programs and processes identified during the discussions

  16. Cryogenic Propellant Storage and Transfer (CPST) Technology Maturation: Establishing a Foundation for a Technology Demonstration Mission (TDM)

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Meyer, Michael L.; Motil, Susan M.; Ginty, Carol A.

    2014-01-01

    As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including asteroids, Lagrange points, the Moon and Mars. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages (CPS) and propellant depots. The TDM CPST project will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration which is relevant to enable long term human space exploration missions beyond low Earth orbit (LEO). Recognizing that key cryogenic fluid management technologies anticipated for on-orbit (flight) demonstration needed to be matured to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate authorized funding for a one-year (FY12) ground based technology maturation program. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, studies, and ground tests of the storage and fluid transfer Cryogenic Fluid Management (CFM) technology sub-elements and components that were not already at a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. This paper will present the testing, studies, and modeling that occurred in FY12 to mature cryogenic fluid management technologies for propellant storage, transfer, and supply, to examine extensibility to full scale, long duration missions, and to develop and validate analytical models. Finally, the paper will briefly describe an upcoming test to demonstrate Liquid Oxygen (LO2) Zero Boil-Off (ZBO).

  17. Cryogenic Propellant Storage and Transfer (CPST) Technology Maturation: Establishing a Foundation for a Technology Demonstration Mission (TDM)

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Meyer, Michael L.; Motil, Susan M.; Ginty, Carol A.

    2013-01-01

    As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including asteroids, Lagrange points, the Moon and Mars. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages (CPS) and propellant depots. The TDM CPST project will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration which is relevant to enable long term human space exploration missions beyond low Earth orbit (LEO). Recognizing that key cryogenic fluid management technologies anticipated for on-orbit (flight) demonstration needed to be matured to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate authorized funding for a one-year (FY12) ground based technology maturation program. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, studies, and ground tests of the storage and fluid transfer Cryogenic Fluid Management (CFM) technology sub-elements and components that were not already at a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. This paper will present the testing, studies, and modeling that occurred in FY12 to mature cryogenic fluid management technologies for propellant storage, transfer, and supply, to examine extensibility to full scale, long duration missions, and to develop and validate analytical models. Finally, the paper will briefly describe an upcoming test to demonstrate Liquid Oxygen (LO2) Zero Boil- Off (ZBO).

  18. Technology Transfer: A Contact Sport

    NASA Technical Reports Server (NTRS)

    Paynter, Nina P.

    1995-01-01

    Technology transfer is a dynamic process, involving dynamic people as the bridge between NASA Langley Research Center and the outside world. This bridge, for nonaerospace applications, is known as the Technology Applications Group. The introduction of new innovations and expertise where they are needed occurs through a 'push' and 'pull' process. A 'push' occurs when a new technology is first developed with high commercial potential and then a company is found to licence or further develop the technology. The 'pull' process occurs through problem statements. A company or group will submit a written statement of what they need and the shortcomings of commercially available technology. The Technology Transfer Team (T3) reviews these problem statements and decides where NASA LaRC can offer assistance. A researcher or group of researchers are then identified who can help solve the problem and they are put in contact with the company. Depending upon the situation in either method, a Space Act Agreement (SAA), or outline of the responsibilities for each party, is developed.

  19. 78 FR 48537 - Small Business Innovation Research and Small Business Technology Transfer Programs...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... SMALL BUSINESS ADMINISTRATION [Docket Number: 2013-0008] Small Business Innovation Research and Small Business Technology Transfer Programs Commercialization Benchmark AGENCY: Small Business Administration. ACTION: Notice. SUMMARY: The Small Business Administration (SBA) is publishing the Small Business...

  20. 78 FR 59410 - Small Business Innovation Research and Small Business Technology Transfer Programs...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-26

    ... SMALL BUSINESS ADMINISTRATION [Docket Number: 2013-0008] Small Business Innovation Research and Small Business Technology Transfer Programs Commercialization Benchmark AGENCY: Small Business... Business Administration (SBA) is reopening the comment period for the Small Business Innovation Research...

  1. Report of the 4th Workshop for Technology Transfer for Intelligent Compaction Consortium.

    DOT National Transportation Integrated Search

    2016-03-01

    On October 2728, 2015, the Kentucky Transportation Cabinet (KYTC) hosted the 4th workshop for : the Technology Transfer for Intelligent Compaction Consortium (TTICC), a Transportation Pooled Fund : (TPF5(233)) initiative designed to identify, s...

  2. Transferring technology to the public sector.

    NASA Technical Reports Server (NTRS)

    Alper, M. E.

    1972-01-01

    Approximately four years ago the Jet Propulsion Laboratory, under NASA sponsorship, began to devote some of its resources to examining ways to transfer space technology to the civil sector. As experience accumulated under this program, certain principles basic to success in technology transfer became apparent. An adequate definition of each problem must be developed before any substantial effort is expended on a solution. In most instances, a source of funds other than the potential user is required to support the problem definition phase of the work. Sensitivity to the user's concerns and effective interpersonal communications between the user and technical personnel are essential to success.

  3. Flexible inorganic light emitting diodes based on semiconductor nanowires

    PubMed Central

    Guan, Nan; Dai, Xing; Babichev, Andrey V.; Julien, François H.

    2017-01-01

    The fabrication technologies and the performance of flexible nanowire light emitting diodes (LEDs) are reviewed. We first introduce the existing approaches for flexible LED fabrication, which are dominated by organic technologies, and we briefly discuss the increasing research effort on flexible inorganic LEDs achieved by micro-structuring and transfer of conventional thin films. Then, flexible nanowire-based LEDs are presented and two main fabrication technologies are discussed: direct growth on a flexible substrate and nanowire membrane formation and transfer. The performance of blue, green, white and bi-color flexible LEDs fabricated following the transfer approach is discussed in more detail. PMID:29568439

  4. Proceedings of the Annual Academic Apparel Research Conference on Advanced Apparel Manufacturing Technology Demonstration (1st) Held in Philadelphia, Pennsylvania on 14-16 February 1990. Volume 2

    DTIC Science & Technology

    1990-02-16

    Philadelphia, PA by Dr. Leo E. Hanifin, Director Center for Manufacturing Productivity and Technology Transfer and Co-Principal Investigator Background In...Is coordinated by Dr. Leo E. Hanifin and Involves an additional four graduate students, two programmers, one engineer and one technician. In addition...the transfer bit5 - Whether the transfer is a load or unload * 4 bit4 - Which side of the AGV to perform the transfer bit3 through bitO - The number of

  5. The Air Force Manufacturing Technology (MANTECH): Technology transfer methodology as exemplified by the radar transmit/receive module program

    NASA Technical Reports Server (NTRS)

    Houpt, Tracy; Ridgely, Margaret

    1991-01-01

    The Air Force Manufacturing Technology program is involved with the improvement of radar transmit/receive modules for use in active phased array radars for advanced fighter aircraft. Improvements in all areas of manufacture and test of these modules resulting in order of magnitude improvements in the cost of and the rate of production are addressed, as well as the ongoing transfer of this technology to the Navy.

  6. Sub-Committee on Advanced Technology and Technology Transfer

    DTIC Science & Technology

    1984-11-01

    TECHNOLOGY AND TECHNOLOGY TRANSFER Mr. Lohar IBRLJGGER (Fed. Rep. of Germany ) Rapporteur In aauwdmnce uWWIA t&ic 3G4 fanzgph 3, ’of Ath Rules O’Prw... Germany , SPO) Members : Mr. Joao Ferraz de Abreu (Portugal, PS) Mr. Robert Aumont (France, PS) Mr. Ton van Deemelen (Netherlands, VVD) Mr. Jos van...Rep,. of, Germany , CU Mr. Jorgen Sonstebo (Norway, Christian People’s Party) International Secretariat I’...’ Mr. David Hobbs, Director, Scientific

  7. An overview of remote sensing technology transfer in Canada and the United States

    NASA Technical Reports Server (NTRS)

    Strome, W. M.; Lauer, D. T.

    1977-01-01

    To realize the maximum potential benefits of remote sensing, the technology must be applied by personnel responsible for the management of natural resources and the environment. In Canada and the United States, these managers are often in local offices and are not those responsible for the development of systems to acquire, preprocess, and disseminate remotely sensed data, nor those leading the research and development of techniques for analysis of the data. However, the latter organizations have recognized that the technology they develop must be transferred to the management agencies if the technology is to be useful to society. Problems of motivation and communication associated with the technology transfer process, and some of the methods employed by Federal, State, Provincial, and local agencies, academic institutions, and private organizations to overcome these problems are explored.

  8. Sandia technology & entrepreneurs improve Lasik

    ScienceCinema

    Neal, Dan; Turner, Tim

    2018-05-11

    Former Sandian Dan Neal started his company, WaveFront Sciences, based on wavefront sensing metrology technologies licensed from Sandia National Laboratories and by taking advantage of its Entrepreneurial Separation to Transfer Technology (ESTT) program. Abbott Medical Optics since acquired WaveFront and estimates that one million patients have improved the quality of their vision thanks to its products. ESTT is a valuable tool which allows Sandia to transfer technology to the private sector and Sandia employees to leave the Labs in order to start up new technology companies or help expand existing companies.

  9. In-Space Assembly and Construction Technology Project Summary: Infrastructure Operations Area of the Operations Technology Program

    NASA Technical Reports Server (NTRS)

    Bush, Harold

    1991-01-01

    Viewgraphs describing the in-space assembly and construction technology project of the infrastructure operations area of the operation technology program are presented. Th objective of the project is to develop and demonstrate an in-space assembly and construction capability for large and/or massive spacecraft. The in-space assembly and construction technology program will support the need to build, in orbit, the full range of spacecraft required for the missions to and from planet Earth, including: earth-orbiting platforms, lunar transfer vehicles, and Mars transfer vehicles.

  10. Sandia technology & entrepreneurs improve Lasik

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neal, Dan; Turner, Tim

    2013-11-21

    Former Sandian Dan Neal started his company, WaveFront Sciences, based on wavefront sensing metrology technologies licensed from Sandia National Laboratories and by taking advantage of its Entrepreneurial Separation to Transfer Technology (ESTT) program. Abbott Medical Optics since acquired WaveFront and estimates that one million patients have improved the quality of their vision thanks to its products. ESTT is a valuable tool which allows Sandia to transfer technology to the private sector and Sandia employees to leave the Labs in order to start up new technology companies or help expand existing companies.

  11. Optimization of CMOS image sensor utilizing variable temporal multisampling partial transfer technique to achieve full-frame high dynamic range with superior low light and stop motion capability

    NASA Astrophysics Data System (ADS)

    Kabir, Salman; Smith, Craig; Armstrong, Frank; Barnard, Gerrit; Schneider, Alex; Guidash, Michael; Vogelsang, Thomas; Endsley, Jay

    2018-03-01

    Differential binary pixel technology is a threshold-based timing, readout, and image reconstruction method that utilizes the subframe partial charge transfer technique in a standard four-transistor (4T) pixel CMOS image sensor to achieve a high dynamic range video with stop motion. This technology improves low light signal-to-noise ratio (SNR) by up to 21 dB. The method is verified in silicon using a Taiwan Semiconductor Manufacturing Company's 65 nm 1.1 μm pixel technology 1 megapixel test chip array and is compared with a traditional 4 × oversampling technique using full charge transfer to show low light SNR superiority of the presented technology.

  12. US/China Energy and Environmental Technology Center (EETC) international business development and technology transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, S.T.; Atwood, T.; Qiu Daxiong

    1997-12-31

    Since January 1997, the US/China Energy and Environmental Technology Center (EETC) in Beijing has been jointly operated by Tulane University and Tsinghua University. EETC is established to encourage the adoption of technologies for energy production with improved environmental performance which are essential for supporting economic growth and managing the Global Warming and Climate Change issues. International cooperation is critical to insure the environmental and energy security on a global basis. For example, the US has acquired a great deal of useful experience in clean coal technology which has been demonstrated with major utilities in commercial operations. The adaption of, andmore » the installation of, clean coal technology should be given high priority. Worldwide, the continuous exchange of information and technology between developed and developing nations relating to the current and future clean coal technologies is of great importance. Developed nations which possess environmental responsive technologies and financial resources should work closely with developing nations to facilitate technology transfer and trade of technologies. International cooperation will lower the cost of deploying clean coal technologies directed toward the clean production of energy. This paper presents the updated activities of EETC on facilitating technology transfer and promoting the clean use of coal to satisfy growing energy demand in China.« less

  13. DEVELOPMENT OF TECHNOLOGY TRANSFER PRODUCTS FOR THE EPA EMPACT PROGRAM

    EPA Science Inventory

    A presentation was given for a National Satellite Broadcast on the development of technology transfer handbooks for the EMPACT program. These handbooks help spread the knowledge and experience developed from the EMPACT projects. Handbooks are being prepared for every fully implem...

  14. Remote sensing education in NASA's technology transfer program

    NASA Technical Reports Server (NTRS)

    Weinstein, R. H.

    1981-01-01

    Remote sensing is a principal focus of NASA's technology transfer program activity with major attention to remote sensing education the Regional Program and the University Applications Program. Relevant activities over the past five years are reviewed and perspective on future directions is presented.

  15. A New Strategic Approach to Technology Transfer

    USDA-ARS?s Scientific Manuscript database

    The principal goal of Federal research and development (R&D) is to solve problems for public benefit. Technology transfer, innovation, entrepreneurship: words and concepts that once belonged exclusively in the domain of private research enterprises, have quickly become part of everyday lexicon in Fe...

  16. 77 FR 71089 - Pilot Loading of Aeronautical Database Updates

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-29

    ... the use of newer systems and data-transfer mechanisms such as those employing wireless technology. In... which enables wireless updating of systems and databases. The current regulation does not accommodate... maintenance); Recordkeeping requirements; Training for pilots; Technological advancements in data-transfer...

  17. Technology Transfer in Integrated Forest Pest Management in the South

    Treesearch

    Gerard D. Hertel; Susan J. Branham; Kenneth M. Swain; [Editors

    1985-01-01

    A synopsis of the technology transfer activities of the Forest Service's Integrated Pest Management Research, Development and Applications Program for Bark Beetles of Southern Pines, and the Southern Region, 1980-85, with emphasis on State demonstration projects and user involvement.

  18. University-Industry Technology Transfer in Hong Kong

    ERIC Educational Resources Information Center

    Poon, Patrick S.; Chan, Kan S.

    2007-01-01

    In the modern knowledge economy, higher educational institutions are being required to deal with commercialising the results of their research, spinning out knowledge-based enterprises and facilitating technology transfer between their research centres and industrial firms. The universities are undergoing changes in institutional and…

  19. Spinoff 1996

    NASA Technical Reports Server (NTRS)

    Haggerty, James J.

    1996-01-01

    By their challenging nature, NASA programs are particularly demanding of technological input. Meeting the aeronautical and space goals of the past four decades has necessitated leading edge advancements across a diverse spectrum that embraces virtually every scientific and technological discipline. Technology is simply knowledge and, like other forms of knowledge, it is often broadly applied and transferable. For that reason, the vast storehouse of technology NASA has built is a national resource, a bank of knowledge available for commercial applications and enhancements to the quality of life-"spinoff"-to new products and processes of benefit to the national economy, industrial efficiency and human welfare. Multiple use of technology has never been more important. Budgetary stringency is reducing the amount of government funding available for new research and development, but at the same time intensifying international competition demands increasing technological innovation to strengthen the U.S. posture in the global marketplace. Reuse of technology offers a relatively inexpensive supplementary means of partnering with industry focused on bringing new products and processes to the market. More than a thousand of spinoff products and processes have emerged from reapplication of technology developed for NASA mission programs. Each has Contributed some measure of benefit to the national economy, productivity or lifestyle; some bring only moderate increments of gain, but many generate benefits of significant order with economic values in the millions of dollars. Other technologies with moderate economic return have added measurably to the quality of life of U.S. citizens. Collectively, they represent a substantial dividend on the national investment in aerospace research. By Congressional mandate, it is NASA's responsibility to promote expansion of spinoff in the public interest. Through its Technology Transfer Program, NASA seeks to encourage greater use of its technological resources by providing a link between the technology and those who might be able to put it to advantageous use. The program's aim is to broaden and accelerate the transfer accomplishments and thereby to gain national benefit in terms of new products, services, and new jobs. This publication is an instrument of-and documents the outcome of-that purpose. It is intended to heighten awareness of the technology available for transfer and its potential for public benefit. Spinoff 1996 is organized in three sections: Section 1, summarizes NASA's current mainline programs, whose objectives require development of new technology and therefore replenish and expand the bank of knowledge available for reapplication. Section 2, the focal point of this volume, contains a representative sampling of spinoff products and processes that resulted from secondary application of NASA technology. Section 3, describes the various mechanisms NASA employs to stimulate technology transfer and lists, in an appendix, contact sources for Further information about the Technology Transfer Program.

  20. Technology transfer from NASA to targeted industries, volume 2

    NASA Technical Reports Server (NTRS)

    Mccain, Wayne; Schroer, Bernard J.; Souder, William E.; Spann, Mary S.; Watters, Harry; Ziemke, M. Carl

    1993-01-01

    This volume contains the following materials to support Volume 1: (1) Survey of Metal Fabrication Industry in Alabama; (2) Survey of Electronics Manufacturing/Assembly Industry in Alabama; (3) Apparel Modular Manufacturing Simulators; (4) Synopsis of a Stereolithography Project; (5) Transferring Modular Manufacturing Technology to an Apparel Firm; (6) Letters of Support; (7) Fact Sheets; (8) Publications; and (9) One Stop Access to NASA Technology Brochure.

  1. Ussr Report, International Affairs.

    DTIC Science & Technology

    1986-05-08

    correspond- ing ’ technologies , but also promotes cooperation in that promising field. With its participation, the West German firms Man and Kanis produce...WEST RELATIONS Discussion of Technology Transfer, East-West Economic Ties (A. Bykov; INTERNATIONAL AFFAIRS, No 1, Jan 86) 2 THIRD WORLD ISSUES...COPYRIGHT: Izdatelstvo "Pravda", "Zhurnalist", 1986. CSO: 1807/240 EAST-WEST RELATIONS DISCUSSION OF TECHNOLOGY TRANSFER, EAST-WEST ECONOMIC TIES Moscow

  2. Technology Transfer: Use of Federally Funded Research and Development

    DTIC Science & Technology

    2007-07-19

    technology to the private sector and to state and local governments. Despite this, use of federal R&D results has remained restrained, although there has...been a significant increase in private sector interest and activities over the past several years. Critics argue that working with the agencies and...technology transfer, or if the responsibility to use the available resources now rests with the private sector .

  3. Software Technology Transfer and Export Control.

    DTIC Science & Technology

    1981-01-01

    development projects of their own. By analogy, a Soviet team might be able to repeat the learning experience of the ADEPT-50 junior staff...recommendations concerning product form and further study . The posture of this group has been to consider software technology and its transfer as a process...and views of the Software Subgroup of Technical Working Group 7 (Computers) of the Critical Technologies Project . The work reported

  4. GIS tools, courses, and learning pathways offered by The National Interagency Fuels, Fire, and Vegetation Technology Transfer (NIFTT)

    Treesearch

    Heather Heward; Kathy H. Schon

    2009-01-01

    As technology continues to evolve in the area of fuel and wildland fire management so does the need to have effective tools and training on these technologies. The National Interagency Fuels Coordination Group has chartered a team of professionals to coordinate, develop, and transfer consistent, efficient, science-based fuel and fire ecology assessment GIS tools and...

  5. Technology in action

    NASA Technical Reports Server (NTRS)

    1992-01-01

    In keeping with the NASA Administrator's announcement that technology transfer will become a fundamental mission of NASA, the Marshall Space Flight Center (MSFC) has initiated new programs to reach the heartland of U.S. industry. The Center has continued to expand its already well-established outreach program aimed at helping American business, industry, and academia at the grassroots level. The goal is to ensure that America regains and maintains its proper place of leadership among the world's technologically developed nations. MSFC's national goal is to enhance America's competitiveness in the world marketplace, fortify the value of the dollar, and ensure technological breakthroughs by American laboratories benefit taxpayers and industries. The Technology Utilization (TU) Office at MSFC believes a number of measures are possible to slow, then halt, and ultimately reverse the erosion of American technological leadership. MSFC's TU Office is reaching out to American industry on an increasingly broadening scope, facilitating the transfer of NASA derived technologies to American businesses, industries, educational institutions, and individuals. There are many valid approaches to achieving this goal. Some, such as the National Technology Initiative, begin at the top and work down through America's top corporate structure. Others, such as the technology transfer program that MSFC has implemented, begin at the one-on-one, grassroots level -- working with small and medium-sized firms that form the bulk of American industry. What can be done by one NASA center is, admittedly, limited. But by extrapolating this one-on-one approach to the more than 700 Federal laboratories, a great deal can be accomplished. This report contains an examination of outreach and in reach programs, problem statements programs, applications projects, new technology reporting, new technology administration, and the need for increased resources to further facilitate technology transfer.

  6. Design and user evaluation of a wheelchair mounted robotic assisted transfer device.

    PubMed

    Grindle, Garrett G; Wang, Hongwu; Jeannis, Hervens; Teodorski, Emily; Cooper, Rory A

    2015-01-01

    The aim of this study is to describe the robotic assisted transfer device (RATD) and an initial focus group evaluation by end users. The purpose of the device is to aid in the transfers of people with disabilities to and from their electric powered wheelchair (EPW) onto other surfaces. The device can be used for both stand-pivot transfers and fully dependent transfers, where the person being transferred is in a sling and weight is fully on the robot. The RATD is fixed to an EPW to allow for its use in community settings. A functional prototype of the RATD was designed and fabricated. The prototype was presented to a group of 16 end users and feedback on the device was obtained via a survey and group discussion. Thirteen out of sixteen (83%) participants agreed that it was important to develop this type of technology. They also indicated that user, caregiver, and robotic controls were important features to be included in the device. Participants in this study suggested that they would be accepting the use of robotic technology for transfers and a majority did not feel that they would be embarrassed to use this technology.

  7. NASA biomedical applications team. Applications of aerospace technology in biology and medicine

    NASA Technical Reports Server (NTRS)

    Rouse, D. J.; Beadles, R.; Beall, H. C.; Brown, J. N., Jr.; Clingman, W. H.; Courtney, M. W.; Mccartney, M.; Scearce, R. W.; Wilson, B.

    1979-01-01

    The use of a bipolar donor-recipient model of medical technology transfer is presented. That methodology is designed to: (1) identify medical problems and aerospace technology that in combination constitute opportunities for successful medical products; (2) obtain the early participation of industry in the transfer process; and (3) obtain acceptance by the medical community of new medical products based on aerospace technology. Problem descriptions and activity reports and the results of a market study on the tissue freezing device are presented.

  8. NASA's contributions to patient monitoring, appendix

    NASA Technical Reports Server (NTRS)

    Murray, D. M.; Siemens, W. D.

    1971-01-01

    Health care problems, and markets for patient monitoring equipment are discussed along with contributions to all phases of patient monitoring, and technology transfer to nonaerospace problems. Health care medical requirements, and NASA achievements in patient monitoring are described, and a summary of the technology transfer is included.

  9. New Website Helps You Find What You Need | Poster

    Cancer.gov

    By Karen Surabian, Contributing Writer The National Cancer Institute’s Technology Transfer Center (NCI’s TTC) recently launched a redesign of its website. New graphics, color scheme, and updated features provide a user-friendly environment for finding information related to technology transfer at NCI.

  10. Pedestrian and bicycle facilities in California : a technical reference and technology transfer synthesis for Caltrans planners and engineers.

    DOT National Transportation Integrated Search

    2005-07-01

    The primary purpose of Pedestrian and Bicycle Facilities in CaliforniaA : Technical Reference and Technology Transfer Synthesis for Caltrans Planners : and Engineers (Technical Reference) is to provide Caltrans staff : with a synthesis of in...

  11. Technology transfer between the government and the aerospace industry

    NASA Technical Reports Server (NTRS)

    Sackheim, Robert; Dunbar, Dennis

    1992-01-01

    The object of this working group panel was to review questions and issues pertaining to technology transfer between the government and the aerospace industry for use on both government and commercial space customer applications. The results of this review are presented in vugraph form.

  12. Activities of Western Research Application Center

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Operations of the regional dissemination center for NASA technology collection and information transfer are reported. Activities include customized searches for engineering and scientific applications in industry and technology transfers to businesses engaged in manufacturing high energy physics devices, subsurface instruments, batteries, medical instrumentation, and hydraulic equipment.

  13. 15 CFR 296.6 - Valuation of transfers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 1 2012-01-01 2012-01-01 false Valuation of transfers. 296.6 Section 296.6 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS TECHNOLOGY INNOVATION...

  14. 15 CFR 296.6 - Valuation of transfers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 1 2013-01-01 2013-01-01 false Valuation of transfers. 296.6 Section 296.6 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS TECHNOLOGY INNOVATION...

  15. 15 CFR 296.6 - Valuation of transfers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Valuation of transfers. 296.6 Section 296.6 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS TECHNOLOGY INNOVATION...

  16. 15 CFR 296.6 - Valuation of transfers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 1 2014-01-01 2014-01-01 false Valuation of transfers. 296.6 Section 296.6 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS TECHNOLOGY INNOVATION...

  17. 15 CFR 296.6 - Valuation of transfers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 1 2011-01-01 2011-01-01 false Valuation of transfers. 296.6 Section 296.6 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS TECHNOLOGY INNOVATION...

  18. SPINOFF 2000

    NASA Technical Reports Server (NTRS)

    2000-01-01

    For the past 42 years, NASA has made special efforts to ensure the widest possible dissemination of its research and technology developments. We share the wealth of technology developed for our missions with the nation's industries to contribute to US economic strength and quality of life. For the past 27 years, this publication has provided you with over 1,200 examples of products and services developed as a direct result of commercial partnerships between NASA and the business community. Examples have covered products from fire retardant materials and air pollution monitors to non-invasive cardiac monitors and sensors for environmental control. In the Technology Transfer and Outreach section of Spinoff 2000, we highlight the activities of our Ames Research Center's Commercial Technology Office (CTO). Their efforts to facilitate and support technology commercialization are representative of the CTO at each field center. Increased activities to accelerate the dissemination of technologies, speed up the process of patent licensing, quicken the release of software for beta testing, support and manage incubators, and hasten the collaboration with commercial and academic organizations will continue to maximize the earliest potential commercial utilization of NASA's new inventions and technologies. Spinoff 2000 is organized into three sections: (1) Aerospace and Development highlights major research and development efforts currently carried out at the 10 NASA field centers; (2) Commercial Benefits-Spinoffs describes commercially available products and services resulting from the transfer of NASA technology; and (3) Technology Transfer and Outreach features this year's center spotlight, NASA's Ames Research Center, and its commercialization efforts, as well as the mechanisms in place nationwide to assist US industry in obtaining, transferring, and applying NASA technology, expertise, and assistance.

  19. Advanced Propulsion for Geostationary Orbit Insertion and North-South Station Keeping

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Myers, Roger M.; Kluever, Craig A.; Riehl, John P.; Curran, Francis M.

    1995-01-01

    Solar electric propulsion (SEP) technology is currently being used for geostationary satellite station keeping to increase payload mass. Analyses show that advanced electric propulsion technologies can be used to obtain additional increases in payload mass by using these same technologies to perform part of the orbit transfer. In this work three electric propulsion technologies are examined at two power levels for an Atlas 2AS class spacecraft. The on-board chemical propulsion apogee engine fuel is reduced to allow the use of electric propulsion. A numerical optimizer is used to determine the chemical burns which will minimize the electric propulsion transfer time. Results show that for a 1550 kg Atlas 2AS class payload, increases in net mass (geostationary satellite mass less wet propulsion system mass) of 150 to 800 kg are possible using electric propulsion for station keeping, advanced chemical engines for part of the transfer, and electric propulsion for the remainder of the transfer. Trip times are between one and four months.

  20. IPAD: A unique approach to government/industry cooperation for technology development and transfer

    NASA Technical Reports Server (NTRS)

    Fulton, Robert E.; Salley, George C.

    1985-01-01

    A key element to improved industry productivity is effective management of Computer Aided Design / Computer Aided Manufacturing (CAD/CAM) information. To stimulate advancement, a unique joint government/industry project designated Integrated Programs for Aerospace-Vehicle Design (IPAD) was carried out from 1971 to 1984. The goal was to raise aerospace industry productivity through advancement of computer based technology to integrate and manage information involved in the design and manufacturing process. IPAD research was guided by an Industry Technical Advisory Board (ITAB) composed of over 100 representatives from aerospace and computer companies. The project complemented traditional NASA/DOD research to develop aerospace design technology and the Air Force's Integrated Computer Aided Manufacturing (ICAM) program to advance CAM technology. IPAD had unprecedented industry support and involvement and served as a unique approach to government industry cooperation in the development and transfer of advanced technology. The IPAD project background, approach, accomplishments, industry involvement, technology transfer mechanisms and lessons learned are summarized.

  1. Advanced Air Transportation Technologies Project, Final Document Collection

    NASA Technical Reports Server (NTRS)

    Mogford, Richard H.; Wold, Sheryl (Editor)

    2008-01-01

    This CD ROM contains a compilation of the final documents of the Advanced Air Transportation Technologies (AAIT) project, which was an eight-year (1996 to 2004), $400M project managed by the Airspace Systems Program office, which was part of the Aeronautics Research Mission Directorate at NASA Headquarters. AAIT focused on developing advanced automation tools and air traffic management concepts that would help improve the efficiency of the National Airspace System, while maintaining or enhancing safety. The documents contained in the CD are final reports on AAIT tasks that serve to document the project's accomplishments over its eight-year term. Documents include information on: Advanced Air Transportation Technologies, Autonomous Operations Planner, Collaborative Arrival Planner, Distributed Air/Ground Traffic Management Concept Elements 5, 6, & 11, Direct-To, Direct-To Technology Transfer, Expedite Departure Path, En Route Data Exchange, Final Approach Spacing Tool - (Active and Passive), Multi-Center Traffic Management Advisor, Multi Center Traffic Management Advisor Technology Transfer, Surface Movement Advisor, Surface Management System, Surface Management System Technology Transfer and Traffic Flow Management Research & Development.

  2. NASA's CSTI Earth-to-Orbit Propulsion Program - On-target technology transfer to advanced space flight programs

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.; Herr, Paul N.; Stephenson, Frank W., Jr.

    1990-01-01

    NASA's Civil Space Technology Initiative encompasses among its major elements the Earth-to-Orbit Propulsion Program (ETOPP) for future launch vehicles, which is budgeted to the extent of $20-30 million/year for the development of essential technologies. ETOPP technologies include, in addition to advanced materials and processes and design/analysis computational tools, the advanced systems-synthesis technologies required for definition of highly reliable LH2 and hydrocarbon fueled rocket engines to be operated at significantly reduced levels of risk and cost relative to the SSME. Attention is given to the technology-transfer services of ETOPP.

  3. Terrestrial applications from space technology

    NASA Technical Reports Server (NTRS)

    Clarks, H.

    1985-01-01

    NASA's Technology Utilization Program, which is concerned with transferring aerospace technologies to the public and private sectors, is described. The strategy for transferring the NASA technologies to engineering projects includes: (1) identification of the problem, (2) selection of an appropriate aerospace technology, (3) development of a partnership with the company, (4) implementation of the project, and (5) commercialization of the product. Three examples revealing the application of aerospace technologies to projects in biomedical engineering, materials, and automation and robotics are presented; the development of a programmable, implantable medication system and a programmable, mask-based optical correlator, and the improvement of heat and erosion resistance in continuous casting are examined.

  4. ECMT31 New Mexico Manufacturing Environmental Survey. Final Report.

    ERIC Educational Resources Information Center

    Sandia National Labs., Albuquerque, NM.

    The Environmentally Conscious Manufacturing Technology Transfer and Training Initiative (ECMT3I) is a cooperative effort among education and research institutions in New Mexico to analyze problems in transferring environmental technologies from Department of Energy laboratories to small and medium enterprises (SME's). To identify and analyze…

  5. Venture Creation Programs: Bridging Entrepreneurship Education and Technology Transfer

    ERIC Educational Resources Information Center

    Lackéus, Martin; Williams Middleton, Karen

    2015-01-01

    Purpose: The purpose of this paper is to explore how university-based entrepreneurship programs, incorporating real-life venture creation into educational design and delivery, can bridge the gap between entrepreneurship education and technology transfer within the university environment. Design/methodology/approach: Based on a literature review…

  6. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 57; US Scientific and Technical Information Policy

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1996-01-01

    In fiscal year 1994, the United States government spent about $68 billion for science and technology. Although there is general agreement among policy makers that the results of this expenditure can be used to enhance technological innovation and improve economic competitiveness, there is no coherent scientific and technical information (STI) policy. The absence of a cohesive policy and STI policy framework means that the transfer and utilization of STI goes uncoordinated. This chapter examines the U.S. government's role in funding science and technology, reviews Federal STI activities and involvement in the transfer and use of STI resulting from federally-funded science and technology, presents issues surrounding the use of federally-funded STI, and offers recommendations for improving the transfer and use of STI.

  7. Insurance mandates, embryo transfer, outcomes--the link is tenuous.

    PubMed

    Banks, Nicole K; Norian, John M; Bundorf, M Kate; Henne, Melinda B

    2010-12-01

    To examine the relationship between state insurance mandate status and the number of embryos transferred in assisted reproductive technology cycles, we conducted a retrospective analysis of clinics reporting to the publicly available national Society for Assisted Reproductive Technology registry. We found that clinics in states with comprehensive mandates transferred between 0.210 and 0.288 fewer embryos per cycle depending upon patient age, and were more likely to transfer fewer embryos than recommended for older women; however, the relationship between state mandate status and clinic birth and multiple birth rates varied by age group. Published by Elsevier Inc.

  8. Technology 2001: The Second National Technology Transfer Conference and Exposition, volume 2

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Proceedings of the workshop are presented. The mission of the conference was to transfer advanced technologies developed by the Federal government, its contractors, and other high-tech organizations to U.S. industries for their use in developing new or improved products and processes. Volume two presents papers on the following topics: materials science, robotics, test and measurement, advanced manufacturing, artificial intelligence, biotechnology, electronics, and software engineering.

  9. Transatlantic Defence Industrial Relationships: An Audit and Commentary

    DTIC Science & Technology

    2001-12-01

    were German concerns about the leakage of technology to General Dynamics. In April 2001, it was reported that German firm Krauss-Maffei Wegmann had...reported (subject to approval) that German firm Krauss-Maffei Wegmann had signed a technology transfer agreement freeing the sale of Santa Barbara...was reported that German firm Krauss-Maffei W egrnann had signed a technology transfer agreement freeing the sale of Santa Barbara to General

  10. Support and Technology Transfer: Results and Accomplishments

    DTIC Science & Technology

    2009-07-01

    Advanced Food Technology School of Enviromental and Biological Sciences New Brunswick, NJ 08903 FTR 213 Defense Logistics Agency 8725 John J. Kingsman Rd...Environmental and Biological Science Rutgers, The State University of New Jersey New Brunswick, New Jersey 08903 Principal Investigator: Henderikus B...Technology Transfer SP0103-02-D-0024 / 0002 STP # 2001 A003 Mr. Henderikus B. Bruins Rutgers, The State University of New Jersey The Center for

  11. Space spin-offs: is technology transfer worth it?

    NASA Astrophysics Data System (ADS)

    Bush, Lance B.

    Dual-uses, spin-offs, and technology transfer have all become part of the space lexicon, creating a cultural attitude toward space activity justification. From the very beginning of space activities in the late 1950's, this idea of secondary benefits became a major part of the space culture and its beliefs system. Technology transfer has played a central role in public and political debates of funding for space activities. Over the years, several studies of the benefits of space activities have been performed, with some estimates reaching as high as a 60:1 return to the economy for each dollar spent in space activities. Though many of these models claiming high returns have been roundly criticized. More recent studies of technology transfer from federal laboratories to private sector are showing a return on investment of 2.8:1, with little evidence of jobs increases. Yet, a purely quantitative analysis is not sufficient as there exist cultural and social benefits attainable only through case studies. Space projects tend to have a long life cycle, making it difficult to track metrics on their secondary benefits. Recent studies have begun to make inroads towards a better understanding of the benefits and drawbacks of investing in technology transfer activities related to space, but there remains significant analyses to be performed which must include a combination of quantitative and qualitative analyses.

  12. Space benefits: The secondary application of aerospace technology in other sectors of the economy

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Over 580 examples of the beneficial use of NASA aerospace technology by public and private organizations are described to demonstrate the effects of mission-oriented programs on technological progress in the United States. General observations regarding technology transfer activity are presented. Benefit cases are listed in 20 categories along with pertinent information such as communication link with NASA; the DRI transfer example file number and individual case numbers associated with the technology and examples used; and the date of the latest contract with user organizations. Subject, organization, geographic, and field center indexes are included.

  13. Space Benefits: The secondary application of aerospace technology in other sectors of the economy

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Some 585 examples of the beneficial use of NASA aerospace technology by public and private organizations are described to demonstrate the effects of mission-oriented programs on technological progress in the United States. General observations regarding technology transfer activity are presented. Benefit cases are listed in 20 categories along with pertinent information such as communication link with NASA; the DRI transfer example file number; and individual case numbers associated with the technology and examples used; and the date of the latest contract with user organizations. Subject, organization, geographic, and field center indexes are included.

  14. Textile composite fuselage structures development

    NASA Technical Reports Server (NTRS)

    Jackson, Anthony C.; Barrie, Ronald E.; Chu, Robert L.

    1993-01-01

    Phase 2 of the NASA ACT Contract (NAS1-18888), Advanced Composite Structural Concepts and Materials Technology for Transport Aircraft Structures, focuses on textile technology, with resin transfer molding or powder coated tows. The use of textiles has the potential for improving damage tolerance, reducing cost and saving weight. This program investigates resin transfer molding (RTM), as a maturing technology for high fiber volume primary structures and powder coated tows as an emerging technology with a high potential for significant cost savings and superior structural properties. Powder coated tow technology has promise for significantly improving the processibility of high temperature resins such as polyimides.

  15. Space technology transfer to developing countries: opportunities and difficulties

    NASA Astrophysics Data System (ADS)

    Leloglu, U. M.; Kocaoglan, E.

    Space technology, with its implications on science, economy and security, is mostly chosen as one of the priority areas for technological development by developing countries. Most nations aspiring to begin playing in the space league prefer technology transfer programs as a first step. Decreasing initial costs by small satellite technology made this affordable for many countries. However, there is a long way from this first step to establishment of a reliable space industry that can both survive in the long term with limited financial support from the government and meet national needs. This is especially difficult when major defense companies of industrialized countries are merging to sustain their competitiveness. The prerequisites for the success are implementation of a well-planned space program and existence of industrialization that can support basic testing and manufacturing activities and supply qualified manpower. In this study, the difficulties to be negotiated and the vicious circles to be broken for latecomers, that is, developing countries that invest on space technologies are discussed. Especially, difficulties in the technology transfer process itself, brain drain from developing countries to industrialized countries, strong competition from big space companies for domestic needs, costs of establishing and maintaining an infrastructure necessary for manufacturing and testing activities, and finally, the impact of export control will be emphasized. We will also try to address how and to what extent collaboration can solve or minimize these problems. In discussing the ideas mentioned above, lessons learned from the BILSAT Project, a technology transfer program from the UK, will be referred.

  16. Technology Transfer Annual Report Fiscal Year 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skinner, Wendy Lee

    Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to federal agencies, state and local governments, universities, and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partnersmore » for commercialization, job creation, and delivering the benefits of federally funded technology to consumers. In some cases, unique capabilities are made available to other federal agencies, international organizations, domestic and foreign commercial entities, or small businesses to solve specific technical challenges. INL employees work cooperatively with researchers and technical staff from the university and industrial sectors to further development of emerging technologies. In this multinational global economy, INL is contributing to the development of the next generation of engineers and scientists by licensing software to educational institutions throughout the world. This report is a catalog of select INL technology transfer and commercialization transactions and research agreements that were executed during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties. This report was compiled from primary records, which were readily available to the INL’s Technology Deployment and Contracts Management Offices. Accomplishments cataloged in the report reflect the achievements and creativity of the researchers, technicians, support staff, and operators of the INL workforce.« less

  17. Review and assessment of the database and numerical modeling for turbine heat transfer

    NASA Technical Reports Server (NTRS)

    Gladden, H. J.; Simoneau, R. J.

    1989-01-01

    The objectives of the NASA Hot Section Technology (HOST) Turbine Heat Transfer subproject were to obtain a better understanding of the physics of the aerothermodynamic phenomena and to assess and improve the analytical methods used to predict the flow and heat transfer in high-temperature gas turbines. At the time the HOST project was initiated, an across-the-board improvement in turbine design technology was needed. A building-block approach was utilized and the research ranged from the study of fundamental phenomena and modeling to experiments in simulated real engine environments. Experimental research accounted for approximately 75 percent of the funding while the analytical efforts were approximately 25 percent. A healthy government/industry/university partnership, with industry providing almost half of the research, was created to advance the turbine heat transfer design technology base.

  18. A Wafer Transfer Technology for MEMS Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok; Wiberg, Dean V.

    2001-01-01

    Adaptive optics systems require the combination of several advanced technologies such as precision optics, wavefront sensors, deformable mirrors, and lasers with high-speed control systems. The deformable mirror with a continuous membrane is a key component of these systems. This paper describes a new technique for transferring an entire wafer-level silicon membrane from one substrate to another. This technology is developed for the fabrication of a compact deformable mirror with a continuous facet. A 1 (mu)m thick silicon membrane, 100 mm in diameter, has been successfully transferred without using adhesives or polymers (i.e. wax, epoxy, or photoresist). Smaller or larger diameter membranes can also be transferred using this technique. The fabricated actuator membrane with an electrode gap of 1.5 (mu)m shows a vertical deflection of 0.37 (mu)m at 55 V.

  19. Thin-Film Thermocouple Technology Demonstrated for Reliable Heat Transfer Measurements

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Exploratory work is in progress to apply thin-film thermocouples to localized heat transfer measurements on turbine engine vanes and blades. The emerging thin-film thermocouple technology shows great potential to improve the accuracy of local heat transfer measurements. To verify and master the experimental methodology of thin-film thermocouples, the NASA Lewis Research Center conducted a proof-of-concept experiment in a controlled environment before applying the thin-film sensors to turbine tests.

  20. Teacher Linguistic, Cultural, and Technological Awareness Development and Transfer

    ERIC Educational Resources Information Center

    Wang, Congcong

    2012-01-01

    This dissertation includes two studies: a pilot study on native-English-speaking preservice teachers' perceptions of learning a foreign language online and a follow-up study on inservice teachers' perceptions of transferring teacher linguistic, cultural and technological awareness into teaching practice. Conducted in 2010, the pilot…

  1. 78 FR 76753 - Standards of Performance for Petroleum Refineries for Which Construction, Reconstruction, or...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-19

    ..., or Use I. National Technology Transfer and Advancement Act J. Executive Order 12898: Federal Actions... and Advancement Act Section 12(d) of the National Technology Transfer and Advancement Act of 1995... information claimed to be confidential business information (CBI) or other information whose disclosure is...

  2. 14 CFR § 1274.933 - Summary of recipient reporting responsibilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Summary of recipient reporting responsibilities. § 1274.933 Section § 1274.933 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE... Transfer of Technology Prior to transferring technology to foreign firm or institution 1274.915...

  3. Research Universities, Technology Transfer, and Job Creation: What Infrastructure, For What Training?

    ERIC Educational Resources Information Center

    Brodhag, Christian

    2013-01-01

    Technology transfer and innovation are considered major drivers of sustainable development; they place knowledge and its dissemination in society at the heart of the development process. This article considers the role of research universities, and how they can interact with key actors and institutions involved in "innovation…

  4. Information Systems and Networks for Technology Transfer. Final Report.

    ERIC Educational Resources Information Center

    Page, John; Szentivanyi, Tibor

    Results of a survey of the information resources available in industrialized countries which might be used in a United Nations technology transfer program for developing countries are presented. Information systems and networks, organized information collections of a scientific and technical character, and the machinery used to disseminate this…

  5. PROCEEDINGS: SEVENTH SYMPOSIUM ON THE TRANSFER AND UTILIZATION OF PARTICULATE CONTROL TECHNOLOGY. VOLUME 1

    EPA Science Inventory

    The proceedings document presentations from the seventh symposium on the transfer and utilization of particulate control technology, March 22-25, 1988, in Nashville, TN. Objectives of the symposium were to encourage the exchange of new knowledge in the particulate control field b...

  6. Of Science and Virtue: University Research and Technology Transfer.

    ERIC Educational Resources Information Center

    Chafin, Scott

    1988-01-01

    Suggestions of how a university should go about the task of technology transfer are presented. Two important lessons to relate include: the imperative of a decision-making infrastructure and maintaining perspective. Experiences at the University of Houston when a professor made some discoveries in high-temperature semiconductivity are described.…

  7. NIH Employee Invention Report (EIR) | NCI Technology Transfer Center | TTC

    Cancer.gov

    NIH researchers must immediately contact their Laboratory or Branch Chief and inform him or her of a possible invention, and then consult with your NCI TTC Technology Transfer Manager about submitting an Employee Invention Report (EIR) Form. | [google6f4cd5334ac394ab.html

  8. Cancer Immunotherapy Using Virus-like Particles | NCI Technology Transfer Center | TTC

    Cancer.gov

    A considerable effort has been devoted to identifying and targeting specific extracellular cancer markers using antibody based therapies. However, diminished access to new cancer cell surface markers has limited the development of corresponding antibodies. NCI Technology Transfer Center is seeking to license cancer immunotherapy using virus-like particles.

  9. 76 FR 46678 - Tris carbamoyl triazine; Proposed Modification of Significant New Uses

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-03

    .... During the initial review of the PMN, EPA's preliminary Ecological Structural Activity Relationship (Eco... Executive Order 12866. I. National Technology Transfer and Advancement Act In addition, since this action does not involve any technical standards, section 12(d) of the National Technology Transfer and...

  10. DEVELOPMENT OF EMERGING TECHNOLOGIES WITHIN THE SITE PROGRAM

    EPA Science Inventory

    The Site Program is formed by five research programs: the Demonstration Program, the Emerging Technology Program, the Measurement and Monitoring Technology Development Program, the Innovative Technology Program, and the Technology Transfer Program. The Emerging Technology (ET) P...

  11. Bringing space technology down to earth

    NASA Technical Reports Server (NTRS)

    Gray, E. Z.

    1974-01-01

    The direct transfer of space technology to terrestial applications is demonstrated by the use of fuel cells to augment existing electric power-generation facilities. The role of NASA's Technology Utilization Program is discussed in regard to indirect transfer of technology. The Tech Brief program for identifying and reporting innovations, the regional dissemination centers, and the Applications Teams working with other government agencies and the medical community are described. Projects discussed include the development of a lightweight breathing apparatus for firemen, a practical method for separating nonferrous metals from automobile scrap, and a rechargeable heart pacemaker.

  12. Using New Technologies: A Technology Transfer Guidebook. Version 02.00. 08

    DTIC Science & Technology

    1993-12-01

    Barton (1990) and Pressman (1992), depend on the concept that improving your overall technology transfer process decreases the amount of time it takes to...Evolutionary Spiral Process Any enactment of the evolutionary spiral model (ESP) which is an adaptation of the basic spiral model pro- posed by Barry Boehm...Innovations in Organizations, 1989 CMU/SEI-89-TR-17, (also NTIS ADA211573). Pittsburgh, Pennsylvania: Software Engineering Institute. Boehm, Barry A

  13. Technologies for Refueling Spacecraft On-Orbit

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2000-01-01

    This paper discusses the current technologies for on-orbit refueling of spacecraft. The findings of 55 references are reviewed and summarized. Highlights include: (1) the Russian Progress system used by the International Space Station; (2) a flight demonstration of superfluid helium transfer; and (3) ground tests of large cryogenic systems. Key technologies discussed include vapor free liquid outflow, control of fluid inflow to prevent liquid venting, and quick disconnects for on-orbit mating of transfer lines.

  14. A Review of Microbubble and its Applications in Ozonation

    NASA Astrophysics Data System (ADS)

    Shangguan, Yufei; Yu, Shuili; Gong, Chao; Wang, Yue; Yang, Wangzhen; Hou, Li-an

    2018-03-01

    Ozonation has been demonstrated to be an effective technology for the oxidation of organic matters in water treatment. But the low solubility and low mass transfer efficiency limit the application. Microbubble technology has the potential of enhancing gas-liquid mass transfer efficiency, thus it can be applied in ozonation process. The applications of microbubble ozonation have shown advantages over macro bubble ozonation in mass transfer and reaction rate. Microbubble ozonation will be a promising treatment both in water and wastewater treatment.

  15. The uncounted benefits: Federal efforts in domestic technology transfer

    NASA Technical Reports Server (NTRS)

    Chapman, R. L.; Hirst, K.

    1986-01-01

    Organized technology transfer activities conducted by the agencies of the U.S. government are described. The focus is upon agency or departmental level activity rather than the laboratory level. None of the programs on which information was collected has been assessed or evaluated individually. However, the aggregate programs of the government have been judged in terms of obvious gaps and opportunities for future improvement. An overview, descriptions of the various agency or department programs of technology transfer, a list of persons interviewed or consulted during the survey, and a bibliography of publications, reports and other material made available to the study staff are given. An extensive appendix of illustrative material collected from the various programs is also given.

  16. WHO influenza vaccine technology transfer initiative: role and activities of the Technical Advisory Group.

    PubMed

    Francis, Donald P; Grohmann, Gary

    2011-07-01

    In May 2006, the WHO published a Global Pandemic Influenza Action Plan. A significant part of that plan involves the transfer of technology necessary to build production capacity in developing countries. The WHO influenza technology transfer initiative has been successful. Clearly the relatively small WHO investments made in these companies to develop their own influenza vaccine production facilities have had quite dramatic results. A few companies are already producing large amounts of influenza vaccine. Others will soon follow. Whether they are developing egg-based or planning non-egg based influenza vaccine production, all companies are optimistic that their efforts will come to fruition. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Strategic factors in the development of the National Technology Transfer Network

    NASA Technical Reports Server (NTRS)

    Root, Jonathan F.; Stone, Barbara A.

    1993-01-01

    Broad consensus among industry and government leaders has developed over the last decade on the importance of applying the U.S. leadership in research and development (R&D) to strengthen competitiveness in the global marketplace, and thus enhance national prosperity. This consensus has emerged against the backdrop of increasing economic competition, and the dramatic reduction of military threats to national security with the end of the Cold War. This paper reviews the key factors and considerations that shaped - and continue to influence - the development of the Regional Technoloty Transfer Centers (RTTC) and the National Technology Transfer Center (NTTC). Also, the future role of the national network in support of emerging technology policy initiatives will be explored.

  18. A silicon-on-insulator complementary-metal-oxide-semiconductor compatible flexible electronics technology

    NASA Astrophysics Data System (ADS)

    Tu, Hongen; Xu, Yong

    2012-07-01

    This paper reports a simple flexible electronics technology that is compatible with silicon-on-insulator (SOI) complementary-metal-oxide-semiconductor (CMOS) processes. Compared with existing technologies such as direct fabrication on flexible substrates and transfer printing, the main advantage of this technology is its post-SOI-CMOS compatibility. Consequently, high-performance and high-density CMOS circuits can be first fabricated on SOI wafers using commercial foundry and then be integrated into flexible substrates. The yield is also improved by eliminating the transfer printing step. Furthermore, this technology allows the integration of various sensors and microfluidic devices. To prove the concept of this technology, flexible MOSFETs have been demonstrated.

  19. Applications of aerospace technology in industry, a technology transfer profile: Fire safety

    NASA Technical Reports Server (NTRS)

    Kottenstette, J. P.; Freeman, J. E.; Heins, C. R.; Hildred, W. M.; Johnson, F. D.; Staskin, E. R.

    1971-01-01

    The fire safety field is considered as being composed of three parts: an industry, a technology base, and a user base. An overview of the field is presented, including a perspective on the magnitude of the national fire safety problem. Selected NASA contributions to the technology of fire safety are considered. Communication mechanisms, particularly conferences and publications, used by NASA to alert the community to new developments in the fire safety field, are reviewed. Several examples of nonaerospace applications of NASA-generated fire safety technology are also presented. Issues associated with attempts to transfer this technology from the space program to other sectors of the American economy are outlined.

  20. Thermal Transfer Compared To The Fourteen Other Imaging Technologies

    NASA Astrophysics Data System (ADS)

    O'Leary, John W.

    1989-07-01

    A quiet revolution in the world of imaging has been underway for the past few years. The older technologies of dot matrix, daisy wheel, thermal paper and pen plotters have been increasingly displaced by laser, ink jet and thermal transfer. The net result of this revolution is improved technologies that afford superior imaging, quiet operation, plain paper usage, instant operation, and solid state components. Thermal transfer is one of the processes that incorporates these benefits. Among the imaging application for thermal transfer are: 1. Bar code labeling and scanning. 2. New systems for airline ticketing, boarding passes, reservations, etc. 3. Color computer graphics and imaging. 4. Copying machines that copy in color. 5. Fast growing communications media such as facsimile. 6. Low cost word processors and computer printers. 7. New devices that print pictures from video cameras or television sets. 8. Cameras utilizing computer chips in place of film.

  1. Users speak out on technology deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, Mark; Prochaska, Marty; Cromer, Paul

    2001-02-25

    This report summarizes user feedback data collected during a recent Accelerated Site Technology Deployment (ASTD) project: the Fluor Fernald ASTD Technology Deployment Project from May, 1999 through September, 2000. The main goal of the ASTD project was to use the ''Fernald approach'' to expedite the deployment of new or innovative technologies with superior safety, cost, and/or productivity benefits to Department of Energy (DOE) facilities. The Fernald approach targets technology end-users and their managers and directly involves them with hands-on demonstrations of new or innovative technologies during technology transfer sessions. The two technologies deployed through this project were the Personal Icemore » Cooling System (PICS) and the oxy-gasoline torch. Participants of technology transfer sessions were requested to complete feedback surveys. Surveys evaluated the effectiveness of the Fernald approach to technology deployment and assessed the responsiveness of employees to new technologies. This report presents the results of those surveys.« less

  2. The Widening Gulf between Genomics Data Generation and Consumption: A Practical Guide to Big Data Transfer Technology.

    PubMed

    Feltus, Frank A; Breen, Joseph R; Deng, Juan; Izard, Ryan S; Konger, Christopher A; Ligon, Walter B; Preuss, Don; Wang, Kuang-Ching

    2015-01-01

    In the last decade, high-throughput DNA sequencing has become a disruptive technology and pushed the life sciences into a distributed ecosystem of sequence data producers and consumers. Given the power of genomics and declining sequencing costs, biology is an emerging "Big Data" discipline that will soon enter the exabyte data range when all subdisciplines are combined. These datasets must be transferred across commercial and research networks in creative ways since sending data without thought can have serious consequences on data processing time frames. Thus, it is imperative that biologists, bioinformaticians, and information technology engineers recalibrate data processing paradigms to fit this emerging reality. This review attempts to provide a snapshot of Big Data transfer across networks, which is often overlooked by many biologists. Specifically, we discuss four key areas: 1) data transfer networks, protocols, and applications; 2) data transfer security including encryption, access, firewalls, and the Science DMZ; 3) data flow control with software-defined networking; and 4) data storage, staging, archiving and access. A primary intention of this article is to orient the biologist in key aspects of the data transfer process in order to frame their genomics-oriented needs to enterprise IT professionals.

  3. 77 FR 35870 - Approval of Air Quality Implementation Plans; Wisconsin; Partial Disapproval of “Infrastructure...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ... alignment of the State and Federal definition for ``major modification'' occurs as expeditiously as possible... disapproves a state rule implementing a Federal Standard. National Technology Transfer Advancement Act In..., the requirements of section 12(d) of the National Technology Transfer and Advancement Act of 1995 (15...

  4. Examining Factors Affecting Beginning Teachers' Transfer of Learning of ICT-Enhanced Learning Activities in Their Teaching Practice

    ERIC Educational Resources Information Center

    Agyei, Douglas D.; Voogt, Joke

    2014-01-01

    This study examined 100 beginning teachers' transfer of learning when utilising Information Communication Technology-enhanced activity-based learning activities. The beginning teachers had participated in a professional development program that was characterised by "learning technology by collaborative design" in their final year of…

  5. Strategic Evaluation of University Knowledge and Technology Transfer Effectiveness

    ERIC Educational Resources Information Center

    Tran, Thien Anh

    2013-01-01

    Academic knowledge and technology transfer has been growing in importance both in academic research and practice. A critical question in managing this activity is how to evaluate its effectiveness. The literature shows an increasing number of studies done to address this question; however, it also reveals important gaps that need more research.…

  6. Building Technology Transfer Capacity in Turkish Universities: A Critical Analysis

    ERIC Educational Resources Information Center

    Ranga, Marina; Temel, Serdal; Ar, Ilker Murat; Yesilay, Rustem Baris; Sukan, Fazilet Vardar

    2016-01-01

    University technology transfer has been receiving significant government funding since 2012. Results of this major investment are now expected by the Turkish government and society, not only in terms of better teaching and research performance, but also of new jobs, new products and services, enhanced regional development and contribution to…

  7. 76 FR 11404 - Oregon: Tentative Approval of State Underground Storage Tank Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ... Order 12866. 9. National Technology Transfer and Advancement Act Section 12(d) of the National Technology Transfer and Advancement Act of 1995 (``NTTAA''), Public Law 104-113, section 12(d) (15 U.S.C. 272... Confidential Business Information (CBI) or other information whose disclosure is restricted by statute. Do not...

  8. 77 FR 8209 - Quality Assurance Requirements for Continuous Opacity Monitoring Systems at Stationary Sources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ... Transfer and Advancement Act Section 12(d) of the National Technology Transfer and Advancement Act of 1995... Division, Measurement Technology Group (Mail Code: E143-02), Research Triangle Park, NC 27711; telephone... significant economic impact on a substantial number of small entities. Small entities include small businesses...

  9. 77 FR 59758 - Idaho: Incorporation by Reference of Approved State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-01

    ... defined under Executive Order 12866. 9. National Technology Transfer and Advancement Act Section 12(d) of the National Technology Transfer and Advancement Act of 1995 (``NTTAA''), Public Law 104-113, section..., unless the EPA receives adverse comment on this regulation by the close of business October 31, 2012. If...

  10. 78 FR 18849 - Disapproval of Implementation Plan Revisions; State of California; South Coast VMT Emissions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... significant regulatory action under Executive Order 12866. I. National Technology Transfer and Advancement Act Section 12 of the National Technology Transfer and Advancement Act (NTTAA) of 1995 requires Federal... business hours with the contact listed in the FOR FURTHER INFORMATION CONTACT section below. FOR FURTHER...

  11. Strategic Leadership Issues for the Community College Involving Technology Transfer in a Global Economy.

    ERIC Educational Resources Information Center

    Stewart, James C.; And Others

    1990-01-01

    Summarizes recent developments in Virginia designed to improve the productivity of the state's small and medium businesses by increased use of the state's postsecondary education institutions. Suggests that a strategy of comprehensive leadership by educators and politicians is basic to successful technology transfer programs in the context of a…

  12. 75 FR 52932 - Notice of Intent To Grant an Exclusive License; Doar, Pekuin, Sall Limited Liability Company

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    ... Government- Owned invention as described in U.S. Patent No. 6,404,407 entitled ``Ridge laser with oxidized... National Security Agency Technology Transfer Program, 9800 Savage Road, Suite 6541, Fort George G. Meade, MD 20755-6541. FOR FURTHER INFORMATION CONTACT: Marian T. Roche, Director, Technology Transfer...

  13. The Impact of Virtual Collaboration and Collaboration Technologies on Knowledge Transfer and Team Performance in Distributed Organizations

    ERIC Educational Resources Information Center

    Ngoma, Ngoma Sylvestre

    2013-01-01

    Virtual teams are increasingly viewed as a powerful determinant of competitive advantage in geographically distributed organizations. This study was designed to provide insights into the interdependencies between virtual collaboration, collaboration technologies, knowledge transfer, and virtual team performance in an effort to understand whether…

  14. St. Regis Paper Mill: Architectural and Environmental Survey

    DTIC Science & Technology

    2010-02-01

    designated by other authorized documents. DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. ERDC/CERL TR-10-4 iii Table...of Technology Transfer ................................................................................................... 2 2 Methodology...Environmental Di- vision. Mode of Technology Transfer This report will be made accessible through the World Wide Web (WWW) at: URL: http

  15. 77 FR 55451 - Notice of Intent To Request an Extension of a Currently Approved Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-10

    ... of 1995, this notice announces the Agricultural Research Service's (ARS) intention to request an..., 2012. ADDRESSES: Comments may be sent to June Blalock, USDA, ARS, Office of Technology Transfer, 5601... INFORMATION CONTACT: June Blalock, USDA, ARS, Office of Technology Transfer, 301-504-5989. SUPPLEMENTARY...

  16. Fermilab Today

    Science.gov Websites

    this column. As a technology transfer professional, I have to admit that I suffer from NASA-envy. For more than 50 years, NASA has been committed to technology transfer as an integral part of its primary space mission. The results NASA has achieved are impressive. It has recorded more than 1,800 examples of

  17. Academic Venturing in Higher Education: Institutional Effects on Performance of University Technology Transfer. ASHE Annual Meeting Paper.

    ERIC Educational Resources Information Center

    Powers, Joshua B.

    This study investigated institutional resource factors that may explain differential performance with university technology transfer--the process by which university research is transformed into marketable products. Using multi-source data on 108 research universities, a set of internal resources (financial, physical, human capital, and…

  18. Technology Transfer and Innovation Initiatives in Strategic Management: Generating an Alternative Perspective

    ERIC Educational Resources Information Center

    Major, E.

    2003-01-01

    This paper taps the strategic management discipline to inform our understanding of technology transfer and innovation (TTI) initiatives. With special focus on the UK Foresight programme it considers the impacts that the resource-based and core competence approaches to strategy can have on understanding the nature and effectiveness of TTI…

  19. 78 FR 57868 - Prospective Grant of Exclusive Patent License: Oral Treatment of Hemophilia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-20

    ... Exclusive Patent License to ProGenetics, LLC, a company having its headquarters in Blacksburg, Virginia, to... comments and/or applications for a license received by the NIH Office of Technology Transfer on or before...: Vince Contreras, Ph.D., Office of Technology Transfer, National Institutes of Health, 6011 Executive...

  20. Institutionalization of Technology Transfer Organizations in Chinese Universities

    ERIC Educational Resources Information Center

    Cai, Yuzhuo; Zhang, Han; Pinheiro, Rómulo

    2015-01-01

    There is a lack of in-depth studies on how technology transfer organizations (TTOs) are organized and developed. This paper examines the evolution/institutionalization of TTOs in Tsinghua University (TU), as a microcosm of the development of TTOs in Chinese universities. It explores two issues in particular: what kinds of TTOs have been developed…

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michelle R. Blacker

    The Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectualmore » property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. In other interactions, INL employees work cooperatively with researchers and other technical staff of our partners to further develop emerging technologies. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties. This report was compiled from primary records, which were readily available to the INL’s Office of Technology Transfer & Commercialization. The accomplishments cataloged in the report, however, reflect the achievements and creativity of the highly skilled researchers, technicians, support staff, and operators of the INL workforce. Their achievements and recognized capabilities are what make the accomplishments cataloged here possible. Without them, none of these transactions would occur.« less

  2. Commercial users panel

    NASA Technical Reports Server (NTRS)

    Byrd, Joseph S.; Flatau, Carl; Hodge, David C.; Hollis, Ralph; Leach, Eugene F.; Gilbert, Ray; Cleland, John; Leifer, Larry; Naser, Joseph; Schmuter, Samson D.

    1987-01-01

    The discussions of motives and requirements for telerobotics application demonstrated that, in many cases, lack of progress was a result not of limited opportunities but of inadequate mechanisms and resources for promoting opportunities. Support for this conclusion came from Telerobotics, Inc., one of the few companies devoted primarily to telerobot systems. They have produced units for such diverse applications as nuclear fusion research, particle accelerators, cryogenics, firefighting, marine biology/undersea systems and nuclear mobile robotics. Mr. Flatau offered evidence that telerobotics research is only rarely supported by the private sector and that it often presents a difficult market. Questions on the mechanisms contained within the NASA technology transfer process for promoting commercial opportunities were fielded by Ray Gilbert and Tom Walters. A few points deserve emphasis: (1) NASA/industry technology transfer occurs in both directions and NASA recognizes the opportunity to learn a great deal from industry in the fields of automation and robotics; (2) promotion of technology transfer projects takes a demand side approach, with requests to industry for specific problem identification. NASA then proposes possible solutions; and (3) comittment ofmotivated and technically qualified people on each end of a technology transfer is essential.

  3. [Radiation Tolerant Electronics

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Research work in the providing radiation tolerant electronics to NASA and the commercial sector is reported herein. There are four major sections to this report: (1) Special purpose VLSI technology section discusses the status of the VLSI projects as well as the new background technologies that have been developed; (2) Lossless data compression results provide the background and direction of new data compression pursued under this grant; (3) Commercial technology transfer presents an itemization of the commercial technology transfer; and (4) Delivery of VLSI to the Government is a solution and progress report that shows how the Government and Government contractors are gaining access to the technology that has been developed by the MRC.

  4. Beyond Our Boundaries: Research and Technology

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Topics considered include: Propulsion and Fluid Management; Structures and Dynamics; Materials and Manufacturing Processes; Sensor Technology; Software Technology; Optical Systems; Microgravity Science; Earth System Science; Astrophysics; Solar Physics; and Technology Transfer.

  5. CRADA Payment Options | NCI Technology Transfer Center | TTC

    Cancer.gov

    NCI TTC CRADA PAYMENT OPTIONS: Electronic Payments by Wire Transfer via Fedwire, Mail a check to the Institute or Center, or Automated Clearing House (ACH)/Electronic Funds Transfer (ETF) payments via Pay.gov (NCI ONLY).

  6. Cryogenic Propellant Storage and Transfer Technology Demonstration For Long Duration In-Space Missions

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Motil, Susan M.; Kortes, Trudy F.; Taylor, William J.; McRight, Patrick S.

    2012-01-01

    The high specific impulse of cryogenic propellants can provide a significant performance advantage for in-space transfer vehicles. The upper stages of the Saturn V and various commercial expendable launch vehicles have used liquid oxygen and liquid hydrogen propellants; however, the application of cryogenic propellants has been limited to relatively short duration missions due to the propensity of cryogens to absorb environmental heat resulting in fluid losses. Utilizing advanced cryogenic propellant technologies can enable the efficient use of high performance propellants for long duration missions. Crewed mission architectures for beyond low Earth orbit exploration can significantly benefit from this capability by developing realistic launch spacing for multiple launch missions, by prepositioning stages and by staging propellants at an in-space depot. The National Aeronautics and Space Administration through the Office of the Chief Technologist is formulating a Cryogenic Propellant Storage and Transfer Technology Demonstration Mission to mitigate the technical and programmatic risks of infusing these advanced technologies into the development of future cryogenic propellant stages or in-space propellant depots. NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. This mission will test and validate key cryogenic technological capabilities and has the objectives of demonstrating advanced thermal control technologies to minimize propellant loss during loiter, demonstrating robust operation in a microgravity environment, and demonstrating efficient propellant transfer on orbit. The status of the demonstration mission concept development, technology demonstration planning and technology maturation activities in preparation for flight system development are described.

  7. Bio-recognition and functional lipidomics by glycosphingolipid transfer technology

    PubMed Central

    TAKI, Takao

    2013-01-01

    Through glycosphingolipid biochemical research, we developed two types of transcription technologies. One is a biochemical transfer of glycosphingolipids to peptides. The other is a physicochemical transfer of glycosphingolipids in silica gel to the surface of a plastic membrane. Using the first technology, we could prepare peptides which mimic the shapes of glycosphingolipid molecules by biopanning with a phage-displayed peptide library and anti-glycosphingolipid antibodies as templates. The peptides thus obtained showed biological properties and functions similar to those of the original glycosphingolipids, such as lectin binding, glycosidase modulation, inhibition of tumor metastasis and immune response against the original antigen glycosphingolipid, and we named them glyco-replica peptides. The results showed that the newly prepared peptides could be used effectively as a bio-recognition system and suggest that the glyco-replica peptides can be widely applied to therapeutic fields. Using the second technology, we could establish a functional lipidomics with a thin-layer chromatography-blot/matrix-assisted laser desorption ionization-time of flight mass spectrometry (TLC-Blot/MALDI-TOF MS) system. By transferring glycosphingolipids on a plastic membrane surface from a TLC plate, innovative biochemical approaches such as simple purification of individual glycosphingolipids, binding studies, and enzyme reactions could be developed. The combinations of these biochemical approaches and MALDI-TOF MS on the plastic membrane could provide new strategies for glycosphingolipid science and the field of lipidomics. In this review, typical applications of these two transfer technologies are introduced. PMID:23883610

  8. Assessing the effectiveness of technology transfer from U.S. government R&D laboratories: impact of market orientation

    NASA Astrophysics Data System (ADS)

    Bozeman, Barry; Coker, Karen

    1992-05-01

    This study, based on a national survey of U.S. government laboratories, assesses the degree of success laboratories have had in transferring technology to industry, taking into account the laboratories' differing receptivity to market influences. Three success criteria are considered here, two based on self-evaluations and a third based on the number of technology licenses issued from the laboratory. The two self-evaluations are rooted in different types of effectiveness, `getting technology out the door,' in one case, and, in the other, having a demonstrable commercial impact. A core hypothesis of the study is that the two types of effectiveness will be responsive to different factors and, in particular, the laboratories with a clearer market orientation will have a higher degree of success on the commercial impact and technology license criteria. Overall, the results seem to suggest that multifaceted, multimission laboratories are likely to enjoy the most success in technology transfer, especially if they have relatively low levels of bureaucratization and either ties to industry (particularly direct financial ties) or a commercial orientation in the selection of projects.

  9. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unknown

    1998-10-31

    In pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions, the Petroleum Technology Transfer Council (PTTC) functions as a cohesive national organization that implements industry's directives through active regional programs. The role of the national headquarters (HQ) organization includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. PTTC relies on 10 Regional Lead Organizations (RLOs) as its main program delivery mechanism to industry. Through its regions, PTTC connects with independent oil and gas producers--through technology workshops, resources centers, websites, newsletters, and other outreach efforts.more » The organization effectively combines federal, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies. This technical progress report summarizes PTTC's accomplishments during FY98, and its strategy for achieving further growth in the future.« less

  10. Applications of aerospace technology in biology and medicine

    NASA Technical Reports Server (NTRS)

    Bass, B.; Beall, H. C.; Brown, J. N., Jr.; Clingman, W. H.; Eakes, R. E.; Kizakevich, P. N.; Mccartney, M.; Rouse, D. J.

    1982-01-01

    Utilization of National Aeronautics and Space Administration (NASA) technology in medicine is discussed. The objective is best obtained by stimulation of the introduction of new or improved commercially available medical products incorporating aerospace technology. A bipolar donor/recipient model of medical technology transfer is presented to provide a basis for the team's methodology. That methodology is designed to: (1) identify medical problems and NASA technology that, in combination, constitute opportunities for successful medical products; (2) obtain the early participation of industry in the transfer process; and (3) obtain acceptance by the medical community of new medical products based on NASA technology. Two commercial transfers were completed: the Stowaway, a lightweight wheelchair that provides mobility for the disabled and elderly in the cabin of commercial aircraft, and Micromed, a portable medication infusion pump for the reliable, continuous infusion of medications such as heparin or insulin. The marketing and manufacturing factors critical to the commercialization of the lightweight walker incorporating composite materials were studied. Progress was made in the development and commercialization of each of the 18 currently active projects.

  11. Cryogenic Propellant Storage and Transfer Technology Demonstration: Advancing Technologies for Future Mission Architectures Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Chojnacki, Kent T.; Crane, Deborah J.; Motil, Susan M.; Ginty, Carol A.; Tofil, Todd A.

    2014-01-01

    As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including the Moon, asteroids, Lagrange points, and Mars and its environs. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages and propellant depots. The TDM CPST will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration that enables long term human space exploration missions beyond low Earth orbit. This paper will present a summary of the cryogenic fluid management technology maturation effort, infusion of those technologies into flight hardware development, and a summary of the CPST preliminary design.

  12. The Development of Novel, High-Flux, Heat Transfer Cells for Thermal Control in Microgravity

    NASA Technical Reports Server (NTRS)

    Smith, Marc K.; Glezer, Ari

    1996-01-01

    In order to meet the future needs of thermal management and control in space applications such as the Space Lab, new heat-transfer technology capable of much larger heat fluxes must be developed. To this end, we describe complementary numerical and experimental investigations into the fundamental fluid mechanics and heat-transfer processes involved in a radically new, self contained, heat transfer cell for microgravity applications. In contrast to conventional heat pipes, the heat transfer in this cell is based on a forced droplet evaporation process using a fine spray. The spray is produced by a novel fluidic technology recently developed at Georgia Tech. This technology is based on a vibration induced droplet atomization process. In this technique, a liquid droplet is placed on a flexible membrane and is vibrated normal to itself. When the proper drop size is attained, the droplet resonates with the surface motion of the membrane and almost immediately bursts into a shower of very fine secondary droplets. The small droplets travel to the opposite end of the cell where they impact a heated surface and are evaporated. The vapor returns to the cold end of the cell and condenses to form the large droplets that are fragmented to form the spray. Preliminary estimates show that a heat transfer cell based on this technology would have a heat-flux capacity that is an order of magnitude higher than those of current heat pipes designs used in microgravity applications.

  13. Techniques for on-orbit cryogenic servicing

    NASA Astrophysics Data System (ADS)

    DeLee, C. H.; Barfknecht, P.; Breon, S.; Boyle, R.; DiPirro, M.; Francis, J.; Huynh, J.; Li, X.; McGuire, J.; Mustafi, S.; Tuttle, J.; Wegel, D.

    2014-11-01

    NASA (National Aeronautics and Space Administration) has a renewed interest in on-orbit cryogen storage and transfer to support its mission to explore near-earth objects such as asteroids and comets. The Cryogenic Propellant Storage and Transfer Technology Demonstration Mission (CPST-TDM), managed by the NASA Glenn Research Center (GRC) and scheduled for launch in 2018, will demonstrate numerous key technologies applicable to a cryopropellant fuel depot. As an adjunct to the CPST-TDM work, experiments at NASA Goddard Space Flight Center (GSFC) will support the development of techniques to manage and transfer cryogens on-orbit and expand these techniques as they may be applicable to servicing science missions using solid cryogens such as the Wide-field Infrared Survey Explorer (WISE). The results of several ground experiments are described, including autogenous pressurization used for transfer of liquid nitrogen and argon, characterization of the transfer and solidification of argon, and development of robotic tools for cryogen transfer.

  14. Electric propulsion for geostationary orbit insertion

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Curran, Francis M.; Myers, Roger M.

    1995-01-01

    Solar electric propulsion (SEP) technology is already being used for geostationary satellite stationkeeping to increase payload mass. By using this same technology to perform part of the orbit transfer additional increases in payload mass can be achieved. Advanced chemical and N2H4 arcjet systems are used to increase the payload mass by performing stationkeeping and part of the orbit transfer. Four mission options are analyzed which show the impact of either sharing the orbit transfer between chemical and SEP systems or having either complete the transfer alone. Results show that for an Atlas 2AS payload increases in net mass (geostationary satellite mass less wet propulsion system mass) of up to 100 kg can be achieved using advanced chemical for the transfer and advanced N2H4 arcjets for stationkeeping. An additional 100 kg can be added using advanced N2H4 arcjets for part of a 40 day orbit transfer.

  15. Federal technology transfer requirements :a focused study of principal agencies approaches with implications for the Department of Homeland Security.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koker, Denise; Micheau, Jill M.

    2006-07-01

    This report provides relevant information and analysis to the Department of Homeland Security (DHS) that will assist DHS in determining how to meet the requirements of federal technology transfer legislation. These legal requirements are grouped into five categories: (1) establishing an Office of Research and Technology Applications, or providing the functions thereof; (2) information management; (3) enabling agreements with non-federal partners; (4) royalty sharing; and (5) invention ownership/obligations. These five categories provide the organizing framework for this study, which benchmarks other federal agencies/laboratories engaged in technology transfer/transition Four key agencies--the Department of Health & Human Services (HHS), the U.S. Departmentmore » of Agriculture (USDA), the Department of Energy (DOE), and the Department of Defense (DoD)--and several of their laboratories have been surveyed. An analysis of DHS's mission needs for commercializing R&D compared to those agencies/laboratories is presented with implications and next steps for DHS's consideration. Federal technology transfer legislation, requirements, and practices have evolved over the decades as agencies and laboratories have grown more knowledgeable and sophisticated in their efforts to conduct technology transfer and as needs and opinions in the federal sector have changed with regards to what is appropriate. The need to address requirements in a fairly thorough manner has, therefore, resulted in a lengthy paper. There are two ways to find summary information. Each chapter concludes with a summary, and there is an overall ''Summary and Next Steps'' chapter on pages 57-60. For those readers who are unable to read the entire document, we recommend referring to these pages.« less

  16. Imagining value, imagining users: academic technology transfer for health innovation.

    PubMed

    Miller, Fiona Alice; Sanders, Carrie B; Lehoux, Pascale

    2009-04-01

    Governments have invested heavily in the clinical and economic promise of health innovation and express increasing concern with the efficacy and efficiency of the health innovation system. In considering strategies for 'better' health innovation, policy makers and researchers have taken a particular interest in the work of universities and related public research organizations: How do these organizations identify and transfer promising innovations to market, and do these efforts make best use of public sector investments? We conducted an ethnographic study of technology transfer offices (TTOs) in Ontario and British Columbia, Canada, to consider the place of health and health system imperatives in judgments of value in early-stage health innovation. Our analysis suggests that the valuation process is poorly specified as a set of task-specific judgments. Instead, we argue that technology transfer professionals are active participants in the construction of the innovation and assign value by 'imagining' the end product in its 'context of use'. Oriented as they are to the commercialization of health technology, TTOs understand users primarily as market players. The immediate users of TTOs' efforts are commercial partners (i.e., licensees, investors) who are capable of translating current discoveries into future commodities. The ultimate end users - patients, clinicians, health systems - are the future consumers of the products to be sold. Attention to these proximate and more distal users in the valuation process is a complex and constitutive feature of the work of health technology transfer. At the same time, judgements about individual technologies are made in relation to a broader imperative through which TTOs seek to imagine and construct sustainable innovation systems. Judgments of value are rendered sensible in relation to the logic of valuation for systems of innovation that, in turn, configure users of health innovation in systemic ways.

  17. Improving Global Access to New Vaccines: Intellectual Property, Technology Transfer, and Regulatory Pathways

    PubMed Central

    2014-01-01

    The 2012 World Health Assembly Global Vaccine Action Plan called for global access to new vaccines within 5 years of licensure. Current approaches have proven insufficient to achieve sustainable vaccine pricing within such a timeline. Paralleling the successful strategy of generic competition to bring down drug prices, a clear consensus is emerging that market entry of multiple suppliers is a critical factor in expeditiously bringing down prices of new vaccines. In this context, key target objectives for improving access to new vaccines include overcoming intellectual property obstacles, streamlining regulatory pathways for biosimilar vaccines, and reducing market entry timelines for developing-country vaccine manufacturers by transfer of technology and know-how. I propose an intellectual property, technology, and know-how bank as a new approach to facilitate widespread access to new vaccines in low- and middle-income countries by efficient transfer of patented vaccine technologies to multiple developing-country vaccine manufacturers. PMID:25211753

  18. Technology transfer personnel exchange at the Boeing Company

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antoniak, Z.I.

    1993-03-01

    The objective of the exchange was to transfer Pacific Northwest Laboratory (PNL) technology and expertise in advanced ceramic fabric composites (ACFC) to the Boeing Defense & Space Group (Boeing Aerospace). Boeing Aerospace was especially interested in applying PNL-developed ACFC technology to its current and future spacecraft and space missions. Boeing has on-going independent research and development (R&D) programs on advanced radiators and heat pipes, therefore, PNL research in ceramic fabric heat pipes was of particular interest to Boeing. Thus, this exchange assisted in the transfer of PNL`s ACFC heat pipe technology and other, related research capabilities to private industrial application.more » The project was proposed as an initial step in building a long-term collaborative relationship between Boeing and PNL that may result in future Cooperative Research and Development Agreements (CRADAs) and/or other types of collaborative efforts.« less

  19. Technology transfer personnel exchange at the Boeing Company

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antoniak, Z.I.

    1993-03-01

    The objective of the exchange was to transfer Pacific Northwest Laboratory (PNL) technology and expertise in advanced ceramic fabric composites (ACFC) to the Boeing Defense Space Group (Boeing Aerospace). Boeing Aerospace was especially interested in applying PNL-developed ACFC technology to its current and future spacecraft and space missions. Boeing has on-going independent research and development (R D) programs on advanced radiators and heat pipes, therefore, PNL research in ceramic fabric heat pipes was of particular interest to Boeing. Thus, this exchange assisted in the transfer of PNL's ACFC heat pipe technology and other, related research capabilities to private industrial application.more » The project was proposed as an initial step in building a long-term collaborative relationship between Boeing and PNL that may result in future Cooperative Research and Development Agreements (CRADAs) and/or other types of collaborative efforts.« less

  20. Practical applications of new research information in the practice of bovine embryo transfer.

    PubMed

    Looney, C R; Pryor, J H

    2010-01-01

    For more than 40 years, practitioners have sought to improve all aspects of commercial bovine embryo transfer. The development of new technologies for this industry has been substantial, with recent focus on cryopreservation techniques and the in vitro production of embryos fertilised with sexed spermatozoa. When these and other new technologies are developed, the following questions remain: (1) is said technology regulated or does it require licensing; and (2) is it applicable and, if so, is it financially feasible? Computer access to published research and the advancement of data software programs conducive to the industry for data procurement have been essential for helping practitioners answer these questions by enhancing their ability to analyse and apply data. The focus of the present paper is to aid commercial embryo transfer practitioners in determining new technologies that are available and whether they can be implemented effectively, benefiting their programs.

Top